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Convergence of a threshold-type algorithm using the signed distance function
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We consider a threshold-type algorithm for curvature-dependent motions of hypersurfaces. This 
algorithm was numerically studied by [27], [9] and [35], where they used the signed distance 
function. It is also regarded as a variant of the Bence–Merriman–Osher algorithm for the mean 
curvature flow ( [4]). In this paper we prove the convergence of our algorithm under the nonfattening 
condition, applying the method of [30] which is based on the notion of the generalized flow due 
to [3]. Then we derive the rate of convergence of our algorithm to the smooth and compact curvature-

dependent motions and show its optimality to the special case of a circle evolving by its curvature. 
We also give a local estimate on the convergence to a regular portion of the generalized curvature-

dependent motion.
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1. Introduction

In this paper we are concerned with the convergence of a threshold-type algorithm for curvature-

dependent motions (CDM for short) of hypersurfaces. This was numerically studied by [27], [9]

and [35] and is also regarded as a variant of the so-called Bence–Merriman–Osher algorithm to the

mean curvature flow (MCF for short, cf. [4]).

Let f� .t/gt2Œ0;T / be a family of compact hypersurfaces in RN . We say this family is a CDM if

� .t/ moves by the following equation:

V D � C hb;ni C g on � .t/; t 2 .0; T /: (1.1)

Here T > 0, n D n.t; x/ is the inner unit normal vector field on � .t/, V D V.t; x/ is the velocity

of � .t/ in the direction of n, � D �.t; x/.WD �div n.t; x// is the (.N � 1/-times) mean curvature

of � .t/, b D b.t; x/ D .b1.t; x/; � � � ; bN .t; x// denotes a given vector field in RN , g D g.t; x/

is a forcing term and h�; �i denotes the inner product in RN . As well known, the MCF is the case

of b � 0 and g � 0. The CDM arises in various fields such as two-phase Stefan problems, phase

transitions, image processing, two-phase fluid flows and so on.

The main feature of the CDM is the development of singularities in finite time even if b, g and

the initial hypersurface are sufficiently smooth. To interpret the evolution past the singularities, the

level set approach was introduced for numerical computations by [37] and was rigorously developed
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by [7] and independently by [11]. In these papers the authors proposed the notion of generalized

motion by (1.1) and proved the well-posedness of the level set equation to (1.1) in the sense of

viscosity solutions and the well-definedness of the generalized motion by (1.1). Since then many

people have developed the theory of the generalized motion and its applications. See [38], [24]

and [3] and the references therein. The book [15] provides a self-contained introduction to the level

set approach for various surface evolution equations.

From the viewpoints of the above applications, many people have studied numerical

computations for CDM. Among many numerical methods for CDM, we treat the following

algorithm: Let C0 be a compact set in R
N and fix a time step h > 0. For k D 0; 1; 2; : : :, set

bk.t; x/ WD b.t C kh; x/ and gk.t; x/ WD g.t C kh; x/. Let w0 D w0.t; x/ be a unique solution of

the initial value problem for the linear parabolic equation with k D 0:

wt ��w C hbk;Dwi C gk D 0 in .0; h� � R
N ; (1.2)

w.0; x/ D d.x; Ck/ for x 2 R
N : (1.3)

Here d.x;D/ is the signed distance function to @D defined by

d.x;D/ WD
�

dist .x; @D/ for x 2 D;
�dist .x; @D/ for x … D; (1.4)

for each closed subset D.¤ ;/ of RN . We then set

C1 WD fw0.h; �/ > 0g: (1.5)

Let w1 be a unique solution of (1.2) - (1.3) with k D 1. Again we define C2 as the set in (1.5) with

w1 replacing w0. Repeating this process, we have a sequence fCkgC1
kD0

of compact subsets of RN .

We then set

C h.t/ WD Ck for t 2 Œkh; .k C 1/h/; k D 0; 1; 2; : : : (1.6)

Letting h ! 0, we formally obtain a limit flow fC.t/gt>0 of compact sets in RN and observe that

@C.t/ moves by (1.1) with the initial data @C0.

The above algorithm was numerically studied by [27] and [9]. In [27] Kimura and Notsu

proposed a fully discrete finite element scheme based on the above level set method of the signed

distance function. In [27, Section 4] they gave some numerical examples for MCF with a forcing

term. In [9] Esedoḡlu, Ruuth and Tsai considered various geometric motions with using the signed

distance function, including CDM, MCF with triple junctions and the motion by surface diffusion.

The extension of the signed distance approach to vector setting for numerical computation of

multiphase problems was addressed in [35]. This algorithm is regarded as a variant of the Bence–

Merriman–Osher (BMO for short) algorithm to MCF (cf. [4]), which utilizes the solutions of the

usual heat equation, continually reinitialized after short time steps. The BMO algorithm and its

generalizations are studied by many people. See [34], [10], [1], [18] and [25] etc. for the convergence

of the BMO algorithm and [20], [23], [39], [30] etc. for some generalizations. In particular, in [39]

and [30] Vivier and Leoni generalized the BMO algorithm with using the linear/semilinear parabolic

equations and proved the convergence of their scheme to the anisotropic CDM’s associated with

these equations. Our algorithm is quite similar to theirs on the point that we use the linear parabolic

equation (1.2) to construct the approximate sequence for CDM. However, the choice of the initial
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data of each time step is the main difference between the (generalized) BMO algorithm and ours. In

the (generalized) BMO algorithm they choose the initial data

w.0; x/ D
�
1 for x 2 Ck;

�1 for x … Ck;
.D sgn�.d.x; Ck///

instead of (1.3), where sgn�.r/ WD 1 for r > 0, WD �1 for r < 0. In addition, we refer to [6],

where Chambolle and Novaga considered an algorithm to the anisotropic mean curvature flow with

using a subdifferential inclusion and proved the convergence to a compact and smooth flow. Their

algorithm is also quite similar to ours, but several points are different, e.g., the approximate equation,

the choice of the initial data etc.

The purposes of this paper are to derive the convergence of the above algorithm to the

generalized CDM under the nonfattening condition, the optimal rate of convergence of this

algorithm to the smooth and compact one and a local estimate on the convergence to the generalized

CDM. Related to our results, [25] derived the optimal rate of convergence of the BMO algorithm

for MCF and [36] gave a local estimate on the convergence of a bilateral obstacle problem to the

generalized CDM.

The strategy in proving the convergence of the flow fC h.t/gt2Œ0;T /;h>0 is to apply the method

of [30], where she made use of the notion of the generalized flow by [3] and constructed suitable

sub- and super-solutions to her approximation scheme. We also use the arguments in [26] to show

the convergence of the sequences fwhgh>0, fdhgh>0 of the functions given by wh.t; x/ WD wk.t �
kh; x/ and dh.t; x/ WD d.x; Ck/ for .t; x/ 2 Œkh; .k C 1/h/ � RN and k D 0; 1; 2; : : : ; ŒT=h�.

Hence we are able to prove that

lim
h!0

wh D lim
h!0

dh D d locally uniformly in Œ0; T / � R
N ;

lim
h!0

dH .C
h.t/; C.t// D 0 locally uniformly in Œ0; T /;

C.t/ WD fd.t; �/ > 0g;
d D d.t; x/ W signed distance function to @C.t/;

and that f@C.t/gt2Œ0;T / is a generalized CDM. Here dH is the Hausdorff distance defined at the end

of this introduction. In order to derive the rate of convergence to the smooth and compact CDM, we

directly calculate the distance between CDM and the approximate motion along the characteristics.

For this purpose the estimate ofDwk from below plays an important role. Consequently, we obtain

that for any " > 0, there are constants L1, h0 > 0 such that

sup
t2Œ0;T �"�

dH .C
h.t/; C.t// 6 L1h for all h 2 .0; h0/: (1.7)

The optimality of this estimate is obtained by precise calculations in the case of a circle evolving by

curvature. The ideas in considering a local estimate on the convergence to the generalized CDM are

to introduce the graph-like equation of (1.1) and to get a local regularity of the generalized CDM.

They are based on [13, Section 5].

This paper is organized as follows. In Section 2 we state our assumptions and recall the notion

and some results of the generalized CDM. As for the latter one, we briefly explain the notions of

the generalized CDM in the sense of [7], [11] and that of [3] in Section 2.3. Note that these two

notions are equivalent under the nonfattening condition. Section 3 is devoted to some estimates on
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solutions of (1.2) and fC h.t/gt2Œ0;T /;h>0. In Section 4 we study semicontinuous limits of fwhgh>0

and fdhgh>0 and characterize those of fdhgh>0 by means of the eikonal equations. Section 5 is

devoted to the convergence of our algorithm. In Section 6 we obtain (1.7) in the case of the smooth

and compact CDM and show its optimality. In Section 7 we treat the rate of convergence to a regular

portion of the generalized CDM. Section 8 is the appendix.

We do not precisely explain the definition and the theory of viscosity solutions of the level

set equation to (1.1). We refer to [8], [28] and [15] for them. Throughout this paper, we use the

following notations: For m 2 N [ f0g, ˛ 2 .0; 1/, Q � Œ0; T / � RN , f W Q �! R and f D
.f 1; � � � ; f N / W Q �! RN ,

Df D Dxf WD .@f=@x1; � � � ; @f=@xN /;Dtf WD ft D @f=@t;

Dl
xf WD @jljf=@xl1

1 � � � @xlN

N ; jl j D l1 C � � � C lN for l D .l1; � � � ; lN / 2
�
N [ f0g

�N
;

D2f WD .@2f=@xi@xj /16i;j 6N ; Df WD .@f i=@xj /16i;j;6N ;

jf j0;Q WD sup
.t;x/2Q

jf .t; x/j; hf ix;˛;Q WD sup
.t;x/;.t;y/2Q

jf .t; x/ � f .t; y/j
jx � yj˛ ;

hf it;˛=2;Q WD sup
.t;x/;.s;x/2Q

jf .t; x/ � f .s; x/j
jt � sj˛=2

;

kf k.mC˛/
Q WD

X

2kCjlj6m

jDk
t D

l
xf j0;Q C

X

2kCjljDm

hDk
t D

l
xf ix;˛;Q

C
X

0<.mC˛/�2k�jlj<2

hDk
t D

l
xf it;.mC˛�2k�jlj/=2;Q;

kfk.mC˛/
Q WD

vuut
NX

iD1

�
kf ik.mC˛/

Q

�2

; jfj0;Q WD

vuut
NX

iD1

jf i j20;Q; jDfj0;Q WD

vuut
NX

i;j D1

ˇ̌
ˇ̌@f i

@xj

ˇ̌
ˇ̌
2

0;Q

:

For m 2 N [ f0g,˝ � RN and f W ˝ �! R,

kf k.m/
˝ WD

X

jlj6m

sup
x2˝

jDl
xf .x/j:

For u W RN �! R, v W Œ0; T / � RN �! R and � 2 R,

fu > �g WD fx 2 R
N j u.x/ > �g;

fv > �g WD f.t; x/ 2 Œ0; T / � R
N j v.t; x/ > �g;

fv.t; �/ > �g WD fx 2 R
N j v.t; x/ > �g; etc.

Let U be a metric space and V a dense subset of U .

UC.U / D the set of all uniformly continuous functions:

For u W V �! R and x 2 U ,

u�.x/ WD lim sup
V 3y!x

u.y/; u�.x/ WD lim inf
V 3y!x

u.y/:
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For Q � Œ0; T / � R
N , f W Q �! R (or RN , SN ) and g; v W Q �! R,

f .t; x/ D O
�
g.t; x/

�
” jf .t; x/j 6 Kg.t; x/ for some K > 0 independent of .t; x/ 2 Q;

ef v D ef v.t; x/ WD f .t; x � v.t; x/Dv.t; x//:

For Q0 � .0; T / � RN �1 and v W Q0 �! R,

D0v WD .@v=@x1; � � � ; @v=@xN �1/; D
02v WD .@2v=@xi@xj /16i;j 6N �1;

�0v WD @2v

@x2
1

C � � � C @2v

@x2
N �1

:

Besides we use the following symbols.

hp; qi D the inner product between p; q 2 R
N ;

clA D the closure of A; intA D the interior of A for at set A � R
N ;

�A D the characteristic function for a set A � R
N ;

P.x; ı/ WD
NY

iD1

.xi � ı; xi C ı/ for x D .x1; � � � ; xN / 2 R
N and ı > 0

D N -dimensional open cube centered at x;

QT WD .0; T / � R
N ; Qh WD .0; h/ � R

N ; Q..t; x/; r/ WD .t � r; t C r/ � B.x; r/;
Q0�.t; x/; r

�
WD .t � r; t C r/ � B 0.x; r/; B 0.x; r/ WD B.x; r/ \

�
fxg C R

N �1
�
;

Œr� D Gauss symbol for r 2 R;

S
N D the set of all N �N -real symmetric matrices;

trX D the trace of X 2 S
N ;

dH .A;B/ WD max

�
sup
x2A

dist .x; B/; sup
x2B

dist .x; A/

�
for A;B � R

N

D Hausdorff distance between the sets A and B;

U.t; x/ WD .4�t/�N=2 exp.�jxj2=4t/:

2. Preliminaries

2.1 Assumptions

Fix T , h > 0. Throughout this paper we assume that the functions b and g are so smooth that for

some ˛ 2 .0; 1/
kf k.3C˛/

clQT
< C1 .f D b; g/: (2.1)

Then for each k D 0; 1; 2; : : : ; ŒT=h�, there is a unique classical solution wk 2 C.clQh/ \
C .5C˛/=2;5C˛.Qh/ of (1.2) - (1.3) satisfying

sup
.t;x/2clQh

kD0;1;2;��� ;ŒT=h�

jwk.t; x/j
jxj C 1

< C1; sup
kD0;1;2;��� ;ŒT=h�

0<h<1

kDwkkL1.Qh/ DW K1 < C1: (2.2)
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See, e.g., [29]. Note that the former bound may depend on h > 0.

For a given compact hypersurface �0 � RN , assume that

�0 2 C 5C˛ for some ˛ 2 .0; 1/: (2.3)

As will be seen in Appendix, there uniquely exists a smooth and compact CDM f� .t/gt2Œ0;T0/ with

� .0/ D �0 for some T0 > 0. Define the signed distance function �.t; x/ to � .t/ by

�.t; x/ WD d
�
x;D.t/

�
(2.4)

where D.t/ denotes the compact set such that @D.t/ D � .t/ and d.x;D.t// is defined by (1.4)

with D D D.t/ for each t 2 Œ0; T0/. Then for each " > 0 there exists ı > 0 such that

k�k.5C˛/
N ";10ı

< C1; N ";10ı WD
˚
.t; x/ 2 Œ0; T0 � "� � R

N j j�.t; x/j 6 10ı
	
: (2.5)

This property will be used in section 5.

2.2 Signed distance function and CDM

Let f� .t/gt2Œ0;T / be a smooth and compact CDM and let � be defined by (2.4) and satisfy (2.5). As

V D ��t , n D D� and � D ��� on � .t/, (1.1) is equivalent to

�t ���C hb;D�i C g D 0 on � WD
[

t2Œ0;T /

�
ftg � � .t/

�
: (2.6)

We show some inequalities and an equation which d satisfies in N ";10ı . For any .t; x/ 2 N ";10ı the

point y D x � �.t; x/D�.t; x/ is a unique minimizer of jy � xj among y 2 � .t/. The eigenvalues

f�i D �i .D2�.t; x//gN
iD1 of the matrixD2� at .t; x/ are

�i WD �
e�i

�

1 �e�i
��

for i D 1; 2; : : : ; N � 1; �N D 0: (2.7)

Here f�i D �i .t; y/gN �1
iD1 denotes the principal curvatures of � .t/ at y 2 � .t/ with respect to the

direction n.D D�/ (cf. [17, Section 14.6]). We get from (2.7)

e�i
� D �i

�i� � 1
for i D 1; 2; : : : ; N � 1: (2.8)

Since e.��/� D �e�� D �
N �1X

iD1

e�i
�, (2.6) is rewritten as

�t � e.��/� C heb�;D�i Ceg� D 0 in N ";10ı (2.9)

because e.�t /� D �t anden� D A.D�/� D D� on N ";10ı . Hence it follows from [17, Section 14.6]

that

�t ���C heb�;D�i Ceg� > 0 in N ";10ı \ f� > 0g; (2.10)

�t ���C heb�;D�i Ceg� 6 0 in N ";10ı \ f� 6 0g: (2.11)
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On the other hand, substituting (2.8) into (2.9) we have

�t � F0.�;D
2�/C heb�;D�i Ceg� D 0 in N ";10ı ; (2.12)

F0.r; X/ D
NX

iD1

�i .X/

1 � �i .X/r
for .r; X/ 2 R � S

N : (2.13)

Note by [12, p.323] that F0 is smooth and uniformly elliptic in a neighborhood of .0;O/ in R�SN .

2.3 Level set equation and generalized CDM

In this subsection we collect the notions of the level-set flow and the generalized flow by (1.1) and

known results on them according to [7], [16], [24], [3] and [15].

The level set equation to (1.1) is given by

ut C F.t; x;Du;D2u/ D 0 in QT ; (2.14)

F.t; x; p;X/ WD �trX C hXp;pi
jpj2 C

˝
b.t; x/; p

˛
C g.t; x/jpj

for
�
.t; x/; p;X

�
2 QT �

�
R

N nf0g
�

� S
N :

See [7] and [15] for the derivation of this equation. The F is degenerate elliptic, that is, for each

..t; x/; p/ 2 QT � .RN nf0g/

F.t; x; p;X/ 6 F.t; x; p; Y / for all X; Y 2 S
N satisfying X > Y:

In addition, it satisfies the property called geometric:

F.t; x; �p; �X C �p ˝ p/ D �F.t; x; p;X/

for all � > 0, � 2 R, .t; x/ 2 QT , p 2 RN nf0g and X 2 SN . Since (2.14) has a singularity at

p D 0, we adopt the notion of viscosity solutions to consider weak solutions of (2.14).

DEFINITION 2.1 Let u be a locally bounded function inQT . We say that u is a viscosity subsolution

(resp., supersolution) of (2.14) provided that for any ' 2 C1.QT /, if u� � ' (resp., u� � ') takes

a local maximum (resp., minimum) at .t0; x0/, then

't .t0; x0/C F�
�
t0; x0;D'.t0; x0/;D

2'.t0; x0/
�

6 0
�
resp.; 't .t0; x0/C F ��t0; x0;D'.t0; x0/;D

2'.t0; x0/
�

> 0
�
:

We say that u is a viscosity solution of (2.14) if u is a viscosity subsolution and a viscosity

supersolution of (2.14).

DEFINITION 2.2 Let u 2 C.Œ0; T / � RN / be a viscosity solution of (2.14). Set

�L.t/ WD
˚
u.t; �/ D 0

	
; ˝C

L .t/ WD
˚
u.t; �/ > 0

	
; ˝�

L .t/ WD
˚
u.t; �/ < 0

	
(2.15)

for each t 2 Œ0; T /. We call the family .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;T / a level-set flow by (1.1).
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We recall the comparison principle and existence of viscosity solutions of (2.14) and the well-

definedness of the level-set flow by (1.1), according to [16], [24] and [15].

Theorem 2.3 Assume (2.1). Let u and v be, respectively, a viscosity subsolution and a viscosity

supersolution of (2.14). If u�.0; �/ 6 v�.0; �/ in RN , u�.t; x/ 6 C.1Cjxj/, v�.t; x/ > �C.1Cjxj/
for all .t; x/ 2 Œ0; T / � RN and some C > 0 and either u�.0; �/ or v�.0; �/ 2 UC.RN /, then

u�
6 v� in Œ0; T / � R

N . Moreover, for any u0 2 UC.RN / there is a unique viscosity solution

u 2 UC.Œ0; T / � RN / of (2.14).

Theorem 2.4 Assume (2.1). Let .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;T / be defined by (2.15). Here u 2

UC.Œ0; T / � RN / is a unique viscosity solution of (2.14) with the initial data u0 2 UC.RN /.

Then this family is determined independently of the choice of u0 2 UC.RN / satisfying �L.0/ D
fu0 D 0g, ˝C

L .0/ D fu0 > 0g and˝�
L .0/ D fu0 < 0g.

REMARK 2.5 In the following of this paper, based on Theorems 2.3 and 2.4 we shall always

consider that the level-set flow .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;T / by (1.1) is given in the same way

as (2.15) by using a viscosity solution u 2 UC.Œ0; T / � RN / satisfying u.0; �/ 2 UC.RN / and

�L.0/ D fu.0; �/ D 0g,˝C
L .0/ D fu.0; �/ > 0g, ˝�

L .0/ D fu.0; �/ < 0g.

We assume that the level-set flow .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;T / by (1.1) satisfies the

nonfattening condition:

�L.t/ D @˝C
L .t/ D @˝�

L .t/ for all t 2 Œ0; T /: (2.16)

Then we have the uniqueness of viscosity solution of (2.14) with a discontinuous initial data.

Theorem 2.6 (cf. [2, Theorem 2.1], [3, Proposition 2.1]) Assume (2.1). Let .�L.t/;˝
C
L .t/;

˝�
L .t//t2Œ0;T / be a level-set flow by (1.1).

(1) The condition (2.16) holds if and only if the initial value problem (2.14) with u.0; x/ D
�

˝
C

L
.0/

� �˝�
L

.0/ has a unique discontinuous viscosity solution.

(2) Assume that (2.16) fails. Then for any upper semicontinuous viscosity subsolutionw D w.t; x/

of (2.14) with w.0; �/ 6 �
˝

C

L
.0/[�L.0/

� �˝�
L

.0/ in RN , we have w 6 �
˝

C

L
.t/[�L.t/

� �˝�
L

.t/

in Œ0; T / � R
N . Similarly, for any lower semicontinuous viscosity supersolution w D w.t; x/

of (1.1) with w.0; �/ > �
˝

C
L

.0/
��˝�

L
.0/[�L.0/ in RN , we have w > �

˝
C
L

.t/
� �˝�

L
.t/[�L.t/ in

Œ0; T / � RN .

In Section 4 we apply the notion of the generalized flow by (1.1). This notion is proposed in [3]

and is equivalent to the level-set flow under (2.16).

DEFINITION 2.7 Let f˝G.t/gt2Œ0;T / be a family of open subsets of RN . We say f˝G.t/gt2Œ0;T /

is a generalized superflow (resp., subflow) by (1.1) provided for any t > 0, x0 2 RN , r > 0 and

˛ > 0 and for any � 2 C1.RN / such that f� > 0g � ˝G.t/ \ B.x0; r/ (resp., f� 6 0g �
.RN ncl˝.t// \ B.x0; r/) with jD�j ¤ 0 on f� D 0g, there exists s0 > 0 depending only on ˛, t

and k�k.3/

B.x0;r/
such that for all s 2 .0; s0/,

˚
� � sŒF.t; �;D�;D2�/C ˛� > 0

	
\ clB.x0; r/ � ˝G.t C s/

.resp:;
˚
� � sŒF.t; �;D�;D2�/ � ˛� < 0

	
\ clB.x0; r/ � R

N ncl˝G.t C s/:

We say f˝G.t/gt2Œ0;T / is a generalized flow by (1.1) if it is both a generalized superflow and a
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generalized subflow by (1.1).

This definition is based on the avoidance/inclusion property of the evolution by (2.14), which is a

direct consequence of the comparison principle for (2.14). Let .�L.t/;˝
C
L .t/; ˝

�
L .t//t2Œ0;T / be the

level set flow by (1.1). Assume that � 2 C1.RN / and that E.0/ WD f� > 0g � ˝C
L .t/ for some

fixed t 2 Œ0; T /. Let ' D '.s; x/ be a unique viscosity solution of

�
's C F.t C s; x;D';D2'/ D �˛jD'j in .0; T � t/ � RN ;

'.0; x/ D �.x/ for x 2 RN ;

with an arbitrary ˛ > 0. For s > 0 set EC.s/ WD f'.s; �/ > 0g. Then EC.s/ � ˝C
L .t C s/

for all s > 0. Similarly, if E�.0/ WD f� 6 0g � ˝�
L .t/ for some t 2 Œ0; T / (or equivalently,

EC.0/ � ˝C
L .t/), we define the evolution E�.s/ by use of a unique viscosity solution of

�
's C F.t C s; x;D';D2'/ D ˛jD'j in .0; T � t/ � R

N ;

'.0; x/ D �.x/ for x 2 R
N ;

with an arbitrary ˛ > 0. Then E�.s/ � ˝�
L .t C s/ for all s > 0. This property characterizes the

family .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;T /.

From the above observations we expect that the surface @f� � hŒF.t; �;D�;D2�/ C ˛� >

0g evolves in a weak sense with a normal velocity smaller than �F . This idea is justified by the

following lemma, which says that such sets are contained in some smooth and open sets evolving

with a normal velocity smaller than �F .

Lemma 2.8 (cf. [3, Lemma 2.2]) Let t > 0, x0 2 RN , r > 0 and ˛ > 0. Let � 2 C1.RN / satisfy

f� > 0g � B.x0; r/ and jD�j ¤ 0 on f� D 0g. Then there are a constant s0 > 0 depending

on t , ˛ and k�k.3/

B.x0;r/
, a smooth function '˛ D '˛.s; x/ in Œ0; s0/ � RN with '˛.0; �/ D � and a

neighborhood V � B.x0; r/ of the set f� D 0g such that for all s 2 Œ0; s0/,

@˝1.t C s/ � V; ˝1.t C s/ WD f'˛.s; �/ > 0g; (2.17)

f� � hŒF.t; �;D�;D2�/C ˛� > 0g \ clB.x0; r/ � ˝1.t C s/; (2.18)

jD'˛j ¤ 0; 's C F.t C s; x;D';D2'/ 6 0 in .0; s0/ � V: (2.19)

Similarly, let t > 0, x0 2 RN , r > 0 and ˛ > 0 and let � 2 C1.RN / satisfy f� 6 0g � B.x0; r/

and jD�j ¤ 0 on f� D 0g. Then there are a constant s0 > 0 depending on t , ˛ and k�k.3/

B.x0;r/
, a

smooth function '˛ D '˛.s; x/ in Œ0; s0/�RN with '˛.0; �/ D � and a neighborhoodV � B.x0; r/

of the set f� D 0g such that for all s 2 Œ0; s0/,

@˝2.t C s/ � V; ˝2.t C s/ WD f'˛.s; �/ < 0g;
f� � hŒF.t; �;D�;D2�/C ˛� < 0g \ clB.x0; r/ � ˝2.t C s/;

jD'˛j ¤ 0; 's C F.t C s; x;D';D2'/ > 0 in .0; s0/ � V:

The following proposition shows the relation between the generalized flow and the level-set flow

by (1.1).

Proposition 2.9 (cf. [3, Theorem 2.4]) Assume (2.1). A family f˝G.t/gt2Œ0;T / of open subsets of

R
N is a generalized superflow (resp., subflow) by (1.1) if and only if the function�˝G .t/��RN n˝G .t/

is a viscosity supersolution (resp., subsolution) of (2.14).
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3. Some estimates

Let fwkgŒT=h�

kD0
be the sequence of classical solutions of (1.2)–(1.3) and let C h.t/ be given by (1.6).

Define � D �.t; x/ as (2.4) to the smooth and compact CDM f� .t/gt2Œ0;T /. For each h > 0 and k D
0; 1; 2; : : :, set Wk as the solution of (1.2) satisfying Wk.0; �/ D �.kh; �/. In this section we derive

some estimates for fwkgŒT=h�

kD0
, fC h.t/gt2Œ0;T /;h>0 and fWkgŒT=h�

kD0
. We assume (2.1) throughout this

section.

3.1 Estimates on fwkgŒT=h�

kD0
and fC h.t/gt2Œ0;T /;h>0

First, we show the uniform boundedness of fC h.t/gt2Œ0;T /;h>0.

Proposition 3.1 Let C0 � RN be compact and take R0 > 0 so that C0 � B.0;R0/. Then C h.t/ �
clB.0;R0 CK2t/ for all t 2 Œ0; T / and h > 0. Here K2 WD jbj0;QT

C jgj0;QT
.

Proof. For any x0 2 @B.0;R0/ and k D 0; 1; : : : ; ŒT=h�, set Dk.x0/ WD fx 2 RN j hx �
x0; x0=R0i 6 K2khg. We remark that for each k D 0; 1; : : : ; ŒT=h�, @Dk.x0/ is a hyperplane

andDk.x0/ D fd.�;Dk�1.x0//CK2h > 0g, where d.�;Dk�1.x0// be the signed distance function

given by (1.4) with D D Dk�1.x0/.

Set w0 D w0.t; x/ WD d.x;D.x0// C K2t . Noting that �w0 D �d.�;D0.x0// D 0 in R
N ,

we easily see that w0 is a classical supersolution of (1.2) satisfying w0.0; �/ > d.�; C0/ in RN .

Hence we use the maximum principle to have w0.t; x/ 6 w0.t; x/ for .t; x/ 2 Œ0; h� � RN . Thus

C1 � D1.x0/.

Let d.�;D1.x0// be the signed distance function given by (1.4) with D D D1.x0/ and

w1 D w1.t; x/ WD d.x;D1.x0// C K2t . The same argument as above yields that w1.t; x/ 6

d.x;D1.x0// C K2t and hence C2 � D2.x0/. Repeating these arguments, we get Ck � Dk.x0/

for k D 1; 2; : : : ; ŒT=h�.

Since d.�;Dk.x0// D d.�;D0.x0//CK2kh, we obtain

C h.t/ D CŒt=h� � DŒt=h�.x0/ � fd.�;D0.x0//CK2t > 0g

for all t 2 Œ0; T / and h > 0. As x0 2 @B.0;R0/ is arbitrary, we conclude that

C h.t/ �
\

x02@B.0;R0/

fd.�;D0.x0//CK2t > 0g D clB.0;R0 CK2t/

for all t 2 Œ0; T / and h > 0.

We improve the estimates of (2.2).

Proposition 3.2 For all h > 0, k D 0; 1; 2; : : : ; ŒT=h� and .t; x/ 2 clQh, we get

�
p

jxj2 C 2Nt �R0 �K2.khC t/ 6 wk.t; x/ 6 �jxj CR0 CK2.khC t/; (3.1)

where R0 andK2 are given in Proposition 3.1.

The (3.1) implies that the first bound of (2.2) is independent of h > 0.

Proof of Proposition 3.2. Fix h > 0 and k D 0; 1; 2; : : : ; ŒT=h�. As for the upper estimate, we see

from the proof of Proposition 3.1 that for all .t; x/ 2 clQh and x0 2 @B.0;R0/,

wk.t; x/ 6 d.x;Dk.x0//CK2t 6 d.x;D0.x0//CK2.khC t/:
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Taking the infimum with respect to x0 2 @B.0;R0/, we have the upper estimate of (3.1) for all

.t; x/ 2 clQh

Next we show the lower estimate of (3.1). Set w0 D w0.t; x/ WD �
p

jxj2 C 2Nt � R0 �K2t .

Noting that

w0;t D �Np
jxj2 C 2Nt

�K2; Dw0 D �xp
jxj2 C 2Nt

; �w0 D �.N � 1/jxj2 C 2N 2t

fjxj2 C 2Ntg3=2
; (3.2)

we easily observe that w0 is a classical subsolution of (1.2) with k D 0. Moreover, we see that if

d.x; C0/ < 0, then

d.x; C0/ D �jx � yj > �jxj � jyj for some y 2 @C0:

Since C0 � clB.0;R0/, we get d.x; C0/ > �jxj � R0. Hence w.0; �/ 6 d.�; C0/ in RN . We thus

obtain the lower estimate of (3.1) by the maximum principle. In the case of k > 1, it follows from

Proposition 3.1 and similar arguments to the above that �j � j � R0 �K2kh 6 d.�; Ck/ in R
N and

that wk.t; x/ WD �
p

jxj2 C 2Nt � R0 �K2.kh C t/ is a classical subsolution of (1.2) satisfying

wk.0; �/ 6 d.�; Ck/ in RN . Therefore we get the result.

Proposition 3.3 We have jDwk.t; x/j 6 1 C K3t for all .t; x/ 2 clQh, k D 0; 1; 2; : : : ; ŒT=h�,

h > 0 and some K3 > 0.

Proof. Fix h > 0, k D 0; 1; 2; : : : ; ŒT=h� and any � 2 RN , j�j D 1. Taking the derivative in the

direction of � to (1.2) and denoting by @� its symbol, we see that v WD @�wk is a classical solution

of

vt ��v C hbk;Dvi C @�gk C h@�bk;Dwki D 0 in Qh; (3.3)

v.0; x/ D @�d.x; Ck/ 6 1 for almost all x 2 R
N :

Define w WD 1CK3t andK3 WD K1jDbj0;QT
C jDgj0;QT

, where K1 is the same constant as that

of (2.2). Then w is a classical supersolution of (3.3) satisfying w.0; �/ D 1 in RN . Hence we obtain

v 6 w in clQh by the maximum principle . As � is arbitrary, we have the desired estimate because

jpj D supq2RN ;jqj61hp; qi for p 2 RN .

3.2 Local estimates for fWkgŒT=h�

kD0

This subsection is devoted to some local estimates for fWkgŒT=h�

kD0
under (2.1) and (2.5).

Applying the regularity theory for parabolic equations, we get the following estimate.

sup
kD0;1;2;:::;ŒT=h�

h>0

kWkk.5C˛/

Œ0;h��fj�.kh;�/j65ıg DW K4 < C1: (3.4)

We need an estimate from below for fDWkgŒT=h�

kD0
to obtain the rate of convergence of our algorithm

to a smooth and compact CDM.

Proposition 3.4 There are constantsK5 > 0 and t1 > 0 such that

hDWk;D�.kh; �/i > 1 �K5t.> 0/ on Œ0; h� �
˚
j�.kh; �/j 6 5ı

	
(3.5)

for all k D 0; 1; 2; : : : ; ŒT=h� and h 2 .0; t1/.
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Proof. We consider only the case k D 0 since the other ones are similarly proved. Set f .t; x/ WD
hb0.t; x/;DW0.t; x/i C g0.t; x/. Recall that �.0; �/ 2 C 5C˛.fj�.0; �/j 6 10ıg/ by (2.5). The

solution W0 of (1.2) satisfying W0.0; �/ D �.0; �/ is represented as follows:

W0.t; x/ D
Z

RN

U.t; x � y/�.0; y/dy C
Z t

0

Z

RN

U.t � s; x � y/f .s; y/dyds:

Thus

W0;xi
.t; x/ D

Z

RN

Uxi
.t; x � y/�.0; y/dy C

Z t

0

Z

RN

Uxi
.t � s; x � y/f .s; y/dyds

DW I1 C I2

Set ı0 WD 5ı=
p
N so that P.x; ı0/ � fj�.0; �/j 6 10ıg for all x 2 fj�.0; �/j 6 5ıg. Then it is

observed by Green’s formula, (2.1) and Proposition 3.3 that

I1 D
Z

P.x;ı0/

U.t; y � x/�xi
.0; y/dy CO.e�.ı0/2=8t / DW I1;1 CO.e�.ı0/2=8t /;

I2 D
Z t

0

Z

P.x;ı0/

U.t � s; y � x/fxi
.s; y/dyds CO.te�.ı0/2=8t / DW I2;1 CO.te�.ı0/2=8t /:

Step 1. We estimate I1;1.

We observe by the change of variables y�x 7! y and Taylor’s theorem that for some � 2 .0; 1/
and small t > 0,

I1;1 D
Z

P.0;ı0/

U.t; y/

(
�xi
.0; x/C hD�xi

.0; x/; yi C 1

2
hD2�xi

.0; x/y; yi

C 1

3Š

 
NX

iD1

yi

@

@xi

!3

�xi
.0; x C �y/

)
dy:

By virtue of

Z

P.0;ı0/

U.t; y/yidy D
Z

P.0;ı0/

U.t; y/yiyjdy D 0;

Z

P.0;ı0/

U.t; y/y2
i dy D 2t CO.e�.ı0/2=8t /

for all i; j D 1; 2; : : : ; N (i ¤ j ), we get

ˇ̌
I1;1 �

˚
�xi
.0; x/C t��xi

.0; x/
	ˇ̌

6 K5;1t
3=2:

for all .t; x/ 2 Œ0; t1;1� � fj�.0; �/j 6 5ıg and some K5;1, t1;1 > 0.

Step 2. We estimate I2;1.

We calculate similarly to the previous step with using (2.1) and (3.4) to yield that

ˇ̌
I2;1 � fxi

.0; x/t
ˇ̌

6 K5;2t
3=2

for all .t; x/ 2 Œ0; t1;2�� fj�.0; �/j 6 5ıg and someK5;2, t1;2 > 0. ChoosingK5 > K5;1 CK5;2 and

t1 6 minft1;1; t1;2g, we obtain the desired result.
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REMARK 3.5 (1) Proposition 3.4 implies that

jDWk.t; x/j > 1 �K5t

for all .t; x/ 2 Œ0; h�� fj�.kh; �/j 6 5ıg, k D 0; 1; 2; : : : ; ŒT=h� and h 2 .0; t1/. Proposition 6.5

below shows that we cannot improve this estimate in the following sense: There is a nonnegative

and continuous function !.t/ satisfying !.0/ D 0 for which

jDW0.t; x/j > 1 � t!.t/ for small t > 0 and x 2
˚
j�.0; �/j 6 5ı

	
:

(2) In the case where b D 0 and g D 0, we are able to get the following estimate by calculating

I1;1 more precisely: For some K6, t2 > 0,

ˇ̌
DWk.t; x/ �

�
D�.khC t; x/C tD��.khC t; x/

�ˇ̌
6 K6t

2

for .t; x/ 2 Œ0; h� �
˚
j�.kh; �/j 6 5ı

	
; k D 0; 1; 2 : : : ; ŒT=h� and h 2 .0; t2/:

4. Semicontinuous limits of fwkgŒT=h�

kD0
and fd.�; Ck/gŒT=h�

kD0

In this section we assume (2.1) and consider the semicontinuous limits of fwkgŒT=h�

kD0
and

fd.�; Ck/gŒT=h�

kD0
as h ! 0. These are based on [2, Section 5] and [26, Section 4].

For any compact set C0 � RN let fC h.t/gt2Œ0;T /;h>0 be defined by (1.6). Set

dh.t; x/ WD d
�
x; C h.t/

��
D d.x; Ck/

�
; wh.t; x/ WD wk.t � kh; x/ (4.1)

for .t; x/ 2 Œkh; .k C 1/h/ � RN , k D 0; 1; 2; : : : ; ŒT=h� and h > 0. Define

f .t; x/ WD lim sup
.h;s;y/!.0;t;x/

f h.s; y/; (4.2)

f .t; x/ WD lim inf
.h;s;y/!.0;t;x/

f h.s; y/ .f h D dh; wh/;

˝C.t/ WD
˚
d.t; �/ > 0

	
; ˝�.t/ WD

˚
d.t; �/ < 0

	
(4.3)

� .t/ WD R
N n
�
˝C.t/ [˝�.t/

�
.D

˚
d.t; �/ 6 0 6 d.t; �/

	
/: (4.4)

REMARK 4.1 It follows from the fact krdhkL1.Œ0;T /�RN / D 1 and Proposition 3.3 that

jf .t; x/ � f .t; y/j 6 jx � yj for all t 2 Œ0; T / and x; y 2 R
N .f D d; d;w;w/:

Besides (4.2) turns to

f .t; x/ WD lim sup
.h;s/!.0;t/

f h.s; x/; f .t; x/ WD lim inf
.h;s/!.0;t/

f h.s; x/ .f h D dh; wh/: (4.5)

We explain some properties of d , d , w and w.

Proposition 4.2 d D w and d D w in Œ0; T / � RN .



492 K. ISHII AND M. KIMURA

Proof. The solution wk of (1.2)–(1.3) is given by

wk.t; x/ D
Z

RN

U.t; x � y/d.y; Ck/dy C
Z t

0

Z

RN

U.t � s; x � y/fk.s; y/dyds;

where fk.t; x/ WD hbk.t; x/;Dwk.t; x/i C gk.t; x/. It follows from (2.1), the Lipschitz continuity

of d.�; Ck/, Proposition 3.3 and (4.1) that for any small h > 0

sup
.t;x/2Œ0;T /�RN

jwh.t; x/ � dh.t; x/j D sup
.t;x/2clQh

kD0;1;:::;ŒT=h�

jwk.t; x/ � d.x; Ck/j 6 K7

p
h:

Here K7 > 0 is independent of h > 0. Taking such limits as (4.2), we have the result.

Proposition 4.3 We have

w D d D 0 on
[

06t<T

�
ftg � @˝�.t/

�
; w D d D 0 on

[

06t<T

�
ftg � @˝C.t/

�
:

Proof. We show only d D 0 on [06t<T Œftg � @˝�.t/� since the others can be similarly proved.

Note that d > 0 in [06t<T Œftg � @˝�.t/�; for each t 2 Œ0; T /. Suppose d.t0; x0/ > 0 for

some .t0; x0/ 2 [06t<T Œftg � @˝�.t/�. By (4.5) there are sequences fhngC1
nD1, ftngC1

nD1 such that

.hn; tn; d
hn.tn; x0// �! .0; t0; d .t0; x0// as n ! C1. Hence we may consider dhn.tn; x0/ >

d.t0; x0/=2 for all n 2 N. Since fdh.t; �/gt2Œ0;T /;h>0 is equi-Lipschitz continuous, we observe that

there exists r0 > 0 such that dhn.tn; x/ > d.t0; x0/=4 > 0 for all x 2 B.x0; r0/ and n 2 N. Take

x 2 B.x0; r0/ \˝�.t/. Letting n ! C1, we get d.t0; x/ > d.t0; x0/=4 > 0. This contradicts to

d.t0; x/ < 0. Therefore we have d D 0 in [06t<T Œftg � @˝�.t/�.

Proposition 4.4 w.0; �/ D w.0; �/ D d.0; �/ D d.0; �/ D d.�; C0/ in R
N .

Proof. We have only to prove the desired equalities in intC0 since we have already shown in

Proposition 4.3 that w.0; �/ D w.0; �/ D d.0; �/ D d.0; �/ D 0 D d.�; C0/ in @C0 and we are

able to show by a similar way that w.0; �/ D w.0; �/ D d.0; �/ D d.0; �/ D d.�; C0/ in RN nC0.

Fix x0 2 intC0 and set r0 WD d.x0; C0/.> 0/. Define

v0 D v0.t; x/ WD r0 C
p

jx � x0j2 C 2Nt CK2t for .t; x/ 2 clQh:

Here K2 WD jbj0;QT
C jgj0;QT

. Note that fv0.0; �/ 6 2r0g D B.x0; r0/ � C0. We observe

by similar calculations to (3.2) that v0 is a classical supersolution of (1.2) with k D 0 and that

v0.0; �/ > d.�; C0/ in RN . Thus the inequality wh
6 v0 in Œ0; h� � RN follows from the maximum

principle. Some calculations yield that

˚
v0.h; �/ 6 2r0

	
� clB.x0:r1/ � C1; r1 WD

p
.r0 �K2h/2 � 2Nh:

By use of this inclusion we get

wh.h; �/ D d.�; C1/ 6 2r0 � r1 C j � �x0j in R
N :

Next we define

v1 D v1.t; x/ WD 2r0 � r1 C
p

jx � x0j2 C 2Nt CK2t for .t; x/ 2 clQh:
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By a similar argument to the above we have wh.hC �; �/ 6 v1 on clQh and

˚
v1.h; �/ 6 2r0

	
� clB.x0:r2/ � C2; r2 WD

p
.r1 �K2h/2 � 2Nh:

Thus we inductively obtain

wh.khC �; �/ 6 vk on clQh;

vk D vk.t; x/ WD 2r0 � rk C
p

jx � x0j2 C 2Nt CK2t for .t; x/ 2 clQh;

fvk.h; �/ 6 2r0g � clB.x0:rkC1/ � CkC1; rkC1 WD
p
.rk �K2h/2 � 2Nh;

wh..k C 1/h; �/ D d.�; CkC1/ 6 2r0 � rkC1 C j � �x0j in R
N : (4.6)

We estimate frkgŒT=h�

kD0
. Since

p
1 � s > 1 � s for all s 2 Œ0; 1=4�, it is easy to see that there exists

t3 2 .0; r0=.8N C K2// such that r1 > r0 � .K2 C 2N/h for any h 2 .0; t3/. Moreover, we can

show by induction that

rk > r0 � .K2 C 2N/kh for all k D 0; 1; : : : ; Œt3=h�:

Combining (4.6) with the above estimate, we obtain

dh.t; x0/ D d.kh; x0/ D d.x0; Ck/ 6 r0 C .K2 C 2N/kh

for t 2 Œkh; .k C 1/h/ and k D 0; 1; 2 : : : ; Œt3=h�. Letting h ! 0, kh ! 0, we get d.0; x0/ 6

d.x0; C0/ in intC0. Since the inequality d.x0; C0/ 6 d.0; x0/ in intC0 is proved by the same way,

we have the result from d.0; �/ D d.0; �/ D d.�; C0/ in RN and Proposition 4.4.

For fixed h > 0 and t 2 Œ0; T /, the function dh.t; �/ is a viscosity solution of

jDd j � 1 D 0 in intC h.t/; �jDd j C 1 D 0 in R
N nC h.t/:

The semicontinuous envelopes dh�.t; x/ and dh
� .t; x/ are given by, respectively,

dh�.t; x/ WD lim sup
s!t

dh.s; x/; dh
� .t; x/ WD lim inf

s!t
dh.s; x/;

since fdh.t; �/gt2Œ0;T /;h>0 is equi-Lipschitz continuous in RN . Therefore, we get

dh�.t; x/ D
�

max
˚
dh
�
.k � 1/h; x

�
; dh.kh; x/

	
for t D kh;

dh.kh; x/ for kh < t < .k C 1/h;
(4.7)

dh
� .kh; x/ D

�
min

˚
dh
�
.k � 1/h; x

�
; dh.kh; x/

	
for t D kh;

dh.kh; x/ for kh < t < .k C 1/h;

for all h > 0 and k 2 N. Applying the stability for viscosity solutions, we are able to characterize

d and d as follows.

Theorem 4.5 Assume (2.1). Let d and d be defined by (4.2). Then d and d satisfy, respectively,

jDd j � 1 6 0 in fd > 0g; �jDd j C 1 6 0 in fd < 0g; (4.8)

jDd j � 1 > 0 in fd > 0g; �jDd j C 1 > 0 in fd < 0g; (4.9)

in the viscosity sense.
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Proof. We show only jDd j � 1 6 0 in fd > 0g since the remaining inequalities are similarly

proved. Recall that C h.t/ D Ck for t 2 Œkh; .k C 1/h/ and k D 0; 1; 2; : : : ; ŒT=h�.

For any ' 2 C1..0; T / � RN / we assume that d � ' takes its strict maximum in fd > 0g at

.t0; x0/ 2 fd > 0g. Since fd > 0g is open in .0; T / � RN , we are able to find r0 > 0 such that

Q..t0; x0/; r0/ � fd > 0g. In view of d.t0; x0/ > 0, we may assume that dh
> d.t0; x0/=2 in

clQ..t0; x0/; r0/ for any small h > 0, replacing r0 with a smaller one if necessary. This implies that

clQ
�
.t0; x0/; r0

�
� int

0
@

ŒT=h�[

kD0

Œkh; .k C 1/h/ � Ck

1
A for any small h > 0:

Besides there are sequences fhngC1
nD1 and f.tn; xn/gC1

nD1 � fd > 0g.� fd > 0g/ satisfying

�
hn; tn; xn; d

hn�.tn; xn/
�

�! .0; t0; x0; d .t0; x0// as n ! C1;

dhn�.tn; xn/ � '.tn; xn/ D max
Q..t0;x0/;r0/

.dhn� � '/ for each n 2 N:

We take kn 2 N [ f0g such that knhn 6 tn < .kn C 1/hn.

Case 1. tn ¤ knhn.

Since dhn�.tn; �/�'.tn; �/ takes a maximum inB.x0; r0/.� intC hn.tn// at xn and dhn�.tn; �/ D
d.�; Ckn

/, we have jD'.tn; xn/j � 1 6 0. Letting n ! 1, we obtain jD'.t0; x0/j � 1 6 0.

Case 2. th D knhn.

Note that B.x0; r0/ � C hn..kn � 1/hn/\C hn.knhn/. It follows from (4.7) and the stability of

viscosity solutions that dhn�.tn; �/ is a viscosity subsolution of jDd j � 1 D 0 in B.x0; r0/. Hence

we get jD'.t0; x0/j � 1 6 0 in the same way as in Case 1.

5. Convergence

In this section we present the convergence of fC h.t/gt2Œ0;T /;h>0 to the level-set flow by (1.1) under

(2.1) and (2.16). The following arguments are based on [30, Section 3], constructions of suitable

sub- and super-solution of (1.2) by applying the theory of viscosity solutions. At first we show the

following theorem.

Theorem 5.1 Assume (2.1). Let t > 0, x0 2 R
N , r > 0, ˛ > 0 and � 2 C1.RN / be such that

f� > 0g � B.x0; r/ (resp., f� 6 0g � B.x0; r/) with jD�j ¤ 0 on f� D 0g. For h > 0 and

k 2 N [ f0g let vk D vk.t; x/ be a classical solution of (1.2) satisfying vk.0; �/ D d.�; Ek/, where

E0 WD f� > 0g and Ek WD fvk�1.h; �/ > 0g (k 2 N). Then there exists s1 > 0 depending only on t ,

˛ and k�k.3/

B.x0;r/
such that for all s 2 .0; s1/

lim inf
.h;kh;y/!.0;s;x/

d.x;Ek/ > 0

 
resp:; lim sup

.h;kh;y/!.0;s;x/

d.x;Ek/ < 0

!
; (5.1)

provided

x 2 clB.x0; r/ \
˚
� � hŒF �.t; �;D�;D2�/C ˛� > 0

	
;

.resp.; x 2 clB.x0; r/ \ f� � hŒF�.t; �;D�;D2�/ � ˛� < 0g/:

Here d.x;Ek/ is the signed distance function defined by (1.4) with D D Ek .
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We prepare two lemmas to prove this theorem. Let V and '˛ be given in Lemma 2.8 and for

small r > 0 let D˛;r .s/ WD f'˛.s; �/ > rg. Note that D˛.s/ WD D˛;0.s/ D cl˝.t C s/. Define

�˛;r D �˛;r .s; x/ D d.x;D˛;r .s// as in (2.4) with D D D˛;r .s/. We then observe by (2.17) and

(2.19) that

�˛;r is smooth in M WD
[

s2Œ0;s0/

fsg �
˚
j�˛;0.s; �/j 6 3r0

	�
� Œ0; s0/ � V

�
;

jD'˛j ¤ 0; 's C F.t C s; x;D';D2'/ 6 0 in M; (5.2)

for all r 2 Œ0; r0/, taking r0 > 0 small and replacing s0 in Lemma 2.8 with a smaller one if necessary.

Furthermore, slightly modifying '˛ if necessary, we may consider that

'˛ > 0 in Œ0; s0/ �
�
f� > 0gnV

�
:

Let �˛;r D �˛;r.s; x/ be the sum of the squares of all the principal curvatures of @D˛;r .s/. We

assume (2.1) in the following lemmas.

Lemma 5.2 For fixed ˛ > 0 and r 2 Œ0; r0/, set � D �˛;r , � D �˛;r to simplify the notations.

Define

w D w.s; x/ WD
�
1 � s!.s; x/

�
�.s; x/ �M1

�
�.s; x/

�2
s �M2s

2;

w D w.s; x/ WD
�
1 � s!.s; x/

�
�.s; x/CM1

�
�.s; x/

�2
s CM2s

2;

! D !.s; x/ WD e��.s; x/C
˝
Db.s; x/D�.s; x/;D�.s; x/

˛
C
˝
Dg.s; x/;D�.s; x/

˛
;

For large M1, M2 > 0 depending on (2.1) and k'k.4/
M

, the function w.D w˛;r / (resp., w.D w˛;r/)

is a classical subsolution (resp., supersolution) of (1.2) in M.

Proof. We treat only the subsolution case since we are able to similarly handle the other case. We

assume t D 0 in Lemma 2.8 because if otherwise, we have only to replace b.s; x/ and g.s; x/ with

b.t C s; x/ and g.t C s; x/, respectively.

Step 1. We derive from (5.2)

�s ��� � !� C hb;D�i C g 6 M1�
2 in M for some M1 > 0: (5.3)

It follows from [17, Lemma 14.17] that

j e.��/� � .��Ce���/j 6 M1;1�
2 on M for some M1;1 > 0: (5.4)

Here and in the sequel M1;j ’s (j 2 N) are constants depending on (2.1) and k'k.4/
M

. Besides we

easily get in M

�s D e.�s/� D
A.'˛;s/�

j.eD'˛/�j
; D� D A.D�/� D

A.D'˛/�

j A.D'˛/�j
; (5.5)

e.��/� D 1

j A.D'˛/�j
tr

( 
I �

A.D'˛/� ˝ A.D'˛/�

j A.D'˛/�j2

!
B.D2'˛/�

)
: (5.6)
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We see from (5.2), (5.5) and (5.6) that

�s � e.��/� C heb�;D�i Ceg� 6 0 in M: (5.7)

Applying Taylor’s theorem to the term heb�;D�i Ceg�, we get

ˇ̌
heb�;D�i Ceg� �

˚
hb;D�i C g � �.hDbD�;D�i C hDg;D�i

	ˇ̌
6 M1;2�

2:

Hence combining (5.4), (5.7) with this, we have (5.3) with M1 WD M1;1 CM1;2.

Step 2. We show that w is a classical subsolution of (1.2) in M.

We calculate that

ws D �s � !� �M1�
2 � sf.! C 2M1s�/�s C �!s C 2M2sg;

Dw D D� � sf.! C 2M1�/D�C �D!g;
�w D �� � sf.! C 2M1�/��C ��! C 2hD!;D�i C 2M1g:

We then observe by (5.3) that

ws ��w C hb;Dwi C g D �s ��� � !� C hb;D�i C g �M1�
2

� s
n�
! C 2M1�

��
�s ���C hb;D�i

�
C �

�
!s ��! C hb;D!i

�

C 2hD!;D�i � 2M1 C 2M2

o

6 �s
˚
2M2 � .2M1 C 1/M1;3 � 2M1

	
:

Hence choosingM2 WD .M1 C 1/M1;3 CM1, we get the result.

Based on Lemma 5.2, we construct suitable subsolutions and supersolutions of (1.2). Hence we

obtain the following inclusions for fEkgŒT=h�

kD0
in Theorem 5.1.

Lemma 5.3 Take r1 2 .0; r0=10/. For any h > 0 and k D 0; 1; 2; : : : let Ek and vk be defined

in Theorem 5.1. Set bEk WD f'˛.kh; �/ > �kg for some small �k > 0. There exist M3 > 0 and

t4 2 .0; s0/ depending on (2.1), r1 and k'˛k.4/
M

such that for each h 2 .0; t4/ and k D 0; 1; 2; : : : if

bEk � Ek , then

bEkC1 � EkC1; �kC1 WD �k C M3h
3=2

1 �M3h
: (5.8)

Similarly, set bEk WD f'˛.kh; �/ > ��kg for some small �k > 0. For each h 2 .0; t4/ and k D
0; 1; 2; : : :, if Ek � bEk , then

EkC1 � bEkC1; �kC1 WD �k C M3h
3=2

1 �M3h
: (5.9)

Proof. We prove only (5.8) since (5.9) is proved by a similar way. Recall that �.s; x/ D �˛;r.s; x/ D
d.x;D˛;r .s// and D˛;r.s/ D f'˛.s; �/ > rg for s 2 Œ0; s1/ and r 2 Œ0; r0/. For simplicity we

assume s0, r0 6 1. Let h 2 .0; s1/ and k D 0; 1; 2; : : : satisfy 0 6 kh < s1.

Step 1. We modifyw in Lemma 5.2 to obtain a classical subsolution of (1.2) in .0; h��fj�.kh; �/j 6

6r1g.
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We use all the notations in the proof of Lemma 5.2. Let �k;1 2 C1.RN / be a cut-off function

by

�k;1.x/ WD
�
0 if j�.kh; x/j 6 2r1;

1 if j�.kh; x/j > 3r1;
0 6 �k;1 6 1 in R

N ;

r1kD�k;1kL1.RN / C r2
1 kD2�k;1kL1.RN / 6 M3;1:

Define v1
k

D v1
k
.s; x/ by

v1
k.s; x/ D w.s; x/ �M3;2�k;1.x/

p
s �M3;3s

3=2; M3;2 WD 2N C 4r1j!j0;M:

Applying Lemma 5.2, we observe that

v1
k;s ��v1

k C hb;Dv1
ki C g 6

�
M3;1M3;2r

�2
1 .1C jbj0;Q/ � 3

2
M3;3

�p
s:

Taking M3;3 > M3;1M3;2r
�2
1 .1 C jbj0;Q/, we see that v1

k
is a classical subsolution of (1.2) in

.0; h� � fj�.kh; �/j 6 6r1g.

Step 2. We construct a classical subsolution of (1.2) in .0; h� � f2r1 6 �.kh; �/ 6 6r1g and that in

.0; h� � f�.kh; �/ 6 �2r1g.

Fix any y 2 f�.kh; �/ D 4r1g. Choose a smooth cut-off function �k;2 D �k;2.xIy/ satisfying

�k;2.xIy/ WD
�
0 for x 2 clB.y; r1/;

1 for x 2 f2r1 6 �.kh; �/ 6 6r1gnB.y; 2r1/;
0 6 �k;2 6 1 in R

N ;

r1kD�k;2kL1.RN / C r2
1 kD2�k;2kL1.RN / 6 M3;4:

Define v2
k

D v2
k
.s; xIy/ by

v2
k.s; xIy/ WD 4r1 �

p
jx � yj2 C 2Ns �M3;5s � �k;2.xIy/.M2 CM3;3/

p
s; (5.10)

where M2 is the constant given in Lemma 5.2. Similar calculations to the proof of Proposition 3.2

and the above ones yield that

v2
k;s ��v2

k C hb;Dv2
ki C g 6 �M3;5 C jbj0;Q C jgj0;Q CM3;1r

�2
1 .1C jbj0;Q/.M2 CM3;3/

p
s:

Taking

M3;5 > jbj0;Q C jgj0;Q CM3;1r
�2
1 .1C jbj0;Q/.M2 CM3;3/C 2r1j!j0;M C 16M1r

2
1 ;

we see that v2
k

is a classical subsolution of (1.2) in .0; h� � f2r1 6 �.kh; �/ 6 6r1g.

Fix any y 2 f�.kh; �/ D �4r1g. Choose a smooth cut-off function �k;3 D �k;3.xIy/ satisfying

�k;3.xIy/ WD
�
0 for x 2 clB.y; r1/;

1 for x 2 f�.kh; �/ 6 �2r1gnB.y; 2r1/;
0 6 �k;3 6 1 in R

N ;

r1kD�k;3kL1.RN / C r2
1 kD2�k;3kL1.RN / 6 M3;4:
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Define v3
k

D v3
k
.s; xIy/ by

v3
k.s; xIy/ WD �4r1 �

p
jx � yj2 C 2Ns �M3;5s � �k;3.xIy/.M2 CM3;3/s

1=3:

HereM2,M3;3 andM3;5 are the same constants as above. We observe by similar calculations to the

above that v3
k

is a classical subsolution of (1.2) in .0; h� � f�.0; �/ 6 �2r1g.

Step 3. We obtain a viscosity subsolution of (1.2) in .0; h/ � RN for all h 2 .0; t3;1/ and some

t4;1 2 .0; s1/.
Define V 2

k D V 2
k.s; x/ and V 3

k D V 3
k.s; x/ by

V 2
k.s; x/ WD sup

y2f�.0;�/D4r1g
v2

k.s; xIy/; V 3
k.s; x/ WD sup

y2f�.0;�/D�4r1g
v3

k.s; xIy/

Then V 2
k (resp., V 3

k) is a viscosity subsolution of (1.2) in .0; h/ � f2r1 6 �.kh; �/ 6 6r1g (resp., in

.0; h/ � f�.kh; �/ 6 �2r1g).

We verify that

�
v1

k
> V 2

k for s 2 .0; h/ and x 2 f�.kh; �/ D 2r1g;
v1

k
< V 2

k for s 2 .0; h/ and x 2 f�.kh; �/ D 4r1g; (5.11)

�
v1

k
> V 3

k for s 2 .0; h/ and x 2 f�.kh; �/ D �4r1g;
v1

k
< V 3

k for s 2 .0; h/ and x 2 f�.kh; �/ D �6r1g: (5.12)

For any x 2 f�.kh; �/ D 2r1g, there exists yx 2 f�.kh; �/ D 4r1g such that jx � yx j D 2r1. Then it

is observed by the choice of M3;5 in Step 2 that

v1
k.s; x/ D 2r1

�
1 � s!.s; x/

�
� 4M1sr

2
1 �M2s

2 �M3;3s
3=2

> 2r1 � s
˚
j!j0;M C 4M1r

2
1 CM2 CM3;3

p
s
	

> 2r1 �M3;5s D v2
k.s; xIyx/ D V 2

k.s; x/:

On the other hand, we observe that there exists a t4;2 2 .0; s1/ such that for any small s 2 .0; t4;2/

and x 2 f�.kh; �/ D 4r1g

v1
k.s; x/ 6 4r1.1C sj!j0;M/ �M3;2

p
s < 4r1 �

p
2Ns �M3;5s

D v2
k.s; xI x/ D V 2

k.s; x/:

Thus (5.11) is obtained for all h 2 .0; t4;2/. We omit the proof of (5.12) because it is quite similar.

Consequently, set t4 WD minft4;1; t4;2g and V k D V k.s; x/ as

V k.s; x/ WD

8
ˆ̂<
ˆ̂:

max
˚
v1

k
.s; x/; V 2

k.s; x/
	

for .s; x/ 2 Œ0; h� �
˚
2r1 6 �.kh; �/ 6 6r1

	
;

v1
k
.s; x/ for .s; x/ 2 Œ0; h� �

˚
j�.kh; �/j 6 2r1

	
;

max
˚
v1

k
.s; x/; V 3

k.s; x/
	

for .s; x/ 2 Œ0; h� �
˚

� 6r1 6 �.kh; �/ 6 �2r1
	
;

V 3
k.s; x/ for .s; x/ 2 Œ0; h� �

˚
�.kh; �/ 6 �6r1

	
:

Then for all h 2 .0; t4/, V k is a viscosity subsolution of (1.2) in .0; h/� f�.kh; �/ 6 6r1g satisfying

V k.0; �/ D �.0; �/ on f�.0; �/ 6 6r1g. In addition V k.s; x/ D 4r1 �M3;5s � .M2 C M3;2/
p
s for

s 2 Œ0; h� and x 2 f�.kh; �/ D 6r1g.
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Finally we extend V k to the set Œ0; h/ � f�.kh; �/ > 6r1g. For y 2 f�.kh; �/ > 4r1g, let

�k;4 D �k;4.xIy/ be a smooth cut-off function such that

�k;4.xIy/ WD
�
0 for x 2 clB.y; r1/;

1 for x 2 RN nB.y; 2r1/;
0 6 �k;4 6 1 in R

N ;

r1kD�k;4kL1.RN / C r2
1 kD2�k;4kL1.RN / 6 M3;4:

Define

v4
k D v4

k.s; xIy/ WD 4r1 �
p

jx � yj2 C 2Ns �M3;5s � �k;4.xIy/.M2 CM3;3/
p
s:

Then v4
k

is a classical subsolution of (1.2). Set vk D vk.s; x/ as

vk.s; x/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

sup
y2f�.kh;�/>4r1g

v4
k.s; xIy/ for .s; x/ 2 Œ0; h/ �

˚
�.kh; �/ > 6r1

	
;

max

8
<
:V k.s; x/; sup

y2
˚

�.kh;�/>4r1

	 v
4
k.s; xIy/

9
=
;

for .s; x/ 2 Œ0; h/ �
˚
4r1 < �.kh; �/ < 6r1

	
;

V k.s; x/ for .s; x/ 2 Œ0; h/ �
˚
�.kh; �/ 6 4r1

	
:

Then vk is a viscosity subsolution of (1.2) in .0; h��RN for all h 2 .0; t3/. Note that v4
k
.s; xIy/ D

v2
k
.s; xIy/ for s 2 Œ0; h�, x 2 f�.kh; �/ D 6r1g, y 2 f�.kh; �/ D 4r1g and h 2 .0; t3/.

Step 4. We derive (5.8).

Fix h 2 .0; t4/. For k D 0; 1; 2; : : : set �k D �˛;�k
. Since we see by bEk � Ek that vk.0; �/ 6

�k.0; �/ D vk.0; �/ in RN , we get vk 6 vk in Œ0; h� � RN by the comparison principle for viscosity

solutions. Thus fvk.s; �/ > 0g � fvk.s; �/ > 0g for all s 2 Œ0; h�.
We estimate �k.s; x/ for x 2 fvk.s; �/ D 0g. Note that fvk.s; �/ D 0g and f'˛.khC s; �/ D rg

(r 2 Œ0; r0/) are smooth surfaces since jDvk.s; �/j > 1=2 on fvk.s; �/ D 0g and jD'˛.khCs; �/j ¤ 0

on f'˛.khC s; �/ D rg for all s 2 Œ0; h�. From the fact vk.s; x/ D 0 we easily get

�k.s; x/ 6
M3;6s

3=2

1 � s!.s; x/ for some M3;6 > M1 CM3;2:

Hence recalling that �k.s; �/ D �˛;�k
.s; �/ is the signed distance function to f'˛.khC s; �/ D �kg

we observe that for some � 2 .0; 1/,

'˛

�
.k C 1/h; x

�
D '˛

�
.k C 1/h; x � �k.h; x/D�k.h; x/

�

C �k.h; x/
˝
D'˛

�
h; x � ��k.h; x/D�k.h; x/

�
;D�k.h; x/

˛

6
M3h

3=2

1 �M3h
; M3 WD jD'˛j0;MM3;6 C j!j0;M;

since x � �k.h; x/D�k.h; x/ 2 f'˛..k C 1/h; �/ D �kg. As a result, we have

˚
vk.h; �/ D 0

	
�
(
'˛

�
.k C 1/h; �

�
6
M3h

3=2

1 �M3h

)
:
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Since fvk.s; �/ D 0g and f'˛.khC s; �/ D rg (r 2 Œ0; r0/) are smooth surfaces as mentioned above,

we obtain the desired inclusion.

Proof of Theorem 5.1. We prove only the case f� > 0g since the other case is completely analogous.

The strategy of the proof is similar to [30].

Let s0, '˛ and V be given in Lemma 2.8. We give the proof under the situation mentioned before

the proof of Lemma 5.3. By (2.18) it suffices to show (5.1) for all s 2 .0; s1/, x 2 f'˛.x; s/ > 0g
and s1 D minfs0; t4g.

Fix s 2 .0; s1/ and x 2 f'˛.s; �/ > 0g. Then B.x; 2r3/ � f'˛.s C s0; �/ > 0g for all s0 2
.�2r3; 2r3/ and some r3 > 0.

For any small h > 0 set k0 WD Œs=h� and l0 WD Œ.s � r3/=h� so that s � r3 < l0h < s � r3=2.

Then using Lemma 5.3 with k D l0 and �l0
D 0, we have

bEl0C1 � El0C1; �l0C1 WD M3h
3=2

1 �M3h
:

Inductively, we apply Lemma 5.3 with k D l0 C l and small �l0Cl > 0 to obtain

bEl0ClC1 � El0ClC1; �l0ClC1 WD �l0Cl C M3h
3=2

1 �M3h
:

Setting l1 WD Œ.s C r3/=h� we get

˚
'˛.lh; �/ > �h

	
� El ; �h WD M3.2r3 C h/

p
h

1 �M3h

for all l D l0; l0 C 1; � � � ; l1.

Consequently, taking h > 0 small enough, we haveB.x; r3/ � f'˛.sClh; �/ > �hg � EŒs=h�Cl

for l D 0;˙1 � � � ;˙l0. This implies that

d.y;EŒs=h�Cl/ > �.s; y/ >
r3

2
for all .s; y/ 2 and small h > 0:

Letting .h; lh; y/ ! .0; s0; x/, we obtain (5.1).

Theorem 5.4 Assume (2.1). Let .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;t/ be a level-set flow by (1.1) with the

initial data .@C0; intC0;R
N nC0/. Let .� .t/;˝C.t/;˝�.t//t2Œ0;T / be defined by (4.3) and (4.4).

Then for each t 2 Œ0; T /,

˝C
L .t/ � ˝C.t/ � ˝C

L .t/ [ �L.t/; ˝
�
L .t/ � ˝�.t/ � ˝�

L .t/ [ �L.t/

Proof. Step 1. From Theorem 2.6 and Proposition 2.9 we have only to show that f˝C.t/gt2Œ0;T /

and fRN ncl˝�.t/gt2Œ0;T / are, respectively, a generalized superflow and a generalized subflow by

(1.1).

Indeed, if we do so, then it follows from Proposition 2.9 that u D u.t; x/ WD �˝C.t/.x/ �
�˝�.t/[� .t/.x/ and u D u.t; x/ WD �

RN ncl ˝�.t/.x/ � �cl ˝�.t/.x/ are, respectively, a viscosity

supersolution and a viscosity subsolution of (2.14). Since

�˝C.0/ D �
RN ncl ˝�.t/ D �int C0

; �
RN n˝C.0/ D �˝�.0/ D �

RN nC0
in R

N
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by Proposition 4.4, we have from Theorem 2.6

u 6 �
˝

C

L
.t/[�L.t/

� �˝�
L

.t/; u > �
˝

C

L
.t/

� �˝�
L

.t/[�L.t/ in Œ0; T / � R
N :

Therefore we obtain the desired inclusions.

Step 2. We show that f˝C.t/gt2Œ0;T / and fRN ncl˝�.t/gt2Œ0;T / are, respectively, a generalized

superflow and a generalized subflow by (1.1).

We prove only the superflow case since the other one is shown by the same way. Let t > 0,

x0 2 RN , r > 0, ˛ > 0 and � 2 C1.RN / be such that f� > 0g � int˝C.t/ \ B.x0; r/ with

jD�j ¤ 0 on f� D 0g. It follows from (4.3) that there exists t5 > 0 such that for any h 2 .0; t5/,

l 2 N satisfying jlh� t j < t5, we get

wh.lh; �/ D d.�; Cl/ > d.�; E0/ in R
N E0 WD f� > 0g: (5.13)

We now apply our algorithm with the initial set E0 and construct a sequence fvkgk>0 of solutions

of (1.2) with vk.0; �/ D d.�; Ek/. We repeatedly use the maximum principle for (1.2) to have Ek �
ClCk and hence

wh
�
.l C k/h; �

�
D d.�; ClCk/ > d.�; Ek/ in R

N for all k; l 2 N such that jlh� t j < t5:

We see by Proposition 4.2, Lemma 5.3 and this inequality that there exists s2 > 0 such that for any

s 2 .0; s2/ and x 2 clB.x0; r/ \ f� � sŒF.t; �;D�;D2�/� > 0g

d.t C s; x/ D lim inf
.h;lh;kh;y/!.0;t;s;x/

wh
�
.l C k/h; y

�
> lim inf

.h;kh;y/!.0;s;x/
d.y;Ek/ > 0:

Hence clB.x0; r/ \ f� � sŒF.t; �;D�;D2�/� > 0g � ˝C.t C s/ for all s 2 .0; s1/. Thus

f˝C.t/gt2.0;T / is a generalized superflow by (1.1).

Let d D d.t; x/ be the signed distance function to �L.t/ defined by (1.4) with D D cl˝C
L .t/.

Then we have the convergences of fdhgh>0 and fwhgh>0 to d as h ! 0.

Theorem 5.5 Assume (2.1) and let .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;T / be a level-set flow by (1.1)

with the initial data .@C0; intC0;R
N nC0/ satisfying (2.16). The sequences fdhgh>0 and fwhgh>0

converge to dL locally uniformly in Œ0; T / � RN as h ! 0.

Proof. It is observed by (2.16), (4.3), (4.4), Proposition 4.3 and Theorem 5.4 that

�L.t/ D � .t/ D
˚
d.t; �/ D d.t; �/ D 0

	
; (5.14)

˝C
L .t/ D ˝C.t/ D

˚
d.t; �/ > 0g D fd.t; �/ > 0

	
; (5.15)

˝�
L .t/ D ˝�.t/ D

˚
d.t; �/ < 0g D fd.t; �/ < 0

	
; (5.16)

for all t 2 Œ0; T /. Note that the map t 7! cl˝C
L .t/ is continuous in the sense that

lim
s!t

dH

�
cl˝C

L .t/; cl˝C
L .s/

�
D 0: (5.17)

Indeed, we choose a unique viscosity solution u 2 UC.Œ0; T / � R
N / of (2.14) satisfying u.0; �/ D

d.�; C0/ in RN and thus (2.15) holds (cf. Remark 2.5). Using the continuity of u and (2.16), we



502 K. ISHII AND M. KIMURA

get (5.17). Moreover we observe that d satisfies (4.8) and (4.9) in the viscosity sense and by

Propositions 4.2–4.4 that d D w D d D w D d on f[t2Œ0;T /.ftg � �L.t//g [ .f0g � RN /.

Thus we use Theorem 4.5 and the comparison principle for eikonal equations (cf. [19], [21]) to

have w D d D w D d D d in QT . By [8, Remark 6.4], we have the desired result.

Theorems 5.4 and 5.5 lead to the convergence of fC h.t/gt2Œ0;T /;h>0 to fcl˝C
L .t/gt2Œ0;T /.

Theorem 5.6 Assume (2.1). Let .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;T / be the level-set flow by (1.1) with the

initial data .@C0; intC0;R
N nC0/ satisfying (2.16). For any " 2 .0; T /

lim
h!0

sup
t2Œ0;T �"�

dH .C
h.t/; cl˝C.t// D lim

h!0
sup

t2Œ0;T �"�

dH .C
h.t/; cl˝C

L .t// D 0; (5.18)

Proof. By the continuity of d , (5.14), (5.15) and (5.16) turn to

�L.t/ D fd.t; �/ D 0g; ˝C
L .t/ D fd.t; �/ > 0g; ˝�

L .t/ D fd.t; �/ < 0g:
Thus we get (5.18) by applying Theorem 5.5 and [15, Lemma 4.6.5].

REMARK 5.7 (1) Since fC h.t/gt2Œ0;T /;h>0 and fcl˝L.t/gt2Œ0;T / are bounded (cf. Proposition 3.1),

from [5, Appendix A], one can prove the uniform convergences of fdhgh>0 and fwhgh>0 to d on

Œ0; T � "� � R
N for each " > 0.

(2) We see from Theorem 4.5, [19] and [21] that the limit d of fdhgh>0 and fwhgh>0 is a unique

viscosity solution of (4.8) and (4.9). In addition, d satisfies a weak form of (2.10) and (2.11):

minfd; 0g (resp., maxfd; 0g) is a viscosity subsolution (resp., supersolution) of

ut C F.t; x � uDu;Du;D2u/ D 0 in QT :

See [38, Theorem 11.1], [2, Theorem 3.1, Lemma 5.3] for the proof.

(3) Vivier [39] and Leoni [30] considered the approximation schemes for the anisotropic CDM

related to ours. The choice of the initial data is the main different point from our scheme. They

choose the initial data w.0; x/ D �Ck
.x/ � �

RN nCk
.x/ for x 2 RN instead of (1.3). In addition,

Chambolle and Novaga also treated in [6] an algorithm to the anisotropic MCF. The differences

between [6] and our algorithm are the approximate equation and the choice of the initial data.

Theorem 5.6 is a similar result to those in [39], [30] and [6].

(4) From the viewpoint of numerical analysis we are able to replace the initial data (1.3) with

wk.0; x/ D �.d.x; Ck// for x 2 R
N ; (5.19)

in constructing fCkgŒT=h�

kD0
. Here � is a Lipschitz continuous function defined by

�.r/ WD

8
<
:

�3ı if r 6 �4ı;
r if jr j 6 2ı;

3ı if r > 4ı;

�0.r/ > 0 for a.e. r 2 R

For h > 0 and k D 0; 1; : : : ; ŒT=h�, let bwk be a solution of (1.2) - (5.19). Then we observe by

lengthy calculations that

sup
kD0;1;:::;ŒT=h�

kwk � bwkkL1.Œkh;.kC1/h/�fjd.�;Ck/j6ıg/ D O.e�ı2=8h/

for any small h > 0. Thus applying the results of this section, we have the convergence of fbwkgŒT=h�

kD0

to d as h ! 0 uniformly in [t2Œ0;T �"�Œftg � fjd.t; �/j 6 ıg� for each " > 0.
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6. Rate of convergence to smooth and compact CDM’s

This section is devoted to the rate of convergence to the smooth and compact CDM and to its

optimality in the case of a circle evolving by (1.1) with b D 0 and g D 0.

6.1 Rate of convergence

In order to derive the rate of convergence we reformulate our algorithm in the following way: Let

C0 be a compact subset of RN whose boundary is of class C 5C˛. For each h > 0 let fwkgŒT0=h�

kD0
be

a sequence of solutions of (1.2) - (1.3) with setting Ck WD fwk�1.h; �/ > 0g (k D 1; 2; : : : ; ŒT0=h�).

Define fwhgh>0 as in (4.1) and C h.t/ as

C h.t/ WD fwh.t; �/ > 0g for t 2 Œ0; T0/ and h > 0 (6.1)

instead of (1.6). Notice that C h.kh/ D Ck for k D 0; 1; 2; : : : ; ŒT0=h� and h > 0. We then obtain

the following theorem.

Theorem 6.1 Assume (2.1) and (2.3). Let f� .t/gt2Œ0;T0/ be a smooth and compact CDM with

� .0/ D @C0 and let � D �.t; x/ be defined by (2.4). Set C h.t/ as (6.1) and C.t/ WD f�.t; �/ > 0g
for each t 2 Œ0; T0/ and h > 0. For any " > 0, there exist L1 and h0 > 0 depending on (2.1) and

(2.5) such that

sup
t2Œ0;T0�"�

dH

�
C h.t/; C.t/

�
6 L1h for all h 2 .0; h0/:

See Appendix for the existence and uniqueness of f� .t/gt2Œ0;T0/. Since � .t/ is a hypersurface for

every t 2 Œ0; T0/, Theorem 5.6 yields that for any ", �0 > 0, there exists h0;1 > 0 such that

sup
t2Œ0;T0�"�

dH

�
C h.t/; C.t/

�
6 �0 for all h 2 .0; h0;1/: (6.2)

Hence the above theorem is deduced from the following lemma.

Lemma 6.2 Under the conditions in Theorem 6.1, if dH .C
h.kh/; C.kh// 6 � for small � 2 Œ0; �0/,

then for some K8 > 0, h0;2 2 .0; h0;1/ depending on (2.1) and (2.5),

dH

�
C h.khC t /; C.khC t /

�
6
�CK8t

2

1 �K8t
for all t 2 Œ0; h� and h 2 .0; h0;2/:

Proof. Assume that .0 6/dH .C
h.kh/; C.kh// 6 �. Let Wk be a solution of (1.2) satisfying

Wk.0; �/ D d.�; C.kh// in RN and set D˙
� .kh C t/ WD fWk.t ; �/ > ˙�g and ˝˙

� .kh C t / WD
f�.khC t ; �/ > ˙�g.

We easily get Wk � � 6 wk 6 Wk C � on Œ0; h� � RN from the maximum principle since

Wk.0; �/ � � 6 wk.0; �/ 6 Wk.0; �/ C � in R
N . Hence we have DC

� .kh C t/ � C h.kh C t/ �
D�

� .khC t/ for all t 2 Œ0; h�. Since ˝C
� .khC t / � C.khC t / � ˝C

� .khC t/, we obtain for all

t 2 Œ0; h�
˝C

� .khC t / \DC
� .khC t / � C.khC t /; C h.khC t/ � ˝�

� .khC t/ [D�
� .khC t /:

Therefore we observe that for all t 2 Œ0; h�,

dH

�
C h.khC t /; C h.khC t/

�
6 max

˚
dH

�
˝C

� .khC t/ \DC
� .khC t/; C h.khC t/

�
;

dH

�
˝�

� .khC t/ [D�
� .khC t/; C h.khC t /

�	
: (6.3)
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We estimate the right-hand side of (6.3). It is easily seen that

dH

�
˝C

� .khC t / \DC
� .khC t/; C h.khC t /

�

6 dH

�
DC

� .khC t/; C h.khC t /
�

C dH

�
˝C

� .khC t/;DC
� .khC t/

�
;

dH

�
˝�

� .khC t/ [D�
� .khC t/; C h.khC t /

�

6 dH .D
�
� .khC t/; C h.khC t //C dH

�
˝�

� .khC t/;D�
� .khC t /

�
:

As Wk satisfies Proposition 3.4, we get from some calculations

dH

�
D˙

� .khC t /; C h.khC t/
�

6
�

1 �K5t
for all t 2 Œ0; h� and h > 0:

Step 1. We derive an estimate for sup
x2D

C
� .khCt/

dist .x;˝C
� .khC t //.

Fix t 2 Œ0; h� and x 2 DC
� .kh C t/. We may assume that x 2 @DC

� .kh C t/n˝C
� .kh C t/.

Sete�.t; x/ WD �.kh C t ; x/. Notice that for s 2 Œ0; h� the point z.s; x/ WD x �e�.s; x/De�.s; x/ 2
@˝C

� .khCs/ satisfies jx�z.s; x/j D je�.s; x/j D dist .x; @˝C
� .khCs//. Set �.s/ WD Wk.s; z.s; x//.

By the facts W 2 C .5C˛/=2;5C˛.Œ0; h� � fj�.kh; �/j 6 5ıg/, Wt .0; z.0; x// D e�t .0; x/,

DWk.0; z.0; x// D De�.0; x/ and hDe�;De�t i D 0, we see that

� 0.0/ De�t .0; x/ �e�t .0; x/
˝
De�.0; x/;De�.0; x/

˛
�e�.0; x/

˝
De�.0; x/;De�t .0; x/

˛
D 0

� 00.s/ D Wk;t t

�
s; z.s; x/

�
C 2

˝
DWk;t

�
s; z.s; x/

�
; zs.s; x/

˛

C
˝
D2Wk

�
s; z.s; x/

�
zs.s; x/; zs.s; x/

˛
C
˝
DWk

�
s; z.s; x/

�
; zss.s; x/

˛
;

zs.s; x/ D �
˚
e�t .s; x/De�.s; x/Ce�.s; x/De�t .s; x/

	
;

zss.s; x/ D �
˚
e�t t .s; x/De�.s; x/C 2e�t .s; x/De� t .s; x/Ce�.s; x/De�t t .s; x/

	
:

Here we have used (2.5). Hence we have from �.0/ D Wk.0; z.0; x// D e�.0; x/ D d.x; Ck/ D �,

Taylor’s theorem and these formulae

Wk

�
s; z.s; x/

�
D �.s/ D �C 1

2
� 00.�s/s2 for some � 2 .0; 1/:

Thus it follows from (3.4) and (2.5) that

sup
s2Œ0;h�;x2@D.khCs/
kD0;1;:::;ŒT=h�;h>0

ˇ̌
ˇ̌1
2
� 00.s/

ˇ̌
ˇ̌ 6 K8;1: (6.4)

Here and in the sequelK8;j > 0 (j 2 N) is a constant depending on (2.5) and (3.4).

Furthermore we observe that for some � 2 .0; 1/

� D Wk.t ; x/ D Wk.t ; z.t ; x//Ce�.t; x/
˝
DWk

�
t ; z� .t ; x/

�
;De�.t ; x/

˛

D �C 1

2
� 00.�t/t2 Ce�.t ; x/

˝
DWk

�
t ; z� .t ; x/

�
;De�.t ; x/

˛

where z� .s; x/ WD x � �e�.s; x/De�.s; x/. Setting s D t and combining (6.4) and Remark 3.5 with

this formula, we get

je�.t; x/j 6

ˇ̌
ˇ̌
ˇ

�K8;1t
2

2hDWk.t ; z
� .t ; x//;De�.t ; z� .t ; x//i

ˇ̌
ˇ̌
ˇ 6

K8;1t
2

1 �K5t
:
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Recalling �.t; x/ D d.khC t ; x/, we obtain

sup

x2D
C
� .khCt/

dist
�
x;˝C

� .khC t/
�

6
K8;1t

2

1 �K5t
:

Step 2. We estimate sup
x2˝

C
� .khCt/

dist .x;DC
� .khC t //.

The argument is similar to that in Step 1. Fix t 2 Œ0; h� and x 2 ˝C
� .khC t/. We may assume

that x 2 @˝C
� .khC t /nDC

� .khC t /. Letb�.t ; x/ be the signed distance function given by (2.4) with

� .khC t/ D @DC
� .khC t /. Then

b�.0; �/ D �.kh; �/ � � on fj�.kh; �/j 6 5ıg;

b�t D Wk;t

jDWk j ; Db� D DWk

jDWkj ; Db�t D @

@t

�
DWk

jDWkj

�
on Œ0; h� � fj�.kh; �/j 6 5ıg:

Here we have used (3.5).

For s 2 Œ0; h�, the pointbz.s; x/ WD x �b�.s; x/Db�.s; x/ 2 @DC
� .s/ satisfies jx �bz.s; x/j D

j�.s; x/j D dist .x; @DC
� .s//. Similar calculations to those in the previous step yield that

sup

t2Œ0;h�;x2@bC .khCs/
kD0;1;:::;ŒT=h�;h>0

j�
�
khC t ;bz.t ; x/

�
� �j 6 K8;2t

2
;

� D �.khC t ; x/ D �
�
khC t ;bz.t ; x/

�
Cb�.t; x/

˝
D�
�
khC t ; x � �b�.t; x/Db�.t ; x/

�
;Db�.t; x/

˛
;

D �
�
khC t ;bz.t; x/

�
Cb�.t ; x/

�
D�.khC t ; x/;

DWk

jDWk j

�
:

Therefore we have by using Propositions 3.3 and 3.4

ˇ̌
b�.t ; x/

ˇ̌
6

ˇ̌
DWk.t ; x/

ˇ̌ ˇ̌
�
�
khC t ;bz.t; x/

�
� �

ˇ̌

jhD�.khC t ; x/;DWkij: 6
.1CK2h/K8;2t

2

1 �K5t

and consequently

sup

x2˝
C
� .khCt/

dist
�
x;DC

� .khC t /
�

6
K8;3t

2

1 �K5t
:

Combining the estimates in Step 1, 2 and setting K8 WD maxfK5; K8;1; K8;3g, we obtain

dH .˝
C
� .khC t/;DC

� .khC t // 6 K8t
2
=.1�K5t/. The remaining part can be estimated.

Proof of Theorem 6.1. In the case k D 0, we apply Lemma 6.2 with � WD 0 to have

sup
t2Œ0;h�

dH

�
C h.t /; C.t/

�
6

K8h
2

1 �K8h
:

In the case k D 1, it follows from Lemma 6.2 with � WD K8h
2=.1 �K8h/ to obtain

sup
t2Œ0;h�

dH

�
C h.hC t /; C.hC t/

�
6

K8h
2

.1 �K8h/2
C K8h

2

1 �K8h
:
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Repeating this process, we see that for k D 2; 3; : : : ; ŒT0=h�,

sup
t2Œ0;h�

dH

�
C h.khC t/; C.khC t/

�
6

kC1X

lD1

K8h
2

.1 �K8h/l

6
K8h

2
˚
1 � .1 �K8h/

�ŒT0=h�
	

.1�K8h/
˚
1 � .1 �K8h/�1

	

6
K8h

2.eK8T0 � 1/

K8h

D .eK8T0 � 1/h:

Letting L1 WD .eK8T0 � 1/ and h0 D h0;2, we get the desired result.

REMARK 6.3 Assume (2.1) and (2.5). From Theorem 6.1 we can replace the initial data (1.3) with

wk.0; x/ D �
�
d.x; Ck/

�
for x 2 R

N ; (6.5)

in constructing fCkgŒT=h�

kD0
. Here � is a Lipschitz continuous function defined by

�.r/ WD

8
<
:

�3h1=2�ˇ if r 6 �4h1=2�ˇ ;

r if jr j 6 2h1=2�ˇ ;

3h1=2�ˇ if r > 4h1=2�ˇ ;

�0.r/ > 0 for a.e. r 2 R; ˇ 2 .0; 1=2/:

For h > 0 and k D 0; 1; : : : ; ŒT=h�, let bwk be a solution of (1.2) - (6.5). Then we observe by lengthy

calculations that

sup
kD0;1;:::;ŒT=h�

kwk � bwkk
L1.Œkh;.kC1/h/�fjd.Ck/j6

p
hg/

D O.e�h�ˇ=2

/

for any small h > 0. Combining (3.5) with this estimate, we can get the same estimate as in Theorem

6.1 with C h.t/ replacing fbwk.0; �/ > 0g.

6.2 Optimality

This subsection is devoted to the optimality of the estimate in Theorem 6.1. For simplicity, we set

N D 2, b D 0, g D 0, R.t/ WD
p
1 � 2t , T0 WD 1=2 and C.t/ WD fx 2 R2 j jxj 6 R.t/g. Since

it suffices to consider the radial solution, the initial value problem (1.2) - (1.3) and the definition of

fCkgŒT=h�

kD0
turn to

wk;t D wk;rr C wk;r

r
; wk D wk.t; r/ in .0;C1/ � .0;C1/; (6.6)

wk;r.t; 0/ D 0 for t > 0; (6.7)

wk.0; r/ D Rk � r for r 2 Œ0;C1/; (6.8)

Ck WD
˚
x 2 R

2 j wk.h; jxj/ > 0
	
; C0 WD clB.0; 1/;

Rk WD radius of Ck; R0 WD 1:
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For t 2 Œkh; .k C 1/h/, k D 0; 1; 2; : : : ; ŒT=h� and h > 0, set

C h.t/ WD
˚
x 2 R

2 j wk.t � kh; jxj/ > 0
	
; Rh.t/ WD radius of C h.t/:

The following proposition says that for each h > 0, C h.t/ evolves faster than C.t/.

Proposition 6.4 C h.t/ � C.t/ for all t 2 Œ0; T0/ and h > 0.

Proof. Let V0 D V0.t; r/ WD 1 �
p
r2 C 2t . Then C.t/ D fV0.t; j � j/ > 0g for t 2 Œ0; h� and V0

is a classical supersolution of (6.6) satisfying (6.7) and (6.8). Hence it follows from the maximum

principle that w0 6 V0 on Œ0; h� � Œ0;C1/. This inequality yields that C h.t/ � C.t/ for all

t 2 Œ0; h�. Set V1 D V1.t; r/ WD R.h/�
p
r2 C 2t . Then C.t C h/ D fV1.t; j � j/ > 0g for t 2 Œ0; h�

and V1 is a classical supersolution of (6.6) satisfying (6.7) and w1.0; �/ 6 V1.0; �/ on Œ0;C1/. Thus

we get w1 6 V1 on Œ0; h� � Œ0;C1/ by the maximum principle. Therefore C h.hC t/ � C.hC t/

for all t 2 Œ0; h�. Similarly, setting V2.t; r/ WD R.2h/ �
p
r2 C 2t , we are able to show that

C h.2hC t/ � C.2hC t/ for all t 2 Œ0; h�. Thus we have the result by induction.

Proposition 6.5 For any ı 2 .0; 1=8/, there are constantsK9 > 0 and t6 > 0 depending on ı such

that

ˇ̌
ˇ̌wk;r.t ; r/ �

�
�1C t

r2

�ˇ̌
ˇ̌ 6 K9t

2
for all t 2 Œ0; h�; r 2 Œı;C1/ and h 2 .0; t6/: (6.9)

Proof. Since j � j 2 C1.R2nf0g/, Remark 3.5 (2) yields that

ˇ̌
ˇ̌Dwk.t ; jxj/ �

�
� x

jxj C t
x

jxj3

�ˇ̌
ˇ̌ 6 K9t

2
.i D 1; 2/

for small t > 0, x 2 RN nB.0; ı/ and some K9 > 0. Noting the formula wk;r D hDwk; x=jxji, we

get the desired result.

Since we see by Proposition 6.4 and Theorem 6.1 that for any " 2 .0; 1=4/

dH

�
C h.t/; C.t/

�
D R.t/ �Rh.t/ 6 L1h; R

h.t/ >
p
" (6.10)

for all t 2 Œ0; 1=2 � "�, h 2 .0; t7/ and some t7 2 .0; h0/, we consider the lower bound of R.t/ �
Rh.t/ for small h > 0 to prove the optimality of Theorem 6.1. Hence our optimality result is stated

as follows.

Theorem 6.6 Set C.t/ WD fjxj 6 R.t/g .R.t/ D
p
1 � 2t/ and C h.t/ D fwk.t � kh; jxj/ > 0g.

Let Rh.t/ be the radius of C h.t/. Then for any " 2 .0; 1=4/ there exists h1 > 0 such that for all

h 2 .0; h1/

R.t/ � Rh.t/ >

8
ˆ̂<
ˆ̂:

1

2
t2 for t 2 Œ0; h�;

1

4
th for t 2 Œh; 1=2� "�:

The strategy of the proof of Theorem 6.6 is similar to that of Theorem 6.1.
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Lemma 6.7 Fix " 2 .0; 1=4/. If R.kh/ � Rh.kh/ > � for small � > 0, then there exist K10 > 0

and t8 > 0 such that

R.khC t / � Rh.khC t/ >

 
�C t

2

.R.kh//3
�K10.t C h/t

2

!�
1C t

.R.kh//2
�K10t

2

�

for all t 2 Œ0; h� and h 2 .0; t8/.

Proof. Assume that R.kh/ � Rh.kh/ > � for small � > 0. Let wk be a solution of (6.6) - (6.7) -

(6.8). Set �.t/ WD wk.t ; R.khC t// for t 2 Œ0; h�. The argument is quite similar to that in the proof

of Theorem 6.1.

Taylor’s theorem yields that

ˇ̌
ˇ̌�.t/ �

�
�.0/C � 0.0/t C 1

2
� 00.0/t2

�ˇ̌
ˇ̌ 6 K10;1t

3
:

Here and hereafterK10;j ’s (j 2 N) are positive constants depending on ". Then we observe by (6.6)

and the regularity of wk near r D R.kh/ that

�.0/ D Rh.kh/ � R.kh/ 6 ��; � 0.0/ D 0; � 00.0/ D � 1

.R.kh//3
:

Hence we have for all t 2 Œ0; h� and small h > 0

wk

�
t ; R.khC t/

�
6 �� � 3t

2

2.R.kh//3
CK10;1t

3
: (6.11)

On the other hand, we see by the mean value theorem that

wk.t ; R
h.khC t // D wk

�
t ; R.khC t/

�
C wk;r

�
t ; R.khC t/Ce�

��
R.khC t/ �Rh.khC t /

�

D wk;r

�
t ; R.khC t/Ce�

��
Rh.khC t / � R.khC t /

�
;

wheree� WD �.Rh.khC t/ � R.khC t //.< 0/ and � 2 .0; 1/. Hence we obtain

R.khC t/ �Rh.khC t / D wk.t ; R.khC t//

wk;r.t ; Rh.khC t/Ce�/
(6.12)

It follows from (6.9) that

ˇ̌
ˇ̌wk;r

�
t ; R.khC t /Ce�

�
�
�

� 1C t

.R.kh/Ce�/2
�ˇ̌
ˇ̌ 6 K10;2t

2
:

Using .R.kh/ �L1h/
2

6 .R.kh/Ce�/2 6 .R.kh//2, we have

ˇ̌
ˇ̌wk;r

�
t ; R.khC t/Ce�

�
�
�

� 1C t

.R.kh//2

�ˇ̌
ˇ̌ 6 K10;3.t C h/t:

We obtain the desired result by applying (6.11), (6.12) and this estimate and taking t8 > 0

sufficiently small.
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Proof of Theorem 6.6. In the case k D 0, as R.0/ D Rh.0/ D 1, we apply Lemma 6.7 with � D 0

to have

R.t/ � Rh.t / >

� t
2

.R.0//3
�K10.t C h/t

2
��
1C t

.R.0//2
�K10t

2
�

>
t

2

.R.0//3
�K11.t C h/t

2

for t 2 Œ0; h� and some K11 D K11."/ > 0. In the case k D 1, we use Lemma 6.7 with � D
h2=.R.0//3 �K10;1h

3 to obtain

R.hC t/ � Rh.hC t/ >

�
�0 C t

2

.R.h//3
�K10.t C h/t

2
��
1C t

.R.h//3
�K10t

2
�

>

�
h2

.R.0//3
�K11h

3

�
C t

2

.R.h//3
�K11.t C h/t

2

for all t 2 Œ0; h�. Hence we are able to prove by induction that

R.khC t / � Rh.khC t/ > h2

kX

lD0

�
1

.R.lh//3
�K11h

�
C t

2

.R.kh//2
�K11.t C h/t

2

for all t 2 Œ0; h�, k D 0; 1; 2; : : : ; ŒT=h� and h > 0.

For any " 2 .0; T /, choosing a small h1 > 0 we get

R.khC t / � Rh.khC t/ >
1

2

(
kX

lD0

h2

.R.lh//3
C t

2

.R.kh//2

)
>
kh2 C t

2

2
>
.khC t/h

4

for all t 2 Œ0; h�, k D 1; 2; : : : ; ŒT=h� and h 2 .0; h1/. Hence the proof is completed.

7. Rate of convergence to a generalized CDM

In [36] Nochetto and Verdi gave a local estimate for the convergence of a bilateral obstacle problem

to a regular portion of a generalized CDM. In this section we derive a similar estimate in the case

of our algorithm.

Let .�L.t/;˝
C
L .t/;˝

�
L .t//t2Œ0;T / be a level-set flow by (1.1) satisfying (2.16). Then the

convergence of fC h.t/gt2Œ0;T /;h>0 to fcl˝C
L .t/gt2Œ0;T / follows from Theorem 5.6. Besides, we

have the following local estimate.

Theorem 7.1 Assume (2.1). Let fC h.t/gt2Œ0;T /;h>0 be defined by (6.1) and .�L.t/;˝
C
L .t/,

˝�
L .t//t2Œ0;T / by the level-set flow by (1.1). Assume that for t0 2 .0; T / and x0 2 �L.t0/,

Du.t0; x0/.¤ 0/ exists and Du 2 C.clQ..t0; x0/; r0// for some small r0 > 0. Then there exist

L2, h2 > 0 such that

sup
t2Œt0�r0;t0Cr0�

dH

�
C h.t/ \ B.x0; r0/; cl˝C

L .t/ \ B.x0; r0/
�

6 L2

n
dH

�
C h.khh/ \ B.x0; r0/; cl˝C

L .khh/ \ B.x0; r0/
�

C h
o

(7.1)

for all h 2 .0; h2/. Here kh WD Œ.t0 � r0/=h�.
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Before proving this theorem we apply the arguments in [13, Section 5] to obtain the local

regularity of the level-set flow by (1.1). At first, by Du 2 C.Q..t0; x0/; r0// and jDu.t0; x0/j ¤ 0

we may assume that

1

2
jDu.t0; x0/j 6 jDu.t; x/j 6 2jDu.t0; x0/j for all .t; x/ 2 Q

�
.t0; x0/; r0

�
: (7.2)

Then it follows from the implicit function theorem that for each t 2 .t0 � r0; t0 C t0/ the set

fu.t; �/ D 0g \ B.x0; r0/ is a portion of a C 1 hypersurface and there is a function v D v.t; x0/
(.t; x0/ 2 Q0..t0; x0/; r0/ such that

˚
u.t; �/ D 0

	
\ B.x0; r0/ D

˚
xN D v.t; x0/

	
\ B.x0; r0/; D

0v.t; x0/ 2 C
�
Q0�.t0; x0/; r0

��
:

In addition,

kvk.0/

cl Q0..t0;x0/;r0/
C kD0vk.0/

cl Q0..t0;x0/;r0/
< C1: (7.3)

We choose an orthonormal basis feigN
iD1 for RN such that eN WD �Du.t0; x0/=jDu.t0; x0/j.

Lemma 7.2 Under the conditions of Theorem 7.1, v is a viscosity solution of

vt ��0v C hD02vD0v;D0vi
jD0vj2 C 1

C hb0;D0vi � bN 0 C g0pjD0vj2 C 1 D 0 in Q0�.t0; x0/; r0
�
;

where b0 D b0.t; x0/ WD .b1.t; x0; v.t; x0//; � � � ; bN �1.t; x0; v.t; x0///, bN 0 D bN 0.t; x0/ WD
bN .t; x0; v.t; x0// and g0 D g0.t; x0/ WD g.t; x0; v.t; x0//.

Proof. We prove only the subsolution case because the supersolution case is similarly proved. The

proof follows from [13, Theorem 5.1].

For any  2 C1.Q0..t0; x0/; r0//, assume that v �  takes its maximum at .t1; x
0
1/. We may

consider that

v.t1; x
0
1/ D  .t1; x

0
1/ D 0: (7.4)

Hence v 6  in Q0..t0; x0/; r0/. Note that

fu < 0g \Q
�
.t0; x0/; r0

�
�
˚
.t; x/ 2 Q

�
.t0; x0/; r0

�
j xN >  .t; x0/

	
; (7.5)

˚
.t; x/ 2 Q

�
.t0; x0/; r0

�
j xN <  .t; x0/

	
� fu > 0g \Q

�
.t0; x0/; r0

�
:

Let �.t; x/ WD  .t; x0/ � xN and set

E0 WD
˚
.t; x0/ 2 Q0�.t0; x0/; r0

�
j 1 6 xN �  .t; x0/

	
;

Ek WD
˚
.t; x0/ 2 Q0�.t0; x0/; r0

�
j 2�k

6 xN �  .t; x0/ 6 2�kC1
	
;

Fk WD
˚
.t; x0/ 2 Q0�.t0; x0/; r0

�
j � 2�kC1

6 xN �  .t; x0/ 6 �2�k
	
;

F0 WD
˚
.t; x0/ 2 Q0�.t0; x0/; r0

�
j xN �  .t; x0/ 6 �1

	

for k D 1; 2; : : : Define

˛k WD sup
n
u.t; x/

ˇ̌
ˇ .t; x/ 2

[

06j 6k

Ej \ fu < 0g
o
; ˇk WD sup

n
u.t; x/

ˇ̌
ˇ .t; x/ 2

[

06j 6k

Fj

o
:



CONVERGENCE OF A THRESHOLD-TYPE ALGORITHM 511

Then we easily see by (7.4) that

˛k < 0; ˛0 6 ˛1 6 � � � 6 ˛k 6 � � � ; lim
k!C1

˛k D 0;

ˇk > 0; ˇ0 > ˇ1 > � � � > ˇk > � � � ; lim
k!C1

ˇk D 0:

We may assume that f˛kgC1
kD0

is strictly increasing and that fˇkgC1
kD0

is strictly decreasing, by

reindexing if necessary.

We define a nondecreasing function ˚ W R �! R by

˚.˛k/ WD �2�kC1; ˚.ˇk/ WD 2�k; ˚.0/ WD 0

˚ linear on Œ˛k ; ˛kC1� and ŒˇkC1; ˇk�;

˚.r/ WD �2 for r 6 ˛0; D 2 for r > ˇ0

Then if .t; x/ 2 Ek \ fu < 0g, then u.t; x/ 6 ˛k and hence

˚
�
u.t; x/

�
6 ˚.˛k/ D �2�kC1

6  .t; x0/ � xN D �.t; x/:

Thus

˚
�
u.t; x/

�
6 �.t; x/ on

C1[

kD0

Ek \ fu < 0g

D
n
.t; x/ 2 Q

�
.t0; x0/; r0

�
j xN >  .t; x0/

o
\ fu < 0g:

Similarly, if .t; x/ 2 Fk , then u.t; x/ 6 ˇk and hence

˚
�
u.t; x/

�
6 ˚.ˇk/ D 2�k

6  .t; x0/ � xN D �.t; x/:

Thus

˚
�
u.t; x/

�
6 �.t; x/ on

C1[

kD0

Fk D
n
.t; x/ 2 Q

�
.t0; x0/; r0

�
j xN <  .t; x0/

o
:

In fu < 0g \ fxN <  .t; x0/g we get

˚
�
u.t; x/

�
6 0 6  .t; x0/ � xN D �.t; x/:

Therefore we observe from (7.4), (7.5) and this inequality that ˚.u/ � � takes a maximum in

Q..t0; x0/; r0/ at .t1; .x
0
1; v.t1; x

0
1///.

Since ˚.u/ is a viscosity subsolution of (2.14) by the relabeling property (cf. [15, Theorem

4.2.1]), we obtain

�t ��� C hD2�D�;D�i
jD�j2 C hb;D�i C gjD�j 6 0 at

�
t1;
�
x0

1; v.t1; x
0
1/
��
:

It directly follows from the definition of � that at .t1; .x
0
1; v.t1; x

0
1///

�t D  t ; �xi
D  xi

for 1 6 i 6 N � 1; �xN
D �1;

�xi xj
D  xi xj

for 1 6 i; j 6 N � 1; D 0 otherwise:

Therefore we have the result.
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To consider the regularity of v, we treat the following initial-boundary value problem:

wt ��w C hD2wDv;Dvi
jDvj2 C 1

C hb;Dwi � bN C g
p

jDvj2 C 1 D 0 (7.6)

in Q..t0; x0/; r0/;

w.t0 � r0; x/ D v.t0 � r0; x/ for x 2 B.x0; r0/; (7.7)

w.t; x/ D v.t; x/ for @pQ
�
.t0; x0/; r0

�
: (7.8)

For the moment we drop the superscript 0 for notational simplicity.

It follows from Lemma 7.2 that v is a viscosity solution of (7.6) satisfying (7.7) and (7.8). Note

that the principal part of (7.6) is uniformly elliptic because of (7.3)

We show the existence of a solution w 2 W
1;2;p

loc
.Q..t0; x0/; r0// of (7.6) - (7.7) - (7.8).

To do so we approximate b, bN and g: For f D b, bN and g, choose a sequence ff"g">0 �
C1.clQ..t0; x0/; r0// satisfying

.f";Df"/ �! .f;Df / uniformly on clQ
�
.t0; x0/; r0

�
as " ! 0;

˚
.f";Df"/

	
">0

W equi-continuous on clQ
�
.t0; x0/; r0

�
: (7.9)

Then for each " > 0 there is a unique classical solution of w" of (7.6) - (7.7) - (7.8) with b D b",

bN D bN
" and g D g". We derive some uniform estimates for fw"g">0. In the following part of this

section we always assume (2.1) and (7.3).

First the L1-bound readily follows from the maximum principle:

sup
">0

kw"k.0/

cl Q..t0;x0/;r0/
< C1: (7.10)

Since fv"g">0 is uniformly bounded on clQ..t0; x0/; r0/ and satisfies (7.9) with f" D v", we apply

the techniques of [17, Section 14.5] and [31, Section 2] to have the following.

Proposition 7.3 fw"g">0 is equi-continuous on @pQ
�
.t0; x0/; r0

�
.

Furthermore, applying (7.9) and [32, Theorem 7.13], we obtain a uniformW
1;2;p

loc
-estimate.

Proposition 7.4 sup">0 kw"kW 1;2;p.Q/ < C1 for each compact subset Q of Q
�
.t0; x0/; r0

�
and

p > N C 2.

Therefore we have the following result.

Theorem 7.5 Assume (2.1) and (7.3). There is a solution w 2 W
1;2;p

loc
.Q..t0; x0/; r0// \

C.clQ..t0; x0/; r0// of (7.6) in the almost everywhere sense satisfying (7.7)–(7.8). In addition,

v D w on clQ..t0; x0/; r0/.

Proof. From Proposition 7.3 we can use the Sobolev embedding to obtain

sup
">0

�
hw"i;Q C hDw"i;Q

�
< C1

for each compact set Q � Q..t0; x0/; r0/ and some  2 .0; 1/. Thus we see by (7.10),

Proposition 7.3 and this estimate that fw"g">0 is uniformly bounded and equi-continuous on
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clQ..t0; x0/; r0/. Therefore we can extract a subsequence f"ngC1
nD0, "n & 0 such that as n ! C1

w"n
�! w uniformly on clQ

�
.t0; x0/; r0

�
;

Dw"n
�! Dw locally uniformly in Q

�
.t0; x0/; r0

�
;

.w"n;t ;D
2w"n

/ �! .wt ;D
2w/ weakly in

n
L

p

loc

�
Q
�
.t0; x0/; r0

��oN 2C1

for p > N C 2;

w satisfies .7:6/ almost everywhere in Q
�
.t0; x0/; r0

�
:

Also w satisfies (7.7)–(7.8). The equality v D w follows from the uniqueness of solutions of (7.6)–

(7.7)–(7.8) due to [33, Remark I.16] and [22, Theorem III. 1].

For each compact set Q0 � Q0..t0; x0/; r0/, b0, bN 0, g0 2 C =2;1C .Q0/ since v, D0v 2
C =2; .Q0/ and (2.1). Hence v 2 C .2C/=2;2C.Q0..t0; x0/; r0//. We use the regularity theory

for parabolic equations (cf. [29], [14] etc.) to obtain v 2 C .5C/=2;5C.Q..t0; x0/; r0//. Therefore

the signed distance function d to �L.t/ D fu.t; �/ D 0g satisfies

d 2 C .5C/=2;5C.N /; N WD
n
.t; x/ 2 Q

�
.t0; x0/; r0

�
j jd.t; x/j 6 ı0

o
(7.11)

for some ı0 > 0.

Proof of Theorem 7.1. Fix any ı 2 .0; ı0/. Applying Theorem 5.6, we get

sup
t2Œ0;t0�r0=2�

dH

�
C h.t/; cl˝C

L .t/
�

6 ı for all h 2 .0; h0/ and some h0 > 0:

Set kh WD Œ.t0 � r0/=h� and ˛h WD dH .C
h.khh/ \ B.x0; r0/; cl˝C

L .khh/ \ B.x0; r0// for all h 2
.0; h0/. Let C˙.khh/ be compact sets in RN satisfying

˚
d.khh; �/ > ˛h

	
� CC.khh/ �

˚
d.khh; �/ > 2ı

	
;

˚
d.khh; �/ 6 �2ı

	
� C�.khh/ �

˚
d.khh; �/ 6 �˛h

	
;

CC.khh/ \ B.x0; r0/ D
˚
d.khh; �/ > ˛h

	
\ B.x0; r0/;

CC.khh/nB.x0; 2r0/ D
˚
d.khh; �/ > 2ı

	
nB.x0; r0/;

C�.khh/ \ B.x0; r0/ D
˚
d.khh; �/ 6 �˛h

	
\ B.x0; r0/;

C�.khh/nB.x0; 2r0/ D
˚
d.khh; �/ 6 �2ı

	
nB.x0; r0/:

Let d˙.0; �/ be the signed distance function to @C˙.khh/ and w˙ be a solution of (1.2) - (1.3) with

C˙.khh/ replacing Ck . Set C˙.khhC t / WD fw˙.t ; �/ > 0g for t 2 Œ0; h�. The same arguments as

those in subsection 3.2 yields that

kw˙k.5C/

Œ0;h��cl B.x0;r0/
6 K12; jDw˙j > 1�K12t on Œ0; h� � B.x0; r0/ (7.12)

for some K12 > 0. Hence applying (7.11), (7.12) and the proof of Lemma 6.2, we get

dH

�
C h.khhC t / \ B.x0; r0/; C.khhC t / \ B.x0; r0/

�

6 dH

�
C˙.khhC t / \ B.x0; r0/; C.khhC t / \ B.x0; r0/

�

6
˛h

1�K13h
C K13h

2

2.1�K13h/
for all t 2 Œ0; h� and some K13 > 0:
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The induction, similar to the proof of Theorem 6.1, gives

dH

�
C h
�
.kh C l/hC t

�
\ B.x0; r0/; C

�
.kh C l/hC t

�
\ B.x0; r0/

�

6 dH

�
C˙�.kh C l/hC t

�
\ B.x0; r0/; C

�
.kh C l/hC t

�
\ B.x0; r0/

�

6
˛h

.1�K13h/lC1
C

lC1X

mD1

K13h
2

2.1�K13h/m

for all t 2 Œ0; h�, l D 0; 1; : : : ; Œ2r0=h� and h 2 .0; t9/. Here K13, t9 > 0 are constants. Hence we

get

dH

�
C h.t/ \ B.x0; r0/; C.t/ \ B.x0; r0/

�
6
e2K14r0˛h

1 �K13h
C .eK13r0 � 1/h

2

for all t 2 Œt0 � r0; t0 C r0�, h 2 .0; t9/ and some K14 > 0. Therefore we have (7.1) by choosing

L2 sufficiently large and h2 D t9.

If �L.t/ smoothly evolves by (1.1) in Œ0; t0/, then the following estimate holds.

Corollary 7.6 Assume the same conditions in Theorem 7.1. If �L.t/ smoothly evolves by (1.1) in

Œ0; t0/ such that (2.5) is satisfied. Then there exist L3 > 0 and h3 > 0 such that

sup
t2Œt0�r0;t0Cr0�

dH

�
C h.t/ \ B.x0; r0/; cl˝C.t/ \ B.x0; r0/

�
6 L3h for all h 2 .0; h3/:

This corollary is a consequence from Theorem 6.1 and 7.1, so we omit the detail.

8. Appendix

In this section we establish the existence and uniqueness for a smooth and compact CDM locally in

time.

Theorem 8.1 Assume (2.1). Let �0 be a compact hypersurface satisfying (2.3). Then for some

T0 > 0, there uniquely exists a smooth and compact CDM f� .t/gt2Œ0;T0/ with � .0/ D �0 satisfying

(2.5).

We give only the outline of the proof of this theorem because it is similar to that in [12].

8.1 An initial-boundary value problem for (2.12)

Suppose that � .0/ � RN is a given compact hypersurface, which is the boundary of a compact

set D.0/ and that there is a smooth and compact CDM f� .t/gt2Œ0;T / starting from � .0/. Let � D
�.t; x/ be the signed distance function to � .t/ defined by (2.4) with D D D.t/. Here D.t/ is the

compact set enclosed by � .t/. As seen in Section 2.2, there exists a ı1 > 0 for which � satisfies

(2.12) and jD�j2 D 1 on N ";ı1
. Therefore, to obtain a smooth and compact CDM f� .t/gt2Œ0;T1�,

we solve the following initial-boundary value problem: Let �0 be the signed distance function to

� .0/ defined by (2.4) with t D 0. Fix ı2 > 0 so that �0 is smooth in V WD fj�.0; �/j < ı2g. Then

we construct a classical solution of8
<
:
vt � F0.v;D

2v/C hebv;Dvi Cegv D 0 in Q WD .0; T1/ � V;
jDvj2 D 1 on @xQ WD Œ0:T1/ � @V;
v.0; x/ D �0.x/ for x 2 clV:

(8.1)
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8.2 Linearized problem for (8.1)

To construct a classical solution of (8.1) for small ı2, T1 > 0, we linearize (8.1). In the following

part of this section we use the usual summation convention on repeated indices.

First, we take ı3 > 0 so small that

M4ı3 6
1

4
; M4 WD sup

x2V

kD2�0k: (8.2)

Set G WD f.r; X/ 2 R � S j jr j < ı3; kXk < 2M4g. Then

j�i .X/r j 6 kXkjr j 6
1

2
for i D 1; 2; : : : ; N:

Hence the function F0 by (2.13) is smooth onG. We extend F0 on R� SN to be smooth, with jF0j,
jDF0j, jD2F0j bounded. By [12, Lemma 2.1] F0 satisfies

@F0

@Xij

.r; X/�i�j > � j�j2 for all � 2 R
N (8.3)

for each .r; X/ 2 G and some � > 0.

We look for the solution v of (8.1) in the form

v D �0 C thC w; h WD F0.�0;D
2�0/ � heb�0

.0; x/;D�0i �eg�0
.0; x/: (8.4)

We substitute (8.4) into (8.1) to derive the equation forw. Then using Taylor’s theorem, we compute

that

F0.�0 C thC r;D2�C rD2hCX/

D F0.�0;D
2�0/C @F0

@r
.�0;D

2�0/r C @F0

@Xij

.�0;D
2�0/Xij C A1.t; x; r; X/;

A1.t; x; r; X/ WD t

�
@F0

@r
.�0;D

2�0/hC @F0

@Xij

.�0;D
2�0/Xij

�
(8.5)

C
Z 1

0

.1 � s/@
2F0

@r2
.�0 C sthC sr;D2�0 C stD2hC sX/ds.thC r/2

C2
Z 1

0

.1 � s/
@2F0

@r@Xij

.�0 C sthC sr;D2�0 C stD2hC sX/ds

�.thC r/.thxi xj
CXij /

C
Z 1

0

.1 � s/ @2F0

@Xij @Xkl

.�0 C sthC sr;D2�0 C stD2hC sX/ds

�.thxi xj
CXij /.thxkxl

CXkl/:

Set

� WD .�0 C thC r/.D�0 C tDhC p/ � �0D�0 D �0p C r�1 C t�2 C t2�3;

�1 WD D�0 C p; �2 WD h.D�0 C p/C .�0 C r/Dh; �3 WD hDh:
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Taylor’s expansion around x � �0D�0 yields that
˝eb�0

.t; x � �/;D�0 C tDhC p
˛
D
˝eb�0

.0; x/;D�0

˛
C
˝eb�0

.0; x/; p
˛

��0

˝
A.Db/�0

.0; x/p;D�0

˛
�
˝
A.Db/�0

.0; x/D�0;D�0

˛
r C A2.t; x; r; p/;

A2.t; x; r; p/ WD ��0

˝
A.Db/�0

.0; x/p; p
˛
� r

˚˝
A.Db/�0

.0; x/D�0; p
˛

(8.6)

C
˝
A.Db/�0

.0; x/p;D�0

˛	
� r

˝
A.Db/�0

.0; x/p; p
˛

Ct
(
˝eb�0

.0; x/;Dh
˛
C
˝
e.bt /�0

.0; x/; �1

˛
�
˝
A.Db/�0

.0; x/.r�1 C �0p/;Dh
˛

�
˝
A.Db/�0

.0; x/�2; �1

˛

�2
Z 1

0

.1 � s/
˝
.eDbt /�0

.st; x � s�/�;D�0 C tDhC p
˛
ds

)

Ct2
(
˝
e.bt /�0

.0; x/;Dh
˛
C
Z 1

0

.1 � s/
˝
e.bt t /�0

.st; x � s�//;D�0 C tDhC p
˛
ds

�
˝
A.Db/�0

.0; x/�2;Dh
˛
�
˝
A.Db/�0

.0; x/�3; �1

˛
)

C
�Z 1

0

.1 � s/A.D2b/�0
.st; x � s�/.�; �/;D�0 C tDhC p

�

�t3
˝
A.Db/�0

.0; x/�3;Dh
˛
;

eg�0
.t; x � �/ Deg�0

.0; x/ � �0

˝
A.Dg/�0

.0; x/; p
˛
�
˝
A.Dg/�0

.0; x/;D�0

˛
r C A3.t; x; r; p/;

A3.t; x; r; p/ WD �
˝
A.Dg/�0

.0; x/; p
˛
r C t

n
e.gt /�0

.0; x/ �
˝
A.Dg/�0

.0; x/; �2

˛o
(8.7)

�t2
�
hA.Dg/�0

.0; x/; �2i C
Z 1

0

.1 � s/e.gt t /�0
.st; x � s�/ds

�

�2t
Z 1

0

.1 � s/
˝
A.Dgt /�0

.st; x � s�/; �
˛
ds C

Z 1

0

˝ A.D2g/�0
.st; x � s�/�; �

˛
ds;

where
A.D2b/�0

.t; y/.q; q/ WD
�˝B.D2bi /�0

.t; y/q; q
˛�

16i6N
:

Thus setting

aij WD @F0

@Xij

.�0;D
2�0/; B WDeb�0

.0; �/� �0

�TA.Db/�0
.0; �/D�0 CDg

�
;

c WD @F0

@r
.�0;D

2�0/ �
˝
A.Db/�0

.0; �/D�0;D�0

˛
�
˝
A.Dg/�0

.0; �/;D�0

˛
;

A WD A1 C A2 C A3; (8.8)

we have the equation for w:

wt � aijwxi xj
C hB;Dwi C cw D A.t; x; w;Dw;D2w/ in Q:
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We next derive the boundary condition for w. Let � D �.x/ be the outer unit normal of @V .

Recalling that

jD�0 C tDhCDwj2 D jDvj2 D 1 on @xQ; D�0 D
�
� on f�0 D ı2g;
�� on f�0 D �ı2g;

we have the boundary condition for w:

@w

@�
D a.t; x;Dw/ on @xQ;

a.t; x; p/ WD

8
<̂

:̂

�1
2

jtDhC pj2 � t @h
@�

on f�0 D ı2g;
1

2
jtDhC pj2 � t @h

@�
on f�0 D �ı2g:

(8.9)

Therefore what we solve is the following initial-boundary value problem:

8
<̂

:̂

wt � aijwxi xj
C hB;Dwi C cw D A.t; x; w;Dw;D2w/ in Q;

@w

@�
D a.t; x;Dw/ on @xQ;

w.0; x/ D 0 for x 2 clV:

(8.10)

8.3 Solvability of (8.10)

Similar to [12], we solve (8.10) by the fixed point theorem of the mapping T defined by inserting a

given function into the nonlinear termsA and a and solving the resulting linear equation. In addition

to the notations at the end of section 1, we define

kf k.1C˛/

@xQ
WD inf

nf
.1C˛/

cl Q

ˇ̌
ˇ f 2 C .1C˛/=2;1C˛.clQ/; f D f on @xQ

o
:

We consider the linear and uniformly parabolic equation:

8
ˆ̂̂
<
ˆ̂̂
:

wt � aijwxi xj
C hB;Dwi C cw D B in Q;

@w

@�
D b on @xQ;

w.0; x/ D 0 for x 2 clV:

(8.11)

Here B 2 C ˛=2;˛.clQ/ and b 2 C .1C˛/=2;1C˛.@xQ/. Suppose that b D 0 on f0g � @V for the

compatibility condition. Then we are able to verify that the result of [12, Lemma 2.2] holds for

(8.11). That is, there is a unique classical solution w 2 C .2C˛/=2;2C˛.clQ/ of (8.11) and it satisfies

the estimate

kwk.2C˛/
cl Q 6 C

�
kBk.˛/

cl Q C kbk.1C˛/

@xQ

�
: (8.12)

Here and hereafter C denotes various constants depending only on known ones.

We introduce a Banach space:

X WD
˚
w 2 C .2C˛/=2;2C˛.clQ/ j w.0; �/ D 0 on clV

	
:
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For a given bw 2 X , we set

B D B.t; x/ WD B1.t; x/C B2.t; x/CB3.t; x/; b.t; x/ WD a
�
t; x;Dbw.t; x/

�
(8.13)

B1 D B1.t; x/ WD A
�
t; x;bw.t; x/;D2bw.t; x/

�
;

Bi D Bi .t; x/ WD Ai

�
t; x;bw.t; x/;Dbw.t; x/

�
.i D 2; 3/

for A, a defined by (8.8), (8.9). Then we define T .bw/ D w as a solution of (8.11) with B , b as

above. We look for a fixed point of the mapping T W X �! X . Given r0 > 0, we set

Y WD
˚
w 2 X j kwk.2C˛/

cl Q/
6 r0

	
:

Lemma 8.2 For sufficiently small r0, T1 > 0, T maps from Y into Y .

Outline of the proof. Fix any bw 2 Y . Define B and b by (8.13) and let w be a classical solution of

(8.11). We prove that the kbwk.2C˛/
cl Q 6 r0 implies kwk.2C˛/

cl Q 6 r0 for sufficiently small r0, T1 > 0.

As forA1 given by (8.5), we see by [12, Lemma 2.3] that kB1k.˛/
cl Q 6 C.r2

0 CT
1�˛=2
1 /: Lengthy

calculations with using (8.2) yield that kB2k.˛/
cl Q C kB3k.˛/

cl Q 6 C.r2
0 C T

1�˛=2
1 /: Hence we get

kBk.˛/
cl Q 6 C

�
r2

0 C T
1�˛=2
1

�
:

We have the estimate for b in the proof of [12, Lemma 2.3]:

kbk.1C˛/

@xQ
6 C

�
r2

0 C T
.1�˛/=2
1

�
:

Combining these estimates and (8.12) , we obtain

kwk.2C˛/
cl Q 6 C

�
r2

0 C T
.1�˛/=2
1

�
:

Thus taking a sufficiently small r0 > 0 and then T1 > 0, we get the desired result.

Lemma 8.3 For sufficiently small r0, T1 > 0, we have

kT .bw1/ � T .bw2/k.2C˛/
cl Q 6

1

2
kbw1 � bw2k.2C˛/

cl Q for all bw1;bw2 2 Y:

Outline of the proof. Fix any bw1, bw2 2 Y . For i D 1; 2 set

wi WD T .bwi /; Bi .t; x/ WD A.t; x;bwi ;Dbwi ;D
2bwi /; bi .t; x/ WD a.t; x;Dbwi /:

Then it readily follows from (8.12) that

kw1 � w2k.2C˛/
cl Q 6 C

�
kB1 � B2k.˛/

cl Q C kb1 � b2k.˛/

@xQ

�

First we estimate kB1 �B2k.˛/
cl Q. Note that jD2F0j is bounded and A1, A2 and A3 are polynomials

of degree not less than two with respect to .t; r; p;X/ (cf. (8.5), (8.6) and (8.7)). We then observe

by tedious calculations that

kB1 � B2k.˛/
cl Q 6 C

�
r0 C T

1�˛=2
1

�
kbw1 � bw2k.2C˛/

cl Q :
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We have the following estimate from the proof of [12, Lemma 2.4]:

kb1 � b2k.1C˛/

@xQ
6 C

�
r0 C T

.1�˛/=2
1

�
kbw1 � bw2k.2C˛/

cl Q :

Thus we have from the above estimates

kw1 �w2k.2C˛/
cl Q 6 C

�
r0 C T

.1�˛/=2
1

�
kbw1 � bw2k.2C˛/

cl Q :

Choosing r0, T1 > 0 sufficiently small, we obtain the desired result.

We now establish the existence and uniqueness of solutions of (8.11) by applying Banach’s fixed

point theorem. Moreover, applying the regularity theory for linear parabolic equations, we obtain

the following result.

Theorem 8.4 For r0, T1 > 0 sufficiently small, there is a unique classical solution w 2
C .2C˛/=2;2C˛.clQ/\ C .3C˛/=2;3C˛.Q/ of (8.10).

Hence we have a classical solution v.D �0 C thC w/ 2 C .2C˛/=2;2C˛.clQ/ \ C .3C˛/=2;3C˛.Q/

of (8.1) and .v;D2v/ 2 G. The regularity results (cf. [32]) yields the following theorem.

Theorem 8.5 For r0, T1 > 0 sufficiently small, there is a unique classical solution v 2
C .5C˛/=2;5C˛.clQ/ of (8.1) satisfying .v;D2v/ 2 G.

8.4 Motion of the zero level set of (8.1)

In this section we show that the level set � .t/ WD fv.t; �/ D 0g for t 2 Œ0; T1� moves by (1.1).

Theorem 8.6 We obtain jDvj2 D 1 on clQ, where Q D .0; T1/ � fj�.0; �/j < ı2g.

Proof. Set w WD jDvj2 � 1 2 C .4C˛/=2;4C˛.Q/. Then

w D 0 on @xQ; w.0; �/ D 0 on clV: (8.14)

We derive the equation for w. Differentiate (8.1) with respect to xk and multiply vxk
(k D

1; 2; : : : ; N ). Then we get

vxk
vxk ;t � @F0

@Xij

.v;D2v/vxi xj xk
vxk

� @F0

@r
.v;D2v/v2

xk
� .ebi

v/xj
.vxk

vxj
C vvxj xk

/vxi
vxk

C .ebi
v/xk

v2
xk

� .egv/xi
.vxk

vxj
C vvxj xk

/vxk
C .egv/xk

vxk
D 0:

The same computations as in the proof of [12, Theorem 3.1], we have

� @F0

@Xij

.v;D2v/vxi xj xk
vxk

� @F0

@r
.v;D2v/v2

xk
D �1

2

@F0

@Xij

.v;D2v/wxi xj
� @F0

@r
.v;D2v/w:

Besides we observe that

�.ebi
v/xj

.vxk
vxj

C vvxj xk
/vxi

vxk
C .ebi

v/xk
v2

xk

D �
˝
A.Db/vDv;Dv

˛
w � 1

2
v
˝
A.Db/vDv;Dw

˛
;

�.egv/xi
.vxk

vxj
C vvxj xk

/vxk
C .egv/xk

vxk
D �

˝
A.Dg/v;Dv

˛
w � 1

2
v
˝
A.Dg/v;Dw

˛
:
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Hence we obtain

wt � @F0

@Xij

.v;D2v/wxi xj
� vhA.Db/vDv C A.Dg/v;Dwi

� 2
�
@F0

@r
.v;D2v/C hA.Db/vDv C A.Dg/v;Dvi

�
w D 0 in Q: (8.15)

Combining (8.3), (8.14) and this equation, we obtainw D 0 on clQ by the maximum principle.

Proof of Theorem 8.1. The vector n D n.t; x/ WD Dv.t; x/ is the inner unit normal to � .t/ for

each t 2 Œ0; T1� and x 2 � .t/ by Theorem 8.6. Since �i D �i on � .t/, we get F0.v;D
2v/ DPN �1

iD1 �i D � on � .t/. Hence v satisfies

vt �e�v C
˝ebv;n/

˛
Cegv D vt � � C hb;ni C g D 0 on � .t/: t 2 .0; T1�:

Fix t 2 Œ0; T1/ and x0 2 � .t/. Let x.s/ W .t; T1/ �! RN be a solution of

(
Px.s/ D

˚
�e�v.s; x.s//C

˝ebv

�
s; x.s/

�
;n
�
s; x.s/

�˛
Cegv

�
s; x.s/

�	
n
�
s; x.s/

�
for s > t;

x.t/ D x0

Then we observe that

d

ds
v
�
s; x.s/

�
D vt

�
s; x.s/

�
C
˝
Dv

�
s; x.s/

�
; Px.s/

˛

D vt

�
s; x.s/

�
�e�v

�
s; x.s/

�
C
˝ebv

�
s; x.s/

�
;n
�
s; x.s/

�˛
Cegv

�
s; x.s/

�

D 0:

Thus v.s; x.s// D 0 for s > t . This implies that ef v D f for f D �, b, f . Therefore f� .t/gt2Œ0;T1�

is a smooth and compact CDM. Hence we take T0 > 0 as the maximal existence time of � .t/. The

uniqueness of smooth and compact CDM’s follows from [15, Theorem 4.2.8].
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