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A free boundary problem with log—term singularity
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We study a minimum problem for a non-differentiable functional whose reaction term does not have
scaling properties. Specifically we consider the functional

Vo|?
Y(w) = / (u - v+(logv - 1)>dx — min
Q 2
which should be minimized in some natural admissible class of non-negative functions. Here, v =
max{0, v}. The Euler-Lagrange equation associated with § is
—Au = X{u>0} logu,

which becomes singular along the free boundary d{u > 0}. Therefore, the regularity results do not
follow from classical methods. Besides, the logarithmic forcing term does not have scaling properties,
which are very important in the study of free boundary theory. Despite these difficulties, we obtain
optimal regularity of a minimizer and show that, close to every free boundary point, they exhibit a
super-characteristic growth like

r2|logr|.
This estimate is crucial in the study of analytic and geometric properties of the free boundary.
2010 Mathematics Subject Classification: Primary SR35.
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1. Introduction
In this article we address optimal regularity for minimizers of the non-differentiable functional
S(U):/Q(@—W(logv—l)) dx (1.1)
among functions in the class
Ko :={ve H'(2);v=¢pondR},

for a fixed ¢ € H'(£2) N L®(£2), ¢ = 0, where 2 C R” is a smooth bounded domain. We are
making the convention log = In, that is, log is the natural logarithm, which means that logs =
log, s =Ins, s > 0.
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A minimizer u for § satisfies, at least formally, the following Euler-Lagrange equation:
—Au = yy>oylogu in £2, (1.2)
where y4 is the characteristic function of the set A. We call
Fu)y=0du>0Nng (1.3)

the free boundary of u. To the authors knowledge, a variant of Equation (1.2) was studied for the first
time in [13]. In that paper existence and regularity properties of a maximal solution for a perturbed
version of (1.2) with homogeneous Dirichlet boundary condition was studied by an approximating
procedure where the singularity was removed, and the problem becomes a regular equation. Since
in [13] it was used a sort of variational techniques, the regularity results could be adapted to our
setting and any minimizers u of § should satisfy u € Cl(l,;a (£2), for any 0 < a < 1. Clearly this
is not sharp and, hence, not sufficient to study fine analytic and geometric properties of the free
boundary ¥ (u).

The first step in the study of free boundary problems is the optimal regularity of the solution (see,
for instance, [14]). Essentially, sharp regularity implies optimal growth close to the free boundary
and it is a consequence of the invariant scale of the equation. The main aspect of Equation (1.2) is
that the logarithmic nonlinearity does not have a scale property and this fairly complicates the proof
of estimates. Besides, a formal analysis suggests that, close to a free boundary point, that is, close
to a point on ¥ (1), a solution of (1.2) exhibits a supercharacteristic growth like

r2|logr|. (1.4)
In [12] Monneau & Weiss investigated the following obstacle-type problem:
—Au = yg>0y in 2 CR". (1.5)

Solutions of (1.5) may grow like (1.4) close to some free boundary points and, by the cross—shaped
example in [4], they are not necessarily of class C >1. This solution is also completely unstable in the
sense that its second variation of the energy takes the values —oo ([12]). Apart from the references
already cited, in [3] and [2] the authors introduce a new method for the study of singularities in (1.5).
In this spirit, since the second derivative of solution of (1.2) is always unbounded, we call (1.2) a
highly unstable free boundary problem. We will show that every free boundary point exhibits a
supercharacteristic growth.

2. Existence and first a priori estimates

In this section we prove existence of minimizers for the functional 3 in the class X,,. We also show
a uniform estimate in L°°(£2). Let us start with the existence result.

Lemma 2.1 Let g € H'(£2) N L°°(2), ¢ = 0. Then the functional § has a minimizer u € X, and
u=0.

Proof. Notice that the set of functions where we minimize § is non empty since |$(¢)| < oo. Let
u € Xy be fixed. Then,

1
Y(u) = §||Vu||iz + /9 —uloguys>ecydx. 2.1
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On the other hand, if 0 < a < 1 is fixed, then | — u logu| < Ciu'™*? for u = e and some constant
Cy = Cy(a) > 0. Holder inequality implies that

‘/,Q —uloguyyseydx| < Cl““”i;a- (2.2)
Using (2.2) in (2.1) we get
1
) = EIIWIIiz — Cyllul 3. (2.3)

The Poincaré inequality applied to u — ¢ gives us the following:
1 C 1
SIVulZs = Ll =gl = 319012,
for some constant C, = C,(£2) > 0. Since ¢ € H'(£2) N L*°(£2) we still can estimate

%Ilu —¢l7> = Calluly> = CsllullL> + Calloll-
Back to (2.3) we obtain
§) = Collul7> — Callull 2 — Cillull; 3¢ - Cs,
where all the constants C; depend just on n, §£2, a and ¢. Thus, taking
—Cs := min {Cot*> — C3t — Cy1' 1%}

we will have
) = —Ce — Cs

for every u € K. Thus, the functional is bounded from bellow.
Let now {v;} C X, be a minimizing sequence. We can proceed as in the proof of Theorem 3.1
in [11] to show that, up to a subsequence, thereisu € H'(2),u —¢ € HO1 (£2), such that

vj — u weakly in H'(2), v; — uin L?(2), v; — uae.in £2.
We also have the existence of a constant @ > 0 such that
v;r logv; +a = 0, forall j € N.

Then, from lower semicontinuity of norms and Fatou’s Lemma, we get
/ |Vu|?dx Sliminf/ |Vv;|dx,
Q j=oo J@
/ ut (logu — 1) + adx < liminf/ v?‘(log vj —1) +adx.
Q j=oo Jo o

Hence,
3(u) < liminf§(v;),
j—oo

and u is a minimizer. To see that u > 0, we just notice that |[Vu™ |2 < ||Vul| 2. O
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Let us turn our attention to the L°°-bound of a minimizer. We should mention that, since
the logarithmic nonlinearity changes sign, the estimate is not trivial (as in the case of power-
type nonlinearity, which is just a consequence of the Maximum Principle). As in [11], we use the
machinery from [10], Chapter 2, Section 5. Here we strongly use the slow growth of the function
s +— logs.

We first show a uniform bound in the L2-norm.

Lemma 2.2 Let u be a minimizer of (1.1). Then there is a constant C = C(n, 82, ¢l g1(g)) such
that
[ullz 22y < C.

Proof. Since u € K, we can use Poincaré’s inequality to obtain:

2
||M||iz(g) < (||” — ¢l + ||<P||L2(:2))

2
(CollVullz2@y + CollVolir2@) + l@llL2(2)) 24

<
<

The constants C1, C, > 0 depend just on §2. On the other hand, using that u is a minimizer we get

1
§||Vu||iz(m < / ulogudx + 3(p).

{u=e}
We recall that, given 0 < a@ < 1, there exists a constant C3 = C3(a) > 0 such that logu < Czu?,

for u = e. Thus, applying Holder inequality twice we have the following:

1
IVl gy < Ca [t +30p)
{u=e} 2.5)

1—a
< G121 2 ull 2 el 2 ) + 9(@)-

Here and afterwards, | E| denotes the Lebesgue measure of the set E.
Using (2.5) in (2.4) we obtain

el gy < Callull 3%, + Cs.
for C; = Cij(n,a, $2,¢). Since 2 > 1 4 a, we necessarily have
lull 2@y < Cn,a, 82, ¢),
which proves the lemma. O
Lemma 2.3 Let u be a minimizer of (1.1). Then there is a constant C = C(n, §2,¢) > 0 such that
lullzoo(2) < C.

Proof. Letu € X, be a fixed minimizer. For each N € N we define

uifO0<u <N,

u =
N Nifu> N.
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and also Ay = {x € £2;u(x) > N}. We are going to show that, for N = Ny large enough
(depending on ||¢| oo (2)), the following estimate holds:

_2
IVUull72 4,y < Cllullzs 4| AN, (2.6)
(An) (An)
where
4—an 4
&= ., a< —
n n
: 2
Since ||u||L‘§(m < C from Lemma 2.2 and

[l 21 (Ang) S Cllullz2(e)

by Holder inequality, the boundedness will follow from Lemma 5.2 in Chapter 2 of [10].
Notice that
u=uyin A4y N2, u=NinAy.

Since u is a minimizer we obtain
1 1 1
/ §|Vu|2a’x = / 3 (IVul® = |Vuy|?) dx = / 3 (IVul® — |Vuy|?) dx
AN AN o}

< / —N(logN —1) + u(logu — 1)dx 2.7
AN

< / (u — N)T logudx,
AN

where we have used the Mean Value Theorem. Notice that this estimate holds as faras N > Ny > e.
Now we choose a constant C; = Cj(a) > 0 such that logu < Cu? for u = Ny. The value
0 < a < 1 will be fixed latter. Then, using Holder inequality,

; (u— N)*logudx < Cyllu® [l p2camll e = N) 1204 0)-
N

Applying Holder once more and Sobolev inequality we have

*‘_‘

(S

1= NYFllz2ay) < 0= N)F e a1 AN ]
1_ 1
= ||(u — N)+||L2*(Q)|AN|2 2*

1

11
< [ VullpzapmlAn 227,

where 2* is the critical Sobolev exponent. Furthermore,

1—a
I 2y < Il AN 2

Hence,
_a_ 1
/A (u— N)Tlogudx < Cl||”||aL2(AN)||V”||L2(AN)|AN|1 272 (2.8)
N
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Now we use (2.8) in (2.7) followed by Young’s inequality applied for § > 0 to obtain
1 Cz _g—2
E”VMHiZ(AN) < E”u”i%(ANﬂANlZ aTaF 4 8||VM||22(AN).
Taking 6 = 1/4 we finally get

2
IVullZagy,) < 4C2 )2y, )l ANT AT,

with

which is strictly positive if we choose a < 4/n. Thus, we have obtained (2.6) and finished the proof
of the lemma. O

Let us finish this section showing that a minimizer is a sort of subsolution.

Lemma 2.4 Ifu is a minimizer of (1.1), then u satisfies
—Au < yg>oylogu in 2 2.9)

in the weak sense.

Proof. Given ¢ € C§°(£2) and 0 < & < 1, we compute
0< 3 —ep)—Ju)
2
= —s/ (Vu,Vo)dx + 8—/ |Vo|?dx +/ u+L(u,0,0)a’x—/ (u—ep)tL(u, e, ¢)dx,
fo) 2 Ja fo) 2
(2.10)
where, to simplify the notation,
L(u,e,¢) =log(u —ep)™ — 1.

Now,
/ u+L(u,0,0)dx—/ (u—e@)TL(u,e, ¢)dx
2 2

=/ u+L(u,0,0)dx—/ (u—ep)tL(u,e ¢)dx
{ {

u>0} u>e@}

:/ u+L(u,0,0)dx—/ uL(u,e,(p)dx+£/ oL(u, e ¢)dx
{ { {

u>0} u>ep} u>ep}

< / utL(u,0,0)dx —/ uL(u,e, ¢)dx + e/ @log(u —ep)dx.
{ { {

u>0} u>eQ} u>e@}

Notice that the difference

/ utL(u,0, O)dx—/ ul(u,e,¢)dx
{ {

u>0} u>e@}
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goes to zero as ¢ — 01 by the Dominated Convergence Theorem. Back to (2.10) we see that

/ (Vu,Vo)dx — f/ [Vp|?dx < / plog(u —ep)dx < / @logudx. (2.11)
Q 2Ja {u>ep} {u>eg}
The result now follows if we send ¢ — 0% in (2.11). O

The following lemma shows that the right hand side of (2.9) is in L}

loc*

Lemma 2.5 Ifu is a minimizer of (1.1), then y>o3 logu € L} (£2).

loc

Proof. Let K CC $2 be an arbitrary compact set and { € Cg°(£2) with0 < ¢ < 1,{ = 1in K be
a cut-off function. For any small § > 0, since u is bounded, we have

/ |10gu|dx§/ —logudx + C;
Kn{é<u<1} KNn{§<u}
< —/ logudx + C
KN{u>0}

$—/ §logudx—/ Clogudx + Cy
KN{u>0} (R2\K)N{0<u<1}

$—/ Clogudx + C,

2N{u>0}

< —/ (Vu,V)dx 4+ C, < oo.
2

Taking the limit as § — 07 and using Fatou Lemma we obtain the estimate. (]

3. Sharp estimates close to the free boundary

In this section we prove the supercharacteristic growth (1.4) of a minimizer. The main idea is to
use Harnack type inequality in order to control the growth of the solution close to the free boundary
(where the log does not change sign), from above. The control of the growth from bellow is obtained
with a modification of a classical argument using the Maximum Principle and a nice subsolution.

3.1  Controlling the growth of local averages

The goal of this section is to prove estimates related with the growth of averages of minimizers. As
a consequence, we obtain the Harnack type inequality in the next section. Roughly speaking, we
show that minimizers with large averages in some ball are positive at the center (with some exact
control). This idea was first introduced by Alt and Phillips in [1] and then explored in [13] in order
to show C 1* regularity for (1.2). The lack of scale complicates considerably the achievement of the
result in our situation. An important step is the construction of a local subsolution allowed by the
next general lemma. This should be compared with Lemma 3.1 in [13].

Lemma 3.1 Letu € HY2(dB,) and 0 < r < rg, for some ro > 0 to be fixed. There are constants

0o, c1,co > 0, both depending only on n and ry, such that, if

0 =60y and ][ udo = cob,
0B,
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then we can find a function w € H'(B,) satisfying
— Aw <logw — 6 in By,
w(x) = 618(x)][ udo,
0B,
w = u on 0B,

where §(x) = dist(x, 0B;). Besides, there exists a constant C > 0, depending just on n, ro and
[|u ”Loo(Bro)’ such that
lwlzeo(s,y < C.

REMARK 3.2 In Lemma 3.1 from [13] the construction of u is possible once you have a lower
bound like C1(C> + 0) to the average at the boundary. Here we obtain a sharp result in the sense
that ¢ is a universal constant. This is crucial in the study of the sharp regularity. Although the proof
is very similar to the one in [13], we give all the details here to show the control of the constants.

Proof of Lemma 3.1. Let H be the harmonic extension of u in B,, that is, H solves the following
equation:
—AH =0 in B,,

H=u on d0B,.

From [7], Lemma 9.1, we have
H(x) = Cé(x)m, forall x € By, 3.1

where m ::][ udo and §(x) = dist(x, dB;). The constant C does not depend on r, but just on .
0B

For a fixed exponent 0 < y < 1, let v be the solution of

—Av =§"7(x) in By,
v=20 on d0B,.

Then, it is known that v € C 1177 (E,) (see the proof of Theorem 1.1 in [8] or Lemma 2.1 in [6]).
Therefore, there is a constant M > 0 depending just on y and n such that

v(x) < M3(x)in B,. (3.2)
We set
w:= H — kv,
where
k= C_m
2M

From (3.2) and (3.1) we have

w(x) = 8(x) (Cm — kM) = 3(x)CTm. (3.3)
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Taking into account the definition of m, we obtain the bound from bellow for w. Let us check that
w is a subsolution. Since
—logw <w” forany 0<y <1, (3.4)

we just need to show that
Aw=w7? +0,

if m = cob, 8 = 6y, for 6y and ¢y sufficiently large.
We set ¢c; = C/2 and take a constant ag > 0 which will be fixed soon. Assuming that m = c¢0,
using (3.3) and the definition of k we estimate:

C -V
w7 (x) + aof < 87 (x) (7’”) +aob

< 8—V(x)< (Cczoe)y + aoe)

_ Ceo\ 7V, 2kM
SR — 0~ .
(x)(( 5 ) + ao Cco)

Defining
CCO
ao = —>
aM
we have
C o k
W (x) + aoh < (sy(x)( (%) 057 + 5).

Now, we first fix ¢g such that g = 1 and notice that it depends just on n and y. Then we choose 6

sufficiently large so that
CCO Y _ k
— 0,7 + = <k.
(3°) s

Hence:
w7l (x)+60 <wV(x)+ael <k§V(x) = Aw(x) in B,.

Thus, from (3.4),
Aw(x) = —logw(x) + 6,

and the lemma is proved. O
In the next lemma we justify in what sense the function w in Lemma 3.1 is a local subsolution.

Lemma 3.3 Given 60 > 0, let us define the modified functional
\V/ 2
Jo(v) = / (ﬂ —vt(logv —1) + Qv) dx,
B 2

forv € HL(B1) + @, for some ¢ € H'(£2) N L°°(£2), ¢ = 0. Let u be a minimizer of 3¢, u = ¢
on 0By. Assume also that w is the function from Lemma 3.1 satisfying w = u on dB;. There is a
constant 8y = Oy(n, @) > 0 such that, if 0 = 6y, then w < u in B;.



360 0.S. DE QUEIROZ AND H. SHAHGHOLIAN

REMARK 3.4 Existence and a priori bounds for minimizers of §4 follow exactly as in Section 2.

Proof of Lemma 3.3. Let z = max{u, w}. Then z is an admissible function and, by the minimality,

0= 36(u) —3o(2).

We compute:
1

96(u) — 94(2) :-/ (z—u)A(u—i—z)dx—i—/ zt(logz — 1) —ut(logu — 1) + O(u — z)dx
2 Ja I?,

1 1
=>— [ (z—u)(—logu —logz +20)dx + = | (—zlogz + z0)dx
2 {z>u>0} 2 {z>u=0}

+ /z(]ogz —1)—u(logu—1)+ 6(u —z)dx.
{

z>u>0}

Let us define, for s > ¢, the auxiliary functions:
V(s) =t(logr — 1) — s(logs — 1) + (s — 1),
1
¢(s) = E(s —1)(—logt —logs + 20).

Notice that ¢ () = ¥(¢) = 0 and ¢'(s) = ¥'(s) — 1/2. Hence,

1
9() =¥ (5) = 5t — ).

Thus,

Jo(u) — Y9(z) = | p(2)dx + l (—zlogz 4+ z0)dx + / —Y(z)dx
2

{z>u>0} {z>u=0}

1 1
> +—/(—zlogz+z€)dx + —/u—zdx
{ {

z>u=0} z>u>0}
1 1
> 4 (—Zlogz+z(9—1))dx+—/udx-
2 {z>u=0} 2 {z>u>0}

Notice that z is a priori bounded in L®° for a constant depending just on boundary data, since w
and u satisfy this property. Therefore, we can take 6 large enough such that, if 6 > 6y and z > 0,
then

—zlogz+z(0—1)=z(—logC 4+ 6y — 1) > 0,

and this implies
Jo(u) — Jo(2) > 0.
But this is a contradiction, which givesus u = z. O

We are in position to prove the main result of this section.

Lemma 3.5 Let u be a minimizer of (1.1) in By (x0), Xo € 2, r and r¢ be fixed satisfying r €0, ro[,
with ro depending only on n and ¢. There are constants cg, c1 > 0, depending just on n,ro and ¢
such that, if

][ udo = 2cor?|logr|,
0By (x0)
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then,

u(x) = clrfldist(x, dB; (xo))][ udo, for almost every x € B(xo).
0By (x0)

Proof. Translating to the origin we may assume xo = 0. Then we scale u as
u,(y) :==r2u(ry), y e By.

Using polar coordinates and change of variables we have

][ urdo = r72r7"+1/83rud0 = rfz][ udo.
0B 0B,

On the other hand, after some calculus we see that,
§) = r""39(u,), 6 =—logr?,

where § is minimized in B, and $4 is minimized in Bj. In particular, ¥, is a minimum of J4. Let
us fix ¢ from Lemma 3.1 and then ro small enough such that § = —log r? satisfies Lemma 3.3.
Notice that r¢ depends only on n and ¢. Applying Lemma 3.1 with ¥ = u, in B; we obtain w such
that, from Lemma 3.3,

ur(y) = w(y) = C18(y)]£ urdo, 3.5)
B
if
rfz][ udo = co(—1logr?).
0B,
Scaling back to B, the inequality (3.5) we obtain the result. o

3.2 Harnack type inequality
The first lemma of this section states that a minimizer is continuous on its positivity set.

Lemma 3.6 Let u be local minimizer of (1.1). Then the set {u > 0} is open and, up to redefinition
on a set of zero measure, u € C(£2).

Proof. Using Lemma 3.5 we just need to adapt Corollary 3.6 in [13] and the proof is the same. [

Now we prove the Harnack type inequality.

Theorem 3.7 There are positive constants co, c1 and ro depending only on n and ¢, such that, if u
is a local minimizer of (1.1)in B, C 2,r < ro, and

][ udo = 2cor?|logr|,
0B,

then

supu < C(inf u+r'tH), 0<p <1,
Br/4 Br/4
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for some constant C = C(n, $2, ¢, ) > 0. In addition, if

1
C infu<-,
Byja 2

then, for every small p > 0 such that B, C {u > 0} we have

sup u < C inf u.
X€B, x€B,

Proof. First we recall that, from Lemma 3.5, we have

u(x) = Cl][ udo, x € By4. (3.6)

0B

We split u as u = uy + u,, where

—Aur = Y{o<u<iylogu in By,
Uy =1u on dB,,

and
—Auy = xqu>1logu in B,,

U, =0 on 0B,.

Since the function u; is subharmonic, we have

up(x) < Cz][

urdo = Cz][ udo.
0B 0B,

Furthermore, u, € C**(B,) and estimates for Holder continuous functions (see [13, p. 313]) imply
that
Uz (x) < Carlth,

Then, using (3.6) we obtain

sup u < Cz][ urdo + C3r' ™ < Cy inf u + Cyr' TH,
By/a 0By B4

and the first part of the lemma is proved.
Now, assuming that
1
Cinfu<-,

Byja 2

we see from the first part that, if p > 0 is small, then
1

supu < 3 + C3p'tH < 1.

By

Hence, v, = 0 and u is subharmonic in B,. As in the first part, this implies the result. O
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REMARK 3.8 The constant C from Theorem 3.7 depends also on . > 0. But this does not create a
problem since we shall fix it when we use it.

REMARK 3.9 From the continuity of the minimizers we see that {u > 0} is open. Then the
hypothesis C infp, 4 u < 1/2 is always true for a ball centered closed to a free boundary point
and with sufficiently small r.

We now present the first consequence of Theorem 3.7.
Lemma 3.10 Lef u be a minimizer of (1.1) in B, such that
) 1
C inf u < -,
B, /4 2
with the constant C > 0 as in Theorem (3.7). Then there is a constant ro > 0 depending only on n,

such that, if r < rg, then

sup u < C(inf u 4 r?|logr|).
Br/4 Br/a

In particular, if xg € 0{u > 0} = ¥ (u) and By is centered in x¢, then
u(x) < Clx — xol?|log|x — xol|. X € Bya(xo).
Proof. Suppose first that
][ udo = 2cor?|logr|, (3.7
0B,
with cg the constant of Theorem 3.7. Then,

supu < C inf u, 3.8)
B4 Brya

for r < rg sufficiently small.
On the other hand, if (3.7) is not true for a certain r > 0, we split u = u; + u» as in the proof
of Theorem 3.7 in this particular ball to obtain

supu < Cz][ urdo + Cyr'th = C3][ udo + Car'™ < Cyr?|logr| + Car'tH,
B4 0B, 0B,

Decreasing ry if necessary we obtain that ¥ < 1 in B,. Here we see that the smallness of roy depends
only on C, which depends only in 7, ¢ and §2. Again, as in the proof of Theorem 3.7 we obtain that
u is subharmonic, which means:

u(x) < C][ udo < Cr?|logr|, xe B4, (3.9
0B

for a constant C depending only on the quantities already mentioned.
Combining (3.8) and (3.9) we have

supu < C(
Br/4

inf u + r2|logr|).
Br/4
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For the last part, assuming xo € ¥ (u) we have infg
p sufficiently small, we have

s 4 = 0. Taking x € {u > 0} and p = [x —xo|,

u(x) < supu < Cp*|logp| = Clx — xo|*|log |x — xol|.
B,

This is the desired result. O

3.3 Sharp regularity and non-degeneracy

The purpose of this section is to establish optimal Log—Lipschitz regularity for the gradient of a
minimizer.
Theorem 3.11 Let u be a minimizer of (1.1) and 2 CC 2. There exist ro > 0 and a constant

C > 0 depending both only on dist(£2’, 082), ¢ and n such that, if x € 2’ with dist(x, d{u > 0}) <
ro, then

1
IVu@)|* < Cu(x) (log —1). (3.10)
u(x)
In particular, if d(x) = dist(x, 0{u > 0}), then
1
\Y < Cd(x)log —, 3.11
[Vu(o)] < Cd(x)log 7= (3.11)
ifx € 2 and d(x) < ry.
Proof. We denoteby C;,i = 1,...,7, constants depending only on the quantities in the hypothesis.

From Lemma 3.10 we know that we can find r; > 0 such that, if dist(x, 0{u > 0}) < r; then
u(x) < 1/2. We then fix
r» := min {rl,dist(.Q’, 8.(2)}

and x € 2’ N {u > 0} with dist(x, d{u > 0}) < r,. Recalling that u is continuous we have, by
compactness of d{u > 0} N ﬁl, the existence of a point xo € d{u > 0} such that

|x — xo| = dist(x, d{u > 0}).

Now we decrease again ;. Let r3 be fixed small enough such that, whenever we have dist(x, d{u >
0}) < r3, then

—log|x — x| =20, —Cl|x —x0|log|x —xo| < and |x —xo| < 1/2,

Q| =

where C > 0 is the constant from Lemma 3.10. Notice that r3 can be fixed independent of x. Then
let ro := min{ry, r3} and assume dist(x, d{u > 0}) < ry.
From Lemma 3.10 we have

1
u(x) < —C|lx — xo|*log|x — xo| < —|x — xo| < 1/2.
e

Thus,
—logu(x) = —log|x — xo| + 1
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and also
u(x) < |x —xol*
—C(logu(x) + 1)

Let us define
1/2
. u(x)
P (—ﬁC(logu(x) + 1)) '

Then | |
X — X0
<
JURS 5 ,
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(3.12)

which means that B,(x) C {u > 0} N £2. By the Harnack inequality from Theorem 3.7 we have

0< sup u<Cy inf u < Ciu(x).
B,4(x) Bp/a(x)

As in [1], from elliptic estimates we know that
[0;u(y)| < Cz(p sup |logu|+p~' sup u), y e Byg(x), i=1,...,n.
Bp/4(x) Bp/4(x)

But, from the definition of p and Harnack inequality,

1

1 1/2
p~ sup u<Cs (u(x)(log ") - 1)) .

By/a(x)

(3.13)

On the other hand, since s — —logs is decreasing, the Harnack inequality once more implies the

following:

p sup |logu| = —plog(inf u) < —plog (w) = —plogu(x) 4+ pCa,
Bp/4(x) BD/4 C

for some C4 > 0. Again using the definition of p :

1 V2 (
p sup |logu|$C5<u(x)(log__1)) w
u(x)

Bya(x) —1 —logu(x)

. 1/2

<GCs (u(x) ((log —_— = 1)) .
u(x)
Back to (3.13) we obtain
1
[0;u(»)|* < C7u(x) (log— — 1), Y€ Bys(x), i=1,...,n.
u(x)

Applying this inequality for x we obtain (3.10).
Now we prove (3.11). Notice first that the function s = —s log s is increasing for 0 < s
for some s > 0. Then choose r¢ > 0 such that, if d(x) < ro then

Cd?*(x)log

< So,

1
d(x)

< So,
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where C > 0 is the constant from Lemma 3.10. Using (3.10) and again Lemma 3.10 we estimate

1
[Vu(x)|* < Cu(x)log —
u(x)

, 1 \2 1 log ( — log d(x))
< —Ced”(x) (log d(x)) (—logd(X) w o logd(x)

1 \2
< Cod?(x) (log Tx)) .

This finishes the proof. O

REMARK 3.12 The gradient estimate (3.10) does make sense only when u(x) is small, that is, close
to the free boundary. Lemma 3.11 should be compared with Lemma 8.5 of [12]. But the proof there
uses potential-theoretic arguments and the fact that Au € L°°(£2) is crucial. We do not have this
hypothesis here.

Corollary 3.13 Let u be a minimizer of (1.1), 2’ CC 2 and xog € F(u) N 2'. There exist ro > 0
and a constant C > 0 depending both only on dist(§2', 082), ¢ and n such that

[0;;u(x)| < C(|logu(x) + 1), in By(xo) N{u >0}, 0<r <ro. (3.14)
Proof. If x € B,(xo) N £2’, then u is smooth in a neighborhood of x and, as before,
|8iju(x)| < C (psup|Ad;ul + p~" sup|d;ul) .
with p > 0 as in (3.12). Using the definition of p (for some convenient C) and the equation that d;u
satisfies on By (x9) N {u > 0} we obtain the estimate. O

We prove now the non-degeneracy result.

Lemma 3.14 Let u be a minimizer of § in X, and xo € 0{u > 0} N §2. Then we have the inequality

sup u = Cr?|logr|,
0By (x0)

for some constant C > 0 depending only n, provided B,(xo) CC 2 and 0 < r < ry, for some ry
depending only on $2 and ¢.

Proof. From Lemma 3.10 we have that

sup u < Cr?|logr|, 0<r <ro,
By (x0)

for a certain o > 0 depending only on the quantities in the hypothesis. Decreasing ry if necessary
we can assume
Cr|logr| < 1.

Thus,
sup u <.
By (x0)
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Defining A, := —logr we have, in the weak sense,
—Au =logu < —A,.
By Caffarelli’s non-degeneracy lemma (see [5] or [14, Section 3.1]), we obtain

sup u = Cr2A, = Cr?|logr|,
0By (x0)

for a constant C depending only on dimension. O
As a corollary we have the non-degeneracy of the gradient.

Corollary 3.15 Under the same hypothesis of Lemma 3.14 the following inequality holds:

sup |Vu| = Cr|logr|,
By (x0)

or a positive constant C depending only on dimension n.
4 P 8 y

Proof. Choose y € By(xo) with u(y) > 0. Applying Mean Value Theorem to u restricted to the
line segment connecting xo and y we obtain

|u(x0) —u(y)| < |Vu(z)|lxo - yl.
for some z on the line segment. It follows that

u(y)
|xo — ¥l

Vu(z)| = > u(y)/r.

Taking the sup on B, (x¢) we obtain the result from the non-degeneracy of u. o

4. Porosity of the free boundary

In this section we start the study of fine properties of the free boundary. To formulate our first result
in this direction, we recall the definition of porosity. A set £ C R” is called porous with porosity
constant §,0 < § < 1, if there is a r; > 0 such that, foreach x € E and 0 < r < ry there is a point
v such that Bs,(y) C By(x) \ E. The set E is called locally porous in an open set 2 if £ N K is
porous (with possibly different porosity constants) for any K CC £2. For more details the reader is
invited to see Section 3.2 of [14]. Here we follow closely [9].

Proposition 4.1 Let u be a minimizer of (1.1). Then, for every compact set K C §2 we have that
d{u > 0} N K is porous with porosity constant depending only on n, $2, dist(K, 052) and ¢. In
particular,

|ofu >0} NK|[=0
forany K CC £2.

Proof. Let x € {u > 0} N K and define d(x) = dist(x, d{u > 0}). We fix z,, € d{u > 0} such that
|zx — x| = d(x). Let
T := min {ro, dist(K, 8.(2)}
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where rq is the constant from Lemma 3.10. Then we assume that d(x) < 7/4. The same lemma
gives us

= C1d?*(x)1 )
oy - CdTolee g

Now let z € d{u > 0} N K. Since 0 < r < /4, Lemma 3.14 implies the existence of x, € dB,(z)
such that

u(x) < Cq|x — zx > log 4.1

1
u(x;) = Cor?log —.
r

Using (4.1) we have

1
Czrzlog - <u(x;) < Cla’z(xz)log 4.2)
r

d(xz)

On the other hand, the function s + —s log s is increasing in the interval (0, s¢) for some s¢. Let
r1 := min{z/4, so}.

Then, if 0 < r < ry, we have d(x;) < r < ry. Thus,

1 1
2(x;)log —— < 2)r log —
d-(xz) Ogd(xz) d(x;)r ogr

Back to (4.2) we see that

d(x;) = g—?r.

Defining § = C5/C; we see that § < 1. The proof of the proposition now can be done with the
same argument of Theorem 3.1 in [9]. O

REMARK 4.2 Once we have local porosity of the free boundary d{u > 0}, we easily obtain the
density of {u > 0} as in [14]. In fact, for each x° € {u > 0} we have

\Br(xo) N {u > 0}|
A =y (4.3)

for a constant y > 0 depending only on n, £2, dist(K, 3£2) and ¢, provided B, (x°) C £2.
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