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Zero width limit of the heat equation on moving thin domains
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We study the behavior of a variational solution to the Neumann type problem of the heat equation
on a moving thin domain £2¢(¢) that converges to an evolving surface I"(¢) as the width of £2¢(¢)
goes to zero. We show that, under suitable assumptions, the average in the normal direction of I"(¢)
of a variational solution to the heat equation converges weakly in a function space on I'(¢) as the
width of £2.(¢) goes to zero, and that the limit is a unique variational solution to a limit equation on
I'(t), which is a new type of linear diffusion equation involving the mean curvature and the normal
velocity of I"(t). We also estimate the difference between variational solutions to the heat equation
on §2.(¢) and the limit equation on I"(¢).
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1. Introduction

Fort € [0,T], T > 0, let £2.(¢) be a moving thin domain in R”, n > 2, with width of order ¢ > 0
that converges to an evolving closed hypersurface I'(t) as ¢ — 0. We consider the Neumann type
problem of the heat equation of the form

0;u® — Auf =0 in Qgr,
A us +oNut =0 on 9,Q.r, (Hy)
u®(0) = ug in  £2.(0).

Here Qer := Ueo.1) R2e(t) X {1}, 0¢Qe,1 = Use(o.1) 982:(2) x {2}, and v, o) are the unit
outward normal vector field of d£2,(¢) and the outer normal velocity of d£2,(t), respectively. The
term vNu® in the boundary condition is added so that the total amount of heat fﬂg(t) u®dx is
conserved, see the beginning of Section 3. Also, if #® denotes the concentration of some chemicals,
the boundary condition says that chemicals near the boundary move along it and do not go into and
out of the moving thin domain.

We are interested in the behavior of a solution u® to (H,) as ¢ — 0. Our goal is to characterize
its limit as well as its convergence. Let us explain the simplest case when £2.(¢) is the set of all
points in R” with distance less than & from I"(¢) so that the width of £2,(¢) is 2¢. Let v be the unit
outward normal vector field of I"(¢) and Vp = vIZY v+ VIT be the total velocity of I"(¢), where UIIY

and VIT are the outer normal velocity of I'(¢) and a given tangential velocity field. Then our main
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result formally implies that, under suitable assumptions on the initial data u§ of (//,), the limit v is
a solution to

8°v—v11YHv—Ap(,)v=0 on Sr. (1.1)
Here S7 := U,c(o.7) I" (1) x{t} and 0°v = 9,v + vNv- Vv is the normal time derivative of v. (The
notation d° is used in [2, 5]. We refer to [3] for the normal time derivative.) Also, H := —divp)v
and Ay := divp) V() are the mean curvature of I"(¢) and the Laplace—Beltrami operator on

I'(t), where divp() and V() are the surface divergence operator and the tangential gradient on
I(t), respectively (see Section 2 for their definitions). We will give a heuristic derivation of the
limit equation (1.1) in Appendix A. The equation (1.1) is equivalent to

v + (divre)Vr)v — Argyv —divee (vVE) =0 on  Sr, (1.2)

which we will actually derive in Section 6. Here d°v = d°v + VIZ - Vv denotes the material
derivative of v (see Section 4 for its precise definition). Note that the equation (1.1) is independent
of the tangential velocity VIT . In other words, the evolution of the limit v is not affected by advection
along I"(¢). Such a phenomenon does not occur in an advection-diffusion equation widely studied
in recent years [2, 4-9, 19, 28]:

v + (diV['(t)Vp)v —Ar@pv =0 on St. (1.3)

This equation is derived from a conservation law such that, for an arbitrary portion Tl (¢) of I"(¢),

d
—/ vd?ﬁ"_lz—/ g-pdrr?
dt m() aMm(z)

holds, where KK is the k-dimensional Hausdorff measure for k € N, u is the co-normal to the
boundary dWL(?), and ¢ is the surface flux, see [4, Section 3] and [5, Section 3.1] for details.

Partial differential equations on thin domains are studied over the years [12—-16, 20-24, 26, 27],
and many researchers deal with a nonmoving thin domain of the form

2 ={(x'.xy) eER" ' xR |x' € 0, £g0(x) < xp < £g1(x)}, &>0, (1.4)

where w is a domain in R”~! and g, g1 are functions on . In their pioneering works [12, 13], Hale
and Raugel compared the dynamics of reaction-diffusion equations and damped wave equations
on £2, of the form (1.4) (with gg = 0 and slightly modified g;) and that of corresponding limit
equations on w by the scaling argument. They transformed the equations on §2, into scaled equations
on a fixed reference domain 29 = w x (0, 1) by the change of variables, and formally derived the
limit equations on w by letting ¢ — 0 in the scaled equations on §2¢ and omitting divergent terms.
Then they compared the dynamics of the scaled equations on §2¢ and that of the limit equations on w
by analyzing weighted bilinear forms that appear in variational formulations of the scaled equations
and the limit equations. Their scaling argument is applicable to more general thin domains such
as a thin L-shaped domain [14] and a moving thin domain of the form (1.4) where go = 0 and
g1 depends on time [23]. Prizzi and Rybakowski [21] generalized the scaling argument in [12, 13]
to study reaction-diffusion equations on a (nonmoving) thin domain with holes around a lower
dimensional domain. The generalized scaling argument in [21] is also valid for a (nonmoving) thin
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domain with holes around a lower dimensional manifold [20, 22]. We refer to [24] and references
therein for other examples of thin domains.

In contrast to the above papers, the limit hypersurface I"(¢) of our thin domain §2,(¢) evolves.
Such a situation has been considered only in the paper [8], which deals with a diffuse interface model
for the advection-diffusion equation (1.3). See also [9] for numerical computations of the advection-
diffusion equation (1.3) based on the diffuse interface model. In [8], however, the limit equation (1.3)
on the evolving surface is given and a bulk equation on the moving thin domain involves a weight
function that vanishes on the boundary of the domain. Therefore, there is no literature on initial-
boundary value problems of partial differential equations on moving thin domains around evolving
surfaces whose limit equations are unknown in advance, even in the case of the heat equation.

The difficulty caused by the evolution of the hypersurface I"(¢) is in transforming equations on
£2:(t) and I"(¢) into equations on fixed (in time and width) domain and hypersurface. In particular,
transformations of differential operators on I"(¢) into those on a fixed hypersurface is so complicated
that we can hardly find a limit equation on the fixed hypersurface and convert it into an equation on
I'(t), see [7] for the actual transformations of differential operators.

To avoid this difficulty, we employ another method that does not require transformations of
£2¢(t) and I'(¢). Let us explain our idea of derivation of a limit equation on I"(¢). We start from a
variational formulation of (/;) (see (3.2)) that consists of integrals over the noncylindrical domain
Q.1 of a variational solution u® to (/,) and a test function defined on Q. . In this variational
formulation, we take a test function independent of the normal direction of I"'(¢) and apply the co-
area formula (see (5.1)) and a weighted average operator M (see Definition 5.1) to get a variational
formulation (with some residual term) of the average M u® (see (6.1)) that consists of integrals over
the space-time manifold S7 of M u® and a test function defined on S7. Then we obtain a variational
formulation of a limit equation on I"(¢) (see (6.13)) by omitting the residual term in the variational
formulation of M u®. Moreover, we prove that M u® converges weakly in a function space on St
as ¢ — 0 and that the limit is a unique variational solution to the limit equation (see Theorem 6.9),
and estimate the L2(Q8,T)-n0rm of the difference between variational solutions to (/.) and the
limit equation (see Theorem 6.12). These results indicate that our limit equation on I"(¢) derived as
above is indeed the “limit” of (H,).

In our derivation of a limit equation, Lemma 5.6 and Lemma 5.13 play an important role. In
Lemma 5.6 we approximate an H !-bilinear form on £2,(¢) for each ¢ € [0, T'] by that on I"(t) with
the tangential gradient of the average M. u of a function u on £2.(¢). The proof of Lemma 5.6 is
based on simple representations of the gradient in R” and the tangential gradient on I"(¢) under
a special local coordinate system for each fixed point on I"(¢). On the other hand, Lemma 5.13
gives an integral formula that formally represents a relation between the weak time derivative of a
function u on Q. r and the weak material derivative of its average M u (in fact, we do not explicitly
deal with the time derivative of u). Lemma 5.13 essentially follows from Lemma 5.11, which gives
a relation between the time derivative and the material derivative of functions defined on S7.

Average operators in the thin direction were originally introduced by Hale and Raugel [12, 13],
but they took the average of functions on the scaled domain £29 = w x (0, 1). Average operators on
actual thin domains 2, appears in the study of the Navier-Stokes equations on three-dimensional
thin domains [15, 16, 26, 27]. Temam and Ziane [26, 27] first employed them to study the
global existence of strong solutions to the Navier-Stokes equations for large initial data and
external forces and the behavior of solutions as ¢ — 0 when §2, is a three-dimensional thin
product domain £, = w x (0, &) with a bounded domain w in R? and a thin spherical domain



34 T.-H. MIURA

Q. ={x €eR3®|a < |x| < (1 + &)a} with a constant @ > 0. In [15, 16], average operators were
employed to study the dynamics of the Navier-Stokes equations on §2; of the form (1.4). In
particular, the authors of [16] compared the dynamics of the Navier-Stokes equations with that
of limit equations by estimating the difference of the average of solutions to the Navier-Stokes
equations and solutions to the limit equations.

We point out that our weighted average operator given in Definition 5.1 is a generalization
of average operators given in [15, 16, 26] and that its weight function is different from that
of an average operator given in [27]. In fact, the weight function of our average operator is
a Jacobian that appears when we change variables of integrals over a tubular neighborhood of
I'(t) in terms of the normal coordinate system around I"(¢). Our choice of the weight function
enables us to avoid including the material derivative of a test function in the estimate for the
residual term in the variational formulation of the average of a variational solution to (/;), which
is essential for derivation of its energy estimate, see Lemma 5.13 and Remark 5.14. We also
note that, contrary to our case, Kublik, Tanushev, and Tsai [17] employed the same Jacobian
and co-area formula to transform integrals over boundaries of domains into those over their
tubular neighborhoods. Based on this transformation, they proposed a new approach to numerical
computations of boundary integrals without explicit parametrizations of boundaries and a simple
formulation for constructing boundary integral methods to solve Poisson’s equation. Their method
of the numerical computations of boundary integrals is also applicable to integrals over nonclosed
manifolds of higher codimension, such as curves in R? with different endpoints, see [18] for details.

Finally we mention variational formulations of partial differential equations on evolving
surfaces. There are several kinds of variational frameworks for equations on evolving surfaces,
mainly the advection-diffusion equation (1.3), see [4, 19, 28] for example. In addition, Alphonse,
Elliott, and Stinner [1, 2] proposed an abstract variational setting with evolving Hilbert spaces and
applied it to some equations on moving domains and evolving surfaces. Among these variational
frameworks, we adopt the one introduced by Olshanskii, Reusken, and Xu [19]. Their variational
formulation is imposed on function spaces on Sz, which is suitable for our calculation of bilinear
forms on function spaces on St and Q. 7 performed in Section 5 and Section 6.

This paper is organized as follows. In Section 2 we introduce notations related to the evolving
surface I"(¢) and define the moving thin domain £2,(¢). In Section 3 we define a variational solution
to (H,) and prove its existence and uniqueness. We also derive an energy estimate of a variational
solution to (/,) with a constant independent of ¢. In Section 4 we define function spaces on St
introduced in [19] and give their properties. In Section 5 we define the weighted average operator
M, and establish estimates and formulas related to M,. In Section 6, we derive a limit equation
on I'(¢t) of the form (1.2) via its variational formulation and prove our main theorems (Theorem
6.9 and Theorem 6.12). In Appendix A, we give a heuristic derivation of the limit equation (1.1)
when £2(¢) is the set of all points in R” with distance less than ¢ from I"(¢). In Appendix B, we give
complete proofs of some results in Section 4 related to integrals over I"(¢). In Appendix C, we show
detailed calculations in proofs of some lemmas in Section 5 involving the differential geometry of
tubular neighborhoods of ().

2. Evolving surfaces and moving thin domains

For each t € [0,T], let I'(¢) be a closed (that is, compact and without boundary), connected
and oriented smooth hypersurface in R”. We set I := I'(0) and define a space-time manifold
St CR" ' as St := U,y I'(¢) x {t}. We assume that each point y on I'(z) evolves with
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velocity Vr(y,t), which is not necessarily normal to I"(¢), and the velocity field Vr: St — R” is
smooth. Let @(-,t): Iy — I'(¢) be the flow map of V-, that is, @(-, ¢) is a diffeomorphism from I
onto I'(¢) with its inverse @71 (, ) for each ¢ € [0, T'] and satisfies

G
.0 =Y. (V)= Vr(®(Y,1),1) forall Y €Iy, 1€[0,T)

We assume that @ and @ ~! are smooth on Iy x [0, 7] and S, respectively. Due to this assumption,
St is a compact smooth manifold in R”*+1,

Let v : S¢ — R” be the unit outward normal vector field of I'(¢). The velocity Vr is
decomposed into Vp = vIIY v + VI, where va :St — R is the outer normal velocity and
VIT : St — R” is a tangential velocity field. Note that to describe the geometric motion of I'(f)
it is sufficient to prescribe the normal velocity. However, to describe a limit equation on I"(¢) we
will derive in Section 6, we also need to consider a tangential velocity, which represents advection
along I'(¢).

For each ¢t € [0, T], let d(-, ) be the signed distance function from I"(¢) that increases in the
direction of v(-,¢). By the smoothness (in space and time) and compactness of I"(¢), there is an
open set N(¢) in R” of the form N(t) = {x € R" | —=§ < d(x,t) < §} for each t € [0, T], where
8 > 0 is a constant independent of ¢, that satisfies the following conditions:

e The signed distance function d is smooth on N7, where N7 := J, o,y N(1) x{t} C R**1.
e For each (x,¢) € N, there is a unique point p(x, ) € I'(¢) such that
x = px,t)+dx, Hv(p(x,.t),t), Vd(x,t) =v(p(x,1),1).

The set N(¢) is called a tubular neighborhood of I'(¢). Based on the above equality, we extend the
outward normal v to N7 by setting v(x, ) := Vd(x,t) for (x,t) € Nr. Then, by the smoothness
of d, the extended outward normal v and the projection mapping p are smooth on Nr. Also, the
normal velocity vIIY of I'(¢) is given by vIIY = —3,d on St.

Next, we give definitions of differential operators on evolving surfaces. For a function v and a
vector field F' on ST, we define the tangential gradient of v and the surface divergence of F as

Veov(y.1) = [In —v(y.1) @ v(y.0)|[VU(y.1),
divpinF(y,t) = trace[{l,, —v(y, ) @v(y,1)}VF(y, t)]

for (y,t) € St. Here I, is the identity matrix of size n and v ® v := (v;;);,; is the tensor product
of v. Also, v and F are the constant extensions of v and F in the normal direction of I"(¢) given by

v(x, 1) == v(p(x,1),t), F(x,1):=F(p(x,1),t), (x,1) € Nr.

By definition, v - Vv = 0 holds. Hereafter we use the same notations for functions and vector
fields on I"(¢) with each fixed ¢ € [0, T].

Finally, we define a moving thin domain. Let go and g; be smooth functions on S7. We assume
that there is a constant ¢ > 0 such that

g, 1) = gi1(y.1) = go(y,1) = ¢ forall (y,r)e Sr. 2.1
Then we define a moving thin domain £2.(¢) C R” as

Q1) :={y +pv(y.1) | y € I'(t). ego(y.1) < p < eg1(y.1)}, 1 €[0.T], e>0
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and a space-time noncylindrical domain Q.7 C R**! as Q.1 := Ureco.1) $26(t) x {t}. Note
that £2.(¢) does not necessarily include I"(¢), since we do not assume that gg is negative and g
is positive. Since go and g; are smooth and thus bounded on the compact manifold St, there is a
positive number g¢ such that £2,(z) C N(z) forall ¢ € (0, 9) and ¢ € [0, T]. Hereafter we assume
that ¢ € (0, &9).

3. Heat equation on moving thin domains

In this section, we consider the initial-boundary problem (/) of the heat equation on the moving
thin domain £2,(¢). First we show that the boundary condition of (/) yields the conservation of the
total amount of heat. Suppose that u® satisfies the heat equation in Q, 7. By the Reynolds transport
theorem and Green’s formula (see [10, Appendix C]) we have

d
—/ ufdx = / atuedx—i—[ vNuf an!
dt Jo.o 2:() 22 (1)

= / Auf dx +/ vNuf dnr!
2¢(1) 302 (t)
= / (v u® + v uf) dyr .
002:(t)
Hence if u® additionally satisfies the boundary condition of (), then % f 2.() u®dx = 0 for all

t € (0, T), that is, the total amount of heat f 2.() u® dx is conserved.
Next, we give a definition of a variational solution to (/). For each ¢ > 0, we define a function

space L%l(g) on Q. r and an inner product on L?_Il (0 3
qu,(s) ={u e L*(Qer) | Vu € L*(Qe7)} .
T (3.1)
(u1.uz);2 :=/ / (urup + Vuy - Vuy) dx dt.
Hl(e) 0 J2:0)
The space L%{I(E) is a Hilbert space endowed with the above inner product. Let | - ||, 2 1
H!(e)

denote the norm of L%{I © induced by the inner product (-, -); 2

Hle)
DEFINITION 3.1 Let u§ € L?(£2,(0)). A function u® € Lél(e) is said to be a variational solution
to the initial-boundary value problem (/) if it satisfies

T
/ / (—ufd;w + Vu® - Vw) dx dt —/ ugw(0)dx =0 (3.2)
0 JR:() 2:(0)

for all w € C1(Q.r) with w(T) = 0in 2(T).

The variational formulation (3.2) is derived as follows. Suppose that u? is a classical solution to
(H:). We multiply both sides of the heat equation in Q¢ 7 by an arbitrary function w € C'(Qg 1)
with w(T") = 0in §2,(7T") and integrate them over Q. 1 to get

T
/ / (0;u® — Au®)w dx dt = 0.
0 s (1)
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We calculate the left-hand side of the above equality. By the Reynolds transport theorem and the
conditions #®(0) = ug in £2,(0) and w(7T) = 0in §2:(T"), we have

T
/ / (0, u)wdx dt =
0 (1)

T T
—/ / uf,wdx dt —/ / vNufwd w1 dt —/ ugw(0) dx.
0 JR2:@) 0 JaL:(t) £2¢(0)

On the other hand, by integration by parts,

—/ (Au®)wdx dt = / Vu®-Vwdx — / (@, uf)wdRr"
2:(1) (1) 082:(2)

Hence it follows that
T T
/ / (—u®d,w + Vu® - Vw) dx dt —f / @y, u® + oNuf)wdR" 1 dt
0 J2:0) 0 J3g:(r)

—/ ugw(0)dx =0
£2¢(0)

and we obtain (3.2) by applying the boundary condition of (//;) to the second term of the left-hand
side in the above equality.

Our goal in this section is to obtain a unique variational solution to (/1) that satisfies an
energy estimate with a constant independent of ¢. To this end, we transform (3.2) into a variational
formulation of some equation on the fixed (in time) domain £2,(0) with the aid of a suitable
diffeomorphism between £2,(0) and £2.().

Lemma 3.2 For each t € [0, T)], there exists a diffeomorphism Wy(-,t): 2,(0) — 2.(¢) with its
inverse W1 (-, 1): 2¢(t) — 2¢(0) such that We and W' are smooth on 2.(0) x [0, T] and 0.1,
respectively, and W, (-, 0) is the identity mapping on $2¢(0). Moreover;, there exists a constant ¢ > 0
independent of ¢ such that

|03 kW (X, 1) <e.  |0%FwT (xt)| < (3.3)
forall (X,1) € 2:(0) x(0,T), (x,2) € Qg7, and || + k <2,k =0,1,2.
Proof. We observe that for each X € £2,(0) there is a unique 6 € (0, 1) such that
X = p(X.0) + &{(1 - 0)go(p(X.0).0) + g1 (p(X.0).0)}u(p(X.0).0).  (3.4)
that is, X divides the line segment AgA; internally in the ratio 6: 1 — 6, where
A; := p(X,0) + &g (p(X,0),0)v(p(X,0),0), i=0,1.
Based on this observation we define W, (X, t) € £2.(¢) as
Y, (X, 1) := ®(p(X.0),1)
+ s{(1 — e)go(cp(p(x, 0).7). z) + g (cp(p(x, 0).1). t)}v(cp(p(x, 0), z),z), (3.5)
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that is, ¥, (X, t) divides the line segment By B; internally in the ratio 6: 1 — 6, where
B; := ®(p(X.0).1) + eg; (cp(p(x, O),t),t)v(fp(p(X, 0),z),r), i=0,1.
To eliminate 6 in (3.5), we take the inner product of both sides of (3.4) and v(p(X,0),0). Then

{X — p(X,0)} - v(p(X,0),0) = e{(1 — 0)go(p(X.0).0) + 6g:1(p(X.0),0)}.

Since {X — p(X,0)}-v(p(X,0),0) =d(X,0) and g; — go = g > O, it follows that

_ d(X,0) —sgo(p(X, 0),0)

0
sg(p(X, 0), O)

Hence, by substituting this for 6 in (3.5), we obtain
Wo(X,1) = D(p(X,0),1) + {d(X,00¢1 (X, 1) + e (X, t)}v((b(p(X, 0).1), z) (3.6)

for X € £2,(0) and ¢ € [0, T'], where

g(cb(p(X, 0), t),t)

X, 1) :=

L $a(Xo1) = go(@(P(X.0).1).1) = ¢ (X. )0 (p(X.0).0).
Similarly we define a mapping ¥."! as

W7 () = 7 (pCr,0),1) + {d (. 0gs(x,1) + e,y (97 (p(x,1),1).0)  (BD)
for (x,t) € Q,,1, where

g((D‘l(p(x,t),t),O)
g(p(x.1).1)
9a(r.1) = go(@7 (p(x.1).1).0) = ga(x. g0 (p(x.1).1).

¢3(X,l) =

)

By definition, W (-,7): £2:(0) — £2.(¢) is a bijection with its inverse ¥, !(-,1): 2:(t) — £2:(0)
for each t € [0, T]. Also, since @(-,0) is the identity mapping on Iy, we have ¢1(X,0) = 1,
¢2(X,0) = 0 and thus

V. (X,0) = p(X,0) + d(X, O)v(p(X, O),O) =X forall X € £2,(0),

that is, W, (-, 0) is the identity mapping on £2:(0). Due to the smoothness of ®, ®~!, d, p, go, and
g1, the right-hand sides of (3.6) and (3.7) are smooth on the compact sets N(0) x [0, T] and N7,
respectively, and thus bounded independently of ¢ along with their derivatives. From this fact and the
inclusion £2,(t) C N(z) foreacht € [0, T}, it follows that ¥, and ¥, ! are smooth on £2:(0) x [0, T']
and QT,T, respectively, and that the inequalities (3.3) hold with a constant ¢ > 0 independent of ¢.
In particular, W, (-, 1): £2,(0) — £2.(¢) is a diffeomorphism for each ¢t € [0, T]. O
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Let ¥, and ¥, ! be the mappings given by Lemma 3.2. In (3.2), we set
Us(X,1) = u®(Ye(X, 1), 1), W(X,1):=w(P(X,1).1), (X.1)€ 2:0)x(0,T).

Then, by the change of variables x = W, (X, t), we transform (3.2) into

/OT {—(UP(0). JE()3: W (1)) ;> + (A°()VU(1) = US(1) B*(t). VW (1)) -} dt
— (ug. W(0))2 = 0. (3.8)
Here (-,-);» denotes the inner product of L2(£2,(0)) and
JE(X, 1) == | det VWs(X,1)| € R,

AS(X, 1) = JEOX OV (WX, 1), 1) [V (WX, 1), 1) ] e R,
BE(X,1) == J5(X.1)0, W, ' (¥s(X.1),1) € R"

for (X,t) € £2,(0) x (0, T), where

U2 RN W (17 b8 (W
vy li= : : :
N o 0 (FTY), (¥ n

and [V¥ 1T denotes the transposed matrix of V¥, 1. Note that the vector field B® comes from the
differentiation of w(x, 1) = W(¥; (x, 1), ) with respect to ¢ holding x € £2,(¢) fixed:

dew(x, 1) = W (¥ (x 1), 1) + 0,9, M (x, 1) - VW (U (x, 1), 2).

Since w(T) = 01in £2,(T) and ¥, (-, 0) is the identity mapping on $2,(0), we have W(T) = 0 and
J4(0) = 1 in £2,(0). Thus, by integration by parts with respect to ¢, we further transform (3.8) into

T
|ty 0.0t @5 OW @ + (U0 W00 0)
+ (A5()VU?®(t) — U*(t)B%(t), VW (t)) 12} dt = 0. (3.9)
Here (g1 (-, -) g1 is the duality product between H ' (£2:(0)) and its dual space (H'(£2,(0)))".

Theorem 3.3 For every uf, € L?(82,(0)), there exists a unique function

Ut e L® (o, T LZ(QE(O))) n LZ(O, T Hl(.Qs(O))>
with  9,U° € LZ(o, T (HI(SZE(O)))/)

that satisfies (3.9) for all W € L?(0,T; H'(£2.(0))) and U¢(0) = u in L?(£2¢(0)). Moreover,

there exists a constant ¢ > 0 independent of uf), U¢, and ¢ such that

T

S(l;pT)||U8(t)||i2(98(0))+ /0 IVU D720, 0 41 < lUuol2 (o0 B:10)
t€(0,
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Proof. Fori,j =1,...,n,let Afj be the (i, j)-entry of A® and B; be the i-th component of B®.
Suppose that there is a positive constant C independent of ¢ such that

Cl'<JoX.,1) <C, (3.11)
VIE(X, )| <C, [9:J5(X,1)| <C, |A5;(X, )| <C, [Bi(X,1)]<C, (3.12)
AS(X.0)¢- = CgP (3.13)

for all (X,1) € £2.,(0) x (0,T), ¢ € R",andi,j = 1,...,n. Then the theorem is proved by a
standard Galerkin method and Gronwall argument, see [10, Section 7.1] for details. In particular,
the constant ¢ in (3.10) depends only on the above C and thus it is independent of &.

Let us prove (3.11), (3.12), and (3.13). The inequalities (3.12) and the right-hand inequality of
(3.11) immediately follow from (3.3). Since V¥ (W, (X, 1), 1) VW (X, 1) = I, it follows that

|det VO (W (X, 1), 1) | TE(X, 1) = 1, [Vo(X, )] [V (WX, 1),1)]" = 1,

for all (X,¢) € §£2,(0) x (0, T). The first equality yields the left-hand inequality of (3.11) because
|det VW] is bounded on Q. r independently of ¢ by (3.3). Moreover, the above equality and (3.3)
imply that, for all (X, ) € £2.(0) x (0,7) and { € R",

12> = ‘[Vlllg(X,t)]T[VlIIS_I(lI’g(X,t),t)]TZ‘z
_ T.|?
< c‘[VlI/S "W (X,1),1)] {‘
= VU (WX, 0, ) [V (e (X 0), )] e ¢

= | det VU (W (X0 1)

AS(X, )¢ - C < cAS(X, 1)+ ¢

with a constant ¢ > 0 independent of e. Thus (3.13) follows. O

Now we can show the existence and uniqueness of a variational solution to (/7,) and its energy
estimate with a constant independent of ¢.

Theorem 3.4 For every uf € L?(£2.(0)), there exists a unique variational solution u® to (H,).
Moreover, u® satisfies that u®(0) = u§ in L?(£2¢(0)) and
T
sup [u* (D72, ) + / VU 11720, ¢y 9t < clu§lI72, 0) (3.14)
t€(0,7) 0
with a constant ¢ > 0 independent of uf, u®, and e.

Proof. For each uf, € L?(£2,(0)), let U¢ be the unique function given by Theorem 3.3 and we set
ub(x,t) = Us(llfs_](x,t),t), (x,1) € Qe

Since ¥ (-,0) is the identity mapping on £2,(0) by Lemma 3.2 and U¢(0) = u§ in L?(£2,(0))
by Theorem 3.3, we have u®(0) = uf in L?(£2.(0)). Let us show that u® satisfies (3.2) for all
w € CY(Q,r) withw(T) = 0in £2,(T). Since ¥, is smooth on £2:(0) x [0, T], a function

W(X. 1) := w(Pe(X.1),7), (X.1)€ 2:(0)x[0,T]
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isin C1(£2,(0) x [0, T']) and satisfies W(T') = 0 in £2,(0). Hence we can substitute it for W in (3.9)
and integrate by parts with respect to 7 to get (3.8). By changing variables X = ¥, 1(x,) in (3.8),
we obtain (3.2).

Next we prove the energy estimate (3.14). By the change of variables x = ¥,(X, t) we have

/ |u‘9(x,t)|2dx=/ \U2(X, 1) |det VW (X, 1)| dX,
() £2:(0)

/ \Vue(x,z)fdx:/ [V (WX, 1), 1)]T VUS(X, 1)|?|det VW (X, 1)| dX
2:() 2:(0)

£

for all # € [0, T']. Hence the inequalities (3.3) yield

OB 2 < NUEO 20y 1O 200 < NVUO 2000

with a constant ¢ > 0 independent of ¢. By these inequalities and (3.10), we obtain (3.14) and thus

uf e Lzl(s)' Hence u? is a variational solution to ().
Finally, the uniqueness of a variational solution to (/) follows from that of a function given by
Theorem 3.3. The proof is complete. O

REMARK 3.5 Let u® be the unique variational solution to (//,) with initial data u§ € L?(£2,(0)).
Then it immediately follows from (3.14) that

||M8||L§11(8) < cllugliLz(g. o) (3.15)

where ¢ > 0 is a constant independent of ug, u®, and &. We will use this inequality in Section 6.

4. Basic function spaces on evolving surfaces

In this section, we define function spaces on the space-time manifold S7 introduced by Olshanskii,
Reusken, and Xu [19] and give their properties. These spaces will give an appropriate variational
formulation of a limit equation on I"(¢) we will derive in Section 6. All results in this section are
originally obtained in [19] for the three-dimensional case. They can be easily extended for arbitrary
dimensions and we give proofs of them for the readers’ convenience.

For each fixed T > 0, we define a function space Hr and an inner product on Hr as

Hr :={v € L*(S7) | Vr@v € L*(S7)},

T “4.1)
(1, v2)Hy = /0 /F( : {10, )23, 1) + Vrovi(3.1) - Ve (v, 0) ) dR" () dt.
t

This inner product induces the norm ||-|| ,- that is equivalent to the one induced by the inner product
fSr {v1(0)v2(0) + Vreyvi(0) - Vreyva (o)} d X (o), since the identity

T
[ FO AR () di = [ F@O+ Y@ Pk e) @)
0 6 St

holds and UIZY is bounded on St. This identity is stated in [19] without proof. We give the proof of
(4.2) in Appendix B for the readers’ convenience. If 77 < T>, then Hr, is continuously embedded
into Hr, just by restricting elements of Hr, on St,.
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Next we define an auxiliary space. Let H(I) := {V € L?(I}) | Vr,V € L?(I,)} with the
inner product (V1, V2) g1 () = fFO(Vl Va+ Vo Vi -V, V2) dR"™1, where V is the tangential

gradient on Iy. Then we define a Hilbert space Hr as
T
Hrp:=L*(0,T;H'(Iv)., (V. Va)g., 1=/ (1), V2(0) g1 (1, 41
0

and let || - ||§T denote the norm of H 7 induced by the inner product (-, -)ﬁr.

Let ®(-,1): Iy — I'(t) be the flow map of V- and @~ (-, ) be its inverse mapping (see Section
2). For a function V on I'y x (0, T'), we define a function v = LV on St as

vy, 1) = V(@7 (v, 1).1),  (y.1) € St (4.3)
Also, for a function v on S7, we define a function V = L™ v on Iy x (0,T) as
V(Y1) :=v(@(Y,1).t), (Y.t) € Tox(0,T).

Clearly L and L™ are linear mappings and satisfy L™'(LV) = V and L(L™'v) = v for all
functions V on Iy x (0, T) and v on St.

Lemma 4.1 The linear mapping L given by (4.3) defines an isomorphism between H T and Hr.

A short proof is given in [19]. We give a detailed proof in Appendix B for the completeness.
Let Cy (St) be the space of all functions in C'(S7) with compact support in S7. That is, each
function in Cy (S7) vanishes near7 =0 and ¢ = T.

Lemma 4.2 The space Hr is a Hilbert space and C (St) is dense in Hr.

Proof. Since H 7 is a Hilbert space, Lemma 4.1 implies that Hr is a Hilbert space. Also, since
Ca(Ip x (0,T)) is dense in Hr (see [19, Lemma 3.1]) and C} (S7) includes L[Cq (I'p x (0, T))],
Lemma 4.1 again implies that C} (S7) is dense in Hr. 0

The space Hr is continuously embedded into L?(S7). Moreover, Hr is dense in L?(S) since
it includes a dense subspace Cg (S7) of L?(St). Hence we have continuous and dense embeddings
Hr — L2(ST) < H!., where H’T is the dual space of Hr.

For v € C!(ST), we define its (strong) material derivative 3°v as

3 v(D(Y,1),1) = %(v(cp(Y,t),t)), (Y.t) € Ty x (0, 7). 4.4)

From the Leibniz formula (see [4, Lemma 2.2])

d

—/ vdR"! =[ (@*v + vdivr)Vr)d®"!, ve C'(Sr),
dt Jrq re

we have the integration by parts identity
T
f / (v20%v1 + v10%V2 + V1V, din(t)V[')d}ﬁn_l dt
o Jrw

:/ vl(T)vz(T)dR”_l—/ v1(0)v2(0)dR*™1  (4.5)
r(T) ro
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for all vy, v, € C!(S7). Based on this identity, we define the weak material derivative of v € Hr
as a functional 0*v such that

T
(0%, )1 = —/ / (Y + vy divryVr)dR" 1 dt, ¢ € Ci(ST). (4.6)
0 ()

If v € C!(S7), then its weak material derivative agrees with the strong one. We set

(0%, )1

[0y :=  sup  —————, veHr.
" yechsonoy 1Vl

If |0%v]|| H) 18 finite for some v € Hr, then d°v can be extended to a bounded linear functional on

H7 because COl (S7) is dense in Hr (see Lemma 4.2). In this case, we say that 9°v is in H}. and
we define a function space Wr and its norm as

. . 1/2
Wro={veHr |0 e Hp}, Iollw, = (I3, + 1903, ) . 47

For T1 < T, the space Wr, is continuously embedded into Wr, since COl Sty C CO1 (ST,) and
Hr, is continuously embedded into Hr,.
To investigate properties of Wr, we define an auxiliary Hilbert space and its norm as

~ ~ ~ 1/2
._ / R 2 2
Wro={veHr oV e Wig, =I5 +1vig, )"
Here H ’T is the dual space of H 7 and 9,V is the weak time derivative of V' € H 7 defined as

T
[a,V,uf]T:=—/ / Vo, wdR" " dt, WeCy(lox(0,T)),
o JIy

and we say 0,V € H7 if ||8,V||§,T = SuPWeC(}(Fox(o,T))\{o}[afV’ lIJ]T/||lI/||ﬁT is finite.

Lemma 4.3 The linear mapping L given by (4.3) defines an isomorphism between ﬁ\/T and Wr.

A proof for the three-dimensional case is given in [19] and easily extended for arbitrary
dimensions. We give a complete proof in Appendix B for the readers’ convenience.
Lemma 4.3 shows that Wz has similar properties to those of W .

Lemma 4.4 The space Wr is a Hilbert space and C'(St) is dense in Wr. Moreover, the trace
operator v + v(t) from CY(St) into L*>(I'(t)) for each t € [0, T] can be extended to a bounded
linear operator from Wr to L*>(I'(¢)) and there exists a constant ¢ > 0 such that

max ||v(z <eclv
1€[0,T] o @Ollz2 ey v llwy

forallv € Wr.

Proof. Since WT is a Hilbert space, Lemma 4.3 implies that Wr is a Hilbert space. For the rest of
the proof, see [19, Theorem 3.6]. O
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Finally we show an integration by parts formula which we will use in Section 6.

Lemma 4.5 Forall vy, v, € Wr, we have

T
(0%v1, v2)7 + (0°v2, V1) 7T -I—f / viva divrn Vr dR" 1 dt
')
:/ vl(T)vz(T)d'}Cn_l —/ vl(())vz(())d?'ﬁn_l. 4.8)
r(T) Iy

Note that, by Lemma 4.4, v; (0) and v;(T), i = 1,2, are well-defined as functions in L2(I7)
and L2(I'(T)), respectively.

Proof. For v € C'(S7), its weak material derivative agrees with the strong one. Thus we have

T
@ovr=[ [ @ovawrta. yecion.
0 r(t)

Moreover, since CO1 (St) is dense in Hr (see Lemma 4.2), the above equality holds for all v € Hr
and thus (4.8) follows from (4.5) when vq, v, € C1(S). Since C1(S7) is dense in Wr (see Lemma
4.4), a density argument shows that (4.8) holds for general vy, v, € Wr. O

5. Average operator
5.1  Definition and basic properties of the average operator

In this section we define and investigate a weighted average operator. Lemma 5.6 and Lemma 5.13
are fundamental to derivation of a limit equation of (/) in Section 6. Other results in this section
are also useful themselves.

For (y,t) € St, let k1(y.1),....kn—1(y, 1) be the principal curvatures of I'(¢) at y (see [11,
Section 14.6]). We define a function J on S x (=8, 8) as

n—1

Jv.t.p) = [[{1 = pki(y.0)}, (v.0) € 57, p € (=5.8).

i=1

Here § > 0 is a half of the width of the tubular neighborhood N(¢) of I"(¢), which is independent of
t € [0, T (see Section 2). The function J is the Jacobian appearing in the transformation formula

eg1(y:t)
[ wwar= [ [ (s )i dpd T o) )
2:(2) () Jego(y,t)

for a function u on £2,(¢) with each fixed ¢ € [0, T'], see (14.98) in [11]. This formula can be viewed
as a co-area formula. Based on this formula, we define a weighted average operator M, as follows.

DEFINITION 5.1 For a function u on Q, 7, we define its weighted average M,u as

eg1(y,1)

Mgu(y,1) = u(y +pv(y.0).t)J(y,t,p)dp, (y.1) € St. (5.2)

Sg(y,t) ego(y,t)

We use the same notation M u for the average of a function u on £2,.(¢) with each fixed ¢t € [0, T'].
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Before starting to derive properties of the average operator, we give inequalities which we use
throughout Section 5 and Section 6. Since k1, . . ., k,—1 are smooth on S, they are bounded on St
along with their derivatives. Hence, by taking 6 > 0 sufficiently small, we may assume that there
exists a constant ¢ > 0 such that

V' <1—pii(y.t) <c forall (y,t)eSr,pe(=6,8).i=1,....n—1. (5.3)
Then J is smooth and bounded on S7 x (=8, §) along with its derivatives and satisfies
c V< J(y.t,p) <c forall (y,t) € S, pe (=6.0). (5.4)

Moreover, since J(y,t, p) is of the form

n—1

J(y.t.p) =1=pY ki(y.0) + p*P(k1(y.0).....kn—1(y.1). p).

i=1

where P(z) is a polynomial in z = (z1,...,z,) € R”, we have
aJ
[1—J(.t.p)| <ce. |VroJ(.1.p)| < ce. )%(y,t,p)‘ <c (5.5)

forall (y,1) € St and p € (ego(y.1),eg1(y. 1)) with a constant ¢ > 0 independent of &.
Now let us derive properties of the average operator M,. For a function u on Q. r, we set

ut(y,t.p) == u(y + pv(y.1).1).  (v.1) € Sr, p € (eg0(y. 1), eg1(y.1)). (5.6)

For simplicity, we omit arguments of functions unless we need to specify them. For example, the
co-area formula (5.1) is referred to as

£g1
/ udx:/ / Wt T dpd R
() @) Jego

Throughout the rest of this subsection and the next subsection, we fix ¢ € [0, T] and omit it. For
example, we refer to I'(¢) as I". Also, let ¢ denote a general positive constant independent of ¢.

Lemma 5.2 Ifv € L?(I"), then its constant extension U in the normal direction of I is in L*(£2,).
Moreover, there exists a constant ¢ > 0 independent of & such that

1022, < ce'?IvllL2ry.- (5.7)

Proof. By the co-area formula (5.1) and (5.4),

€80
191720, = / / lv]2J dpd®R" ™! < c/ eglv>d R < cellvl|Fa -
I Jegq r
Thus (5.7) follows. O
Lemma 5.3 Ifu € L%(82;), then Mgu € L>(I") and
IMoull 20y < ce™ 2 |ull2o,) (5.8)

with a constant ¢ > 0 independent of ¢.
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Proof. By Holder’s inequality, (5.4), (2.1), and the co-area formula (5.1),

€81 €81
/ |Mou|? d®"! s/(sg)—2(/ Jdp)(/ |uﬁ|2Jdp)dw—1
r r £80 £80
£81
sc/ (sg)_I/ ¥ 2T dpd R scs—lf lu|? dx.
r €80 &

Thus (5.8) follows. O

By Lemma 5.2 and Lemma 5.3, the constant extension of M u in the normal direction of I" is
in L2(£2,) for all u € L?(£2,). Let us estimate the difference between u and Myu in L?(£2,).

Lemma 5.4 There exists a constant ¢ > 0 independent of € such that

Hu M oy S cellull g (g, &2

L2(
forallu € HY(82;). Here Mgu is the constant extension of Mgu in the normal direction of I".

Proof. Fory € I' and p € (ego(y),eg1(y)), we set

eg1(y)
Ly, p) = {ut(y, p) —ut(y,r)} dr,
Eg(y) £g0(»)
1 eg1(y)
L(y) = wt(y.r){1 = J(y.r)}dr.

€8(¥) Jegoy)

Then we have u*(y, p) — Meu(y) = I (v, p) + I>(»). Let us estimate /; and /5. Since

/rp din(u(y + 77\)(y))) dn‘

o
/ v(y) - Vu(y +nv(y)) dn

r

ut (v, p) —ut(y.r)| =

eg1(y)
< / (V) (y. )| dn
€,

go(»)

for all p,r € (ego(y), €g1(y)) and the right-hand side of the above inequality is independent of r,

eg1(y)
L(.p) < [ (V) (v, )| .

ego(y)
On the other hand, by (2.1) and (5.5) we have

eg1(»)

[12()| < c/ luf(y,r)| dr.

ego(y)

These inequalities and Holder’s inequality yield
; eg1(y) 4 4
(0. p) ~ M| < [ 10-p)] + |20 < [ , (O] + o)) ar
ego(y

eg1(y) /
<e(ss0 [ ool + (. Pyar) .

ego(y
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Here the last term is independent of p. Hence by the co-area formula (5.1) and (5.4) we obtain
) eg1(y) ; 2 .
=i gy = [ [ ) = M) I pr dpd k7 (0)
I Jego(y)
5 [E81 ») 4 5 4 5 .
<c [ e [ (ool + (Vb0 f) dr i)
r €go(y)

eg1(y)
# 2 # 2 n—
<t [ (W0l + [t eun ) o dr dr )

= Ce;”””él(gg)-

Thus (5.9) follows. O

5.2 Tangential gradient of the average operator

In this subsection, we investigate relations between the usual gradient operator in 2, and the
tangential gradient operator on I". We first establish estimates for the gradient of the constant
extension of a function on I" in the normal direction of I".

Lemma 5.5 Ifv € H'(I"), then its constant extension v in the normal direction of I' is in H'(82;).
Moreover, there exists a constant ¢ > 0 independent of & such that

98]0 < e 2ol pagry. 95 = Vbl paggy < 2| Vrvl gy (510

Proof. The first inequality of (5.10) and Lemma 5.2 imply v € H!($2,) for all v € H'(I"). The
inequalities (5.10) follow from the co-area formula (5.1), (5.4), and the inequalities

[Vi(y + pov()| < ¢|Vrov)].  [VO(y + pv(»)) — Vro(y)| < ce|Vro(y)| (5.11)

forall y € I" and p € (ego(y),eg1(y)). We prove (5.11) in Appendix C. Here we give the main
idea for the proof. We fix each yo € I". By arotation of coordinates, we can take a smooth function
f:U — R with an open set U in R"~! such that I" is described as the graph of f near y, and

V' f(s0) =0, (V')*f(s0) = diag[k1(y0). .. .Kkn-1(¥0)].

where yo = (so. f(50)) with s € U and V' is the gradient in s € R"~! (see [11, Section 14.6]).
Then (5.11) at yg is proved by direct calculations under this local coordinate system. O

Next we approximate an H !-bilinear form on £2, by that on I" with the tangential gradient of
the weighted average of a function on £2;.

Lemma 5.6 Foru € C®(2,) N H'(2;) and ¢ € H'(I'), let
Isl(u,fp) :=/ Vu-V@dx—s/ gVrMau-Viepd®" 1. (5.12)
2 r

Then there exists a constant ¢ > 0 independent of u, ¢, and ¢ such that

|1 . 0)| < ce®?|ull g @ IV rellLar- (5.13)
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REMARK 5.7 The bilinear form 1! (u, ¢) is well-defined for u € C*(£2;) N H'(£2,) and ¢ €
H'Y(I'), since ¢ € H'(£2,) by Lemma 5.5 and M,u is smooth on I" and thus in H!(I") by the

compactness of I". We will observe later that 7.} (u, ¢) is well-defined and (5.13) holds for all
ue H'(2,)and ¢ € H'(I"), see Remark 5.9.

Proof of Lemma 5.6. By the co-area formula (5.1) we have I} (u, ¢) = JrIy) d¥®"1(y), where

eg1(y)
I(y) :=/ o (Vi)*(y, p) - (VO (3, ) I (v, p) dp — e (M) Vr Meuu(y) - Vro().
egoly

Here we used the notation (5.6). Suppose that there is a constant ¢ > 0 independent of ¢ such that
£g1(y) 4 4
1] < celVrom| [ (k| + (Vi o)) do (5.14
£go(y)
for all y € I'. Then, by (5.14), Holder’s inequality, and (5.4) we have

€81
|Isl(u,<p)|$68/ |V['g0|/ (|u”|+|(Vu)ﬁ|)dpdw—1
r €80

<ee( [ Ierlde’_l)l/2§ [ ( / ]+ |<Vu)”|>dp)2d%"—1

80
/2

1/2

£g1 1
< cel Vgl ( [ es [ (w4 (V) dparer ™)
€80

< 083/2||VF(P||L2(F)”u”Hl(.Qg)-

Hence (5.13) holds. The inequality (5.14) is proved by direct calculations under the local coordinate
system we took in the proof of Lemma 5.5. We give a complete proof in Appendix C. O

Lemma 5.6 gives an estimate for the L2(I")-norm of V Mu foru € H'(82;).
Lemma 5.8 Ifu € H'(82;), then Mgu € H'(I") and

IVr Moull 20y < ce™ 2 ullgi g, (5.15)

with a constant ¢ > 0 independent of ¢.

Proof. First, we show (5.15) forallu € C®(£2,) N H'(£2,). For such u, its average M u is smooth
on I" and thus in H'(I") by the compactness of I". We substitute M u for ¢ in (5.12), (5.13) to get

/I:g|VpM€u|2d?{"_1 = a_l(/g Vu-VMudx — Ial(u,MEu)),

|1 . Maw)| < e ull g1 (g, IV Meull L2(ry-
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Hence, by (2.1), Holder’s inequality, and (5.10) we obtain

IVr Ml < [ glVrMal an
r

< CS_I<HV” ”LZ(QS) “VMSMHLZ((ZS) + |151 (u, Ms”)|>
<ce ("2 + ) ull g1 @) IV r Maull L2

< ce 2 ull g1 o IVr Meull 12

and thus (5.15) follows when u € C*®(£2,) N H'(82;). Since §2; is bounded, C*°(£2;) N H'(£2;)
is dense in H1(£2;), see [10, Section 5.3.2] for the proof. Hence a density argument together with
Lemma 5.3 yields that M,u € H'(I") and (5.15) holds for all u € H'(£2,). O

REMARK 5.9 By Lemma 5.5 and Lemma 5.8, the bilinear form 7} (u, ¢) given by (5.12) is well-
defined for all u € H'(£2,) and ¢ € H'(I"). Moreover, since C*(£2,) N H'(£2;) is dense in
H'(£2;), a density argument implies that (5.13) also holds for all v € H'(£2,) and ¢ € H'(I").

5.3 Material derivative of the average operator

Now let us return to the evolving surface I"(¢). Recall the function spaces L12L11 ©

(3.1) and (4.1), respectively. By Lemma 5.3 and Lemma 5.8 we immediately get the next lemma.

Lemma 5.10 Ifu € Lz,(s), then Mgu € Hy and

and Hr given by

1Mol < ce™2lull2
H'(e)

with a constant ¢ > 0 independent of e.

2
Hl(e)
Our goal in this subsection is to give a relation between the weak time derivative of u and the weak
material derivative of M u. To this end, we show an auxiliary statement about the material derivative

of a function on S7.

Lemma 5.10 enables us to consider the weak material derivative of M,u € Hy foru € L

Lemma 5.11 Let ¢ € C'(S7) and ¢ be its constant extension in the normal direction of I'(t).
Then

3*o(p(x.1),t) = 3,@(x,1) + {Vr(p(x.1),t) + a(x.1)} - Vog(x,1) (5.16)
holds for all (x,t) € Nt with a vector field a : Nt — R” given by
a(x,t) = d(x,t){atv(p(x,t),t) + Vv(p(x,t),t)Vp(p(x,t),t)}. (5.17)

Here Vv := (0v;/0x;);,; is the gradient matrix of v.
Proof. For X € N(0) and ¢t € (0, T) we set

W(X.1) 1= &(p(X.0).1) + d(X. 0)v(<1§(p(X, 0),z),z),
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where @(-,1): [y — I'(¢) is the flow map of V (see Section 2). By the definition of the constant
extension ¢ and the formula p(¥(X,?),t) = @(p(X,0),t) we have

7(v(X.0),1) = <p(¢(p(X, O),t),t)

forall X € N(0) and ¢ € (0, T). Differentiating both sides with respect to # and observing that each
x € N(t) is represented as x = ¥(X,t) with a unique X € N(0), we get the formula (5.16). For
detailed calculations, see Appendix C. O

REMARK 5.12 Let ¢ € C'(S7). Since p(y,t) = y and d(y,t) = O for all (y,t) € St, we have
P9 =00+Vr-Vo=08g+vv-Vog+ VI .Vrpg on Sr

by Lemma 5.11. Here the last equality follows from the fact that VIT is tangent to I"(¢). Based on
this equality, the material derivative operator acting on functions on I"(¢) is formally represented as
0° =at+V['-V=8,+UIIYU~V+VIY:-VF([).

Using Lemma 5.11, we derive an integral formula related to the weak time derivative of a

function ¥ € qul © and the weak material derivative of its average M u € Hr.

Lemma 5.13 Letu € LZ ey @ € C, (ST), and @ be its constant extension. Then we have
T T
[ f ud;pdxdt = —8(8'M5u,g<p)r—8/ / (0°g+g divre) Vr)(Mou)p d R dt
0 (1) 0 r@)

T
— 8/ / g(Mgu)VIT “Vrone AR Vdr + If(u,qp; T). (5.18)
o Jr@

Here 12(u, ¢; T) is a residual term that satisfies

T
[12(u, ;T)| < ce®? /0 lu@) 2. IV @O |20y 4t (5.19)

with a constant ¢ > 0 independent of u, ¢, and e.

Note that the tangential velocity VIT appears instead of the total velocity V in the third term of
the right-hand side of (5.18), see Remark 5.15 below.

Proof. By (5.16), we have 0°¢ = 8;% + (VI + a) - V@ on N7, where a is the vector field on N
given by (5.17). Hence if we set

T
12(u.¢:T) = —/ / u {a.va+ Vr - (va—vm)go)}dx dt,
0 e (1)
then we have

T T
/ / uodipdxdt = / / u(W—V_p'Vp(t)qo> dxdt + 12(u,¢;T). (5.20)
0 (1) 0 e (1)
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Let us compute the first term of the right-hand side of (5.20). By the co-area formula (5.1) and the
definition of the weighted average M u (see (5.2)),

eg1(»,1)
[ 000000t dpd R ()
() Jego(y.t)

/ u(x, )% (x, 1) dx
(1)

6 f g ) Meu(y. 8% (y. 1) AR ()
()

for all ¢ € (0, T'). On the other hand, since the weak material derivative is given by (4.6),
(9 Mo, g9 / / {(Ma0)* (89) + (Mew)gg divr Vi) 40 di

_/ /r( : {(a’g + gdivpnVr)(Meu)p + g(Mgu)a‘go} dR" 1 dr.
t

Thus it follows that

T —
/ / ud*pdxdt
0 JR2:0)

T
= —e(0*Mzu, go)r — 8/ / (0°g + gdivroVr)(Mau)p dR" ' dt. (5.21)
0 r@)

Since VP = vﬁYv + VIT and v - Ve = 0, we have Vi - Vi = VIT - Vr@e on St. This
equality together with the co-area formula (5.1) yields

/ o u(x,)Vr(x,t)- Vrpe(x,t)dx
e (

eg1(y,t)
/ / u(y + por ). VVE (1) - Vi I (v 1, p) dp d R (7)
I(t) Jego(y,t)

—¢ /F L B OMAOVE G0 Tre(r.0 ()
t

forall ¢ € (0, T) and thus

T T
/ / M(V_['-Vp(t)g0> dxdt = e/ / gMa)VE - Virged®"dr.  (522)
2:() 0 ING)

Substituting (5.21) and (5.22) for (5.20), we obtain the equality (5.18).
Let us show the inequality (5.19). In (5.17), the first-order derivatives of v are bounded on Nt
and Vr is bounded on S7. Hence there is a constant ¢ > 0 independent of ¢ such that

la(x,t)] < cld(x,t)| < ce max  sup lgi(y, )| < ce
=12, 0)es7
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for all (x,t) € Q1. By this inequality, Holder’s inequality, and (5.10) we obtain
5 T
|12 (u,0:T)| < C/ e @l 22, 1)) (8||V¢(l)||L2(9€(z)) + [ Vo) = Vrwe®| 12 g, ) 4t
0 ,

T
< 083/2/ luOllL22.en I Vroy e OllL2rey) dt-
0

Thus (5.19) holds. O

REMARK 5.14 If M.u is in the Hilbert space Wr given by (4.7), then the right-hand side of (5.18)
is well-defined for ¢ € Hr since CO1 (ST) is dense in Hr (see Lemma 4.2). In particular, we can
substitute M u for ¢ in the right-hand side of (5.18). This fact is essential for derivation of the
energy estimate for the weighted average of a variational solution to (H,) (see Lemma 6.4). If we
replace M, in (5.18) by a usual unweighted average operator

1 eg1(y.1)
Meu(y,t) =

u(y + pv(y,1),1)dp,
Sg(y,t) eg0(y,t) ( )

then the estimate for the residual term becomes

T
[12(u, 0:T)| < 083/2/ el 222, )y IV L@ @Oz @y + 10°0O L2 qyy) d2-
0

Because of the term [|0°¢(?) || 2(()) in the above inequality, the right-hand side of (5.18) with M,
replaced by Til, is not well-defined for ¢ € Hr. Therefore we can not derive the energy estimate
for the unweighted average of a variational solution to (/).

REMARK 5.15 Let I C R" be a closed, connected, and oriented smooth hypersurface. Then, since
aI" = @, the integral formula (see [25, Section 7.2])

/ divpVdyr ! = —/ (V-v)H dR"!
r r

holds for smooth vector fields V:I" — R"™. Here v is the unit outward normal vector of I" and
H := —divpv is the mean curvature of I". This formula yields the equality

/ V- -V5rpd®"! =—/ {divpV + (V -v)H }pd®"!
r r

for smooth functions ¢ on I'. In this equality we decompose V = vVv + VT into the normal
component vV := V - v and the tangential component V7 := V — (V - v)v. Then, since

v-Vprp =0, din(va) = vaN-v + deinv =0+0V. (-H)=—-(V-v)H,

we obtain a usual integration by parts formula
f VT Vipd®" ! = —/ edivpVT dr1, (5.23)
r r

which we will use to recover a limit equation on I"(¢) from its variational formulation. This is the
reason the tangential velocity VIT appears in (5.18) instead of the total velocity Vi of I'(¢).
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6. Convergence and characterization of the limit
6.1  Variational formulations of the average of solutions to the heat equation

Let us return to the initial-boundary value problem (//,) of the heat equation. By Theorem 3.4, for

every ug € L?(£2,(0)) there exists a unique variational solution u® € Lzl © © (H)).
Let M, be the weighted average operator defined in Definition 5.1. Our goal in this subsection

is to derive a variational formulation of M u®.

Lemma 6.1 Ler uf € L*(£2,(0)) and u® € LH‘(s)
by Theorem 3.4. Then M .u® € Hr and it satisfies

be the unique variational solution to (H ) given

T
(8° Mo, g0)7 + / /F 8 RV (M) X ds
t

/ / Vp(,)M u® + (M, MS)VF} V['(t)(p ARV dt = ]8(u8,(p; T) (6.1)
forall ¢ € Cy(St). Here I.(u®, ¢; T) is a residual term that satisfies

T
[e(u®, 0:T)| < 081/2/ I Ol g 2.en IVr @Ol L2(rqy) 4t (6.2)
0

with a constant ¢ > 0 independent of u®, ¢, and e.

Proof. Since u® € L? we have M u® € Hp by Lemma 5.10. For each ¢ € CI(ST) its

Hl(e)’
constant extension @ is in C'(Q,.7) and satisfies ©(0) = 0 in £2,(0) and @(T) = 0 in 2.(T).
Thus, by substituting @ for w in the variational formulation (3.2) we obtain

T
/ / (—u®d;9 + Vu® - Vo) dx dt = 0. (6.3)
(1)

Moreover, from Lemma 5.6 and Lemma 5.13 we have

T
/ / ®.Vodxdt = 8/ / gVroyMqu® - Virge dR"Vdt + 1} (uf,0;T) (6.4)
2:(1) r@e

/ / u®0; @ dx dt
(1)

T
—e(0°Mou®, go) 7 — a/ / o (3'g + gdivF(,)Vp)(MguE)go AR dt
o Jrq

T
—e/ / g(Mab)VE -VipedR"™ N dt + 12, ¢;T), (6.5)
0 ')

where 1.} (u®,¢; T) and 12 (u®, ¢; T) satisfy

T
[1Xf 0:T)| < 083/2f0 IO g @.onlVroyeOllL2rey dt. k=1,2, (6.6)
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with some constant ¢ > 0 independent of ¢. Hence, by substituting (6.4) and (6.5) for (6.3) and
dividing both sides by ¢, we obtain (6.1) with the residual term

L, o:T) = 12 ;) — I} (u®.¢: T)},
which satisfies (6.2) because 181 (u®,¢;T) and Igz(us, @; T) satisfy (6.6). O

6.2  Estimates for the average M u® in the space Wr
In this subsection, we estimate M u® in the Hilbert space Wr given by (4.7).

Lemma 6.2 Let uf € L?(£2:(0)) and u® € L?p © be the unique variational solution to (I1;) given

by Theorem 3.4. Then M u® € Wr and there exists a constant ¢ > 0 independent of u® and & such
that

19° Mewt® || 7. < (I Mete® ||y + 51/2””6“%1( )). (6.7)

Proof. Let ¢ be an arbitrary function in Cy (S7). By substituting g~'¢ € CJ(St) for ¢ in (6.1),
we obtain (0° M.u®, o)1 = 1(u®, @) + I.(u®, g7 ¢; T), where

T
1, g) = / fr N O Vg =) — dvri V) (o a7 di
0 t
T
— f / {V['(t)MgME + (Mgus)VI?} “Vroe ARl dt
0 ')

T
+/ / g_l(Vp(t)g -V Msu®)e dR 4zt
0 ()

Since g and V are smooth on Sr. they are bounded on St along with their derivatives. Moreover,
g~ ! and VIT are bounded on S7. Thus we have |/ (u®, ¢)| < c||M:u®|a, ||¢llH; With a constant
¢ > 0 independent of u®, ¢, and ¢. Also, by (6.2),

T
[Ieu®. g p:T)| < 081/2/ Ol 2. on IV ra (€ @) Ol L2y dt
0

T
< cel/Z/ e Ol (. on (leOll2r @y + IVro@OllLzray) dt
0
< csl/zllu‘glIL?{l( )||<P||Hr

with some ¢ > 0 independent of u?, ¢, and . Hence we obtain

[(0°Meu®, @)r| < |[1(®. @)| + [L:(u®, g7 0: T)| < c (| Meu®| 1, +81/2||”8||L§,1( Melar

£)
for all ¢ € CJ(St), which implies M u® € Wr and the inequality (6.7). O

REMARK 6.3 Since M.u® € Wy and CO1 (ST) is dense in Hr (see Lemma 4.2), the equality (6.1)
also holds for all ¢ € Hr. Moreover, since Wr, is continuously embedded into Wr, when T1 > T»,
we have M u® € W; for each t € [0, T]. Hence (6.1) and (6.2) with T replaced by each t € [0, T]
are also valid for all ¢ € H;.
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Lemma 6.4 Let uf) and u® be as in Lemma 6.2. Then there exists a constant ¢ > 0 independent of
ug, u®, and & such that the energy estimate
T
”Msus(r)”]z}(p(r)) +/; ”VF(Z)MSMS(I)HiZ([‘(I)) dt < C(”MsusniZ([‘o) + 8””8”1242(98(0)))
(6.8)
holds for all T € [0, T].

Proof. As we mentioned in Remark 6.3, the equality (6.1) holds with T replaced by each t € [0, T'].
Hence, by substituting g~! M u® € H, for ¢ in (6.1) with T replaced by 7, we obtain

(0° Mou®, Mout®), + /OT 1V 0 Mot ()2 ey
+ /T/ {g710°g = VL - Vr©g) + divre Vi Meu® > d R dt
0 JI'()
" /0 ra Mo (V] —g7'Vrng) - VroMeu® dR" ™ dt = Lw®, g~ Mou®; 7).
t
Moreover, from (4.8) with T replaced by t,
(0°Mpu®, Meu®), =

1 (7 ) _ 1 1
_ 5/0 ,/;*(;) |Msu6|2 divrnVr dr*Vdr + E”Msue(-[)”iz(r(t)) _ §||M8u8(0)”22(po)~

Applying this equality and the relation u¥(0) = u$ in L?(£2,(0)) (see Theorem 3.4) to the above
equality, we have

T

1
SIMt sy + [ 1Vr0Mat® Ol 2

1 -
= §||M€ug||§2%) + (7)) + La(t) + L, g ' Mu®;7), (6.9)

where
1 [F —1,ae . _
nw=-; [ f(){zg L@ — VT - V@) + divre Vi) Mot P a0 dr,
0 I(t

T
I (7) = —/0 F()Msua(V,T -2 'Vrwe) - VreMaut dw ' dt.
t

Since g and V- are smooth on S7, they are bounded on S7 along with their derivatives. Also, g1

and VIZ are bounded on S7. Thus it follows that

T

O] [ M O 2y
(6.10)

T

L) <c / Mo ) 2 |V oy Mot () L2 ey -
0
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On the other hand, the inequality (6.2) with T replaced by t yields
|Io(uf, g~ Mou®; )|
T
< 081/2/ luf Ol o o) | V@ (8 Meu®) 0|l L2y dt
0
T
< 6‘81/2/ [ Ol a1 200y (1Mt Ol L2y + V@ Me® Ol L2(ryy) d2. (6.11)
0

Thus, by applying (6.10) and (6.11) to (6.9), we obtain

1 T
SV @ Ry + [ 1VrMat Ol 2

T

1 1
< SIMa Iy + 5 /0 IV Mot Oy 4
T
2 2
be /0 (Mt )12y + £l O3, 0) -

We multiply both sides by two and subtract fof ||Vp(t)M€u£(t)||iz(F(t)) dt to get

T

||M8u8(‘()||22([,(r)) + /0 ”VF(t)MSus(t)”iz(p(t)) dt
T
< IMeug 7oy + | (1M ()] +elut ()17 ) dt
= IMetloliLaqryy ™€ f - IR (p ey T EIM D (@, 0)) 1

Hence Gronwall’s inequality implies

T
||M8u8(f)||22(r(r)) + /; ||VF(t)M8u8(t)||i2(F(t)) dr < c(HMeu(e)”iZ(FO) + 8||u8||ii11(8))

for all T € [0, T'], and we obtain (6.8) by applying (3.15) to the second term of the right-hand side
of the above inequality. O

Lemma 6.5 Let uf) and u® be as in Lemma 6.2. Then there exists a constant ¢ > 0 independent of
ug, u®, and € such that

1M wy < c(IMerfll2cry + €211l 2. 00)- (6.12)
Proof. 1Tt follows from (6.8) that
IMo iy < c(IIMeubll 2y + €2l L2 (00 0))-
Moreover, by applying this inequality and (3.15) to (6.7) we have
19* Meullary. < c(IMaullary + 22 ) < eIMeugllzacry + &2 Gl 22u0)-

Thus we obtain (6.12). ]
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6.3 Limit equation on evolving surfaces and weak convergence of M u®

Assume that I (u¢,¢; T) = 0 holds for all ¢ € C4(S7) and v = M, u® is independent of ¢ in the
variational formulation (6.1). Then v satisfies

T
(0°v, go)T +f / (0°g + gdivr(yVr)ve dR" " dt
0 ')

T
—}—/ / g(Vp(,)v—i—vVIT)-Vp(t)god’rC"_l dt =0 (6.13)
0 r@)

forall ¢ € CO1 (S7). In addition we assume that v is sufficiently smooth. Since vector fields gvVIT
and gV (v are tangent to I'(¢) for each ¢ € [0, T'], we can apply the integration by parts formula
(5.23) to obtain

T
oo [ [ A@ssdiven Vew—diveo [sOroviovDl paw =0
0 t

Since this equality holds for all ¢ € C, (S7), we conclude that v satisfies
3*(gv) + (g divrVr)v —divp) [g(Vp(,)v + UVIZ)] =0 on Sr.

This is the limit equation of (/7;). To justify the above argument, we employ a variational framework
introduced by Olshanskii, Reusken, and Xu [19].

DEFINITION 6.6 Let vy € L2(I}). A function v € Wr is said to be a variational solution to the
initial value problem

9*(gv) + (g divrVr)v —divr [g(Vrov + vV )] =0 on St

v(0) = vg on [y, (Ho)

if v satisfies (6.13) for all ¢ € Hz and v(0) = vg in L2(I).
Note that the condition v(0) = v in L?(I) makes sense for v € Wr by Lemma 4.4.

REMARK 6.7 Suppose that v € Wr is a variational solution to (/). Then we have v € W; for
each t € [0, T] since Wr is continuously embedded into W;. Moreover, by taking test functions ¢
from C/ (S;) we observe that v is a variational solution to (Ho) with T replaced by t.

We first prove the uniqueness of a variational solution to the initial value problem (H).
Lemma 6.8 For each vy € L?(Iy), there is at most one variational solution to (Hy).

Proof. Since (H)) is linear, it is sufficient to show that if v € Wr is a variational solution to (/)
with zero initial data then v = 0.

Let v be a variational solution to (/) with v(0) = 0 in L?(Iy). For each t € [0,T], we
substitute g~ 'v € H, for ¢ in (6.13) with T replaced by T and compute as in the proof of Lemma
6.4 (replace M u® by v and omit I.(u?, ¢; 7)). Then we have

0O+ [

T

T
V000 sy 4 < 0O sy +¢ [ IO dr.
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Since v(0) = 0 in L2(I}), the above inequality yields

T

WO 22y < / 10132y d1-
0
Hence by Gronwall’s inequality we obtain v(t) = 0in L2(I"(z)) forall t € [0, T]. O

Now let us show that { M u®}, converges weakly in Wr and that the limit is a unique variational
solution to the initial value problem (H).

Theorem 6.9 Let uf € L?(52,(0)) and u® € Lip © be the unique variational solution to (H)

given by Theorem 3.4. Suppose that the following two conditions are satisfied:

(a) There exist constants ¢ > 0 and y € (0,1/2) such that ||lugll12(e, ) < ce”” forall e > 0.
(b) There exists vo € L?(Iy) such that {Mguf}s converges weakly to vy in L*(Ip) as € — 0.
Then {M u®}, converges weakly in Wr as ¢ — 0. Moreover, the weak limit v € Wr of {M u®}, is

the unique variational solution to (H) with initial data vy.

Proof. By the condition (b), {M,ug}. is bounded in L?(Iy). From this fact, the inequality (6.12),
and the condition (a) it follows that
1Mo llwy < c(IMefllL2(ry) + "2 bl L2(2u0p) < (I +e77F2) < (6.14)

with some constant ¢ > 0 independent of ¢. Here the last inequality follows from the condition
y € (0,1/2). Hence {M.u®}, is bounded in the Hilbert space Wr and there exist v € Wy and a
sequence {&y }x of positive numbers with limg_, &x = 0 such that { M, u®* }; converges weakly
tovin Wr as k — oo.

Let us show that v is the unique variational solution to (/) with initial data vg. First we show
that v satisfies the variational formulation (6.13) for all ¢ € Hr. To this end, we return to the
variational formulation (6.1) of Mg, u®*:

T
(0° Mg u® . go)r + / / ()(3°g + g divrey Vr) (Mg u® ) d X" di
0 r

T
+// Vro Mo u + (Mo u)VE} - Viged R dt = I, (™, ¢;T). (6.15)
0 r@e)

Let k — oo in (6.15). Since {M,, u®* }; converges weakly to v in Wz as k — oo and g, Vr are
bounded on S7 along with their derivatives, the left-hand side of (6.15) converges to

T
(0", g0)1 + / / (@ + gdivre Vr)ve d®" " di
0 ')

T
+/ [ g(Vp(t)v +UVIZ)-VF(,)¢d}Cn_1 dt.
0 ()

On the other hand, it follows from (6.2) and (3.15) that

T
. 1/2 .
Ie, %, 9; T)| < ce}/ / ™ Ol 2., op Vo e O 2oy dt
0

1/2

1/2
< cgy /

Il el < cg lug 2., opllelar
Hl(é‘k) K
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with a constant ¢ > 0 independent of e . This inequality and the condition (a) imply that

|Is, (U, 0;T)| < ca,ZY+1/2||<p||HT -0 as k — oo, (6.16)

since y € (0, 1/2) and c is independent of e;. Hence v satisfies (6.13) for all ¢ € Hr.

Next we show that v(0) = vg in L2(Iy). Let n € C*([0, T]) satisfy n(0) = 1 and n(T) = 0.
We take an arbitrary ¢y € C®(I) and set (1) := @o(@~(y,1))n(t) for (y,t) € ST, where
@~ 1(-,t) is the inverse mapping of the flow map ®(-,7): Iy, — I'(¢) (see Section 2). Due to the
smoothness of @1, the function ¢ is smooth on St and thus ¢ € Wr. Moreover, it satisfies
©(0) = @o on I'y and ¢(T) = 0 on I'(T). Substituting g~ !¢ for ¢ in (6.13) and (6.15), we have

T
(0°v, @)1 +/ / (g7'0%g +divro)Vr)ved®" ' dt
0 ')

T
+/ ﬁ()g(vr(t)v+UVIT)~VF(I)(g_1¢))an—1 d[:()
0 t

and

T
(0° Mg, u®, o) +/ / (719%¢ + divp) Vi) (Mg, utc ) dR" 1 dt
0 ()

T
*/ / o VO Mo & (Mo IVEY - Vi (g™ o) d ! de
0 I

=1, u*, g7 9; T).
Since ¢, v, and M, u®s are in Wz, we can apply the identity (4.8) to get

T
(0°v, @) = —(0%@, V)T —[ v(0)po d R 1 —/ / vodivre Vr dR" 1 dt
Io 0 ()

and the same identity for M, u®*. Here we used the conditions ¢(0) = ¢ on I and ¢(7) = 0 on
I'(T). Thus we have

T
— (8.(p7 v)T + / / g—l(a.g)v(p d’-)—cn_l d[
0 r@)
T
" / /F( ) g(Vrov +vVE) - Vro(e™ g) dr" " di
0 t

=/ v(0)po d X" (6.17)
I

and
T
—(8'¢,Msku€k)r+// g 1) (M u ) d " dt
0 ()
T
+/ / gAVroMe u® + (Mo u™ VI -V (g™ p)dR" ™ dt
0 ')

:/F(Mgkuf,k)(pod}ﬁn_l—}—Iek(ua"’,g_lgo;T). (6.18)
0
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Let k — oo in (6.18). Since {M,ug}. converges weakly to vo in L%(Ip) as e — 0,

lim/ M, ugk (podR”_lz/ vo o d R L.
Io Iy

k—o00

Moreover, since { M, u®s}; converges weakly to v in Wz as k — oo and (6.16) holds with ¢
replaced by g~ !¢, both sides of (6.18) converge to

T
—(0%¢,v)r +/ / g N0 vepdR 1 dt
0 )

T
+/ / g(Vrwv +vVi) Ve (g™ p) dr" " di
o Jre
=/ vo o dR" L. (6.19)
I
Comparing (6.17) and (6.19), we obtain

/ v(0)<pod°r€"_1=/ Voo dR" ! forall ¢y e C®(Iy).
I Io

Since C®(Ip) is dense in L2(Ip), it follows that v(0) = v in L?(Iy). Hence v is the unique
variational solution to (/) with initial data vy. Here the uniqueness follows from Lemma 6.8.
Finally, using the boundedness of { M u®}, in Wr (see (6.14)) and the uniqueness of a variational
solution to (Hy) (see Lemma 6.8), we can prove by contradiction that the full sequence {M u®},
converges weakly to v in Wr as ¢ — 0. The argument is standard and thus we omit the details. [

Corollary 6.10 For every vy € L?(Iy), there exists a unique variational solution to (Hy).
Proof. For each ¢ > 0, we define a function ug on £2,(0) as

vo(p(X,0))
(p(X,0),0.d(X.0))’

ug(X) := v X € £2:(0).

Clearly M, uf = vo holds on I'y. Moreover, by the co-area formula (5.1) and (5.4) we have
£g1(Y,0) ) ) 1 1/2
6l L2200 = (/ / lo(Y)[*J(Y,0,p)"" dpd®" (Y))
Ty Jego(Y,0)
2 1 1/2 1/2
<o [ esommPar )" <o ol
To
with a constant ¢ > 0 independent of ¢. Hence u§ € L?(£2,(0)) and u$, vo satisfy the conditions
(a) and (b) of Theorem 6.9. Thus the corollary follows from Theorem 3.4 and Theorem 6.9. ]

REMARK 6.11 Let H = —divp()v be the mean curvature of I"(¢). Since the material derivative
operator is formally of the form 9* = d; + v 1117 v-V+4 Vlf V(@) (see Remark 5.12) and the formula
div (vIIY V) = —UIIY H holds (see Remark 5.15), the limit equation (/) is formally equivalent to

3°(gv) —vN Hgv — divr@(gVrpv) =0 on  St.
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Here 0° = 9; + vff v - V is the normal time derivative (see [2, 3, 5]). This equation depends on vff s

v, and H, which represent the geometric motion of I"(¢). On the other hand, it is independent of the
tangential velocity VL, which represents advection along I'(¢). Hence, as we mentioned in Section
1, the evolution of the limit v given by Theorem 6.9 is not affected by advection along I"(¢), but the
geometric motion of I"(¢).

6.4  Estimates for the difference between solutions to the heat equation and the limit equation

Let us estimate the difference between variational solutions to (H.) and (Hy). For a function v on
St, let U be its constant extension in the normal direction of I"(¢). For a function u on Q, r, we set

[l /T/ lul*>dx d 2
Uull72 = ( u X t) .
L2(Qe,1) o Je.o

Theorem 6.12 Let uf € L?(£2,(0)) and u® € Lill(s) be a unique variational solution to (H,).

Also, let vg € L*(I'y) and v € Wr be a unique variational solution to (Hy). Then there exists a
constant ¢ > 0 independent of ug, u®, vo, v, and & such that

lu* = ll2c0, 1) < (I = Toll 2o o) + & IvollL2ry)- (6:20)
In particular, for each o € [0,3/2) we have
611_1;1’(1) e ¢ ||ME - EHLZ(Q&T) =0 provided Ell_l;r(l) e ¢ ”Ms - %||L2(98(0)) =0.

We first estimate the difference between M u® and v in the space Wr.

Lemma 6.13 Let ug, u®, vo, and v be as in Theorem 6.12. Then there exists a constant ¢ > 0
independent of u, u®, vo, v, and & such that

IMeu® —vllw, < c(|Msub —vollz2cry) + €/ ubll2(2,))- (6.21)

In particular, if limg—o || Meug — vol 12,y = 0 and limg_o 81/2||uf,||L2(95(0)) =0, then {M u®},
converges strongly to v in Wr.

Proof. For each t € [0, T], we subtract both sides of (6.13) with T replaced by t from those
of (6.1). Then we have

(0°(Meu® —v). go), + / / ( )(3°g + g divre V) (Meu® —v)pd %"~ di
o Jra

T
+ / / g{Vp(,)(Meus —v) + (Mgu® — v)VIZ} -Vreoe dR"Vdt = I, ¢: 1)
0 JI'(@)

for all ¢ € H;. Hence, by calculating as in the proof of Lemma 6.2, Lemma 6.4, and Lemma 6.5
(replace M u® by M u® — v), we obtain (6.21). O

Proof of Theorem 6.12. First we show the inequality

[ =VllL200, 1) < ce' 2 (I Meufy — vollL2(ry) + €2 bl 12¢20(0p))- (6.22)
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To this end, we use the triangle inequality
I =Vll2eo, 1y < |4 = Mew?| 12p, 1y + [Met® =] 120,
and estimate the right-hand side of the above inequality. By (5.9) and (3.15), we have
[t — Msu‘BHLz(Q&T) < 68”“6”%1(8, < celugliLz(. o)
with a constant ¢ > 0 independent of ¢. On the other hand, by (5.7) and (6.21),

[ Meus < ce' 2| Mo — vl < ce'P(|Maul — voll 2y + €2 ullL2(a)-

=V 20, S

Hence (6.22) follows.
Next we estimate the right-hand side of (6.22) to get (6.20). We use the notation

WS (Y. p) := uf(Y + pv(¥.0)), Y € Iy, p € (ego(Y.0).2g1(Y.0)).
and omit the variables Y, p, and ¢t = 0. We set
1 rest v £g1
I = — (@) —voY T dp, I = — (J — 1) dp.
€8 Jego €8 Jego

Then Myuj — vo = I + I on I'p. By Holder’s inequality and (2.1), (5.4), we have
1 reg ) g1 )
|11|2$—/ | — vy sz,osce_I/ | — vo|”J dp.
&8 Jego £80
On the other hand, (5.5) yields | 12| < ce|vg|- Hence

Moty = ol < ¢ [ (1P + 112) e
0

- (—1 F8l et 2 2 n—1
<c e [(ug)® —vol“J dp + &*|vo| ) d K
FO &

g0
= C(‘("i1 ||u8 - %“22(95(0)) + 82||U0||i2(1~0))-
Here we used the co-area formula (5.1) in the last equality. The above inequality is equivalent to
IMeu§ — voll 2y < c(e7?u§ — Vol 2o 0 + €lvollLzcry))- (6.23)
Moreover, by the triangle inequality and (5.7),
luglz2c2. ) < 4o — VollL2(2.0)) + V0llL2(2. (0
< llug = Voll L2 (2. 0y + &2 llvollL2 (1) (6.24)
Finally, by applying (6.23) and (6.24) to (6.22), we obtain

V2(IMou — voll L2y + €2l 122, 0)))

<ce'?((e2 + eV2)Juh — Vol 2200y + ElvollL2 1))

lu® =liL2e0, 1) < ce

< c(llu§ — Doll L2, o) + € *NvollL2(ry))

with a constant ¢ > 0 independent of ¢. Hence (6.20) holds. ]
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A. Heuristic derivation of the limit equation

Let us give a heuristic derivation of the limit equation (1.1) from (H,) when £2.(¢) is of the form
2:(t) = {x € R" | —¢ < d(x,t) < ¢&}. In this case, the unit outward normal vector field v, of
0£2(¢) and the outer normal velocity vév of 082,(¢) are of the form

ve(x. 1) = £v(p(x.1).1), v (x.1) = 2o (p(x.1).1). (x.1) € 0 Qer.
according to d(x,t) = %e¢ (double-sign corresponds). Thus we start from the heat equation
du’(x, 1) — Au®(x,1) =0, (x,1) € QT
with the boundary condition
v(p(x,1),t) - Vuf(x,t) + v (p(x, 1), Oub(x,1) =0, (x,1) € 3 Qcr. (A1)

To derive the limit equation, we make the following assumptions:

(1) The signed distance d(x,?) of x € £2.(¢) is negligible (d(x,t) & 0), although the quantity
e~1d(x,t) is not negligible.

(2) The relation UIIY(p(x, t),t) ~ —d,d(x,t) holds for all (x,¢) € Q¢ r.

(3) The boundary condition (A.1) also holds in the noncylindrical domain Q, r.

These assumptions come from the smallness of the width 2¢ of §2.(¢). Taking the third assumption
into account, we consider the two equations

dub(x,t) — Au®(x,t) =0, (A.2)
v(p(x,t),t) - Vu®(x,t) + vIIY(p(x, t),Hu’(x,1) =0 (A.3)

for (x,t) € Qg 1. Recall that each x € £2,(¢) is represented as
x = px.t)+dx,t)v(p(x,1),1), Vd(x,t) =v(x,1) =v(p(x,1),1).
First, we consider the gradient matrix of the projection p(x,t) onto I'(¢) given by

d01p1 ... Oup1 P1
Vp= : : for p=1|:
alpn . Bnp,, Pn
By differentiating both sides of x = p(x,?)+d(x,t)v(x,t) and using Vd(x,t) = v(x,t), we have
I, =Vpx,t)+vix,t) @v(x,t) +d(x,t)Vv(x,1).
According to the assumption (1), the above equality reads
Vp(x,t) ~ Iy —v(x,1) @ v(x,1) = I, —v(p(x,1).1) @ v(p(x,1),1). (A4)

We define a function v: S7 x (—1,1) - R as

v(y.t.r) :=u’(y + erv(y.t),1), (y.1) € Sr.r e (=1,1).
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Then u® is represented by v as

ub(x,t) = v(p(x,t),t,e_ld(x,t)), (x,1) € Qe (A.5)
For abbreviation, we write p and d for p(x,t) and d(x,t) in arguments of functions unless we

would like to emphasize them. For example, we write v(p, t) for v(p(x,t),t) and v(p,t, e~ 'd) for
v(p(x.t),t,e 'd(x,t)). By the chain rule of differentiation we have

Vub(x,t) = [Vp(x, t)]TVv(p,t, e ld) + e 10, v(p. 1, e d)Vd(x,1).
By (A.4) and Vd(x,t) = v(p(x,t),1t), this equality reads
Vuf(x,t) ~ Vrgyv(p,t,e'd) + e 10, v(p,t, e d)v(p, 1). (A.6)

Here we abused the definition of the tangential gradient V() = (I, —v ® v)V. Applying (A.6) to
(A.3) and observing that v(p,t) - Vr@yv(p,t,e1d) = 0, we obtain

e 1o, v(p.t,e7ld) ~ —vIIY(p,t)v(p,t,s_ld) (A7)
and thus (A.6) becomes
Vué(x,t) ~ Vrgyv(p.t, e 'd) — oN(p.yu(p.t,e  d)v(p.1). (A.8)
Next we compute Au® = div Vu®. For a vector field F on §2,(¢) with each fixed ¢ € [0, T],

div F(x) = trace[VF(x)]
= trace[{ln —v(x,1) @ v(x, t)}VF(x)] + trace[v(x, 1) ® v(x, t)VF(x)]
=divpp F(x) +v(x,1) -0, F(x)

holds since v ® v is a projection matrix onto the v-direction. Hence we have
div[Vr@v(p,t.67'd)] = dive [Vrov(p.t.e7 d)] + v(x, 1) - 8, [Vrpu(p.t,e7'd)].

Moreover, since p(x + hv(x,t),t) = p(x,t) and d(x + hv(x,t),t) = d(x,t) + h for sufficiently
small & € R, it follows that

Vp(t)v<p(x + hv(x,1), t),t, s_ld(x + hv(x, t),t)) = Vrpv(p(x,t), e Vd(x, t) + e 1h)
and thus

dy [Vp(t)v(p, t,s_ld)] = s_lar[Vp(,)v(p,t, s_ld)]

by the formula 9, f(x) = limp—o{ f(x + hv(x,t)) — f(x)}/h for functions f on §2,(¢) with fixed
t € [0, T]. Hence we obtain

div[Vrpv(p.t.e7'd)] = divre)[Vrov(p.t.e7 d)] + e v(x,1) - 0-[Vrv(p.t.e ' d)].
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Similarly we have

div[v¥ (p, t)v(p.t. e d)v(p.1)]
=divr [N (p.Ov(p.t e d)(p. )] +v(x. ) - {eT o (p. D)o v(p,t e d)v(p.t)}
~ divr[vF (p.O)v(p.t, e d)v(p, )] — {v ¥ (., Z)}2 v(p.t,e7'd).

Here the last approximation follows from v(x,?) = v(p(x,t),t) and (A.7). Hence, by (A.8),
Auf(x,t) = divr [Vrgv(p. e d)] 4+ e v(x,1) - 9 [Vrgv(p.t.e7'd)]
— din(t)[UIIY(p,t)v(p,t,s_ld)v(p,t)] + {vlj\l(p,t)}2 v(p.t.e7'd). (A.9)
On the other hand, we differentiate both sides of (A.5) with respect to 7 to get
ub(x,t) = d; p(x,t)-Vo(p.t,e rd) + 0,v(p,t,etd) + e 19:d(x,1)d,v(p, 1, d).
To this equality we apply (A.7) and
d;p(x,t) = —0,d(x,t)v(x,t) —d(x,t)dv(x,t) = vIIY(p,t)v(p,t),

where the last approximation follows from the assumptions (1), (2), and v(x,?) = v(p(x,1?),t).
Then we have

dout (x, 1) ~ v (p,)v(p,1) - Vo(p, 1.7 d) + dv(p.t.e7 d) + (o]l (p.0)} v (p.1. 67 d).
(A.10)

Substituting (A.9) and (A.10) for the equation (A.2), we obtain
-1 N -1 . N -1
8tU(P,t78 d)+UF(P»I)V(P7I)'VU(PJ,8 d)+d1VF(t)[UF(p’Z)U(p’t78 d)V(p,t)]
—divp [Vp(,)v(p, t,s_ld)] —el(x,1)- 8,[Vp(,)v(p,t, s_ld)] =0.

Now let us make an additional assumption: the function v(y, t, r) is independent of the variable r.
Then, the above equation reads

v (v 1) + it (. V(1) - Vo (. 1) + divre [oF (. vy, v (r.1)]
—divr)[Vrov(y.0] =0

with y = p(x,t) € I'(¢t). Finally we observe that

din(t)(vllgvv) = Vp(t)(vljyv) v+ vIJYvdivF(,)v =0+ vlev -(-H) = —UIIYHU,
where H = —divp(,)v is the mean curvature of I"(¢), to obtain

drv(y.1) + v (1. (1) - Vo(y.0) = vt (V. OH (. Dv(y. 1) = Apyv(y.1) = 0

for (y,¢) € St. This is the limit equation (1.1) we mentioned in Section 1.
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B. Elementary facts on integrals over evolving surfaces

In this appendix we give complete proofs of several facts on integrals over evolving surfaces which
are essentially known or easily proved but there is no detailed proof for the readers’ convenience.
We first show the transformation formula (4.2).

Proof of (4.2). By a localization argument with a partition of unity of St, it is sufficient to show

[ / FO 0 dR () di = / F@) (1 + oY ©@)?)
I Jue(U) c(UXI)

V2 4% (), (B.1)

where [ is an open interval in (0, T'), U is an open set in R"!, ,: U — I'(t) is a smooth local
parametrization of I'(¢) for each t € I, and {:U x I — St is given by {(s,1) = (us(s),1).
Moreover, by rotating coordinates and taking I sufficiently small, we may assume that there exists
a smooth function 7 on U x [ such that u,(s) = (s,h(s,t)) forall s € U and ¢t € I. Then
L(s,t) = (s,h(s,t),t) and the outward normal velocity vllg of I'(¢) is given by

O (r(5).1) = D)
P TT VRGO

Here V'’ is the gradient in s € R"™! and we assume that the n-th component of the normal v is
positive on { (U x I). For ¢t € I the Riemannian metric on I"(¢) is locally given by

(s.t)e U x I. (B.2)

9 3
ﬂ()ﬂ()—s,]Jr (st) (st) seUij=1,..n—1,

where §;; is the Kronecker delta. Hence the left-hand side of (B.1) is

[ [ ronawsioa=[ [ fue.0iTWieordsd.  ®3)
I Ju:(U) 1JU

On the other hand, since the Riemannian metric on St is locally given by

8; (s, 1) - —é(s t) = 5,-,-+ (s t) (s t),

9 9 d o, |7
D) G0 = S G 60, —§< 0 —C< 0= 14|56

fors e U,t € I,andi,j = 1,...,n — 1, the right-hand side of (B.1) is

/ F 1+ WY @) an(0)
c(UXI)

=/ £ (o)) (1+ ol (e (s).0) )2 Vet AGs. 1) ds dr. (B4
UxI

Here A is a matrix of the form

S (I + VRV 3V
= 3 h(V'h)T 1+ |9,h|?
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where (V'h)T is the transpose of the column vector V'A. By elementary row operations we have

_ In—1 + {1 = |3:212/(1 + 3 h*)}V'h @ V'h 0
detA—det( 3,h(V'h)T 1+ (3,h]2
|9, 7[?
= (1 + [3,h|?) det | I,_ l—-———— | Vh@Vh
(+n|)m[1+( ) Ve

= (1404?31 + 1—M [V'h|?
1 +10:h2

_ |9:h? 2
= (1+ i 1+ [V'h]).

Hence, by (B.2),

det A(s,1) = (1 + [N (e (5),0) ) (1 + [V'h(s, 0)]).

Substituting this for the right-hand side of (B.4) and applying Fubini’s theorem, we get the right-
hand side of (B.3) and thus conclude that (B.1) holds. O

Next we give complete proofs of Lemma 4.1 and Lemma 4.3. Before starting to prove, let us
construct a partition of unity of I"(¢) by that of I'. Since Iy is compact, we can take a finite family
{Uk }IICVZ1 of open sets in R”~! and smooth local parametrizations ,ulgz Uy — Ip,k=1,...,N such
that { Mlé ( Uk)}ljcv=1 is an open covering of Ij. Let {w(’)‘ }11€v=1 be a partition of unity of Iy subordinate
to the covering {,u’g(Uk)},](V:l. Fork =1,...,N andt € [0, T] we set

i (s) = d(ug(s).1), s €U, Yf =g opgo(u)™, (B.5)

where @(-,1): [y — I'(¢) is the flow map of Vr (see Section 2). Then for each k = 1,..., N the
mapping u¥: Uy — I'(¢) is a local parametrization of I"(¢) and {u* (Uk)}llc\’:1 is an open covering
of I'(t). Moreover, {W{c },iV:l is a partition of unity of I"(¢) subordinate to {pf,‘(Uk)}]]CV:l. We use
these partitions of unity to localize integrals over ().

Proof of Lemma 4.1. Let V be a function on Iy x (0, 7) and v := LV. Our goal is to show

callVOlzryy < lvOlL2rey < 2llVOlz2ny
AllVrVOllLziry) < IVroyvOllLzreyy < 2V VO L2y

for all t € (0, T) with some positive constants ¢, ¢ independent of ¢. These inequalities yield
c1 ”V”ﬁr < |llas < cz||V||AT, which means that L is an isomorphism between H 7 and Hr.
By alocalization argument with the partitions of unity given by (B.5), it is sufficient to show that

c1/ |V (t)|> dRr"! s/ lv(@))>d®"! ch[ |V(t)|>dRr" 1, (B.6)

1o(Q) we(Q) no(Q)

6-1/ IV, V() dr" ! s/ IVr@v@)|?d®r"! ch/ IV, V(©)|> d "
1o(Q) ne(Q) 1o(Q)

B.7)
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for all t € (0,7T) and all V supported in wo(Q) x (0, T). Here uo:U — Iy be a smooth local
parametrization of Iy with an open set U in R*™!, Q is a compact subset of U, and u;: U — I'(t)
is the local parametrization of I"(¢) given by p;(s) := @(uo(s),t) for s € U. Note that in this case
v = LV is supported in Ute(O ) /Lt(Q) x {t}. Let 6; = (6;,;);,; be a matrix given by

0:4j(s) 1= —(s) - (s) (5,0) €U x[0,T),i,j=1,....n—1, (B.8)

and 6,1 = (GZU )i; be the inverse matrix of 6;. By the definition of integrals over hypersurfaces,

/ VP dRNY) = / V(o0(s). )] v/det 6o (s) ds.

no(Q) 0

/ L OP AR () = / [0 (e(s). 1) /et By s) ds.
ne(Q) 0

Since y/det 6;(s) is continuous and does not vanish as a function of (s, ¢) on the compact set Q x
[0, T'], there is a constant ¢ > O such that

¢l < /detb,(s) <c forall (s.1) € Qx[0,T]. (B.9)
Moreover, by the definitions of L and u;,
V(e (), 1) = V(@ (e (5), 1), 1) = V(®TH(@(1ao(5), 1), 1), 1) = V(1to(5), 1) (B.10)
for all (s,¢) € U x [0, T]. Hence (B.6) follows. Similarly, by (B.9) and the equality

[ vnvoraw @) = [ 19V, 0 Vit ds
no(Q) 0

/ o [FronO PR ) = /Q IV r (e (5). )2 /3ot 6,) d.
Mt

it is sufficient for (B.7) to show that

1|V Vio(s). O < Vv (s). 1> < c2Vrp V(o (s). 1) (B.11)
for all (s,7) € Q x [0, T]. The tangential gradients V,V and Vv are locally expressed as
(see [6, Section 2.1 and Section 2.2] for example)

n—1

VR, V(po(s).0) = ) 65

i,j=1

i 0 ‘
.0 = 3 9’(s)—(v(m(s),r>)a—/f.(s)

i,j=1

for (s,t) € U x [0, T] and their Euclidean norms are

195, (0. ) Ze”m—( (106.1)) 5 (V (10 9).1)).

,Jl

e = 3 0 515 (w01 0).1)) 38]( o(pe(s).1)).

i,j=1
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Then, by (B.10), it is sufficient for (B.11) to show
105 ()a-a <07 (s)a-a <05 (s)a-a forall (s,t,a) € Q x[0,T]xR*". (B.12)
To this end, we consider a real-valued function
F(s.t,a):=07"(s)a-a, (s,t,a)e Qx[0,T] xR"1

It is continuous on Q x [0, T'] x R"~! and satisfies F(s,t,a) = | B(s, l,a)|2, where
n—1 a
B(s.t.a) = Y bi(s.1.a) 2t (s), b= (br....bu—1) i= 0] ' (s)a.
i=1 Os;

For a # 0 we have b # 0 and thus B # 0. Hence F does not vanish on the compact set Q x
[0, T] x S™~2, where S"~2 is the unit sphere in R”~!. From this fact and the continuity of F there
is a constant ¢ > 0 such that c™! < F(s,t,a) < c forall (s,t,a) € Q x [0, T] x S"~2 and thus

c Nal* < 9,_1(s)a ca <clal* forall (s,t,a)e Q x[0,T]xR"1
This inequality yields (B.12) and we conclude that (B.7) is valid. ]

Proof of Lemma 4.3. First we give transformation formulas of integrals over Iy and I'(¢). Let U
be an open set in R"! and puo: U — Iy be a smooth local parametrization of Iy. Moreover, let
We: U — I'(t) be the local parametrization of I"(¢) given by w;(s) := @(uo(s), ). We set

det 0, det 6,
A(I«Lo(s)af):\/%, l(ut(S),t):,/%, (s.0) € U x [0.T],

where 6; = (6;,,j);; is given by (B.8). We can show that the right-hand sides of the above definitions
are independent of the choice of the local parametrization 9. From this fact and the smoothness
assumption on @, the functions A and A are well-defined and smooth on the compact manifolds
Iy % [0, T] and ST, respectively. In particular, they are bounded on Iy x [0, 7] and ST along with
their derivatives. Moreover, by a localization argument with the partitions of unity given by (B.5),
we get the integral transformation formulas

/ v(r. 1) W (y) = / VY.OAY.0) dRNY), (B.13)
@ Iy
/ VY. dRN(Y) = / (5 DA 1) AR () (B.14)
Io ()

for all functions V on I'y x (0,7) and all € (0, T), where v = LV
Now let us prove the statement of Lemma 4.3. For V € W we set v := LV. Then Lemma 4.1
yields v € Hr and ||v||g, < c||V||;I\T. We next show that 0°v € Hj and ||8’v||HrT < CHV”WT'

Lety € C¢(S7). Then ¥ := L™y isin C} (I x (0,T)) and 0°y (®(Y,1),1) = 3,¥ (Y, 1) for all
Y e Iy. Hence (B.13) yields
T
(0. ) g = _/ / W3y + vy divre V) X di
0 JI(@)

T
= —f (V o, ¥+ VUF)AdR" dt,
0 Iy
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where F := LY (divp@) Vi) € C®(Ip x [0, T]). Moreover, since WA € CJ (I x (0,T)),

T T
—/ / VAatllde”_ldt:[an,lllA]T—i—/ / VW, AdR" dt
Io 0 I

by the definition of the weak time derivative d; V. From these formulas and the boundedness of F
and A on I x (0, t) along with their derivatives, it follows that

T
[0:V,WA]r + / (VW A—VWAF)dR" 1 dt
0 Iy

(9%, ¥)r| =

<cll0:Vlig, 19AlG, +1Vig, 1¥g,) <clVig, 1Vl

with a constant ¢ > 0 independent of V" and v, which implies 3°v € H7 and ||8‘v||H/T < ¢ V”WT'
Hence v = LV isin Wr and ||v|w, < C”V”WT forevery V € Wr.

Similarly, by (B.14) and the smoothness of A on St we can show that V = L~ isin WT and
”V”WT < c||v|lw; for every v € Wr. Hence L is an isomorphism between W and Wr. O

C. Calculations involving the differential geometry of tubular neighborhoods

The purpose of this appendix is to show detailed calculations in the proofs of Lemma 5.5,
Lemma 5.6, and Lemma 5.11. We fix ¢ € [0, T'] and omit it until the end of the proof of Lemma 5.6.

The proofs of Lemma 5.5 and Lemma 5.6 involve calculations of the usual gradient in N and the
tangential gradient on I" under a local coordinate system. Let u: U — I' be a local parametrization
of I' with an open set U in R"~!. We set

9 9
0,() = sy Lsy, sevij=1.....n—1
Bsi 3Sj

Then, the tangential gradient of a function v on I" is locally expressed as

Vru(y) = 29’%) (s)—(s) y = uls) € up(U), (C.1)

i,j=1

where T(s) := v(u(s)) and =1 = (6"); ; denotes the inverse matrix of = (6;;);,;. We define a
mapping M: U x (—=68,6) — N as M(s, p) := u(s) + pv(u(s)) for (s, p) € U x (-4, §) and set

oM oM

Ouy(s.p) 1= 5—(5.0)- 5=(5.p).  (5.p) €U X (=8.6).7.j = L.....n
i J

where s, := p. Then the gradient (in R") of a function u on N is locally expressed as

Vu(x) = Z O (s, ,o) (s p) (s p). x=M(s,p) € M(U x (=6,6)). (C.2)
i,j=1

where (s, p) := u(M(s, p)) and @1 = (OV);, ; is the inverse matrix of @ = (6;;); ;.
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Let v be a function on I" and v be its constant extension in the normal direction of I". Then their
local representations v := v o y and v := v o M satisfy

s, ) = T(p(M(s.p)) = v(1(s) =T(s),  (s.p) € U x (=8,5).

Hereafter we use this fact without mention.

Proof of Lemma 5.5. Let v € H'(I"). Our goal is to show the inequalities

[V (y + pv(»)) — Vrv(y)| < ce|Vrv(y)| (C3)

forall y € I' and p € (ego(y), eg1(y)) with a constant ¢ > 0 independent of y, p, and &. For
each fixed yo € I', by a rotation of coordinates we can take an open set U in R”~! and a local
parametrization u: U — I' suchthat yo = u(so) with sg € U and p is of the form u(s) = (s, f(s))
with a smooth function f on U satisfying

V' f(s0) =0, (V)*f(so) = diag[ki,....kn—1]. (C.4)
where V' is the gradientin s € R* ™! and k; := «;(yg) fori = 1,...,n—1 (see [11, Section 14.6]).
We set the direction of v(yg) in the positive direction of the x,-axis to get
— V' f(s),1
V(M(S)) e (;())2’ S € U.
V1+ |V’f(s)|
Then we have v(yo) = v(u(so)) = e, and
0 ad .
a—z(so) =e;, a—Si(v(/L(s))> s =—kje;, i=1,....,n—1 (C5)

by (C.4), where {e; }7_, is the standard basis of R". This equality yields

oM oM
=(1—-pKj)e;, i=1,...,.n—1, g(so,p) = v(u(so)) = ey. (C.6)

Hence we have 0(so) = I,,_1, ©(so, p) = diag[(1 — pk1)?,..., (1 — pkp_1)?, 1], and
07 (s0) = In—1. O (sq, p) = diag[(1 — px1) 2, ..., (1 — pru_1) % 1]. (C.7

Applying (C.5), (C.6), and (C.7) to (C.1) and (C.2) with u = v, we obtain

o
Vru(yo) = Z—(s())el, (yo + pv(¥0)) = Z(l—p:«, —(So)ez

and thus (5.3) implies that

n—1

8'\-' 2
V300 + OO = 301 — pr) 2(—(S0)) <eX(gtn) =[vruoof’,

i=1 i=1
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which yields the first inequality of (C.3) with y replaced by yo. Moreover, by (5.3) we have

|(1—prci)™ = 1| = |pKi (1 — pici) ™| < ce
forall p € (ego(Y0),e81(yo)) andi = 1,...,n — 1 and thus

n—1

e
|VT(yo + pv(y0)) — Vl‘v(yo)}2 = Z {0 —pri)™" = 1}2<8_:-(S0))2 < 682|Vrv()/o)}2-

i=1
Hence the second inequality of (C.3) with y replaced by yy is valid. O
To prove Lemma 5.6, we need a differentiation formula of the average operator under a local

coordinate system. Let U be an open set in R”"~! and : U — I be a local parametrization of I".
The weighted average of a function u on 2, is locally expressed as

e21(5) .
M, u(s) / o u(s,p)J(s,p)dp, seU, (C.8)
() Jzow
where MZA(S) = Mou(u(s)), u(s, p) = u(Mf(s, p)), and
n—1
T(s.p) = J(u(s).p) = [ ] {1 — pxi (u(5))}- (C.9)
i=1
Lemma C.1 Letu € H'(£2,). Then
31\7[:/ 1 €g1(5) Povs
() = 5 T (5,p) T, ) o <s p)
ds; g (s) czo(s) [ 0si

eg1(s) a7
[ (s T (5. p) +Ts. p)—(s ol pi o dp (€10)
o)

go(s)
foralls e Uandi =1,...,n—1, where
.
K00 = = {(p—sgom) Ls) + (671 (5) - )%(s)}. €11

Proof. For simplicity, we set ; = d/ds; and 9, = d/dp. Foreachi = 1,...,n—1, we differentiate
both sides of (C.8) with respect to s; to get

J T [
gg 802 sgo
where I = I(s) is given by

1(s) 1= ed;Z1 () (5, €81(5)) T (5, 681(5)) — €30 (s)U (s, €Z0(5)) T (5, £Z0(5)).

— ~ £g1 ~ ~
angu = uJ d,O + = / (81’17).] +’17(8,J)} dp, (C.12)

Since I = [(p)J (p) xi (p)]ff”‘eg0 = faffol 3,GIT xi) dp and d,x; = 0;F/Z, we have
I ai’g’ £ 1 €81 ~)~ -
— = WJ dp + :/ Qo) +u(0,J)} 1 dp. (C.13)
Sg 8@2 6‘?0 Sg 6?0 { g P } l

Substituting (C.13) for (C.12), we obtain (C.10). ]
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Proof of Lemma 5.6. As in the proof of Lemma C.1, we write d; = d/ds; and d, = d/dp. Let
ueC®(R:)NHYR), 9 € HY(I'), and

eg1(»)
1(y) = / V(. p) - (VR (. p) (7. p) dp — e8(1)Vr Mou(y) - V().

go(y)
Here we used the notation (5.6). Our goal is to show

eg1(y)
10| < ce|VF§0(Y)|/ o (0 + [0k p do (C.14)
egoly

for all y € I" with a constant ¢ > 0 independent of y and €. As in the proof of Lemma 5.5, we fix
yo € I' and take a local parametrization u(s) = (s, f(s)) of I" near yo = u(so), So € U, where
U is an open set in R”~! and f is a smooth function on U satisfying (C.4). We set the direction of
V(o) in the positive direction of the x,-axis. Then by (C.5), (C.6), and (C.7) we have

n—1 n—1
(Vu)h(yo. p) = Y (1 = pici) ™ 8ii(s0. pei + pti(s0, P)ens Vi Meu(yo) = ) 8 Meu(so)ei,
i=1 i=1
n—1 n—1
(Vo)*(yo. p) = Y (1= pki) "' 9:@(so)ei,  Vre(yo) = ) _ 3 @(s0)es,
i=1

i=1

where {e; }7_, is the standard basis of R” and «; := «;(yo),7 = 1,...,n — 1. Hereafter we omit
the variables p and s¢ unless we need to specify them. The above equality yields
n—1
(Vi) (yo. p) - (V@) (yo. p) = Y (1 — pii) >0, 0: 9, (C.15)
i=1
n—1

e8(y0)Vr Meu(yo) - Vro(yo) = ) 8?(&@)&5-
i=1
Moreover, (C.10) implies that

. £g1 ~ o~ ~ o~
g (8; Mou) = /N {00 +u(0:J) + (,0)J yi +u(0,J) i} dp,

€80

where y; is given by (C.11), and thus

eg(yo)Vr Mzu(yo) - Vro(yo)

eg1 ~n—1 egq1 n—1 _ £g1 _ _ n—1
=/~ JZa;ﬁa,-ader/N Yy 0iJ 8,~g7dp+/~ {0 T +7(0,D)} Y xi 97 dp.
€80 i=1 €80 i=1 €80 i=1

From this equality and (C.15), we obtain I(yg) = I1 + I, + I3 with

s’glfvnfl
I = /~ T3 {1 = i)™ = 107 0 dp,
€

80 =1

eg1 Nl ég1 _ _ nol
b= [Ty 0T0gd L=-[_ {07 +70,D) Y. 107

g0 i=1 €80 i=1
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Let us estimate these integrals. By the definition of 7 (see (C.9)), we have

n—1 n—1
Vrd(yo.p) = Y 3T (s0,p)ei, Y 8iJ (s0, p)3ig(s0) = VrI(yo. p) - Vre(yo).

i=1 i=1
Hence I, is of the form
eg1(yo) 4
== [ 0.V (0. ) Vre(o) do
ego(y0)

and by applying (5.5) to the right-hand side we obtain

eg1(yo)

] < ce|Vre(ro)| / e (vo. 0)] dp. (C.16)
ego(yo)

Next we estimate /3. By the definitions of 7, 7 and y; (see (C.9) and (C.11)),

3,1 (s0, p) = v(¥o) - (Vi) (30, ), 3pJ (50, p) = 3,J (3o, p),

n—1

Y xi(s0. )3ig(s0) = xe(vo, p) - Vre(yo),

i=1
where

(0 —€20(30))Vrg1 (o) + (681 (¥o) — p)Vrgo(yo)
g(yo) '

(Yo, p) ==

Hence I3 is of the form
eg1(yo) 4 4
I; = —/ o xe(o.p) - Vre(yo){v(yo) - (Vu)* (vo. p)J (yo. p) + u* (yo. p)3,J (yo. p)} dp.
£go\yo

Since Vi go, Vr gy are bounded and g1 — go = g,

IVrgo(yo)| + |Vrgi(vo)|
g(yo)

|xs(o. p)| < {(p—eg0(¥0)) + (eg1(y0) — p)} < ce

for all p € (ego(y0),£€1(y0))- This inequality together with (5.4) and (5.5) yields
£g1(y0) 4 4
|13 < ce|Vro(yo)] ([u*(yo. P)| + [(Vu)¥ (0. ) |) dp. (C.17)

£g0(¥0)

Let us estimate /;. For all p € (ego(y0),€g1(y0)) andi = 1,...,n — 1, we have

|(1 = pri) 2 = 1] = | pxi (2 — pKi)(1 — pri) 2| < ce
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by (5.3). From this inequality, Holder’s inequality, and (5.3),

n—1 1/2 /p—1 1/2
see(Z(aimz) (Z(am 2)
i=1

i=1

n—1 1/2 /p—1 1/2
< cs(Z(l - px,->-2<a,~a')2> (Z(amz)

i=1 i=1

n—1

> {0 = pei) = 10,4 0,F

i=1

< ce|(Vi)*(yo, p)|| Vre(yo) |-

Using this inequality and (5.4) we obtain

eg1(y0)
L] < ce|Vre(yo)] |(V)* (yo, p)| dp. (C.18)
£g0(yo)
By (C.16), (C.17), and (C.18) we conclude that (C.14) with y replaced by y¢ holds. O

Finally we give the complete proof of Lemma 5.11.

Proof of Lemma 5.11. Let ®(-,1): Iy — I'(¢) be the flow map of Vi and @~1(., 1) be its inverse
mapping (see Section 2). For X € N(0) and ¢ € (0, T') we set

(X, 1) :=P(p(X.,0),1) + d(X,0)v(P(p(X,0).1).1). (C.19)
For each ¢ € (0, T') the mapping ¥(-,¢): N(0) — N(¢) is a bijection whose inverse is given by

Ul (x,t) o= 07 (p(x. 1), 1) + d(x,t)v(¢_1(p(x,t),t),O), (x,1) € Nr.

Let ¢ € C!(S7) and @ be its constant extension in the normal direction of I'(¢). By the definition
of @ and the formula p(¥(X,1),t) = ®(p(X,0),t) we have

P(W(X.1).1) = ga(@(p(X, 0),1),z), (X,1) € N(O) x (0,T).

We differentiate both sides with respect to z. The time derivative of the left-hand side is

3 @(W(X,1).1) + 0, ¥(X,1)-Vo(¥(X,1),1).
On the other hand, the time derivative of the right-hand side is

a°<p(cp(p(x, 0).1). z) - 8'(p<p(lI/(X, 0).1). z)
by the definition of the strong material derivative (see (4.4)). Hence

0% (P(W(X.0).1).1) = 0B(W(X.0).1) + 0¥ (X.1) - V(W(X.1),1)

for all (X,¢) € N(0) x (0, T). Substituting ¥~!(x,¢) for X in this equality we further get

Fo(p(x.1),1) = dp(x,1) + 9, ¥ (P~ (x,1),1) - Vg(x,1) (C.20)
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for all (x,t) € Nt. Let us show
W (W (x1),1) = Vr(p(x,1).1) + a(x,1), (C.21)

where a(x, 1) is given by (5.17). We differentiate both sides of (C.19) with respect to ¢ to get

3 W(X,1)=0,P(p(X.0),1)
+d(X,00{,0((p(X.0).1).1) + Vv (®(p(X,0),1).1) P (p(X.0).1)}
for (X.1) € N(0) x (0, T'). Moreover, since
d(X,0) =d(¥(X,1),1), D(p(X,0),1) = p(¥(X,1).1),
3,0(p(X.0),1) = Vp(cb(p(x, O),t),t) = Vr (p(W(X,t),t),t),

it follows that

9, W(X,1) = Vr <p(lI/(X,t),t),t>
+ d(tI/(X,z),t){a,v(p(llf(X,t),t),t) + Vv(p(lI/(X,z),t),t)Vp (p(lI’(X,t),t),t)}.

Substituting ¥~ (x, ¢) for X in this equality we obtain (C.21). Finally, the formula (5.16) follows
from (C.20) and (C.21). O
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