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We consider the thin-film equation with a prototypical contact-line condition modeling the effect of

frictional forces at the contact line where liquid, solid, and air meet. We show that such condition,

relating flux with contact angle, naturally emerges from applying a thermodynamic argument due to

Weiqing Ren and Weinan E [Commun. Math. Sci. 9 (2011), 597–606] directly into the framework

of lubrication approximation. For the resulting free boundary problem, we prove global existence of

weak solutions, as well as global existence and uniqueness of approximating solutions which satisfy

the contact line condition pointwise. The analysis crucially relies on new contractivity estimates for

the location of the free boundary.
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1. Introduction and main result

1.1 Thin-film equations

Thin-film equations are fourth-order degenerate parabolic equations whose simplest form, in one

space dimension, reads as

ht C .m.h/hxxx/x D 0 on fh > 0g; (1.1)

where m 2 C.Œ0; 1// with m.0/ D 0 and m.h/ > 0 for h > 0. Equation (1.1) describes the height

h of a thin layer or droplet of a Newtonian fluid on a flat and perfectly smooth horizontal solid

substrate in the regime of lubrication approximation ( [42]; see [28, 38] for its rigorous justification

in a related model). In this case m has the typical form m.h/ D h3 C b3�nhn, the parameters n > 0

and b > 0 being related to the slip condition imposed at the liquid-solid interface: in particular,

n D 2 corresponds to a Navier slip condition and n D 3 (or b D 0) corresponds to a no-slip

condition. The case m.h/ D h may also be seen as the lubrication approximation of the two-

dimensional Hele-Shaw flow in half-space [28].

Throughout the paper we consider for simplicity a symmetric droplet configuration, i.e., h even

and fh > 0g D .�s.t/; s.t//. Since (1.1) is of fourth order, at least two conditions are to be imposed
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at x D s.t/: the most natural ones are

h.t; s.t// D 0; (1.2a)

lim
x!s.t/�

m.h/

h
hxxx D Ps; (1.2b)

the former defining x D s.t/ itself, the latter representing the kinematic condition that the interface

moves with the fluid. It is conjectured for n > 3, and proved for n > 7=2 [2, 6], that the support of

solutions to (1.1)–(1.2) remains the same for all times, i.e., s.t/ D s.0/. However, when n < 3 (i.e.,

when slippage is allowed) the support is expected to change with time, leading to a genuine free

boundary problem for which a third condition is required. Most of the literature so far has focused

on the so-called complete wetting regime, which amounts to prescribing hx.t; s.t// D 0; for this

problem, global existence of weak solutions and their qualitative properties [1–7, 13–19, 23, 27,

29–33, 35] as well as local-in-time well-posedness [21, 22, 24, 25], have been widely investigated.

When a constant non-zero contact angle is prescribed, the theory of global weak solutions is more

limited [8, 39, 43], whereas that of local well-posedness is as well developed [36–38].

The aim of this work is to discuss global weak solutions to a class of contact-line conditions

which model the effect of frictional forces at the contact line. The prototypical case in this class

reads as follows:

Ps.t/ D d

2

�

.h2
x � 2hhxx/ � �2

S

�

jxDs.t/; (1.3)

where d > 0, the superposed dot denotes the time derivative, and the notation f jxDs.t/ denotes

the limit of f as x ! s.t/�. We will now argue that (1.3) stands as the appropriate analogue, in

lubrication approximation, of the prototypical contact-line condition proposed by Ren and E in [44]

and derived by the same authors in [45] at the level of Navier-Stokes equations.

1.2 The Ren-E contact-line condition in lubrication approximation

Let us preliminarily review, in the simplest possible setting, the derivation provided in [45] of the

analogue of (1.3) in the framework of Navier-Stokes equations. Consider a Newtonian liquid on a

flat solid surface surrounded by a gas. Let ˝ denote the region occupied by the liquid and let  ,

SL, and SG denote the surface tensions at the liquid/gas (� ), solid/liquid (�SL), and solid/gas

(�SG) interfaces, respectively. On introducing a static contact angle, �S 2 Œ0; ��, defined by

 cos �S WD

8

<

:

SG � SL if jSG � SLj <  (partial wetting),

1 if SG � SL >  (complete wetting),

�1 if SG � SL 6 � (complete dewetting),

and on neglecting molecular interaction potentials, the total energy of the system may be written as

the sum of kinetic and surface energies:

EŒu� D �

2

Z

˝

juj2d˝ �  cos �S j�SLj C  j� j; (1.4)

where � is the liquid’s density and u is the velocity field within ˝ . Using the Navier-Stokes

equations,

�.@t u C u � ru/ D �rp C �r � .ru C rT u/; r � u D 0
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(� is the liquid’s viscosity) and the interfacial conditions

p C � D �.ru C rT u/n � n; .ru C rT u/n � t D 0 at � ; u � e3 D 0 at �SL

(�, n, t, and e3 are the curvature of � , the unit normal and tangential vector at � , and the unit

normal to the solid, respectively), a formal calculation gives

dEŒu.t/�

dt
D ��

Z

˝

jruj2d˝ C
Z

�SL

..ru C rT u/n � t/usd�SL C .cos � � cos �S /u`;

where us is the scalar velocity tangential to the solid at �SL, u` is the outward normal velocity of

the contact line, � \ �SL, and � is the dynamic contact angle, i.e., the angle formed by � and

�SL at � \ �SL. In an isothermal framework, the second law of thermodynamics simply requires
dE

dt
6 0. The constitutive relations (of local type) which are compatible with it are therefore

..ru C rT u/n � t/j�SL
D fs.us/ with usfs.us/ 6 0 (1.5)

and

.cos � � cos �S / D f`.u`/ with u`f`.u`/ 6 0: (1.6)

In the prototypical case of linear constitutive relations, (1.5) reduces to the Navier slip condition,

i.e.

..ru C rT u/n � t/j�SL
D � 1

B
us

with B a slip lengthscale, whereas (1.6) yields

.cos � � cos �S / D � 1

D
u` (1.7a)

with 1=D a friction coefficient at the contact line. When contributions coming from the disjoining

pressure are also considered (see (11) in [46]), in complete wetting (�S D 0) (1.7a) is modified as

follows:

.cos � � 1/ D � 1

D
maxfu`; 0g if �S D 0: (1.7b)

As argued in [11, 12, 46], in lubrication approximation (1.7a) turns into

Ps.t/ D d

2
.h2

x � �2
S /jxDs.t/; (1.8a)

where �S is a rescaled static contact angle and 1=d is a rescaled friction coefficient. Taking also

disjoining pressure into account, in complete wetting (1.8a) is modified as follows:

maxfPs.t/; 0g D d

2
h2

x jxDs.t/ if �S D 0: (1.8b)

It should be noted that the right-hand sides in (1.8) differ from that in (1.3) by a single term,

hhxxjxDs.t/. We will now show that this term naturally emerges when applying the same basic

principle –consistency with the second law of thermodynamics in the isothermal case– directly at

the level of lubrication theory. We refer to the final paragraphs of this section for a comparison

between (1.3) and (1.8).
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At leading order in lubrication approximation, kinetic energy is negligible. After a normalization

(and taking our symmetry assumption into account), surface energy reads as

EŒh.t/� D 1

2

Z s.t/

�s.t/

.h2
x C �2

s /dx (1.9)

(see, e.g., [8, 26]). We note that

h even ) hxjxD0 D hxxxjxD0 D 0; (1.10)

h.t; s.t//
.1:2/1D 0 ) ht jxDs.t/ D �hxjxDs.t/ Ps.t/; (1.11)

lim
x!s.t/�

m.h/hxxhxxx
.1:2/2D Ps lim

x!s.t/�
hhxx: (1.12)

We compute:

dEŒh.t/�

dt
D Ps

�

�2
S C h2

xjxDs.t/

�

C 2

Z s.t/

0

hxhxt dx

D Ps
�

�2
S C h2

xjxDs.t/

�

C 2Œhxht �
s.t/
0 � 2

Z s.t/

0

ht hxx dx

(1.10),(1.11)D Ps
�

�2
S � h2

xjxDs.t/

�

C 2Œm.h/hxxhxxx �
s.t/
0 � 2

Z s.t/

0

m.h/h2
xxx dx

(1.10),(1.12)D Ps
�

�2
S � h2

x C 2hhxx

�

jxDs.t/ � 2

Z s.t/

0

m.h/h2
xxx dx: (1.13)

Consistency with isothermal thermodynamics thus gives

.�2
S � h2

x C 2hhxx/jxDs.t/ D Qf`.Ps/ with Qf`.Ps/Ps 6 0; (1.14)

leading to (1.3) in the prototypical case of a linear constitutive relation. In turn, it follows from

(1.13) and (1.3) that

dEŒh.t/�

dt
D � 2

d
Ps2 �

Z s.t/

�s.t/

m.h/h2
xxxdx: (1.15)

The first term on the right-hand side of (1.15) represents energy dissipation due to friction at the

contact line and does not appear in the standard case of constant – zero or non-zero – contact angle

conditions. Along the analysis, we will exploit this new feature in order to control s.t/.

Let us now compare (1.3) and (1.8a). It is elementary to see that the additional term

.hhxx/jxDs.t/ vanishes whenever hx.t; �/ is left-continuous at x D s.t/ (in particular, it is zero

on traveling wave solutions (1.1)–(1.2), see, e.g., [9–11]). Hence, (1.3) and (1.8a) in fact coincide

on functions which are C 1 in space up to the free boundary, a regularity which is implicitly assumed

in the derivation of (1.7a) and (1.8a). Therefore (1.3) and (1.8a) have the same physical meaning and

the additional term in (1.3) appears only in view of less stringent regularity assumptions. However,

its presence yields the dissipation relation (1.15), which is the key for the main results of this paper.

In the case �S D 0, the difference between (1.3) and (1.8b) for receding droplets (Ps < 0) is due

to the fact that, as we mentioned, (1.8b) is obtained in [46] by taking the disjoining pressure into
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account, whereas only surface energy is considered here. Under the energetic assumptions of [46],

we expect that (1.3) will take the form

maxfPs; 0g D d

2

�

.h2
x � 2hhxx/

�

jxDs.t/ if �S D 0.

1.3 Problem and main results

We translate (1.1)–(1.3) onto a fixed domain I D .�1; 1/ by a simple change of variable:

y D x

s.t/
2 I WD .�1; 1/; v.t; y/ D h

�

t; ys.t/
�

: (1.16)

Furthermore, we relax the defining condition (1.2a) to

v.t; 1/ D " > 0 for all t > 0: (1.17)

Taking symmetry into account, (1.1)–(1.3) turns into the following:

vt � Ps
s

yvy C 1

s4

�

m.v/vyyy

�

y
D 0; v > 0; v even in .0; T / � I (1.18a)

v D "; (1.18b)

Ps D m.v/

v

vyyy

s3
at .0; T / � fy D 1g (1.18c)

Ps D d

2s2

�

v2
y � 2vvyy � s2�2

S

�

at .0; T / � fy D 1g (1.18d)

and the surface energy functional (1.9) is replaced by

EŒv� D 1

2

Z

I

 

v2
y

s
C s�2

S

!

dy: (1.19)

We let

fv > 0gT WD f.t; y/ 2 dom.v/ W t < T; v.t; y/ > 0g; fv > 0g WD fv > 0g1;

and we denote by h�; �iI the duality pairing between .H 1.I //0 and H 1.I /. The definition of weak

solutions to (1.18) is nowadays standard:

DEFINITION 1.1 Let " > 0 and assume that

m 2 C 0.R/ \ C 1.R n f0g/, m.v/ > 0 for all v ¤ 0, and lim inf
v!˙1

m.v/ > 0; (1.20)

s0 > 0, v0 2 H 1.I I Œ0; 1// even, and v0.1/ D 0. (1.21)

A pair of functions .s; v/ 2 H 1
loc

.Œ0; 1/I .0; 1// � C.Œ0; 1/ � I I Œ0; 1// is a weak solution to

(1.18) with data .s0; v0 C "/ if:

(i) v 2 L1
loc.Œ0; 1/I H 1.I //, vt 2 L2

loc
.Œ0; 1/I .H 1.I //0/;

(ii) vyyy 2 L2
loc.fv > 0g/ and

p

m.v/vyyy 2 L2.fv > 0g/;
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(iii) for all T > 0 and all ' 2 L2..0; T /I H 1.I //,

Z T

0

hvt ; 'iI dt D
Z T

0

Z

I

Ps
s

.y'/yvdxdt C
Z T

0

Z

I

1

s4
m.v/vyyy'ydxdt I (1.22)

(iv) s.0/ D s0, vjtD0 D v0 C ", vjyD1 D ", and v is even;

(v) v dissipates E in the sense that

EŒv.T /� C 2

d

Z T

0

Ps2dt C
“

fv>0gT

1

s5
m.v/v2

yyy dxdt 6 EŒv0� for all T > 0. (1.23)

Note that the kinematic condition (1.18c) is encoded into the weak formulation as a natural

boundary condition. Indeed, formally, for all ' such that 'jyD�1 D 0 we have

Z

I

� Ps
s

yvy � 1

s4

�

m.v/vyyy

�

y

�

'

D 1

s

�

'

�

Psv � m.v/vyyy

s3

��

jyD1 �
Z

I

� Ps
s

v.y'/y � 1

s4
m.v/vyyy'y

�

: (1.24)

Note also that (1.23) is the (time-integrated) counterpart of (1.15) in the new variables (1.16), with

equality replaced by inequality.

The first main result is the existence of a weak solution to (1.18) for a class of mobilities which

includes the relevant case of m.v/ D jvj3 C b3�njvjn:

m0 satisfies (1.20) and m0.h/ � C hn as h ! 0 for some n 2 .0; 1/ and C > 0. (1.25)

It reads as follows:

Theorem 1.2 Assume that " D 0, s0; v0 satisfy (1.21), and m D m0 satisfies (1.25). Then there

exists a pair of functions .s; v/ which solves (1.18) with data .s0; v0/ in the sense of Definition 1.1.

The main limitation of Theorem 1.2 is that the contact-line condition (1.18d) is encoded only

very weakly, in the form of the energy inequality (1.23). This limitation is removed in the second

main result, which we introduce now. As is customary for thin-film equations, the weak solution in

Theorem 1.2 is obtained as limit of a sequence of solutions to approximating problems in which:

� the initial datum is raised by a height ", thus ensuring initial positivity;

� the mobility m is replaced by one which degenerates sufficiently strongly at v D 0, thus

preserving positivity:

m".v/ WD v4m0.v/

"m0.v/ C v4
: (1.26)

Under these assumptions, we are able to construct unique approximating solutions .s"; v"/ in which

v" is positive and .s"; v"/ satisfy the contact-line condition (1.18d):

Theorem 1.3 Assume that " > 0, s0; v0 satisfy (1.21), and m0 satisfies (1.25). Let m D m" be

defined by (1.26). Then there exists a pair .s; v/ such that: .s; v/ solves (1.18) with data .s0; v0 C "/

in the sense of Definition 1.1, v > 0 in Œ0; 1/ � I , and (1.18d) holds in L2..0; 1//. Furthermore,

.s; v/ is unique in this class.
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At this stage, we are not able to prove that the weak solution in Theorem 1.2 is positive a.e. in

.0; T / � I . In this respect, it is important to notice that, even for the well-known case of a zero-

contact angle condition and for n > 2, in the y-formulation (1.18a) the standard local version of

entropy estimates [2, 6] would not yield a.e. positivity in .�1; 1/. This is because in the standard

local version of entropy estimates the support of test functions is fixed in the x-variable, that is,

receding in the y-variable when s increases. This points to the necessity of a refinement of standard

entropy estimates, localized in such a way that the test function “follows” the free-boundary.

In the proofs of Theorem 1.2 and Theorem 1.3, it is essential that we work with the contact-line

condition (1.3) (in the form of (1.18d)) rather than with (1.8). Indeed, as we discussed in Section

1.2, (1.8) does not guarantee dissipativity of E unless the product hhxx is assumed to vanish at the

contact line, whereas (1.3) guarantees dissipativity of E without assuming any a-priori regularity

of the solution. A refinement of standard entropy estimates would also permit to prove that the

weak solution constructed in Theorem 1.2 belongs to C 1.I / for almost every t , implying that the

additional term hhxx in (1.3) can eventually be ignored.

A further open question of course concerns local-in-time well-posedness for (1.1)–(1.3). The

main difficulty in reproducing the method in [21, 22, 24, 25, 36–38] is that, while the contact-line

condition hxjxDs.t/ Dconstant is linear and (scaling-wise) of lower order, (1.3) is nonlinear and

of higher order (through (1.2b), it depends on the trace of the third derivative for a fourth-order

problem).

This work stands as a first investigation of nonconstant (and nonlinear) contact-line conditions

for thin-film equations. Its main merit is the construction of unique approximating solutions which

satisfy such condition pointwise. To this aim, some technical novelties are introduced, the most

relevant one being an H 1-contractivity estimate for the free boundary, s.t/ (see ÷1.4 below). We

believe that this approach may be used to treat more general contact-line conditions which relate

the speed of the contact line to (derivatives of) h. In fact, granted the aforementioned refinement of

entropy estimates, we believe that it might also yield improvements in the theory of global weak

solutions.

1.4 Plan of the proofs

As is customary in this framework, our argument is based on a multi-step approximating procedure.

As we said, a solution to (1.18) with m D m0 will be obtained as limit of solutions to (1.18) with

m D m". In turn, these solutions will be obtained as limit, as ı ! 0, of problems in which we

replace the mobility m".v/, which is itself degenerate as v ! 0 and unbounded as v ! 1, by an

approximating family of non-degenerate and bounded mobilities mı;" W

mı;".v/ WD ı C v4m0.v/

"m0.v/ C v4 C ıv4m0.v/
: (1.27)

In order to obtain global existence for (1.18) with m D mı;", we first prescribe the free boundary

s.t/ and consider the following problems:

.Ps/

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

vt � Ps
s

yvy C 1

s4

�

m.v/vyyy

�

y
D 0 in .0; T / � .0; 1/

vy D vyyy D 0 at .0; T / � fy D 0g

v D "; Ps.t/ D m.v/vyyy

s3v
at .0; T / � fy D 1g

(1.28)
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where indeed the contact-line condition (1.18d) is removed. Here we have encoded the symmetry

assumption through the boundary conditions at y D 0.

The first new technical issue concerns the existence of solutions to .Ps/. Indeed, once s is fixed

(i.e., the contact-line condition does not hold), the dissipative structure is lost (compare (1.13)). As

a consequence, our existence result for .Ps/ is only local in time (see Proposition 2.1 in Section 2).

The second new technical issue, which in fact is the crucial one, is to capture the contact-line

condition (1.18d). To this aim, we let m D mı;" and we look at the mapping

s.t/ 7! Qs.t/ WD s0 C
Z t

0

d

2s2

�

v2
y � 2vvyy � s2�2

S

�

jyD1d�; where v solves .Ps/:

In Section 3 we will argue that T > 0 exists such that

kPQs1 � PQs2kL2..0;T // 6
1

2
kPs1 � Ps2kL2..0;T //

for any pair si and any pair vi of solutions to .Psi
/ (in particular, s1 D s2 implies Qs1 D Qs2, hence

the mapping is well defined). The unique fixed point of this mapping produces a local-in-time pair

.s; v/ that solves

.P /

8

ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

vt � Ps
s

yvy C 1

s4

�

m.v/vyyy

�

y
D 0 in .0; T / � .0; 1/

vy D vyyy D 0 at .0; T / � fy D 0g

v D "; Ps.t/ D m.v/vyyy

s3v
at .0; T / � fy D 1g

Ps D d
2s2

�

v2
y � 2vvyy � s2�2

S

�

at .0; T / � fy D 1g

(1.29)

with m D mı;". Since the contact-line condition is recovered, then also the dissipative structure is

(cf. (1.13)): therefore the local existence result for .P / can be upgraded to a global existence one

(cf. Section 4).

Finally, in Section 5 we prove an entropy-type estimate for solutions to (1.18) with m D mı;"

which is uniform with respect to ı (see Lemma 5.1): this allows to pass to the limit as ı ! 0

obtaining positive solutions to (1.18) with m D m" and thus proving Theorem 1.3. Here the new

issue is to pass to the limit in the contact-line condition, which requires strong convergence of the

trace of vy and vyy : this is achieved by combining vjyD1 D " and Hölder estimates into a uniform

lower bound on v near y D 1, and then using the estimate for the flux. Given Theorem 1.3, we pass

to the limit as " ! 0 in a nowadays usual fashion and complete the proof of Theorem 1.2.

1.5 Notations and preliminaries

The constants �S > 0 and d > 0 are fixed throughout the paper. We let

˝ D .0; 1/; ˝T D .0; T / � ˝; I D .�1; 1/; IT D .0; T / � I:
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Since we always integrate with respect to the Lebesgue measure, we omit to specify dy, dt . Finally,

we list the interpolation inequalities [20, 40, 41] used in the sequel:

sup
˝

jvy j 6 C1kvyk3=4

L2.˝/
kvyyyk1=4

L2.˝/
if vy jyD0 D 0, (1.30)

sup
˝

jvy j 6 C1kvyk3=4

L2.˝/
kvyyyk1=4

L2.˝/
C C2kvykL2.˝/; (1.31)

sup
˝

jvyy j 6 C1kvyk1=4

L2.˝/
kvyyyk3=4

L2.˝/
C C2kvykL2.˝/; (1.32)

kvyyk2
L2.˝/

6 C1kvykL2.˝/kvyyykL2.˝/ C C2kvyk2
L2.˝/

; (1.33)

where C1 > 0 is a universal constant and C2 > 0 depends on the domain.

2. Local existence of solutions to approximating problems with a prescribed free boundary

The main result of the section is the following local existence result:

Proposition 2.1 Let "; ı 2 .0; 1/, m 2 C 1.RI Œı; ı�1�/, k > 0, and sm > 0. Then T > 0 (depending

on ı, k, and sm) exists such that for any v0 2 H 1.˝/ with v0.1/ D 0 and any s 2 H 1..0; T //

satisfying
Z T

0

Ps2 6 k2 and 0 < sm 6 s.t/ 8 t 2 Œ0; T � (2.1)

there exists a solution v to .Ps/ in .0; T / with initial datum v0 C " in the sense that

v 2 L1
�

.0; T /I H 1.˝/
�

\ L2
�

.0; T /I H 3.˝/
�

; vt 2 L2
�

.0; T /;
�

H 1.˝/
�0�

;

�
Z T

0

hvt ; 'i˝ D
“

˝T

Ps
s

v.y'/y �
“

˝T

1

s4
m.v/vyyy'y (2.2)

for all ' 2 L2..0; T /I H 1.˝//, and

vjtD0 D v0 C " in H 1.˝/; vy jyD0 D 0 in L2..0; T //; and vjyD1 D " in L2..0; T //:

REMARK 2.2 Since v 2 L2..0; T /I H 3.˝// and s > sm > 0 in Œ0; T �, �.t1;t2/.t/vyy.t; y/=s.t/ is

an admissible test function in (2.2), and (with two integrations by parts)

Z t2

t1

Z

˝

Ps
s2

v.yvyy/y D �1

2

Z t2

t1

Ps
s2

.v2
y � 2vvyy/jyD1 C 1

2

Z t2

t1

Z

˝

Ps
s2

v2
y :

Since v 2 L1..0; T /I H 1.˝// and vt 2 L2..0; T /; .H 1.˝//0/, we have v 2 C.Œ0; T �I H 1.˝//;

since vy jyD0 D .v � "/jyD1 D 0,

�
Z t2

t1

hvt ;
vyy

s
i˝ D

Z

˝

v2
y

2s

ˇ
ˇ
ˇ
ˇ
ˇ

tDt2

tDt1

C 1

2

Z t2

t1

Z

˝

Ps
s2

v2
y :

Therefore the following relation is satisfied as an equality:

1

2

Z

˝

 

v2
y

s
C s�2

S

!ˇ
ˇ
ˇ
ˇ
ˇ

tDt2

tDt1

D �1

2

Z t2

t1

Ps
s2

.v2
y � 2vvyy � s2�2

S /jyD1 �
Z t2

t1

Z

˝

1

s5
m.v/v2

yyy :
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When both s and v0 are assumed to be smooth, .Ps/ in fact possesses global and classical

solutions:

Lemma 2.3 Under the assumption of Proposition 2.1, for any T > 0, any s 2 C 1C1=8.Œ0; T �/

satisfying (2.1), and any Qv0 2 C 4C1=2.˝/ satisfying

Qv0y jyD0 D Qv0yyy jyD0 D 0; Qv0jyD1 D "; Qv0yyy jyD1 D "s.0/3 Ps.0/

m."/
; (2.3)

there exists a unique solution v 2 C
1C1=8;4C1=2

loc
.Œ0; T � � ˝/ to .Ps/ such that vjtD0 D Qv0.

Lemma 2.3 follows from an application of classical linear theory [47] and is proved in the

Appendix. In order to pass from Lemma 2.3 to Proposition 2.1, some a-priori estimates are needed:

Lemma 2.4 Under the assumptions Proposition 2.1, T > 0 and C > 0 (depending on ı, k, and

sm) exist such that: for any s 2 C 1C1=8.Œ0; T �/ satisfying (2.1) and any Qv0 2 C 4C1=2.˝/ satisfying

(2.3), the solution v in Lemma 2.3 satisfies

sup
t6T

Z

˝

v2
y

2s
C
“

˝T

ı

s5
v2

yyy 6 2

 

1 C
Z

˝

Qv2
0y

2s0

!

; (2.4)

kvt kL2..0;T /I.H 1.˝//0/ 6 C

 

1 C
Z

˝

Qv2
0y

2s0

!1=2

: (2.5)

Proof. We write a . b when C > 1, independent of ı, k, and sm, exists such that a 6 Cb.

(Though unnecessary, we keep track of constants’ dependence on ı, k, and sm in order to make

estimates more transparent). Since v satisfies .Ps/, with integrations by parts we obtain

Z

˝

v2
y

2s

ˇ
ˇ
ˇ
ˇ
ˇ

t

0

.1:28/2;.1:28/3D �
“

˝t

Ps
2s2

v2
y �

“

˝t

1

s
vyyvt

.1:28/1D �
“

˝t

Ps
2s2

v2
y �

“

˝t

Ps
2s2

y
�

v2
y

�

y
C
“

˝t

1

s5

�

m.v/vyyy

�

y
vyy

D �
Z t

0

Ps
2s2

�

yv2
y

�yD1

yD0
C
Z t

0

1

s5

�

m.v/vyyyvyy

�yD1

yD0
�
“

˝t

1

s5
m.v/v2

yyy

.1:28/2;.1:28/3D �
Z t

0

Ps
2s2

.v2
y � 2vvyy/jyD1 �

“

˝t

1

s5
m.v/v2

yyy ;

hence (since m > ı)

L.T / WD sup
t6T

Z

˝

v2
y

2s
C
“

˝T

ı

s5
v2

yyy 6 L.0/ C
Z T

0

ˇ
ˇ
ˇ
ˇ

Ps
2s2

.v2
y � 2vvyy/jyD1

ˇ
ˇ
ˇ
ˇ
: (2.6)
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We use (1.30) and (1.32) to estimate the boundary term in (2.6): since vjyD1 D " 6 1, we obtain

L.T / � L.0/ .

Z T

0

jPsj
2s2

�Z

˝

v2
y

�3=4 �Z

˝

v2
yyy

�1=4

C
Z T

0

jPsj
2s2

�Z

˝

v2
y

�1=8 �Z

˝

v2
yyy

�3=8

C
Z T

0

jPsj
2s2

�Z

˝

v2
y

�1=2

DW I1 C I2 C I3: (2.7)

By Hölder inequality and (2.1), we have

I1 6
1

ı1=4

 
Z T

0

Ps2

!1=2
0

@

Z T

0

 
Z

˝

v2
y

2s

!3=2 �Z

˝

ı

s5
v2

yyy

�1=2
1

A

1=2

6
k

ı1=4

 

sup
t6T

Z

˝

v2
y

2s

!3=4  Z T

0

�Z

˝

ı

s5
v2

yyy

�1=2
!1=2

6
kT 1=4

ı1=4

 

sup
t6T

Z

˝

v2
y

2s

!3=4  “

˝T

ı

s5
v2

yyy

!1=4

6
kT 1=4

ı1=4
L.T /: (2.8)

Analogously,

I2 6
1

ı3=8

 
Z T

0

Ps2

!1=2
0

@

Z T

0

 
Z

˝

v2
y

2s

!1=4 �Z

˝

ı

s5
v2

yyy

�3=4
1

A

1=2

6
k

ı3=8

 

sup
t6T

Z

˝

v2
y

2s

!1=8  Z T

0

�Z

˝

ı

s5
v2

yyy

�3=4
!1=2

6
kT 1=8

ı3=8

�

L.T /
�1=2

(2.9)

and

I3 6
1

s
3=2
m

 
Z T

0

Ps2

!1=2

T 1=2

 

sup
t6T

Z

˝

v2
y

2s

!1=2

6
kT 1=2

s
3=2
m

�

L.T /
�1=2

: (2.10)

Collecting (2.8), (2.9), and (2.10) in (2.7), we obtain (2.4) by choosing T sufficiently small.

The estimate (2.5) on the time derivative follows from

ˇ
ˇ
ˇ
ˇ
ˇ

“

˝T

vt '

ˇ
ˇ
ˇ
ˇ
ˇ

6

ˇ
ˇ
ˇ
ˇ
ˇ

“

˝T

Ps
s

yvy'

ˇ
ˇ
ˇ
ˇ
ˇ
C
ˇ
ˇ
ˇ
ˇ
ˇ

“

˝T

1

s4
m.v/vyyy'y

ˇ
ˇ
ˇ
ˇ
ˇ

D J1 C J2;
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estimating

J1 6
1

s
1=2
m

Z T

0

jPsj

0

@

 
Z

˝

v2
y

2s

!1=2 �Z

˝

'2

�1=2
1

A

(2.4)

.
1

s
1=2
m

 

1 C
Z

˝

Qv2
0y

2s0

!1=2  Z T

0

Ps2

!1=2  “

˝T

'2

!1=2

(2.1)
6

k

s
1=2
m

 

1 C
Z

˝

Qv2
0y

2s0

!1=2

k'kL2..0;T /IH 1.˝//;

and (since m 6 ı�1)

J2 6
1

ı

“

˝T

1

s4
jvyyy'yj 6

1

.ısm/3=2

 
“

˝T

'2
y

!1=2  “

˝T

ı

s5
v2

yyy

!1=2

(2.4)

.
1

.ısm/3=2

 

1 C
Z

˝

Qv2
0y

2s0

!1=2

k'kL2..0;T /IH 1.˝//:

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Let T > 0 as in Lemma 2.4. Since s 2 H 1..0; T // satisfies (2.1), its

constant extension to Œ0; 2T �, denoted by Qs, satisfies (2.1) in .0; 2T / and Qs 6 sM < 1. Pick

Qsn 2 C 1.Œ0; 2T �/ such that Qsn.0/ D s.0/, Qsn 2 Œsm; sM �, and

PQsn ! PQs in L2..0; 2T // and Qsn ! Qs uniformly in Œ0; 2T � as n ! 1;

Let Qv0n be a sequence of initial data satisfying the assumptions of Lemma 2.3 and such that Qv0n !
v0 C " in H 1.˝/. Let vn be the solution to .PQsn

/ with Qv0 D Qv0n obtained in Lemma 2.3. Since

Qsn 6 sM , it follows from (2.4) and (2.5) that

1

sM

sup
t6T

Z

˝

v2
ny C ı

s5
M

“

˝T

v2
nyyy C kvnt k2

L2..0;T /I.H 1.˝//0/
6 C

with C independent of n. The remainder of the proof (i.e., the passage to the limit as n ! 1) is

standard and we omit it, referring to the proof of Theorem 1.2 below for details (in a more complex

case).

3. A fixed point result

In this and in the following sections we look at solutions to .P / in the following sense:

DEFINITION 3.1 Let s0 > 0 and v0 2 H 1.˝/ such that v0jyD1 D 0. A pair .s; v/ 2
H 1..0; T /I .0; 1// � L1..0; T /I H 1.˝// is a solution to .P / in .0; T / with data .s0; v0 C "/
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if v 2 L2..0; T /I H 3.˝//, vt 2 L2..0; T /; .H 1.˝//0/,
Z T

0

hvt ; 'i˝ D �
“

˝T

Ps
s

v.y'/y C
“

˝T

1

s4
m.v/vyyy'y for all ' 2 L2

�

.0; T /I H 1.˝/
�

,

(3.1)

Ps D d

2s2

�

v2
y � 2vvyy � s2�2

S

�

jyD1 in L2..0; T //; (3.2)

s.0/ D s0, vjtD0 D v0 C " in H 1.˝/, vy jyD0 D 0 in L2..0; T //, vjyD1 D " in L2..0; T //.

In this section we prove local-in-time existence of solutions for " > 0, ı > 0:

Proposition 3.2 Let "; ı 2 .0; 1/, m0 satisfying (1.25), and m D mı;" defined by (1.27). Then for

any s0 > 0 and any v0 2 H 1.˝/ such that v0jyD1 D 0 there exists T > 0 such that (P) has a

solution .s; v/ in .0; T / with data .s0; v0 C "/ in the sense of Definition 3.1.

Proof. Fix sm 2 .0; s0

2
�, let k > 1, let T� > 0 be the time identified in Proposition 2.1, and let

T 2 .0; T�/ \ .0; 1/. The constants k and T will be chosen later, in this order. We set

ST D
˚

s 2 H 1..0; T // W kPskL2..0;T // 6 k; s.0/ D s0; s > sm

	

: (3.3)

Given s 2 ST , let v be a solution to .Ps/ in .0; T�/ as given in Proposition 2.1. We write f . g,

resp. f � g, if a constant C > 1, independent of k and of T , exists such that f 6 Cg, resp.

Cf 6 g. We note for later reference that in fact

constants depend on v0, sm, s0, ", ı D inf mı;".v/,

ı�1 D sup mı;".v/, and the Lipschitz constant of m D mı;".

�

(3.4)

The a-priori bound (2.4) translates into

sup
t6T

Z

˝

v2
y C

“

˝T

v2
yyy . 1: (3.5)

We observe that since T < 1,

Z T

0

v4
y jyD1

(1.30)

.

Z T

0

�Z

˝

v2
yyy

�1=2 �Z

˝

v2
y

�3=2

6

�

sup
t6T

Z

˝

v2
y

�3=2
 
“

˝T

v2
yyy

!1=2

T 1=2 (3.6)

(3.5)

. T 1=2 . 1 (3.7)

and

Z T

0

v2
yy jyD1

(1.32)

.

�

sup
t6T

Z

˝

v2
y

�1=4
 
“

˝T

v2
yyy

!3=4

T 1=4 C
�

sup
t6T

Z

˝

v2
y

�

T

.

 

sup
t6T

Z

˝

v2
y C

“

˝T

v2
yyy

!

T 1=4 (3.8)

(3.5)

. T 1=4 . 1: (3.9)
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Hence the function

Qs.t/ WD s0 C
Z t

0

d

2s2

�

v2
y � 2vvyy � s2�2

S

�

jyD1 (3.10)

is well defined in L2..0; T //, and

Z T

0

PQs2
.3:10/

. 1 C
Z T

0

v4
y jyD1 C

Z T

0

"2v2
yy jyD1

.3:7/;.3:9/

. 1: (3.11)

Choosing k sufficiently large, inequality (3.11) implies that

kPQskL2..0;T // 6 k: (3.12)

In addition,

sup
t6T

jQs � s0j 6 T 1=2

 
Z T

0

PQs2

!1=2
.3:11/

. T 1=2 6
s0

2
for T � 1. (3.13)

Inequality (3.13) implies that Qs.t/ > s0=2 > sm for all t 6 T : together with (3.12), this yields

Qs 2 ST : (3.14)

We claim that if T is sufficiently small, then

kPQs1 � PQs2kL2..0;T // 6 1
2
kPs1 � Ps2kL2..0;T // (3.15)

for any s1; s2 2 ST and any pair v1; v2 of solutions to .Ps1
/ and .Ps2

/, respectively, where Qsi are

defined by (3.10). In particular, s1 D s2 implies Qs1 D Qs2. Together with (3.14), this implies that the

map F W ST ! ST , F.s/ D Qs, is well defined. By (3.15), F is a contraction and its unique fixed

point s satisfies (3.2), completing the proof. Thus, the rest of the proof is concerned with showing

(3.15).

From now on k is fixed once for all and the symbols ., � also include dependence on k. We

argue for t 6 T � 1. We let s D s1 � s2, Qs D Qs1 � Qs2, and v D v1 � v2. We note that, since

s.0/ D 0,

s2.t/ D
�Z t

0

jPsj
�2

. T

Z T

0

Ps2: (3.16)

We have

Z T

0

PQs2
.

Z T

0

 

v2
1y

s2
1

�
v2

2y

s2
2

� v1v1yy

s2
1

C v2v2yy

s2
2

!2

jyD1

.

Z T

0

 

v2
1y

s2
1

�
v2

2y

s2
2

!2

jyD1 C
Z T

0

�
v1v1yy

s2
1

� v2v2yy

s2
2

�2

jyD1

D I1 C I2: (3.17)
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We estimate I1:

I1 .

Z T

0

 

v2
1y

s2
1

�
v2

2y

s2
1

!2

jyD1 C
Z T

0

v4
2y jyD1

�
1

s2
1

� 1

s2
2

�2

(3.3)

.

Z T

0

..v2
1y C v2

2y/v2
y/jyD1 C

�

sup
t6T

s2

�Z T

0

v4
2y jyD1

(3.7),(3.16)

. T 1=4

 
Z T

0

v4
y jyD1

!1=2

C T 3=2

Z T

0

Ps2

(3.6)

.

�

sup
t6T

Z

˝

v2
y

�3=4
 
“

˝T

v2
yyy

!1=4

T 1=2 C T 3=2

Z T

0

Ps2: (3.18)

We estimate I2:

I2 D
Z T

0

�
vv1yy

s2
1

C v2vyy

s2
1

C v2v2yy

�
1

s2
1

� 1

s2
2

��2

jyD1

.

Z T

0

 

"2v2
yy

s4
1

!

jyD1 C
Z T

0

�

"v2yy

�
1

s2
1

� 1

s2
2

��2

jyD1 (since vjyD1 D 0)

(3.3)

.

Z T

0

v2
yy jyD1 C

�

sup
t6T

s2

�Z T

0

v2
2yy jyD1

(3.9),(3.16)

.

Z T

0

v2
yy jyD1 C T 5=4

Z T

0

Ps2

(3.8)

.

 

sup
t6T

Z

˝

v2
y C

“

˝T

v2
yyy

!

T 1=4 C T 5=4

Z T

0

Ps2: (3.19)

By (3.18) and (3.19), for T 6 1 (3.17) turns into

Z T

0

PQs2 . K.T /T 1=4 C T 5=4

Z T

0

Ps2; where K.T / WD sup
t6T

Z

˝

v2
y C

“

˝T

v2
yyy : (3.20)

In order to bound K.T /, we test by vyy in (2.2) and we argue as in Remark 2.2: recalling that

vjtD0 D 0,

Z

˝

v2
y.t/

2
C
“

˝t

1

s4
2

m.v2/v2
yyy

D
“

˝t

� Ps1

s1

v1 � Ps2

s2

v2

�

.yvyy/y �
“

˝t

�
1

s4
1

m.v1/v1yyy � 1

s4
2

m.v2/v2yyy

�

vyyy I
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integrating by parts, recalling that v1jyD1 D v2jyD1 D ", and rearranging, we obtain

Z

˝

v2
y.t/

2
C
“

˝t

1

s4
2

m.v2/v2
yyy

D "

Z t

0

Ps
s1

vyy jyD1 C "

Z t

0

Ps2

�
1

s1

� 1

s2

�

vyy jyD1

�
“

˝t

Ps
s1

yv1yvyy �
“

˝t

Ps2

�
1

s1

� 1

s2

�

yv1yvyy �
“

˝t

Ps2

s2

yvyvyy

�
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˝t

�
1

s4
1

� 1

s4
2

�

m.v1/v1yyyvyyy �
“

˝t

1

s4
2

�

m.v1/ � m.v2/
�

v1yyyvyyy

DW R1.t/: (3.21)

Since m > ı and s > sm > 0,

K.T / .

 

sup
t6T

1

2

Z

˝

v2
y.t/ C

“

˝T

1

s4
2

m.v2/v2
yyy

!

.3:21/D sup
t6T

R1.t/: (3.22)

Assume for a moment that T � 1 exists such that

sup
t6T

R1.t/ . T 1=8

 

K.T / C
Z T

0

Ps2

!

: (3.23)

Then, choosing T sufficiently small, (3.22) and (3.23) combine into

K.T / .

Z T

0

Ps2:

Plugging this estimate into (3.20) and choosing T sufficiently small, we conclude that (3.15) holds.

The rest of the proof is therefore concerned with showing (3.23).

We estimate each summand in R1.t/. We have

Z T

0

ˇ
ˇ
ˇ
ˇ

Ps
s1

vyy jyD1

ˇ
ˇ
ˇ
ˇ

(3.3)

.
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0
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!1=2  Z T

0
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yy jyD1
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(3.8)

. T 1=8
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0
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!1=2

K.T /1=2; (3.24)
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�
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.
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!1=2  Z T

0

v2
yy jyD1
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(3.16),(3.8)

. T 5=8

 
Z T

0

Ps2

!1=2

K.T /1=2: (3.25)
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We note that
“

˝T

v2
yy

(1.33)
6

Z T

0

�Z

v2
y

�1=2 �Z

v2
yyy

�1=2

C
“

˝T

v2
y
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Then, by interpolation and Young’s inequality,
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Combining (3.32) and (3.34), we obtain
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Inserting (3.24), (3.25), (3.27)–(3.30), and (3.35) into (3.22), we obtain (3.23). Therefore, the

remainder of the proof is concerned with the proof of (3.33).

We use v as test function in (2.2), obtaining (after a rearrangement)
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Taking the sup with respect to t in (3.36), using (3.37)–(3.41) and (3.43), and absorbing on the

left-hand side, we obtain (3.33).

4. A-priori estimates and global existence for the approximating problems

We can now exploit the dissipative structure of the problem, obtaining the following a-priori bounds.
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and
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Minimizing the right-hand side of (4.16) with respect to � yields (4.7).

Global existence of solutions for ı; " > 0 is an immediate consequence of Lemma 4.1.
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Note that A is independent of ı and " in view of (4.8).

Proof. The proof follows the lines of [2, 6], with a few additional efforts in order to control the

boundary terms. For notational convenience, we let G D Gı;" and m D mı;". Since G00 D 1=m,
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Plugging this bound into (5.2) and since " 6 v0 C " 6 C , we obtain (5.1).
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Passing to the limit as ı ! 0 we prove the following result:

Proposition 5.2 Let 0 < " � 1, m0 satisfying (1.25), and m D m" defined by (1.26). For any

s0 > 0 and any non-negative v0 2 H 1.˝/ such that v0jyD1 D 0 there exists a solution .s; v/ to

Problem .P / with data .s0; v0C"/ in .0; T / for all T > 0 in the sense of Definition 3.1. Furthermore

v > 0 in ˝T and v satisfies estimates (4.1)–(4.8).
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indexed by ı) such that

vı;" ! v in C
1
8

; 1
2

�

Œ0; T � � N̋ � as ı ! 0: (5.4)

The right-hand side of (5.1) is uniformly bounded with respect to ı. Passing to the limit in (5.1) and

using lower semi-continuity we see that (5.1) holds. In particular

sup
t6T

Z 1

0

G0;"

�

v.t/
�

< 1: (5.5)
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remainder of the proof is nowadays standard and we omit it, referring to the proof of Theorem 1.2

for details.

We are now ready to prove Theorem 1.3 and Theorem 1.2.
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the Ascolı̀-Arzelà theorem allows to select a subsequence (still indexed by ") such that

v" ! v in C
1
8

; 1
2

�

Œ0; T � � NI
�

as " ! 0: (5.6)
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Bounds (4.2), (4.4), (4.3), and (4.5) imply, respectively, that (for a subsequence)

v"

�
* v in L1

�

.0; T /I H 1.I /
�

as " ! 0; (5.7)

s" * s in H 1..0; T // as " ! 0; (5.8)

s" ! s > 0 uniformly in .0; T / as " ! 0; (5.9)

v"t * v in L2
�

.0; T /I
�

H 1.I /
�0�

as " ! 0: (5.10)

In addition, it follows from (4.2) and (5.6) that

v"yyy * vyyy in L2
loc

�

fv > 0gT

�

as " ! 0 (5.11)
p

m".v"/v"yyy *
p

m.v/vyyy in L2
�

fv > 0gT

�

as " ! 0: (5.12)

We now pass to the limit as " ! 0 in

Z T

0

hv"t ; 'iI C
“

˝T

Ps
s

v".y'/y C
“

˝T

1

s4
m".v"/v"yyy'y D 0 (5.13)

for all ' 2 L2..0; T /; H 1.I //. The first two terms in (5.13) are straightforward in view of (5.6)–

(5.10). For a fixed � > 0, we split I" as follows:

I" D
“

fv>�g

m".v"/v"yyy'y C
“

fv<�g

m".v"/v"yyy'y D I 0
" C I 00

" : (5.14)

From (5.11) an (5.6) we obtain

I 0
" D

“

fv>�g

m".v"/v"yyy'y
"!0!

“

fv>�g

m.v/vyyy'y : (5.15)

By Hölder inequality, and since v" < 2� in fv < �g for " < ".�/ sufficiently small, we have

ˇ
ˇI 00

"

ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ

“

fv<�g

m".v"/v"yyy'y

ˇ
ˇ
ˇ
ˇ
ˇ

6 C

 
“

˝T

m".v"/v
2
"yyy

!1=2  “

fv<�g

m".v"/'
2
y

!1=2

(4.2)
6 C

 

sup
v2.0;2�/

jm".v/j
!1=2  “

˝T

'2
y

!1=2

:

Therefore lim sup
"!0

jI 00
" j 6 o�.1/ as � ! 0. Hence, passing to the limit in (5.14) as " ! 0 and � ! 0,

in this order, we conclude that

“

IT

m".v"/v"yyy'y !
“

fv>0g

m.v/vyyy'y
.5:12/D

“

IT

m.v/vyyy'y as " ! 0:

Finally, the energy inequality (1.23) is an immediate consequence of (4.9) and lower semi-

continuity.
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6. Conclusions

We have investigated a nonstandard free boundary condition for thin-film equations, relating flux

and dynamic contact-angle at the contact line in a nonlinear way. For the resulting free boundary

problem, we have introduced a notion of weak solution and we have proved existence of weak

solutions. Notably, we have also obtained existence and uniqueness of approximating solutions

which satisfy the free boundary condition point-wise. The main technical novelty is an H 1-

contractivity estimate for the position of the free boundary, obtained at the level of approximating

solutions. Our analysis leaves a few questions open, the most relevant being a refinement of

known entropy estimates, localized so that they “follow” the evolution of the free boundary. Such

refinement would yield stronger non-negativity result and would be useful also in the well-studied

case of zero-contact angle free boundary condition.

Appendix

Proof of Lemma 2.3. We fix T > 0 and proceed in various steps.

Step 1: A linear problem. We take any function

a.t; x/ 2 C 1=8;1=2
�

Œ0; T � � ˝I Œı; ı�1�
�

such that a.t; 1/ D m."/ (A.1)

and we pass to a linear problem by replacing m.v/ with a:
8

ˆ̂

<̂

ˆ̂

:̂

vt � Ps
s

yvy C 1

s4
.avyyy/y D 0 in .0; T / � ˝

vy D vyyy D 0 at .0; T / � fy D 0g

v D "; vyyy D s3"Ps
m."/

at .0; T / � fy D 1g:

(A.2)

We denote with C a generic positive constant independent of kakC 1=2;1=8.Œ0;T ��˝/. Let

Qw0.y/ D s.0/

Z y

0

Qv0.�/d�; w.t; y/ D s.t/

Z y

0

v.t; �/d�: (A.3)

One easily checks that if v is a classical solution to (A.2), then w solves

wt � Ps
s

ywy C 1

s4
awyyyy D 0 in .0; T / � .0; 1/ (A.4)

with initial datum Qw0 and

wjyD0 D wyy jyD0 D 0; wy jyD1 D "s: (A.5)

In addition,

wjyD1 D Qw0jyD1 D s0

Z

˝

Qv0: (A.6)

Indeed,

wt jyD1 D d

dt

Z

˝

sv D
Z

˝

Psv C
Z

˝

svt D
Z

˝

Psv C
Z

˝

Psyvy �
Z

˝

1

s3
.avyyy/y

D PsvjyD1 � 1

s3
.avyyy /jyD1

.A:1/;.A:2/D 0: (A.7)



268 M. CHIRICOTTO AND L. GIACOMELLI

Theorem 4.9 in [47] guarantees the existence of a unique solution w to (A.4)–(A.6) with initial

datum Qw0, such that

kwkC 1C1=8;4C1=2.Œ0;T ��˝/ 6 L
�

k Qw0kC 4C1=2.˝/
„ ƒ‚ …

initial datum

C kskC 1.Œ0;T �/
„ ƒ‚ …

boundary datum

�

(A.8)

for all T > 0, where L depends on the parabolicity coefficient (i.e. on ı and sm) and on the

C 1=8;1=2-norm of the equation’s coefficients (i.e. on kskC 1C1=8.Œ0;T �/ and on kakC 1=8;1=2.Œ0;T ��˝/):

in particular,

L depends on a only through ı and kakC 1=8;1=2.Œ0;T ��˝/: (A.9)

Undoing the transformation (A.3), i.e. defining v.t; y/ WD s.t/wy.t; y/, and recalling that s > sm >

0, we obtain a (distributional) solution v to (A.2) with initial datum Qv0 such that

kvkC 1C1=8;3C1=2.Œ0;T ��˝/ 6 L C: (A.10)

We note that if a1 and a2 satisfy (A.1) and wi are the corresponding solutions to (A.4)–(A.6), then

.w1 � w2/t � Ps
s

y.w1 � w2/y C 1

s4
a1.w1 � w2/yyyy D 1

s4
.a1 � a2/w2yyyy

with zero initial and boundary condition: hence, again by Theorem 4.9 in [47], we have

kw1 � w2kC 1C1=8;4C1=2.Œ0;T ��˝/ 6 L






1

s4
.a1 � a2/w2yyyy






C 1=8;1=2..0;T /�˝/

(A.11)

with L as in (A.9).

Step 2: Energy bounds. We now derive uniform bounds on v. It follows from the equation in (A.2)

that vt 2 L2..0; T /I H 1.˝/0/. Hence, arguing similarly to Remark 2.2 we see that

Z

˝

v2
y

2s

ˇ
ˇ
ˇ
ˇ
ˇ

t

0

D �
Z t

0

Ps
2s2

.v2
y � vvyy/jyD1 �

“

˝t

1

s5
av2

yyy :

Using vjyD1 D ", s > sm, s 2 C 1.Œ0; T �/, a > ı, and Young’s inequality, we obtain

Z

˝

v2
y

2

ˇ
ˇ
ˇ
ˇ
ˇ

t

0

C C �1

Z

˝

v2
yyy 6 C

�

v2
y jyD1 C jvyy jyD1j

� .1:30/;.1:32/
6

C �1

2

Z

˝

v2
yyy C C

Z

˝

v2
y :

Therefore a Gronwall argument yields

sup
t2.0;T /

Z

˝

v2
y C

“

˝T

v2
yyy 6 C: (A.12)

Arguing as in the proof of Lemma 4.1, (A.7) and (A.12) yield uniform Hölder estimates:

jv.t; y1/ � v.t; y2/j 6 C jy1 � y2j1=2; (A.13)

jv.t1; y/ � v.t2; y/j 6 C
�

jt1 � t2j1=8 C jt1 � t2j1=6
�

; (A.14)

jv.t; y/j 6 C (A.15)
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for all y; y1; y2 2 ˝ and all t; t1; t2 2 Œ0; T �. It follows from (A.13)–(A.15) that any solution v

constructed in Step 1 belongs to

B D fv W kvkC 1=8;1=2.Œ0;T ��˝/ 6 C; vjyD1 D "g:

Step 3: Fixed point. Since m 2 C 1.RI Œı; ı�1�/, a D m.v/ satisfies (A.1) for all v 2 B. Hence we

may define the operator

B 3 v 7! Av WD swy ; where w solves (A.4)–(A.6) with a D m.v/:

Because of (A.13)–(A.15) and the definition of B, A maps B into itself. Again since m 2 C 1.R/

with ı 6 m 6 ı�1, we have that

km.v/kC 1=8;1=2.Œ0;T ��˝/ 6 C for all v 2 B. (A.16)

Combining (A.16) and (A.8)–(A.9) (with a D m.v/), (A.10) and (A.11) turn into

kAvkC 1C1=8;3C1=2.Œ0;T ��˝/ 6 C; (A.17)

respectively

kA.v1 � v2/kC 1C1=8;3C1=2.Œ0;T ��˝/ 6 C






1

s5

�

m.v1/ � m.v2/
�

.Av2/yyy






C 1=8;1=2..0;T /�˝/

:

(A.18)

It follows from (A.17) that Av 2 K WD
n

v 2 B W kvkC 1C1=8;3C1=2.Œ0;T ��˝/ 6 C
o

for all v 2 B.

Since K is a compact and convex subset of B, Schauder’s fixed point Theorem guarantees the

existence of a fixed point v of A in K provided A is continuous, which is what we show now:

kA.v1 � v2/kC 1C1=8;3C1=2.Œ0;T ��˝/

.A:18/
6 C





1

s5

�

m.v2/ � m.v1/
�

.Av2/yyy





C 1=8;1=2
�

.0;T /�˝
�

.A:17/
6 C km.v2/ � m.v1/kC 1=8;1=2..0;T /�˝/

6 C kv2 � v1kC 1=8;1=2..0;T /�˝/ : (A.19)

Step 4: Conclusion. The fixed point v of A is a distributional solution to (A.2) with a D m.v/,

initial datum Qv0, and such that (A.10) holds. Such regularity allows to apply [47, Theorem 4.9]

directly to (A.2) with a D m.v/: this, together with an argument completely analogous to (A.19),

yields the desired uniqueness and regularity of v.
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