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In this paper we establish the convergence of three computational algorithms for interface motion

in a multi-phase system, which incorporate bulk effects. The algorithms considered fall under

the classification of thresholding schemes, in the spirit of the celebrated Merriman-Bence-Osher

algorithm for producing an interface moving by mean curvature. The schemes considered here all

incorporate either a local force coming from an energy in the bulk, or a non-local force coming from

a volume constraint. We first establish the convergence of a scheme proposed by Ruuth-Wetton for

approximating volume-preserving mean-curvature flow. Next we study a scheme for the geometric

flow generated by surface tension plus bulk energy. Here the limit is motion by mean curvature

(MMC) plus forcing term. Last we consider a thresholding scheme for simulating grain growth in

a polycrystal surrounded by air, which incorporates boundary effects on the solid-vapor interface.

The limiting flow is MMC on the inner grain boundaries, and volume-preserving MMC on the solid-

vapor interface.
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Introduction

Surfaces moving with curvature dependent velocities is a phenomenon of interest in many physical

models. A standard model of this type of interfacial motion is mean-curvature flow, which appears

as the effective evolution equation of grain boundaries in Mullins’ model [21] or as the singular

limit of the Allen–Cahn equation describing the evolution of antiphase boundaries [1]. The motion

law then is V D H , where V denotes the velocity in the normal direction, and H is the scalar mean

curvature of the interface. It is a system of degenerate parabolic equations and can be regarded as

the gradient flow of the interfacial energy w.r.t. the L2-metric on the space of normal velocities. A

similar motion is observed in multi-phase systems where the energy depends on a possibly weighted

sum of the interfacial energies between the phases. This is a prominent model for grain growth in

polycrystals, where each phase represents a grain, i.e., a part of the volume with homogeneous

crystal structure [21].

If one also considers bulk energies in the model, a forcing term arises in the velocity, leading to

the equation V D H Cf , where the force f might in general be non-local. A particular example of

a non-local forcing arises when the volume of the bulk is constrained to stay constant. This leads to

c
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volume-preserving mean-curvature flow. Here the motion law is V D H � hH i, where h�i denotes

the average over the interface. This evolution arises for example in the modeling of metallic alloys

or Ostwald ripening, a process describing the change in inhomogeneous structure of a dispersion.

Coarsening is observed in these processes, and the coarsening rates can be measured by collecting

statistical data from a series of experiments or numerical simulations.

For this and other purposes it is desirable to have efficient computational schemes for producing

various types of curvature driven flows. In this paper we will examine computational models for the

examples described above, namely, volume-preserving motion by mean curvature, motion by mean

curvature with a local forcing term and a model for grain growth in polycrystals incorporating

boundary effects. The main results of this paper are the rigorous convergence results for these

algorithms, Theorems 1.11, 2.5 and 3.8.

The class of algorithms we consider are so-called thresholding algorithms. The idea goes back

to Merriman, Bence and Osher, who introduced a nowadays highly appreciated time discretization

to generate motion by mean curvature in [17]. This algorithm has colloquially become known as

the MBO scheme. It is based on a time splitting for a slow-reaction fast-diffusion process in order

to bypass the numerical difficulty of multiple scales. Starting from the phase ˝0, i.e., an open,

bounded set in R
d , with characteristic function 1˝0 , one solves the heat equation with initial data

1˝0 for a short time h > 0, i.e., one defines the function � WD Gh � 1˝0 , where Gh denotes the heat

kernel at time h. One then updates to the evolved phase ˝1 by thresholding � at the value 1
2

, i.e.,

taking ˝1 to be the super level set f� > 1
2
g. The procedure is then repeated with the updated set.

This scheme produces a discrete sequence of interfaces ˙h.nh/ � ˙n D @˝n.

It has been shown that MBO dynamics converge to motion by mean curvature as h ! 0C.

Rigorous convergence proofs have been established independently by Evans [11] and Barles and

Georgelin [4]. Their proofs rely on the fact that the scheme preserves a structural feature of mean-

curvature flow, a geometric comparison principle. This allows the authors to use the level set

formulation of mean-curvature flow which can be treated using the theory of viscosity solutions for

second-order parabolic PDE. However, a number of extensions of the MBO scheme for different

curvature driven motions have been developed that do not satisfy a comparison principle; see,

e.g., [6, 9, 10, 13, 22]. This is not a weakness of these algorithms but inherent in the equations.

The convergence proofs in [4, 11] do not apply in these cases.

Two more recent proofs have established the convergence of MBO, but do not rely on a

comparison principle. Using asymptotic techniques, Yip and the second author [23] established

a short-time convergence result along with quantitative properties such as convergence rate and

bounds on curvature growth. Otto and the first author [14] established a conditional long-time

convergence result also for the case of multiple phases by exploiting the gradient flow structure. In

this paper, we show how to adapt the proof of the second approach [14] to the situations mentioned

above.

Ruuth and Wetton [22] extended the thresholding scheme to produce an interface moving by

volume-preserving mean-curvature flow. Here one simply changes the threshold parameter from 1
2

to the value � 2 .0; 1/ such that the volume is preserved, i.e., jf� > �gj D j˝0j. In Section 1 we

will provide a convergence proof for this scheme, cf. Theorem 1.11.

The inspiration for changing the threshold value comes from Mascarenhas in [16] who simulates

an affine forcing term. He observes that changing the threshold value from 1
2

to 1
2

� f

2
p

�

p
h seems

to produce approximate solutions to V D H C f for a constant force f . In Section 2 we adapt

this idea to produce a thresholding scheme for interfaces moving by mean curvature plus a local
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forcing term, i.e., V D H C f with a space-time dependent force f D f .x; t/. In addition we give

a convergence proof of this scheme in Theorem 2.

The above mentioned schemes extend naturally to multi-phase motions if one assumes equal

surface tensions between the phases, cf. [18]. The extension to arbitrary surface tensions by

Esedoğlu and Otto in [9] is less obvious and comes from an energetic view-point on which we will

comment in the next paragraph. In [8], Elsey, Esedoğlu and Smereka use the multi-phase schemes

to perform large-scale computational simulations for grain growth in polycrystals. Convergence of

the algorithm in [9] was recently established in [14]. These simulations assume periodic boundary

conditions and are therefore restricted to the interior behavior in a polycrystal. Taking into account

boundary effects on the solid-vapor interface is more difficult. It is known that the outer boundary

of a polycrystal moves by surface diffusion, which is a fourth order flow. However, computational

simulations involving fourth order flows present various challenges. In Section 3 we discuss a

simpler algorithm proposed by Esedoğlu and Jin in [3] for approximating these effects. They

consider an algorithm which replaces surface diffusion, the fourth order local motion law on the

outer boundary of the polycrystal, by volume-preserving mean-curvature flow, a second order but

non-local equation. This is plausible because both motions are volume preserving and (due to

the gradient flow structure) energy dissipative flows for the area functional. Simulations for this

model have been performed in [3], demonstrating that the model is reasonable and captures the

typical effect of surface grooving. However it is admittedly not perfect, as it is also shown that

for large numbers of grains (� 103), non-physical phenomenon are observed in the simulations.

In Theorem 3.8 we show that the proof in [14] can also be applied in this situation under some

moderate modeling assumptions. The limiting motion is shown to be mean-curvature flow on the

inner grain boundaries, and volume-preserving mean-curvature flow on the outer boundary of the

whole polycrystal.

The basis of our proofs is the interpretation of the MBO scheme as a minimizing movements

scheme by Esedoğlu and Otto in [9]. Minimizing movements is a natural time-discretization of a

gradient flow which can be seen as a generalization of the implicit Euler scheme. It was introduced

by De Giorgi in the general framework [7] and for mean-curvature flow by Almgren, Taylor and

Wang in [2] and Luckhaus and Sturzenhecker in [15]. Let us elaborate more on the connection

between thresholding schemes and minimizing movements drawn in [9] in the case of two phases.

The functional Eh.�/ D 1p
h

R
.1 � �/ Gh � � dx is an approximation of the perimeter of the set

f� D 1g. Indeed, it was shown in [19] and later on with different techniques in [9] that these

functionals � -converge to E.�/ D 1p
�

R
jr�j as h ! 0. It is the case that MBO is equivalent

to running minimizing movements for dissipating Eh, where Dh.!/ D 1p
h

R
! Gh � ! dx is the

metric term penalizing distances between two sets. More specifically, starting with an initial set

˝0 � R
d , setting �0 WD 1˝0 to be the characteristic function of this set, it turns out that the sets

˝n D f�n D 1g generated by the MBO scheme can be characterized by

�n D arg min
˚
Eh.�n/ C Dh.�n � �n�1/

	
:

This allows for energetic techniques used in the study of gradient flows. We show in Lemma 1.7 that

this structural property is conserved in the case of the scheme for volume-preserving mean-curvature

flow in [22]. In particular, we have the important a priori estimate (1.14). Most recently Mugnai,

Seis and Spadaro [20] studied a volume-preserving variant of the above mentioned minimizing

movements scheme [2, 15] and proved a conditional convergence result in the same way as

Luckhaus and Sturzenhecker. In the proof of Theorem 1.11 we face similar issues as the ones in
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that work. Bellettini, Caselles, Chambolle and Novaga [5] studied anisotropic versions of mean-

curvature flow starting from convex sets. In particular they proved convergence of the thresholding

scheme with uniformly bounded forcing terms. Furthermore, they considered a variant of the

volume-preserving scheme [22] where the volume is not precisely preserved in the approximation

but still in the limit when the time-step size goes to zero. They are able prove uniform bounds on

the resulting forcing term. In contrast, we work with the exact constraint on the volume and only

work with an L2-bound on the forcing term coming from the Lagrange multipliers associated to the

volume constraint. We establish this bound in Proposition 1.12. In Lemma 1.19 we generalize the

one-dimensional estimate Lemma 4.2 and Corollary 4.3 in [14] to our situation where the threshold

value may differ from 1
2

. A common thread in the above mentioned works [14, 15, 20], and in

ours as well, is an area-convergence assumption, here (1.8). This assumption prevents a sudden loss

of interfacial area as the time step tends to zero which is not guaranteed by the a priori estimate

(1.14). It is an interesting task to validate this assumption, even for the classical MBO scheme,

under convexity assumptions on the initial phase.

1. Volume-preserving mean-curvature flow

In this section, we discuss a scheme for volume-preserving motion by mean curvature, here

Algorithm 1.1, which was introduced by Ruuth and Wetton in [22]. We first state the algorithm

and fix the notation, and present the main result of this section in Theorem 1.11. Following this we

give the details of the proof of the theorem.

1.1 Algorithm and notation

ALGORITHM 1.1 Given the phase ˝ , i.e., an open, bounded set in R
d , with j˝j D 1 at time

t D .n � 1/h, obtain the evolved phase ˝ 0 at time t D nh by:

1. Convolution step: � WD Gh � 1˝ :

2. Defining threshold value: Pick � such that jf� > �gj D 1:

3. Thresholding step: ˝ 0 WD f� > �g :

Here and throughout the paper

Gh.z/ WD 1

.4�h/d=2
exp

�
�jzj2

4h

�

denotes the heat kernel at time h.

REMARK 1.2 In general, the threshold value � is not necessarily a regular value of �, so that a

priori we cannot say that the function s 7! jf� > sgj will attain the value 1 for any s 2 Œ0; 1�. Since

by Sard’s Lemma a. e. value of � is a regular value, this practically does not happen in simulations.

Therefore, as in [22], we ignore this fact in stating the algorithm. Our analysis also works if one

replaces the second step of the scheme by defining � via

� WD inf
˚
s > 0W jf� > sgj < 1

	

and then chooses the updated set in the following way:

f� > �g � ˝ 0 � f� > �g such that
ˇ̌
˝ 0ˇ̌ D 1:
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NOTATION 1.3 We denote the characteristic function of ˝n at the n-th time step by �n, i.e.,

�n WD 1˝h

ˇ̌
tDnh

� 1˝n

and interpolate these functions piecewise constantly in time, i.e.,

�h.t/ WD �n for t 2 Œnh; .n C 1/h/:

As in [9], here for the two-phase case, we define the following approximate energies

Eh.�/ WD 1p
h

Z
.1 � �/ Gh � � dx; (1.1)

for �WRd ! f0; 1g and the approximate dissipation functionals as

Dh.!/ WD 1p
h

Z
! Gh � ! dx (1.2)

for any !WRd ! f�1; 0; 1g.

REMARK 1.4 As h ! 0, the approximate energies Eh � -converge to the perimeter functional

E.�/ WD 1p
�

Z
jr�j

w.r.t. the L1-topology. Esedoğlu and Otto proved in [9] that this � -convergence which has already

been established by Miranda et al. in [19] is a consequence of pointwise convergence of the

functionals, namely

Eh.�/ ! E.�/ for any � 2 f0; 1g; (1.3)

and the following approximate monotonicity: For any 0 < h 6 h0 and any � 2 f0; 1g,

Eh.�/ >

 p
h0p

h C
p

h0

!dC1

Eh0
.�/: (1.4)

Our main result of this section, Theorem 1.11, establishes the convergence of the scheme

towards the following weak formulation of volume-preserving mean-curvature flow which was also

used by Mugnai, Seis and Spadaro [20] and is the analogue of the formulation used by Luckhaus

and Sturzenhecker without the volume constraint [15].

DEFINITION 1.5 (Volume-preserving motion by mean curvature) We say that � W .0; T / � R
d !

f0; 1g is a solution to the volume-preserving mean-curvature flow equation with initial data �0 if

there exists a function V W .0; T / � R
d ! R with V 2 L2.jr�j dt/ such that

Z T

0

Z
.r � � � � � r� �/ jr�j dt D

Z T

0

Z
.V C �/ � � � jr�j dt (1.5)

for any � 2 C 1
0 ..0; T / � R

d / and

Z T

0

Z
@t � � dx dt C

Z
�.0/ �0 dx D �

Z T

0

Z
� V jr�j dt (1.6)
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for all � 2 C 1
0 .Œ0; T / �R

d /, where � 2 L2.0; T / is the average of the generalized mean curvature

H 2 L2.jr�j dt/ of �:

� WD hH i D
R

H jr�jR
jr�j

: (1.7)

REMARK 1.6 For our convergence proof we assume the following convergence of the energies

which is not guaranteed by the a priori estimates we have at hand:

Z T

0

Eh.�h/ dt !
Z T

0

E.�/ dt: (1.8)

In the following we prove Theorem 1.11 using the techniques from [14]. Throughout this

section, we write A . B if there exists a constant C D C.d/ < 1 such that A 6 CB . Combining

(1.3) and (1.4), we have

E0 WD E.�0/ > Eh.�0/: (1.9)

Furthermore by scaling we can normalize the prescribed volume j˝0j D
R

�0 dx D 1.

1.2 Minimizing movements interpretation

In the following lemma we elaborate the interpretation of Algorithm 1.1 as a minimizing movements

scheme which is the starting point of the convergence proof.

Lemma 1.7 (Minimizing movements interpretation) Given �0 2 f0; 1g with
R

�0 dx D 1, let �, �

and �1 be obtained by Algorithm 1.1. Then �1 solves

min Eh.�/ C Dh.� � �0/ C 2� � 1p
h

Z
� dx; (1.10)

where the minimum runs over all �WRd ! f0; 1g. Or equivalently

min Eh.�/ C Dh.� � �0/ s. t.

Z
� dx D 1; � 2 f0; 1g: (1.11)

Proof. First we show that (1.10) is equivalent to minimizing the ‘linearized energy’

L�;h.�; �/ WD 1p
h

Z
.1 � �/ � C � .2� � �/ dx; (1.12)

over �WRd ! f0; 1g. Indeed, this is just a consequence of the fact that

Eh.�/ C Dh.� � �0/ C 2� � 1p
h

Z
� dx D L�;h.�; �/ C Terms depending only on �0: (1.13)

Second we show that (1.11) is equivalent to minimizing L�;h.�; �/ over �WRd ! f0; 1g such thatR
� dx D 1. This again follows from (1.13) and the fact that 2��1p

h

R
� dx is a constant in this case.
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Finally we show that �1 as obtained through Algorithm 1.1 minimizes L�;h.�; �/ over �WRd !
f0; 1g (and therefore also minimizes L�;h.�; �/ over this class when the unit volume constraint is

enforced). To see this, note that the integrand is clearly bounded below by � ^ .2� � �/ for any

� 2 f0; 1g. And by definition, �1 admits this minimum pointwise:

�
1 � �1

�
� C �1 .2� � �/ D � ^ .2� � �/ :

The following a priori estimate is a direct consequence of the minimizing movements

interpretation but is a very important tool to prove compactness of the approximate solutions.

Lemma 1.8 (Energy-dissipation estimate) The approximate solutions �h satisfy the following

energy-dissipation estimate

Eh.�N / C
NX

nD1

Dh.�n � �n�1/ 6 E0: (1.14)

Proof. As a direct consequence of the minimization procedure (1.11) we obtain

Eh.�n/ C Dh.�n � �n�1/ 6 Eh.�n�1/:

Iterating this estimate from n D 1 to N together with (1.9) yields the claim.

Above we used the minimizing movements interpretation to derive an easy a priori estimate

by comparing the solution �n to its predecessor �n�1. Now we use this interpretation to derive an

optimality condition, the Euler-Lagrange equation associated to the functional

Eh.�/ C Dh.� � �0/ C 2� � 1p
h

Z
� dx:

This will be an important component of our convergence proof. To state this precisely, let us

first define the notion of first variation of Eh.�/ and Dh.� � �0/. Since we are considering

characteristic functions of sets, which induces the “constraint” � 2 f0; 1g, the correct variations

are inner variations, i.e., variations of the independent variable. Geometrically this corresponds to a

deformation of the phase ˝ .

DEFINITION 1.9 (First variation) For any � 2 f0; 1g and � 2 C 1
0 .Rd ;Rd / let �s be generated by

the flow of �, i.e., �s solves the following distributional equation:

@s�s C � � r�s D 0:

We denote the first variation along this flow by

ıEh.�; �/ WD d

ds
Eh.�s/

ˇ̌
sD0

; ıDh. � � Q�/.�; �/ WD d

ds
Dh.�s � Q�/

ˇ̌
sD0

;

where Q� 2 f0; 1g is fixed.

Corollary 1.10 (Euler–Lagrange equation) Given �0 2 f0; 1g, let �1 be obtained by Algorithm 1.1

with threshold value �. Then �1 solves the Euler-Lagrange equation associated to (1.10):

ıEh.�1; �/ C ıDh. � � �0/.�1; �/ C 2� � 1p
h

Z
.r � �/ �1 dx D 0: (1.15)
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Equation (1.15) follows directly from the minimizing movements interpretation (1.10) and can

be regarded as an approximate version of the weak formulation (1.5). One can easily compute the

formal limit of each single term. A formal expansion suggests that with H denoting the mean

curvature of @˝1 and V denoting the normal velocity moving @˝0 to @˝1 in time h we have

ıEh.�1; �/ � 1p
�

Z

@˝1

H � � � and ıDh. � � �0/.�1; �/ � � 1p
�

Z

@˝1

V � � �:

Therefore, at least formally, (1.15) is similar to the desired equation V D H � hH i. In our rigorous

justification we will interpret the terms in a weak sense and use the strategy of [14]. Following the

lines of [14], we can also compute the first variation ıEh of the energy rigorously and obtain

ıEh.�; �/ D 1p
h

Z
� � r� Gh � � � .1 � �/ Gh � .� � r�/ dx

D 1p
h

Z
� � Œ.1 � �/ rGh � �� � .1 � �/ rGh � .� �/ dx (1.16)

C 1p
h

Z
.r � �/ .1 � �/ Gh � � C .1 � �/ Gh � ..r � �/ �/ dx:

Expanding �.x/ � �.x � z/ D .z � r/ �.x/ C O.jzj2/ for the first right-hand side integral, and

.r � �/ .x � z/ D .r � �/ .x/ C O.jzj/ for the second we obtain

ıEh.�; �/ D 1p
h

Z
r�W .1 � �/ .Gh Id � 2hrGh/ � � dx C o.1/; (1.17)

as h ! 0. The integral on the right hand side formally converges to 1p
�

R
r�W .Id � � ˝ �/ jr�j,

and can be made rigorous. We will discuss this fact below in Proposition 1.17. For the first variation

of the dissipation we can expand � again and obtain

ıDh. � � �0/.�1; �/ D �2

Z
�1 � �0

h
� �

p
hrGh � �1 dx C o.1/;

where the firstfactor in the right-hand side integral is a finite difference and formally converges to

@t � D V jr�j, and the second factor formally converges to 1

2
p

�
�. The rigorous justification of this

fact is more involved since one has to pass to the limit in a product of two weakly converging terms.

We will show how to overcome this difficulty in the following.

1.3 Main result

From (1.15) we establish convergence to the weak formulation of volume-preserving mean-

curvature flow in Definition 1.5. The central novelties of this section are establishing the equivalence

of (1.15) to Algorithm 1.1, which was done above, and to show that the threshold value � remains

close to 1
2

in a certain sense, which is done in Proposition 1.12 below. The latter property plays

an important role in showing that each of the three terms of (1.15) converges to its respective

limit. The mean curvature is recovered as the limit of the first variation ıEh of the energies

(cf. Prop. 1.17), and the normal velocity is recovered as the limit of the first variation ıDh of the

dissipation (cf. Prop. 1.18). Doing so is similar to results in [14], however technical difficulties must
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be overcome due to the fact that the threshold parameter � may vary (as opposed to being fixed

at 1
2

in the original MBO scheme). The averaged mean curvature is recovered as the limit of the

Lagrange multipliers, cf. proof of Theorem 1.11.

We now state and prove the main result of this section, Theorem 1.11 below. Under the same

convergence assumption as in [14] which is inspired by the assumption in [15] we can prove the

convergence of the scheme. For clarity of presentation, the given proof merely highlights the main

ideas involved in establishing the convergence of (1.15) to (1.5). The more technical aspects of the

proof are then postponed to later subsections (cf. Props. 1.12, 1.13, 1.14, 1.17, 1.18).

Theorem 1.11 Let T < 1 and �0 2 f0; 1g with E.�0/ < 1 and f�0 D 1g �� R
d . After

passage to a subsequence, the functions �h obtained by Algorithm 1.1 converge to a function � in

L1..0; T / �R
d /. Under the convergence assumption (1.8), � is a solution of the volume-preserving

mean-curvature flow equation in the sense of Definition 1.5.

Proof of Theorem 1.11. By Proposition 1.13 the approximate solutions �h converge to some limit

� after passage to a subsequence. The strategy of our proof for (1.5) is to pass to the limit in the

Euler–Lagrange equation (1.15) after integration in time.

By Proposition 1.12, after passing to a further subsequence, we can find a function � 2 L2.0; T /

such that

2�h � 1p
h

*
1p
�

� in L2.0; T /:

Since the integrals converge strongly,
Z

.r � �/ �h dx !
Z

.r � �/ � dx in L2.0; T /;

we can pass to the limit h ! 0 in the product. This is one of the three terms of the Euler-Lagrange

equation. In Proposition 1.17 we recover the mean curvature from the first variation of the energy,

i.e., the first term in (1.15). In Proposition 1.18 we recover the normal velocity from the second

term in (1.15), the first variation of the dissipation. Therefore, the limit solves (1.5). Furthermore,

V solves (1.6) by construction. Note that since �; V 2 L2.jr�j dt/ we have a generalized mean

curvature H 2 L2.jr�j dt/. We are left with proving (1.7). Note that t 7!
R

�.t/ dx 2 H 1.0; T /

with

d

dt

Z
� dx D

Z
V jr�j :

Indeed, given f 2 C 1
0 .0; T / and g 2 C 1

0 .Rd / with g � 1 on BR� with R� D R�.d; E0; T / from

Proposition 1.14, setting �.x; t/ WD f .t/g.x/, we have

�
Z T

0

f 0.t/
Z

�.t/ dx dt D �
Z T

0

Z
@t � � dx dt D

Z T

0

Z
� V jr�j dt

D
Z T

0

f .t/

Z
V jr�j dt:

Since
R

�h dx is constant in time, also
R

� dx is constant in time. Using (1.5) as a pointwise a.e.

statement in time, we have

0 D d

dt

Z
� dx D

Z
V jr�j .1:5/D

Z
.H � �/ jr�j D

Z
H jr�j � �

Z
jr�j

almost everywhere in .0; T /. Solving for � yields (1.7).
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1.4 L2-estimate for Lagrange multipliers

The following proposition gives a quantitative estimate on the closeness of the threshold values

�n to 1
2

in the natural topology coming from the gradient flow structure and the appearance of
2�n�1p

h
as a Lagrange multiplier. Roughly speaking, the lemma states that

ˇ̌
�h � 1

2

ˇ̌
D O.

p
h/ in

L2. This is the analogue of Corollary 3.4.4 in [20] but our proof works in a different way. While

they couple the bound on the Lagrange multiplier and the growth rate of the sets via the estimate

(3.28) in [20], we prove the bound on the Lagrange multipliers first, independently of the growth

rate. The main difference is that we construct our test function � via some elliptic problem in Step 3

of the proof below so that we can obtain estimates by using elliptic regularity theory, in particular

the Calderón-Zygmund inequality, cf. Theorem 9.9 in [12].

Proposition 1.12 (L2-estimate for Lagrange multipliers) Given the approximate solutions �h

obtained by Algorithm 1.1 with threshold values �h, for h � 1

E2
0

we have

Z T

0

�
�h � 1

2

�2
dt . .1 C T /

�
1 C E4

0

�
h:

Here h � 1

E2
0

means that there exists a generic constant C D C.d/ < 1 such that the statement

holds for h < 1

CE2
0

. We recall that A . B means A 6 C B for some generic constant C D C.d/ <

1.

Proof. Squaring the Euler–Lagrange equation (1.15), we obtain

1

h

�
�n � 1

2

�2
�Z

.r � �/ �n dx

�2

. ŒıEh.�n; �/�
2 C

�
ıDh. � � �n�1/.�n; �/

�2
(1.18)

for any � 2 C 1
0 .Rd ;Rd /. In order to prove the proposition, we first estimate the right-hand side for

an arbitrary test vector field �, cf. Step 1 for the first and Step 2 for the second term. In Step 3 we

construct a specific vector field such that the integral on the left-hand side is bounded from below.

Step 1: Estimates on ıEh.�; �/. For any � 2 f0; 1g and any � 2 C 1
0 .Rd ;Rd /, we have

jıEh.�; �/j . kr�k1 Eh.�/: (1.19)

Argument: Starting from the computation (1.16) we see that the second integral on the right-hand

side is clearly controlled by kr�k1Eh.�/; whereas the first integral on the right-hand side can be

estimated via

1p
h

Z
��
�

.1 � �/ rGh � �
�

� .1 � �/ rGh � .��/ dx

D 1p
h

Z
� z

2h
Gh.z/ �

Z �
�.x/ � �.x � z/

�
.1 � �/ .x/�.x � z/ dx dz

6 kr�k1
1p
h

Z jzj2
2h

Gh.z/

Z
.1 � �/ .x/�.x � z/ dx dz:

Using jzj2G1.z/ . G2.z/ we thus have
ˇ̌
ıEh.�; �/

ˇ̌
. kr�k1

�
E2h.�/ C Eh.�/

�

and the approximate monotonicity of the energy (1.4) yields (1.19).
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Step 2: Estimates on ıDh. � � �n�1/.�n; �/. We have

h

NX

nD1

�
ıDh. � � �n�1/.�n; �n/

�2
. sup

n
k�nk2

W 1;1

�
1 C E2

0

�
: (1.20)

Argument: For any � 2 C 1
0 .Rd ;Rd / and any n 2 f1; : : : ; N g, we have

ıDh. � � �n�1/.�n; �/ D 2p
h

Z
.�� � r�n/ Gh �

�
�n � �n�1

�
dx

D 2p
h

Z
�n� � rGh �

�
�n � �n�1

�
C .r � �/ �nGh �

�
�n � �n�1

�
dx:

Setting (compare to the dissipation measures �h in Definition 2.7 in [14])

�n WD 1p
h

Z �
Gh=2 �

�
�n � �n�1

��2
dx

and using the Cauchy–Schwarz inequality, we obtain

�
ıDh. � � �n�1/.�n; �/

�2
.

�
1

h

Z p
hrGh=2 � .�n�/ Gh=2 �

�
�n � �n�1

�
dx

�2

C kr�k2
1

�
1p
h

Z
Gh=2 � �n

ˇ̌
Gh=2 �

�
�n � �n�1

�ˇ̌
dx

�2

6
1

h

�
1p
h

Z hp
hrGh=2 � .�n�/

i2

dx

�
�n

C 1p
h

kr�k2
1

Z
�n dx �n:

For the first right-hand side term, we first observe that for any � 2 f0; 1g and any � 2 C 1
0 .Rd ;Rd /,

by j�.x C z/ � �.x/j 6 kr�k1jzj we obtain

1p
h

Z
j
p

hrGh=2.z/j
Z ˇ̌

�.x C z/ � �.x/
ˇ̌
�.x C z/

ˇ̌
ˇ
p

hrGh=2 � .��/
ˇ̌
ˇ .x/ dx dz

6 k�k1 kr�k1

Z
� dx

�Z
jzjjrGh=2.z/j dz

��Z
j
p

hrGh=2.z/j dz

�
;

where the last two integrals are uniformly bounded in h. Thus, in our case where � D �n withR
�n dx D 1, we obtain an estimate on the error when commuting the multiplication with � and the

convolution with the kernel
p

hrGh=2 in one of the factors:

1p
h

Z hp
hrGh=2 � .��/

i2

dx

6
1p
h

Z
� �

p
hrGh=2 � �

hp
hrGh=2 � .��/

i
dx C c.d/ k�k2

W 1;1 :
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Since rG is antisymmetric and since jzj G.z/ . G2.z/, we have

1p
h

Z
� �

p
hrGh=2 � �

hp
hrGh=2 � .��/

i
dx

D 1p
h

Z
� �

p
hrGh=2 � .� � 1/

hp
hrGh=2 � .��/

i
dx

. k�k2
1

1p
h

Z
Gh � .1 � �/ Gh � � dx . k�k2

1 Eh.�/:

Thus, we have

�
ıDh. � � �n�1/.�n; �/

�2
.

1

h

�
k�k2

1 E0 C k�k2
W 1;1 C

p
h kr�k2

1

�
�n;

which is (1.20) after integration in time and using the energy-dissipation estimate (1.14) once more.

Step 3: Choice of �. For any E0 > 0, any 0 < h � 1=E2
0 and any � 2 f0; 1g with

R
� dx D 1,

supp � �� R
d and Eh.�/ 6 E0 there exists � 2 C 1

0 .Rd ;Rd / with

Z
.r � �/ � dx >

1

2
and (1.21)

k�kW 1;1 . 1 C E0: (1.22)

Argument: Set "2 D 1

CE2
0

. We will determine the constant C D C.d/ later. Set �" WD '" � �

for some standard mollifier '".z/ D 1
"d '1. z

�
/ with 0 6 '1 6 1,

R
'1 dz D 1, '1 . G1 andR

jr'1j dz . 1: Then �" 2 C 1
0 .Rd ; Œ0; 1�/. Let u denote the solution of

�u D�"

given by the Newtonian potential u D � � �": We define � WD ru D � � r�" and claim that �

satisfies (1.21). Indeed, since j�" � �j D � .1 � �"/ C .1 � �/ �" for � 2 f0; 1g and 0 6 �" 6 1,

we can use the approximate monotonicity (1.4) such that for any 0 < h 6 "2 we have

Z
j�" � �j dx D 2

Z
.1 � �/ '" � � dx .

Z
.1 � �/ G"2 � � dx

.1:4/
6 "

 
" C

p
h

"

!dC1

Eh.�/ . "E0:

Thus, if we pick the constant C.d/ in the definition of " large enough, we have

Z
.r � �/ � dx D

Z
�"� dx >

Z
� dx �

Z
j�" � �j dx >

1

2
;

which is (1.21). Now we give an argument for (1.22). The Calderón–Zygmund inequality yields

Z

Rd

jr�jpdx .p

Z
j�"jpdx 6 1 (1.23)
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for any 1 < p < 1, where we write .p to stress that the constant depends not only on the dimension

d but also on the parameter p. Since �" is smooth, we can differentiate the equation:

�� D r�":

Thus by the Calderón–Zygmund inequality and Jensen’s inequality
Z

Rd

jr2�jpdx .p

Z
jr�"jpdx 6

�Z
jr'"j dz

�p Z
j�jp dx .

1

"p
(1.24)

for any 1 < p < 1. Now we want to bound the 0-th order term of �. Let R > 0 be big enough such

that supp �" � B R
2

and take � 2 C 1
c .B2R/ to be a cut-off function for BR in B2R with jr�j . 1

R
.

Then we have
Z

jr.� �/jpdx .p

Z
�jr�jpdx C

Z
jr�jpj�jpdx

.1:23/

. p 1 C 1

Rp

Z

B2RnBR

j�jpdx:

Note that for any x 2 R
d n BR, since then dist.x; supp �"/ & R, we have

j�.x/j 6

Z
jr� .x � y/j �".y/ dy .

1

Rd�1

Z
�".y/ dy D 1

Rd�1
:

Thus, Z
jr.� �/jpdx .p 1 C Rd.1�p/: (1.25)

Now we fix some p D p.d/ 2 . d
2

; d /. Since � � has compact support, we can apply the Gagliardo–

Nirenberg–Sobolev inequality, so that

Z

BR

j�jp�
dx 6

Z
j� �jp�

dx .

�Z
jr.� �/jpdx

�p�=p .1:25/

.

�
1 C Rd.1�p/

�d=.d�p/

;

where p� D pd
d�p

> d is the Sobolev conjugate of p. Taking the limit R ! 1, we obtain
Z

j�jp�
dx . 1: (1.26)

Since p� > d , by Morrey’s inequality and the above estimates (1.23), (1.24) with p� playing the

role of p and (1.26), we have

k�kW 1;1.Rd / . k�kW 2;p�
.Rd / . 1 C 1

"
� 1 C E0:

Step 4: Conclusion. We apply Step 3 on � D �n and find �n 2 C 1
0 .Rd ;Rd / with

Z
.r � �n/ �n dx >

1

2

k�nkW 1;1 . 1 C E0:

Plugging � D �n into (1.18), summing over n and using the estimates in Steps 1 and 2, we obtain

NX

nD1

�
�n � 1

2

�2
. sup

n
k�nk2

W 1;1

�
TE2

0 C 1 C E2
0

�
. .1 C T /.1 C E4

0 /;

which is the desired estimate.
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1.5 Compactness

Proposition 1.13 (Compactness) There exists a subsequence h & 0 and a function � 2 L1..0; T /�
R

d ; f0; 1g/ such that

�h �! � in L1
�
.0; T / � R

d
�
: (1.27)

Moreover,

�h �! � a.e. in .0; T / � R
d (1.28)

and �.t/ 2 BV.Rd ; f0; 1g/,
R

�.t/ dx D 1 for a.e. t 2 .0; T /.

Proof. As in Lemmas 2.4 and 2.5 in [14] we can prove that

Z T

0

Z ˇ̌
ˇ�h.x C ı e; t C �/ � �h.x; t/

ˇ̌
ˇ dx dt . .1 C T / E0

�
ı C � C

p
h
�

: (1.29)

The proposition follows then from the arguments in Proposition 2.1 of [14] in conjunction with

Proposition 1.14 below. Indeed, in [14], the authors show that this can be done by adapting the

proof of the Riesz-Kolmogorov compactness theorem. Since we work in R
d and not on a periodic

domain as in [14] we need to guarantee that no mass escapes to infinity. The proposition below

establishes precisely this.

Take R0 > 0 such that ˝0 � BR0
. For subsequent n we take a sequence of radii Rn > Rn�1

such that ˝n � BRn
. The focus of this section will be to show that we can choose the radii Rn such

that they are uniformly bounded for n 2 f1; : : : ; N g, independent of the time step h.

Proposition 1.14 (Tightness) There is a finite radius R� D R�.d; E0; T /, independent of h such

that

˝h.t/ � BR� for all t 2 Œ0; T �:

We separate the indices n into ‘good’ and ‘bad’ iterations. A ‘good’ iteration is taken to mean

that j�n � 1
2
j < 1

4
, and a bad iteration will be taken to mean that j�n � 1

2
j > 1

4
. The L2-bounds

in Proposition 1.12 give us a suitable level of control over the number of ‘bad’ iterations. Indeed,

Chebyshev’s inequality implies that the number of ‘bad’ iterations is controlled by .1CT /.1CE4
0/:

In the next Lemma we show that in the worst case scenario, the radii Rn grow exponentially

over consecutive iterations.

Lemma 1.15 Rn may be chosen such that Rn 6 3Rn�1.

Proof. In order to reduce the notation we may assume n D 1 and write � D Gh � �0, R WD R0,

� D �1 and � D �1. We first claim that

min
BR

� > max
Rd nB3R

�: (1.30)

This follows immediately from the definition of � using f�0 D 1g � BR and the obvious inequality

jx � zj < 2R < jy � zj for all x 2 BR; y 2 R
d n B3R and z 2 BR:
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Now suppose that U WD ˝ n B3R has positive measure. This being the case, we may construct a

new set, call it e̋ , by deleting the volume U from ˝ n B3R and filling it into BR. Indeed, since

j˝j D
ˇ̌
˝0
ˇ̌
, we can find a set eU � BR of the same volume as U such that eU \ ˝ D ;. Then we

set e̋ WD .˝ n U / [ eU and Q� D 1e̋. Recall the definition of Lh in (1.12). We claim that Q� has

lower linearized energy Lh.�; �/ than �, which is a contradiction. By
R

Q� dx D
R

� dx and (1.30)

we have

Lh.�; �/ � Lh.�; Q�/ D 2p
h

Z
� . Q� � �/ dx D 2p

h

Z
�
�
1 QU � 1U

�
dx > 0:

Thus we conclude that the minimizer of the linearized energy Lh.�; �/ cannot contain any volume

outside B3R.

Next we show that over ‘good’ iterations, i.e., j�n � 1
2
j < 1

4
, the growth of Rn�1 to Rn is

O.j�n � 1
2
j
p

h/, which in terms of Proposition 1.12 can be interpreted as ‘linear growth’.

Lemma 1.16 There exists a universal constant C < 1 such that over ‘good’ iterations we have

Rn 6 Rn�1 C C
p

hj�n � 1
2
j:

Proof. Given j�n � 1
2
j < 1

4
, we want to find a constant C < 1 so that for any direction e 2 Sd�1

we have � < �n and therefore �n D 0 in fx � e > Rn�1 C C
p

hj�n � 1
2
jg: We prove this by

comparing to a half space H D fx � e < Rn�1g whose boundary is tangent to @BRn�1
. By rotational

symmetry we may assume w. l. o. g. that e D e1 so that at a point x D .x1; x0/, thanks to the

factorization property of G, we can estimate

� D Gh � �n�1
6 Gh � 1H D

Z 1

�1
G1

h.z1/1x1Cz1<Rn�1
dz1 D 1

2
�
Z x1�Rn�1

0

G1
h.z1/ dz1:

We observe that the right-hand side expression is monotone decreasing in x1 and find the upper

bound for Rn > Rn�1 simply by setting the right-hand side to be equal to �n for x1 D Rn:

j�n � 1

2
j D

Z 1p
h

.Rn�Rn�1/

0

G1.z1/ dz1:

There exists a universal C < 1 such that
R C

0 G1.z1/ dz1 D 1
4

. Thus, since j�n � 1
2
j < 1

4
, we have

Rn�Rn�1p
h

< C . In turn this gives

Rn � Rn�1p
h

min
jz1j6C

G1.z1/ < j�n � 1
2
j;

which is the desired estimate.

Proof of Proposition 1.14. The result follows by iterating the estimate of the previous two lemmas.

Indeed, over ‘good’ iterations we have the estimate

Rn 6 Rn�1 C C
p

hj�n � 1
2
j:
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And over ‘bad’ iterations we have the estimate

Rn 6 3Rn�1:

Iterating these two estimates and keeping in mind that we have at most a finite number � .1 C
T /.1 C E4

0 / of ‘bad’ iterations we obtain

RN 6 C.d; T; E0/

 
R0 C

NX

nD1

p
hj�n � 1

2
j
!

:

Finally we note that by Jensen’s inequality and Proposition 1.12

NX

nD1

p
hj�n � 1

2
j 6

 
h

NX

nD1

j�n � 1
2
j2

h

! 1
2

T
1
2 6 C.d; E0; T /:

The constant C.d; E0; T / yields the estimate on R�. Note that our proof does not give a linear

growth estimate in time. Indeed, the upper bound R� growth exponentially in T . Nevertheless, for

our purpose, this is enough.

1.6 Convergence

In this section we give the details of the proof of Theorem 1.11. We can directly apply

Proposition 3.1 of [14] to our situation, which we state in Proposition 1.17. In Proposition 1.18

we prove that we can change the proof of Proposition 4.1 of [14] so that it applies in our situation.

For this part we need Proposition 1.12 to apply the one-dimensional lemma, Lemma 1.19 stated

below.

Proposition 1.17 (Energy and mean curvature; Proposition 3.1 in [14]) Under the convergence

assumption (1.8) we have

lim
h!0

Z T

0

ıEh.�h; �/ dt D 1p
�

Z T

0

Z
.r � � � � � r� �/ jr�j dt

for any � 2 C 1
0 ..0; T / � R

d ;Rd /:

Proof. The proof of Proposition 3.1 in [14] only uses the convergence that we deduced here in

Proposition 1.13 and the convergence assumption. However, we briefly highlight the line of proof

here. We observe that the expansion (1.17) of the first variation of the energy is already in the

same form as the limit: multiplication with the anisotropic kernel Gh Id � 2hrGh corresponds to

multiplication with Id � � ˝ �, i.e. projection onto the tangent space. More precisely, evaluated at

a fixed configuration �, the right-hand side of (1.17) converges to the correct quantity. Under the

strengthened convergence (1.8) this holds true also along the sequence �h.

Proposition 1.18 (Dissipation and normal velocity) There exists a function V W .0; T / � R
d ! R

which is a normal velocity in the sense of (1.6). Given the convergence assumption (1.8), V 2
L2.jr�j dt/ and for any � 2 C 1

0 ..0; T / � R
d ;Rd / we have

lim
h!0

Z T

0

ıDh

�
� ; �h.t � h/

��
�h.t/; �.t/

�
dt D � 1p

�

Z T

0

Z
V � � � jr�j dt: (1.31)
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Proof. Since we have the same energy-dissipation estimate, namely (1.14), with the volume

constraint as in [14] without a constraint, we can directly apply most of the techniques. In Lemma

1.19, we show that for most of the iterations we can also apply the finer estimate, Lemma 4.2

in [14] when changing the threshold value from 1
2

to � as in Step 2 of Algorithm 1.1. To make this

applicable we need the L2-estimate in Proposition 1.12.

Step 1: Construction of the normal velocity and (1.6). We construct the normal velocity V exactly

as in Lemma 2.11 in [14]. First, one proves that the distributional time derivative @t � of � is a Radon

measure using only the energy-dissipation estimate, in our case (1.14). Using the convergence

assumption, for us (1.8), this measure turns out to be absolutely continuous w. r. t. jr�j dt , so

that one can define V to be the density of @t � w. r. t. jr�j dt and prove higher integrability,

V 2 L2.jr�j dt/. Then V satisfies (1.6) by construction.

Step 2: Argument for (1.31). One of the key ideas in [14] is to introduce a mesoscopic time scale

˛
p

h. In Step 2 of the proof of Proposition 4.1 there, one chooses a shift of the mesoscopic time

slices so that one has control over the error terms. We can make use of this degree of freedom

to make sure that in addition the mesoscopic time steps are ‘good’ iterations. Given N D T=h,

K D ˛=
p

h, L D N=K , for any function "2W f1; : : : ; N g ! Œ0; 1/ we can find k0 2 f1; : : : ; Kg,

such that in addition to

1

L

LX

lD1

"2.Kl C k0/ 6 4
1

N

NX

nD1

"2.n/ (1.32)

as in [14] we furthermore have

1

L

LX

lD1

�
�KlCk0

� 1
2

�2
6 4

1

N

NX

nD1

�
�n � 1

2

�2
(1.33)

and

ˇ̌
�KlCk0

� 1
2

ˇ̌
6 1

8
.1 6 l 6 L/: (1.34)

We give a short counting argument for this. By Proposition 1.12

# fk0W (1.32) is violated, (1.33) is violated, or (1.34) is violated for some lg

6 # fk0W (1.32) is violatedg C # fk0W (1.33) is violatedg C
LX

lD1

# fk0W (1.34) is violated for lg

6
K

4
C K

4
C 82

LX

lD1

KX

kD1

�
�KlCk � 1

2

�2
6

K

2
C C

for some constant C D C.d; E0; T /. Therefore, we can adapt the proof of Proposition 4.1 in [14] so

that indeed we can link the first variation of the dissipation with the normal velocity. Furthermore,

the localization argument in Section 5 in [14] applies one-to-one so that we have (1.31).
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One of the main tools of the proof in [14] are Lemma 4.2 and its rescaled version, Corollary 4.3

in [14]. Roughly speaking, this lemma establishes control over the distance of the super level sets

fu > 1
2
g and f Qu > 1

2
g in terms of the L2-distance of two functions u; QuWR ! R , provided at least

one of the two functions is sufficiently monotone around the threshold value 1
2

, which is measured

by the term 1p
h

R
1
3

6u6
2
3
.
p

h @1u � c/2
�; see Lemma 1.19 below for the precise statement with more

general threshold values, which however reduces to the statement in [14] when � D Q� D 1
2

. Note

that such an estimate would clearly fail without such an extra term on the right-hand side.

In order to motivate the lemma let us streamline its application to the thresholding scheme.

To this purpose let us ignore the localization �. We apply the one-dimensional estimate to the

thresholding scheme in a fixed direction �� 2 Sd�1 with � D �h.t/ and Q� D �h.t C �/

for some � D ˛
p

h. We think of the fudge factor ˛ as small, but independent of h. After

dividing by ˛ and integrating the resulting estimate over the further d � 1 directions and over

the time variable we obtain an estimate for the difference quotient
’ ˇ̌

@�
t �h

ˇ̌
dx dt in terms of’ p

h.Gh=2 � @�
t �h/2dx dt , the above term measuring the monotonicity of Gh � �h.t � h/ in

direction �� and a term involving the L2-norm of �h � 1
2

. The constant c in the term measuring the

monotonicity is chosen such that if �h was a half space in direction �� this term would vanish. One

can indeed prove, cf. Lemma 4.4 in [14], that this term is bounded by the energy-excess

"2 WD
Z T

0

Eh.�h/ � Eh.��/ dt; for some half space �� in direction ��:

This term in turn is small (after localization) by our strengthened convergence (1.8) and the local

flatness of the limit – which is guaranteed by De Giorgi’s Structure Theorem. The second term,’ p
h.Gh=2�@�

t �h/2dx dt , is bounded by the dissipation and is thus finite by the energy-dissipation

estimate (1.14). Therefore we obtain the following estimate for the discrete time derivative

Z T

0

Z ˇ̌
ˇ@�

t �h
ˇ̌
ˇ dx dt .

1

˛

�
"2 C sT

�
C 1

s2
˛2E0 C 1

˛s2

1p
h

Z T

0

�
�h � 1

2

�2

dt;

which differs from the estimate in [14] only by the last right-hand side term involving the threshold

value. However, this term is of order
p

h by our L2-estimate, cf. Proposition 1.12. We apply a

localized version of this estimate and sum over a partition of unity with fineness r > 0. Sending

first h to zero, the first right-hand side term converges to the the energy-excess on each patch, while

the other terms stay uniformly bounded in r if the patches have finite overlap. Then we take the limit

r ! 0 so that the first right-hand side term vanishes by De Giorgi’s Structure Theorem. Optimizing

the additional parameter s and then sending ˛ to zero, the right-hand side stays uniformly bounded.

The resulting estimate resembles

Z T

0

Z ˇ̌
ˇ@�

t �h
ˇ̌
ˇ dx dt D O.1/ for � D o.

p
h/:

In comparison, the analogous estimate coming from (1.29) only holds for larger time scales � �
p

h.

Lemma 1.19 Let u; Qu 2 C 1.R/, j� � 1
2
j < 1

8
� D 1u>�, Q� D 1 Qu>Q� and � 2 C 1

0 .�2r; 2r/ a

radially non-increasing cut-off for .�r; r/ inside .�2r; 2r/. Then

1p
h

Z
� j� � Q�j .

1p
h

Z

1
3 6u6

2
3

�
�p

h @1u � c
�2

�
C s C 1

s2

1p
h

Z
� .u � Qu/2 C r

s2

�
� � Q�

�2
p

h

for any s � 1.



CONVERGENCE OF THRESHOLDING SCHEMES INCORPORATING BULK EFFECTS 291

Proof of Lemma 1.19. The lemma follows from Corollary 4.3 in [14] with a shifting argument to

make the threshold value � appear. Set v WD u � � C 1
2

so that � D 1v> 1
2

(and analogously with Qv)

and Corollary 4.3 in [14] applies for v; Qv: For any s > 0, we have

1p
h

Z
�j� � Q�j .

1p
h

Z

jv� 1
2 j6s

�
�p

h @1v � c
�2

�
C s C 1

s2

1p
h

Z
� .v � Qv/2 : (1.35)

Now we can resubstitute v D u � � C 1
2

and Qv D Qu � Q� C 1
2

on the right-hand side. Then the

integrand of the first integral stays unchanged since � is constant. If j� � 1
2
j < 1

8
and s � 1, the

domain of integration is
˚ˇ̌

v � 1
2

ˇ̌
< s

	
D
˚
ju � �j < s

	
�
˚

1
3

< u < 2
3

	
:

Since .v � Qv/2 . .u � Qu/2 C .� � Q�/2; also the second integral is in the form of the claim.

2. Mean-curvature flow with external force

The following algorithm is based on an idea of Mascarenhas in [16] but we allow the forcing term

to be space-time dependent.

2.1 Algorithm and main result

ALGORITHM 2.1 Given the phase ˝ at time t D .n � 1/h, obtain the evolved phase ˝ 0 at time

t D nh by:

1. Convolution step: � WD Gh � 1˝ :

2. Thresholding step: ˝ 0 WD f� > 1
2

� 1

2
p

�
f .x; nh/

p
hg:

The following weak formulation of mean-curvature flow with an external force has already been

introduced in [15].

DEFINITION 2.2 (Motion by mean curvature with external force) We say that � W .0; T / � R
d !

f0; 1g moves by mean curvature with external force f 2 C 1.Œ0; T � � R
d / and initial data �0 if

there exists a function V W .0; T / �R
d ! R with V 2 L2.jr�j dt/, which is the normal velocity in

the sense of (1.6), such that

Z T

0

Z
.r � � � � � r� �/ jr�j dt D

Z T

0

Z
.V � f / � � � jr�j dt (2.1)

for any � 2 C 1
0 ..0; T / � R

d ;Rd /.

It is easy to see that also Algorithm 2.1 can be interpreted as a minimizing movements scheme.

In fact, as in Lemma 1.7 we add a linear functional as a correction.

Lemma 2.3 (Minimizing movements interpretation) Given �0 2 f0; 1g, let �1 be obtained by

Algorithm 2.1. Then �1 solves

min Eh.�/ C Dh.� � �0/ � 1p
�

Z
f .nh; x/ � dx; (2.2)

where the minimum runs over all �WRd ! f0; 1g:
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Corollary 2.4 (Euler–Lagrange equation) Given �0 2 f0; 1g, let �1 be obtained by Algorithm 2.1.

Then �1 solves the Euler–Lagrange equation

ıEh.�1; �/ C ıDh. � � �0/.�1; �/ � 1p
�

Z
r � .f .nh; x/ �/ �1 dx D 0: (2.3)

We can prove a conditional convergence result for Algorithm 2.1 under the same assumption as

in Section 1.

Theorem 2.5 Let T < 1, �0 2 f0; 1g with E.�0/ < 1 and f�0 D 1g �� R
d and f 2

C 1.Œ0; T � � R
d /. After passage to a subsequence, the functions �h obtained by Algorithm 2.1

converge to a function � in L1..0; T / � R
d /. Under the convergence assumption (1.8), � moves by

mean curvature with external force f in the sense of Definition 2.2.

We follow the same strategy as in Section 1 to prove the theorem. From the Euler-Lagrange

equation (2.3), the mean curvature and normal velocity will be recovered from the limits of the

first variations of the energy and dissipation, respectively. The convergence of the third term in this

algorithm is much easier. f is a smooth function in time and space so the convergence of the third

term is an immediate consequence of the compactness of the �h (cf. Prop. 2.8). As before we write

A . B if there exists a constant C D C.d/ < 1 such that A 6 CB and note that we also

have (1.9).

2.2 Compactness

Since there are no ‘bad’ iterations as in Section 1, the argument in Lemma 1.16 yields the following

linear growth estimate and is sufficient to prove the boundedness of the sets. Here we even have the

optimal growth rate of the radii w.r.t. the time horizon T .

Proposition 2.6 There exists a universal constant C < 1 such that for any n D 1; : : : ; N

Rn 6 Rn�1 C C hkf k1:

In particular, if ˝0 � BR and the sets ˝h.t/ are obtained by Algorithm 2.1, then ˝h.t/ � BR�

for all t 6 T , where R� D R.1 C C T kf k1/ for some universal constant C < 1:

The following lemma states the a priori estimate coming from the minimizing movements

interpretation. Here, we obtain extra terms coming from the forcing term which did not appear

in Section 1 due to the special structure of the equation there.

Lemma 2.7 (Energy-dissipation estimate) The approximate solutions �h constructed in Algo-

rithm 2.1 satisfy

Eh.�N / C
NX

nD1

Dh.�n � �n�1/ 6 E0 C C

 
kf k1 C

Z T

0

Z
j@t f j dx dt

!
: (2.4)

Proof. Comparing �n to �n�1, we have

Eh.�n/ C Dh.�n � �n�1/ � 1p
�

Z
f .nh/ �n dx 6 Eh.�n�1/ � 1p

�

Z
f .nh/ �n�1 dx:
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Iterating this estimate yields

Eh.�N / C
NX

nD1

Dh.�n � �n�1/ 6 Eh.�0/ C 1p
�

NX

nD1

Z
f .nh/

�
�n � �n�1

�
dx: (2.5)

We handle the second right-hand side term by a discrete integration by parts,

NX

nD1

f .nh/
�
�n � �n�1

�
D f .N h/ �N � f .0/ �0 �

NX

nD1

�
f .nh/ � f

�
.n � 1/h

��
�n�1;

so that by Proposition 2.6 the right-hand side of (2.5) is estimated by

E0 C 1p
�

kf k1

Z �
�0 C �N

�
dx C 1p

�

Z T

0

Z
j@t f j dx dt

. E0 C kf k1 C
Z T

0

Z
j@t f j dx dt;

which concludes the proof.

Now we can apply the same argument as in Section 1 to prove the relative compactness of the

approximate solutions.

Proposition 2.8 (Compactness) Let T < 1 and �0 2 f0; 1g with E.�0/ < 1. Then there exists

a subsequence h & 0 and a function � 2 f0; 1g such that �h ! � in L1..0; T / � R
d / and the

convergence holds almost everywhere in .0; T / � R
d .

2.3 Convergence

Proof of Theorem 2.5. By Proposition 2.8 we have compactness. Our a priori estimate (2.4) and the

strengthened convergence (1.8) allow us to proceed as in Step 1 of the proof of Theorem 1.11 above

to construct the normal velocity and establish the integrability.

As in Section 1, we can apply Proposition 1.17 because of our strengthened convergence (1.8)

so that we recover the mean curvature from the first variation of the energy. To prove the analogue

of Proposition 1.18, i.e., convergence of the first variation of the dissipation towards
R

V � � � jr�j
we use Lemma 2.9 below to apply the proof in [14]. This turns out to be easier compared to the

proof in Section 1 since there are no ‘bad’ iterations and we do not have to take special care of the

shift of the mesoscopic time slices as in Step 2.

The following lemma is the analogue of Lemma 1.19 but adapted to to the setting of this

problem. There are two major differences. On the one hand, here the threshold values are not

constant in space so that we obtain an extra term coming from the first right-hand side integral

in (1.35) which gives an error term measuring the spatial variation of f . But on the other hand, the

mild bound on the threshold value, j� � 1
2
j < 1

8
in Lemma 1.19, is here automatically satisfied if

the time step h is small enough.
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Lemma 2.9 Let u; Qu; f; Qf 2 C 1.R/, � D 1
u> 1

2 � 1

2
p

�
f

p
h
, Q� D 1 Qu> 1

2 � 1

2
p

�
Qf
p

h
and let

furthermore � 2 C 1
0 .�2r; 2r/ be a radially non-increasing cut-off for .�r; r/ inside .�2r; 2r/.

Then

1p
h

Z
�j� � Q�j .

1p
h

Z

1
3

6u6
2
3

�
�p

h @1u � c
�2

�
C s C 1

s2

1p
h

Z
� .u � Qu/2

C r

s2

p
h
�
f � Qf

�2 C
p

h
3
Z

� .@1f /2

for any s � 1 and h � 1

kf k2
1

.

We conclude this section with a short remark on the necessary regularity of f . In Theorem 2.5

we assumed f 2 C 1 �
Œ0; T � � R

d
�
. However this regularity assumption can be weakened. Indeed,

our proof of Theorem 2.5 only used f 2 L1, @t f 2 L1 and rf 2 L2.

3. Grain growth in polycrystals

In this section we present and study a thresholding algorithm for simulating grain growth in

polycrystals including boundary effects. Especially for thin films this is very important since then

these effects become more important.

3.1 Preliminaries

The energy that we are interested in is the following weighted sum of interfacial energies

E.˝1; : : : ; ˝P / D
X

i;j

�ij

ˇ̌
˙ij

ˇ̌
C 2�0 j˙0j ; (3.1)

where the phases ˝1; : : : ; ˝P represent the different grains and are assumed to be closed, intersect

only through their boundaries and

˙ij WD @˝i \ @ j̋ ; ˙0 WD @ .˝1 [ � � � [ ˝P / :

The number �ij is the surface tension between Phase i and Phase j and �0 the surface tension

between the crystal and the air which is an additional modeling parameter. The equation we want to

study is the gradient flow of the energy (3.1) subject to the volume constraint

j˝1 [ � � � [ ˝P j D constant:

In particular we analyze a thresholding algorithm (Algorithm 3.1) and in Theorem 3.8 we prove a

(conditional) convergence result for a very general class of surface tensions that has been introduced

in [9]. Esedoğlu and Otto showed that this class includes the 2-d and 3-d Read-Shockley formulas

which are very prominent models for grain boundaries with a small mismatch in the angle. As

in [14], we need slightly stronger assumptions for the convergence proof. We ask the matrix � D
.�ij /P

ij D1 of surface tensions to satisfy

�i i D 0; �j i D �ij > 0 for all i ¤ j (3.2)
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and furthermore the following triangle inequality

�ij < �ik C �kj for all pairwise different i; j; k: (3.3)

For the dynamics, it is natural to assume that there exists a positive constant � > 0 such that

� 6 �� < 0 on .1; : : : ; 1/? (3.4)

as a bilinear form. Given a matrix of surface tension � , the only modeling assumption on the

parameter �0, the surface tension between the crystal and the air, is the the lower bound

�0 >
1

2
max
i;j

�ij : (3.5)

In the following, we will normalize this parameter �0 D 1 by rescaling the other surface tensions

�ij 7! �ij

�0
so that this modeling assumption turns into an additional assumption on the matrix of

(normalized) surface tensions between the grains:

�ij < 2 for all i; j: (3.6)

Note that given this additional assumption, the extended matrix of surface tensions given by the

.P C 1/ � .P C 1/-block matrix

0
BBB@

0 1 � � � 1

1
::: �

1

1
CCCA (3.7)

satisfies all the assumptions mentioned before and in particular (3.4) with � replaced by � ^ 2. The

resulting equation then becomes

Vij D Hij (3.8)

on the smooth part of the interface ˙ij , (i; j > 1) and

�ij �ij .p/ C �jk�jk.p/ C �ki �ki .p/ D 0; (3.9)

whenever p is a triple junction between the phases i; j and k, and

V0 D H0 � hH0i (3.10)

on the smooth part of the outer boundary ˙0.

Esedoğlu and Otto showed in [9] that – up to a constant – the energy E in (3.1) can be

approximated by

Eh.�/ WD 1p
h

X

i;j >1

�ij

Z
�i Gh � �j dx C 2p

h

Z
.1 � �0/ Gh � �0 dx (3.11)
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for admissible �, i.e.,

� D .�0; �1; : : : ; �P / WRd ! f0; 1gP C1; s. t.

PX

iD1

�i D 1 � �0: (3.12)

Indeed, they proved that the functionals Eh � -converge to 1p
�

E as h ! 0 when identifying the sets

˝i with their characteristic functions �i D 1˝i
and defining the area of the interface ˙ij between

Phases i and j via the term
R

1
2

�
jr�i j C jr�i j �

ˇ̌
r�i C �j

ˇ̌�
so that the energy E then becomes

E.�/ D 1p
�

X

i;j >1

�ij

Z
1

2

�
jr�i j C jr�i j �

ˇ̌
r�i C �j

ˇ̌�
C 2p

�

Z
jr�0j :

In the following we will w.l.o.g. assume that the total volume of the crystal is normalized to 1, i.e.,

j˝1 [ � � � [ ˝P j D 1:

3.2 Algorithm and notation

The following algorithm was proposed in [3] to model grain growth in thin polycrystals. Similar

to Algorithm 1.1, here the total volume of the polycrystal is preserved by the right choice of the

threshold value.

ALGORITHM 3.1 Given the phases ˝1; : : : ; ˝P with total volume 1 at time t D .n� 1/h and write

˝0 WD R
d n .˝1 [ � � � [ ˝P /, obtain the evolved phases ˝ 0

1; : : : ; ˝ 0
P at time t D nh by:

1. Convolution step:

�0 WD Gh �
 
X

j >1

1
j̋

!
; �i WD Gh �

 
X

j >1

�ij 1
j̋

C 1˝0

!
; i > 1:

2. Defining threshold value: Find � such that

ˇ̌
ˇ̌
ˇ
[

i>1

f�i < �0 C �g
ˇ̌
ˇ̌
ˇ D 1:

3. Thresholding step: For i D 1; : : : ; P set

˝ 0
i WD f�i < �j for all j ¤ i; j > 1g \ f�i < �0 C �g

and ˝ 0
0 WD R

d n .˝ 0
1 [ � � � [ ˝ 0

P /.

3.3 Minimizing movements interpretation

With a similar argument as before, using the linearized energy

Lh.�; �/ WD 2p
h

PX

iD0

Z
�i �i dx; (3.13)
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we can interpret Algorithm 3.1 as a minimizing movements scheme for the approximate energies

Eh defined in (3.11) and dissipation �Eh.!/. Here the matrix of surface tensions �ij is extended as

in (3.7).

Lemma 3.2 (Minimizing movements interpretation) Given any admissible �0, let �; � and �1 be

obtained by Algorithm 3.1. Then �1 solves

min Eh.�/ � Eh.� � �0/ � 2�p
h

Z
.1 � �0/ dx; (3.14)

where the minimum runs over (3.12). Or equivalently,

min Eh.�/ � Eh.� � �0/ s. t.

Z
.1 � �0/ dx D 1; (3.15)

where the minimum runs over (3.12) and is additionally constrained by the volume constraint.

Proof. Indeed, for any admissible � in the sense of (3.12) we have

PX

iD0

�i �i � � .1 � �0/ D �0 .�0 C �/ C
PX

iD1

�i �i � �
.3:12/

> min f�0 C �; �1; : : : ; �P g � �:

For �1 obtained by Algorithm 3.1 in turn we have equality in the above inequality so that �1

minimizes the left-hand side pointwise. In particular, after integration we see that �1 minimizes

the functional

2p
h

PX

iD0

Z
�i �i dx � 2�p

h

Z
.1 � �0/ dx D Lh.�; �/ � 2�p

h

Z
.1 � �0/ dx:

By the quadratic nature of the functional Eh we have

Lh.�; �/ D Eh.�/ � Eh.� � �0/ C Terms depending only on �0;

which proves the first claim (3.14). Since the last term in (3.14) is constant for � with the volume

constraint, we also have (3.15).

Again, as a direct consequence of the minimizing movements interpretation, we obtain an a

priori estimate by comparing the solution to its predecessor.

Lemma 3.3 (Energy-dissipation estimate) The approximate solutions �h satisfy

Eh.�N / �
NX

nD1

Eh.�n � �n�1/ 6 E0: (3.16)

Note that our assumption (3.4) guarantees that
p

�Eh defines a norm on the process space

f!W
P

i !i D 0g in the same spirit as
p

Dh in the previous two sections.

DEFINITION 3.4 (First variation) For any admissible � 2 f0; 1gP and � 2 C 1
0 .D;Rd / let �s be

generated by the flow of �, i.e., �i;s solves the following distributional equation:

@s�i;s C � � r�i;s D 0:
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We denote the first variation along this flow by

ıEh.�; �/ WD d

ds
Eh.�s/

ˇ̌
sD0

; ıEh. � � Q�/.�; �/ WD d

ds
Eh.�s � Q�/

ˇ̌
sD0

;

where Q� 2 f0; 1g is fixed.

Corollary 3.5 (Euler–Lagrange equation) Given an admissible �0 2 f0; 1gP , let �1 be obtained by

Algorithm 3.1 with threshold value �. Then �1 solves the Euler–Lagrange equation

ıEh.�1; �/ � ıEh. � � �0/.�1; �/ � 2�p
h

Z
.r � �/

�
1 � �1

0

�
dx D 0: (3.17)

The idea underlying the convergence proof now follows the framework laid out in Section 1.

The first variation of the approximate energy will be shown to converge to the mean curvature of

the crystal/grain boundary in a weak sense. The first variation of the dissipation will be shown to

converge to the velocity in a weak sense. And the first variation of the Lagrange multiplier term will

converge to zero on the inner grain boundaries, and the average of the mean curvature over the outer

solid-vapor interface. The precise limit is formulated in the next definition.

The following definition is similar to the notion for multi-phase mean-curvature flow as

described in [14] but incorporates an additional constraint on the total volume.

DEFINITION 3.6 Fix some finite time horizon T < 1, a matrix of surface tensions � as above and

initial data �0WRd ! f0; 1gP with E0 WD E.�0/ < 1. We say that

� D .�1; : : : ; �P / W .0; T / � R
d ! f0; 1gP

with �0 WD 1 �
P

i �i 2 f0; 1g a.e. and �.t/ 2 BV.Rd ; f0; 1gP / for a.e. t moves by total-volume

preserving mean-curvature flow if

PX

i;j D1

�ij

Z T

0

Z �
r � � � �i � r� �i � � � �i Vi

��
jr�i j C

ˇ̌
r�j

ˇ̌
�
ˇ̌
r.�i C �j /

ˇ̌ �
dt

C 2

Z T

0

Z �
r � � � �0 � r� �0 � � � �0 .V0 C �/

�
jr�0j dt D 0 (3.18)

for all � 2 C 1
0 ..0; T / � R

d ;Rd /, where the functions Vi W .0; T / � R
d ! R are normal velocities

in the sense that
Z T

0

Z
@t � �i dx dt C

Z
�.0/�0

i dx D �
Z T

0

Z
� Vi jr�i j dt (3.19)

for all � 2 C 1.Œ0; T � � R
d / with �.T / D 0 and supp �.t/ �� R

d and all i 2 f0; 1; : : : ; P g and

if the Lagrange multiplier �W .0; T / ! R is such that the volume of the solid phase .1 � �0/ is

preserved:

PX

iD1

Z
�i .t/ dx D constant: (3.20)

REMARK 3.7 We assume the following convergence of the energies defined in (3.11).

Z T

0

Eh.�h/ dt !
Z T

0

E.�/ dt: (3.21)
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3.4 Main result

Theorem 3.8 Let T < 1 be a finite time horizon, �0 D .�0
1; : : : ; �0

P / be admissible initial data

with E.�0/ < 1 and f
P

i �0
i D 1g �� R

d and let the matrix of surface tensions � satisfy the

Assumptions (3.2)–(3.5). After passage to a subsequence, the approximate solutions �h constructed

in Algorithm 3.1 converge to an admissible � in L1..0; T /�R
d /. Given the convergence assumption

(3.21), � moves by total-volume preserving mean-curvature flow according to Definition 3.6.

One of the main ingredients – as in Section 1 – is the following estimate on the Lagrange

multiplier.

Proposition 3.9 Let �0 be admissible. Given the approximate solutions �h obtained by

Algorithm 1.1 with thresholding values �h, we have the estimate

Z T

0

�2
h dt . .1 C T /

�
1 C E4

0

�
h:

Proof. We can adapt the proof of Proposition 1.12. We square the Euler–Lagrange equation and

obtain an equation similar to (1.18) but with �n replaced by 1 � �n
0 on the left-hand side. The

estimates on ıE and ıD, i.e., Steps 1 and 2 work analogously with help of the a priori estimate

(3.16). In Step 3 we choose the test vector field � to satisfy

Z
.r � �/ .1 � �0/ dx >

1

2

and

k�kW 1;1 . 1 C E0:

The construction of � is the same as there but with � replaced by 1 � �0, which has a fixed volumeR
.1 � �0/ dx D 1.

3.5 Compactness

Proposition 3.10 (Compactness) There exists a subsequence h & 0 and an admissible � 2
L1..0; T / � R

d ; f0; 1gP / such that

�h �! � in L1
�
.0; T / � R

d
�
: (3.22)

Moreover,

�h �! � a.e. in .0; T / � R
d (3.23)

and �.t/ 2 BV.Rd ; f0; 1gP C1/,
R

.1 � �0/ dx D 1 and 1 � �0 �� R
d for a.e. t 2 .0; T /.

As in Section 1, this follows from [14] and the following two lemmas, which guarantee that the

phases stay in a bounded region. In the proofs, we will reduce the statements until we can apply

Lemma 1.15 and Lemma 1.16, respectively to conclude.

Lemma 3.11 Rn may be chosen such that Rn 6 3Rn�1.
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Proof. For the sake of notational simplicity we will assume w.l.o.g. n D 1. We want to give a

similar, energy-based argument as in the proof of Lemma 1.15. Let 1 � �0
0, the crystal at time 0,

be located inside BR. We write ˝1; : : : ; ˝P for the update in Algorithm 3.1, write �i D 1˝i
and

assume that U WD ˝1 n B3R has positive volume and construct eU � BR with the same volume as

U as in the proof of Lemma 1.15. Then we define the competitor Q� by setting e̋1 WD .˝1 n U / [ eU
leaving the phases ˝i , i > 2 unchanged so that e̋0 WD .˝0 n eU / [ U . Recalling the linearized

energy defined in (3.13), we see that

Lh.�; �/ � Lh.�; Q�/ D 2p
h

Z
.�0 � Q�0/ �0 C .�1 � Q�1/ �1 dx:

By construction we have �0 � Q�0 D �.�1 � Q�1/ D 1eU � 1U . Rewriting �1 in the form

�1 D
�
1 �

X

j >1

Gh � �0
j

�
C
X

j >1

�1j Gh � �0
j ;

we thus have

Lh.�; �/ � Lh.�; Q�/ D 2p
h

Z
.�0 � �1/

�
1eU � 1U

�
dx

D 2p
h

PX

j D1

�
2 � �1j

� Z
Gh � �0

j

�
1eU � 1U

�
dx:

Note that by the normalization (3.6), which guarantees the strict triangle inequality for the extended

surface tensions, each prefactor in the sum is strictly positive, furthermore we have (1.30) for Gh��0
j

playing the role of � there and by construction of eU the right-hand side term is positive which gives

the desired contradiction.

Lemma 3.12 Over ‘good’ iterations we have the estimate

Rn 6 Rn�1 C C
p

hj�nj:

Proof. As before, we can ignore the index n and set n D 1 for convenience. Let 1 � �0
0, the crystal

at time 0, be located inside some ball BR0
. As in the proof of Lemma 1.16, via a comparison

argument, we want to prove that 1 � �0, the crystal at time h, does not intersect the half space

fx � e > R0 C C
p

hg for any choice of e 2 Sd�1. That means, we want to prove the existence of a

constant C < 1 such that

�0 C � < �i for all i > 1 in fx � e > R0 C C
p

hg:

By rotational symmetry we may again restrict to the case e D e1. Since we may relabel the phases

inside the crystal, we may also prove the inequality only for i D 1. In that case, writing x D
.x1; x0/ 2 R

d , we have

.�0 � �1/ .x/ 6 Gh �
�X

i>1

�0
i � �0

0

�
:
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Thus, writing �0 WD
P

i>1 �0
i , we reduced the problem to the two-phase analogue which we handled

in Lemma 1.16. Indeed, using the same comparison argument, i.e., using �0 6 1H , where H D
fx1 < R0g is a half space tangent to @BR0

we find

.�0 � �1/ .x/ 6 2

Z x1�R0

0

G1
h.z1/ dz1:

Since for a ‘good’ iteration � is bounded, as in the proof of Lemma 1.16 we can find a constant

C < 1, so that

.�0 � �1/ .x/ 6 2
R1 � R0p

h
min

jz1j6C
G1.z1/ 6 j�j

which concludes the proof.

3.6 Convergence

The following lemma is the main technical ingredient of the convergence proof. It is slightly more

general than our set-up here since it allows for several Lagrange-multipliers so that the order

parameter becomes � u C � instead of � u, where u D G � � and � 2 R
P . The changes in the

statement w.r.t. Lemma 4.5 in [14] are of the same form as before in Lemma 1.19 except for a lower

order term, j�j, which can be absorbed by the term r
s2

j��Q�j2p
h

and terms of order
p

h.

Lemma 3.13 Let N 2 N, I � R be an interval, h > 0, � 2 C 1
0 .R/, 0 6 � 6 1, radially non-

increasing and u; QuW I ! R
N be two maps into the standard simplex fUi > 0;

P
i Ui D 1g � R

N .

Let � 2 R
N �N be admissible in the sense of (3.2)–(3.4) and �; Q� 2 R

N with j�j 6 1
8

. Define

� WD � u C �, �i WD 1f�i >�j 8j ¤ig and Q�; Q�i in the same way. Then

1p
h

Z
� j� � Q�j dx1 .

1

s
"2 C s C j�j C 1

s2

1p
h

Z
� ju � Quj2 dx1 C r

s2

j� � Q�j2p
h

for s � 1, where

"2 WD 1p
h

Z

1
3 6u16

2
3

�p
h@1u1 � c

�2

�
dx1 C 1p

h

X

j >3

Z
�
�
uj ^ .1 � uj /

�
dx1:

Proof. As in the proof of Lemma 4.5 in [14] by scaling we can assume h D 1 and by taking convex

combinations, we may assume � D 1I for some interval I � R:

Z

I

j� � Q�j .

Z

ju1� 1
2 j6sCj�j

.@1u1 � c/2
� C 1

s

X

j >3

Z

I

�
uj ^ .1 � uj /

�
C s C j�j

C 1

s2

Z

I

ju � Quj2 C jI j
s2

j� � Q�j2:

We will prove

f� ¤ Q�g �
n
ju1 � 1

2
j . s C j�j

o
[
nX

j >3

�
uj ^ .1 � uj /

�
& s

o
[ fju � Quj C j�j & sg: (3.24)
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We fix i 2 f1; : : : ; P g and define v WD minj ¤i �j � �i as in [14]. Then �i D 1v>0 and

f�i ¤ Q�i g � fjvj < sg [ fjv � Qvj > sg:

We clearly have

jv � Qvj . ju � Quj C j� � Q�j

so that our goal is to prove

ju1 � 1
2
j . s C j�j or

X

j >3

�
uj ^ .1 � uj /

�
& s on fjvj < sg; (3.25)

which then implies (3.24). In order to prove (3.25) we claim that

uj 6
1

2
C s C j�j

�min

on fjvj < sg: (3.26)

First we show that (3.26) implies (3.25). By (3.26) we have on the one hand

u1 6
1

2
C C.s C j�j/ on fjvj < sg

and on fjvj < sg [ fu1 6 1
2

� C.s C j�j/g we have

X

j >3

�
uj ^ .1 � uj /

�
D
X

j >3

uj �
X

j >3

�
1 � 2uj

�
� >

�
C � 1

�min

� 2P
1

�min

�
s & s

if C < 1 is large enough. This implies (3.25).

We are left with proving the inequality (3.26). As in [14] we decompose the set

fjvj < sg D
[

j ¤i

Ej ; Ej WD
˚ ˇ̌

�i � �j

ˇ̌
< s; �j D min

k¤i
�k

	
:

For k ¤ fi; j g by the triangle inequality for the surface tensions we have on Ej

�j 6 �k 6 �jk .1 � 2uk/ C �j C �k � �j ;

so that

uk 6
1

2
C �k � �j

2�jk

:

For ui we can use that �j � s 6 �i on Ej so that using the same chain of inequalities we have

ui 6
1

2
C s C �i � �j

2�ij

:

Since also �i � s 6 �j on Ej we have the analogous inequality for uj , which concludes (3.26).
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As in [14], we have the following convergence of the first variations of the (approximate)

energies.

Proposition 3.14 (Energy and mean curvature; Proposition 3.1 in [14]) Under the convergence

assumption (3.21)

lim
h!0

Z T

0

ıEh.�h; �/ dt

D 1p
�

PX

i;j D0

�ij

Z T

0

Z
.r � � � � � r� �/

1

2

�
jr�i j C

ˇ̌
r�j

ˇ̌
�
ˇ̌
r.�i C �j /

ˇ̌�
dt

for any � 2 C 1
0 ..0; T / � R

d ;Rd /:

Since we have both, the estimate on the Lagrange multiplier � in Proposition 3.9 and the

important estimate Lemma 3.13, as in Section 1, we can adapt the techniques from [14] to recover

the normal velocity from the first variation of the dissipation functional.

Proposition 3.15 (Dissipation and normal velocity) There exist functions Vi W .0; T / � R
d ! R

which are normal velocities in the sense of (3.19). Given the convergence assumption (3.21), Vi 2
L2.jr�j dt/ and for any � 2 C 1

0 ..0; T / � R
d ;Rd / we have

lim
h!0

Z T

0

�ıEh

�
� ��h.t � h/

��
�h.t/; �

�
dt

D � 1p
�

PX

i;j D0

�ij

Z T

0

Z
� � �i Vi

1

2

�
jr�i j C

ˇ̌
r�j

ˇ̌
�
ˇ̌
r.�i C �j /

ˇ̌�
dt:

Proof. Step 1: Construction of the normal velocities and (3.19). As before in the two-phase case

we can also adapt the proof of [14] in this case. Indeed, the argument there only makes use of the a

priori estimate (3.16) and the strengthened convergence (3.21).

Step 2: Argument for (1.31). Our L2-estimate on the Lagrange-multiplier � allows us to choose

the shift of the mesoscopic time slices as in Step 2 of the proof of Proposition 1.18 such that these

slices are ‘good’ in the sense that j�j 6 1
8

. Now we may use our main technical ingredient, Lemma

3.13, for all mesoscopic time slices and hence we can apply the proof as in Section 1 before.

These two propositions conclude the proof of Theorem 3.8.
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