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In this article we derive an estimate on the number of local maxima of the free boundary of the

minimizer of

I Œv� WD

Z

U

1

2
jDvj2 � �v dx;

subject to the pointwise gradient constraint

.jD1vjq C jD2vjq/
1
q 6 1:

This also gives an estimate on the number of connected components of the free boundary. In addition,

we further study the free boundary when U is a polygon with some symmetry.
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1. Introduction

Variational inequalities with gradient constraints, has been an active area of study, inspired by

problems in Physics and engineering. An important example among them is the famous elastic-

plastic torsion problem, which is the problem of minimizing the functional

I Œv� WD

Z

U

1

2
jDvj2 � �v dx;

over the set

W WD
˚

v 2 H 1
0 .U / j jDvj 6 1 a.e.

	

:

Here U is a bounded open domain in R
2, and � > 0 is a constant. This problem is equivalent to

finding u 2 W that satisfies the variational inequality

Z

U

Du �D.v � u/ � �.v � u/ dx > 0 for all v 2 W:

Brezis and Stampacchia [2] proved the W 2;p regularity for the elastic-plastic torsion problem.

Caffarelli and Rivière [6] obtained its optimal W 2;1 regularity. Gerhardt [13] proved W 2;p

regularity for the solution of a quasilinear variational inequality subject to the same constraint as in

the elastic-plastic torsion problem. Jensen [16] proved W 2;p regularity for the solution of a linear
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variational inequality subject to a C 2 convex gradient constraint. Choe and Shim [8, 9] provedC 1;˛

regularity for the solution to a quasilinear variational inequality subject to a C 2 convex gradient

constraint, and allowed the operator to be degenerate of the p-Laplacian type.

Recently, there has been new interest in these type of problems. Hynd and Mawi [15]

studied fully nonlinear equations with convex gradient constraints, which appear in stochastic

singular control. They obtained W 2;p regularity in general, and W 2;1 regularity with some extra

assumptions. De Silva and Savin [10] obtained C 1 regularity for the minimizer of some nonsmooth

convex functionals subject to a gradient constraint in two dimensions, arising in the study of random

surfaces. Here, the constraint is a convex polygon; so it is not strictly convex in contrast to other

studies.

In addition to the works on the regularity of the elastic-plastic torsion problem, Caffarelli and

Rivière [4, 5], Caffarelli and Friedman [3], Friedman and Pozzi [12], and Caffarelli et al. [7], have

worked on the regularity and the shape of its free boundary, i.e. the boundary of the set fjDuj < 1g.

These works can also be found in [11]. In [17, 18], we extended some of these results, both the

regularity of the solution and its free boundary, to the more general case where the functional is

unchanged but the constraint is given by the q-norm

.jD1vjq C jD2vjq/
1
q 6 1:

In this work, we continue this study and generalize some other parts of the above works. Especially,

we extend the results of Friedman and Pozzi [12] regarding the number of local maxima of the free

boundary attached to a line segment of @U . As a result, we derive an estimate on the number of

connected components of the free boundary attached to a line segment of @U .

An interesting consequence of our result is that whenU is a convex polygon, there is at most one

connected component of the free boundary attached to each side of @U . At the end, we generalize the

reflection method of Caffarelli et al. [7] to our problem. This method gives some extra information

about the free boundary parts attached to the sides of a polygon, when the polygon has some

symmetry. Although we only obtain these results in special cases, since the q-norms are not as

symmetric as the Euclidean norm.

A motivation for our study was to fill the gap between the known results mentioned above, and

the still open questions regarding the regularity and the shape of the free boundary of the above-

mentioned problem about random surfaces.

Now, let us introduce the problem in more detail. Let U � R
2 be a simply connected bounded

open set whose boundary is a simple closed Jordan curve consisting of arcs S1; � � � ; Sm that are

C k;˛ .k > 3 ; ˛ > 0/ or analytic up to their endpoints, satisfying Assumption 1 below. We denote

by Vi WD NSi \ NSiC1 the vertices of @U , and we assume that all the vertices are nonreentrant corners

i.e., their opening angle is less than � .

As before, let

I Œv� D

Z

U

1

2
jDvj2 � �v dx with � > 0: (1.1)

Let u be the minimizer of I over

K WD
˚

v 2 H 1
0 .U / j q.Dv/ 6 1 a.e.

	

: (1.2)

Where q is the q-norm on R
2

q..x1; x2// WD
�

jx1jq C jx2jq
�

1
q :
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Since uC D max.u; 0/ is also a minimizer, we must have u > 0. Now as shown in [17, Section 2]

we know that u is also the minimizer of I over

QK WD
˚

v 2 H 1
0 .U / j v.x/ 6 dp.x; @U / a.e.

	

: (1.3)

Here p D q
q�1

is the dual exponent to q, and dp is the metric associated to p. We also assume that

1 < q 6 2, so 2 6 p < 1.

Let us mention that the difficulty with the case q > 2, is that p for p < 2 is not C 2 over

R
2 � f0g. This prevents many of the arguments here and in [17, 18] from working. Although our

recent work [19] on the regularity of the minimizers, opens the door into investigating this case and

many more general convex constraints, especially those that are not strictly convex. But obtaining

the regularity of the free boundary, which is a prerequisite to understanding its shape, is still in

progress.

1.1 Preliminaries

Next, we summarize some of the results obtained in [17, 18]. It has been proved in [17, Section 4]

that u 2 C
1;1
loc .U / D W

2;1
loc .U /. Also by [18, Lemma 2], we have the equalities

E WD
˚

x 2 U j u.x/ < dp.x; @U /
	

D
˚

x 2 U j q.Du.x// < 1
	

;

and

P WD
˚

x 2 U j u.x/ D dp.x; @U /
	

D
˚

x 2 U j q.Du.x// D 1
	

:

The first region is called the elastic region and the second one is called the plastic region. It is easy

to see that if x 2 P and y 2 @U is one of the p-closest points to x on the boundary, then the

segment between x and y lies inside P . In addition, we have �u D �� over E , and �u > �� a.e.

over U . Consequently, by the strong maximum principle we have u > 0 in U .

The complement of the largest open set over which dp.x/ WD dp.x; @U / is C 1;1, is called the

p-ridge and is denoted by Rp. It has been shown [18, Theorem 4] that Rp consists of those points

in U with more than one p-closest point on @U , and those other points x at which dp.x/ D 1
�p.y/

(we define �p.y/ below). One nice property of the p-ridge is that the p-closest point on @U varies

continuously in NU �Rp (see [18, Lemma 6]). Also by [18, Theorems 2 and 5],Rp � E , and outside

Rp, dp is as smooth as @U , provided that @U satisfies

ASSUMPTION 1 We assume that at the points where the normal to one of the Si ’s is parallel to one

of the coordinate axes, the curvature of Si is small. In the sense that, if we have .s C a0; b.s// as

a nondegenerate C k;˛ .k > 3 ; 0 < ˛ < 1/ parametrization of Si around y0 WD .a0; b.0//, and

b0.0/ D 0; then we assume b0 goes fast enough to 0 so that b0.s/ D c.s/jc.s/jp�2, where c.0/ D 0,

and c is C k�1;˛ . Note that y0 can be one of the endpoints of Si .

Also we require c0.0/ to be small enough so that 1 � c0.0/dp.�/ does not vanish at the points

inside U that have y0 as the only p -closest point on @U .

It is easy to show that there is a p-circle inside U that touches @U only at y0 (see the proof of

Theorem 2.3 below). We will call these points the degenerate points of Assumption 1. Note that we

modified this assumption to be slightly different than what appeared in [18], to emphasize that we

require this assumption to also hold at the endpoints of the arcs S1; � � � ; Sm.
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By [18, Theorem 3], away from the p-ridge we have

�dp.x/ D
�.p � 1/�p.y/�p.y/

1 � �p.y/dp.x/
: (1.4)

Here y 2 @U is the p-closest point to x, and if .a.�/; b.�// is a parametrization of @U around y,

�p WD
a0b00 � b0a00

.p � 1/ja0j
p�2
p�1 jb0j

p�2
p�1 .ja0j

p
p�1 C jb0j

p
p�1 /

pC1
p

is the p-curvature, and

�p WD
.ja0j

2
p�1 C jb0j

2
p�1 /ja0b0j

p�2
p�1

.ja0j
p

p�1 C jb0j
p

p�1 /
2p�2

p

is another reparametrization invariant quantity. Note that at the degenerate points of Assumption 1,

we have lim �p D c0.0/ and �p D 0. Let us also record here that outside Rp, y is a C k�1;˛ function

of x, and

Ddp.x/ D
�.y/

q

�

�.y/
� ; (1.5)

where � is the inward normal to @U (see the proof of Theorem 2 of [18]). Note that nonreentrant

corners can not be the p-closest point on @U to any point inside U .

Let y D f .s/ .0 6 s 6 L/ be a parametrization of @U . Then it has been proved [18, page 15]

that the free boundary, � WD @E\U , can be parametrized by f .s/Cı.s/�.s/. Here ı W Œ0; L� ! R

is a continuous and nonnegative function, and �.s/ is the unique direction at f .s/ along which

points inside U have f .s/ as the p-closest point on @U . � is called the inward p-normal, and is

given by the formula

� WD
1

�

j�1j
p

p�1 C j�2j
p

p�1
�

1
p

.sgn.�1/j�1j
1

p�1 ; sgn.�2/j�2j
1

p�1 /; (1.6)

where as before � D .�1; �2/ is the inward normal to @U at f .s/. Furthermore by [18, Theorem

12], we know that � is a C k�1;˛ curve with no cusps, if the part of @U that parametrizes it is C k;˛.

Also, ı � 0 in a neighborhood of nonreentrant corners, since it has been shown [18, Theorem 14]

that nonreentrant corners have an elastic neighborhood in U . Note that on � we have u D dp and

Du D Ddp, since u � dp attains its maximum there.

Also note that the above characterization of the free boundary implies that E is a simply

connected domain bounded by a simple closed Jordan curve.

Finally, we briefly comment on the case that some vertices Vi are reentrant corners, i.e., their

opening angle is greater than � . The main difference that these corners have with nonreentrant ones,

is that they are the p-closest point on @U to some points inside U . In fact, if we denote by �i1; �i2

the inward p-normals to respectively Si ; SiC1 at Vi , then the points in U between�i1; �i2 and close

to Vi have Vi as the only p-closest point on @U . We denote this set of points by Ui . Note that Ui is

an open subset of U .

It is obvious that dp is analytic on Ui . (Except at the points that lie on a line passing through

the corner and parallel to one of the coordinate axes. At theses points the regularity of dp depends

on the integer part of p, but it is at least C 2.) The p-ridge is characterized as before, and is inside
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the elastic region (see [18, Section 4]). The other difference is that on �ij , we can only say that dp

is C 1;1 at the points where dp ¤ 1
�p

. Furthermore, the free boundary is an analytic curve inside Ui

(again, except possibly at a finite number of points). Here, ı is a function of the angle between �i1

and the segment connecting Vi to the free boundary.

2. Global regularity

First, let us give a global regularity result not mentioned in [17, 18].

Theorem 2.1 When all the vertices of @U are nonreentrant corners, we have u 2 C 1;˛. NU / for

some ˛ > 0. If @U has no corners, the conclusion holds for all ˛ 2 .0; 1/.

Proof. Note that by the gradient constraint we have u 2 W 1;1.U / D C 0;1. NU/. Furthermore

�u D

(

�� in E

�dp a.e. in P:

Also note that by Assumption 1, �p is bounded on @U . Thus 1 � �pdp ! 1 uniformly, as we

approach @U . Also, 1 � �pdp > 0 on P by an argument similar to [18, Lemma 7], so it has a

positive minimum there. In addition, �p�p is bounded on @U as we assumed that Si ’s are smooth

up to their endpoints. Hence �dp is bounded on P . Thus �u is bounded there too. Therefore as

u 2 C 0. NU /, we can apply the Calderon–Zygmund estimate and conclude that u is in W 2;s for

any s 2 .1;1/, around any C 1;1 portion of @U . Thus u is in C 1;˛ around points in the interior

of Si ’s, for any ˛ 2 .0; 1/. (Consult Theorem 9.15 of [14]. Note that we need to multiply u by a

smooth bump function with support around some smooth part of @U , and use the fact that u;Du;�u

are bounded.) As nonreentrant corners have an elastic neighborhood in U , around them we have

�u D ��. Now as u vanishes on @U , we can apply the results of [1] to deduce that u is in C 1;˛ for

some ˛ > 0 around these corners.

REMARK 2.2 This theorem does not hold when some of the vertices are reentrant corners. Although

Du remains bounded as we approach a reentrant corner, it is not necessarily continuous there.

Let us also give an interesting consequence of Assumption 1.

Theorem 2.3 Every smooth point of @U has a U -neighborhood that does not intersect the p-ridge

Rp.

Proof. The reason is that, locally around smooth points, @U has uniform interior p-circle property.

This means that for any smooth point y0 2 @U and any y 2 @U close enough to y0, there is a

p-circle inside U whose boundary touches @U only at y, and its p-radius is independent of y. This

implies that close to y0, no point of U has more than one p-closest point on @U . Also, as �p is

bounded on @U by Assumption 1 and smoothness of Si ’s up to their endpoints, 1 � �pdp ¤ 0 near

the boundary. Thus we get the result.

To prove the property, first assume that y0 D .a0; b0/ is a degenerate point of Assumption 1,

and around it we can parametrize @U by

s 7! .s C a0; b.s//:

Where b.0/ D b0, b0.0/ D 0, and b.s/ D c.s/jc.s/jp�2 for some smooth enough function c. We

assume that U is above @U around y0.
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Let s1 be close to 0, and consider y1 D .s1 C a0; b.s1// near y0. Then,
.�c.s1/;1/

.1Cjc.s1/jp/
1
p

is the

p-normal at y1. Consider the p-circle with p-radius r and center .a1 C a0; b1/, where a1 WD

s1 � rc.s1/

.1Cjc.s1/jp/
1
p

and b1 WD b.s1/ C r

.1Cjc.s1/jp/
1
p

. We will show that this p-circle which passes

through y1, is above @U near y1. Let

˛.s/ WD �.rp � js � a1jp/
1
p C b1 � b.s/:

It is enough to show that ˛ is positive around s1. Note that ˛.s1/ D 0.

For this to happen, it suffices to show that

˛0.s/ D
.s � a1/js � a1jp�2

.rp � js � a1jp/
p�1

p

� c.s/jc.s/jp�2

is positive after s1 and negative before it. But as the map s 7! sjsjp�2 is increasing, we just need to

show that

ˇ.s/ WD
s � a1

.rp � js � a1jp/
1
p

� c.s/

has the same property. As ˇ.s1/ D 0, it is sufficient to show that

ˇ0.s/ D
1

.rp � js � a1jp/
1
p

C
js � a1jp

.rp � js � a1jp/
pC1

p

� c0.s/

is positive.

Choose r small enough so that c0.s/ < 1
2r

for jsj 6 2�0, where �0 is very small compared to

r . Then for any s1 with js1j < �0, we have ˇ0.s/ > 1
2r

for js � s1j 6 �0. Thus ˛.s/ > 0 for

0 < js � s1j 6 �0. Now inside the p-circle with p-radius r , we take a p-circle with p-radius r1 that

passes through y1. Let js1j 6
1
4
�0. We can take r1 to be small enough (independently from y1), so

that this smaller p-circle has a positive distance from @U � f.sCa0; b.s// j jsj < 1
2
�0g. Hence the

smaller p-circle is inside U , and this is what we wanted to prove.

Now assume that y0 is a nondegenerate point. Then due to the inverse function theorem, we can

find a parametrization for @U around y0 of the form

s 7!
�

s C a0; b.s/
�

:

This time b0.s/ ¤ 0 for s small, so we can define the smooth function c.s/ WD b0.s/
jb0.s/j

jb0.s/j
1

p�1 .

Hence b0 D cjcjp�2 and we can repeat the above argument.

REMARK 2.4 When p ¤ 2, this theorem is false without Assumption 1. A simple example is a

disk, whose p-ridge is the union of its two diagonals parallel to the coordinate axes.

REMARK 2.5 An important consequence of this theorem is that dp is at least C 1 up to smooth

points of @U . The reason is that dp;Ddp are uniformly continuous on a U -neighborhood of these

points.
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3. Plastic components attached to line segments of boundary

We start with a lemma about the level sets of a function satisfying an elliptic equation in some region

of the plane.

Lemma 3.1 Let U � R
2 be a bounded simply connected domain whose boundary is a simple

closed Jordan curve. Suppose u 2 C 2.U / \ C. NU/ is a nonconstant function satisfying

Lu WD �aijD2
ijuC biDiu D 0:

Where L is a uniformly elliptic operator with continuous coefficients. Then the closure of every level

set of u in U , intersects @U .

Furthermore, when L D ��, the closure of every connected component of any level set of u in

U , intersects @U .

Proof. Let S WD fx 2 U j u.x/ D cg be a nonempty level set, and suppose to the contrary that
NS � U . Then as both NS and @U are compact, their distance, 2", is positive. For any y 2 @U , let

U".y/ be the connected component of B".y/\U that has y on its boundary. First, note that there is

at most one such component since @U is a simple Jordan curve. Second, on any U".y/, u is either

greater than c or less than c. The reason is that if both happen, u must take the value c in U".y/

which is impossible.

Now suppose that for some y0 2 @U we have u < c on U".y0/. We claim that the same thing

happens for every y 2 @U . Let

A WD
˚

y 2 @U j u < c on U".y/
	

:

Obviously A is open in @U . But it is also closed, since if for y 2 @U we have yi ! y for some

sequence yi 2 A, then for large enough i we have y 2 U".yi /. Thus as A is nonempty and @U is

connected we have A D @U . This implies that u 6 c on @U . But in that case, the strong maximum

principle implies that u is constant, which is a contradiction.

Now supposeL D ��. Then u is analytic insideU , and its level sets are locally, several analytic

arcs emanating from a point. Suppose, S1 � U is a connected component of S , and NS1 � U . Then

as S1 is a maximal connected subset of S , we have S1 D NS1. Thus S1 is compact. Hence S1

has a positive distance from @U . It also has a positive distance from S � S1. The reason is that if

S1 \S � S1 ¤ ;, then there is a sequence in S �S1 converging to a point in S1, which is also in U .

But this implies that, that sequence belongs to one of the analytic arcs emanating from that point.

This means, that sequence belongs to S1, which is a contradiction.

Therefore, we can enclose S1 by a simple closed Jordan curve inside U that still has a positive

distance from NS1, and leaves S � S1 outside. We can argue as before and get a contradiction, noting

that as u is analytic, it can not be constant on this new domain.

Now we return to our free boundary problem.

DEFINITION 3.2 Remember that f parametrizes @U , � is the inward p-normal to @U given by

(1.6); and ı is a nonnegative function so that f C ı� parametrizes the free boundary when ı > 0.

Suppose ı.s/ > 0 for s 2 .a; b/ and ı.a/ D ı.b/ D 0, then we call the set

˚

f .s/C t�.s/ j s 2 Œa; b� ; t 2
�

0; ı.s/
�	

a plastic component.
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Note that there are at most countably many plastic components.

The following theorem is a stronger version of a result proved in [18, Theorem 15], which states

that the number of plastic components attached to a closed line segment of @U is finite. Here we

do not require the line segment to be a proper subset of an open line segment of @U . We also give

some details of the proof that are not presented in [18]. For this theorem, we can allow U to have

several holes homeomorphic to a disk, and not be simply connected. We can also allow the corners

to be reentrant.

Theorem 3.3 The number of plastic components attached to a closed line segment of @U is finite,

if the endpoints of the segment are not reentrant corners, and a neighborhood of each endpoint in

the segment either has an elastic neighborhood in U , or belongs to a plastic component.

Proof. Let the line segment be

�1 WD
˚

.x1; �1x1 C �2/ j a 6 x1 6 b
	

;

and assume that U is above the segment. Suppose to the contrary that there are infinitely many

plastic components

Pi D
˚

.x1; �1x1 C �2/C t.�1; �2/ j x1 2 Œai ; bi � ; t 2
�

0; ı.x1/
�	

attached to the line segment. Where � WD .�1; �2/ is the inward p-normal, bi 6 aiC1, and as noted

before ı is a continuous nonnegative function on Œa; b�. Let

Hi WD max
x2Œai ;bi �

ı.x/:

Since bi � ai ! 0 as i ! 1, we must have Hi ! 0. Otherwise a subsequence,Hni
converges to

a positive number. By taking a further subsequence we can assume that this subsequence is ı.xni
/,

for a sequence xni
which converges to some c 2 Œa; b�. But this contradicts the continuity of ı at c

because bni
! c too.

Hence any line x2 D �1x1 C�2 C� intersects only a finite number, n.�/, of Pi ’s, and n.�/ ! 1

as � ! 0.

Consider the tilted graph of ı over �1. It is in the subset of U consisting of points whose p-

closest point on @U belongs to �1. Since U � Rp is open, the subset of this part of the tilted graph

over which ı > 0 has a positive distance from Rp. On the part where ı D 0, we have the same

conclusion, noting that Rp has a positive distance from the interior of �1. If ı > 0 at the endpoints

of �1, we can argue as above, and if ı D 0 there, we actually work with a subsegment of �1. Thus

as the p-closest point on @U varies continuously in U � Rp, the p-normals to �1 are parallel, and

�1 is compact, the tilted graph of ı attached to �1 has a tubular neighborhood in E that does not

intersect Rp and consists of points whose p-closest point on @U belongs to �1.

Consider a piecewise analytic curve  in this tubular neighborhood, that has no self intersection.

The endpoints of  are on �1. We specify the left endpoint of  , the other one is similar. If the part

of �1 near its left endpoint has an elastic neighborhood, we start  slightly to the right of the left

endpoint, staying in the elastic region. If the part of �1 near its left endpoint belongs to a plastic

component, we start  at the maximum point on the tilted graph of ı on that plastic component,

which is on the right of the left endpoint. Even if the maximum happens at the endpoint itself, we

have to start  slightly after the endpoint on the free boundary.
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By our construction,  is close enough to �1 so that for points between them, the p -distance

to @U is the p -distance to �1. Thus for those points dp.x; @U / is a function of only ��1x1 C x2.

Since as proved in [18, page 17], the p-distance to a line is a multiple of the 2-distance to the line,

with coefficient depending only on the line and p. Thus for � WD 1
q

1C�2
1

.1; �1/ we haveD�dp D 0

in this region.

Now let E0 to be the elastic region enclosed by  and the tilted graph of ı over �1. Let � > 0

be small enough. On every open connected segment of E0 \ fx2 D �1x1 C �2 C �g with endpoints

on the free boundary of two different Pj ’s, the functionD� .u�dp/ D D�u is analytic and changes

sign, as u � dp is zero on the endpoints and negative between them. Let

Qci WD .ci ; �1ci C �2 C �/ ; QciC1 WD .ciC1; �1ciC1 C �2 C �/

for ci < ciC1 be points close to those endpoints such that

D�u. Qci / < 0 ; D�u. QciC1/ > 0:

We can also assume that D�u 6 0 on the part of the segment joining Qci to the free boundary, and

similarly D�u > 0 on the part of the segment joining QciC1 to the free boundary. Let �i .�/ be the

connected component containing Qci , of the level set

˚

y 2 E0 j D�u.y/ D D�u. Qci /
	

:

Then by Lemma 3.1, the closure of the connected components of the level sets of the harmonic

functionD�u, will intersect the boundary of its domain E0. Note that @E0 consists of  and part of

the image of

x1 7! .x1; �1x1 C �2/C ı.x1/.�1; �2/;

hence it is a simple closed Jordan curve, and E0 is simply connected. (Note that E0 is simply

connected even when U is not, since for all points in it, the p -closest point on @U lies on �1. Thus

no other part of @U can be inside E0.) Also as shown in the introduction, D�u is continuous on

E0, as we are away from reentrant corners. Obviously,D�u is not constant over E0 too, unless the

points Qci ; QciC1 do not exist, in which case we have at most one plastic component.

We claim that there is a path in �i .�/ that connects Qci to a point on  . To see this, note that

D�u D D� .u � dp/ is zero on the free boundary and on the segment �1. Hence, �i .�/ must

intersect  . In addition, D�u is harmonic on a neighborhood of  . The reason is that locally, D�u

has harmonic continuation across the elastic parts of the segment �1, and the free boundary attached

to it, since they are analytic curves and D�u vanishes along them. Thus D�u is harmonic on a

neighborhood of �i .�/. But, the level sets of a harmonic function are locally, the union of several

analytic arcs emanating from a vertex. On the other hand, as  is piecewise analytic, �i .�/ \  is a

finite set. Hence, �i .�/ is locally path connected, and as it is connected it must be path connected.

Consider an injective path that connects Qci to  , and its last intersection with the segment joining

Qci to the free boundary along the line x2 D �1x1 C �2 C �. Let �i .�/ be the union of the part of the

path that connects that last intersection point to  , and the part of the segment that joins it to the free

boundary. Therefore, �i .�/ is a simple Jordan curve, connecting two distinct points of @E0. Hence

it disconnects E0. Since obviously �iC1.�/ \ �i .�/ D ;, D�u must change sign at least n.�/ � 1

times along  . But n.�/ � 1 grows to infinity as � ! 0, contradicting the fact that  is piecewise

analytic andD�u is analytic on a neighborhood of it.



192 M. SAFDARI

REMARK 3.4 The only kind of line segments not covered by the above theorem, are those that one

of their endpoints is the accumulation point of a family of plastic components. The main difficulty

in this case is that, D�u might not have analytic continuation in a neighborhood of the endpoints of

 . For these segments, we can still apply the above reasoning to their proper subsegments. Since we

can choose the curve  to start and end slightly before and after the endpoints of the subsegment,

at new endpoints satisfying one of the conditions of the theorem. This way we can prove that the

family of plastic components attached to these subsegments is finite too.

4. The number of local maxima of plastic components

Next, we are going to give an estimate on the number of local maxima of each plastic component

attached to a flat part of the boundary of U . Let us remind that @U consists of smooth arcs

S1; � � � ; Sm. We set

� WD NS1 D
˚

.x1; �1x1 C �2/ j 0 6 x1 6 b
	

to be a flat part of @U , and � WD NS2 [ � � � [ NSm; so we have @U D � [ �. As before, we denote

the vertices of @U by Vi D NSi \ NSiC1. In this section we assume that all the corners of @U are

nonreentrant.

We assume that some U -neighborhood of � lies in fx2 > �1x1 C �2g. Let y D f .s/ be a

parametrization of @U for 0 6 s 6 L, with f .0/ D .b; �1bC �2/ D V0 and f .s1/ D .0; �2/ D V1.

We know that along @U thep-distance function dp is differentiable, except at the points f .sj / D

Vj . Let �.s/ D .�1.s/; �2.s// for s ¤ sj be the inward normal to @U at f .s/ with q.�.s// D 1.

Also let

� D
1

q

1C �2
1

.1; �1/ (4.1)

be the unit vector along the line segment S1. Then by (1.5) and continuity of Ddp, we have

D�dp

�

f .s/
�

D �.s/ � �:

ASSUMPTION 2 The set fs 2 Œ0; L� � fsj g j �.s/ � � D 0g consists of a finite number of points,

and a finite number of intervals.

Therefore � � � changes sign a finite number of times. Let

k WD The number of times � � � (4.2)

changes sign from positive to negative on the interval Œs1; L�:

Remember that � is the inward p-normal to @U given by (1.6); and ı is a nonnegative function

so that f .s/ C ı.s/�.s/ for s ¤ sj , parametrizes the free boundary when ı > 0. Note that dp is

C 1;˛ around these points even if ı.s/ D 0.

Since f .s/ is the unique p-closest point on @U to f .s/ C ı.s/�.s/ when s ¤ sj , by (1.5) we

have

D�dp

�

f .s/C ı.s/�.s/
�

D �.s/ � �:

Now consider the function

u1.s/ WD D�u
�

f .s/C ı.s/�.s/
�

s ¤ sj (4.3)

u1.sj / WD 0:



ON THE SHAPE OF THE FREE BOUNDARY OF VARIATIONAL INEQUALITIES 193

Note that u1 is continuous at sj ’s. The reason is thatDu.f .sj // D 0 by continuity ofDu there, and

the fact that the directional derivatives of u vanish in two directions at f .sj /.

Lemma 4.1 u1.s/ has the same sign as �.s/ � � for s ¤ sj , where � is the inward normal to @U

and �; u1 are given by (4.1), (4.3) respectively.

Proof. Since on the free boundaryDu D Ddp, we have

u1.s/ D �.s/ � �

when ı.s/ > 0.

Consider a point s0 different than sj ’s, with �.s0/ �� > 0. If ı.s0/ > 0 then obviously u1.s0/ > 0

too. If ı.s0/ D 0 but s0 D lim sk where ı.sk/ > 0, then by continuity we still have u1.s0/ D

�.s0/ � � > 0. And finally, if neither of these happen at s0, then ı � 0 on a neighborhood of s0. This

means that some U -neighborhood of f .s0/ is elastic. Thus in that neighborhood we have

��u D � > 0:

As u > 0 in U and u D 0 on @U , the strong maximum principle (actually the Hopf’s lemma used

in its proof) implies that

�.s0/ � � D�u
�

f .s0/
�

C �.s0/ � � D�u
�

f .s0/
�

D D�u
�

f .s0/
�

> 0: (4.4)

Here � is a unit vector orthogonal to �. On the other hand, u is constant along @U , therefore its

tangential derivative vanishes, i.e.

��.s0/ � � D�u
�

f .s0/
�

C �.s0/ � � D�u
�

f .s0/
�

D 0: (4.5)

Now using this and the fact that �.s0/ � � > 0, we can rewrite (4.4) to get

h

�.s0/ � � C
Œ�.s0/ � ��2

�.s0/ � �

i

D�u
�

f .s0/
�

> 0:

Hence u1.s0/ D D�u.f .s0// > 0 as desired. When �.s0/�� < 0, we can repeat the above arguments

to deduce that u1.s0/ < 0 too.

When �.s0/ � � D 0, we can still deduce that u1.s0/ D 0. The only difference with the above

argument is that when ı � 0 on a neighborhood of s0, we have to use (4.5) to get the result, noting

that �.s0/ � � ¤ 0 when �.s0/ � � D 0.

It should be noted that u1.s/ D 0 for s 2 Œ0; s1�.

DEFINITION 4.2 Remember that f parametrizes @U , � is the inward p-normal to @U given by

(1.6); and ı is a nonnegative function so that f C ı� parametrizes the free boundary when ı > 0.

Also, u1 is defined by (4.3). The points of the form f .s/C ı.s/�.s/ for which u1.s/ D 0, will be

called flat points. By Assumption 2 and the above lemma, the set of flat points consists of a finite

number of points, and a finite number of arcs which we call flat intervals.

Consider the harmonic functionD�u over the elastic regionE .D�u has harmonic continuation

to a neighborhood of each interior point of a flat interval, if around that point either ı > 0 or ı � 0.

The reason is that for a flat interval we have � � � � 0 over the part of @U attached to it. Hence

that part of @U is a line segment in the � direction. Thus the flat interval which is either this line

segment, or a free boundary attached to it, is in both cases an analytic curve.
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Lemma 4.3 Let x0 2 E be a point where D�u.x0/ D 0, where E is the elastic region and � is

given by (4.1). There exists a simple Jordan curve ft 7! .t/ I t 2 Rg in E passing through x0,

along which D�u D 0. Furthermore,

lim
t!�1

.t/; lim
t!C1

.t/

exist, are different, and belong to @E .

Proof. Since D�u is harmonic, its level sets in E are locally, the union of several analytic arcs

emanating from a vertex. Consider the family of injective continuous maps from .�1; 1/ into the

level set of D�u at x0, which take zero to x0. We endow this family with a partial order relation.

For f1; f2 in the family, we say f1 6 f2 if

f1..�1; 1// � f2..�1; 1//:

Now, we can apply Zorn’s lemma to deduce the existence of a maximal map. We only need to

check that any increasing chain has an upper bound. Consider such a chain ff˛g. We claim that

each fˇ ..�1; 1// is open in [
˛
f˛..�1; 1//. Consider a point fˇ .t0/ in fˇ ..�1; 1//, then the level set

around it, is the union of several arcs emanating from it, and fˇ ..t0 ��; t0 C�// is one of them. Now,

none of the sets f˛..�1; 1//� fˇ ..t0 � �; t0 C �// can intersect one of these arcs. Since otherwise

we have a loop in the level set, which results in D�u � 0 by the maximum principle and simple

connectedness of E . This contradiction gives the result.

Therefore [
˛
f˛..�1; 1// is the union of countably many of f˛..�1; 1//’s, since the topology of

R
2 is second countable. Now, by reparametrizing the maps in this countable subchain and gluing

them together, we obtain a continuous map from .�1; 1/ onto [
˛
f˛..�1; 1//. The injectivity of this

map is easy to show, since if it fails it must fail for one of the maps in the countable subchain too.

Now, consider  , a maximal simple Jordan curve in the level set fD�u D 0g passing through

x0, parametrized from �1 to 1 with .0/ D x0. Since E is bounded, every sequence tk ! 1

has a subsequence such that .tki
/ ! x�. If x� 2 E , then .tki

/ belongs to one of the arcs in the

level set emanating from x�. Thus, ..tki
;1// coincides with that arc, as the level set around x� is

the union of those arcs, and  is one to one. Therefore, either  can be extended beyond x�, or we

get a loop in the level set, which are contradictions. Hence, every such limit must belong to @E and

be a flat point.

Now suppose that for two sequences tk; tl ! 1, we have .tk/ ! x� and .tl/ ! x0, where

x�; x0 2 @E . Suppose x� ¤ x0 and one of them, say x0, belongs to the interior of a flat interval.

Then, if D�u has harmonic continuation in a disk around x0, the level set fD�u D 0g is again

the union of finitely many arcs emanating from x0. Therefore,  can not intersect the boundary of

that disk an infinite number of times, contradicting our assumption. If D�u does not have harmonic

continuation around x0, then ı.x0/ D 0 and a sequence of plastic components accumulate at x0. In

this case, we can find a sequence of points .tl 0/ at an appropriate distance from .tl/, such that

.tl 0/ ! x00. Where x00 is in the interior of the same flat interval, and either ı.x00/ > 0 or ı � 0

around it. ThusD�u has harmonic continuation around x00 and we can argue as before.

Thus, if x� ¤ x0 then none of them can belong to the interior of a flat interval. Hence they are

either isolated flat points or the endpoints of flat intervals. But again, looking at the arcs between

.tk/ and .tl/ on the image of  , we see that there are infinitely many limit points on @E between

x�; x0, which contradicts Assumption 2 and the argument in the previous paragraph. Hence the

limits lim
t!˙1

.t/ exist.
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Finally, if the two limit points of  coincide, the strong maximum principle and continuity

of Du over NU imply that D�u � 0 over some domain, and consequently over E , which is a

contradiction.

Lemma 4.4 The set of level curves of fD�u D 0g described in Lemma 4.3 is finite.

Proof. First, note that any such curve can not have both its endpoints on the same flat interval, since

otherwise D�u � 0 on E which is a contradiction. Second, for the same reason, two such curves

can not have the same endpoints, or have each of their endpoints on the same flat intervals, or one

endpoint the same and the other one on one flat interval.

Therefore, there is at most one such curve, connecting two isolated flat points, or two flat

intervals, or an isolated flat point and a flat interval. Hence we get the result.

REMARK 4.5 A consequence of this lemma is that all the level curves given by Lemma 4.3 are

piecewise analytic. The reason is that the singularities of the level curves happen at the zeros of

DD�u, and through any such point at least two level curves pass. Thus their number must be finite,

as no two level curves can intersect more than once.

Let us fix some notation before proceeding. We denote by �E the part of � with no plastic

component attached to it. We also denote by �� the union of the free boundaries of the plastic

components attached to �. Finally let �0 WD N�E [ ��. Similarly we define �E ; �� and �0.

Since all the corners of @U are nonreentrant and they have an elastic neighborhood, the number

of plastic components attached to � is finite by Theorem 3.3. We denote these plastic components

by

Pj WD
˚

.x1; �1x1 C �2/C t.�1; �2/ j aj 6 x1 6 bj ; 0 6 t 6 ı.x1/
	

j D 1; 2; � � � �;

where .�1; �2/ is the inward p-normal, ı is the function whose tilted graph is the free boundary,

and

0 < a1 < b1 6 a2 < b2 6 � � � 6 a� < b� < b:

Let

Nj WD The number of local maxima of ı on the interval faj 6 x1 6 bj g: (4.6)

Note that these are strict local maxima since the tilted graph of ı, which is the free boundary, is an

analytic curve.

Lemma 4.6 Consider one of the plastic components Pj described above. Let ˇ be a point of local

maximum of ı.x1/ over x1 2 Œaj ; bj �. Then, there exists a level curve ft 7! .t/ I t 2 Rg of

fD�u D 0g in E with no self intersections, such that

lim
t!�1

.t/ D .ˇ; �1ˇ C �2/C ı.ˇ/.�1; �2/ DW Q̌;

and .1/ WD lim
t!1

.t/ belongs to �0 � �0. Here E is the elastic region, � is given by (4.1), and

�0; �0 are defined in the paragraph below Remark 4.5.

Proof. The fact that .1/ can not belong to �0, or  does not intersect itself, is a consequence of

the strong maximum principle as argued before. Now let us show the existence of such a level curve.

When � > 0 is small enough, as ˇ is a strict local maximum, we have

�

ˇ ˙ �; �1.ˇ ˙ �/C �2

�

C ı.ˇ/.�1; �2/ 2 E:
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Thus the line

t 7!
�

ˇ C ı.ˇ/�1 C t ; �1ˇ C �2 C ı.ˇ/�2 C �1t
�

is tangent to the free boundary at Q̌. Hence the unit vector tangent to the free boundary at Q̌ is �.

Now, since Du D Ddp D � on the free boundary, we have D�u D j�j2 there. As � is constant

along �, the derivative of D�u vanishes along the part of the free boundary that contains Q̌. The

same is true about the derivative of D�u along that part of the free boundary, as D�u is constant

zero there. Therefore we have

D�D�u. Q̌/ D 0

D�D�u. Q̌/ D 0:

But D�u has harmonic continuation in a neighborhood of Q̌, so if xi 2 E converge to Q̌, we have

D�D�u. Q̌/ D limD�D�u.xi / D limD�D�u.xi / D D�D�u. Q̌/ D 0:

Thus DD�u. Q̌/ D 0. Hence the level set of D�u at Q̌ must be the union of at least four arcs

emanating from Q̌ making equal angles with each other. Thus, there is at least one level curve

starting at Q̌ that remains in E . Now, similarly to Lemma 4.3, we can extend this level curve until it

hits @E .

REMARK 4.7 The conclusion of the above lemma is also true when ˇ is a point of local minimum

with ı.ˇ/ > 0.

Now we state our main result in this section.

Theorem 4.8 Let Nj ; k be given by (4.6), (4.2) respectively. Then, each Nj is finite and

N WD

�
X

j D1

Nj 6 k:

Proof. Note that Lemmata 4.4 and 4.6 imply that each Nj is finite. Because no level curve of

fD�u D 0g can have both its endpoints on �0, as otherwise we haveD�u � 0.

Now consider the finite set of level curves Qi given by Lemma 4.3, that have both their endpoints

on�0. Let Oj ’s be the parts of the other level curves that have both endpoints on Qi ’s, or one endpoint

at them and the other one on�0. Note that two level curves can not intersect at more than one point.

Thus the number of Oj ’s is finite. Also note that two level curves with one endpoint on �0 can not

intersect.

Denote by E1 the component of E � f Qi ; Oj g which is attached to �0. The boundary of E1

consists of �0 and part of �0 together with parts of some Qi ’s and Oj ’s. Let

�1 WD @E1 � �0:

Note that by our construction, any level curve in E1 given by Lemma 4.3 must have one endpoint

on �0. Let 1; � � �N be the level curves given by Lemma 4.6, numbered as we move from V1 to

V0. Then one endpoint of each i is a strict local maximum point on the tilted graph of ı over �

which we call it ˇi , and the other endpoint is on �1 which we call it �i . Let D1; � � � ;DN C1 be the

components of E1 � fig. Note that Ni \ Nj D ; when i ¤ j .
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Consider Di , whose boundary consists of i�1; i and parts of �0; �1, which we denote the

latter two by �0i ; �1i . Note that 0; N C1 are empty. Suppose 1 < i < N C 1. First we claim that

D�umust change sign along�1i . Otherwise we have for exampleD�u > 0 there. AsD�u vanishes

on the other parts of @Di , maximum principle implies

D�u > 0 in Di :

Since near �0 we haveD�dp D 0, we get

D� .dp � u/ < 0

near �0 in Di . This implies that ı is strictly increasing along the subset of �0i over which ı > 0.

To see this, just look at the behavior of dp � u on segments in the � direction starting on the free

boundary. Hence we get a contradiction with ˇi�1 being a strict local maximum. Note that this

argument also shows that D�u must be positive on part of �11, and negative on part of�1N C1.

Let i ¤ 1;N C 1. Then consider the finite set of level curves of D�u D 0 in Di . These level

curves have one endpoint on �0i and one endpoint on�1i , and do not intersect each other. Consider

the one closest to i�1, and let QD be the subdomain of Di that they enclose. Then D�u must have

one sign on QD, since it can not vanish there, as there is no further level curve inside QD. Thus we

must haveD�u < 0 on QD. Since otherwise we get as before that ı is strictly increasing near and on

the right of ˇi�1, contradicting the fact that it is a local maximum. HenceD�u must be negative on

some part of �1 near and on the right of �i�1. Similarly, D�u must be positive on some part of �1

near and on the left of �i .

Therefore, D�u must change sign from positive to negative along �1 at least N times. Finally

note that as D�u vanishes on Qi ’s and Oj ’s, these sign changes are actually happening along �0.

Thus by Lemma 4.1 we get the desired result.

We immediately get the following

Theorem 4.9 Suppose U is a convex polygon. Then for any side Sj of @U there is at most one

plastic component attached to it. Furthermore, the plastic component is given by

˚

f .s/C t�.s/ j s 2 .aj ; bj / ; t 2
�

0; ı.s/
�	

;

where sj �1 < aj < bj < sj ; and as before f parametrizes @U with f ..sj �1; sj // D Sj , � is the

inward p-normal, and f C ı� parametrizes the free boundary. In addition, there is cj 2 .aj ; bj /

such that ı.s/ is strictly increasing for s 2 .aj ; cj / and strictly decreasing for s 2 .cj ; bj /.

Proof. Let �j be the unit vector in the Sj direction. We only need to notice that since U is a convex

polygon, � � �j is zero on at most one Si for i ¤ j . Thus it changes sign from positive to negative

exactly once, and we have k D 1. Hence Theorem 4.8 gives the first part of the theorem. The second

part of the theorem follows from analyticity of the tilted graph of ı.

5. Reflection method

In this section we give an example of how to apply the reflection method used by Caffarelli et al.

[7] to our problem. Let U be the rectangle

˚

.x1; x2/ j jx1j < a ; jx2j < b
	

:
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By Theorem 4.9, symmetry of p, and symmetry of U , there are four plastic components

P1 W jx1j 6 ˛ ; �b 6 x2 6 �b C �.x1/;

P2 W jx2j 6 ˇ ; �a 6 x1 6 �a C  .x1/;

P3 W the reflection of P1 with respect to the x1 axis;

P4 W the reflection of P2 with respect to the x2 axis:

Here �; are even functions. Let � be the reflection with respect to the bisector of @U at .�a;�b/,

i.e.,

x2 D x1 C a � b:

Thus

�.x1; x2/ D .x2 � a C b; x1 C a � b/:

Theorem 5.1 If b < a, then �.P2/ � P1.

Proof. Let

D WD E \
˚

.x1; x2/ j x2 < x1 C a � b ; �a < x1 < �a C 2b
	

:

Consider the function

w.x/ WD u
�

�.x/
�

� u.x/

in D. Since �u > ��, and �u.x/ D �� for x 2 E , we have

�w > 0

in D, noting that Laplacian is invariant under reflections.

The boundary of D consists of parts of the lines x2 D �b, x2 D x1 Ca�b, x1 D �aC2b, and

parts of �1; �3; �4. Here �i is the free boundary attached to Pi . Note that some of these parts can

be empty. Also note that �2 is on the other side of the line x2 D x1 C a � b, so it does not intersect

@D.

Since u vanishes on @U , and � takes x2 D �b to x1 D �a, w D 0 on it. The same is true on

the line x2 D x1 C a � b, as it is fixed by �. Also as � takes x1 D �a C 2b to x2 D b, for x on it

we have

w.x/ D 0 � u.x/ 6 0:

If x 2 �1 then u.x/ D dp.x/. But dp.�.x// 6 dp.x/, since due to the symmetry of p, �.x/ has

the same p-distance to x1 D �a as x has to x2 D �b. Thus

w.x/ D u
�

�.x/
�

� dp.x/ 6 u
�

�.x/
�

� dp

�

�.x/
�

6 0:

We can argue similarly when x 2 �3, noting that � decreases the p-distance to x2 D b over D.

Finally when x 2 �4, we get the same result noting that the p-distance of �.x/ to x2 D b is less

than the p-distance of x to x1 D a, when x 2 D.

Therefore, by the strong maximum principle

w.x/ < 0 x 2 D:

Note that ifw � 0 on ND, then we must have u D 0 on x1 D �aC2b insideU , which is impossible.
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Now suppose there is x 2 P2 such that �.x/ … P1. Then �.x/ 2 D. Thus

w
�

�.x/
�

D u.x/ � u
�

�.x/
�

D dp.x/ � u
�

�.x/
�

:

But dp.�.x// 6 dp.x/ as the p-distance of �.x/ to x2 D �b equals the p-distance of x to x1 D �a.

Hence

0 > w
�

�.x/
�

> dp

�

�.x/
�

� u
�

�.x/
�

;

which contradicts u 6 dp.

REMARK 5.2 Since p is not invariant under arbitrary reflections, the more general results proved

in [7] using reflections does not necessarily hold here. Although some special cases can be proved

similarly to the above, for example when a bisector of a triangle is parallel to one of the coordinate

axes.
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