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A free boundary problem with log–term singularity
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We study a minimum problem for a non-differentiable functional whose reaction term does not have

scaling properties. Specifically we consider the functional

J.v/ D
Z

˝

� jrvj2
2

� vC.log v � 1/
�

dx ! min

which should be minimized in some natural admissible class of non-negative functions. Here, vC D
maxf0; vg: The Euler–Lagrange equation associated with J is

��u D �fu>0g logu;

which becomes singular along the free boundary @fu > 0g: Therefore, the regularity results do not

follow from classical methods. Besides, the logarithmic forcing term does not have scaling properties,

which are very important in the study of free boundary theory. Despite these difficulties, we obtain

optimal regularity of a minimizer and show that, close to every free boundary point, they exhibit a

super-characteristic growth like

r2j log r j:
This estimate is crucial in the study of analytic and geometric properties of the free boundary.

2010 Mathematics Subject Classification: Primary 5R35.

Keywords: Free boundary, regularity theory, logarithmic singularity, porosity.

1. Introduction

In this article we address optimal regularity for minimizers of the non-differentiable functional

J.v/ D
Z

˝

� jrvj2
2

� vC.log v � 1/

�

dx (1.1)

among functions in the class

K' WD
˚

v 2 H 1.˝/I v D ' on @˝
	

;

for a fixed ' 2 H 1.˝/ \ L1.˝/; ' > 0; where ˝ � R
n is a smooth bounded domain. We are

making the convention log D ln; that is, log is the natural logarithm, which means that log s D
loge s D ln s; s > 0:
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A minimizer u for J satisfies, at least formally, the following Euler-Lagrange equation:

��u D �fu>0g logu in ˝; (1.2)

where �A is the characteristic function of the set A: We call

F .u/ D @fu > 0g \˝ (1.3)

the free boundary of u: To the authors knowledge, a variant of Equation (1.2) was studied for the first

time in [13]. In that paper existence and regularity properties of a maximal solution for a perturbed

version of (1.2) with homogeneous Dirichlet boundary condition was studied by an approximating

procedure where the singularity was removed, and the problem becomes a regular equation. Since

in [13] it was used a sort of variational techniques, the regularity results could be adapted to our

setting and any minimizers u of J should satisfy u 2 C
1;˛
loc .˝/; for any 0 < ˛ < 1: Clearly this

is not sharp and, hence, not sufficient to study fine analytic and geometric properties of the free

boundary F .u/:

The first step in the study of free boundary problems is the optimal regularity of the solution (see,

for instance, [14]). Essentially, sharp regularity implies optimal growth close to the free boundary

and it is a consequence of the invariant scale of the equation. The main aspect of Equation (1.2) is

that the logarithmic nonlinearity does not have a scale property and this fairly complicates the proof

of estimates. Besides, a formal analysis suggests that, close to a free boundary point, that is, close

to a point on F .u/; a solution of (1.2) exhibits a supercharacteristic growth like

r2j log r j: (1.4)

In [12] Monneau & Weiss investigated the following obstacle-type problem:

��u D �fu>0g in ˝ � R
n: (1.5)

Solutions of (1.5) may grow like (1.4) close to some free boundary points and, by the cross–shaped

example in [4], they are not necessarily of classC 1;1: This solution is also completely unstable in the

sense that its second variation of the energy takes the values �1 ( [12]). Apart from the references

already cited, in [3] and [2] the authors introduce a new method for the study of singularities in (1.5).

In this spirit, since the second derivative of solution of (1.2) is always unbounded, we call (1.2) a

highly unstable free boundary problem. We will show that every free boundary point exhibits a

supercharacteristic growth.

2. Existence and first a priori estimates

In this section we prove existence of minimizers for the functional J in the class K' : We also show

a uniform estimate in L1.˝/: Let us start with the existence result.

Lemma 2.1 Let ' 2 H 1.˝/\L1.˝/; ' > 0: Then the functional J has a minimizer u 2 K' and

u > 0:

Proof. Notice that the set of functions where we minimize J is non empty since jJ.'/j < 1: Let

u 2 K' be fixed. Then,

J.u/ >
1

2
kruk2

L2 C
Z

˝

�u logu�fu>egdx: (2.1)
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On the other hand, if 0 < a < 1 is fixed, then j � u loguj 6 C1u
1Ca for u > e and some constant

C1 D C1.a/ > 0: Hölder inequality implies that

ˇ

ˇ

ˇ

ˇ

Z

˝

�u logu�fu>egdx

ˇ

ˇ

ˇ

ˇ

6 C1kuk1Ca

L2 : (2.2)

Using (2.2) in (2.1) we get

J.u/ >
1

2
kruk2

L2 � C1kuk1Ca

L2 : (2.3)

The Poincaré inequality applied to u � ' gives us the following:

1

2
kruk2

L2 >
Cp

8
ku � 'k2

L2 � 1

2
kr'k2

L2 ;

for some constant Cp D Cp.˝/ > 0: Since ' 2 H 1.˝/ \ L1.˝/ we still can estimate

Cp

8
ku � 'k2

L2 > C2kuk2
L2 � C3kukL2 C C4k'k2

L2 :

Back to (2.3) we obtain

J.u/ > C2kuk2
L2 � C3kukL2 � C1kuk1Ca

L2 � C5;

where all the constants Ci depend just on n;˝; a and ': Thus, taking

�C6 WD min
˚

C2t
2 � C3t � C1t

1Ca
	

we will have

J.u/ > �C6 � C5

for every u 2 K' : Thus, the functional is bounded from bellow.

Let now fvj g � K' be a minimizing sequence. We can proceed as in the proof of Theorem 3.1

in [11] to show that, up to a subsequence, there is u 2 H 1.˝/; u � ' 2 H 1
0 .˝/; such that

vj ! u weakly in H 1.˝/; vj ! u in L2.˝/; vj ! u a.e. in ˝:

We also have the existence of a constant a > 0 such that

vC
j log vj C a > 0; for all j 2 N:

Then, from lower semicontinuity of norms and Fatou’s Lemma, we get

Z

˝

jruj2dx 6 lim inf
j !1

Z

˝

jrvj jdx;
Z

˝

uC .logu � 1/C adx 6 lim inf
j !1

Z

˝

vC
j .log vj � 1/C adx:

Hence,

J.u/ 6 lim inf
j !1

J.vj /;

and u is a minimizer. To see that u > 0; we just notice that kruCkL2 6 krukL2 :
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Let us turn our attention to the L1-bound of a minimizer. We should mention that, since

the logarithmic nonlinearity changes sign, the estimate is not trivial (as in the case of power-

type nonlinearity, which is just a consequence of the Maximum Principle). As in [11], we use the

machinery from [10], Chapter 2, Section 5. Here we strongly use the slow growth of the function

s 7! log s:

We first show a uniform bound in the L2–norm.

Lemma 2.2 Let u be a minimizer of (1.1). Then there is a constant C D C.n;˝; k'kH 1.˝// such

that

kukL2.˝/ 6 C:

Proof. Since u 2 K' ; we can use Poincaré’s inequality to obtain:

kuk2
L2.˝/

6
�

ku � 'kL2.˝/ C k'kL2.˝/

�2

6
�

CpkrukL2.˝/ C Cpkr'kL2.˝/ C k'kL2.˝/

�2

6 C1kruk2
L2.˝/

C C2k'k2
H1.˝/:

(2.4)

The constants C1; C2 > 0 depend just on ˝: On the other hand, using that u is a minimizer we get

1

2
kruk2

L2.˝/
6

Z

fu>eg

u logudx C J.'/:

We recall that, given 0 < a < 1; there exists a constant C3 D C3.a/ > 0 such that logu 6 C3u
a;

for u > e: Thus, applying Hölder inequality twice we have the following:

1

2
kruk2

L2.˝/
6 C3

Z

fu>eg

uuadx C J.'/

6 C3j˝j 1�a
2 kukL2.˝/kuka

L2.˝/
C J.'/:

(2.5)

Here and afterwards, jEj denotes the Lebesgue measure of the set E .

Using (2.5) in (2.4) we obtain

kuk2
L2.˝/

6 C4kuk1Ca

L2.˝/
C C5;

for Ci D Ci .n; a;˝; '/: Since 2 > 1C a; we necessarily have

kukL2.˝/ 6 C.n; a;˝; '/;

which proves the lemma.

Lemma 2.3 Let u be a minimizer of (1.1). Then there is a constant C D C.n;˝; '/ > 0 such that

kukL1.˝/ 6 C:

Proof. Let u 2 K' be a fixed minimizer. For each N 2 N we define

uN WD
(

u if 0 6 u 6 N;

N if u > N:



A FREE BOUNDARY PROBLEM WITH LOG–TERM SINGULARITY 355

and also AN WD fx 2 ˝Iu.x/ > N g: We are going to show that, for N > N0 large enough

(depending on k'kL1.˝/), the following estimate holds:

kruk2
L2.AN /

6 Ckuk2a
L2.AN /

jAN j1� 2
n C"; (2.6)

where

" D 4 � an

n
; a <

4

n
:

Since kuk2a
L2.˝/

6 C from Lemma 2.2 and

kukL1.AN0
/ 6 CkukL2.˝/

by Hölder inequality, the boundedness will follow from Lemma 5.2 in Chapter 2 of [10].

Notice that

u D uN in Ac
N \˝; u D N in AN :

Since u is a minimizer we obtain

Z

AN

1

2
jruj2dx D

Z

AN

1

2

�

jruj2 � jruN j2
�

dx D
Z

˝

1

2

�

jruj2 � jruN j2
�

dx

6

Z

AN

�N.logN � 1/C u.logu � 1/dx

6

Z

AN

.u �N/C logudx;

(2.7)

where we have used the Mean Value Theorem. Notice that this estimate holds as far asN > N0 > e:

Now we choose a constant C1 D C1.a/ > 0 such that logu 6 Cua for u > N0: The value

0 < a < 1 will be fixed latter. Then, using Hölder inequality,

Z

AN

.u �N/C logudx 6 C1kuakL2.AN /k.u �N/CkL2.AN /:

Applying Hölder once more and Sobolev inequality we have

k.u �N/CkL2.AN / 6 k.u �N/CkL2�
.AN /jAN j 1

2
� 1

2�

D k.u �N/CkL2�
.˝/jAN j 1

2
� 1

2�

6 krukL2.AN /jAN j 1
2 � 1

2� ;

where 2� is the critical Sobolev exponent. Furthermore,

kuakL2.AN / 6 kuka
L2.AN /

jAN j 1�a
2 :

Hence,
Z

AN

.u �N/C logudx 6 C1kuka
L2.AN /

krukL2.AN /jAN j1� a
2

� 1
2� : (2.8)
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Now we use (2.8) in (2.7) followed by Young’s inequality applied for ı > 0 to obtain

1

2
kruk2

L2.AN /
6
C2

4ı
kuk2a

L2.AN /
jAN j2�a� 2

2� C ıkruk2
L2.AN /

:

Taking ı D 1=4 we finally get

kruk2
L2.AN /

6 4C2kuk2a
L2.AN /

jAN j1� 2
n

C";

with

" D 4 � an
n

;

which is strictly positive if we choose a < 4=n: Thus, we have obtained (2.6) and finished the proof

of the lemma.

Let us finish this section showing that a minimizer is a sort of subsolution.

Lemma 2.4 If u is a minimizer of (1.1), then u satisfies

��u 6 �fu>0g logu in ˝ (2.9)

in the weak sense.

Proof. Given ' 2 C1
0 .˝/ and 0 < " 6 1; we compute

0 6 J.u � "'/ � J.u/

D �"
Z

˝

hru;r'idx C "2

2

Z

˝

jr'j2dx C
Z

˝

uCL.u; 0; 0/dx �
Z

˝

.u � "'/CL.u; "; '/dx;

(2.10)

where, to simplify the notation,

L.u; "; '/ D log.u � "'/C � 1:

Now,

Z

˝

uCL.u; 0; 0/dx �
Z

˝

.u � "'/CL.u; "; '/dx

D
Z

fu>0g

uCL.u; 0; 0/dx �
Z

fu>"'g

.u � "'/CL.u; "; '/dx

D
Z

fu>0g

uCL.u; 0; 0/dx �
Z

fu>"'g

uL.u; "; '/dx C "

Z

fu>"'g

'L.u; "; '/dx

6

Z

fu>0g

uCL.u; 0; 0/dx �
Z

fu>"'g

uL.u; "; '/dx C "

Z

fu>"'g

' log.u � "'/dx:

Notice that the difference
Z

fu>0g

uCL.u; 0; 0/dx �
Z

fu>"'g

uL.u; "; '/dx
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goes to zero as " ! 0C by the Dominated Convergence Theorem. Back to (2.10) we see that
Z

˝

hru;r'idx � "

2

Z

˝

jr'j2dx 6

Z

fu>"'g

' log.u � "'/dx <

Z

fu>"'g

' logudx: (2.11)

The result now follows if we send " ! 0C in (2.11).

The following lemma shows that the right hand side of (2.9) is in L1
loc:

Lemma 2.5 If u is a minimizer of (1.1), then �fu>0g logu 2 L1
loc.˝/:

Proof. Let K �� ˝ be an arbitrary compact set and � 2 C1
0 .˝/ with 0 6 � 6 1; � D 1 in K be

a cut-off function. For any small ı > 0; since u is bounded, we have
Z

K\fı6u61g

j logujdx 6

Z

K\fı6ug

� logudx C C1

6 �
Z

K\fu>0g

logudx C C1

6 �
Z

K\fu>0g

� logudx �
Z

.˝nK/\f0<u61g

� logudx C C1

6 �
Z

˝\fu>0g

� logudx C C2

6 �
Z

˝

hru;r�idx C C2 < 1:

Taking the limit as ı ! 0C and using Fatou Lemma we obtain the estimate.

3. Sharp estimates close to the free boundary

In this section we prove the supercharacteristic growth (1.4) of a minimizer. The main idea is to

use Harnack type inequality in order to control the growth of the solution close to the free boundary

(where the log does not change sign), from above. The control of the growth from bellow is obtained

with a modification of a classical argument using the Maximum Principle and a nice subsolution.

3.1 Controlling the growth of local averages

The goal of this section is to prove estimates related with the growth of averages of minimizers. As

a consequence, we obtain the Harnack type inequality in the next section. Roughly speaking, we

show that minimizers with large averages in some ball are positive at the center (with some exact

control). This idea was first introduced by Alt and Phillips in [1] and then explored in [13] in order

to show C 1;˛ regularity for (1.2). The lack of scale complicates considerably the achievement of the

result in our situation. An important step is the construction of a local subsolution allowed by the

next general lemma. This should be compared with Lemma 3.1 in [13].

Lemma 3.1 Let u 2 H 1=2.@Br / and 0 < r 6 r0; for some r0 > 0 to be fixed. There are constants

�0; c1; c0 > 0; both depending only on n and r0; such that, if

� > �0 and

Z

@Br

ud� > c0�;
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then we can find a function w 2 H 1.Br / satisfying

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

��w 6 logw � � in Br ;

w.x/ > c1ı.x/

Z

@Br

ud�;

w D u on @Br ;

where ı.x/ D dist.x; @Br /: Besides, there exists a constant C > 0; depending just on n; r0 and

kukL1.Br0
/; such that

kwkL1.Br / 6 C:

REMARK 3.2 In Lemma 3.1 from [13] the construction of u is possible once you have a lower

bound like C1.C2 C �/ to the average at the boundary. Here we obtain a sharp result in the sense

that c0 is a universal constant. This is crucial in the study of the sharp regularity. Although the proof

is very similar to the one in [13], we give all the details here to show the control of the constants.

Proof of Lemma 3.1. Let H be the harmonic extension of u in Br , that is, H solves the following

equation:
(

��H D 0 in Br ;

H D u on @Br :

From [7], Lemma 9.1, we have

H.x/ > Cı.x/m; for all x 2 Br ; (3.1)

wherem WD
Z

@Br

ud� and ı.x/ D dist.x; @Br /: The constant C does not depend on r; but just on n:

For a fixed exponent 0 < 
 < 1; let v be the solution of

(

��v D ı�
 .x/ in Br ;

v D 0 on @Br :

Then, it is known that v 2 C 1;1�
 .Br/ (see the proof of Theorem 1.1 in [8] or Lemma 2.1 in [6]).

Therefore, there is a constant M > 0 depending just on 
 and n such that

v.x/ 6 Mı.x/ in Br : (3.2)

We set

w WD H � kv;

where

k WD Cm

2M
:

From (3.2) and (3.1) we have

w.x/ > ı.x/ .Cm � kM/ D ı.x/
Cm

2
: (3.3)
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Taking into account the definition of m; we obtain the bound from bellow for w: Let us check that

w is a subsolution. Since

� logw 6 w�
 for any 0 < 
 < 1; (3.4)

we just need to show that

�w > w�
 C �;

if m > c0�; � > �0; for �0 and c0 sufficiently large.

We set c1 D C=2 and take a constant a0 > 0 which will be fixed soon. Assuming thatm > c0�;

using (3.3) and the definition of k we estimate:

w�
 .x/C a0� 6 ı�
 .x/

�

Cm

2

��


C a0�

6 ı�
 .x/

 

�

Cc0�

2

��


C a0�

!

6 ı�
 .x/

 

�

Cc0

2

��


��
 C a0

2kM

Cc0

!

:

Defining

a0 D Cc0

4M
;

we have

w�
 .x/C a0� 6 ı�
 .x/

 

�

Cc0

2

��


�
�

0 C k

2

!

:

Now, we first fix c0 such that a0 > 1 and notice that it depends just on n and 
: Then we choose �0

sufficiently large so that
�

Cc0

2

��


�
�

0 C k

2
6 k:

Hence:

w�
 .x/C � 6 w�
 .x/C a0� 6 kı�
 .x/ D �w.x/ in Br :

Thus, from (3.4),

�w.x/ > � logw.x/C �;

and the lemma is proved.

In the next lemma we justify in what sense the function w in Lemma 3.1 is a local subsolution.

Lemma 3.3 Given � > 0; let us define the modified functional

J� .v/ D
Z

B1

� jrvj2
2

� vC.log v � 1/C �v

�

dx;

for v 2 H 1
0 .B1/C '; for some ' 2 H 1.˝/ \ L1.˝/; ' > 0: Let u be a minimizer of J� ; u D '

on @B1: Assume also that w is the function from Lemma 3.1 satisfying w D u on @B1: There is a

constant �0 D �0.n; '/ > 0 such that, if � > �0; then w 6 u in B1:
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REMARK 3.4 Existence and a priori bounds for minimizers of J� follow exactly as in Section 2.

Proof of Lemma 3.3. Let z D maxfu;wg: Then z is an admissible function and, by the minimality,

0 > J� .u/ � J� .z/:

We compute:

J� .u/ � J� .z/ D1

2

Z

˝

.z � u/�.uC z/dx C
Z

˝

zC.log z � 1/� uC.logu � 1/C �.u� z/dx

>
1

2

Z

fz>u>0g

.z � u/.� logu � log z C 2�/dx C 1

2

Z

fz>uD0g

.�z log z C z�/dx

C
Z

fz>u>0g

z.log z � 1/� u.logu � 1/C �.u � z/dx:

Let us define, for s > t; the auxiliary functions:

 .s/ D t.log t � 1/� s.log s � 1/C �.s � t/;

�.s/ D 1

2
.s � t/.� log t � log s C 2�/:

Notice that �.t/ D  .t/ D 0 and �0.s/ >  0.s/ � 1=2: Hence,

�.s/ �  .s/ >
1

2
.t � s/:

Thus,

J� .u/ � J� .z/ >

Z

fz>u>0g

�.z/dx C 1

2

Z

fz>uD0g

.�z log z C z�/dx C
Z

˝

� .z/dx

> C1

2

Z

fz>uD0g

.�z log z C z�/dx C 1

2

Z

fz>u>0g

u � zdx

> C1

2

Z

fz>uD0g

.�z log z C z.� � 1// dx C 1

2

Z

fz>u>0g

udx:

Notice that z is a priori bounded in L1 for a constant depending just on boundary data, since w

and u satisfy this property. Therefore, we can take �0 large enough such that, if � > �0 and z > 0;

then

�z log z C z.� � 1/ > z.� logC C �0 � 1/ > 0;
and this implies

J� .u/ � J� .z/ > 0:

But this is a contradiction, which gives us u D z:

We are in position to prove the main result of this section.

Lemma 3.5 Let u be a minimizer of (1.1) inBr .x0/; x0 2 ˝; r and r0 be fixed satisfying r 2�0; r0Œ;
with r0 depending only on n and ': There are constants c0; c1 > 0; depending just on n; r0 and '

such that, if
Z

@Br .x0/

ud� > 2c0r
2j log r j;



A FREE BOUNDARY PROBLEM WITH LOG–TERM SINGULARITY 361

then,

u.x/ > c1r
�1dist

�

x; @Br .x0/
�

Z

@Br .x0/

ud�; for almost every x 2 Br .x0/:

Proof. Translating to the origin we may assume x0 D 0: Then we scale u as

ur .y/ WD r�2u.ry/; y 2 B1:

Using polar coordinates and change of variables we have

Z

@B1

urd� D r�2r�nC1

Z

@Brud� D r�2

Z

@Br

ud�:

On the other hand, after some calculus we see that,

J.u/ D rnC2J� .ur /; � D � log r2;

where J is minimized in Br and J� is minimized in B1: In particular, ur is a minimum of J� : Let

us fix c0 from Lemma 3.1 and then r0 small enough such that � D � log r2 satisfies Lemma 3.3.

Notice that r0 depends only on n and ': Applying Lemma 3.1 with u D ur in B1 we obtain w such

that, from Lemma 3.3,

ur .y/ > w.y/ > c1ı.y/

Z

@B1

urd�; (3.5)

if

r�2

Z

@Br

ud� > c0.� log r2/:

Scaling back to Br the inequality (3.5) we obtain the result.

3.2 Harnack type inequality

The first lemma of this section states that a minimizer is continuous on its positivity set.

Lemma 3.6 Let u be local minimizer of (1.1). Then the set fu > 0g is open and, up to redefinition

on a set of zero measure, u 2 C.˝/:

Proof. Using Lemma 3.5 we just need to adapt Corollary 3.6 in [13] and the proof is the same.

Now we prove the Harnack type inequality.

Theorem 3.7 There are positive constants c0; c1 and r0 depending only on n and '; such that, if u

is a local minimizer of (1.1) in Br � ˝; r 6 r0; and

Z

@Br

ud� > 2c0r
2j log r j;

then

sup
Br=4

u 6 C. inf
Br=4

uC r1C�/; 0 < � < 1;
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for some constant C D C.n;˝; '; �/ > 0: In addition, if

C inf
Br=4

u 6
1

2
;

then, for every small � > 0 such that B� � fu > 0g we have

sup
x2B�

u 6 C inf
x2B�

u:

Proof. First we recall that, from Lemma 3.5, we have

u.x/ > C1

Z

@Br

ud�; x 2 Br=4: (3.6)

We split u as u D u1 C u2; where

(

��u1 D �f0<u61g logu in Br ;

u1 D u on @Br ;

and
(

��u2 D �fu>1g logu in Br ;

u2 D 0 on @Br :

Since the function u1 is subharmonic, we have

u1.x/ 6 C2

Z

@Br

u1d� D C2

Z

@Br

ud�:

Furthermore,u2 2 C 1;�.Br / and estimates for Hölder continuous functions (see [13, p. 313]) imply

that

u2.x/ 6 C3r
1C�:

Then, using (3.6) we obtain

sup
Br=4

u 6 C2

Z

@Br

u1d� C C3r
1C�

6 C4 inf
Br=4

uC C3r
1C�;

and the first part of the lemma is proved.

Now, assuming that

C inf
Br=4

u 6
1

2
;

we see from the first part that, if � > 0 is small, then

sup
B�

u 6
1

2
C C3�

1C�
6 1:

Hence, u2 D 0 and u is subharmonic in B� . As in the first part, this implies the result.
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REMARK 3.8 The constant C from Theorem 3.7 depends also on � > 0: But this does not create a

problem since we shall fix it when we use it.

REMARK 3.9 From the continuity of the minimizers we see that fu > 0g is open. Then the

hypothesis C infBr =4 u 6 1=2 is always true for a ball centered closed to a free boundary point

and with sufficiently small r:

We now present the first consequence of Theorem 3.7.

Lemma 3.10 Let u be a minimizer of (1.1) in Br such that

C inf
Br =4

u 6
1

2
;

with the constant C > 0 as in Theorem (3.7). Then there is a constant r0 > 0 depending only on n;

such that, if r 6 r0; then

sup
Br=4

u 6 C. inf
Br=4

uC r2j log r j/:

In particular, if x0 2 @fu > 0g D F .u/ and Br is centered in x0; then

u.x/ 6 C jx � x0j2
ˇ

ˇ log jx � x0j
ˇ

ˇ; x 2 Br=4.x0/:

Proof. Suppose first that
Z

@Br

ud� > 2c0r
2j log r j; (3.7)

with c0 the constant of Theorem 3.7. Then,

sup
Br=4

u 6 C inf
Br=4

u; (3.8)

for r 6 r0 sufficiently small.

On the other hand, if (3.7) is not true for a certain r > 0; we split u D u1 C u2 as in the proof

of Theorem 3.7 in this particular ball to obtain

sup
Br=4

u 6 C2

Z

@Br

u1d� C C3r
1C� D C3

Z

@Br

ud� C C3r
1C�

6 C4r
2j log r j C C3r

1C�:

Decreasing r0 if necessary we obtain that u 6 1 in Br : Here we see that the smallness of r0 depends

only on C;which depends only in n; ' and˝: Again, as in the proof of Theorem 3.7 we obtain that

u is subharmonic, which means:

u.x/ 6 C

Z

@Br

ud� 6 Cr2j log r j; x 2 Br=4; (3.9)

for a constant C depending only on the quantities already mentioned.

Combining (3.8) and (3.9) we have

sup
Br=4

u 6 C
�

inf
Br=4

uC r2j log r j
�

:
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For the last part, assuming x0 2 F .u/ we have infBr=4
u D 0: Taking x 2 fu > 0g and � D jx�x0j;

� sufficiently small, we have

u.x/ 6 sup
B�

u 6 C�2j log �j D C jx � x0j2
ˇ

ˇ log jx � x0j
ˇ

ˇ:

This is the desired result.

3.3 Sharp regularity and non-degeneracy

The purpose of this section is to establish optimal Log–Lipschitz regularity for the gradient of a

minimizer.

Theorem 3.11 Let u be a minimizer of (1.1) and ˝ 0 �� ˝: There exist r0 > 0 and a constant

C > 0 depending both only on dist.˝ 0; @˝/; ' and n such that, if x 2 ˝ 0 with dist.x; @fu > 0g/ 6

r0; then
ˇ

ˇru.x/
ˇ

ˇ

2
6 Cu.x/

�

log
1

u.x/
� 1

�

: (3.10)

In particular, if d.x/ D dist.x; @fu > 0g/; then

ˇ

ˇru.x/
ˇ

ˇ 6 Cd.x/ log
1

d.x/
; (3.11)

if x 2 ˝ 0 and d.x/ 6 r0:

Proof. We denote by Ci ; i D 1; : : : ; 7; constants depending only on the quantities in the hypothesis.

From Lemma 3.10 we know that we can find r1 > 0 such that, if dist.x; @fu > 0g/ 6 r1 then

u.x/ 6 1=2:We then fix

r2 WD min
˚

r1; dist.˝ 0; @˝/
	

and x 2 ˝ 0 \ fu > 0g with dist.x; @fu > 0g/ 6 r2: Recalling that u is continuous we have, by

compactness of @fu > 0g \˝ 0
; the existence of a point x0 2 @fu > 0g such that

jx � x0j D dist
�

x; @fu > 0g
�

:

Now we decrease again r2: Let r3 be fixed small enough such that, whenever we have dist.x; @fu >
0g/ 6 r3; then

� log jx � x0j > 0; �C jx � x0j log jx � x0j 6
1

e
and jx � x0j 6 1=2;

where C > 0 is the constant from Lemma 3.10. Notice that r3 can be fixed independent of x: Then

let r0 WD minfr2; r3g and assume dist.x; @fu > 0g/ 6 r0:

From Lemma 3.10 we have

u.x/ 6 �C jx � x0j2 log jx � x0j 6
1

e
jx � x0j 6 1=2:

Thus,

� logu.x/ > � log jx � x0j C 1
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and also
u.x/

�C
�

logu.x/C 1
� 6 jx � x0j2:

Let us define

� WD
 

u.x/

�
p
2C
�

logu.x/C 1
�

!1=2

: (3.12)

Then

� 6
jx � x0j

2
;

which means that B�.x/ � fu > 0g \˝: By the Harnack inequality from Theorem 3.7 we have

0 < sup
B�=4.x/

u 6 C1 inf
B�=4.x/

u 6 C1u.x/:

As in [1], from elliptic estimates we know that

j@iu.y/j 6 C2

�

� sup
B�=4.x/

j loguj C ��1 sup
B�=4.x/

u
�

; y 2 B�=8.x/; i D 1; : : : ; n: (3.13)

But, from the definition of � and Harnack inequality,

��1 sup
B�=4.x/

u 6 C3

�

u.x/
�

log
1

u.x/
� 1

�

�1=2

:

On the other hand, since s 7! � log s is decreasing, the Harnack inequality once more implies the

following:

� sup
B�=4.x/

j loguj D �� log. inf
B�=4

u/ 6 �� log

�

u.x/

C

�

D �� logu.x/C �C4;

for some C4 > 0: Again using the definition of � W

� sup
B�=4.x/

j loguj 6 C5

 

u.x/

�

log
1

u.x/
� 1

�

!1=2
1 � logu.x/

�1 � logu.x/

6 C6

 

u.x/

�

.log
1

u.x/
� 1

�

!1=2

:

Back to (3.13) we obtain

j@iu.y/j2 6 C7u.x/

�

log
1

u.x/
� 1

�

; y 2 B�=8.x/; i D 1; : : : ; n:

Applying this inequality for x we obtain (3.10).

Now we prove (3.11). Notice first that the function s 7! �s log s is increasing for 0 < s 6 s0;

for some s0 > 0: Then choose r0 > 0 such that, if d.x/ 6 r0 then

Cd 2.x/ log
1

d.x/
6 s0;
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where C > 0 is the constant from Lemma 3.10. Using (3.10) and again Lemma 3.10 we estimate

jru.x/j2 6 Cu.x/ log
1

u.x/

6 �C8d
2.x/

�

log
1

d.x/

�2
 

1

� logd.x/
� 2 �

log
�

� logd.x/
�

logd.x/

!

6 C9d
2.x/

�

log
1

d.x/

�2

:

This finishes the proof.

REMARK 3.12 The gradient estimate (3.10) does make sense only when u.x/ is small, that is, close

to the free boundary. Lemma 3.11 should be compared with Lemma 8.5 of [12]. But the proof there

uses potential-theoretic arguments and the fact that �u 2 L1.˝/ is crucial. We do not have this

hypothesis here.

Corollary 3.13 Let u be a minimizer of (1.1), ˝ 0 �� ˝ and x0 2 F .u/ \˝ 0: There exist r0 > 0

and a constant C > 0 depending both only on dist.˝ 0; @˝/; ' and n such that

j@iju.x/j 6 C
�

j logu.x/C 1j
�

; in Br .x0/ \ fu > 0g; 0 < r < r0: (3.14)

Proof. If x 2 Br .x0/ \˝ 0; then u is smooth in a neighborhood of x and, as before,

ˇ

ˇ@iju.x/
ˇ

ˇ 6 C
�

� sup j�@juj C ��1 sup j@juj
�

;

with � > 0 as in (3.12). Using the definition of � (for some convenientC ) and the equation that @ju

satisfies on Br .x0/ \ fu > 0g we obtain the estimate.

We prove now the non-degeneracy result.

Lemma 3.14 Let u be a minimizer of J in K' and x0 2 @fu > 0g\˝: Then we have the inequality

sup
@Br .x0/

u > Cr2j log r j;

for some constant C > 0 depending only n; provided Br .x0/ �� ˝ and 0 < r < r0; for some r0
depending only on˝ and ':

Proof. From Lemma 3.10 we have that

sup
Br .x0/

u 6 Cr2j log r j; 0 < r < r0;

for a certain r0 > 0 depending only on the quantities in the hypothesis. Decreasing r0 if necessary

we can assume

Cr j log r j 6 1:

Thus,

sup
Br .x0/

u 6 r:
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Defining �r WD � log r we have, in the weak sense,

��u D logu 6 ��r :

By Caffarelli’s non-degeneracy lemma (see [5] or [14, Section 3.1]), we obtain

sup
@Br .x0/

u > Cr2�r D Cr2j log r j;

for a constant C depending only on dimension.

As a corollary we have the non-degeneracy of the gradient.

Corollary 3.15 Under the same hypothesis of Lemma 3.14 the following inequality holds:

sup
Br .x0/

jruj > Cr j log r j;

for a positive constant C depending only on dimension n:

Proof. Choose y 2 Br .x0/ with u.y/ > 0: Applying Mean Value Theorem to u restricted to the

line segment connecting x0 and y we obtain

ˇ

ˇu.x0/ � u.y/
ˇ

ˇ 6
ˇ

ˇru.z/
ˇ

ˇjx0 � yj;

for some z on the line segment. It follows that

ˇ

ˇru.z/
ˇ

ˇ >
u.y/

jx0 � yj > u.y/=r:

Taking the sup on Br.x0/ we obtain the result from the non-degeneracy of u:

4. Porosity of the free boundary

In this section we start the study of fine properties of the free boundary. To formulate our first result

in this direction, we recall the definition of porosity. A set E � R
n is called porous with porosity

constant ı, 0 < ı 6 1; if there is a r1 > 0 such that, for each x 2 E and 0 < r < r1 there is a point

y such that Bır .y/ � Br.x/ n E: The set E is called locally porous in an open set ˝ if E \K is

porous (with possibly different porosity constants) for any K �� ˝: For more details the reader is

invited to see Section 3.2 of [14]. Here we follow closely [9].

Proposition 4.1 Let u be a minimizer of (1.1). Then, for every compact set K � ˝ we have that

@fu > 0g \ K is porous with porosity constant depending only on n; ˝; dist.K; @˝/ and ': In

particular,
ˇ

ˇ@fu > 0g \K
ˇ

ˇ D 0

for any K �� ˝:

Proof. Let x 2 fu > 0g \K and define d.x/ D dist.x; @fu > 0g/: We fix zx 2 @fu > 0g such that

jzx � xj D d.x/: Let

� WD min
˚

r0; dist.K; @˝/
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where r0 is the constant from Lemma 3.10. Then we assume that d.x/ 6 �=4: The same lemma

gives us

u.x/ 6 C1jx � zxj2 log
1

jx � zx j D C1d
2.x/ log

1

d.x/
: (4.1)

Now let z 2 @fu > 0g \K: Since 0 < r < �=4; Lemma 3.14 implies the existence of xz 2 @Br .z/

such that

u.xz/ > C2r
2 log

1

r
:

Using (4.1) we have

C2r
2 log

1

r
6 u.xz/ 6 C1d

2.xz/ log
1

d.xz/
: (4.2)

On the other hand, the function s 7! �s log s is increasing in the interval .0; s0/ for some s0: Let

r1 WD minf�=4; s0g:

Then, if 0 < r < r1; we have d.xz/ 6 r < r1: Thus,

d 2.xz/ log
1

d.xz/
6 d.xz/r log

1

r

Back to (4.2) we see that

d.xz/ >
C2

C1

r:

Defining ı D C2=C1 we see that ı 6 1: The proof of the proposition now can be done with the

same argument of Theorem 3.1 in [9].

REMARK 4.2 Once we have local porosity of the free boundary @fu > 0g; we easily obtain the

density of fu > 0g as in [14]. In fact, for each x0 2 fu > 0g we have

ˇ

ˇBr.x
0/ \ fu > 0g

ˇ

ˇ

jBr j > 
 (4.3)

for a constant 
 > 0 depending only on n; ˝; dist.K; @˝/ and '; provided Br .x
0/ � ˝:
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9. Karp, L., Kilpeläinen, T., Petrosyan, A. & Shahgholian, H., On the porosity of free boundaries in

degenerate variational inequalities. J. Differential Equations 164 (2000), 110–117. Zbl0956.35054

MR1761419

10. Ladyzhenskaya, O. A. & Ural’tseva, N. N., Linear and Quasilinear Elliptic Equations. Mathematics in

Science and Engineering, 46, Academic Press, New York, 1968. Zbl0164.13002 MR0244627

11. Leitão, R., de Queiroz, O. S. & Teixeira, E. V., Regularity for degenerate two-phase free boundary
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