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A weak formulation for a rate-independent delamination evolution with
inertial and viscosity effects subjected to unilateral constraint
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We consider a system of two viscoelastic bodies attached on one side by an adhesive where a
delamination process occurs. We study the dynamic of the system for small strains, subjected
to external forces, suitable boundary conditions, and an unilateral constraint on the jump of the
displacement at the interface between the bodies. The constraint arises in a graph inclusion, while
the delamination coefficient evolves in a rate-independent way. We prove the existence of a weak
solution to the corresponding system of PDEs.
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1. Introduction

The mathematical problem. Within this paper we show the existence of solutions to the following
evolution problem: we consider a system of two sufficiently smooth open and connected sets ˝1
and ˝2 in Rd , with d 6 3, which have � as common boundary. Let us denote by � the normal
versor on � oriented in such a way that it points outside ˝2 (inside ˝1), and by n the unit outer
normal to @˝ D @D˝ [ @N˝. Given an external force f W Œ0; T � �˝ ! Rd , a boundary traction
g W Œ0; T � � @N˝ ! Rd , and a boundary datum w W Œ0; T � � @D˝ ! Rd , we look for functions
u W Œ0; T � � .˝ D ˝1 [˝2/! Rd , z W Œ0; T � � � ! Œ0; 1�, and � W Œ0; T � � � ! R, satisfying

� Ru � div � D f on ˝; (1.1a)

� D C0e.u/C �C1e. Pu/; (1.1b)
�� D KŒu�z C �� on �; (1.1c)

with the internal variable z satisfying

z > 0; (1.1d)
Pz 6 0; (1.1e)

z > 0 )
1

2
KŒu� � Œu� � ˛ 6 0; (1.1f)

Pz
�1
2
KŒu� � Œu� � ˛

�
D 0; (1.1g)

c European Mathematical Society 2017

mailto:rscala@fc.ul.pt


80 R. SCALA

coupled with boundary conditions

u D w on @D˝;
@u

@n
D g on @N˝; (1.1h)

and with the constraints

Œu� � � > 0; (1.1i)
Œu� � � > 0 ) � D 0; (1.1j)
Œu� � � D 0 ) � 6 0: (1.1k)

In the equations above Œu� WD u2�u1 represents the jump of u at � , i.e., the difference between the
two traces of u, respectively from ˝2 and ˝1. The real function ˛ > 0 on � is assumed constant
in time, and C0 and C1 are positive definite and symmetric tensors mapping Rd�d into itself, K
is a positive definite and symmetric tensor mapping Rd into itself, e.u/ WD 1

2
.ru C ruT / is the

symmetrized gradient of u, and � and � are positive constants. Finally Pu and Pz represent the time
derivatives of u and z, respectively, while Ru is the second time derivative of u.

The system of equations above describes the evolution of a delamination process in the
approximation of linear elasticity (that is, when only small deformation gradients are allowed).
Here ˝1 and ˝2 are the reference configurations of two visco-elastic bodies whose displacement
is represented by u. The tensors C0 and C1 are the elasticity tensor and the visco-elasticity tensor,
respectively, while K is the elasticity tensor for the adhesive, usually called elastic coefficient of
the adhesive, and represents its reaction to the discontinuity of the deformations Œu� on � . The
variable � represents the Cauchy stress tensor, so that the quantity �� is the force that the body
˝2 acts on ˝1. The two bodies are glued along the interface � , and the efficacy of the adhesive
is represented by the variable z. An high value of z provides a great effect of the glue, while a
small value means that deterioration of the adhesive, consequence of high stresses and movements
of the bodies, has taken place and hence the glue is less effective. In particular z D 1 means that
the adhesive is perfectly sane, and z D 0 corresponds to the status when all its macromolecular
links have been broken and no resistance to bodies separation is observed. This dependence arises
in the equation for the interaction force between the bodies (1.1c). The variable � in this equation
represents a reaction which must avoid interpenetration of the bodies. Specifically, the constraint
of interpenetration (1.1i) provides an instantaneous normal reaction at � as soon as Œu� � � D 0,
preventing the bodies to interpenetrate. Equations (1.1i)–(1.1k) are equivalent to the condition

� 2 @IŒ0;C1/
�
Œu� � �

�
; (1.2)

where @IŒ0;C1/ denotes the subdifferential of the indicator function IŒ0;C1/ of the interval Œ0;C1/,
defined as the map that takes the value 0 on such interval, and C1 outside it. Notice that such
description is only formal, since the variable �, as we will see, is not defined in a pointwise sense
(both in time and in space), but it will be well defined only in the dual of a suitable Sobolev space.
This unilateral constraint is the classic Signorini frictionless condition, and a process satisfying
it is also referred to as evolution in MODE I, in contrast with evolutions in MODE II, where
the constraint is bilateral, i.e., Œu� � � D 0. The latter corresponds to processes where only shear
displacements are allowed at the interface.

We study this process in the setting of a dynamic evolution, arising in the hyperbolic equation
(1.1a) (that, to be precise, turns out to be parabolic due to the presence of the damping term e. Pu/ in
(1.1b)). Here � Ru is the inertial term, � being the mass density of the body, assumed constant, and
the constant � in (1.1b) is the viscosity of the material.
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Delamination framework and main result. Delamination models are more and more studied in the
recent years. As an introduction to evolution in delamination, see, e.g., [15] where the quasistatic
model is considered, and [22] for a dynamic model where also thermal effects are considered (for
evolution problems in delamination we also quote, among many, [20], [4], [21], [23], and references
therein). The evolution of the internal variable z is based on the concept of Frémond delamination
(see [11, 12] and the general monograph [13]). The treatment of unilateral constraints in contact
mechanics with adhesion was introduced and developed by many different authors. Let us quote the
general monograph [9] for a classical approach, and [10] for more recent references. The model we
consider was previously introduced by T. Roubı́ček, who proves existence of solution of evolution
in MODE II (i.e., with the bilateral constraint Œu� � � D 0) in [26]. Then the same model was
considered with the addition of viscosity of the adhesive in the subsequent papers [27] and [28].
Notice that in our equations no spacial derivatives of z appear, even if some space regularity of z
can be derived by the equation (1.1c), since the value of z at x 2 � depends implicitly on the values
at the neighbor points, by such equation. However there exist other models of delamination where
partial derivatives of z enter in the equations (see, e.g., [4] and references therein). It is also worth
to refer to [16] for a similar model with unilateral constraint without inertial effects.

The main result of the paper states the existence of weak solutions to (1.1), thus extending the
results of existence in [26] to evolutions in MODE I. In order to prove existence of a solution to
problem (1.1) for every initial data for u, Pu, and z in suitable spaces, we need to reformulate the
equations in a weaker sense. In particular such weak formulation is needed to treat the unilateral
constraint (1.1i), which in turn represents the principal difficulty for the proof of existence. The
main tool to face it is inspired by the pioneer paper [5], whose arguments we adapt to our situation.
Different approaches to unilateral constraints for contact problems in the framework of dynamic
evolutions (i.e., of hyperbolic systems of PDEs) exist and can be found in [2]. Here the obstacle is
treated in an implicit way, by the use of variational inequalities.

Two remarks about the model. In our model it is remarkable the presence of the viscosity term
�C1e. Pu/, that provides more regularity of the displacement. In particular its presence implies that
the strain u belongs to the Sobolev space H 1.Œ0; T �;H 1/, which entails strong compactness also
for its jump Œu�. As suggested in [16, Remark 2.2] it is possible to consider, in the dynamic case
(i.e., when inertia cannot be neglected), a hyperstress term that together with inertia provides the
required estimate for the jump. Without this, it seems harder to prove a-priori estimates for the jump
that allow to pass to the limit in the flow rule (see Step 3 in Section 4 for details). Moreover, the
regularity condition u 2 H 1.Œ0; T �;H 1/ combined with the Aubin-Lions Theorem allows to prove
the strong convergence in L2.Œ0; T �; L2/ of the velocities Pu� of suitable approximating solutions.
This convergence is crucial for our approach, since it allows to apply the so-called Minty trick
(Lemma 2.4) to prove that constraint (1.2) holds true at the limit (see Step 4 in Section 4 for
details).

Let us finally compare our result with the one in [18, Section 5.2.3]. Here the considered model
with the cone condition (5.2.39b) is exactly the same of us. In particular [18, Proposition 5.2.11]
provides the existence of a weak solution to this system of equations which is very similar to our
notion of solution. The main difference between the formulation in [18] and ours stands in the fact
that the notion of weak solution in [18, Definition 5.1.1] does not explicitly identify the reaction
term � in (1.2) that indeed does not appear in the weak equation (5.1.8) (compare with (3.2)). The
solutions captured in [18, Proposition 5.2.11] are in fact those satisfying the regularity condition
(5.1.14), while with our approach and notion of weak solutions we cannot preclude a-priori the
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existence of solutions whose jump velocity Œ Pu� shows discontinuities in time (compare also with [5,
Remark 2.4]).

The simplified model. To study problem (1.1) we first make some nonrestrictive simplifications.
In what follows we assume that the constants � and � are equal to 1. Moreover, since we treat
homogeneous materials, the elasticity tensors C0, C1, and K, are assumed constant, and we suppose
they are all equal to Id, the identity matrix. Since we always fix a Dirichlet boundary datum, the
Korn inequality ensures that we can replace the symmetrized gradient by the full gradient ru. On
the other hand we want to study a large class of unilateral constraints for the normal jump of the
displacements, so that we are led to replace the function IŒ0;C1/ by a general lower semicontinuous
and convex function j W R! Œ0;C1�, with j.0/ D min j D 0. After simplifications, the resulting
system of equations reads

Ru ��u �� Pu D f on ˝; (1.3a)
.ruCr Pu/� D Œu�z C �� on �; (1.3b)

(1.3c)

with z satisfying

z > 0; (1.3d)
Pz 6 0; (1.3e)

z > 0 )
1

2
jŒu�j2 � ˛ < 0; (1.3f)

Pz
�1
2

ˇ̌
Œu�
ˇ̌2
� ˛

�
D 0; (1.3g)

and with the constraint

� 2 @j
�
Œu� � �

�
: (1.3h)

Such system is coupled with the boundary conditions

u D w on @D˝; ru � n D g on @N˝; (1.3i)

for some boundary datum w W @D˝ ! Rd and boundary force g W @N˝ ! Rd . Equation (1.3g)
implies the threshold condition

1

2

ˇ̌
Œu�
ˇ̌2
< ˛ ) Pz D 0: (1.4)

This resulting model and the original one, apparently different, are instead mathematically
equivalent, the technicalities involved in the simplified problem being exactly the same, and all the
results can be trivially adapted to the original case. Indeed the arguments used to prove existence of
solutions to Problem (1.1) and to its regularized version are based on standard a-priori estimates on
ru and Œu� which are obtained thanks to the positiveness of tensors C0, C1, and K, and not by their
specific forms. In particular, using this and the Korn inequality we infer that there exists a constant
C > 0 such that

C0e.u/ W e.u/ > C jruj2;
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and similar formulas for C1 and K. Also, the norm
R
�
KŒu� � Œu�dx is equivalent to

R
�
jŒu�j2dx.

The choice C0 D C1 D Id, K D Id is adopted for convenience and to simplify the exposition.
Finally, also the simplification w D 0 can be easily generalized to the non-homogeneous case; this
issue is addressed in Section 4.1, where we use standard arguments, as for instance the one adopted
in [27, Theorem 3.9].

In Section 3 we reformulate Problem (1.3) in a weak sense. Such weak form is somehow
reminiscent of the energetic formulations for rate-independent systems (see [17], [19], and [25]; for
the general theory of rate-independent systems, see [15], [18]). The energetic formulation of a rate-
independent system that evolves in a time interval Œ0; T � usually arises in a equilibrium condition
which holds at every time t 2 Œ0; T �, and an energy equality, which provides that the energy stored
and dissipated by the system balances the work done on the system by the external forces. Actually
our formulation does not provide an energy balance, but only an energy inequality, since at this
stage we are not able to prove that the additional dissipation due to the presence of the unilateral
constraint (1.3h) exactly balances the external work. We can only show that the energy dissipated
by the constraint, which provokes instantaneous reaction at � and then discontinuities in time of
the velocity field Pu, is less or equal to the external work. On the other hand, we prove that the
flow rule for the variable z is still satisfied in a weak sense, condition expressed by property (b0)
of Definition 3.1 below. Let us emphasize that this equation is not needed in presence of an energy
balance, since it can be readily deduced from it and the other weak equations of motion.

With the energy inequality in place of the equality, our formulation of solution is more familiar
with the one adopted by Mielke and Roubı́ček (see [18, Definition 5.1.1]). For these reasons we call
our notion of weak solution local solution, in accordance with this theory.

The approximate problem. In order to prove our existence result (Theorem 4.1), we proceed
approximating the Problem (1.3) by a regularized one. Specifically, we fix � 2 .0; 1/, and denote by
j � the Moreau-Yosida regularization of j . Denoting the subdifferential of j � by ˇ� WD @j � , i.e., the
Yosida approximation of @j , we study the approximate problem

Ru� ��u� �� Pu� D f on ˝; (1.5a)

.ru� Cr Pu�/� D Œu��z� C ˇ�
�
Œu�� � �

�
� on �; (1.5b)

with z� satisfying

z� > 0; (1.5c)
Pz� 6 0; (1.5d)

z� > 0 )
1

2
jŒu��j2 � ˛ 6 0: (1.5e)

Pz�
�1
2

ˇ̌
Œu��

ˇ̌2
� ˛

�
D 0; (1.5f)

and the boundary conditions

u� D w on @D˝; ru� � n D g on @N˝; (1.5g)

The constraint is implicit in (1.5b), where, noting by �� the reaction term (thus replacing ˇ�.Œu�� ��/
by ��), it reads

�� 2 @j �
�
Œu�� � �

�
: (1.5h)
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For the approximate problem, the existence of a solution is provided in the framework of an
energetic-type formulation. This consists of a weak equation of motion, a weak formula for the
flow rule, and an energy balance. The former reads

h Ru�; 'i C .r Pu�;r'/C .ru�;r'/C
˝
ˇ�.Œu�� � �/; Œ'�

˛
D hf; 'i �

˝
zŒu��; Œ'�

˛
; (1.6)

for all test function ' in an appropriate space, and where the duality product h�; �i are intended in the
respective topology. The first part of the flow rule is expressed by the condition that the function z�

is nonincreasing in time, is non-negative, and that at every time t 2 Œ0; T � it holds

z�.t; x/ > 0 )
1

2

�
u�.t; x/

�
6 ˛.x/ for a.e. x 2 �: (1.7)

As already mentioned, equation (1.5f) can be deduced from the previous two conditions and the
energy balance

1

2
k Pu�.t/k2 C

Z
�

j �
��
u�.t/

�
� �
�
C
1

2

Z
�

z�.t/
�
u�.t/

�2
dx C

1

2

ru�.t/2
C

Z t

0

kr Pu�k2dt �

Z
�

˛z�.t/dx

D
1

2
kv0k

2
C

Z
�

j �
�
Œu0� � �

�
dx C

1

2

Z
�

z0Œu0�
2dx C

1

2
kru0k

2
�

Z
�

˛z0dx C

Z t

0

hf; Pu�idt;

(1.8)

valid for every time t 2 Œ0; T �.
Benefiting of the regularity of j � , the existence of an energetic solution to the approximate

problem is readily obtained by adapting standard results in delamination theory. For this we mainly
refer to [26] and references therein.

Then we pass to the limit as � tends to 0. Thanks to standard a-priori estimates it is possible to
show that the triple .u�; z�; ˇ�.Œu�� ��// tends to a triple .u; z; �/ with respect to suitable topologies,
the latter being a local weak solution to Problem (1.3) as in Definition 3.1 below. In particular, it is
seen that condition (1.7) passes to the limit, while in order to let (1.6) pass to the limit we have still
to integrate it with respect to time, and thus getting rid of the second time derivative of u by parts
integration. The resulting weak equation is

� .. Pu; P'//C . Pu.T /; '.T //C ..r Pu;r'//C ..ru;r'//C hh�; Œ'� � �ii�

D
�
u1; '.0/

�
C hhL; 'ii � ..zŒu�; Œ'�//� ; (1.9)

where the duality products are intended in appropriate spaces (see Section 2). As for the energy
balance, as said, we prove that an energy inequality holds at the limit. In order to guarantee that
(1.5f) is still valid at the limit, we prove an additional condition, obtained from (1.3g) integrating by
parts in time, namelyZ
�

z.t2/
�1
2

ˇ̌�
u.t2/

�ˇ̌2
� ˛

�
dx �

Z
�

z.t1/
�1
2

ˇ̌�
u.t1/

�ˇ̌2
� ˛

�
dx �

Z t2

t1

Z
�

z
�
Œu� � Œ Pu�

�
dxdt D 0;

(1.10)

for every time interval Œt1; t2� � Œ0; T �.
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The main difficulty in the proof of Theorem 4.1 relies in the lack of compactness of the family
of functions ˇ�.Œu�� � �/ in L2.Œ0; T � � � /. Indeed it is possible to prove that these terms are only
uniformly bounded in the larger space H�1.Œ0; T �;H�

1
2 .� //. Therefore, since the limit function �

only belongs toH�1.Œ0; T �;H�
1
2 .� //, in order that (1.3h) makes sense, we have to relax the notion

of subdifferential @j . This relaxation is described in Section 2.1 where we first extend the operator j
to a new operator J defined on the space L2.Œ0; T � � � /, then we restrict it on H 1.Œ0; T �;H

1
2 .� //

and consider its subdifferential with respect to this new topology, noted by ˇw. Within this weaker
notion of constraint, it is no longer true that (1.3h) is satisfied in a pointwise sense. Nevertheless it
is still possible to recover some regularity from the condition � 2 ˇw.Œu� � �/, and a finer description
of it also elucidates the link between the strong pointwise inclusion (1.3h) and that intended in
the weak sense. This is a standard procedure which has been adapted from [29], [5], [28], and is
based upon convex analysis results contained in [6] and [14]. Similarly defining the correspondent
operators J� on L2.Œ0; T � � � /, it is shown that their subdifferentials @J� , still noted by ˇ� , tend
in the sense of graphs to the weak operator ˇw (see Lemma 2.3). Then, adapting standard results of
the theory of maximal monotone operators allows us to prove that the limit constraint is satisfied,
namely,

� 2 ˇw
�
Œu� � �

�
: (1.11)

The previous argument, synthesized in Section 2.2 and Step 3 of the proof of Theorem 4.1 was
previously used in [5], where the authors consider a general obstacle acting on the whole ˝. The
argument turns out to be very general and can be easily adapted to the present situation.

Structure of the paper. The paper is organized as follows: In Section 2 we introduce the notation
and all the preliminaries on the mechanical setting of the problem. Moreover, in Subsections 2.1
and 2.2 we describe the general procedure to relax and approximate the constraint. In Section 3 we
introduce our notion of weak solution to Problem 1.3a and provide the existence of approximate
solutions. The last Section 4 is devoted to the proof of the existence result, Theorem 4.1.

2. Preliminaries

Setting. The apparatus for the delamination process consists of two elastic bodies, whose reference
configuration is represented by the disjoint bounded open sets ˝1 and ˝2. We assume that ˝1
and ˝2 are connected, and that their common boundary � WD @˝1 \ @˝2 has positive .d � 1/-
dimensional Hausdorff measure, i.e., Hd�1.� / > 0. We denote by � the unit normal vector to � ,
oriented in such a way that it points from ˝1 into ˝2. We set

˝ WD ˝1 [˝2 while Q̋ WD int.˝1 [˝2/; (2.1)

the latter being the inner part of the closure of ˝. The external boundary of ˝, i.e. @ Q̋ , splits
as @ Q̋ D @D˝ [ @N˝, representing the parts of the boundary where we will impose Dirichlet
and Neumann conditions, respectively. We also denote by @D˝1 WD @D˝ \ @˝1 and @D˝2 WD
@D˝ \ @˝2, and we will make the geometric assumptions that both @D˝1 and @D˝2 have positive
.d � 1/-dimensional Hausdorff measures. We denote by n the external unit normal to @ Q̋ . Crucial
will be the hypothesis that

d.@D˝;� / > 0: (2.2)
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The latter, where d.�; �/ is the Hausdorff distance between sets, ensures that there exists a smooth
function  on Rd that takes the value 0 on @D˝ and 1 on � .

Notation. We introduce the space

V WD
˚
u 2 H 1.˝/ W u D 0 on @D˝

	
; (2.3)

with dual V 0. Note that in general u 2 V does not belong to H 1. Q̋ /, since it might have nonzero
jump on the interface � . The jump of u 2 V on � , denoted by Œu�, is defined by Œu� WD u2 � u1,
the difference between the traces of u on � , from˝2 and˝1 respectively. With this convention the
scalar product Œu� � � represents the normal displacement between the two bodies, which in turn will
be positive if they are a positive distance far, while a negative value means that interpenetration is
occurring.

We also introduce the following space

V WD H 1
�
Œ0; T �; V

�
: (2.4)

Similarly, for all t 2 Œ0; T �, we introduce the space Vt WD H
1.Œ0; t �; V /. Let

Z WD L2
�
�; Œ0; 1�

�
: (2.5)

The following space will play a crucial role in the following discussion.

H WD H 1
�
Œ0; T �;H

1
2 .� /

�
; (2.6)

and its counterpart Ht WD H
1.Œ0; t �;H

1
2 .� // for all t 2 Œ0; T �. Sometimes we will deal with

QH 2.˝/ WD
˚
u 2 H 2.˝;Rd / W u D 0 on @ Q̋

	
; (2.7)

and with its dual space, denoted by QH�2.˝/.
The scalar products in L2.˝;Rd / and L2.� / are noted by

.�; �/ .�; �/� ;

respectively, while the scalar products in L2.Œ0; T � �˝;Rd / and L2.Œ0; T � � � / are

..�; �// ..�; �//� :

This convention reflects the idea that integration only in space is represented by only one bracket,
while double brackets are used for integration both in time and space. When we integrate in a
subinterval Œ0; t � � Œ0; T � we will add a label t , namely,

..�; �//t ..�; �//�t ;

are the scalar products in L2.Œ0; t � � ˝;Rd / and L2.Œ0; t � � � /, respectively. The symbol k � k
usually denotes both the norms in L2.˝;Rd / and L2.� /. The norm in a general Banach space X
is denoted by k � kX .

The duality pairing between a Banach space of functions on ˝ and its dual (for instance the
duality between V 0 and V ) is denoted by h�; �i, whereas if the functions are defined on � we will
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use the notation h�; �i� (for instance the duality between H
1
2 .� / and H

1
2 .� /0). We use the double

brackets when we deal with a space of functions in the time-space. For instance, the duality pairing
between L2.Œ0; T �; V 0/ and L2.Œ0; T �; V / is denoted by hh�; �ii, and for any t 2 .0; T /, the symbol
hh�; �iit denotes the duality pairing between L2.Œ0; t �; V 0/ and L2.Œ0; t �; V /. The duality pairing in H
and Ht are denoted by hh�; �ii� and hh�; �ii�t , respectively.

We define, for all u 2 H 1.˝/,

V.u/ WD
1

2

ˇ̌
Œu�
ˇ̌2
: (2.8)

It is also convenient to define the operator T W Z � V ! V 0 as˝
T .z; u/; '

˛
D

Z
�

zŒu� � Œ'�dx (2.9)

for all ' 2 V . Since 0 6 z 6 1, by the continuity of the trace operator from V in L2.� / (whose
norm is denoted by C > 0), we haveZ

�

zŒu� � Œ'�dx 6 kŒu�kk'k 6 CkukV k'kV ; (2.10)

which implies T .z; u/ 2 V 0 with kT .z; u/kV 0 6 CkukV , for all .z; u/ 2 Z � V .

Extension operators. We also need to introduce the linear operators Si W H
1
2 .�;Rd / ! V , i D

1; 2, defined as follows. For all ' 2 H
1
2 .�;Rd / we define u.'/ as the unique harmonic function in

H 1.˝1 [ ˝2;Rd / with boundary condition u D ' on � , u D 0 on @˝D , and @u
@n
D 0 on @˝N .

Then we define

Si .'/ WD u.'/�˝i (2.11)

for i D 1; 2, where �˝i is the characteristic function of ˝i . It is easy to check that the operator Si
is linear and continuous, i.e., there exists a constant c > 0 such that

kSi .'/kV 6 ck'k
H
1
2 .�;Rd /

; (2.12)

for i D 1; 2, and that ŒS1.'/� D �ŒS2.'/� D '.

External forces. If there are external forces f 2 L2.˝;Rd / and g 2 L2.@N˝;Rd / the total
external load is defined as

hL; 'i WD .f; '/C

Z
@N˝

g � 'dx; (2.13)

for all ' 2 V . It easily follows that L 2 V 0. The weak equation for the stress field � 2

L2.˝;Rd�d /, that is

.�;r'/ D .f; '/C

Z
@N˝

g � 'dx;

for all ' 2 V , implies that
div � D f a.e. on ˝;
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and
� � n D g a.e. on @N˝:

In what follows, we will only assume that there exists an external load L 2 V 0, so that, considering
also the inertial term, the equation of motion becomes

h Ru; 'i C .�;r'/ D hL; 'i; (2.14)

for all ' 2 V . Equations (1.3a) and (1.3b), when coupled with homogeneous Dirichlet and Neumann
conditions, thanks to notations (2.14) and (2.9), can be expressed in weak form as

h Ru; 'i C .r Pu;r'/C .ru;r'/C
˝
ˇ
�
Œu� � �

�
; '
˛
D hL; 'i � hT .z; u/; 'i: (2.15)

for all ' 2 V . Unfortunately we are not able to provide a solution of (2.15) for all times t 2 Œ0; T �,
but we will further need a weaker formulation (see Section 3).

As far as the evolution of the delamination variable z is concerned, we assume it satisfies
equations (1.3e), (1.3g), and (1.3f). Here ˛ 2 L1.� / is a positive function that represents the
energy (per area) dissipated on the interface � . This is a delamination threshold that the elastic
stored energy of the adhesive V.Œu�/ must reach to start the delamination process (equation (1.4)).
We assume that

˛ > c a.e. on �; (2.16)

for a fixed positive constant c > 0.

2.1 The unilateral constraint

We assume that j W R! Œ0;C1� is a convex and lower semicontinuous function such that j.0/ D
min j D 0. We denote by ˇ WD @j the subdifferential of j , which turns out to be a maximal
monotone operator from R to 2R.

We introduce the functional J on L2.� / as

J.v/ WD

Z
�

j.v/dx v 2 L2.� /; (2.17)

where the value of the integral may well beC1 if j.v/ … L1.� /. The subdifferential of J in H is
defined as the multivalued operator @J from L2.� / to 2L

2.� / such that, given u 2 L2.� /,

L2.� / 3 v belongs to @J.u/, J.w/ � J.u/ > .v; w � u/� 8w 2 L2.� /: (2.18)

It is well-known that @J coincides with the operator ˇ in L2.� /, in the sense that, v 2 @J.u/ if and
only if v.x/ 2 ˇ.u.x// for a.e. x 2 � . In a similar way we introduce the functionals J and Jt on
L2.Œ0; T �; L2.� // and L2.Œ0; t �; L2.� //, respectively, by

J.v/ WD

Z T

0

Z
�

j.v/dxds Jt .v/ WD

Z t

0

Z
�

j.v/dxds: (2.19)
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The multivalued operator @J on L2.Œ0; T ��� / into 2L
2.Œ0;T ��� /, subdifferential of J, is defined as

follows:

L2
�
Œ0; T � � �

�
3 v belongs to @J.u/, J.w/ � J.u/ > ..v; w � u//� ;

for all w 2 L2.Œ0; T � � � /: (2.20)

As for J , the subdifferential of J (and the analogue Jt ) is still interpreted in the pointwise form ˇ,
and we will still adopt the notation ˇ D @J.

Relaxation of the constraint. We want now to introduce a relaxed notion for the operator ˇ, seen as
an operator on the space H � L2.Œ0; T �; L2.� //. To this aim, we first set JH WD JxH, the restriction
of J to H. Hence we can consider its subdifferential @JH with respect to the duality pairing between
H and H0. Namely, if � 2 H0 and u 2 H, we say that

� 2 @JH.u/ , JH.w/ � JH.u/ > hh�; w � uii� 8w 2 H: (2.21)

Consistently with the definition of ˇ, we will denote the operator @JH by ˇw (w standing for
“weak”). Similarly proceeding for the functional Jt , we are led to define the subdifferential @Jt;H
of the operator Jt;H WD JtxH, and thus using equivalently the notation ˇw;t .

In this general setting it is not true anymore that ˇw coincides with the operator ˇ in a pointwise
sense. Indeed if v 2 ˇw.u/, the pointwise value of v is not anymore defined when v 2 H0 nL2.Q/.
However we can still recover some regularity of v from the condition v 2 ˇw.u/. Following the
argument of [29, Prop. 2.1] (which, in turn, is based on the results of [7]), it is easily seen that if
� 2 ˇw.u/ then there exists a bounded Borel measure T such that hh�; 'ii D

R T
0

R
�
'dT for all

' 2 H\C.Œ0; T ��� /. We thus say that the measure T represents � on C.Œ0; T ��� /. Moreover, we
obtain the following relation between the measure T and the original constraint ˇ (cf. [7, Thm. 3]
for further detail): noting as T D Ta C Ts the Radon-Nikodym decomposition of T , where Ta (Ts ,
respectively) is the absolutely continuous (singular, respectively) part with respect to the L1�Hd�1

measure on Œ0; T � � � , we then have

Tau 2 L
1
�
Œ0; T � � �

�
; (2.22)

Ta.t; x/ 2 ˇ
�
u.t; x/

�
for a.e. .t; x/ 2 Œ0; T � � �; (2.23)

hh�; uii �

Z T

0

Z
�

Tau dxdt D sup

( Z T

0

Z
�

� dTs; � 2 C
�
Œ0; T � � �

�
; � 2 Œ�1; 1�

)
: (2.24)

In other words, the absolutely continuous part Ta of T satisfies the constraint pointwise (in view of
(2.23)), while the singular part Ts is characterized by (2.24).

Moreover, it could be said more about condition (2.24), in the case that j D IŒ0;C1/. Namely,
denoting by Ts D �jTsj the polar decomposition of Ts , where jTsj is the total variation of Ts ,
following the lines of [14, Thm. 3] one may prove that

� 2 @IŒ0;C1/
�
Œu� � n

�
jTsj � a.e. in Œ0; T � � �: (2.25)

This means that the singular part of T is supported on the set where Œu� �n D 0 and that here it holds
� D �1. In some sense, also the singular part of T is partially reminiscent of the expression of the
operator ˇ.
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Actually, the characterization (2.25) is proved in [14] in the case when H is replaced byH 1
0 .˝/,

with ˝ a bounded domain of RN , and may be likely extended to the present situation. We drop the
proof since it would be much technical and of low interest.

2.2 Approximation of J

For all � 2 .0; 1/, we introduce the convex and lower semicontinuous map j � , the Moreau-Yosida
regularization of j . As for j , we set

ˇ� WD @j �;

the Yosida approximation of ˇ, and recall that ˇ� is globally ��1-Lipschitz continuous
Similarly to J , we introduce the functional J � on L2.� / as

J �.v/ WD

Z
�

j �.v/dx v 2 L2.� /; (2.26)

where again the value may well be C1 if j �.v/ … L1.� /. Similarly the functionals J� and J�t on
L2.Œ0; T �; L2.� // and L2.Œ0; t �; L2.� // are defined by

J�.v/ WD

Z T

0

Z
�

j �.v/dxds J�t .v/ WD

Z t

0

Z
�

j �.v/dxds; (2.27)

respectively. The operator @J� , subdifferential of J� , is readily defined as

L2
�
Œ0; T � � �

�
3 v belongs to @J�.u/, J�.w/ � J�.u/ > ..v; w � u//� ;

for all w 2 L2.Œ0; T � � � /; (2.28)

and similarly @J�t , the subdifferential of J�t . Also in this situation the operators @J � , @J� , and @J�t ,
coincide with the operator ˇ� pointwise, that is, v 2 @J�.u/ if and only if v.t; x/ 2 ˇ�.u.t; x// for
a.e. .t; x/ 2 Œ0; T � � � .

Lemma 2.1 The operators J � (J� , and J�t ) converge to J (J and Jt , respectively) in the sense of
Mosco-convergence in L2.� / (L2.Œ0; T � � � / and L2.Œ0; t � � � /, respectively).

The proof of this is a consequence of the fact that j � % j pointwise and of [1, Theorem 3.20].
We are now interested in restricting the operators J� to the space H and looking at their

subdifferential in this new topology. First, the following can be said.

Lemma 2.2 There holds:

(a) The function ˇ� is a monotone operator from H into H0.
(b) For all u 2 H, the function ˇ�.u/ belongs to the subdifferential of J� at u (denoted by @HJ�),

seen as an operator from H into H0 (actually, @HJ� is univalued and @HJ� D ˇ�).

Proof. To prove (a), we see that if v 2 H it results ˇ�.v/ 2 L2.Œ0; T �; L2.� // � H0 thanks to the
Lipschitz continuity of ˇ� . Moreover, ˇ� is a monotone operator on L2.Œ0; T �; L2.� //, so that for
all u; v 2 H

hhˇ�.u/ � ˇ�.v/; u � vii� D ..ˇ�.u/ � ˇ�.v/; u � v//� > 0:
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Let us prove (b). By definition, ˇ�.u/ belongs to the subdifferential of J� at u as an operator on
L2.Œ0; T �; L2.� //. Thus we have

hhˇ�.u/; v � uii� D ..ˇ�.u/; v � u//� 6 J�.v/ � J�.u/;

for all v 2 H, and the thesis follows.

Now the desired approximation property of J� is expressed by the following fact.

Lemma 2.3 The monotone operators ˇ� D @HJ� converge to the maximal monotone operator
@HJ D ˇw in the sense of graphs, i.e.,

8Œx; y� 2 ˇw 9Œx�; y�� 2 ˇ� such that Œx�; y��! Œx; y�;

where the convergence is intended with respect to the strong topology of H �H0.

The proof is obtained thanks to the monotonicity of the functionals J� , and then owing to [1,
Theorem 3.20] and [1, Theorem 3.66].

It is straightforward that Lemmas 2.2 and 2.3 apply also the the operators ˇ�t and ˇw;t , for every
fixed t 2 Œ0; T �.

The following Lemma will be crucial to prove our main result:

Lemma 2.4 Let the monotone operatorsAn tends to the maximal monotone operatorA in the sense
of graphs (operators from H into 2H0 ). Let vn * v weakly in H, �n * � weakly in H0, and assume
�n 2 An.vn/. If

lim suphh�n; vnii� 6 hh�; vii� ;

then � 2 A.v/.

Proof. The proof is an adaptation of [1, Proposition 3.59]. Since An tends to A in the graphs sense,
for all Œx; y� 2 A there exists a sequence Œxn; yn� tending to Œx; y� strongly in H � H0. Then, by
monotonicity of An, we have

hh�n � yn; vn � xnii
� > 0: (2.29)

Passing to the limit we get

lim suphh�n; vnii� > hhy; xii; (2.30)

and so by hypothesis, hh�; vii� > hhy; xii� , which is equivalent to

hh� � y; v � xii� > 0:

Now the thesis follows by the arbitrariness of Œx; y� 2 A and the maximality of A.

REMARK 2.5 Let us remark that all the previous results do not appeal to the specific definition of
the space H. Indeed they hold true for a general Hilbert space H, provided that H � L2 � H0 is
an Hilbert triple, i.e., the duality pairing between H0 and H satisfies hhv; uii D ..v; u// whenever
v 2 L2.
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3. Weak formulation

We are now in position to define the notion of local solution to Problem (1.3).

DEFINITION 3.1 Let T > 0, let ˝ and Q̋ as in (2.1), let u0; v0 2 V , z0 2 Z, and L 2
L2.Œ0; T �; V 0/. Then we say that a triple .u; z; �/ is a weak solution to (1.3) on Œ0; T � with initial
conditions u0, v0, and z0, if

u 2 H 1
�
Œ0; T �; V

�
\W 1;1

�
Œ0; T �; L2.˝/

�
; (3.1a)

Pu 2 H 1
�
Œ0; T �;H�1. Q̋ /

�
\ BV

�
Œ0; T �; QH�2.˝/

�
; (3.1b)

z 2 L1
�
Œ0; T �;Z

�
\ BV

�
Œ0; T �; L1.� /

�
; (3.1c)

� 2 H0; (3.1d)

is such that u.0/ D u0, Pu.0/ D v0, z.0/ D z0, and satisfies conditions (a), (a0), (a00), (b), (b0), and
(c) below.

(a) The following weak equation of motion holds: for all ' 2 V we have

� .. Pu; P'//C . Pu.T /; '.T //C ..r Pu;r'//C ..ru;r'//C hh�; Œ'� � �ii�

D .v0; '.0//C hhL; 'ii � ..zŒu�; Œ'�//
� : (3.2)

Moreover

hh Ru; 'ii C ..r Pu;r'//C ..ru;r'// D hhL; 'ii; (3.3)

for all ' 2 H 1.Œ0; T �;H 1
0 .
Q̋ //, for all t 2 Œ0; T �.

(a0) The following restricted weak equations of motion holds: for all t 2 Œ0; T � there exists �t 2
H0t \H0 such that

� .. Pu; P'//t C
�
Pu.t/; '.t/

�
C ..r Pu;r'//t C ..ru;r'//t C hh�t ; Œ'� � �ii

�
t

D .v0; '.0//C hhL; 'iit � ..zŒu�; Œ'�//
�
t ; (3.4)

for all ' 2 Vt . Moreover �t satisfies the property that, for all ' 2 Ht with '.t/ D 0, we have

hh�t ; 'ii
�
t D hh�; Q'ii

� ; (3.5)

where Q' denotes the extension to H of ' 2 Ht such that '.s/ D 0 for s 2 Œt; T �.
(a00) We have

� 2 ˇw.Œu� � �/; (3.6)

and for all t 2 Œ0; T � it also holds

�t 2 ˇw;t .ŒuxŒ0;t�� � �/: (3.7)

(b) for almost every x 2 � the function t 7! z.t; x/ is nonincreasing and

z.x/ > 0 for a.e. x 2 �; (3.8)
1

2

ˇ̌
Œu.t; x/�

ˇ̌2
> ˛.x/ ) z.t; x/ D 0 for a.e. x 2 � (3.9)

for all t 2 Œ0; T �.
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(b0) for all times t1 and t2 with 0 6 t1 < t2 6 T it holdsZ
�

z.t2/
�1
2

ˇ̌�
u.t2/

�ˇ̌2
� ˛

�
dx �

Z
�

z.t1/
�1
2

ˇ̌�
u.t1/

�ˇ̌2
� ˛

�
dx

�

Z t2

t1

Z
�

zŒu� � Œ Pu�dxdt D 0: (3.10)

(c) the following energy inequality holds

1

2
k Pu.t2/k

2
C J

��
u.t2/

�
� �
�
C

�
V
�
u.t2/

�
; z.t2/

��
C
1

2

ru.t2/2
C

Z t2

t1

kr Puk2ds �
�
˛; z.t2/

�
�
C
�
˛; z.t1/

�
�

6
1

2

 Pu.t1/2 C J ��u.t1/� � ��C �V �u.t1/�; z.t1/�� C 1

2

ru.t1/2
C

Z t2

t1

hL; Puids; (3.11)

for a.e. t1; t2 2 Œ0; T �, t1 < t2.

Notice that the definition above is given for a generic external load L that can also have (but not
necessarily) the form (2.13).

3.1 The approximate problem

In this section we introduce the energetic formulation of the approximate problem (1.5). Also for
the approximate problem we restrict our attention to the homogeneous Dirichlet condition

u� D 0 on @D˝ � Œ0; T �: (3.12)

DEFINITION 3.2 Let us fix � 2 .0; 1/, let .u0; v0; z0/ 2 V � V � Z, and L 2 L2.Œ0; T �; V 0/. A
couple .u�; z�/ satisfying

u� 2 H 1
�
Œ0; T �; V

�
\W 1;1

�
Œ0; T �; L2.˝/

�
; (3.13a)

Pu� 2 H 1
�
Œ0; T �; V 0

�
; (3.13b)

z� 2 L1
�
Œ0; T �;Z

�
\ BV

�
Œ0; T �; L1.� /

�
; (3.13c)

is called a weak (energetic) solution to Problem (1.5) if u�.0/ D u0, Pu�.0/ D v0, z�.0/ D z0, and
the three following conditions hold:

(a�) for every time t 2 Œ0; T �, it holds

� .. Pu�; 't //t C
�
Pu�.t/; '.t/

�
C ..r Pu�;r'//t C ..ru

�;r'//t C ..ˇ
�.Œu�� � �/; '//�t

D
�
u1; '.0/

�
C hhL; 'iit � ..z

�Œu��; Œ'�//�t ; (3.14)

for all ' 2 Vt .
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(b�) for almost every x 2 � the function t 7! z�.t; x/ is nonincreasing and

z�.x/ > 0 for a.e. x 2 �; (3.15)

V
��
u�.t; x/

��
> ˛.x/ ) z�.t; x/ D 0 for a.e. x 2 � (3.16)

for all t 2 Œ0; T �.
(c�) the following energy balance holds

1

2

 Pu�.t/2 C J ���u�.t/� � ��C �V �Œu��.t/�; z�.t/�� C 1

2

ru�.t/2
C

Z t

0

kr Pu�k2ds �
�
˛; z�.t/

��
D
1

2
kv0k

2
C J �

�
Œu0� � �

�
C

�
V
�
Œu0�

�
; z0

��
C
1

2
kru0k

2
� .˛; z0/

�
C hhL; Pu�iit (3.17)

for all t 2 Œ0; T �.

Note that, thanks to (3.13a) and (3.13b), equation (3.14) can also be written in the standard form

hh Ru�; 'ii C ..r Pu�;r'//t C ..ru
�;r'//t C ..ˇ

�.Œu�� � �/; Œ'�//�t D hhL; 'iit � ..z
�Œu��; Œ'�//�t ;

(3.18)

for all ' 2 V, for all t 2 Œ0; T �.

REMARK 3.3 Condition (b�) only ensures that (1.5d) and (1.5e) hold. Equation (1.5f) is not explicit,
but the presence of both (b�) and (c�) ensures that it is satisfied in a weak sense. In fact (b�) and
(c�) imply that for all times t1 and t2 with 0 6 t1 < t2 6 T it holdsZ

�

z�.t2/
�1
2

ˇ̌
Œu�.t2/�

ˇ̌2
� ˛

�
dx �

Z
�

z�.t1/
�1
2

ˇ̌�
u�.t1/

�ˇ̌2
� ˛

�
dx

�

Z t2

t1

Z
�

z�Œu�� � Œ Pu��dxdt D 0: (3.19)

Equation (3.10) can be seen exactly as the integration by parts in time of (1.5f).

The existence of energetic solutions to problem (1.5) is standard. It can be carried out following
the lines of the proof of existence of energetic solutions of the problem in [26, Definition 2.1]. We
do not give a detailed proof, referring to [26, Appendix] and references therein for further detail.
Here we just recover some fundamental steps in order to highlight the small differences between
the cited case and our. The argument consists in a time discretization procedure and a variational
implicit scheme as described below. To simplify notation in the rest of this section we drop the label
�.

For all integer n > 0 we divide the interval Œ0; T � in n equal subintervals of length � WD T=n.
We set tni WD i� ,

un0 D u0; un�1 WD u0 � �v0; zn0 WD z0;
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and define Lni WD
1
�

R tn
iC1

tn
i

L.s/ds for all n > 0. Then for 1 6 i 6 n we recursively define uni 2 V
as a minimizer of

U ni .u/ WD
1

2

u � uni�1
�

�
uni�1 � u

n
i�2

�

2 C 1

2
kruk2 C

1

2�
kru � runi�1k

2

C J �
�
Œu� � �

�
C

�
V
�
Œu�
�
; zni�1

��
� hgni ; ui; (3.20)

and zni 2 Z as the minimizer of

W n
i .z/ WD

�
V
�
Œuni �

�
; z
��
� .˛; z � zni�1/

� ; (3.21)

among the class of all z 2 L2.�; Œ0; 1�/ such that z 6 zni�1. Computing variations at these
minimizers we find out�uni � uni�1

�
�
uni�1 � u

n
i�2

�
; '
�
C .runi ;r'/C

�
runi � ru

n
i�1

�
;r'

�
C

�
ˇ�
�
Œuni � � �

�
; Œ'�

��
C
�
Œuni � � Œ'�; z

n
i�1

��
� hLni ; 'i D 0; (3.22)

for all ' 2 V , while Z
�\fzn

i
>0g

V
�
Œuni �

�
�dx �

Z
�\fzn

i
>0g

˛�dx > 0; (3.23)

for all � 2 L2.� /, � 6 0, and �
V
�
Œuni �

�
; �
��
� .˛; �/� D 0; (3.24)

if � is such that, for some � > 0, zni ˙ �� 2 Œ0; zi�1� a.e. in � . The minimality of zni implies also�
V
�
Œuni �

�
; zni � z

n
i�1

��
� .˛; zni � z

n
i�1/

� 6 0: (3.25)

Now, standard a-priori bounds are provided for the functions u� , z� , and v� , defined as the unique
piecewise affine (on Œtnj�1; t

n
j � for all j D 1; : : : ; n) maps satisfying u� .tnj / D u

n
j , z� .tnj / D z

n
j , and

v� .t
n
j / D v

n
j WD

1
�
.unj � u

n
j�1/, for all j D 1; : : : ; n. In particular we find

u� * u weakly in H 1
�
Œ0; T �; V

�
; (3.26a)

u� .t/ * u.t/ weakly in V; for every t 2 Œ0; T �; (3.26b)

z� * z weakly* in L1
�
Œ0; T �; L2.� /

�
; (3.26c)

as � ! 0. Moreover Pu 2 H 1.Œ0; T �; V 0/, z 2 BV.Œ0; T �; X 0/ for any Banach space X such that
L1.� / � X 0, t 7! z.t; x/ is nonincreasing, and

v� * Pu weakly* in L1
�
Œ0; T �;H

�
; (3.26d)

Pv� * Ru weakly in L2
�
Œ0; T �; V 0

�
; (3.26e)

z� * z weakly* in BV
�
Œ0; T �; X 0

�
; (3.26f)

z� .t/ * z.t/ weakly* in L1.� / for every t 2 Œ0; T �: (3.26g)
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To deduce (3.26e) we argued by comparison in (3.22) and used the fact that, for fixed �, the function
jˇ�.s/j has linear growth in s. Condition (3.22) is easily seen to pass to the limit in an integral form,
thus providing condition (a�). Condition (b�) is proved in the following Lemma:

Lemma 3.4 Condition (b�) holds for .u; z/ in (3.26).

Proof. Since u� � u� is bounded in H 1.Œ0; T �;W 1;q.˝// for q < d
d�1

, we can assume

Œu� � � Œu� �! Œu� � Œu� strongly in L2
�
Œ0; T �; Lr .� /

�
; (3.27)

for r < d�1
d�2
D 2 if d D 3, or r < C1 if d 6 2. Let Ou� and Oz� be the piecewise constant maps on

Œ0; T � such that Ou� .t/ D uni�1 and Oz� .t/ D zni�1 for all t 2 Œti�1; ti / and i D 1; : : : ; n � 1. Hence it
is not difficult to see that, up to a further subsequence, it holds

Œ Ou� � � Œ Ou� �! Œu� � Œu� strongly in L2.Œ0; T �; Lr .� //; (3.28a)

Oz� * z weakly* in L1
�
Œ0; T �; L2.� /

�
; (3.28b)

Oz� * z weakly* in BV
�
Œ0; T �; X 0

�
; (3.28c)

Oz� .t/ * z.t/ weakly* in L1.� / for every t 2 Œ0; T �: (3.28d)

Conditions (3.23) and (3.24) are equivalent toZ
�\fOz� .t/>0g

V
��
Ou� .t/

��
�dx �

Z
�\fOz� .t/>0g

˛�dx > 0; (3.29)

for all � 2 L2.� /, � 6 0, and �
V
��
Ou� .t/

��
; �
��
� .˛; �/� D 0; (3.30)

if � is such that, for some � > 0, zni ˙ �� 2 Œ0; z
n
i�1�, for t 2 Œti�1; ti /.

Moreover there exists � 2 L1.Œ0; T � � � / such that

�f Oz�>0g * � weakly* in L1
�
Œ0; T � � �

�
: (3.31)

Thus from this, (3.28a), and (3.29), we infer

..V .Œu�/; � //� � ..˛; � //� ;> 0 (3.32)

for all  2 L2.Œ0; T �; L2.� //,  6 0. Let us show that f� > 0g � fz > 0g; from this and the
arbitrariness of  we will obtain that

V
��
u.t; �/

��
6 ˛.�/ a.e. on the set

˚
z.t/ > 0

	
; (3.33)

for a.e. t 2 Œ0; T �. To this aim set A WD f.t; x/ 2 Œ0; T ��� W 0 D �.t; x/ < z.t; x/g. Using (3.28b),
by Fubini and the Dominated Convergence Theorem, and then by the fact that Oz� 6 1, we find

0 6
Z
A

zdxdt D lim
�!0

Z
A

Oz�dxdt 6
Z
A

�f Oz�>0gdxdt D

Z
A

�dxdt;

which proves that jAj D 0 and the claim follows.
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To prove (c�) we first test (3.22) by ' D uni � u
n
i�1, then sum the obtained expression with

(3.25). Hence, summing over i D 1; : : : ; n, we obtain the approximate energy inequality

1

2
kv� .T /k

2
�
1

2
kv0k

2
C
�

2

Z T

0

k Pv�k
2dt C

1

2
kru� .T /k

2

�
1

2
kru0k

2
C
�

2

Z T

0

kr Pu�k
2ds C

Z T

0

kr Pu�k
2ds C J �.Œu.T /� � �/ � J �

�
Œu0� � �

�
� .˛; z� .T //

�
C .˛; z0/

�
C

�
V
��
u� .T /

��
; z� .T /

��
� .V .Œu0�/; z0/

�

6 hhL� ; Pu� ii C ..Œu� � � Œ Pu� � � Œ Ou� � � Œ Pu� �; Oz� //� : (3.34)

Passing to the limit in the last formula, where it is easily seen that the third and sixth terms in the
left-hand side, and the last term in the right-hand side, tend to 0, we get (c�) with 6. To prove the
opposite inequality the arguments are standard and we address to [26, Appendix] and references
therein.

4. Existence result

In this section we state and prove our main result, which provides the existence of solutions as in
Definition 3.1.

Theorem 4.1 Let T > 0, u0; v0 2 V , z0 2 L2.�; Œ0; 1�/, L 2 L2.Œ0; T �; V 0/, then there exists
.u; z; �/ a local solution of (1.3) in the sense of Definition 3.1.

For all � 2 .0; 1/ let .u�; z�/ be an approximate solution of Problem (1.3), as given in
Definition 3.2. Now we divide the proof in several steps.

Step 1. The following apriori estimates for the approximate solutions .u�; z�/ hold true. There
exists a constant M > 0 such that

ku�kH1.Œ0;T �;V / 6 M; (4.1a)

kukW 1;1.Œ0;T �;H/ 6 M; (4.1b)

k Pu�kW 1;1.Œ0;T �; QH�2.˝// 6 M; (4.1c)

k Ru�kL2.Œ0;T �;H�1. Q̋ // 6 M; (4.1d)

kz�kL1.Œ0;t�;Z/ 6 M; (4.1e)
kz�kBV.Œ0;T �;L1.� // 6 M: (4.1f)

kˇ�.Œu�� � �/kL1.Œ0;T �;L1.� // 6 M; (4.1g)

for all � 2 .0; 1/. Moreover ˇ��Œu�� � ��
H0
C
ˇ��Œu�� � ��

V0
6 M; (4.2)

and for all t 2 Œ0; T � ˇ��Œu�� � ��x.0;t/H0t
C
ˇ��Œu�� � ��x.0;t/V0t

6 M; (4.3)

for all � 2 .0; 1/.
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Proof. For all � 2 .0; 1/ the energy balance (c�) of Definition 3.2 implies

1

2

 Pu�.t/2 C J ���u�.t/� � ��C �V �Œu��.t/�; z�.t/�� C 1

2

ru�.t/2 C kr Pu�k2
L2.Œ0;t��˝/

C
�
˛; z0 � z

�.t/
��

D C0 C hhL; Pu
�
iit 6 C0 C

1

2
kLk2

L2.Œ0;t�;V 0/
C
1

2
k Pu�k2

L2.Œ0;t�;V /

D C1 C
1

2
k Pu�k2

L2.Œ0;t��˝/
C
1

2
kr Pu�k2

L2.Œ0;t��˝/
; (4.4)

whereC0 WD 1
2
ku1k

2C.V .Œu�0�/; z
�
0/
�CJ �.Œu0���/dxC

1
2
kru0k

2, andC1 WD C0CkLk2L2.Œ0;t�;V 0/:
From (4.4) we obtain k Pu�.t/k2 6 C.1 C k Pu�k2

L2.Œ0;t��˝/
/; and the Gronwall Lemma implies that

there exists a constant M > 0 such that Pu�.t/2 6 M for all t 2 Œ0; T �; (4.5a)

for all � 2 .0; 1/, and hence (4.1b) holds. Note that M is a positive constant depending on the
problem data, but independent of �. From (4.4) we also get

ku�kH1.Œ0;T �;V / 6 M; (4.5b)

J �.Œu�.t/� � �/ 6 M for all t 2 Œ0; T �; (4.5c)�
V
�
Œu��.t/

�
; z�.t/

�
6 M for all t 2 Œ0; T �; (4.5d)

kz�kL1.Œ0;t�;Z/ 6 M; (4.5e)

for all � 2 .0; 1/. Thanks to the monotonicity of z� and (2.16), the boundedness of the term .˛; z0�

z.t// D
R t
0
.˛; Pz�/ds, implies (4.1f). Moreover we findT �z�.t/; u�.t/�

V 0
6 M for all t 2 Œ0; T �; : (4.5f)

Let now  2 H
1
2 .� IRd / be a test function such that  � � D 1 on the whole � . Let ' be the

extension of  on˝1 defined as ' WD S1. / (see (2.11)), so that ' 2 V . Let us set 	.t; x/ WD '.x/
for all t 2 Œ0; T � and x 2 ˝. Then we test (3.2) by ' D uC ı	 , with ı 2 .0; 1/. We obtain (recall
' D 0 on ˝2)

�
Pu�.T /; u�.T /

�
� .u�1; u

�
0/�

Z T

0

k Pu�k2dtC

Z
˝1

ıu�.t/ �	dx�

Z
˝1

ıu�0 �	dxC

Z T

0

kru�k2dt

C
1

2

ru�.T /2 � 1
2

ru�02 C Z T

0

Z
˝1

ıru� � r	dxdt C

Z
˝1

ıru�.T / � r	dxdt

�

Z
˝1

ıru�0 � r	dxdt C

Z T

0

Z
�

ˇ�
�
Œu�� � �

��
Œu�� � � � ı

�
dxdt C ..z�; ju�j2 � ıu� � �//�

D hhL; u�ii C hhL; ı	 ii:
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Thus, since jˇ�.x/j 6 ı�1jˇ�.x/.x � ı/j for � 2 .0; 1/, it follows

ı

Z T

0

Z
�

jˇ�
�
Œu�� � �

�
jdxdt

6
Z T

0

kz�k2dt C
1

2

Z T

0

Œu��4
L4.� /

dt C
1

2

Z T

0

Œu�� � �2dt 1
2

 Pu�.T /2
C
1

2

u�.T /2 C Z T

0

 Pu�2dt C Z T

0

ru�2dt C 1

2

ru�.T /2
C
1

2

Z T

0

ru�
2
dt C

1

2

ru�.T /2 C 1

2

Z T

0

kLk2V 0dt C
1

2

Z T

0

ku�k2V dt

C

Z T

0

hL; ı	 idt C C1 6 C2; (4.6)

for some constant C1; C2 > 0 independent of � 2 .0; 1/. Here we have used the Young inequality
in the first estimate and the estimates obtained so far in the last one. This entails (4.1g). Thanks to
the continuity of the embedding L1.� / � H�

3
2 .� /, valid for d 6 3, the continuity of the trace,

together with (3.14), implies that

k Ru�kL1.Œ0;T �; QH�2.˝// 6 M; (4.7)

so that (4.1c) follows. Moreover, arguing by comparison in (3.18) with ' 2 H 1.Œ0; T �;H 1
0 .
Q̋ //

(i.e., Œ'� D 0), estimate (4.1a) implies (4.1d).
Let us now prove (4.2) and (4.3). For every ' 2 H let ˚.t; �/ WD S1.'.t// 2 V , so that

˚ 2 H 1.Œ0; T �; V /. Since ˚ 2 V, from (3.14) we writeˇ̌
hhˇ�.Œu�� � �/; 'iit

ˇ̌
6 k Pu�kL2.Œ0;t��˝/k P̊ kL2.Œ0;t��˝/ C k Pu�.t/kk'.t/kH C ku�1kk˚.0/k

C kr Pu�kL2.Œ0;t��˝/kr˚kL2.Œ0;t��˝/ C kru
�
kL2.Œ0;t��˝/kr˚kL2.Œ0;t��˝/

C kT .z�; u�/kL2.Œ0;t�;V 0/k˚kL2.Œ0;t�;V / C kLkL2.Œ0;t�;V 0/k˚kL2.Œ0;t�;V /

6 C1k˚kVt 6 Ck'kHt ; (4.8)

for all ' 2 H, where we have used (4.1b), (4.1a), (4.5f), and the continuity of the map S1. This
shows that ˇ��Œu�� � ��x.0;t/H0t

6 M for all t 2 Œ0; T �; (4.9)

and in particular ˇ��Œu�� � ��
H0

6 M; (4.10)

for all � 2 .0; 1/. If we repeat the argument in (4.8) with an arbitrary extension ˚ 2 V of ', we see
that estimates (4.9) and (4.10) hold also in the spaces V0t and V0, respectively, i.e.ˇ��Œu�� � ��x.0;t/V0t

6 M for all t 2 Œ0; T �; (4.11)ˇ��Œu�� � ��
V0

6 M; (4.12)

for all � 2 .0; 1/. This concludes the proof of Step 1.
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Step 2. There exist .u; z; �/ satisfying (3.1) such that, for a subsequence of � ! 0,

u� * u weakly in H 1
�
Œ0; T �; V

�
and weakly* in W 1;1

�
Œ0; T �;H

�
; (4.13a)

Pu� ! Pu strongly in L2
�
Œ0; T �;H

�
and weakly in H 1

�
Œ0; T �;H�1. Q̋ /

�
; (4.13b)

Pu�.t/ * u.t/ weakly in QH�2.˝/ for all t 2 Œ0; T �; (4.13c)
z�.t/ * z.t/ weakly* in L1.� / for all t 2 Œ0; T �; (4.13d)
ˇ�.Œu�� � �/ * � weakly in H0 and V0; (4.13e)

with

z 2 BV
�
Œ0; T �; L1.� /

�
: (4.13f)

Moreover (a) is satisfied, and for all t 2 Œ0; T / there exists �t 2 Ht such that, for the same
subsequence,

ˇ�
�
Œu�� � �

�
x.0;t/* �t weakly in H0t and V0t ; (4.14)

with �t satisfying (a0).

Proof. From (4.1a), (4.1d), (4.1e), and (4.1f), we deduce that there exist u 2 H 1.Œ0; T �; V / and
z 2 L1.Œ0; T �;Z/ \ BV.Œ0; T �IL1.� // such that, for a subsequence of � tending to 0,

u� * u weakly in H 1
�
Œ0; T �; V

�
; (4.15a)

u� * u weakly* in W 1;1
�
Œ0; T �;H

�
; (4.15b)

Pu� * Pu weakly* in H 1
�
Œ0; T �;H�1. Q̋ /

�
; (4.15c)

z� * z weakly* in L1
�
Œ0; T �; L2.� /

�
; (4.15d)

z 2 BV
�
Œ0; T �; L1.� /

�
; (4.15e)

and in particular

u�.t/! u.t/ strongly in H for all t 2 Œ0; T �; (4.15f)
u�.t/ * u.t/ weakly in V for all t 2 Œ0; T �: (4.15g)

Moreover, the continuity of the trace from V to H
1
2 .�;Rd / and the compactness of the embedding

H
1
2 .�;Rd / � Lr .�;Rd /, for all r < 2.d�1/

d�2
, imply that

Œu��! Œu� strongly in L2
�
Œ0; T �; L2.�;Rd /

�
; (4.15h)�

u�.t/
�
!
�
u.t/

�
strongly in Lr .�;Rd / for all t 2 Œ0; T �: (4.15i)

Similarly, by (4.15g), we find that

T .z�; u�/! T .z; u/ weakly in V0;

T
�
z�.t/; u�.t/

�
! T

�
z.t/; u.t/

�
weakly in V 0 for all t 2 Œ0; T �: (4.15j)
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Condition (4.1c) implies that Pu� are functions uniformly bounded in BV.Œ0; T �; QH�2.˝//. We
can then employ a generalization of Helly Theorem [8, Lemma 7.2], providing a function v 2
BV.Œ0; T �; QH�2.˝// such that

Pu�.t/ * v.t/ weakly in QH�2.˝/ for all t 2 Œ0; T �:

Since (4.15c) holds, we can identify v with Pu, everywhere on Œ0; T �. Moreover condition (4.1b)
entails that such convergence must hold in H , i.e.,

Pu�.t/ * Pu.t/ weakly in H for all t 2 Œ0; T �: (4.15k)

By (4.1f), again the Helly selection principle implies

z�.t/ * z.t/ weakly* in L1.� / for all t 2 Œ0; T �: (4.15l)

Since V is compactly embedded in H , thanks to condition (4.1a) and (4.1c), we can apply [30,
Corollary 4] with X D V , B D H , Y D QH�2.˝/, and p D 2, in order to obtain that

Pu� ! Pu strongly in L2
�
Œ0; T �;H

�
: (4.15m)

Besides, condition (4.10) and (4.12) imply that, up to a subsequence,

ˇ�
�
Œu�� � �

�
* � weakly in H0 and in V0; (4.15n)

for some � 2 H0. We have obtained (4.13). Let us now define �t as the element of H0\H0t such that

hh�t ; 'ii WD .. Pu; P̊ //t �
�
Pu.t/; ˚.t/

�
C
�
u1; ˚.0/

�
� ..r Pu;r˚//t

..ru;r˚//t C hhT .z; u/; ˚iit C hhL; ˚iit ; (4.16)

where again ˚ WD S1.'/ is the extension of ' to ˝ � Œ0; T � obtained by the map S1 in (2.11),
in such the way that ˚ 2 V and Œ˚.t/� D '.t/ for all t 2 Œ0; T �. It is easy to check that, by the
same estimates as in (4.8), the map �t belongs to H0 \H0t and it can be identified as an element of
V0 \ V0t . Now, convergences (4.15) imply that we can pass to the limit in (3.14), so that (with no
need of extracting a further subsequence)

ˇ�
�
Œu�� � �

�
x.0;t/* �t weakly in H0 and V0 for all t 2 Œ0; T �: (4.17)

Moreover the same limit takes place in the weak topology of H0t and V0t . In particular we have
obtained equations (3.2) and (3.4). In the case that ' 2 H 1.Œ0; T �;H 1

0 .
Q̋ // also equation (3.18)

passes to the limit thanks to (4.15c), providing (3.3).

Step 3. Conditions (b) and (b0) hold.

Proof. Let us first see that condition (b�) of Definition 3.2 passes to the limit. Since ju�j2 is bounded
in H 1.Œ0; T �;W 1;q/ for q < d

d�1
, we can assume, by (4.13a), thatˇ̌

Œu��
ˇ̌2
*
ˇ̌
Œu�
ˇ̌2 weakly in H 1

�
Œ0; T �;W 1�1=q;q.� /

�
; (4.18)
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so by Sobolev embeddingˇ̌
Œu��

ˇ̌2
!
ˇ̌
Œu�
ˇ̌2 strongly in L2

�
Œ0; T �; Lr .� /

�
; (4.19)

for r < d�1
d�2
D 2 if d D 3, or r < C1 if d 6 2. Moreover, since for all t 2 Œ0; T � it holds

jŒu�.t/�j2 * jŒu.t/�j2 weakly in W 1�1=q;q.� /, we also getˇ̌
Œu�.t/�

ˇ̌2
!
ˇ̌
Œu.t/�

ˇ̌2 strongly in Lr .� /: (4.20)

Thus we argue as in the proof of Lemma 3.4, obtaining (b).
We prove that also condition (3.19) passes to the limit. Thanks to (4.13d) and (4.20) it is easily

seen that for all t 2 Œ0; T � the convergence holdsZ
�

z�.t/
�1
2

ˇ̌
Œu�.t/�

ˇ̌2
� ˛

�
dx !

Z
�

z.t/
�1
2

ˇ̌
Œu.t/�

ˇ̌2
� ˛

�
dx:

In order to prove that for all t1 < t2 it holdsZ t2

t1

Z
�

z�Œu�� � Œ Pu��dxdt !

Z t2

t1

Z
�

zŒu� � Œ Pu�dxdt;

we first note that by (4.1f) we may apply the generalized Aubin-Lions Lemma [24, Corollary 7.9]
obtaining

z� ! z strongly in L2
�
Œ0; T �;W 1�1=q;q.� /0

�
; (4.21)

for some q < d
d�1

, where we have used that the compact and dense embeddingW 1�1=q;q.� / � Lr

implies Lr=.r�1/ � W 1�1=q;q.� /0 compactly for all 1 < r < dq�q
d�q

. Thus the thesis follows from
this and from (4.18).

Step 4. Condition (a00) holds true. Moreover we have

u� ! u strongly in L2
�
Œ0; T �; V

�
; (4.22)

u�.t/! u.t/ strongly in V for all t 2 Œ0; T �: (4.23)

Proof. In order to prove (a00) we apply Lemma 2.4 with v� D Œu�� � �, �� D ˇ�.Œu�� � �/, v D Œu� � �,
and � D �. Thanks to (4.13a) and (4.13e) it is sufficient to check that

lim sup
�!0

hhˇ�.u�/; u�ii� 6 hh�; uii� : (4.24)

Using (3.14), we write

hhˇ�
�
Œu�� � �

�
; Œu�� � �ii�

D

Z T

0

k Pu�k2dt �
�
Pu�.T /; u�.T /

�
C .v0; u0/ �

1

2
kru�.T /k2 C

1

2
kru0k

2

�

Z T

0

kru�k2dt � hhT .z�; u�/; u�ii C hhL; u�ii: (4.25)
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It is seen that

lim
�!0
hhT .z�; u�/; u�ii D

Z T

0

�
z�.t/; jŒu�.t/�j2

��
dt D

Z T

0

�
z.t/; jŒu.t/�j2

��
dt

D hhT
�
z.t/; u.t/

�
; Œu.t/�ii� ; (4.26)

thanks to (4.13d) and (4.19). Therefore thanks to (4.13a), (4.13b), (4.15g), (4.15k), (4.13b), and
(4.26), we see that the lim sup of (4.25) is less or equal toZ T

0

k Puk2dt �
�
Pu.T /; u.T /

�
C .v0; u0/ �

1

2
kru.T /k2 C

1

2
kru0k

2
�

Z T

0

kruk2dt

C hhT .z; u/; Œu�ii C hhL; uii D hh�; Œu� � �ii� ; (4.27)

by (3.2), and (4.24) is proved, i.e.,

� 2 ˇw
�
Œu� � �

�
: (4.28)

If we fix any t 2 Œ0; T � and repeat the previous limit (4.25) with T D t , thanks to (4.14), the same
argument shows that

�t 2 ˇw;t
�
Œux.0;t/� � �

�
: (4.29)

Now, thanks to the monotonicity of the operators ˇ� we have

hhˇ�
�
Œu�� � �

�
� �; Œu�� � � � Œu� � �ii� > 0;

hence passing to the limit we infer the opposite inequality in (4.24). In particular this implies that
the limit of the expression (4.25) is exactly (4.27), and then we obtain

lim
�!0
kru�k2

L2.Œ0;T ��˝/
D kruk2

L2.Œ0;T ��˝/

lim
�!0
kru�.t/k2 D kru.t/k2 for all t 2 Œ0; T �;

getting (4.22).

Step 5. The energy inequality (c) holds.

Proof. In order to obtain this we first write the approximate energy balance (3.17) for a couple of
times t1; t2 2 Œ0; T �, t1 < t2, and then let � ! 0. The convergences obtained so far show that all the
terms pass to limit but J �.u�.t// and

R T
0
kr Pu�kdt . Convergence (4.13a) readily inferZ T

0

kr Pukdt 6 lim inf
�!0

Z T

0

kr Pu�kdt;

and then it remains to prove the convergence of the term J �.u�.t// to J.u.t// for a.e. t 2 Œ0; T �.
The inequality

J
�
Œu.t/� � �

�
6 lim inf

�!0
J �
�
Œu�.t/� � �

�
: (4.30)

is true thanks to (4.15f) and to Lemma 2.1. Moreover it can be proved that the liminf in the right
hand side is actually a limit and that equality holds for a.e. t 2 Œ0; T �. The proof of this fact is
identical to the one in [5, Step 5], which we refer to. Therefore we can pass to the limit in (3.17) for
a.e. t1; t2 2 Œ0; T �, t1 < t2.
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4.1 Existence result: Nonhomogeneous case

We describe here how to obtain existence of local dynamic solutions as in Theorem 4.1 satisfying
a nonhomogeneous boundary condition. In order to impose a Dirichlet condition, we fix a map w
satisfying the following hypotheses

w 2 H 1
�
Œ0; T �;H 1. Q̋ /

�
\W 1;1

�
Œ0; T �; L2.˝/

�
; (4.31a)

Pw 2 H 1
�
Œ0; T �;H�1. Q̋ /

�
\ BV

�
Œ0; T �; QH�2.˝/

�
; (4.31b)

w.0/ D u0 Pw.0/ D v0 on @D˝: (4.31c)

Note that the condition w 2 H 1. Q̋ / implies Œw� D 0. Then the following theorem holds true.

Theorem 4.2 Let u0; v0 2 H 1.˝/, z0 2 L2.�; Œ0; 1�/, L 2 L2.Œ0; T �; V 0/, then for any w
satisfying hypotheses (4.31), there exists a triple .u; z; �/ with

u � w 2 H 1
�
Œ0; T �; V

�
\W 1;1

�
Œ0; T �; L2.˝/

�
; (4.32a)

Pu 2 H 1
�
Œ0; T �;H�1. Q̋ /

�
\ BV

�
Œ0; T �; QH�2.˝/

�
; (4.32b)

z 2 L1
�
Œ0; T �;Z

�
\ BV

�
Œ0; T �; L1.� /

�
; (4.32c)

� 2 H0; (4.32d)

such that u.0/ D u0, Pu.0/ D v0, z.0/ D z0, satisfying the conditions (a), (a0), (a00), (b), (b0) of
Theorem 4.1, and the following energy inequality

(c0) for a.e. t1 < t2 2 Œ0; T � it holds

1

2

 Pu.t2/ � Pw.t2/2H C J��u.t2/� � ��C �V �u.t2/�; z.t2/�� C 1

2

ru.t2/2
C

Z t2

t1

kr Puk2ds �
�
˛; z.t2/

�
�

6
1

2

 Pu.t1/ � Pw.t1/2 C J��u.t1/� � ��C �V �u.t1/�; z.t1/��
C
1

2

ru.t1/2 � .˛; z0/� C Z t2

t1

.�;r Pw/ds C

Z t2

t1

hL � Rw; Pu � Pwids; (4.33)

with � D ruCr Pu.

Let us remark that the boundary condition

u.t/ D w.t/ a.e. on @D˝; for all t 2 Œ0; T �; (4.34)

is implicit in condition (4.32a).
The technique of the proof is standard and we only sketch it. We apply Theorem 4.1 with external

force L replaced by QL WD L � Rw C�w C� Pw 2 L2.Œ0; T �; V 0/; hence providing a triple . Qu; Qz; �/
which is a weak local solution as in Definition 3.2, with homogeneous Dirichlet condition. Setting
u WD QuC w and observing that Œu� D Œ Qu� since Œw� D 0, conditions (a), (a0), (a00), (b), (b0) readily
follow, as far as (4.32), and then (4.34). In order to obtain (c0) we must argue in a different way,
following the lines of the proof of (c) in Theorem 4.1. This relies in letting � go to 0 in the energy
balance of the approximate solution Qu� , and dealing with some elementary algebra.
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5. Concluding remarks

Within this paper we have proved the existence of a solution to Problem 1.3 in a weak form. In
particular, as we have seen, this weak form involves an equation of motion written in duality with
test functions in the space V WD L2.0; T IV / \ H 1.0; T IH/. Notice that this space is a space
of functions in both the time and space variables. To the present stage, it seems very difficult to
find a stronger formulation involving the duality with a space of test functions independent of time.
This is due to the fact that the reaction term � is found only as an element of V0, and in particular
might be a measure concentrated in some discrete time set. The presence of such concentration
phenomenon is quite intuitive in the one dimensional case, where we might imagine that the two
bodies (strings) are separate and collide in a precise instant, after which they separate again. The
instant of collision is the only one where the reaction is nonzero, and then concentrated. On the other
hand, the presence of such concentration points being the only responsible for the discontinuities
of the velocity field Pu, cannot be apriori ruled out, as shown in the example of [5, Remark 2.4]. In
this paper the authors treat a general evolution driven by a damped wave equation with unilateral
constraint, which, neglecting the internal variable z, overlap also the situation considered in the
present paper.

Another consequence of this concentration phenomenon, and then of the discontinuities of the
velocity field, is the difficulty to establish an energy balance. This is somehow due to the fact that
we cannot test equation (3.2) by ' D Pu, since this does not belong to V. On the other hand it
is reasonable to claim the existence of solutions satisfying the energy balance, and to consider
them as the “physically admissible” ones (in the specific example in [5, Remark 2.4] it is shown
as there exist more then one solutions, some of them satisfying the energy balance). It seems to us
that the method provided here of approximating the solution by regularized ones fails if we wish
to prove the energy balance, since it does not give sufficiently strong compactness criterion for
the approximating evolutions. The proof of the energy balance is, at the present stage, the most
challenging open question left by the argument proposed so far.

Let us finally remark that the method of approximation has been firstly proposed in [5] and then
adapted to a problem of delamination in [28]. In this last paper the author consider a problem similar
to (1.3), but with the addition of viscosity in the adhesive which provide different difficulties in order
to argue by approximation. Some other techniques to treat second order evolutionary problems with
unilateral constraints, based on the use of variational inequality, exist and can be found, for instance,
in [2].
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