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We propose and analyze in this paper a new derivation of a phase-field model to approximate
inhomogeneous multiphase perimeters. It is based on suitable decompositions of perimeters under
some embeddability condition which allows not only an explicit derivation of the model from the
surface tensions, but also gives rise to a � -convergence result. Moreover, thanks to the nice form of
the approximating energy, we can use a simple and robust scheme to simulate its gradient flow. We
illustrate the efficiency of our approach with a series of numerical simulations in 2D and 3D, and we
address in particular the dynamics of droplets evolving on a fixed solid.
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1. Introduction

This paper is devoted to the approximation with a phase field model of a N -phase perimeter of the
form

P.˝1; : : : ; ˝N / D
1

2

NX
i;jD1

�i;j area.�i;j /; (1.1)

where˝1; : : : ; ˝N are relatively closed subsets of an open domain˝ � Rd which form a partition
of ˝, i.e. ˝ D

SN
iD1˝i and �i;j D ˝i \ j̋ D @˝i \ @ j̋ \˝ for i 6D j (with the additional

convention �i;i D ;), and �i;j is the surface tension associated with �i;j for i; j D 1; � � � ; N . It is
physically sound to assume that the surface tensions satisfy �i;j D �j;i > 0 whenever i 6D j and
�i;i D 0. We will denote in the sequel

SN D
˚
� D .�i;j / 2 RN�N ; �i;j D �j;i > 0 if i 6D j and �i;i D 0

	
:

In order to guarantee the lower semicontinuity of the N -phase perimeter, it is necessary and
sufficient to assume that the surface tensions satisfy the triangle inequality [13, 33, 37], i.e.,

�i;k 6 �i;j C �j;k 8i; j; k 2 f1; : : : ; N g: (1.2)
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Although mathematically sound, this property is however not fulfilled by all physical systems, so
that the approximation issue needs also to be addressed in the non triangle case.

From the mathematical viewpoint, the study of the lower semicontinuity of the above energy
requires to rephrase it in a suitable setting, namely the space of sets of finite perimeter [2, 33]. In
this setting, the perimeter can be written as

P.˝1; : : : ; ˝N / D
1

2

NX
i;jD1

�i;jH
d�1.@�˝i \ @

�
j̋ /;

where ˝1; � � � ; ˝N are now assumed to be sets of finite perimeter in ˝ such that ˝ D
SN
iD1˝i

up to a Lebesgue negligible set, j˝i \ j̋ j D 0 for all i 6D j (denoting as j � j the Lebesgue
measure), �i;j D @�˝i \ @

�
j̋ for all i; j , with @�˝i the reduced boundary of ˝i in ˝, i.e.

the sets of boundary points of ˝i in ˝ where an approximate normal exists (remark in particular
that @�˝i � ˝, i.e., @˝ does not play any role here), and Hd�1 is the .d � 1/-dimensional
Hausdorff measure – see [2, 33] for details on functions of bounded variation (BV) and sets of finite
perimeter. We shall denote as P the BV perimeter, i.e., if A � ˝ has finite perimeter in ˝ we
denote P.A/ D Hd�1.@�A/. In the BV context, the lower semicontinuity of the perimeter holds
with respect to the strong convergence in L1 of characteristic functions of sets.

There are many applications where the multiphase perimeter plays a role. It is for instance the
natural energy associated with a polycrystalline material, i.e. a material which is an aggregation
of tiny grains with different crystalline orientations, like most metals and ceramics. As such
material is heated, the grains configuration evolves in order to decrease the multiphase perimeter
(considering each grain as a phase), see [25] for more details and references on connexions of the
model with material science. Such energetic dependence is actually common to many multiphase
situations, either with uniform surface tensions (soap foams, honeycombs, etc) or with nonuniform
surface tensions as in material synthesis, nanowires growth, etc. We focus in this paper on possibly
nonuniform but isotropic surface tensions, which is coherent with many physical situations, but
notice that many other physical situations (e.g., nanowire growth) involve anisotropic surface
tensions (this is the topic of another paper in preparation). Only applications to material science
have been mentioned so far but image processing is another field where multiphase perimeters
are very useful, in particular in the context of image segmentation, image restoration, optical flow
estimation or stereo reconstruction [15, 38, 45].

A multiphase system which energetically depends on the multiphase perimeter rearranges so as
to decrease the perimeter, and the rearrangement consists in the evolution of the interfaces between
phases [36]. The classical physical theory states [31] that this evolution must follow at least two
rules:

1. at every interfacial point which is not a junction point between three or more interfaces, the
normal velocity Vi;j of the interface �i;j is proportional to the product of its mean curvature �i;j
with its surface tension �i;j :

Vi;j .x/ D �i;j�i;j �i;j .x/; a.e. x 2 �i;j ; (1.3)

where �i;j is the interface mobility coefficient.
2. the Herring’s angle condition holds at every triple junction, e.g., if x is a junction between phases
i; j and k then

�i;jni;j C �j;knj;k C �k;ink;i D 0;
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where ni;j denotes the unit normal at x to �i;j , pointing from ˝i to j̋ . An equivalent
formulation using conormals is also used in the literature, emphasizing the fact that Herring’s
condition is actually a force balance condition.

Notice however that these two rules are not sufficient in general to characterize fully the L2 gradient
flow of the multiphase perimeter, since they do not constrain the evolution of the multiple points
with multiplicity at least 4 (they do not even guarantee that the evolution of such multiple points is
well-posed).

It is natural for numerical purposes to try to approximate the multiphase perimeter but there
are several difficulties: the high singularity of the perimeter, the necessity of a good notion of
convergence of the approximating energies, and the necessity to guarantee that, at each scale of
approximation, the L2-gradient flow with respect to the approximating energy is coherent (at least
asymptotically) with both evolution rules mentioned above.

The most simple instance of a multiphase system is the binary system with constant surface ten-
sion whose perimeter’s gradient flow is the celebrated mean curvature flow. There is a vast literature
on numerical methods for the approximation of mean curvature flows. The methods can be roughly
classified into five categories (some of them are exhaustively reviewed and compared in [20]):

1. parametric methods [5, 22, 23] where typically the interface is approximated by a point cloud, a
triangulated surface or more complex discrete patched surfaces;

2. level set methods [18, 26, 39–41], where the problem is rewritten in terms of a suitable function
of which the interface of interest is an isolevel; this lifting turns the flow into an equation which
is easier to handle both theoretically and numerically, in particular regarding topology changes.

3. convolution/thresholding type algorithms [8, 32, 43], where the mean curvature flow is the
asymptotic limit of a time-discrete scheme alternating the convolution of the characteristic
function of the set at time t delimited by the interface, followed by a thresholding step in order
to define the set at time t C dt .

4. convexification methods [14] where it is observed first that minimizing the perimeter of a set is
equivalent to minimizing the total variation of the set’s characteristic function on the non convex
class of functions with values in f0; 1g. Then it turns out that the mean curvature flow can be
numerically approximated by convexifying the constraint and using a nice and simple projection
algorithm.

5. phase field approaches [17, 35], where the sharp transition between the two phases at the interface
is approximated by a smooth transition, the perimeter is approximated by a smooth energy
depending on the smooth transition, and the gradient flow turns into a relatively simple reaction-
diffusion system. Phase field approaches have a long history in physics that dates back to the Van
der Waals’ model for liquid-vapor transition (1893), and later with the supraconduction model
of Landau & Ginzbug (1950), and the binary alloy model of Cahn & Hilliard (1958).

The literature on the approximation of multiphase perimeters is more reduced, but there have
been contributions in the same five categories of methods. For instance, a parametric approach
for anisotropic surface tensions is introduced in [4], various level set methods have been proposed
in [34, 44, 51] (the latter reference proposes a method to encode a large variety of evolution laws at
the interfaces). Convexifications approaches are much more involved for multiphase perimeters than
for the binary perimeter. A simple convexification of the constraint is not enough as shown in [15]
where a general method is proposed first for the homogeneous case �i;k D 1, then for more general
surface tensions of the form �i;j D �.ji � j j/ where � is a concave, positive, and nondecreasing
function.
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As for convolution/thresholding type methods, [24] addresses the case of uniform surface
tension �i;j D 1 and in [46], some constraints on the volume of each phases are added. More
recently, an important step forward has been achieved by Esedoḡlu and Otto in [25]. For a large
category of tensions matrices Esedoḡlu and Otto proposed a scheme which is able to decrease the
multiphase perimeter in a way which yields asymptotically the correct evolution laws at simple
and triple points. The major difficulty of a convolution/thresholding strategy in a multiphase
setting is to handle correctly the variety of interfacial speeds yielded by different surface tensions.
The key contribution of Esedoḡlu and Otto is precisely a consistent way of doing this using a
smart combination of delay functions which manage consistently the communications between the
various interfaces. The surface tensions matrices that the method can handle are negative forms on
.1; 1; � � � ; 1/?, i.e., the matrices � D .�i;j / 2 SN such that

NX
i;jD1

�i;juiuj 6 0 for all .ui / 2 RN such that
NX
iD1

ui D 0: (1.4)

There is an interesting discussion in [25] about the properties of such matrices which are called
conditionally semi-definite matrices.

The method that we propose in this paper belongs to the fifth category of approaches for the
approximation and the minimization of multiphase perimeters, that is the category of phase field
methods. Both theoretical and numerical contributions are related to this topic, see for instance [3,
9, 27–30, 42, 50] and the numerous references therein. Before entering into more details, let us
sketch the main properties of the model that will be derived in the paper:

(P1) it is a phase-field model with a potential term that can be derived consistently and explicitly
from a given matrix � 2 SN of surface tensions, as soon as � can be associated with `1

distances between vectors in RM for a suitable dimensionM (such � is called `1-embeddable,
see more details below). As will be discussed later, the consistent derivation of the potential is
a major difference with the derivations that can be found in the literature;

(P2) in the strict `1-embeddability case (see below), the � -convergence of our approximating
model to the multiphase perimeter can be proven. In view of the previous item, it is to the
best of our knowledge the first contribution where one can derive the model from the surface
tensions and recover them back from the � -convergence;

(P3) our approximating perimeter falls in a large category of phase field models studied with great
accuracy by Garcke, Nestler, and Stoth in [28] where it is shown using the matched asymptotic
expansion method that the correct evolution laws for simple and triple points are recovered
asymptotically;

(P4) the model we propose is well suited for numerical approximation: the L2-gradient flow yields
an Allen–Cahn system with a linear diffusive part, which allows simple and robust numerical
schemes with a very good spatial accuracy;

(P5) various interesting constraints can be easily added to the model, e.g., volume constraints or
stationarity constraint on a phase, which can be very useful for simulating wetting phenomena.



ON A NEW MULTIPHASE FIELD MODEL FOR INTERFACIAL ENERGIES 145

2. Phase fields models for multiphase perimeters

Let us first examine the standard and simple case where all surface tensions are constant, i.e., �i;j D
1 therefore

P.˝1; : : : ˝N / D
1

2

NX
i;jD1

Hd�1.�i;j / D
1

2

NX
iD1

Hd�1.@�˝i /:

(recall from the introduction that all boundaries are considered in ˝ i.e. @�˝i D @�˝i \ ˝).
An interesting property of the latter formulation is the dependence of the energy on full interface
boundaries @�˝i (full with respect to˝), and not partial interface boundaries �i;j D @�˝i \@� j̋ .
Indeed, the dependence on full boundaries is well-suited for phase-field approximations: denoting

˙ D

(
u W ˝ ! RN ; u D .u1; : : : ; uN / measurable ;

NX
iD1

ui .x/ D 1 for a.e. x 2 ˝

)
;

P can be easily approximated in .BV.˝;R//N – in the sense of � -convergence – by

P�.u/ D

8̂<̂
:
1

2

NX
iD1

Z
˝

�
�

2
jrui j

2
C
1

�
F.ui /

�
dx if u 2 ˙ \

�
W1;2.˝/

�N
;

C1 otherwise;

where � is a small parameter that characterizes the width of the diffuse interface, and F.s/ D
s2.1�s/2

2
is a double-well potential. This follows from Modica–Mortola’s theorem [35] which states

that the family of functionals J� defined by

J�.u/ D

Z
˝

�
�

2
jruj2 C

1

�
F.u/

�
dx;

approximates (in the sense of � - convergence) cFP with cF D
R 1
0

p
2F.s/ds and

P.u/ D

�
jDuj.˝/ when u 2 BV

�
˝; f0; 1g

�
,

C1 otherwise,

where the total variation jDuj.˝/ of a function u 2 BV.˝/ (see [2]) is defined by

jDuj.˝/ D

Z
˝

jDuj D sup
�Z
˝

u divgdxI g 2 C 10 .˝;R
n/; jgj 6 1

�
:

Using this approximation for every phase ui yields P� , of which the � -convergence to cW P can be
obtained as in [3, 42].

Moreover, the L2-gradient flow of P� reads

@tui D
1

2

�
�ui �

1

�2
F 0.ui /

�
C �.t/; for all i 2 f1; : : : ; N g;

where �.t/ is a Lagrange multiplier associated to the constraint u 2 ˙ that can be explicitly
computed as �.t/ D 1

N�2

PN
iD1 F

0.ui /. The flow is an Allen–Cahn system that can be easily
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approximated numerically, for instance using a splitting method with an implicit resolution of the
diffusion term in Fourier space coupled with an explicit treatment of the reaction term [16].

The case of a general surface tension � 2 SN is more involved. In [28, 29], Garcke et al. studied
phase-field approximations of the general form

P�.u/ D

8<:
Z
�f .u;ru/C

1

�
W.u/dx if u 2 ˙ \

�
W1;2.˝;R/

�N
;

C1 otherwise.

The category of functions f and W for which the results obtained in the paper apply is quite general,
but the authors have a preference for

f .u;ru/ D
NX

i;jD1

˛i;j

2

ˇ̌
uiruj � ujrui

ˇ̌2
; with .˛i;j /i;j 2 SN ; (2.1)

and W a positive multi-well potential defined on ˙ and vanishing only at each standard unit vector
of the canonical basis .e1; : : : ; eN / of RN . Each vector ei corresponds to a phase, and a N -phase
system is given by u D

PN
iD1 uiei with

P
ui D 1. The authors of [29] propose a multi-well

potential of the form

W.u/ D
NX

i;jD1

1

2
˛i;ju

2
i u
2
j C

X
i<j<k

˛i;j;ku
2
i u
2
j u

2
k : (2.2)

It is explained in [28] that to expect the � -convergence of P� to P the following equality must be
true

�i;j .n/ D 2 inf
p

Z 1

�1

p
W.p/f .p; p0 ˝ n/ds; for all n 2 S.Rd /; (2.3)

where p ranges over all Lipschitz continuous functions p W Œ�1; 1� ! ˙ , connecting the vectors
ei to ej . This condition raises a central issue in all phase-field models for the approximation of
multiphase perimeters: given a set of surface tensions .�i;j /, how to define W so that the previous
equality holds and the � -convergence is guaranteed? It is really not a purely formal question: � -
convergence does not only allow to approximate the energy of local minimizers, it also guarantees
that minimizers of P� do converge, up to a subsequence, to a minimizer of P [10, 19].

So far, the only results in this direction are due to Haas, who proved in [30] that, if W is a
polynomial of order at most four, then only polynomials of the form

NX
i;jD1

˛i;ju
2
i u
2
j C

X
i;j;k

˛i;j;kuiuju
2
k C

X
i;j;k;l

˛i;j;k;luiujukul

prevent from the creation of ghost phases in the limit, i.e. a geodesic defined as in the right term
of (2.3) and connecting two phases ei and ej passes only through the points teiC.1�t /ej . However,
no way is provided in [30] of consistently deriving the parameters ˛i;j , ˛i;j;k , and ˛i;j;k;l from the
�i;j ’s so that (2.3) holds.

We will show in this paper that, assuming a `1-embeddability condition for � (see below),
there is a consistent and explicit way to construct a polynomial W. As for the gradient term, the



ON A NEW MULTIPHASE FIELD MODEL FOR INTERFACIAL ENERGIES 147

choice (2.1) yields a gradient flow corresponding to a reaction-diffusion system where the diffusion
terms are nonlinear and ill-conditioned, which raises numerical issues. Another choice will be
shown to be more convenient. More precisely, we propose an energy of the form

P�.u/ D

8<:
Z
˝

�
�

4
�ru � ruC

1

�
W� .u/dx if u 2 ˙ \

�
W1;2.˝;R/

�N
;

C1 otherwise,

where the diffusion term reads �ru � ru D
PN
i;jD1 �i;jrui � ruj and W� .u/ is defined from the

�i;j ’s as

W� .u/ D
1

4

NX
i;jD1

�i;ju
2
i u
2
j C

1

2

X
i<j;k¤i;k¤j

�i;k;juiuju
2
k C

X
i<j<k<l

�i;j;k;luiujukul ;

with

�i;j;k D .�i;k C �j;k � �i;j / and �i;j;k;l D 6�
�
i;j;k;l �

X
.i 0;j 0/�fi;j;k;lg; i 0<j 0

�i 0;j 0 ;

where ��
i;j;k;l

is chosen in the following interval (see the beginning of Section 4 for more details):

Ii;j;k;l D

264 max
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �k0;l 0

2

�
; min
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �i 0;k0 C �i 0;l 0

2

�375 :
We will prove that this model fulfills properties (P1)-(P5) mentioned above.

The next section is devoted to the derivation of our phase field energy P� . In Section 4, we
give a proof of the � -convergence of P� to cFP . Section 5 addresses the L2-gradient flow of P� ,
and some extensions to incorporate additional constraints of volume and partial phase stationarity,
in particular for the evolution of multi-droplets. Finally, we present n Section 6 some numerical
experiments which highlight the good behavior of our model.

3. Derivation of the phase field model

We first consider the particular case of additive surface tensions, and then the more general `1-
embeddable surface tensions, for which it turns out that the perimeter P can be expressed as the
sum of perimeters associated with union of different phases. This particular form of perimeter is the
key for deriving our � -convergent phase-field model.

3.1 Additive surface tensions

The simplest case of inhomogeneous surface tensions �i;j is the case of additive surface tensions, i.e.
surface tensions .�i;j / for which there exist some positive coefficients .�1; �2; : : : ; �N / 2 .RC/N
such that

�i;j D �i C �j ; with �i > 0; for all i; j D 1; : : : ; N:
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In this situation we have

P.˝1; : : : ˝N / D
1

2

NX
i;jD1

�i;jH
d�1.�i;j / D

NX
iD1

�iH
d�1.@�˝i /;

which is, once again, a rewriting of the multiphase perimeter as a linear combination of simple
perimeters. It leads to the following natural approximating candidate (denoting as before, and in the
sequel as well, F.s/ D s2.1�s/2

2
):

P�.u/ D

8̂<̂
:

NX
iD1

�i

�Z
˝

�

2
jrui j

2
C
1

�
F.ui /

�
dx; if u 2 ˙ \

�
W1;2.˝;R/

�N
;

C1 otherwise:

An easy adaptation of the homogeneous case to this inhomogeneous setting yields the � -
convergence of P� to cFP as � goes to 0. Remark also that, as r

PN
jD1 uj D r1 D 0, one

has

�
1

4
�ru � ru D �

1

4

NX
i;jD1

.�i;j /rui � ruj

D �
1

4

NX
i;jD1;i¤j

.�i C �j /rui � ruj

D �
1

2

NX
iD1

NX
jD1

�irui � ruj C
1

2

NX
iD1

�i jrui j
2

D
1

2

NX
iD1

�i jrui j
2:

This implies that P� can be expressed as:

P�.u/ D

8<:
Z
˝

.�
�

4
�ru � ruC

1

�
W� .u//dx if u 2 ˙ \

�
W1;2.˝;R/

�N
;

C1 otherwise,

where the multi-well potential W� is defined as:

W� .u/ D
NX
iD1

�iF.ui /:

3.1.1 Potential for triphasic systems (N D 3) with triangle inequality. It is easily seen that all
surface tension matrix � 2 S3 satisfying the triangle inequality (1.2) is actually additive. Indeed,
we have

�1 D
�1;2 C �1;3 � �2;3

2
; �2 D

�2;1 C �2;3 � �1;3

2
; and �3 D

�3;1 C �3;2 � �1;2

2
;
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We deduce from the previous section the form of the potential term:

W� .u/ D �1F.u1/C �2F.u2/C �3F.u3/

D
�1;2

2

�
F.u1/C F.u2/ � F.u3/

�
C
�1;3

2

�
F.u1/C F.u3/ � F.u2/

�
C
�2;3

2

�
F.u2/C F.u3/ � F.u1/

�
:

More precisely, remark that for all u 2 ˙ ,

F.u1/C F.u2/ � F.u3/ D
1

2
u21.1 � u1/

2
C
1

2
u22.1 � u2/

2
�
1

2
u23.1 � u3/

2

D
1

2
u21.u2 C u3/

2
C
1

2
u22.u1 C u3/

2
�
1

2
u23.u1 C u2/

2

D u21u
2
2 C u

2
1u2u3 C u

2
2u1u3 � u

2
3u1u2:

In particular, this shows that

W� .u/ D
1

2
�1;2u

2
1u
2
2 C

1

2
�1;3u

2
1u
2
3 C

1

2
�2;3u

2
2u
2
3

C
1

2
.�1;2 C �1;3 � �2;3/u2u3u

2
1 C

1

2
.�1;3 C �2;3 � �1;2/u1u2u

2
3

C
1

2
.�1;2 C �2;3 � �1;3/u1u3u

2
2

D
1

4

NX
i;jD1

�i;ju
2
i u
2
j C

1

2

X
i<j;k¤i;k¤j

�i;j;kuiuju
2
k ;

where
�i;j;k D �i;k C �k;j � �i;j :

3.1.2 Potential for additive surface tensions whenN > 3. The additive caseN > 3 follows from
the computation above. Let us assume the existence of some positive coefficients .�1; �2; : : : ; �N / 2
.RC/N such that

�i;j D �i C �j ; with �i > 0; for all i D 1; : : : ; N:

Then, for all u 2 ˙ , the multi-well potential W is as before :

W� .u/ D
NX
iD1

�iF.ui / D
1

2

NX
iD1

�iu
2
i .1 � ui /

2
D
1

2

NX
iD1

�iu
2
i .

NX
jD1;j¤i

uj /
2

D
1

2

NX
i;jD1;i¤j

�iu
2
i u
2
j C

NX
j<k;i¤j;i¤k

�iujuku
2
i

D
1

4

NX
i;jD1

�i;ju
2
i u
2
j C

1

2

NX
i<j;i¤k;j¤k

�i;j;kuiuju
2
k ;
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where
�i;j D �i C �j ; and �i;j;k D �i;k C �k;j � �i;j D 2�k :

We now synthesize the results of this section on additive surface tensions:

Proposition 3.1 Let .�1; �2; : : : ; �N / 2 .RC/N such that �i;j D �i C �j with �i > 0 for all
i D 1; : : : ; N . Then the phase-field perimeter

P�.u/ D

8<:
Z
˝

�
�
�

4
�ru � ruC

1

�
W� .u/

�
dx if u 2 ˙ \

�
W1;2.˝;R/

�N
;

C1 otherwise,

where W� .u/ D
1

4

NX
i;jD1

.�i C �j /u
2
i u
2
j C

NX
i<j;i¤k;j¤k

�kuiuju
2
k ;

� -converges to cFP as � ! 0C.

We conclude this section observing that the � -convergence follows from a rewriting of the
multiphase perimeter in terms of full boundaries. Let us now describe how the same idea can be
applied as well for a much more general class of surface tensions, namely the `1-embeddable surface
tensions whose definition is given in the next section.

3.2 `1-embeddable surface tensions

DEFINITION 3.2 A matrix � D .�i;j / 2 SN is called `1-embeddable if there exist some integer M
and N points pi 2 RM such that �i;j D kpi � pj k1 where k � k1 is the `1 metric in RM .

The notion of embeddability in metric spaces plays an important role in graph theory, see the
remarkable survey [21]. Interestingly, it has connections with conditionally semi-definite matrices
(i.e. matrices satisfying condition 1.4) for which the minimizing scheme proposed in [25] applies.
More precisely, the following properties hold [21, 25]:

1. All `1-embeddable matrices satisfy the triangle inequality (1.2). The converse is true if and only
if N 6 4. Every `1-embeddable matrix is conditionally negative semi-definite, but the converse
is false according to the next item.

2. Being conditionally negative semi-definite is neither a necessary nor a sufficient condition
for a matrix to satisfy the triangle inequality; as an important consequence, Esedoḡlu-Otto’s
scheme [25] is also valid for many matrices which violate the triangle inequality, which is useful
for the consistent simulation of wetting and nucleation phenomena.

3. Given a set ofN points P D fp1; : : : ; pN g � RM , a metric d on P is a cut-metric if there exists
S � P such that

d.pi ; pj / D dS .pi ; pj / D

�
1 if ıS .pi / 6D ıS .pj /;
0 otherwise,

where ıS .pi / D 1 if pi 2 S and 0 otherwise. A fundamental property of `1-embeddable matrices
is that they can be expressed in terms of cut-metrics [21]. We will refer to it as the Cut Cone
Property in the sequel:
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(Cut Cone Property)
Let � D .�ij /i;j2f1;:::;N g be a `1-embeddable surface tension matrix. Then there
exists M 2 N�, a collection of N points fp1; : : : ; pN g � RM and a collection of
coefficients �S > 0, S � f1; : : : ; N g, such that

�i;j D kpi � pj k1 D
X

S�f1;:::;N g

�SdS .pi ; pj /; i; j 2 f1; : : : ; N g: (3.1)

It is important to notice that this decomposition involves all subsets of f1; : : : ; N g, and that it
needs not be unique.

This latter property has a very interesting consequence for multiphase perimeters [21, 25] which is
stated below, and which plays a key role for exhibiting � -converging approximation perimeters in
the general context of `1-embeddable surface tensions (see the next section).

Lemma 3.3 If � D .�i;j / 2 SN is `1-embeddable then there exists a collection of nonnegative
coefficients �S defined for all S � f1; : : : ; N g such that:

P.˝1; ˝2; : : : ; ˝N / D
1

2

NX
i;jD1

�i;jH
d�1.�i;j / D

X
S�f1;:::;N g

�SP.[i2S˝i /;

where P denotes the perimeter.

Proof. The result follows directly from the Cut Cone Property decomposition �i;j D kpi �pj k1 DP
S�f1;:::;N g �SdS .pi ; pj /: Indeed,

P.˝1; ˝2; : : : ; ˝N / D
1

2

NX
i;jD1

X
S�f1;:::;N g

�SdS .pi ; pj /H
d�1.�i;j /

D
1

2

X
S�f1;:::;N g

�S

NX
i;jD1

dS .pi ; pj /H
d�1.�i;j /:

However, dS .pi ; pj /Hd�1.�i;j / vanishes when i; j are either both in S or both outside, therefore
the only remaining interfaces �i;j are those between a phase in S and a phase outside S . Therefore,
given S � f1; : : : ; N g,

1

2

NX
i;jD1

dS .pi ; pj /H
d�1.�i;j / D H

d�1.@�.[i2S˝i // D P.[i2S˝i /;

and the lemma ensues.

EXAMPLE 3.4 Let N D 4 and consider �1;2 D �1;3 D �2;4 D �3;4 D 2, and �2;3 D �1;4 D 1.
These surface tension coefficients do not satisfy the additive property, as �1;2 C �1;3 � �2;3 6D

�1;2 C �1;4 � �2;4. Furthermore, the perimeter can be expressed as:

1

2

4X
i;jD1

�i;jH
d�1.�i;j / D

1

2

4X
iD1

P.˝i /C P.˝1 [˝4/;
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therefore a possible choice for coefficients �S is:

�S D

8̂<̂
:
1
2

if S D fig; i 2 f1; : : : ; 4g;

1 if S D f1; 4g;
0 otherwise.

The model introduced in this paper will be proved to � -converge whenever the surface tension
matrix is strictly `1-embeddable, according to the following definition.

DEFINITION 3.5 A matrix � D .�i;j / 2 SN is called strictly `1-embeddable if the Cut Cone
Property (3.1) holds for a collection f�S > 0; S � f1; : : : ; N gg such that �fig > 0, 8i 2
f1; : : : ; N g.

REMARK 3.6 A necessary condition for strict `1-embeddability is the strict triangle inequality, i.e.,

(Strict triangle inequality) �i;k < �i;j C �j;k ; 8.i; j; k/; i 6D j 6D k: (3.2)

Indeed, we have that �i;jC�j;k D
P
�S ŒdS .pi ; pj /CdS .pj ; pk/�. Then, observe that dS .pi ; pj /C

dS .pj ; pk/ > dS .pi ; pk/ since the right term is either 0 or 1, it equals 1 as soon as ıS .pi / 6D ıS .pk/
i.e., pi and pk are not both in S or both outside S , and in this case the left term equals at least 1
since pk is either in S or outside S . Then, we focus on the case S D fj g: since i; k 6D j and
�i;j ; �j;k > 0 (because � 2 SN ), dfj g.pi ; pk/ D 0 but dfj g.pi ; pj /C dfj g.pj ; pk/ D 2. It follows
from �fj g > 0 that �i;k < �i;j C �j;k .

In the case N D 4, the strict triangle inequality is also a sufficient condition for strict `1-
embeddability, see Remark 3.7. From the same remark, it follows when N > 4 that the `1-
embeddability together with the strict triangle inequality imply the strict `1-embeddability.

3.3 Derivation of the approximation perimeter for `1-embeddable surface tensions

In the case of additive surface tensions, as we saw above, the multiphase perimeter can be directly
written as a nonnegative combination of integrals on boundaries of sets (and not subsets of
boundaries), which allows a multiphase approximation. As it follows from Lemma 3.3, a similar
decomposition holds for `1-embeddable surface tensions. Thus, a multiphase approximation is again
possible, and a natural candidate to approximate P is given by

P�.u/ D

8̂̂<̂
:̂
Z
˝

24 X
S�f1;:::;N g

�S

0@ �
2

ˇ̌̌̌
ˇr.X

i2S

ui /

ˇ̌̌̌
ˇ
2

C
1

�
F.
X
i2S

ui /

1A35 dx if u 2 ˙ \
�
W1;2.˝;R/

�N
;

C1 otherwise,

where the coefficients �S are given by the Cut Cone Property (3.1). Note that for N > 4, the
decomposition is not unique.

This expression has a drawback: the �S ’s are unknown. We will now derive another expression
which can be explicitly computed from the surface tension matrix � D .�i;j / as soon as �i;j > 0

whenever i 6D j .
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3.3.1 A condensed form for the approximating multiphase perimeter. Let ˛i DP
S�f1;:::;N g �Sıi2S and ˛i;j D

P
S�f1;:::;N g �Sıi2Sıj2S with ıi2S D 1 if i 2 S , 0 otherwise.

Since � is assumed to be `1-embeddable, it follows from the Cut Cone Property (3.1) that

�i;j D
X

S�f1;:::;N g

�S
�
ıi2Sıj 62S C ıi 62Sıj2S

�
D ˛i C j̨ � 2˛i;j :

Then we have for all u 2 ˙ \ .W1;2.˝;R//N :

X
S�f1;:::;N g

�S

ˇ̌̌̌
ˇr.X

i2S

ui /

ˇ̌̌̌
ˇ
2

D

X
S�f1;:::;N g

�Sr

"X
i2S

ui

#
� r

24X
j2S

uj

35
D

NX
i;jD1

24 X
S�f1;:::;N g

�Sıi2Sıj2S

35rui � ruj
D

NX
i;jD1;i¤j

˛i;jrui � ruj C

NX
iD1

˛i jrui j
2

D �
1

2

NX
i;jD1;i¤j

�i;jrui � ruj C

NX
i;jD1;i¤j

˛irui � ruj C

NX
iD1

˛i jrui j
2

D �
1

2
�ru � ruC

NX
iD1

˛irui � r

0@ NX
jD1

uj

1A
D �

1

2
�ru � ru:

To conclude, the approximating perimeter introduced above can be rewritten as

P�.u/ D

8<:
Z
˝

�
�

4
�ru � ruC

1

�
W� .u/dx if u 2 ˙ \

�
W1;2.˝;R/

�N
;

C1 otherwise,

where the multi-well potential W� .u/ reads

W� .u/ D
X

S�f1;:::;N g

�SF.
X
i2S

ui /: (3.3)

3.3.2 Rewriting the potential when N D 4. When N D 4, any surface tension matrix satisfying
the triangle inequality (1.2) is `1-embeddable [21], thus the perimeter is decomposable as:

P.˝1; ˝2; : : : ; ˝4/ D
1

2

4X
i;jD1

�i;jH
d�1.�i;j / D

X
S�f1;2;3;4g

�SH
d�1

�
@�.[i2S˝i /

�
; (3.4)

but no explicit formula is known for the coefficients �S . Let us try to reformulate the decomposition
in order to make it more explicit. Considering the whole collection of sets [i2S˝i , S � f1; : : : ; N g
we define:

Q1 D ˝1; Q2 D ˝2; Q3 D ˝3; Q4 D ˝4;
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and 8̂<̂
:
Q5 D ˝1 [˝2 D .˝3 [˝4/

c ;

Q6 D ˝1 [˝3 D .˝2 [˝4/
c ;

Q7 D ˝2 [˝3 D .˝1 [˝4/
c :

Remark first that for all i; j

2Hd�1.@�˝i \ @
�

j̋ / D H
d�1.@�˝i /CH

d�1.@� j̋ / �H
d�1

�
@�.˝i [ j̋ /

�
:

Then we define8̂̂̂<̂
ˆ̂:
Q�1 D .�12 C �13 C �14/ =2;

Q�2 D .�12 C �23 C �24/ =2;

Q�3 D .�13 C �23 C �34/ =2;

Q�4 D .�14 C �24 C �34/ =2;

and

8̂<̂
:
Q�5 D � .�12 C �34/ =2;

Q�6 D � .�13 C �24/ =2;

Q�7 D � .�14 C �23/ =2;

and we calculate from (3.4) that

P.˝1; ˝2; ˝3; ˝4/ D

7X
iD1

Q�iH
d�1.@�Qi /:

This new formulation is however not convenient because Q�5, Q�6 and Q�7 are negative, which is an
obstacle to the � -convergence. However, the fact that

4X
iD1

Hd�1.@�˝i / D H
d�1

�
@�.˝1 [˝2/

�
CHd�1

�
@�.˝1 [˝3/

�
CHd�1

�
@�.˝1 [˝4/

�
;

implies that

P.˝1; ˝2; ˝3; ˝4/ D

4X
iD1

. Q�i � �
�/Hd�1.@�Qi /C

7X
iD5

. Q�i C �
�/Hd�1.@�Qi /;

for all �� 2 R. In particular, the previous equality gives one degree of freedom depending on the
value of ��. Remark now that

Q�1 C Q�5 D
.�12 C �13 C �14/

2
�
.�12 C �34/

2
D
.�13 C �14 � �34/

2
;

which is always positive as � satisfies the triangle inequality (1.2). Therefore, for all i 2 f1; 2; 3; 4g
and for all j 2 f5; 6; 7g, we have Q�i C Q�j > 0. Denoting

�min D max
iD5;6;7

f�Q�ig ; and �max D min
iD1;2;3;4

f Q�ig ;

we deduce that �min 6 �max . Let us now choose arbitrarily �� 2 Œ�min; �max � and define(
�i D Q�i � �

� for i D 1; : : : ; 4;
�i D Q�i C �

� otherwise ;
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Obviously

P.˝1; ˝2; ˝3; ˝4/ D

7X
iD1

�iH
d�1.@�Qi /;

and, from our observations above, �i > 0 for all i 2 f1; : : : ; 7g.

REMARK 3.7 In the particular case where .�i;j / satisfies the strict triangle inequality (3.2), then
�min < �max thus one can choose �� D .�min C �max/=2 so that �i > 0 for every i 2 f1; : : : ; 7g,
i.e., � is strictly `1-embeddable.

REMARK 3.8 Combined with a dimensional argument, the previous construction shows that, for
every decomposition of P of the form

P.˝1; ˝2; ˝3; ˝4/ D

7X
iD1

˛iH
d�1.@�Qi /;

with ˛i > 0, we can associate a coefficient �� 2 Œ�min; �max � such that(
˛i D Q�i � �

� for i D 1; : : : ; 4;
˛i D Q�i C �

� for i D 5; : : : ; 7:

The decomposition we have obtained leads to a natural potential for the phase-field
approximation, i.e., W� can be chosen as

W� .u/ D

 
4X
iD1

�iF.ui /

!
C �5F.u1 C u2/C �6F.u1 C u3/C �7F.u1 C u4/

D
1

2

4X
i;jD1;i<j

�i;j
�
F.ui /C F.uj / � F.ui C uj /

�
C ��

 
4X
iD2

F.u1 C ui / �

4X
iD1

F.ui /

!
:

Moreover, remark that for all u 2 ˙ , we have
4X
iD1

F.ui / D F.u1/C F.u2/C F.u3/C F.u4/

D
1

2

�
u21.u2 C u3 C u4/

2
C u22.u1 C u3 C u4/

2

Cu23.u1 C u3 C u4/
2
C u24.u1 C u2 C u3/

2
�

D

X
i<j

u2i u
2
j C

X
i<j;k¤i;k¤j

uiuju
2
k ;

4X
iD2

F.u1 C ui / D F.u1 C u2/C F.u1 C u3/C F.u1 C u4/

D
1

2

�
.u1 C u2/

2.u3 C u4/
2
C .u1 C u3/

2.u2 C u4/
2
C .u1 C u4/

2.u2 C u3/
2
�

D

X
i<j

u2i u
2
j C

X
i<j;k¤i;k¤j

uiuju
2
k C 6u1u2u3u4;
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and

F.u1/C F.u2/ � F.u1 C u2/ D
1

2

�
u21.u2 C u3 C u4/

2
C u22.u1 C u3 C u4/

2

� .u1 C u2/
2.u3 C u4/

2
�

D u21u
2
2 C u

2
1u2u3 C u

2
1u2u4 C u

2
2u1u3 C u

2
2u1u4

� u23u1u2 � u
2
4u1u2 � 2u1u2u3u4:

In particular, this shows that the potential W� has the form

W� .u/ D
1

4

NX
i;jD1

�i;ju
2
i u
2
j C

1

2

X
i<j;k¤i;k¤j

�i;j;kuiuju
2
k C �u1u2u3u4;

where � D .6�� �
P
i<j �i;j / and �i;j;k D �i;k C �j;k � �i;j .

REMARK 3.9 Remark that, as �min > 1
2

maxf�12 C �34; �13 C �24; �14 C �23g > 1
6

P
i<j �i;j , it

follows that � is nonnegative. In addition, if � D 0 then �� D �min D
1
6

P
i<j �i;j , thus

�12 C �34 D �1;3 C �2;4 D �1;4 C �2;3; (3.5)

from which follows the additivity of � . Indeed, it holds �ij D �i C�j , i < j , i; j 2 f1; : : : ; 4g with8̂̂̂<̂
ˆ̂:
�1 D

1
2
.�12 C �13 � �23/ D

1
2
.�12 C �14 � �24/ D

1
2
.�14 C �13 � �34/;

�2 D
1
2
.�12 C �23 � �13/ D

1
2
.�12 C �24 � �14/ D

1
2
.�23 C �24 � �34/;

�3 D
1
2
.�13 C �23 � �12/ D

1
2
.�13 C �34 � �14/ D

1
2
.�23 C �34 � �24/;

�4 D
1
2
.�14 C �24 � �12/ D

1
2
.�24 C �34 � �23/ D

1
2
.�34 C �14 � �13/:

Conversely, if � is additive then (3.5) holds, and choosing �� D �min yields � D 0. This is
consistent with the results of Section 3.1 and, in particular, with the expression of the potential
W� in Proposition 3.1. Notice that since �max > �min, it is possible to choose �� > �min which
leads to a new, but of course still admissible, potential.

3.3.3 Extension to N > 5. We deduce from (3.3) that

W� .u/ D
X

S�f1;:::;N g

�SF
�X
i2S

ui

�
D
1

2

X
S�f1;:::;N g

�S

�X
i2S

ui

�2�X
j 62S

uj

�2
D
1

2

X
i<j

˛i;ju
2
i u
2
j C

X
i<j;k¤i;k¤i

˛i;j;kuiuju
2
k C 2

X
i<j<k<l

˛i;j;k;luiujukul ;

where8̂̂̂<̂
ˆ̂:
˛i;j D

P
S�f1;:::;N g �S

�
ıi2Sıj 62S C ıi 62Sıj2S

�
;

˛i;j;k D
P
S�f1;:::;N g �S

�
ık2Sıi 62Sıj 62S C ık 62Sıi2Sıj2S

�
;

˛i;j;k;l D
P
S�f1;:::;N g �S

�
ık2Sıl2Sıi 62Sıj 62S C ık 62Sıl 62Sıi2Sıj2S C ık2Sıl 62Sıi2Sıj 62S

Cık 62Sıl2Sıi 62Sıj2S C ık2Sıl 62Sıi 62Sıj2S C ık 62Sıl2Sıi2Sıj 62S
�
:
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A first key observation is that no more than four phases are considered simultaneously in the above
decomposition. Recall then that

P.˝1; ˝2; : : : ; ˝N / D
1

2

NX
i;jD1

�i;jH
d�1.�i;j / D

X
S�f1;:::;N g

�SH
d�1

�
@� .[i2S˝i /

�
;

which yields to a second key observation: according to the Cut Cone Property (3.1), the coefficients
�S depend only on the surface tensions �i;j , but absolutely not on the values Hd�1.�i;j /.
Therefore, to identify the contribution of four phases, the remaining phases can be assumed empty!
Now if one assumes for instance that only ˝1; ˝2; ˝3 and ˝4 are non-empty, then

P.˝1; ˝2; ˝3; ˝4;;; � � � ;;/ D
1

2

4X
i;jD1

�i;jH
d�1.�i;j /

D

X
S�f1;:::;N g

�SH
d�1

�
@�.[i2S;i2f1;2;3;4g˝i /

�
D

4X
iD1

ˇiH
d�1.@�˝i /C

4X
iD2

ˇ1;iH
d�1

�
@�.˝1 [˝i /

�
;

where 8̂̂̂<̂
ˆ̂:
ˇ1 D

P
S�f1;:::;N g �S

�
ı12Sı2 62Sı362Sı4 62S C ı1 62Sı22Sı32Sı42S

�
;

ˇ2 D
P
S�f1;:::;N g �S

�
ı22Sı1 62Sı362Sı4 62S C ı2 62Sı12Sı32Sı42S

�
;

ˇ3 D
P
S�f1;:::;N g �S

�
ı32Sı2 62Sı162Sı4 62S C ı3 62Sı22Sı12Sı42S

�
;

ˇ4 D
P
S�f1;:::;N g �S

�
ı42Sı2 62Sı362Sı1 62S C ı4 62Sı22Sı32Sı12S

�
;

and 8̂<̂
:
ˇ12 D

P
S�f1;:::;N g �S

�
ı12Sı22Sı3 62Sı462S C ı162Sı2 62Sı32Sı42S

�
;

ˇ13 D
P
S�f1;:::;N g �S

�
ı12Sı262Sı32Sı462S C ı1 62Sı22Sı3 62Sı42S

�
;

ˇ14 D
P
S�f1;:::;N g �S

�
ı12Sı262Sı3 62Sı42S C ı1 62Sı22Sı32Sı462S

�
:

From the case N D 4 (see Remark 3.8), we deduce that there exists ��1;2;3;4 2 I1;2;3;4, with

Ii;j;k;l D

264 max
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �k0;l 0

2

�
; min
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �i 0;k0 C �i 0;l 0

2

�375 ;
such that

ˇ12 D �
�
1;2;3;4 �

�
�12 C �34

2

�
; ˇ13 D �

�
1;2;3;4 �

�
�13 C �24

2

�
;

ˇ14 D �
�
1;2;3;4 �

�
�14 C �23

2

�
;

and

ˇ1 D
�12 C �13 C �14

2
� ��1;2;3;4; ˇ2 D

�12 C �23 C �24

2
� ��1;2;3;4;

ˇ3 D
�13 C �23 C �34

2
� ��1;2;3;4; and ˇ4 D

�14 C �24 C �34

2
� ��1;2;3;4:
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As was shown in the previous section, the triangle inequality (1.2) guarantees that Ii;j;k;l 6D ;
for i 6D j 6D k 6D l . Furthermore, if the strict triangle inequality (3.2) is satisfied then Ii;j;k;l
is an interval of positive length. Using the same argument for any collection of four regions
f˝i ; j̋ ; ˝k ; ˝lg, we can conclude that for all fi; j; k; lg 2 f1; : : : ; N g, i 6D j 6D k 6D l , there
exists ��

i;j;k;l
2 Ii;j;k;l (we can choose it in the interior if the strict triangle inequality holds) such

that

W� .u/ D
1

2

X
i<j

˛i;ju
2
i u
2
j C

X
i<j;k¤i;k¤i

˛i;j;kuiuju
2
k C 2

X
i<j<k<l

˛i;j;k;luiujukul ;

with

˛i;j;k;l D
X
S

�S
�
ık2Sıl2Sıi 62Sıj 62S C ık 62Sıl 62Sıi2Sıj2S C ık2Sıl 62Sıi2Sıj 62S

Cık 62Sıl2Sıi 62Sıj2S C ık2Sıl 62Sıi 62Sıj2S C ık 62Sıl2Sıi2Sıj 62S
�

D ˇi;j C ˇi;k C ˇi;l

D 3��i;j;k;l �
1

2

X
.i 0;j 0/�fi;j;k;lg; i 0<j 0

�i 0;j 0 ;

and

˛i;j;k D
X
S

�S
�
ık2Sıi 62Sıj 62S C ık 62Sıi2Sıj2S

�
D ˇk C ˇi;j D

�i;k C �k;j � �i;j

2
D
1

2
�i;j;k ;

˛i;j D
X
S

�S
�
ıi2Sıj 62S C ıi 62Sıj2S

�
D ˇi C ǰ C ˇi;k C ˇi;l D �i;j :

The following result is proved:

Theorem 3.10 Let � 2 SN be `1-embeddable and let f�S > 0; S � f1; : : : ; N gg the associated
coefficients given by the Cut Cone Property (3.1). For all i; j; k; l 2 f1; : : : ; N g, i 6D j 6D k 6D l

the interval

Ii;j;k;l D

264 max
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �k0;l 0

2

�
; min
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �i 0;k0 C �i 0;l 0

2

�375
is not empty. Given a potential of the form W� .u/ D

P
S�f1;:::;N g �SF.

P
i2S ui /, there exist

f��
i;j;k;l

2 Ii;j;k;l ; i; j; k; l 2 f1; : : : ; N g; i 6D j 6D k 6D lg, such that

W� .u/ D
1

4

NX
i;jD1

�i;ju
2
i u
2
j C

1

2

X
i<j;k¤i;k¤j

�i;k;juiuju
2
k C

X
i<j<k<l

�i;j;k;luiujukul ;

where �i;j;k D �i;k C �k;j � �i;j and �i;j;k;l D 6��
i;j;k;l

�
P
.i 0;j 0/�fi;j;k;lg; i 0<j 0 �i 0;j 0 are

nonnegative.
Furthermore, if � satisfies the strict triangle inequality (3.2) then every interval Ii;j;k;l has

positive length and every coefficient ��
i;j;k;l

can be chosen in the interior of Ii;j;k;l so that all
coefficients �i;j ; �i;j;k ; �i;j;k;l are positive for all i 6D j 6D k 6D l .
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3.3.4 Remarks on geodesics in the `1 embeddable case. In the case of either additive or `1

embeddable surface tensions, we have derived a specific form of multi-well potential W� and we
will prove in the next section the � -convergence of the associated approximation perimeter P� to
cW P . This � -convergence result yields an explicit formula linking the surface tensions and the
interface energy:

cF �i;j D inf
p2˙i;j

Z
R
�
�

4
�p0.s/ � p0.s/C

1

�
W�

�
p.s/

�
ds;

where ˙i;j is the set of all Lipschitz continuous functions p W R! ˙ , connecting the vectors ei to
ej i.e, p.�1/ D ei , p.C1/ D ej and satisfying p.0/ � ei D 1

2
.

Note that the Euler–Lagrange equation of this minimization problem reads �
2
�p
00

C
1
�
@uW� .p/ D 0. Computing the scalar product with p0 and a simple integration yields a constant,

which can be identified with zero simply passing to the limit. This shows the equipartition of the
energy � �

4
�p
0

� p
0

D
1
�

W� .p/, and then we have

cF �i;j D inf
p2˙i;j

Z
R

q
W�

�
p.s/

��
� �p0.s/ � p0.s/

�
ds; for all .i; j / 2 f1; : : : ; N g: (3.6)

We can also introduce the profile-geodesic qi;j defined as

qi;j D argminp2˙i;j inf
p2˙i;j

Z
R
�
1

4
�p0.s/ � p0.s/CW�

�
p.s/

�
ds;

Equation (3.6) proves that qi;j D eiqC.1�q/ej where the scalar profile q satisfies q.s/ D 1�tanh.s/
2

.
Indeed, remark that if p is expressed as eiq C .1 � q/ej , then

inf
p

Z
R

p
W� .p/.��p0 � p0/ds D inf

q

Z
R

r
�i;j

1

2
q2.1 � q/22�i;j jq0j2ds

D �i;j inf
q

Z
R

p
2F.q/jq0jds

D �i;j

Z 1

0

p
2F.s/ds D cF �i;j ;

where the equality on the second line line holds only for the profile function q.s/ D 1�tanh.s/
2

.
In particular, it means that the geodesic qi;j which minimizes equation (3.6) does not introduce
artificial phases between phases i and j .

3.3.5 Consequences for the non `1 embeddable case. What happens now in the case of a surface
tension matrix � which is not `1 embeddable? If there is � -convergence of P� to cW P , then, again,
the geodesic between two phases do not meet any other phase. But the experiments of Figure 3
show that a bad penalization of the 3-phases term in the potential does not prevent a geodesic from
meeting more than two phases. Our potential is able to fix this, but does not penalize 5-phases (and
more) situations. Therefore, we believe that � -convergence does not hold in general when � is not
`1 embeddable, and that it should be possible to design an example with at least five phases, where
there would exist two phases i and j and a geodesic pi;j 2 ˙i;j such that

cF �i;j >

Z
R
�
�

4
�p0i;j .s/ � p

0
i;j .s/C

1

�
W�

�
pi;j .s/

�
ds:
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We claim that this geodesic would meet at least five phases, because otherwise, using a localization
argument, we could reduce to a situation with at most four phases, and we know that when N 6 4

every surface tension matrix which satisfies the triangle inequality (1.2) is `1-embeddable.
To force the � -convergence, it is necessary to modify the potential, introducing an additional

term which penalizes the configurations where more than five phases coexist at the same location.
For instance a suitable modified potential is

W� .u/ D
1

4

NX
i;jD1

�i;ju
2
i u
2
j C

1

2

X
i<j;k¤i;k¤j

�i;k;juiuju
2
k C

X
i<j<k<l

�i;j;k;luiujukul CWpen.u/;

where

Wpen.u/ D
NX
mD5

24 X
16i1<i2<���<im6M

�i1;i2;:::;im ui1ui2 � � �uim

35 :
and the coefficients �i1;i2;��� ;im are taken large enough.

As a consequence, we claim that there are surface tension matrices which are not `1-
embeddable, and for which there is no fourth-order polynomial potential which guarantees the � -
convergence of the approximating multiphase perimeter. In other words, in the non `1-embeddable
case with a polynomial potential, a necessary condition for the � -convergence to be true is to use a
polynomial of degree at least 5.

4. Convergence of the approximating multi-phase perimeter

Recall from the previous sections that if a surface tension � is strictly `1-embeddable then there
exists a collection of nonnegative coefficients f�S ; S � f1; : : : ; N gg, such that �fig > 0 for all
i 2 f1; : : : ; N g and

P.˝1; : : : ; ˝N / D
X

S�f1;:::;N g

�SH
d�1

�
@� .[i2S˝i /

�
:

The purpose of this section is to prove the following result:

Theorem 4.1 Let � D .�ij /i;j2f1;:::;N g be a strictly `1-embeddable surface tension matrix. There
exists a collection of coefficients �S > 0 for all S � f1; : : : ; N g such that

P.˝1; : : : ; ˝N / D
X

S�f1;:::;N g

�S

ˇ̌̌
D
�X
i2S

1˝i

�ˇ̌̌
.˝/

for every partition f˝1; : : : ; ˝N g of ˝ with sets of finite perimeter. Moreover, the phase-field
perimeter P� defined by

P�.u/ D

8̂̂<̂
:̂
Z
˝

24 X
S�f1;:::;N g

�S

0@ �
2

ˇ̌̌̌
ˇr.X

i2S

ui /

ˇ̌̌̌
ˇ
2

C
1

�
F.
X
i2S

ui /

1A35 dx if u 2 ˙ \
�
W1;2.˝/

�N
C1 otherwise,

;
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� -converges in the L1 topology to cF QP , with

QP .u/ D

8̂<̂
:

X
S�f1;:::;N g

�S jD.
X
i2S

ui /j.˝/ if u D .1˝1 ; � � � ;1˝N / 2 ˙ \
�
BV.˝/

�N
;

C1 otherwise.
:

REMARK 4.2 Notice that if u D .1˝1 ; � � � ;1˝N / 2 ˙ \ .BV.˝//N then QP .u/ D
P.˝1; : : : ; ˝N /. Remark also that QP is a lower semicontinuous extension of P for theL1 topology.
In [3], S. Baldo used another extension which obviously coincides with ours on finite partitions.

REMARK 4.3 The phase-field perimeter P� in the above theorem depends on the coefficients �S
whose existence is guaranteed by the property of � to be `1-embeddable. However, for a given `1-
embeddable surface tensions matrix � , there is no unique choice of the coefficients �S for N > 4.
Another possible formulation for P� follows from the previous section, where we proved that P�
can be rewritten as:

P�.u/ D

8<:
Z
˝

�
�

4
�ru � ruC

1

�
W� .u/dx if u 2 ˙ \

�
W1;2.˝;R/

�N
;

C1 otherwise,

where �ru � ru D
PN
i;jD1 �i;jrui � ruj , and the potential W� .u/ is defined from the �i;j ’s as

W� .u/ D
1

4

NX
i;jD1

�i;ju
2
i u
2
j C

1

2

X
i<j;k¤i;k¤j

�i;k;juiuju
2
k C

X
i<j<k<l

�i;j;k;luiujukul ;

and
�i;j;k D .�i;k C �j;k � �i;j /; �i;j;k;l D 6�

�
i;j;k;l �

X
.i 0;j 0/�fi;j;k;lg; i 0<j 0

�i 0;j 0 ;

where

��i;j;k;l 2 Ii;j;k;l D264 max
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �k0;l 0

2

�
; min
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �i 0;k0 C �i 0;l 0

2

�375 :
Now, the dependence of P� on the choice of a particular collection f�Sg lies in the choice of ��

i;j;k;l
.

REMARK 4.4 In practice, for a given `1-embeddable surface tensions matrix � , we can choose with
the notations of the previous remark:

��i;j;k;l D max Ii;j;k;l D min
i 0;j 0;k0;l 02fi;j;k;lg
i 0 6Dj 0 6Dk0 6Dl 0

�
�i 0;j 0 C �i 0;k0 C �i 0;l 0

2

�
:

We claim that the � -convergence result proven in the next subsections still holds with such
assumption. Indeed, it is easily seen that the � � lim inf result remains true as the multiphase
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field perimeter associated with such choice of ��
i;j;k;l

is larger than the multiphase field perimeter
associated with any other choice of ��

i;j;k;l
in Ii;j;k;l . As for the � � lim sup, the proof follows from

an argument involving only two phases along each interface, except at the multiple points whose
influence is shown to be negligible. Since ��

i;j;k;l
plays a role when at least four phases appear at the

same point, the � � lim sup argument remains true with ��
i;j;k;l

D max Ii;j;k;l .

4.1 Equi-coerciveness and lim inf inequality

As usual in � -convergence theory, the convergence holds with respect to a parameter � tending to
0C, but this has to be understood in the sequential sense, i.e., for any sequence of real numbers
.�n/n2N converging to 0 as n!1.

Let .u�/f�>0g be a sequence in˙ \ .W1;2.˝//N such that .P�.u�//f�>0g is uniformly bounded.
With our assumption that �fig > 0 for every i 2 f1; : : : ; N g, it follows that for every i 2

f1; : : : ; N g,
Z
˝

.
�

2
jru�i j

2
C
1

�
F.u�i //dx is uniformly bounded. We deduce from Modica–Mortola’s

Theorem [35], possibly extracting a subsequence, that .u�i /f�>0g converges in L1 to a function
ui 2 BV.˝; f0; 1g/ for every i 2 f1; : : : ; N g, and denoting ˝i D fx 2 ˝; ui D 1g it holds
that

cF jD1˝i j.˝/ 6 lim inf
n!1

Z
˝

� �
2
jru�i j

2
C
1

�
F.u�i /

�
dx:

Define u D .u1; � � � ; uN / and observe that u 2 .BV.˝; f0; 1g/N . Since u� 2 ˙ , taking a
subsequence which converges a.e. in ˝ yields u 2 ˙ \ .BV.˝; f0; 1g/N . In particular, [i˝i
is a Caccioppoli partition of ˝ [2, 33], i.e., a partition made of sets with finite perimeter which are
pairwise disjoint (up to a Lebesgue negligible set).

We can now apply Modica–Mortola’s Theorem to every sequence .
P
i2S u

�
i /f�>0g and we get

that

cF

ˇ̌̌
D
�X
i2S

ui

�ˇ̌̌
.˝/ 6 lim inf

n!1

Z
˝

h �
2

ˇ̌̌
r

�X
i2S

u�i

�ˇ̌̌2
C
1

�
F
�X
i2S

u�i

�i
dx;

and finally

cFP.˝1; � � � ; ˝N / D cF QP .u/ D cF
X

S�f1;:::;N g

�S

ˇ̌̌
D
�X
i2S

ui

�ˇ̌̌
.˝/ 6 lim infP�.u�/:

4.2 lim sup inequality

Let us consider u D .1˝1 ; � � � ;1˝N /, with ˝1; : : : ; ˝N pairwise disjoint sets with finite perimeter
in ˝ such that j˝ n [NiD1˝i j D 0.

The aim of this section is to construct a sequence fu�g�>0 which converges to u in L1.˝/ and
such that

lim
�!0

P�.u�/ 6 cF QP .u/:

4.2.1 Restriction to a polygonal partition. Note that, by density (see Lemma 3.1 in [3]), we
can assume that each ˝i is a finite union of polygonal domains. We consider the signed distance
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function hi associated with each domain ˝i , i.e.,

hi .x/ D

(
dist.x;˝i / if x … ˝i ;
� dist.x;˝i / if x 2 ˝i :

Then, Lemma 3.3 in [3] establishes the existence of a constant � > 0 such that for all i 2 f1; : : : ; N g,
hi is Lipschitz-continuous onH�;i D fx 2 ˝I jhi .x/j < �g, and jrhi j D 1 for almost all x 2 H�;i .

4.2.2 �-partition of ˝. Let ı > 3 and assume that � is sufficiently small so that

s� D 2ıj log.�/j <
�

�
:

For all i 2 f1; : : : ; N g, let
˝�
i D fx 2 ˝I hi .x/ 6 ��s�g;

and, for all 1 6 i < j 6 N , let us define

� �i;j D
˚
x 2 ˝I jhi .x/j 6 �s�; jhj .x/j 6 �s�; and jhkj > �s� for all k … fi; j g

	
:

Then, with

B� D
˚
x 2 ˝; 9i; j; k 2 f1; 2 � � � ; N g such that jhi .x/j > �s�; jhj .x/j > �s� and jhk.x/j > �s�

	
we have the following partition of ˝ (see Figure 1):

˝ D
˚
[
N
i ˝

�
i

	
[
˚
[16i<j6N �

�
i;j

	
[ B�:

Moreover, it is not difficult to see that, since the set of triple points has codimension 2 for polygonal
partitions, one has

jB�j 6 O
�
�2j log.�/j2

�
:

���������������������
���������������������
���������������������
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FIG. 1. �-partition of˝ [Colors shown in the online version]
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Indeed, to be convinced, consider first the case of dimension 2. As .˝1; ˝2; � � � ; ˝N / is a polygonal
partition of ˝, there exists a finite number M of multiple junctions x1; x2; � � � ; xM . Let ˛i denote
the minimal angle between any two branches at junction xi . Then, it is not difficult to see that
B� � [

M
iD1B.xi ; �s�= sin.˛i //, where B.x; r/ is the ball centered at x with radius r . In particular,

this shows that in dimension 2:

jB�j 6 M�
�2s2�

minifsin.˛i /2g
:

In higher dimension, triple junctions still have codimension 2 and can therefore be covered by sets
B� of size O.�2j log.�/j2/.

4.2.3 Profile approximation. Recall that the Allen–Cahn profile function q is defined as

q D argmin
p

�Z
R

p
F.p.s/jp0.s/jdsIp.�1/ D 1; p.0/ D 1=2; p.C1/ D 0

�
;

where p ranges over all Lipschitz continuous functions p W R! R. It is a well-known fact that

q0.s/ D �

q
2F
�
q.s/

�
and q00.s/ D W 0

�
q.s/

�
; for all s 2 R;

which implies that q.s/ D .1� tanh.s//=2 in the case of the standard double well potential F.s/ D
1
2
s2.1 � s/2.

We will now introduce an approximation q� of q of which the support of variation is bounded.
Following [6], we take8̂<̂

:
q�.s/ D q.s/; 8jsj 6 s�=2;

q�.s/ D 1 if s < �s�; and q�.s/ D 0 if s > s�;
q�.s/ D p�.s/; 8s 2 I

�
� D Œ�s�;�s�=2�; and q�.s/ D pC.s/; 8s 2 IC� D Œs�=2; s��;

where p� and pC are two polynomials of degree 3, defined in such a way that q� 2 C 1.R/. Note that
these polynomials are unique (by the standard interpolation theory) and it can be proven (see [6])
that

q� � q D o.�
2ı�1/; q0� �W

0.q�/ D o.�
2ı�1/; and q0� C

p
2F.q�/ D o.�

2ı�1/:

4.2.4 Recovery sequence. We are now able to define an approximation u� of u D

.1˝1 ; � � � ;1˝N / as

u�.x/ D P˙

"
NX
iD1

eiq�
�
hi

�

�#
D

8̂<̂
:

ei if x 2 ˝�
i ;

q�.hi=�/ei C .1 � q�.hi=�//ej if x 2 � �i;j
P˙ Œ

P
i eiq�.hi=�/� otherwise,

;

where P˙ is the orthogonal projection onto ˙ D fu W ˝ ! RN ;
PN
iD1 ui D 1 a.e.g defined for

a.e. x 2 ˝ as

P˙ Œu�.x/ D

(
u.x/=

�PN
iD1 ui .x/

�
if
PN
iD1 ui .x/ 6D 0;

1
N
1N otherwise,
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with 1N D .1; 1; : : : ; 1/ 2 RN : Here we use that for all x 2 � �i;j , hi .x/ D �hj .x/ and that q�
satisfies the following symmetry principle

q�.s/ D 1 � q�.�s/; for all s 2 R:

Moreover, as s� D ıj log.�/j < �
2�

, u� is a Lipschitz continuous function and u� clearly converges
to u in L1.˝/.

4.2.5 Final convergence. Recall that

P�.u�/ D
Z
˝

�
�
�

4
�ru� � ru� C

1

�
W� .u�/

�
dx:

First, remark that Z
˝�
i

�
�
�

4
�ru� � ru� C

1

�
W� .u�/

�
dx D 0;

and that Z
B�

�
�
�

4
�ru� � ru� C

1

�
W� .u�/

�
dx D O.�j log.�/j2/;

using the fact that jB�j D O.�2j log.�/j2/, jru�j D O.1
�
/ and W� is locally bounded on RN .

It is sufficient now to evaluate for all 1 6 i < j 6 N the integral

J �i;j D

Z
� �
i;j

�
�
�

4
�ru� � ru� C

1

�
W� .u�/

�
dx:

Recall that for all x 2 � �i;j , we have u� D q�.hi=�/ei C .1 � q�.hi=�//ej and so(
��ru� � ru� D 2�i;j jrq�.hi=�/j2;
W� .u�/ D �i;j 12q�.hi=�/

2
�
1 � q�.hi=�/

�2
:

In particular, this shows that

J �i;j D �i;j

Z
� �
i;j

�
�

2
jrq�.hi=�/j

2
C
1

�
F
�
q�.hi=�/

��
dx

D �i;j

Z
� �
i;j

�
1

2
jq0�.hi=�/j

2
C F

�
q�.hi=�/

�� jrhi j
�

dx:

Thus, the coarea formula proves that

J �i;j D

Z s�

�s�

Hd�1.@�
�;�s
i;j /

�
1

2

ˇ̌
q0�.s/

ˇ̌2
C F

�
q�.s/

��
ds;

where the set � �;si;j is defined as

�
�;s
i;j D

˚
x 2 � �i;j I hi .x/ 6 s

	
; 8s 2 R:
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Finally, taking the limit as � goes to zero, the regularity of both �i;j and the distance function hi ,
and an application of the Dominated Convergence Theorem, lead to

lim
�!0

J �i;j D �i;jH
d�1.�i;j /

�Z
R

1

2

ˇ̌
q0.s/

ˇ̌2
C F.q.s/ds

�
D cF �i;jH

d�1.�i;j /;

thus

lim
�!0

P�.u�/ D
cF

2

NX
i;jD1

Hd�1.�i;j / D cFP.u/:

This concludes the proof of Theorem 4.1.

5. L2-gradient flow and some extensions

We now derive the L2-gradient flow of

P�.u/ D

8<:
Z
˝

�
�

4
�ru � ruC

1

�
W� .u/dx if u 2 ˙ \

�
W1;2.˝;R/

�N
;

C1 otherwise.

The gradient of P� is

rP�.u/ D
�

2
��uC

1

�
@uW� .u/;

thus, considering that multiphase fields are now time-dependent, we get the following Allen–Cahn
system, up to time rescaling:8<: u W ˝ � Œ0;C1/! RN ;

@tu D �T˙
�
1
2
��u

�
�

1
�2
T˙
�
@uW� .u/

�
;

u.�; 0/ D u0;

where T˙ is the orthogonal projection onto the tangent space fu W ˝ � Œ0;C1/! RN W
P
ui D

0g, defined as

T˙ Œu.�; t /� D u.�; t / �
1

N

� NX
iD1

ui .�; t /
�
1N ; with 1N D .1; : : : ; 1/ 2 RN :

Moreover, we have

T˙ Œ��u� D �T˙ Œ�u� D �T˙ Œ��u D T˙ Œ���u where T˙ Œ��i;j D T˙ Œ��;j �i ;

and the Allen–Cahn system can be written as

@tu D �
1

2
T˙ Œ���u �

1

�2
T˙ Œ@uW� .u/� :

Since
PN
iD1 ui D 1, one has

PN
iD1�ui D 0, thus the system

@tu D �
1

2

�
T˙ Œ�� � �1N ˝ 1N

�
�u �

1

�2
T˙
�
@uW� .u/

�
; (5.1)
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is equivalent to the previous one. The existence and uniqueness of solutions to this system follow
easily from standard results on semi-linear systems of reaction-diffusion. Furthermore, this new
form is easier to handle numerically. In particular, � is a parameter which can be chosen large
enough to force the matrix .T˙ Œ�� � �1N ˝ 1N / to be negative definite. This is of course a
requirement for the scheme to be stable. Note that it is always possible to find such a � 2 R as
soon as � defines a negative form on .1; 1; � � � ; 1/? � RN (which is the case of all `1-embeddable
matrices). This assumption also appears in the convergence of the algorithm introduced in [25], and
simple examples show that it is necessary. For instance, if N D 3 and �i;j D 1 whenever i 6D j ,
then

� D

0@0 1 1

1 0 1

1 1 0

1A ; T˙ Œ�� D

0@�2=3 1=3 1=3

1=3 �2=3 1=3

1=3 1=3 �2=3

1A
and T˙ Œ�� �

1

3
13 ˝ 13 D

0@�1 0 0

0 �1 0

0 0 �1

1A ;
and it is easily seen that T˙ Œ�� is not invertible whereas T˙ Œ�� � 1

3
13 ˝ 13 is negative definite.

5.1 Sharp interface limits

As mentioned earlier, Garcke et al. studied in [28] the flow associated with energies of the general
form

P�.u/ D
Z
�f .u;ru/C

1

�
W.u/dx;

where f W RN � RN�n ! RC is such that:

� f .u; �X/ D �2f .u; X/ for all � 2 R,
� f .u; X/ > 0, whenever u 2 ˙ , X 6D 0,
� f .u; :/ is convex for all u 2 ˙ ,

and where the potential W is assumed to have exactly N local minima on the hypersurface ˙ .
The new model that we introduced in the previous sections is based on `1-embeddable surface

tension matrices � , a potential W DW� (see Theorem 3.10), and a regularity term

f .u;ru/ D �
1

4
.�ru � ru/;

which is nonnegative since � is conditionally semi-definite negative. Therefore, our model falls
in the general category studied in [28], provided that one replaces the second condition with the
following one:

� f .u; X/ > 0, whenever u 2 ˙ , X 2 .T˙/N , X 6D 0,

which is not more restrictive since, in practice, X D ru 2 .T˙/N as soon as u 2 ˙ .
The Allen–Cahn system corresponding to the gradient flow of the general energy is, up to time

rescaling,

@tu D div
�
T˙ Œ@Xf .u;ru/ � @uf .u;ru/�

�
�
1

�2
T˙
�
@u W.u/

�
:
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Using the formal asymptotic expansion method, Garcke et al showed that the sharp interface limit
of the solution to this system is an anisotropic multiphase mean curvature flow which satisfies

�i;j .ni;j /Vi;j D
�
Q�i;j .ni;j /C Q�

00

i;j .ni;j /
�
�i;j ;

where

� ni;j denotes the normal at the interface �i;j pointing from ˝i to j̋ ;
� Vi;j is the normal velocity of the flow at the interface �i;j ;
� �i;j is the mean curvature at the interface;
� Q�i;j .n/ D infp2˙i;j

R
R 2
p

W.p/f .p; p0 ˝ n/ds is the anisotropic surface energy;
� �i;j .n/ D

R
R j@sqi;j .s; n/j

2ds is the anisotropic mobility, denoting

qi;j .:; n/ D argminp2˙i;j

Z
R
2
p

W.p/f .p; p0 ˝ n/ds

the anisotropic geodesic;

In addition, it is shown also in [28] that Herring’s angle condition is satisfied at every triple junction.
Let us now focus on the gradient term used in our model, i.e. f .u; X/ D �1

4
�X � X . Then the

multiphase mean curvature flow is isotropic as

f .p; p0 ˝ n/ D �
1

4
.�p0 � p0/.n � n/ D �

1

4
�p0 � p0:

Moreover as written earlier,

Q�i;j D inf
p2˙i;j

Z
R

q
W�

�
p.s/

��
� �p0.s/ � p0.s/

�
ds D cW �i;j :

The geodesics qi;j .:; n/ satisfy

qi;j .s; n/ D qi;j .s/ D q.s/ei C
�
1 � q.s/

�
ej ;

where q is the classical Allen–Cahn profile q.s/ D 1�tanh.s/
2

which satisfies the equation q0 D
�
p
2F.q/. In particular, it follows that the mobility equals

�i;j .n/ D

Z
R

ˇ̌
@sqi;j .s; n/

ˇ̌2
ds D

Z
R
2
ˇ̌
q0.s/

ˇ̌2
ds D 2cF :

In conclusion, it follows from the results of [28] that the sharp interface limit of our phase field
model follows a mean curvature motion with speed

Vi;j D
1

2
�i;j �i;j ;

which corresponds to the multiphase mean curvature flow (1.3) with interface mobility �i;j D 1=2.
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5.2 Additional volume constraints

In view of applications to droplets, we also consider the L2-gradient flow of P� with additional
constraints on the volume of each phase ui :

@t

�Z
uidx

�
D 0:

Plugging this constraint into the problem yields the following mass conservation Allen–Cahn
system:

@tu D �
1

2
T˙ Œ���u �

1

�2
T˙ Œ@uW� .u/ �Λ� ;

where Λ is a local Lagrange multiplier [1, 11] associated to the constraint @t
�R
uidx

�
D 0, which

can be calculated as

Λi D

R �
@uW� .u/

�
i
dxR p

2F.ui /dx

p
2F.ui /; i 2 f1; : : : ; N g:

5.3 Application to the wetting of multiphase droplets on solid surfaces

The behavior of liquids on solid surfaces has been of interest to academic and engineering
communities for many decades. Capillarity theory is a well established theory, and two centuries
ago, Young [48] determined the optimal shape of a drop in equilibrium on a solid surface. More
precisely, the drop shape can be seen as the solution to the minimization of the following energy:

P.˝L/ D �L;SH
d�1.�L;S /C �L;VH

d�1.�L;V /C �S;VH
d�1.�L;V /;

under a constraint on the volume of the set ˝L which represents the droplet. Here, �L;S , �L;V ,
and �L;V are the surface tensions between liquid (L), solid (S), and vapor (S) phases. In particular,
minimizers of this energy satisfy Young’s law for the contact angle � of the droplet on the solid, see
Figure 2:

cos.�/ D
�S;V � �S;L

�L;V
:

The wetting phenomenon was modeled by Cahn in [12] in a phase-field setting. Cahn proposed to
extend the Cahn–Hilliard energy by adding a surface energy term which describes the interaction

σ
L,Sσ

V,S

σ
L,D

θ

S

L

V

L2L1

S

V

Ω

Ω

Ω Ω

Ω

Ω

Ω

FIG. 2. Wetting of droplets on a solid surface. The contact angle � satisfies Young’s law. [Colors shown in the online version]
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between liquid and solid. This approach has been recently used in [47] for numerical simulations
of one droplet but can not be used in the case of angle � > �

2
. Another approach [49], using

the smoothed boundary method, proposes to compute the Allen–Cahn equation using generalized
Neumann boundary conditions to force the correct contact angle condition. Note that an extension
of these approaches to many droplets can be found in [7].

Our approach in this paper is slightly different and the novelty is to formulate the optimal drop
shape problem as the minimization of the multiphase perimeter

P.˝V ; ˝L; ˝S / D

Z
�L;S

�L;SdH
d�1
C

Z
�L;V

�L;V dH
d�1
C

Z
�L;V

�S;V dH
d�1;

under a volume constraint on the set ˝L and an additional constraint on ˝S , which is given and
assumed to be fixed. The advantage of this approach is that the contact angle condition is implicitly
incorporated in the phase field approximation of P . The case of many droplets is a natural extension
of the single droplet case. Let us introduce for instance N � 2 droplets, denoted by ˝L1 , ˝L2 . . .
˝LN�2 , and take by convention

˝N D ˝S ; ˝N�1 D ˝V ; and ˝i D ˝Li for all i 2 f1; : : : ; N � 2g:

Then, the optimal shapes of the droplets can be viewed as regions of a minimizer of the multiphase
perimeter

P.˝1; : : : ˝N / D
1

2

NX
i;jD1

Z
�i;j

�i;jd�;

under a volume constraint on the droplets ˝Li and a constancy constraint of ˝N . Here the
coefficients �i;N�1 and �i;N represent the surface tensions at the interfaces between droplets on
one hand and, respectively, vapor and solid phases.

Our phase field approximation to this model is

P�.u/ D

8<:
Z
˝

�
�

4
�ru � ruC

1

�
W� .u/dx if u 2 ˙;

C1 otherwise,

under volume constraints and the additional solid constancy constraint

@tuN D 0:

Denoting Qu D .u1; u2; � � � ; uN�1/, let us consider the projection QT˙ W RN ! RN�1 onto(
Qu;
N�1X
iD1

ui D constant in time D 1 � uN

)
;

defined as

QT˙
�
u.�; t /

�
D Qu.�; t / �

1

N � 1

 
N�1X
iD1

ui .�; t /

!
1N�1; with 1N�1 D .1; 1; : : : ; 1/ 2 RN�1:
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The L2-gradient flow of the above problem is the following Allen–Cahn system:

@t Qu D �
1

2
QT˙ Œ��u� �

1

�2
QT˙
�
@uW� .u/ �Λ

�
:

where Λ D .�1; � � � ; �N / are Lagrange multipliers associated to the volume constraints:

�i D

R �
@uW.u/

�
i
dxR p

2F.ui /dx

p
2F.ui /; i 2 f1; : : : ; N g:

Note also that as
QT˙ Œ��u� D QT Œ���u; where QT Œ��i;j D QT Œ��;j �i ;

we can consider the following variant equation

@t Qu D �
1

2

�
QT˙ Œ�� � �1N�1 ˝ 1N�1

�
�u �

1

�2
QT
�
@uW� .u/ �Λ

�
:

where, as before, � is assumed to be sufficiently large so that Q� D QT Œ�� � �1N�1 ˝ 1N�1 is a
negative definite matrix.

6. Numerical experiments

We use a Fourier spectral splitting scheme [16] to compute numerically the solution to the Allen–
Cahn system

@tu D �
1

2
Q��u �

1

�2
T˙ Œ@uW� .u/� ;

where Q� D T˙ Œ��� �1N ˝ 1N with � sufficiently large so that Q� is negative definite. We compute
the solution for any time t 2 Œ0; T � in a box ˝ D Œ0; 1�d with periodic boundary conditions. Then,
the splitting scheme consists in handling:

� the diffusion term exactly in Fourier space

unC1=2 D exp
�
1

2
ıt Q��

�
un;

� the reaction term explicitly in the space domain

unC1 D unC1=2 �
ıt

�2
T
�
@uW.unC1=2/

�
:

Note that the space discretization is built with Fourier series. It has the advantage of preserving a
high order approximation in space while allowing a fast and simple processing of the homogeneous
operator .Id C ıtT .�/�/

�1. In practice, the solutions u.x; tn/ at time tn D nıt are approximated
by the truncated Fourier series :

unP .x/ D
X

kpk16P

unpe
2i�x�p;
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where kpk1 D max16i6d jpi j and P is the maximal number of Fourier modes in each direction.
Then, the implicit treatment of the diffusion term in Fourier space can be written as

unC1=2 D
X

kpk16P

unC1=2p e2i�x�p with unC1=2p D exp
�
2�2jpj2ıt Q�

�
unp:

Here, exp
�
2�2jpj2ıt Q�

�
is the exponential of the matrix

�
2�2jpj2ıt Q�

�
, which can be computed

numerically with the function exp in Matlab.
Note that this scheme (as for the classical Allen–Cahn equation) appears to be stable under a

condition of the form
ıt 6

cW

�2
;

where cW is a constant which depends only on the multi-potential W (and not on �, ıt or P ).
The experiments presented in the remainder of the paper have been realized using Matlab. The

isolevel sets ˝i .t/ D fx W ui .x; t/ D 1
2
g are computed and drawn using the Matlab functions

contour in 2D and isosurface in 3D. We use the double-well potential F.s/ D 1
2
s2.1 � s/2 in

the expression of the Lagrange multiplier associated to the volume constraint, and we consider the
PDE system (

@tu.x; t/ D �12 Q��u.x; t/ � 1
�2
T˙
�
@uW�

�
u.x; t/

��
;

u.x; 0/ D u0.x/;

where the initial condition u0.x/ is given by

.u0/i .x/ D
. Qu0/i .x/PN
jD1. Qu0/j .x/

and . Qu0/i .x/ D q
�

dist.x;˝i /
�

�
:

Here, ˝i is the i th set of the given initial partition, dist.x;˝i / is the signed distance function to ˝i
and q is the profile function associated to F.s/ D 1

2
s2.1 � s/2. Note that u0 2 ˙ .

6.1 Experimental consistency

The aim of this section is to compare numerically the behavior of our scheme associated to three
different multi-well potentials W :8̂<̂
:

W1.u/ D 1
4

P
i;j �i;ju

2
i u
2
j ;

W2.u/ D 1
4

P
i;j �i;ju

2
i u
2
j C

1
2

P
i<j<k 50 u

2
i u
2
j u

2
k
;

W� .u/ D
PN
i;jD1

1
4
�i;ju

2
i u
2
j C

1
2

P
i<j;k¤i;k¤j �i;k;juiuju

2
k
C
P
i<j<k<l �i;j;k;luiujukul :

Remark that potentials W1 and W2 are currently used in the literature [29]. It is only for potential
W� that our results (see Theorem 4.1) guarantee the � -convergence of the associated approximating
perimeter. This is partially illustrated in the following experiment, which shows also that using either
W1 or W2 leads in contrast to undesirable effects, and implies in particular that � -convergence
cannot be expected for the energies associated with these potentials.

More precisely, we compute numerically the geodesics pi;j and the numerical values of the
surface tension coefficients ıi;j :

ıi;j D
1

cF
inf
p

Z 1

�1

q
W
�
p.s/

��
� �p0.s/ � p0.s/

�
ds:
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FIG. 3. First line: Geodesics pij between phases ei and ej , i; j 2 f1; 2; 3g, Second line: values of u1, u2, u3 along
geodesic p12 (from left to right: with potentials W1, W2 and W� ) [Colors shown in the online version]

The geodesics are obtained by resolution of the phase field system in dimension one with a “good”
initial condition for u. We consider the case N D 3 associated with the following surface tension
coefficients: �12 D 1, �13 D 0:6 and �23 D 0:8. We also take the numerical parameters equal
to P D 211, � D 16=P , and ıt D �2=10. The geodesics between every pair among fe1; e2; e3g

are represented in black on the first line of Figure 3 for each potential. A focus on the values of u
along the geodesic g12 is shown in the second line. We observe that only the potential W� ensures
that only two phases are visited along the geodesic. Moreover, the numerical estimations of the
surface tensions ıi;j (shown on the top of each figure) show a good approximation of �i;j only in
the case of the potentials W2 and W� . To conclude, the potential W1 is unusable here, whereas W2

approximates correctly the multiphase perimeter P , and W� does even better.
The second test concerns the evolution of an initial partition defined by :

� ˝1 is a circle of radius R0 D 0:25,
� ˝2 D ˝ n˝1,
� ˝3 is empty.

Then, the L2-gradient flow of P is explicit and satisfies

� ˝1.t/ is a circle of radius R.t/ D
q
R20 � 2 t ,

� ˝2.t/ D ˝ n˝1.t/,
� ˝3 remains empty.

The first line on Figure 4 shows the error between the numerical radius R�.t/ and the theoretical
radius R.t/, at different times t and for three different values of �. The other numerical parameters
are equal to P D 27 and ıt D 1=.10P 2/. It is reasonable to believe that this experiment illustrates
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FIG. 4. The graphs of t ! R�.t/ for � D 1=P , � D
p
2=P and � D 2=P , compared with the exact solution.

Left to right: with potentials W1, W2, and W� . Second line: Zoom on the first line. [Colors shown in the online version]

the convergence of R� to R as � goes to zero only in the case of the potentials W2 and W� . More
precisely, the second line of (4) presents a zoom on each figure which shows a convergence order
O.�/ in the case of the potential W2 andO.�2/ for the potential W� . Note that the bad convergence
order for the potential W2 is certainly the consequence of the presence of a third phase along the
geodesics.

6.2 Evolution of partitions

We present now some experiments obtained with the following numerical parameters: P D 28,
� D 1=P and ıt D �2=4. In all examples, N D 4, and ˝1, ˝2, ˝3 and ˝4 are plotted in blue, red,
light blue and green, respectively.

Figure 5 shows two evolutions of three bubbles obtained with the following set of surface
tensions

�1 D

0BB@
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1CCA and �2 D

0BB@
0 1 1 1

1 0 1=2 1

1 1=2 0 1

1 1 1 0

1CCA :
In particular, we observe a slightly different evolution of the same initial partition, and the triple
junctions between phases 1; 2; 3 and 2; 3; 4 are clearly different .

The second test is inspired by a similar experiment in [25], and shows an example of wetting
phenomenon when the triangle inequality (1.2) does not hold. Let us consider the two sets of surface



ON A NEW MULTIPHASE FIELD MODEL FOR INTERFACIAL ENERGIES 175

FIG. 5. Evolution of a 4-partition; first line: �i;j D 1; second line: �1;2 D 1, �1;3 D 1, �2;3 D 0:5, �1;4 D 1,
�2;4 D 1, �3;4 D 1. [Colors shown in the online version]

tension coefficients

�3 D

0BB@
0 3=2 1 1

3=2 0 1 1

1 1 0 1

1 1 1 0

1CCA and �4 D

0BB@
0 3=2 1 1=2

3=2 0 1 1=2

1 1 0 1

1=2 1=2 1 0

1CCA :
Note that �3 satisfies the triangle inequality (1.2), but not �4 as

.�2/1;4 C .�2/2;4 < .�2/1;2:

We consider an initial partition with an empty fourth phase. The first and second lines of Figure 6
show the evolution of this initial partition at different times t with �3 and �4, respectively. We can
observe a nucleation phenomenon with the spontaneous growth of the fourth phase when �4 is used.

The last example shows that nucleation phenomena can occur even for a matrix � satisfying the
triangle inequality (1.2), as observed also in [25]. Let

�5 D

0BB@
0 1 1 1=2C "

1 0 1 1=2C "

1 1 0 1=2C "

1=2C " 1=2C " 1=2C " 0

1CCA ;
where " 2 Œ0; 3=2� to ensure the triangle inequality. For " 2 Œ0; 2�

p
3

2
p
3
� a triple point between phases

1,2, and 3 cannot be stable, for it has larger energy than a triangle containing only phase 4. This can
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FIG. 6. Starting from 3 phases out of 4, a nucleation may occur when the triangle inequality is not satisfied. First line:
�1;2 D 1:5, �1;3 D 1 �2;3 D 1 �1;4 D 1, �2;4 D 1 �3;4 D 1 (no nucleation, triangle inequality holds); Second line
with �1;2 D 1:5, �1;3 D 1 �2;3 D 1 �1;4 D 0:5, �2;4 D 0:5 �3;4 D 1 (nucleation occurs, �1;2 > �1;4 C �2;4).
[Colors shown in the online version]

be easily seen on an optimal triple point configuration with all angles equal to 2�=3: the energy of
the triple point in a unit ball of which it is the center is 3; instead, the maximal equilateral triangle
with same center and full of phase 4 has energy 3

p
3.1
2
C "/. Therefore the choice 0 6 � < 2�

p
3

2
p
3

guarantees that 3
p
3.1
2
C "/ < 3, i.e., a triangle full of phase 4 is more favorable. We plot in

Figure 7 an evolution of a partition with " D 0:9.2�
p
3/

2
p
3

and with " D 1:1.2�
p
3/

2
p
3

, and we observe the
nucleation of phase 4 at each unstable triple junction only in the first case.

6.3 Wetting of multiphase droplets on solid surfaces

We now consider the system(
@t Qu D QT˙ Œ��u� � 1

�2
QT˙
�
@uW.u/ �Λ

�
;

u.x; 0/ D u0.x/:

As before Qu D .u1; u2; � � � ; uN�1/T and QT W RN ! RN�1 denotes the projection defined by

QT Œu.�; t /� D Qu.�; t / �
1

N � 1

 
N�1X
iD1

ui .�; t /

!
1N�1; where 1N�1 D .1; 1; : : : ; 1/ 2 RN�1;
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FIG. 7. A nucleation example in the case �1;2 D 1, �1;3 D 1, �2;3 D 1, �1;4 D 1=2C ", �2;4 D 1=2C ", �3;4 D

1=2C". First line with " D 0:9.2�
p
3/

2
p
3

(triple points are unstable, the triangle inequality holds but the configuration with a

triple point between phases 1,2,3 has larger energy than a triangle containing only phase 4; second line with " D 1:1.2�
p
3/

2
p
3

(triple points are stable). [Colors shown in the online version]

and Λ D .�i / are the Lagrange multipliers associated to droplets volume constraints:

Λi D

R �
@uW� .u/

�
i
dxR p

2F.ui /dx

p
2F.ui /; for i 2 f1; : : : ; N g:

In practice, we use the double-well potential F.s/ D 1
2
s2.1 � s/2 in the expression of �.

Moreover, for a given initial partition f˝igiD1N , recall that the boundary of the N th phase ˝N
is assumed to be the solid surface, and we take as initial condition u0 such that8̂̂̂<̂

ˆ̂:
.u0/N .x/ D q

�
dist.x;˝N /

�

�
;

. Qu0/i .x/ D q
�

dist.x;˝i /
�

�
for i 2 f1; : : : ; N � 1g;

.u0/i .x/ D
.Qu0/i .x/PN�1

jD1 .Qu0/i .x/C.u0/N .x/
for i 2 f1; : : : ; N � 1g:

As before, the numerical scheme is a Fourier spectral splitting scheme with implicit resolution of
the diffusion term in Fourier space and explicit resolution of the reaction term in spatial space.

The first experiment highlights the good behavior of our approach. We compute the optimal
shape of a single droplet (˝2 in red) localized on a solid line (˝3 in green) with numerical
parameters P D 28; � D 1=P , and ıt D �2=4 . We show in Figure 8 the different approximated
optimal shapes obtained with our approach for the following surface tension matrices:
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FIG. 8. Optimal shape of a droplet. Left: �1;2 D 1, �1;3 D 0:5, �2;3 D 1; middle: �1;2 D 1, �1;3 D 1, �2;3 D 1;
right: �1;2 D 1, �1;3 D 1, �2;3 D 0:5. [Colors shown in the online version]

�1 D

0@ 0 1 1=2

1 0 1

1=2 1 0

1A ; �2 D

0@0 1 1

1 0 1

1 1 0

1A ; and �3 D

0@0 1 1

1 0 1=2

1 1=2 0

1A :
We also plot in each figure the optimal shape given by Young’s law

cos.�/ D
�1;3 � �2;3

�1;2
;

and we can observe a quasi-perfect reconstruction of the optimal shape by the phase-field method.
We emphasize that the angle condition is not prescribed, it follows naturally from the minimization
of the multiphase perimeter.

Both final tests are inspired by the experiments in [7]. We now approximate the evolution of two
droplets on a solid line with two different sets of surface tensions:

�4 D

0BB@
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1CCA and �5 D

0BB@
0 1 1 1

1 0 0:9 0:7

1 0:9 0 1:3

0 0:7 1:3 0

1CCA :
We plot in Figure 9 the evolution of both droplets in 2D at different times t with P D 28; � D 1=P
and ıt D �2=4. The same experiment is done in 3D in Figure 10.
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FIG. 9. Dynamics of two droplets. First line: �i;j D 1; second line: �1;2 D 1, �1;3 D 1, �2;3 D 0:9, �1;4 D 1,
�2;4 D 0:7, and �3;4 D 1:3. [Colors shown in the online version]

FIG. 10. Dynamics of two droplets in 3D. First line: �i;j D 1; Second line: �1;2 D 1, �1;3 D 1, �2;3 D 0:9, �1;4 D 1,
�2;4 D 0:7, and �3;4 D 1:3. [Colors shown in the online version]
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