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In this paper we study a one phase free boundary problem for the p(x)-Laplacian with non-zero right
hand side. We prove that the free boundary of a weak solution is a C 1** surface in a neighborhood
of every “flat” free boundary point. We also obtain further regularity results on the free boundary,
under further regularity assumptions on the data. We apply these results to limit functions of an
inhomogeneous singular perturbation problem for the p(x)-Laplacian that we studied in [25].
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1. Introduction

In this paper we study the following inhomogeneous free boundary problem for the p(x)-Laplacian:
u = 0 and

Apyu = diV(|V*u(x)|P(x)72Vu) = f in{u >0} (P p.A")
u =0, |Vu| =1*(x) on d{u > 0}.

The p(x)-Laplacian serves as a model for a stationary non-newtonian fluid with properties

depending on the point in the region where it moves. For example, such a situation corresponds

to an electrorheological fluid. These are fluids such that their properties depend on the magnitude of

the electric field applied to it. In some cases, fluid and Maxwell’s equations become uncoupled and

a single equation for the p(x)-Laplacian appears (see [33]).

The free boundary problem P(f. p,A*) appears, for instance, in the limit of a singular
perturbation problem that may model high activation energy deflagration flames in a fluid with
electromagnetic sensitivity (see [25]). When p(x) = 2 (in which case the p(x)-Laplacian coincides
with the Laplacian) this singular perturbation problem was introduced by Zeldovich and Frank-
Kamenetski in order to model these kind of flames in [37]. In this latter case, the right hand side f
may come from nonlocal effects as well as from external sources (see [23]).
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The free boundary problem considered in this paper also appears in an inhomogeneous
minimization problem that we study in [26] where we prove that minimizers are weak solutions
to P(f, p.A").

In the present article we prove that the free boundary 0{u > 0} — with u a weak solution of
P(f, p, A*) —is a smooth hypersurface in a neighborhood of every “flat” free boundary point.

The notion of weak solution used in this paper is such that it also includes the limits
of the singular perturbation problem described above, that we studied in [25], under suitable
nondegeneracy conditions.

More precisely, in the present work we prove that the free boundary of a weak solution to
P(f, p, A*) (see Definition 2.2) is a C I** surface near flat free boundary points (Theorems 4.1, 4.2
and 4.3). As a consequence we get that the free boundary is C !* in a neighborhood of every point
in the reduced free boundary (Theorem 4.4). We also obtain further regularity results on the free
boundary, under further regularity assumptions on the data (Corollary 4.1).

In the particular situation of the minimization problem mentioned above, we prove in [26] that
the set of singular free boundary points has null ¥~ ~!-measure.

The basic ideas we follow in this paper to prove the regularity of the free boundary of a
weak solution were introduced by Alt and Caffarelli in the seminal paper [1], where the case of
distributional weak solutions of P(f, p, A*) with p(x) = 2 and f = 0 was studied. The treatment
of a quasilinear equation was first done in [2] for the uniformly elliptic case. Then, the p-Laplacian
(p(x) = p) was treated in [8]. The main difference being that a control of |Vu| from below close to
the free boundary is needed in order to be able to work with linear equations with the ideas of [2].
Both [2] and [8] deal with minimizers that are weak solutions in the stronger sense of [1]. A notion
of weak solution similar to the one in the present paper was first considered in [29]. The case of
a variable power p(x) was considered in [16] still for minimizers and in the homogeneous case
f = 0. The linear inhomogeneous case was treated in [18] and [21] for minimizers.

We point out that the regularity of the free boundary for the inhomogeneous problem f £ 0
had not been obtained even in the case of p(x) = p.

For other references related to the free boundary problem under consideration in this paper we
would like to refer the reader to [3], [4], [5], [9], [10], [111, [27], [28], [30], [31], [32], [34], [35]
and the references therein. This list is by no means exhaustive.

An outline of the paper is as follows: in Section 2 we define the notion of weak solution to the
free boundary problem P( f, p, A*) and we derive some properties of weak solutions. In Section 3
we study the behavior of weak solutions to the free boundary problem P( f, p, A*) near “flat” free
boundary points. In Section 4 we study the regularity of the free boundary for weak solutions to
the free boundary problem P (f, p, A*). In Section 5 we present an application of these results to
limit functions of the singular perturbation problem that we studied in [25]. Our results apply to
limit functions satisfying suitable conditions that are fulfilled, for instance, under the situation we
considered in [26].

1.1 Preliminaries on Lebesgue and Sobolev spaces with variable exponent

Let p : 2 — [1,00) be a measurable bounded function, called a variable exponent on £2 and
denote pp.x = esssup p(x) and pni, = essinf p(x). We define the variable exponent Lebesgue
space LP1)(£2) to consist of all measurable functions u : 2 — R for which the modular 0, () (u) =
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u(x)|P™) dx is finite. We define the Luxemburg norm on this space by
Q g
lullLro (@) = lullpey = inf{A > 0 0py(u/A) < 1}.

This norm makes L?®)(£2) a Banach space.
There holds the following relation between o, (#) and |[u ||z »¢:

1/ Pmin 1/ Pmax
min {( [ i ax) ([ 170 ax) Y < o ey
Q Q
1/ Pmin 1/ Pmax
$max{</ |u|P(x)dx) (/ |u|1’(x)dx) }
2 Q

Moreover, the dual of L?0(£2) is L?'©)(£2) with ﬁ + ﬁ = 1.

Let W20 (£2) denote the space of measurable functions u such that u and the distributional
derivative Vi are in L?®)(£2). The norm

lull1,pe) = lullpey + 1TVUllpe

makes W1-70) a Banach space.
The space Wol’p(')(.Q) is defined as the closure of the C$°(£2) in W70 (£2).
For more about these spaces, see [12, 20] and the references therein.

1.2 Preliminaries on solutions to p(x)-Laplacian

Let p(x) be as above and let g € L°°(§2). We say that u is a solution to
Apu = g(x) in £2

if u € WHPO () and, for every ¢ € Wol’p(') (£2), there holds that

/ [Vu(x)|PP2Vu - Vo dx = —/ @ g(x)dx.
2 2

Under the assumptions of the present paper (see 1.3 below) it follows from [36] that u € L (£2).
For any x € £, £, € RY fixed we have the following inequalities

In—&P® < C(In|P@ 2 — [EPO28)(n - &) if p(x) = 2,

(x)—
=P (Il + 1) < CnPO 2 — 1817926 — ) if p(x) < 2.

These inequalities imply that the function A(x,£) = |§|P®)~2¢ is strictly monotone. Then, the
comparison principle for the p(x)-Laplacian holds since it follows from the monotonicity of

A(x, §).

1.3 Assumptions

Throughout the paper we let 2 C R be a domain.
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Assumptions on p(x). We assume that the function p(x) verifies
1 < pmin < p(X) < Prmax < 00, x e 2. (1.1)

Unless otherwise stated, we assume that p(x) is Lipschitz continuous in £2. In some results we
assume further that p € WH(Q2) N W24(2).

Assumptions on A*(x). We assume that the function A* is continuous in £2 and verifies
0 < Amin S A*(x) < dpax < 00, x € . (1.2)

In our main results A*(x) is Holder continuous in £2.

Assumptions on f(x). We assume that f € L°(£2). In some results we assume further that
fewhi().

1.4  Notation

N spatial dimension
2N d{u >0} free boundary
|S| N -dimensional Lebesgue measure of the set .S
wN-1 (N — 1)-dimensional Hausdorff measure
By (x0) open ball of radius r and center xg
B, open ball of radius r and center 0
Br+ =B, N{xy >0}, B, = B, N{xy <0}
B/ (xo) open ball of radius r and center xo in RV ™1
I

B] open ball of radius  and center 0 in RV !
_ 1
B, o) ¥ = B Gl Sy (x) 1
U= o udpN-1

By (xo0) ®NV=T(3B(x0)) 0By (x0)
As characteristic function of the set S
ut = max(u,0), u~ = max(—u, 0)
(€,n) and £-9 both denote scalar product in RY

2. Weak solutions to the free boundary problem P( f, p, A*)

In this section we define the notion of weak solution to the free boundary problem P ( f, p. 1 ™).

We also derive some properties of the weak solutions to problem P( f, p, A*), which will be
used in the next sections, where a theory for the regularity of the free boundary for weak solutions
will be developed.

In all the results of this section p(x) will be a Lipschitz continuous function.

We first need

DEFINITION 2.1 Let u be a continuous and nonnegative function in a domain 2 C RY. We say
that v is the exterior unit normal to the free boundary £2 N d{u > 0} at a point xo € £2 N {u > 0}
in the measure theoretic sense, if v € RV, |[v| =1 and

. 1
rll_f)% g /Br(xo) | X(u>0} = X{x/ (x—xo.v) <0} dx = 0. 2.1
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Then we have

DEFINITION 2.2 Let £2 C R¥ be a domain. Let p be a measurable function in 2 with 1 < ppi, <
P(X) < pmax < 00, A* continuous in £ with 0 < A < A% (X) < Apax < 0o and f € L™(£2).
We call u a weak solution of P(f, p, A™) in £2 if

1. u is continuous and nonnegative in 2, u € W20 (£2) and Apxyu = fin 2 N {u > 0}.
2. For D CC 2 there are constants ¢in = Cmin(D), Cnax = Cmax (D), 1o = ro(D), 0 < i <
Chax> Fo > 0, such that for balls B, (x) C D withx € d{u > 0} and 0 < r < rg

3. For R¥"1ace. xo € 0eafu > 0} (this is, for KV ~1-almost every point xo € £2 N d{u > 0} such
that £2 N d{u > 0} has an exterior unit normal v(xo) in the measure theoretic sense) u has the
asymptotic development

u(x) = A% (xo){x — xo.v(x0)) + o(|x — xo]). (2.2)
4. For every xo € £2 N d{u > 0},

lim sup |Vu(x)| < 1*(xo).
x%xo

u(x)>0

If there is a ball B C {u = 0} touching £2 N d{u > 0} at x, then,

. u(x)

1 ———— > A*(x0).
mSup o, By~ 0
u(x)>0

DEFINITION 2.3 Let v be a continuous nonnegative function in a domain £ C RY. We say that
v is nondegenerate at a point xo € £2 N {v = 0} if there exist ¢ > 0, 7o > 0 such that one of the
following conditions holds:

][ vdx =cr for0<r <y, 2.3)
By (x0)
][ vdx =cr forO<r <y, (2.4)
0By (x0)
sup v=cr forO<r <. (2.5
By (xo)

We say that v is uniformly nondegenerate on a set I C §2 N {v = 0} in the sense of (2.3) (resp.
(2.4), (2.5)) if the constants ¢ and 7y in (2.3) (resp. (2.4), (2.5)) can be taken independent of the
point xg € .

REMARK 2.1 Assume that v > 0 is locally Lipschitz continuous in a domain 2 C RV, v e
wr0(2) with Ap)V = fxw>0y, where f € L°(82), 1 < pmin < p(x) < pmax < 0o and p(x)
is Lipschitz continuous. Then the three concepts of nondegeneracy in Definition 2.3 are equivalent
(for the idea of the proof, see Remark 3.1 in [22], where the case p(x) = 2 and f = 0 is treated).
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We will now derive some properties of the weak solutions.

Lemma 2.1 Ifu satisfies the hypothesis (1) of Definition 2.2 then A = Ay, := Apyu — fYiu>o0} is
a nonnegative Radon measure with support on §2 N d{u > 0}.

Proof. The proof follows as in the case p(x) = 2, that was done in [24], Lemma 2.1. O

Proposition 2.1 Assume that u satisfies hypothesis (1) of Definition 2.2. Assume moreover that
u € L®(2), |VpllLe < L and there exist constants Cy > 0, Fo > 0 such thatif x € 2Nd{u > 0},
By (x) C 2 andr < Py, then

sup u < Cyr.

Brx)

Then, u is locally Lipschitz. Moreover, for any D CC S2 the Lipschitz constant of u in D can be
estimated by a constant C depending only on N, prin, Pmax, L, dist(D, 082), |ul|Loo(2), | f lLoo(2),
Co and ry.

Proof. We will find a constant C such that [Vu| < C in D N {u > 0}. Let r; = dist(D, 9§2)
and y € D N {u > 0} such that dist(y, d{u > 0}) < min{7, 3, 1}. Let X € d{u > 0} such that
r = dist(y, 0{u > 0}) = |x — y|. Then B,(y) C Bz,(x) and thus,

1 1
—sup u < — sup u < 2Co.
P Bryy " By

We will show that there exists C such that

~ 1 .
|Vu(y)| < C(l —+ (_ sup u)l’max/Pmm)'
" Br(»)

In fact, let v(z) = %u(y + rz). Then, ||v||zoo(B,) < 2Co and Apjx)v = f in By, with p(z) =

p(y +rz), f(z) = rf(y + rz). There holds that pmin < p(X) < Pmax, |VPllzee < L and
I fllzooB,) < Il fllLeo(e), if 0 < r < 1. By the local results in [14] it follows that v € Cl:)f(Bl)
and then, there exists C1 > 0 such that ||Vv||ca (g, ,,) < Ci. Therefore, if z € By/2(0)

[Vo(0)] < G2 + |[Vo(2)].

and thus, if x € B,/2(y),
[Vu(y)] < Cz + |Vu(x)|.

If |Vu(y)| < 1, the desired bound follows. If [Vu(y)| = 1, we get
[Vu(y)[Pmin < [Vu(p)[P® < C3(1 + [Vu(x)[P®).

Integrating for x € B,/>(y), we obtain

VuIre < a1+ f

|Vu(x) 7).
By /2(y)
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Applying Cacciopoli type inequality (see [14], Lemma 3.1, (3.5)) we have, for some constants Cy4
and Ry that, if » < R and w =7£Br () U(X),

|Vu(y)|Pmn < C4(1 +][B N (M)P‘”)

< C4<2 + (% sup u)pm"“).
r By (y)

This gives the result in case dist(y, d{u > 0}) < Ry, with R; = min{Ry, %0, %‘, 1}. If, on the other
hand, dist(y, d{u > 0}) = R;, the local results of [14] give

IVu(y)| < C,

for a constant C depending on N, puin, Pmax. L llullLoo(2) | f lLoo(2), R1. We thus obtain the
desired estimate. O

Lemma 2.2 Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. For D CC §2 there
are constants 0 < Cpmin < Cmax and 7o > 0 such that for balls B,(x) C D with x € d{u > 0} and

0<r<ry
1

Emin < _:[ udx < Cmax- (26)
r By (x)

Proof. The result follows from Proposition 2.1, Lemma 2.1 and Remark 2.1. O

Lemma 2.3 Assume that u satisfies hypotheses (1) and (2) of Definition 2.2.

Then, for any domain D CC S2 there exist constants ¢ and ro > 0, with 0 < ¢ < 1, depending
on ||Vullpeo(py, | fllLeo(D) 70, Pmin Pmax ||V Pl|lLoo(p) and cmin, such that for every B, C D,
centered at the free boundary with 0 < r < ro we have

|Br N {u > 0} >
|Br|

Proof. We first notice that, by Proposition 2.1 and Lemma 2.2, u is locally Lipschitz and (2.6) holds.
Let B, (x0) C D with xo € 0{u > 0}. We observe that u(x) < r||Vul||peo(py in {u > 0} N B, (xp).
Therefore, for 0 < r < 7y

- 1

Br(x0) N{u >0
Crmin < —][ udx < ||VM||L<>°(D)| r(x0) N4 /|
By (x0)

| B (x0)]

r

O

REMARK 2.2 Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. It follows from
Lemma 2.3 that the free boundary has Lebesgue measure zero.

Lemma 2.4 Assume that u satisfies hypotheses (1) and (2) of Definition 2.2.

Then for any domain D CC 2 there exist constants ¢, C and ry depending on N, pmin, Pmax»
[IVpllLeo @y, || fllLoo(my, [IVUllLoo(D)s Cmin: Cmax and ro such that, for every B, C D centered at
the free boundary, with r < ro, we have

crN1 S/ dr<crVN 1,
By

Here A = Ay, is as in Lemma 2.1.
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Proof. Let& € Cg°(£2),§ = 0. Then,

/ gdr = —/qulP(x)’2Vu'V.§dx—/ fEdx.
I} {u>0}

Approximating yp, from below by a sequence {£,} in C§°(§2) such that0 < &, < 1,§, = lin
B._1 and |V§&,| < Cnyn and using that u is locally Lipschitz, we have that

r

_/|vu|p(x)—2w.vsn dx—/{ }fsn dx < Con|B, \ B,_1| + || f|lLeo ()| Br |
u>0 n

N-1
$C1r )

if r < 1, with Co = Co(Pmax. ||Vul|Leo(py. N) and C1 = C1(pmax, [|Vul|Loo(py. N, || f1|Loo(D))-

Then, as

/ Endr — dA,
2 B,

the bound from above holds.

Let us now prove the bound from below. Arguing by contradiction we assume that there exists
a sequence of functions uy satisfying hypotheses (1) and (2) of Definition 2.2 with power py (x)
and right hand side fi(x), with ppin < pr(X) < Pmax ||Vpk||Loo(D) < Ly, ||fk||Loo(D) < L,
and ||Vugl||reo(py < Lo, and balls B, (xx) C D, with xx € d{ux > 0} and rpy — 0 with
A = Apy Uk — fi X{uy >0y satisfying that fBrk ) AMe < exre¥ ! with e — 0. Let v (x) =

U (X +Tix)
Tk

Ug — Vo uniformly in B;/,. We can also assume that x; — xo € D.

We have v = 0 and Ap, (v = f;c in B1(0) N {vx > 0}, with pr(x) = pr(xx + rex),
Fe(X) = i fi (xk + rex). We can assume that py — po € R uniformly on compact subsets of
B1(0).

We claim that Vv — Vg a.e. in Bj/,. In fact, on one hand, by the interior Holder gradient
estimates, we have that Vv — Vg uniformly on compact subsets of {vg > 0}.

On the other hand, if B-(X) C {vo = 0} N By/2(0), then B,;5(X) N d{vg > 0} = @ for large k
by the nondegeneracy. So, either B,/ (X) C {vx = 0} for a subsequence, or else vy > 0in B,/5(X)
for large k. In any case, Vv — Vg uniformly in B,/4(X). Now observing that, with the same
argument used in Remark 2.2, we get that | B; /2 (0) N d{vp > 0}| = 0, the claim follows.

Then, forall § € Cg°(B1/2),§ = 0,

. As the vy s are uniformly Lipschitz in B1(0) and vg(0) = 0, we can assume that

_/ |Vvo|po*2vv0 -VE = lim <_/ |Vvk|ﬁk(X)*2Vvk -VE —/ ﬁgx{vk>o}).
B> k—o00 B> B>

On the other hand, denoting ¢(y) = S(%), we have

[ vl e2vu Ve [ fieren
B2 B2
1

=—7 pdAr < |lpllLoe(s, ex — 0.
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Therefore Apyv9 = 0in Bj/,. But vg = 0 and vo(0) = 0, so that by the Harnack inequality we

have v9 = 0 in By ;.
On the other hand, 0 € d{v; > 0}, and by the nondegeneracy, we have

/ v =c¢ > 0.
B,y

/ vo=c>0
B4

which is a contradiction. O

Thus,

The next result gives a representation formula for weak solutions. We will denote by
KNV=1| 8{u > 0} the measure ¥V ! restricted to the set d{u > 0}.

Theorem 2.1 Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. Then,
(1) RY=Y(D N d{u > 0}) < oo, for every D CC £2.
(2) There exist a borelian function q,, defined on 2 N d{u > 0} such that
Apeott — fxgus0y = qu ¥ ' 3{u > 0}
(3) Forevery D CC §2 there exist C > 0,c > 0 and r1 > 0 such that
erV < RVTY(B, (x0) N 3{u > 0}) < CrV !

for balls By(xo) C D withxg € D N d{u > 0} and 0 < r < ry and, in addition,
4) ¢ <qu<CinDnNofu>0}

Proof. The result follows as Theorem 4.5 in [1]. O

REMARK 2.3 Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. It follows from
Theorem 2.1 that the set £2 N {# > 0} has finite perimeter locally in £2 (see [15] 4.5.11). That
is, ity := —V x>0y is a Borel measure, and the total variation |, | is a Radon measure. In this
situation, we define the reduced boundary as in [15], 4.5.5. (see also [13]) by, dyeq{u > 0} := {x €
£2 N d{u > 0}/|v,(x)| = 1}, where v, (x) is the unit vector with

/ | Xtu>0) — Xty/y—xa o) <a] = o(r™) (2.7)
By (x)

for r — 0, if such a vector exists, and v, (x) = 0 otherwise. By the results in [15] Theorem 4.5.6,
we have
pu = VY 71 Bpeqdu > 0.

We also have the following result on blow up sequences

Lemma 2.5 Assume that u satisfies hypotheses (1) and (2) of Definition 2.2. Let By, (xi) C £2 be
a sequence of balls with pr — 0, xy — xo € §2 and u(xy) = 0. Let us consider the blow-up
sequence with respect to By, (xx). That is,

1
ug(x) = —u(xg + pkXx).
Pk

Then, there exists a blow-up limit uy : RY — R such that, for a subsequence,
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U —> Ug in Clgc(RN)for every) <o < 1,
d{uyr > 0} — d{up > 0} locally in Hausdorff distance,

Vur — Vug uniformly on compact subsets of {ug > 0},

Vup — Vug a.e. in RV,

If x; € 0{u > 0}, then 0 € d{ugy > 0},

Ap(xo)“o =0in {uo > O},

ug is Lipschitz continuous and satisfies property (2) of Definition 2.2 in RN with the same
constants as u in a ball B, (xo) CC £2.

Nk wnD =

Proof. The proof follows with similar ideas to those in [1], 4.7 and [2], pp. 19-20. We here use that
Appuk = fr in{ug > 0}, where pr(x) = p(xk + prx) and fi(x) = pi f(xx + prx) satisfy
pk — p(xo) and fi — 0 uniformly on compact sets of RY . This implies that Vi are uniformly
Holder continuous on compact subsets of {ug > 0}. (Notice that some of these arguments were
already employed in the proof of Lemma 2.4). O

We will next prove an identification result for the function ¢,, given in Theorem 2.1, which holds
at points xo € dreq{u > 0} that are Lebesgue points of the function ¢,, and are such that

. %N*I(E){u > 0} N B(xo, r))
lim sup

r—0 %N_I(BI(XO,I‘)) sl (28)

(Here B'(xg,7) = {x' e RN /|x'| < r}).
Notice that under our assumptions, XY ! — a.e. point in d,cq{u > 0} satisfies (2.8) (see Theorem
4.5.6(2)in [15]).

Lemma 2.6 Assume that u satisfies hypotheses (1), (2) and (3) of Definition 2.2. Then, q,,(xo) =
A* (x0)? YO for RV=1 e, xo € Oreafut > O}

Proof. If u satisfies (3) of Definition 2.2, take x¢ € 0req{u > 0} such that
u(x) = A*(x0){x — x0.v(x0))” + o(|x — xol).

where v(x¢) is the exterior unit normal at x¢ in the measure theoretic sense. We assume v(xg) = ey.
Take pr — 0 and ug(x) = iu(xo + prx). If & € C§°(£2) we have

—/ |Vu|1’<x)—2w.vsdx—/ fEdx :/ Gu(X)EARN T,
{u>0} {u>0} {u>0}

and if we replace £ by & (x) = pkg(x;;‘o) with § € C§°(Br), k = ko and we change variables,
we obtain

- / Vi |PFO 2V - VE dx — / fikdx = / du (0 + pr0)Ed RN,
{ur>0} {ur>0} o{ux>0}

where pr(x) = p(xo + prx) and fr(x) = px f(x0 + pxx). From Lemma 2.5, it follows that, for a
subsequence, ux — uo uniformly on compact sets of RY , with ug(x) = A* (x0)x and moreover,

[Vug [Pk 2V, — [Viug|Po72Vug ae. in RN, with pg = p(xo). Thus,

—/ | Vg |[PEO=2vy, - VE dx —/ fiédx — — |Vuo|Po™2Vug - VE dx.
{uy>0} {ux>0}

{xn <0}



REGULARITY IN AN INHOMOGENEOUS FBP FOR THE p(x)—LAPLACIAN 211

We now let
£(x) = min 2(1 = [xn DF. n(x1, ... xn21),

for |xy| < 1 and £ = 0 otherwise, where n € C§°(By), (where B/ is a ball (N — 1) dimensional
with radius r) and n = 0. Then, if x¢ is a Lebesgue point of ¢, satisfying (2.8), we proceed as
in [1, p. 121], and we get

/ (50 + ) ARV S (o) EdRNT, 2.9)
d{uy >0} {xn=0}

As Vug = —A*(xg)en x{x, <o}, it follows that
Fo0n ! [ e 0 = gu) [ e o ant
B/ B/
Thus, we deduce that for ¥V~ -almost every point xo € dreaftt > 0}, qu(xo) = A*(x0)?*O~1. O

3. Flat free boundary points

In this section we study the behavior of weak solutions to the free boundary problem P( f, p, A™)
near “flat” free boundary points.

Throughout the section we assume, unless otherwise stated, that f is bounded, p(x) is Lipschitz
continuous and A*(x) is Holder continuous.

As in previous papers, we start by defining the flatness classes.

DEFINITION 3.1 Let 0 < 01,02 < 1, T > 0. We say that u belongs to the class F(o1,07;7) in
B, (x0) in direction v with power p(x), slope A*(x) and right hand side f(x) if u is a weak solution
to the free boundary problem P ( f, p, A*) in B,(xo), xo € d{u > 0} and

1. u(x) = 0if (x — x9, V) = 010, X € By(xp),
2. u(x) = —A*(xo)({x — x0.,v) 4+ 02p) if (x —xp,v) < —02p, x € By(x0),
3. [Vu| < A*(x0)(1 + 7) in B, (xp).

After a rotation and a translation we may assume that xo = 0 and v = e . We will not explicitly
mention the direction of flatness when v = ey.
We may further reduce the analysis to the unit ball by the following transformations:

a(x)=”(gx), P = plox). ) =A%pw). FG) = pfpr). Gl

Then, if u € F(o1,02:7) in B, with power p, slope A* and right hand side f, there holds that
u € F(o1,02; 1) in By with power p, slope A* and right hand side f.

Observe that, if I < pyin < p(X) < Pmax < 00,0 < Apin < A*(X) < Apax < 00, p € Lip with
|Vp| < Ly, A* € C¥ with [A*]ca* g,y < C* and f € L®(By) with | f| < Lo, there holds that
D, A* and f_ are in similar spaces in By and 1 < ppin < p(X) € Pmax < 00,0 < Apin < A* (x) <
Amax < 00, |Vp| < Lip, | f| < Lap and [A*]cax g,y < C*p* .

The first lemma states that, if u vanishes for x5 = o, there holds that, in a smaller ball, u is
above a hyperplane for xy < —e.
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Lemma 3.1 Let p € Lip(By), A* € C* (By), f € L®(By) with [Vp| < Lip, | f| < Lap,
A*lca* B,y < C*p*" and C*p*" < A*(0)o. Let u € F(0,1;0) in By with power p, slope A* and
rhs f

Let 0 < ¢ < 1/2 and % < R < 1. There exists o9 = 0¢(e, N, R, Pmin> Pmax»> Amins
Amaxs L1, L2, C*) such that if 0 < o¢ there holds that u € F(c/R,¢&;0) in Bg with the same
powet; slope and rhs.

Proof. We follow the construction of [2] with the variation of [8]. In this paper, we consider an
arbitrary R instead of R = 1/2 in order to pursue the argument in the next steps.
Let R” = R + (1 — R)/4. As in these papers, we will prove that, forevery 0 < r < (1 — R)/8
there exists o9 = 0o(r, R, Pmins Pmax> Amin> Amax> L1, L2, C*) such that for o < oy,
(I1-R)

u(g) = A*(0)[-&y —4r] for & € 0Bp withéy < — YR (3.2)

Then, integrating along vertical lines a distance at most R’ and using that |Vu| < A*(0)(1 + o), we
get

u( En + o) = u) — 2" (0)(1 + o)
= A*(0) — (Ew + @) —4r — R'o]
=

A*(0)[ — (v + @) —¢R]
if0<a<R,r=min %, %} and o < min{RR—_fl,oo}.
This implies that, for |x| < R, xy < —Re,

u(x) = —1*(0)(xy + Re).

Sothatu € F(o/R,¢;0) in Bg with power p, slope A* and rhs f, and the lemma will be proved.
In order to prove (3.2), we will show that, once we fix 0 < r < (IER) there exists ¥ > 0 such

that, for every £ € 0Bgs with £y < —(1 — R)/4, there exists x¢ € 9B, (§) such that

u(xg) = =A*(0)(1 —ko)xg . (3.3)
Then, by using again that |Vu| < A*(0)(1 + o),

u(€) = u(xg) — A*(0)(1 + 0)r = 2*(0)[—(1 —k0)xe y — (1 + 0)r]
= A*(0)[—En —r — ko —2r] = A*(0)[-Ey — 4r]

ifo < % that is, we get (3.2).

The existence of a point xg¢ satisfying (3.3) is done by assuming that such a point does not
exist and getting a contradiction if « is large depending on 7, R and the constants in the structure
conditions. The inequality that will allow to get this contradiction will be achieved if o is small
depending on the same parameters. Such inequality comes from the construction of two barriers in
the following way:

Let n € C§°(B]) given by

9ly|? :
exp(— = ) if |yl <

r)(y) = 1 g‘y‘z )
0 if |yl =

3

W= W=
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Let s = 0 be maximal such that
BiN{u>0}CD:={xeB;:xy<o—snix)}.

Then, as 0 € d{u > 0} there holds that s < 0.
First, we let v € W20 (D \ B, (&)) be the solution to

Apeyv = —Lap in D\ Br(§).

v=20 on 0D N By, (3.4)
v =A*0)(1+0)(c —xN) on 0D\ By,

v=-A%0)1 —«ko)xy on 0B(§).

Since the boundary datum coincides with A*(0)(1 4+ 0)(0 —xy —sn(x’)) on dD, it has an extension
¢ € WH®(D \ B,(£)) and therefore the solution v exists by a minimization argument in ¢ +
Wo? (D \ B, (§).

As we are assuming that (3.3) does not hold for any x¢ € 9B, (§) and, sinceu = 0if x € 0DNB;
and |[Vu| < 1*(0)(1 + o), there holds that u < v on (D \ B,(£)). Now, recalling Lemma 2.1, we
get Apyu = f x>0y = —L2p, then comparison of weak sub- and super-solutions gives

u<v in D\ B.(§).

Now, let z € dDNd{u > 0}N{|z’| < 1/3}. Then, there exists a ball B contained in {u = 0} such that
z € OB. By the definition of weak solution and, since A*(z) = A*(0)—C*p®" |z|*" = 1*(0)(1—0),
we deduce that

2*(0)(1 — 0) < A*(2) < lim sup —&)

x—z  dist(x, B)
u(x)>0

< [Vou(2)]. (3.5)

We will get a contradiction once we find a barrier from above for v in the form w = v; — kov,
with |V < A*(0)(1 + C30), |[Vvz| = cA*(0) > 0, v1 > 0,v3 > Oclosetozand vy = vy =0
on 0D N By close to z. In fact, if such a barrier w exists, by (3.5) there holds that

A (0)(1 —0) < [Vu(2)] < [Vw(z)| = [Vui(2)| — ko |Vva(2)] < A*(0)[1 + C30 — cko]

and this is a contradiction if « is large depending only on C3 and c. Since the constants C3 and ¢
will depend only on 7, R, Pmin, Pmax»> Amin» Amax> L1, L2 and C*, the lemma will be proved.
As in [8] and [16], the idea of the construction of v; and v, is that they will be such that

w = v; — kovy will satisfy
A*(0)

< |Vw| < 21*(0) (3.6)

if o is small depending on those constants. Then,
Apyw = |Vw|p(x)72[2 bij (x)wxl.xj + Z b; (x)wx_/.]
ij J

with b;; = 8;; + (p(x) — 2)% and b; = py; log|Vw|. There holds that

Vw|?

Bilv|? < Zbijl)l’Vj < Balv|? Vv eRN (3.7)
ij
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with 1 = min{l, pmin — 1}, B2 = max{1, pmax — 1} and, with A = max{|1og Apmin|, | 10g Amax|} +
log2,b = (b1, ,bN),

bl < AL1p < =225 — Cyo, (3.8)

if o < £, with Co = A& Ama
Thus, the idea is to construct v in such a way that

2 3
ZA%(0) < [Vuy| < ZA%(0
O < Vol < 52%0)

and )
Ty <-S7'L, gixo =—-Mo in D,
with § = min{(’l‘;i")Pmirz, (A‘;“)Pm“ﬁz, (2 max) P2 (2 max ) P" "2} for any operator

T = Zbij(x)axl_xj + ij(x)axj
ij J

with {b;;} satisfying (3.7) with B = min{1, pmin — 1}, B2 = max{l, pmax — 1} and {b;} satistying
|b| < Coo

with Cy the constant in (3.8).
Then, v, will be a function satisfying

Tv, =0 in D\ B.(§)
for any such an operator § with
0 < cA*(0) < [Vva| < CA*(0)

for some constants ¢, C depending only on R, r. Here D is a smooth domain contained in D and
containing D \ B—g)/10(dB; x {0}). In this way, once we fix k > 0 there holds that w satisfies
(3.6) if o is small and therefore,

Apeyw < —Lap = Apyv in D\ By (§).

The functions vy and v, are also constructed in such a way that w = v on 8(5 \ B, (E))
As in the previously cited papers, we let

di(x) = —xy +0 —sn(x’) and vi(x) = )L*(O)ﬁ(l —e (x)) in D
M1

with u; = Cyo and y; = 1 4+ Cy0. Then, |Vvy| < A*(0)(1 + Co)(1 + C,0) with C depending
only on 7 (in particular, [Vv| < A*(0)(1 4+ C30) with C3 depending only on C; and 1). Moreover,
Dy;x;v1 = A*(0)y1e ™19 [ Dy, dy — pidiy, dix, | Thus,

Vle_l“dl [Nz/\max,BZHDZUHLOOU - lmin,Bl:u*l + /\maxCO(1 + C3G)U]
2N AmaxB2l| D20l oo + 4AmaxCo — € 2CrAminB1]o
—Mo

Tvl

N IN N
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ifo <0(Cy,Cz,C3) and C; = C1(Amin, Amax, B1, B2, Co, M). Cq is fixed from now on.
On the other hand,

2 3
gk*(O) S A*(0)(1 + Cr0)e™ €170+ < |Vy | < A*(0)(1 + C30) < EA*(O) (3.9)

ifo < O'(Cl ,Ca, C3)

The constant C; (and therefore also C3) will be fixed now in order to guaranty that w = v on
the boundary of D \ B, (§).

First, on dD N B; we have v; = 0.

Observe that

v1(x) = A*(0)(1 + C20)e™217d; = 2*(0)(1 + %U)dl = A*(0)(1 + 40)d;

if C; = 8ando < 0(Cq, ().
Now, on dD \ B; we consider two cases:

(a) |x']| = % Then, n(x") = 0 and d; = 0 — xy. Thus,

v1(x) = A7(0)(1 + 0)(0 — xn).

(b) |x'| < L. Then, |xy|> \/gand

W]

v1(x) = A*(0)(1 + 40) (0 — xn —sn(x"))
= A5 (0)(1 + 0)(0 — xn) + A*(0)[3(0 — xn) — (1 + 40) |0
= A*(0)(1 + 0)(0 — xn) + A*(0)[V6 — (1 + 40)]o
= A*(0)(1 + 0)(6 — xN)

if C» = 8,0 < 0(Cy,C,) and v/6 — (1 + 40) = 0.

(1=R)
8

Finally, if x € 0B, (§) and, since r < , there holds that xy < 0, so that

v1(x) = A*(0)(1 + 40) (0 — xn — s7(x"))
= A1*(0)[ —xy + (1 + 40)(0 — sn(x")) — 4oxn]
> 2% (0)xN.

Therefore, we can fix C, = 8~ for our construgion of vy.
Now, we construct v, in D \ B, (§) with D as described above. We take d; such that

dy € C3(D\ Br(§)), da=00ndD, 0<d,<1inD\ B,(§)

and, moreover - —
0<¢<|Vdy] <£C in D\ B,(§)

with C,é depending only on 7, R.
Then, we take
va(x) = A%(0) 12 (en2d2() _ 1),
1%%)
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First, we fix (2. Then, y; is fixed so that v, < (1;812)/\*(0), that is,

_(0=R)
T8 (em2—1)

V2

Thus, there exist constants depending only on ¢, C, U2, R such that
0 < cA*(0) < |[Vuy| < CA*(0).

Now, we fix (; so that Tvy = 0in D \ B, (§) for any operator § as above.
There holds

T2 = y2[ 2 AminB16? — B2Amax | D?da| oo — C Co0Amax | = 0

if o = o (Amins Amax. B1. B2, ¢, C, Co). (Recall that ¢ and C depend only on r, R).
Now, in order to finish our proof we need to see that w = v; —xov, = vin D \ B, (§). For this
purpose, it only remains to show that the inequality holds on 9B, (£), that is, we have to prove that

w(x) = v1(x) —kova(x) = =A*(0)(1 —«o)xy on 03B, (§).
Recall that vy < @A*(O). Thus,

(I-R)

w(x) = v1(x) —kova(x) = A*(0)(—xpy — TKU) = 1" (0)(1 —ko)xn

since xy < —@ for x € 3B, (§).
And we get a contradiction as discussed above. O

The following lemma gives a control of the gradient of # from below on compact sets of B; .

Lemma 3.2 Let p, A*, f,p,u as in Lemma 3.1. For every €,§ > 0, % < R < 1, there exists 0y
depending on &, N, 8, R, pmins Pmax> Amin> Amaxs L1, L2, C* such that, if 0 < og there holds that

|Vu| = A*(0)(1 —8) in BgrN{xy < —¢}.

Proof. The proof is entirely similar to the one of Lemma 6.6 in [8]. Let R < R’ < 1. Asin [8] we
use a contradiction argument. In our case by Lemma 3.1, we have that the functions uy € F (%, 1; %)
in Bj satisfy

Apr Uk = fr in X CC Bg,

if k is large depending on X. Here | fx| < Lapk, | < Pmin < pr(X) < Pmax < 00, |Vpr| < Lipg

and C* pk"‘* < #. Thus, by the regularity estimates in [14], for a subsequence, Vuy converges
uniformly on compact subsets of B,. And the proof follows as in [3]. O

Now we can prove one of the main results that states that, flatness to the right (¥ vanishing for
Xy = o) implies flatness to the left in a smaller ball.

Proposition 3.1 Let p,A*, f,p,u as in Lemma 3.1. Let 1/2 < R < 1. There exist o9 =
GO(N, Ra Pmin, Pmax, A'minv A'mzuu Lla L27 C*)’ CO = CO(N7 R, Pmin, Pmax, Aminv A'maxa L17 L27 C*)
such that, if o < og there holds that u € F(o/R,Cyo;0) in Bg with the same power, slope
and rhs.
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Proof. The proof follows as the one of Theorem 6.3 in [8]. We let R = R + (1 — R)/4 and
R” = R+ (1 — R)/2.In our case, since |Vu| = 2 2(0) in Bpr N {xy < —(1—R)/8}if ¢ is small
and |Vu| < 24*(0), there holds that u satisfies

Tu=|Vul* 7™ f(x) in BrrN{xy <—(1-R)/8}

for an operator as the one considered in Lemma 3.1.
Then, as in [8] (see also [2]) we take

w(x) = A*(0)(1 +0)(6 — xy) —u(x)

that satisfies

(l—R)}

Tw=-A1*(0)(1 + )by — |Vu[>P® f(x) in BgrnN {xN <

and, using that w = 0in By N{xy < o}, taking & € 0Br' N{xy < —(1— R)/4}, applying Harnack
inequality in B(;_g)/3(§) and using that the right hand side is bounded by Co for a constant C
depending only on R, pmin, Pmax> Amin» Amax» L1, L2 and C* we get, as in [2, 8],

w() < CA*(0)o.

Then, the proof follows as in [8]. O
Finally, we can improve on the control of the gradient.

Lemma 3.3 Let p, A", f, p,u as in Lemma 3.1. For every 1/2 < R < 1,0 < § < 1 there exists
os,r and Cs g depending also on N, pmin, Pmaxs Amins Amax, L1, L2, C* such that, if 0 < o5 g there
holds that
[Vu| = 1*(0)(1 —=8) in BrN{xy <—Csro}.

Proof. It follows exactly as the proof of Theorem 6.4 in [8]. B

Observe that the scalings pr(x) = pr(yk + 2dix), AL (x) = Ay (yk + 2dxx) and fi(x) =
2d fx (yk + 2dgx) satisfy the same structure conditions as the functions pg, A7 and fy that are
independent of k in the contradiction argument. O

Now, in order to improve the flatness in some possibly new direction we perform a non-homo-
geneous blow up.

Lemma 3.4 Let uy € F(0k,0k; 1) in By with power py, slope A, and rhs fi such that 1 <
Pmin < Pk(x) < Pmax < 0O, 0 < A'min < AZ(X) < Amax < oo, vakl < Llpk; Ifk| < LZpk,
A]cer < C*p,‘:* with C*pg* < A (0)tk, o — 0 and ;—’}% —> 0ask — oo.

Fory € By, let

F(v) = sup {h / (v, 0xh) € B > 03},
Fi (y):=inf{h/(y.orh) € d{ux > 0}}.
Then, for a subsequence,
(1) F(y):=lim supkz:go Fk+(z) = lim insz:go F, (z) for every y € BY.

Moreover, F]:r — F, Fi_ — F uniformly, F is continuous, F(0) =0and |F| < 1.
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(2) F is subharmonic.

Proof. (1) is proved exactly as in Lemma 7.3 in [1].

In order to prove (2), we take g a harmonic function in a neighborhood of B;.(yo) CC B] with
g > F on 0B (yo) and g(y0) < F(yo) and get a contradiction. We define the sets Z (¢), Z_(¢)
and Zy(¢) as in the previous papers. That is,

Z:= By xR Zy@):={(nh) e Z/h> ()

and corresponding definitions for Z_(¢), Zo(¢).

Observe that we may assume that ® V1 (Zo(okg) N o{uy > O}) = 0. If not, we replace g by
g + c¢o for some small enough constant cy.

In fact, let ¢c; > 0 small such that g(yo) < g(yo) + ¢ < F(yg) for 0 < ¢ < c¢;. Since by
Theorem 2.1 XV =1(D N d{uy > 0}) < oo for every D CC By, we see that

\{(y,h) €eZ/org(y) <h<or(g(y)+ cl)} N {ug > 0}| =0,

which implies that [ Hi(c)dc = 0, for Hg(c) = ®N~1(Z(ok (g + ¢)) N d{u > 0}). Then, we
can take co € (0, c1) such that Hy(co) = O for every k, and now replacing g by g + co we have
RV=1(Zo(oxg) N d{uy > 0}) = 0.

In the following we denote Z4+ = Z, (0% g) and similarly Z_ and Zy.

Now, by using the representation formula (Theorem 2.1) and proceeding as in [1], Lemma 7.5,
we get

/ |Vaug |[PEO2y v d RV = / Qup RN +/ fi dx.
{ur>0}NZo Hur>0NZ 4 {ur>0NZ 4

Since gy, = 0and gy, (x) = A} (x)Pc®=1 ®N=1 e on dreq{ux > 0},

/ Gy dniN-1 2/ /\Zpkfl dnhN-1
Mur>03NZ 4 Orea{ur>03NZ 4

> min {()L,";(O)(l — e )P (o) (1 — c**p,‘:*))"f?*l}%N*(amd{uk > 04N Zy)

(3.10)
where C** = ACan’ p,:r = supp, px and p, = infp, pi.Recall that p,:r — Py < Lipg.
On the other hand,
/ fiedx = —Lopi|{ug > 0y N Z4|. (3.11)
{up>03NZ 4
Finally,

/ | Vg |PEO2v v d RN
{ur>0}NZo

< max {(A,’;(O)(l +o) T () + zk))”f?‘l}%N—l (fux > 0} N Zo). (3.12)

From now on, in order to simplify the computations, we assume that A;/(0) > 1. The final result
will be the same if not.
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By (3.10), (3.11) and (3.12),

EO)7F (1 = C ) PETIHN (Bt > 030 Zy)
JF
< Lopg|{ug > 03N Z 4| + 4507 7' (1 + rk)P?—l}eN—l ({ux > 0} N Zy).

Therefore,

RNV (Breafur > 03N Z4)
14+ 7%

S — pktl?e"’*l 0Nz
- C**pﬁ*) (fur > 0} N Zo)

=+ —
SO

L
+ 2Pk —Jug > 04N Zy | (3.13)

HOG BNt

Now, we use the excess area formula Lemma 7.5 in [1] (with E; = {u; > 0} U Z_) that states that,

since F(yo) > g(¥o)s
RN (Orea Ex N Z) = RV 71(Zo) + co} (3.14)

for k large.
Therefore, since there holds Z N dE;, = (Z+ N o{ug > 0}) U (Zo NA{ug = O}) and (3.14), we
obtain

pN-1 (Z4 N Ogeafut > 0}) = pN-1 (Z N0weaEx) — pN-1 (Zo N {ug = 0})
= ®V1(Zo) + cof — RN TN (Zo N {uy = 0}) (3.15)
=KV

N 1(Zo N {ug > 0}) + co,f.
From here, using the facts that

14+ 1%

1 .
NEL I LA
1— C**Pg

THOKA|

and
Lo pg

A (0)75 (1 = Cop P !

< Cipg,

together with |{uy > 0} N Z4| < |By| < C, RV 1({ux > 0N Zo) < ®KV"1(Zo) < C, (3.13)
and (3.15), we get
cof < CCo(tk +pf )+ CCipx < Caltg + pf).
This is a contradiction to our assumptions that C* pg* < A;(0)7y and ‘:—% — 0. O
The following lemma was proved in [2] with ¢ = 1. The result is obtained by rescaling the A
variable.

Lemma 3.5 Let w(y, h) be such that

@ YN wy,y, 4 cwpp = 0in By N {h < 0} with ¢ > 0.
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(b) w(y,h) = ginL'ash /0.

(¢c) g is subharmonic and continuous in B}, g(0) = 0.
(d) w(0,h) < Clh|.

e) w=-C.

Then, there exists Co depending only on C, N and ¢ such that, for every y € B} /2

1/2 1
/ —2(][ g(z)d%”*z) dr < Co.
o 2\ ag

Then, we have

Lemma 3.6 Let uy, py, l,’:, Jf» Pk, Ok as in Lemma 3.4. Let Fr, F," and F as in that lemma. There
exists C = C(N, Pmin, Pmax, Amin» Amax) Such that, if yo € B{/z’

72

1/4
/ i(][ (F = F(yo)) cmN—2) dr < C. (3.16)
0 dB7.(y0)

Proof. The proof follows the lines of the previously cited papers. The idea is that the function
Z(F(yo + %y) - F(yo)) will take the place of the function g in Lemma 3.5.

We write down the proof for the reader’s convenience since we cannot assume that A; (0) = 1
and we have a right hand side in the equation that was not present in the previous papers. We let
Yo € Bi/z and consider the functions g (y, h) = 2ug(yo + %y, Uka+(y0) + %h) in By. From the
fact that uy € F (o, 0x; Tx) in By we deduce that uy € F(40y,40%; T) in By.

In fact, we denote (x', xn) = (yo + %y, Gka+(y0) + %h) and recall that |Fk+| < 1. Then we
have for y € B}, h > 40y that xy > oka+(y0) + 20y = oy implying that uig (y, h) = 0.

On the other hand, for y € B}, h < —40; we have xy < oy FkJr (y0) —20% < —0y. This implies
that g (v, h) = 2ur (x', xn) = =2A7(0)[xn + o] = —A;(0)[h + 4oy ].

Finally, we see that |Viig(y, h)| = |Vur(yo + %y, Ok Fk+(y0) + %h)| < A (0)(1 + %) and we
conclude that u, € F(40y,40%; 1) in By.

Observe that by this change of variables the function Fk+ (y) has been replaced by Z(F k+ (yo +
39) = FF(30)).

Thus, from now on we may assume that uy € F(40y,40%; 1) in By and yg = 0. Let

ug(y.h) + Az (0)h

O '
Then, given0 < § < %,we take k = kg sothat A (0)/2 < |Vug| < 2A;(0)in By_sN{h < —Csoy}
with Cy the constant in Lemma 3.3 with R = 1 — §. We have

Tiwe = Dbl (OWky; + )b (i,

wi(y,h) =

ij J

_ bl]i/' * fk 2—pk

= —lk(O) + —=|Vuy| in Bj_sN{h < —Csor}. (3.17)
Ok Ok

Uk x; Ukx;

Here b{‘j (x) = 6 +(pr(x)=2) Tk‘;j and b}‘ (x) = Pkx; log |Vuy|. Therefore, T is a uniformly

elliptic operator with ellipticity and bounds of the coefficients independent of k. Namely, they satisfy
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(3.7) and )
|bk| < Copr
(see (3.8)).
On the other hand, the right hand side satisfies
bk
N Ax0) + iwukﬁﬂ’k <KX 50 as k- oo (3.18)
Ok Ok Ok

We will divide the proof into several steps.

(i) We prove that there exists a constant C > 0 such that ||wg ||Loo(Bl—) <C.
In fact, recall that ux € F (40, 40x; 1) in By so ug(0,0) = 0 and [Vug| < AZ(0)(1 + 7¢). On the
other hand, there holds that uy (y, h) = 0if h > 40y. Therefore,

ur(y.h) < A0)(A + ) (4ox — h)
so that, if —K < h <0,
wie (. h) < 415 0)(1 + ) — A,’;(O);—kh <C.
k

On the other hand, if 1 < —40y, since uy € F (40, 40x; 1) in By, by (2) in Definition 3.1,

ur(y,h) + A;(0)h - _A,’;(O)(h +4ox) — AL (0)h
O - O

wi(y, h) = = —427(0).

Finally, if —4o, < h <0,

AL )1 + ) (dox —h) = A (O)h
Ok

wi (y, h) =

XEO0)2 + )k

= —4/\,’;(0)(1 + ) +
Ok

= —C.
(ii)) Uniform bounds of first and second order derivatives.

Recall that wy satisfies (3.17) that is uniformly elliptic with ellipticity constants and bounds of the
coefficients independent of k in By_g N {h < —Csoy}. By step (i) we then have

I U)k“cl.a(x) <Cx V X cCC B; (3.19)
and, forevery 1 < g < oo,
I wk||W2<q(3c) <Cx V XcCcB;. (3.20)

Hence, for a subsequence that we still call wy, there exists w € C* N W24 such that wy — w in
C1(X) and weakly in W24 (X) for every X CC By .

(iii) Determining the equation satisfied by w.
Let ¢;j = &;5 + (po —2)8;nSjn Where pmin < Po < Pmax is the uniform limit of the sequence of
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functions py (for a subsequence). Then, b{‘j — ¢;;j uniformly on compact subsets of B . In fact, by
the uniform estimates of the gradient of wy we have that

|Vur(y.h) + 25 (0)en| = |V (ur (v, h) + A5 (0)h)| < Cxox (3.21)

ifk = kyx and X CC By.
Let Ay = limg_,o A5 (0) (for a subsequence). Then, by (3.21) Vup — —Agen uniformly on
compact subsets of B]". Since A = Amin > 0, there holds that

ukxl- ukx_,-

SinG;
V2

uniformly on compact subsets of B; . And we have proved the convergence.
On the other hand, |b;c (x)| < Coor. Therefore, by passing to the limit in (3.17) we get

> cijwgx; =0 in By (3.22)
ij

(iv) Bounds of w.
Recalling that [Vug| < A7 (0)(1 + 7%), we get

9 AF(0)(1 + ) — A5 (0) o T
—wy(y,h) = -k K — Ak 0) = (3.23)
oh Ok Ok
Thus, for h < 0,
wi(0.1) S ALO) L |h| >0 as k — oco. (3.24)
Ok

Passing to the limit, we find that

w(,h) <0 for h<O.

(v) Letus see that w(y,h) — AgF(y) as h — 07, uniformly in B]_; forevery 0 <§ < 1.
First, as in [2, 8], we can prove that

wi(y,0xh) —A5F(y) — 0 uniformlyin Bj_; x [-K,—2Cs] (3.25)

for every K > 2Cs and every 0 < § < 1. We omit this proof, that relies heavily on Proposition 3.1
(see [2] for the proof).

In order to get the result, following the ideas in [2, 8], we construct a barrier. First, for § > 0 we
let £25 a smooth domain such that

B _,5 C 25 C B _;.

For & > 0 small, we let g. € C3(3£2;s) such that gellc3(aszs) < € with C independent of ¢ and §
and
AgF —2e < g SAJF —¢ in 0825 NIB_;5; N{h =0}
ge S AGF —¢ in 0025 N{h =0}
geSw—¢ in 0825 N{h <O0}.
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Then, we let ¢, the solution to

Zij Cl'jgngixj =1 in .Qg
P = ge on 0825

with ¢;; asin (3.22).
On one hand, if k = k(e, §),

¢ <wg on 3925 N{h < —-2Csor}.
On the other hand, since ||¢>s||cz(9—8) < C, there holds that, for K > 2Cs and k = k(e, 8, K),
¢e <wg on 25N{h=—Koi}.

Recall that, by Lemma 3.3, we have

v Az (0)
|Vug| = ) in Bj_sN{h <—Csor}

and there holds (3.17) and (3.18). Therefore,

1
Towr < KoPX <= in 250 {h < —Koyp)
O 2
if k = ko.
Let us see that |
Skpe = 5 in 2sN{h<—Koy} (3.26)

if K is large independently of ¢ and k is large independently of ¢ and K. In fact, for x € 25,
Tk(P&‘ = Zcij(ibSXij + Z (bl]; ('x) - Ci.i)¢SXij + ijl'c(x)(Psx]'
ij ij J
> 1= | D2¢ellLoe D N1bF — cijlLoe — [1D¥ oo | Vepe [ ow.
ij

On one hand, ||p¥||z < Coox — 0 as k — o0o. On the other hand, by elliptic estimates up to the
boundary {h = —Koy}, since we have proved that |wy | < C,

IV (ur + AL 0)h) || Loo(th<—Kory) = Ok IV Wk oo (th<—Kor})
1 2C
<o C Pk /0K + <
(K - Cg)Uk K — C5

in 25 N{h <—Kog}.

Then, as # < |Vug| < 24;(0) in that set and pg(x) — po — O uniformly in By,

15, = cijllLoo (B nth<—Kowp) < + or(1).

K —Cg

We conclude, by taking K large enough independent of k and ¢ and then, k large, that (3.26) holds.
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Therefore, ¢, < wg in 25 N {h < —Koy}. By letting k — oo we find that ¢, < w in
25 N {h < 0} and then, by letting h — 07,

!

liminfw(y,h) = lim ¢g(y,h) = AgF(y) —2¢ for y e Bj_;.
h—>0— h—0—
In order to get a bound from above, we recall (3.23) and get,
we (0, h) — we (v, —Kog) < —C || if h < —Koy.
Ok

On the other hand, wi (y, —Kox) — A F(y) uniformly in B]_,. Hence, if k is large, and (y,h) €
B s N{h < —Koy},
we(y.h) S AGF(y) +2¢

and we deduce that, for (y,h) € B,
w(y,h) <A F(y) + 2e.

Therefore,
limsupw(y,h) < AgF(y) + 2¢ uniformlyin Bj_g.
h—0—

Since ¢ is arbitrary, we conclude that, forevery 0 < § < 1,

hlim w(y,h) = AgF(y) uniformly for y € B]_;.
-0~

(vi) Final step.
We apply Lemma 3.5 to the function w and recall that when writing w(y, 0) in the original variables
we get Z(F(yo + %y) — F(yo)). So, the result is proved. O

Corollary 3.1 Let uy, pk,kl’;, fi,pr,0r and F as in Lemma 3.4. There exists a constant
C = C(N, pmins Pmaxs Amin» Amax) and, for every 0 < 6 < 1 there exist cg =
co(N, Pmin, Pmax> Amin» Amax, 0), a ball B, and { € RN such that

0
cg<r<6, [U<C, F(y)SE-y+5r for|y| <r.

Proof. The result is a consequence of Lemma 3.6 and the proof follows as Lemmas 7.7 and 7.8
in[1]. (]

Now, we apply the corollary to a weak flat solution u if o is small enough.

Lemma 3.7 Let p € Lip(B,), A* € C¥ (B,), f € L®(B,) such that 1 < pmin < p(x) <
Pmax < 00, 0< Amin < A'*(x) < A'max < oo with va| S Ll’ |f| < L2 and [A'*]Ca*(Bp) < Cc*.
Let 0 < 0 < 1. There exists 69 = 09(0, N, Pmin, Pmaxs> Amins> Amax> L1, L2, C*) such that, if

u € F(o,0;7) in B, in direction v
with power p, slope A* and rhs [ and, ifC*p“* < A*0)t, 0 < 0 and © < 0g0? there holds that

u € F(8o,1; 1) in Bj in direction v
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with the same power, slope and rhs and
cop < p < 6Op, lv—v| < Co.
Here cg and C are the constants in Corollary 3.1.
Proof. Tt follows as Lemma 7.9 in [1] by applying Corollary 3.1 to g (x) = %kuk (prx). (]

Now, in order to improve on the gradient in the flatness class, we find an equation to which
v = |Vu]| is a subsolution.

Lemma 3.8 Let p € Wh®(2) N W24(2) with 1 < pmin < p(X) < pmax < 00 in 2 and
f € L®(2) N Wh4(Q) for some g = 1.

Let u such that Apyu = f and 0 < ¢ < |Vu| < C in 2. There exist D = {D;;}, B = {b;}
and G such that

BIE> <) Dij(x)EE < BTIE] foreveryE e RV, x € 2,
ij
1Bl <C  NIGlLa) <€

with

B = ,B(pmins Pmax, C, C) > 07
C = C(Pmins Pmax, €, C, || f Lo (2)nwra(2) | Pllw1.co@ynw2.a(2))

such that v = |Vu| satisfies
divDVv+ B-Vv =G (3.27)

weakly in 2.

Proof. We start with some notation. For x € 2, £ € RV, we let A(x,£) = |§[P®72¢. First
we observe that, by the arguments in Theorem 3.2 in [7], u € Wz’z(.Q) and then, by using the

loc
nondivergence form of the equation, we deduce that u € Wlsc’t(.Q) for every 1 < ¢t < oo (see
Lemma 9.16in [17]).
Then, taking n € C5°(§2), letting 7y, as test function and integrating by parts, we get

04 Z
/fﬂxk = / an (xv V“)Vn + /aij (xv Vu)uxjxk ﬂxi (328)
ij

where a;; (x,§) = %(x, £).

Observe that (3.28) actually holds for any 5 € WOI’P(X)(.Q).
Then, we take n = uy, ¥ with 0 < ¢ € Cg°(§2) arbitrary. Hence, by using the ellipticity of a;;
and after summation on k, we get

04;
[ raww+ [ vy = ¥ [ @ Vi v
ik

0A;
+ ;/ 8)(,']: (xvvu)ukaXj + izj/aij ;uxkuxjkaxi-
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. u
Now, we denote D = (D;;) with D;; = [Vula;j, we use that vy, = » X"‘gu‘ " and we integrate

by parts the second terms on the left and right hand sides. In fact, since

04;

= |Vu|1”()‘)_2 log |Vuluy,; px, .

we get

d
dx; [

_ 2
] = |Vu|P(x) 2(10g|Vu|) Ux; Pxy Px;

+ | VulPO 2 log |Vuu| ty, pryx; + |VulPO 72 log |Vul uy, x; px,
+ (p(x) = 2)|Vu[PP 3 log |Vuluy, prx, v, + [Vu|PD2uy, prve,,  (3.29)

SO we obtain

04;
—/(Vf,VuW > /<DWW> * Zk/ 0

04;

_Z/dixi[al
/DVU Vi) Z/dm

Then, by replacing (3.29) in (3.30), it follows

.Y

A,
]uxkvf —;/ E(mw)umkw (3.30)

]uka

—/(Vf, Vu)yr z/(Dvu,wf)—/|vu|P<X>*2(1og|vu|)2(vu,vp>2¢f

— [ 19172108 [Vl Yt pn 0 [ 1901792 0g [Vl (Vi V) Ay
ik

— / <|Vu|”(x)73[(p(x) —2)log |Vu| + 1](Vu, Vp) Vu, Vv>1//.

U Ux;

Finally, since |Vu|1’(x)’2<Au +(P() =2 X j Toup Ui, +10g|Vu|(Vu,Vp)) =7,

—/|Vu|p(x)_210g|Vu|(Vu,Vp)Aung = —/flog|Vu|(Vu,Vp)1//
+ / ((p(x) = 2)Vul?™=2 log |Vu| (Vat, V p) Vu, Vo

—l—/|Vu|1’(x)_2(log|Vu|)2(Vu,Vp)21//.
Hence, v satisfies (3.27) with
Mux_ux_)
|Vu|2 i J
B = |[Vu|PW=3(Vu, Vp) Vu,
G = (Vf.Vu) — flog |Vu|(Vu,V p) = [Vu|?O 2 log |Vu| Y "t thx, pxsox;-
ik O

Dij = |Vu|p(x)7l<8ij +
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REMARK 3.1 A similar lemma to Lemma 3.8, valid for the case f = 0, was established in reference
[6] (Lemma 2.2).

Now, we get an estimate on |Vu| close to the free boundary.

Lemma 3.9 Let p and f as in Lemma 3.8 with ¢ > max{1, N/2} and \* € C*" (£2) with 0 <
Amin € A%(X) < Amax < 00 in 2 and [A*]ca (o) < C*. Let u be a weak solutionto P(f. p,1*) in
§2 and let xo € §£2 N o{u > 0} with B4r(x0) C 2, R < 1. Assume that, for every r < R,

ue F(o,1;00) in By(xg) insome direction vy,

with power p, slope A* and rhs f, witho < 1/2.
Then, for every x1 in By (xo),

|Vu|§l*(x1)+C(%)y in B.(x1) if r<R, (3.31)

for some constants C and 0 <y < 1 depending only on N, || f || Loo (B, & (xo))nW 14 (Ba g (x0))> Pimins
P Amin [ Pllw1.00 (82 zopn w24 (Bag (xopy @+ €7 @ and ||Vl oo (s e (xo))-
Proof. Welet0 < Ry < R, ¢ > 0 and define

2Ry = SUp AT(x),
Ba R (x0)

Us(x) = (|Vu| - ;Ro —£)+

Let 0 < r < Ry. Since for every X € Bag,(x9) N d{u > 0}

limsup |Vu| < A*(X),

u(x)>0
then the function U, vanishes in a neighborhood of By, (x¢) N d{u > 0}.

We have |Vu| = Apin in {U; > 0} and moreover, arguing as in Lemma 3.8 we see that u €
W2t(Ba,(x0) N {U > 0}) forevery 1 <t < oo. Thus, by Lemma 3.8, Uy is a solution to

divDVU, + B-VU,; =2 G

in {Ug > 0} N By, (x0) for some functions D = {D;;}, B = {b;} and G such that

BIE> <) Dij(x)E& < fIE[P forevery § € RV, x € Bagr(xo),
ij (3.32)

I BllLoo(ue>03nBarxo) S C G llLaque>03nBrr(x0)) < C

with ,B = ,B(pmim Pmax, A'mim ”Vu”LOO(BZR(xO)))’ C = C(pmim Pmax, A'minv ||Vu||L°°(BZR(x0))a
I1f | oo By e ey 14 (Ba g (o)) | Pl W 100 (B o (xo))nW2-4 (B e (x0)))-

Therefore, if G and B are the extensions by 0 of G and B respectively from {U,; > 0} N B2, (x0)
to Bar(xp) and D is an extension of D that preserves the uniform ellipticity with the same constants,
there holds that U, satisfies _ N _

divDVU, + B -VU; =2 G (3.33)
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in By (xg) (see, for instance, Lemma 2.1 in [24]).
Let now h.(r) = SUPp, (x,) Ue and V = he(2r) — Us. Then,

divDVV + B-VV <—G in Bar(xo).

Moreover, V' = 0 in B,,(x¢). By the weak Harnack inequality (see [17]),

inf V + r2"N9 G| La By, (xo)) = c][ v
B3, /2(x0)

By (x0)

with ¢ = ¢(N. B, | B2 (B2 (o)) 9):
Now, since by the flatness condition, u (and therefore Ug) vanishes in the ball Blfo (X0 +

1+‘7 rv, ) for some direction v,, there holds that V = h,(2r) in B} =0 (o + 37 1+‘7 rv,) and therefore

1—0

_ N
he@r) = he(r) +r>7M9C 2 6(<=2 ) he(@r) = Ehe(2r)

sinceo < 1/2,with¢ = E(N,,B_, ||§||Loo(BzR(xO)),q) < 1 and C the constant in (3.32). We pass to
the limit as ¢ — 0 and we conclude that
h(r) < (1=¢)h@2r) +r>~NacC, (3.34)

if r < Ro with h(r) = supg, (x,) (|Vu| —)L;RO)Jr. Since 2—N/q > 0, there exist € (0,1),C > 0
depending only on N, ¢, ¢, || V|| oo (B, x (xe)) 2nd C such that

0 <€ (57,)

if s < 2Ry. This implies
7
sup |Vu|< sup A (x)+C< ) , (3.35)
By (x0) BrRo(x0) Ro

if ¥ < Ro < R, and the Holder continuity of A*(x) gives, for x; € Bag,(x0),

sup A*(x) < A*(x1) + C*(4Ro)*". (3.36)

Ba Ry (xg)

We now take r < R, Rg = r'/2R"Y? and x; € B,(xo) and obtain, from (3.35) and (3.36),

F\Y
sup |Vu| < sup |Vu| <A*(xy) +C (—) ,
By (x1) B>, (xo) R

fory = min{%, %} and C depending only on C, C*, 7 and a*, which proves (3.31) and completes
the proof. O

Let us show that a point x¢ in the reduced free boundary of a weak solution is always under the
assumptions of Lemma 3.9.
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Lemma 3.10 Let p € Lip(2) with 1 < puin < p(x) < pnax < 00, A* € C(2) with 0 <
Amin S A*(x) < Apax < 00 and f € L®(£2). Let u be a weak solution to P(f, p,A*) in 2 and
X0 € 2N 8red{u > 0}

There exists o9 > 0 such that, if ¢ < 0y, there exists ro > 0 such that, for every r < rg,

u e F(o,1;00) in  Br(xg) indirection v(xgp),

with power p, slope A* and rhs f. Here v(xq) denotes the exterior unit normal to 2 N d{u > 0} at
Xo in the measure theoretic sense.

Proof. Assume for simplicity that xo = 0 and v(x¢) = ey. Let R > 0 be such that B4g C £2.

Given0 < ¢ < % there exists r, < R such that
>0'Nn B

M if r<rg, (3.37)

| Br|

and also a constant ¢y > 1 so that
1/2—¢

|Br+ \{0<xy <or}| =|Bs|(1/2—cn0o) >¢|B,| if o< (3.38)
Let 7 < % and suppose there exists X € (BF\ {0 < xy < or}) N ad{u > 0}. Then, Supp,(z) U =
Cminp, if p < pg = min{rg, R}, with ¢y, and rg the constants corresponding to D = Bjg in the
definition of weak solution. B

Then, if r < po, there exists x; € By, /2(X) such that u(x1) = cmino7/2, implying that

U(X) = Cminor/2— Lkor/2>0 in  Bygr2(x1) C By,

if K < min{l, §5=}, where L is the Lipschitz constant of u in By . As a consequence,

l{u > 0} N B,

> KU4N,
B (ka/4)

which contradicts (3.37) if (ko/4)" > &. Finally, we fix 09 = (2cx)~!, take 0 < 0p and choose
O<e< % satisfying
4 1/2—
—e/N <5 < / £

cN
Then, letting r; = min{%, po} and r < ry, we observe that (BF\{0<xy <orp)Nd{u>0=0
by the above discussion, and that we cannot have u > 0 in B," \ {0 < xy < or} because of (3.37)
and (3.38). Therefore we conclude that u € F(o, 1;00) in B, with power p, slope A* and rhs f,
forevery r < rg. O

Now, we get a result that holds at free boundary points satisfying a density condition on the zero
set. This is the situation when u# comes from a minimization problem as was the case in [1, 2, 8], for
instance.

Lemma 3.11 Let p and f as in Lemma 3.8 with ¢ > max{1, N/2} and A* € C* (£2) with
0 < Amin < A*(x) < dpax < 00 in £2 and M*]C“*(Q) < C*. Let u be a weak solution to
P(f,p,A%)in 2 and let xg € 2 N d{u > 0} with Bygr(xo) C 2, R < 1. Assume that
B, (x0) N {u = 0}
| Br (o)

=>co>0 if r<R. (3.39)
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Then, for every x1 in Br(xp),
* r\v . .
IVul < 2A*(x1) + C <E) in B,(x1) if r<R, (3.40)

for some constants C and 0 < y < 1 depending only on N, Pmin, Pmax» Amins

1 | oo By e cony W 14 (Ba g o)y 1 PIlW 100 (B pxo W24 (Ba e (x0)y @5 €7 @ [Vit]|Loo (B (xo))
and cy.

Proof. The proof is exactly as that of Lemma 3.9, the only difference being that instead of the
flatness condition we use the density condition (3.39). o

Now, with the ideas in the proof of Lemma 3.9 we can improve on the gradient.

Lemma 3.12 Let p € WH®(B,) N W*4(By) with | < pmin < p(x) < pmax < 00 in B,
and f € L*®(B,) N WY4(B,) with ¢ > max{l, N/2}, Ipllwico,ynw2a,) < L1 and

||f||LOO(Bp)nW1,q(Bp) < Zz. Let A* € C“*(Bp) Wwith 0 < Amin < A*(X) < Amax < 00 in By
and [A*]Ca* (Bp) § C*
Let 0 < 0 < 1. There exist og, cg, C, C and y such that, if

u € F(o,1;7) in B, in direction v
with power p, slope A* and rhs f and, if o < 0y, T < 090 and C~‘,017 < AminT, there holds that
u € F(fo,00; 921) in Bj in direction v

with the same power, slope and rhs and

1
cap$[3$1p, lv—v| < Co.
The constants depend only on N, Pmin, Pmax> Amin» Amax Zl, Zz, a*, C*, q. The constants og and

cg depend moreover on 6.

Proof. We will apply Lemma 3.7 inductively, and we will obtain the improvement of the value t
with an argument similar to the one in Lemma 3.9.
In fact, if oy is small enough, we can apply Proposition 3.1 to u(x) = %u(,ox) and we get

u € F(Cyo,Cyo; 1) in B,)5 in direction v,

with power p, slope A* and rhs f. Then for 0 < 0; <
small, and we obtain

% we can apply Lemma 3.7, if again oy is
u € F(Cpbyo,1;7) in By, in direction vy, (3.41)
with the same power, slope and rhs, for some rq, v; with

cg, <2r1 <61, and vy —v| < Co.

In order to improve the value of T we proceed as in the proof of Lemma 3.9. In fact, we let Ry =
R = r1p, xo = 0 and repeat the argument leading to (3.34), with r = r;p. In the present case we
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use the fact that, because of (3.41), u vanishes in the ball B%(% v1). We also use that, in B,
[Vu| < A*(0)(1 + t) < 2A1ax. We obtain

sup (|Vu| — /\’z‘rlp)Jr <(1-¢) sup (|Vu| - ,\’z‘rlp)Jr + C(rp)> N,

rio B2r1p
with
Mrp = sup A*(x),
2r10
and constants 0 < ¢ < 1and C > 0 depending only on N, pmins Pmax> Amins Amaxs Zl, Zz and ¢g. It
follows that

* —\ % = (P\2 N
sup |Vu| < A3, , + (1-¢)A5, 7+ C(Z)
rie

c
< A;rlp + (l o E)A;rlpt’

)ZfN/q < %Ammt. Therefore, for = 1— %, we get

if we let C (%

sup |[Vu| < A% (14 67)

Bryp 2r1p
< A*(0)(1 + 01) + C*2r1p)* (1 + 67)
< A*(O)(l thr+— z) = A*(0)(1 + 627),
if C*p*" < %/Xmmr and 9{7 < l;zé, with y = min{a*,2 — N/q} and 6y = l%é.

We see that, if ; is chosen small enough,
u € F(6yo, 1; th) in By, in direction vy,

with power p, slope A* and rhs /. Moreover, r} < 63.
Then, we can repeat this argument a finite number of times, and we obtain

u € F(byo,1; 93'" 7) in By, .. 1, p in direction vy,

with the same power, slope and rhs, with

C
1—6

Finally we choose m large enough and use Proposition 3.1. O

cg, <2rj < 0;, and |vy —v| < o.

4. Regularity of the free boundary for weak solutions to problem P( f, p, 1*)

In this section we study the regularity of the free boundary for weak solutions to problem
P(f. p.A%).

We prove that the free boundary of a weak solution is a C '** surface near flat free boundary
points (Theorems 4.1, 4.2 and 4.3). As a consequence we get that the free boundary is C % in a
neighborhood of every point in the reduced free boundary (Theorem 4.4).
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We also obtain further regularity results on the free boundary, under further regularity
assumptions on the data (Corollary 4.1).

Among Theorems 4.1, 4.2 and 4.3 the most general one is Theorem 4.3.

Theorems 4.1 and 4.2 require the extra assumptions (4.1) and (4.10), respectively. But, under
these additional assumptions, the constant in the C1** continuity of the free boundary becomes
universal.

The difference stems from the fact that in Theorems 4.1 and 4.2 the choice of p in the statements
can be done independently of the weak solution u under consideration, whereas in Theorem 4.3
there is a strong dependence on u.

We remark that the Holder exponent « is universal in the three results.

Our first result holds at free boundary points satisfying a density condition on the zero set. This is
the situation when u comes from a minimization problem as was the case in [1, 2, 8], for instance.

Theorem 4.1 Let p € WH®(2) N W24(2) with 1 < puin < p(X) < pmax < 00 in 2 and
f e L®(2) N WY4(2) with ¢ > max{l, N/2}. Let \* € C% (2) with 0 < Amin < A*(x) <
Amax < 00 in 2 and [A*]ca* gy < C*. Let u be a weak solution to P(f. p, 1) in §2 and let
Xxo € £2 N d{u > 0} with B4r(xo) C 2, R < 1. Assume that

| B (x0) N {u = 0} .
BrGo) >co>0 if r<R. 4.1)

Then there are constants «, 3, Gy, C and C such that if

u € F(o,1;00) in B,(xo) in direction v
with power p, slope A* and rhs f, with o < & and C pP < 5902, then
B,/4(x0) N d{u > 0} is a C* surface,
more precisely, a graph in direction v of a C*** function, and, for x, y on this surface,

o

X-Jy

lv(x)—v(y)| < Co 4.2)

The constants depend only on N, Pmin, Pmax> Amins Amaxs @, C*, ¢, | [ | Loo (B3 g (xo))nW 14 (B3 g (x0))>
[ 2llw1.00(Bs g (xo)) W24 (B3 g (xo)) R Co and the constants Crax(B3r(x0)) and ro(Bsgr(xo)) in
Definition 2.2.

Proof. Let us first get a bound for ||Vu|[poo(,,, (xp) for a suitable 0 < r; < R. In fact, we
denote ro = ro(B3r(x0)) and Ciax = Crmax(B3r(x0)), the constants in Definition 2.2. We now let
ry = % min{3R, ro} and see that there holds that ||u||Loo(B4'_] o) < CmaxTo-

Then, by Proposition 2.1, it follows that |Vu|| Loo(By,, (x)) can be estimated by
a constant depending only on N, puin Pusxe 1o 1 [Loo(Bar, oW (e, o)
[ Pllw1.00 (B4, (x0))NW24 (Bay, (x0))» Cmax and ro.

Next, we choose the constants in the statement so that p < ry. Then, we can apply Lemma 3.11
in B4y, (x0) and get, for x € B,(xo),

C
V()] < A*(x0) + Crp” < A*(xo) (1 + o o),

min
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with C; and y constants depending only on N, pumins Pmaxs Amins ||f||Loo(BZrl (X)W 14 (Bay, (x0))°
||p||W1~°°(B_2,-] F)INW24 (Bay, (o)) @ > C*> ¢ ”_Vu”LOO(Bz,.] (x0))» Co and 7. ]
We let C and f in the statement satisfying C > % and B < y, and take T = C pP. Therefore
we obtain
u € F(o,1;7) in B,(xp) in direction v,

with power p, slope A* and rhs f".
Applying Proposition 3.1 we have that

u € F(Coo, Cyo; 1) in By2(xp) in direction v, 4.3)
with the same power, slope and rhs, if we choose C = C*, B < a*, and 6 is small enough so that,
in particular, T < o and C*p"‘* < CpP < Apino.

Let x1 € B,/2(x0) N d{u > 0}. Since Lemma 3.11 also gives
[Vu(x)| < A*(x1) + C1p?” < A% (x1)(1 + 1) in Bpya(x1)
and (x; — xo,v) > —Co0 % there holds that,
u € F(Cyo,1;7) in B,/2(x1) in direction v,

with power p, slope A* and rhs f, for any constant Co = (Co + 2). B
If we let 69 small enough, the above choice of C and 8, which implies in particular that 7 < Coo

and C *(g)a* < AminCo0, allows us to apply again Proposition 3.1 and deduce that
u € F(Co,Co;7)in By/4(x1) in direction v,

with the same power, slope and rhs.
We want to apply Lemma 3.12 in B,/4(x1) for some 0 < 6 < 1. In fact, we need Co < oy,

7 < 09(Co)? and C~‘(§))7 < AminT, Which is satisfied if we let 69 < %‘9, G0 < 0pC2,C = ﬁ and
B<7.
Moreover, we want to apply Lemma 3.12 inductively in order to get sequences p,, and v,,, with

po = p/4 and vy = v, such that

u € F(0™Co,0™Co;6*™1) in B, (x1) in direction vy,
with power p, slope A* and rhs f, with

copm < pm+1 < pm/4  and  |vpq1 —vm| < 0™ Co. (4.4)
For this purpose, we have to verify at each step that

0mCo <0, 0?1 <0y(8™Co)?, C,o,’; < Amin02"z.

Since p;, < 47" po, this is satisfied if, in addition, we let § = 278 < 1.
Thus, we have that

[(x = x1,Vm)| £ 0" Copp for x € By, (x1) N{u > 0}.
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We also have that there exists v(x;) = limy,— o0 Vi and
com
1-6
Now let x € By/4(x1) N d{u > 0} and choose m such that pp, 11 < |x — x1| < pp. Then

[v(x1) = vm| < o. 4.5)

[(x = x1,v(x)| < C@’”o(lxl_ all

— +pm)$C9m0<ﬁ+£)|x—x1|

and since |x — x1| = c;”“po we have

g < (|x—x1|)a with o — Blog2 _ log 6 6)
00 logcy'  logep’
and we obtain that
Co
[(x = x1.v(x1))| < p—alx —x1|"t, X € Bya(x1) Nofu > 0} 4.7)

Let us finally observe that the result in the statement follows if we take 0 small enough.

In fact, (4.7) implies that v(x;) is the normal to d{u > 0} at x;.

From (4.3), (4.7) and (4.5) with m = 0 we get that B,/4(xo) N d{u > 0} is a graph in the
direction v of a function g that is defined, differentiable and Lipschitz in B; / 4(xg). This holds if 69
is small so that

1
V1= (Co0)2 = 1/2 and Co(l n ﬁ) <12 for o <.
With these choices, the Lipschitz constant of g is universal (observe that (4.3) implies that |g(x") —
g(x})| < Coopiif x'.x} € B) , (xp)).
In order to see that (4.2) holds we let x, y € B,/2(x0) N d{u > 0} such that [x — y| < p/8.
We can apply the construction above with x; = y, so we have sequences p, = pm(y) with

po(y) = p/4, and vy, = vy (y) satisfying (4.4), with v(y) = limy—co Vi ().
Now let mg be such that

Pmg+1 < Pmg
—— < |x—y| < /. 4.8
5 =yl <= (4.8)
We use that
u € F(Omg, Omg: Tmy) in By, (¥) in direction vy, (y), 4.9)

with power p, slope A* and ths f, for o7, = 6™°Co and 1, = 0°™01.

In fact, we have now the following picture: u is under the assumption of the theorem with x¢
replaced by y and flatness condition (4.9). Then, with x; replaced by x, po(x) = pm,(y) and
Vo(X) = Vg (), (4.5) with m = 0 gives
Com,
1-60°
Let us notice that, from the choice of « we made in (4.6), oy, = Co0™° = Co(cg'o)“. Since, by
(4.4) and (4.8), c(;"OH < 4P'"OT+I < %|x — y|, there holds

C _ o
V() = Vg ()] € —2 (M) .

[V (xX) = vime (W] = [v(x) = vo(x)| <

1-6 cop
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Estimate (4.5) also gives
Co [8|x—y\*
) =m0 < 17 ()
- cop

We thus get

v(x) —v(y)| < Co | =2

if x,y € Byn(xe)Nofu >0}, [x—y|l <p/8.

Finally, if x,y € B,/4(xo) N d{u > 0} are such that |[x — y| = p/8 we can find points z; €
Bpja(xo) No{u > 0} with zo = x, zx = y, |zi —zi+1| < p/8 forevery i and k a universal number.
By applying the last estimate we get (4.2).

So, the theorem is proved. O

In the next result we replace the density condition (4.1) of Theorem 4.1 by a flatness condition
at the point, at every scale. In fact, we get

Theorem 4.2 Let p € WH®(2) N W24(Q2) with | < pmin < p(X) < Pmax < 00 in 2 and
f e L®(2) N WY4(2) with ¢ > max{l, N/2}. Let \* € C¥ (2) with 0 < Amin < A*(x) <
Amax < 00 in 2 and [A*]ca* gy < C*. Let u be a weak solution to P(f.p, ") in §2 and let
Xo € 2 N d{u > 0} with B4r(x9) C 2, R < 1. Assume that, for everyr < R,

ueF(/2,1;00) in Br(xg) insome direction v, (4.10)

with power p, slope A* andrhs f.
Then there are constants o, B, 69, C and C such that if

u € F(o,1;00) in B,(xo) in direction v
with power p, slope A* and rhs f, with o < 6o and C pP < G002, then

B,/4(x0) N d{u > 0} is a C' surface,
more precisely, a graph in direction v of a C*** function, and, for x, y on this surface,
o

v(x) —v(y)| < Co |[Z=2

The constants depend only on N, Pmin, Pmax> Amins Amaxs @, C*, ¢, | | Loo (B3 g (xo))nW 14 (B3 g (x0))>

[ 2llw1.00(Bsr (xo)) W24 (Bsg(xo))y R and the constants Cuax(B3r(xo)) and ro(Bsr(xo)) in
Definition 2.2.

Proof. The proof is exactly as that of Theorem 4.1 the only difference being that instead of using
Lemma 3.11, we make use of Lemma 3.9. O

Our last result on the regularity of the free boundary of a weak solution in a neighborhood of a
flat free boundary point holds without the extra assumptions (4.1) and (4.10) of Theorems 4.1 and
4.2. In fact, we get
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Theorem 4.3 Let p € WE°(2) N W29(2) with | < pmin < p(x) < pmax < 00 in 2 and
f e L®(2) N Wh4(82) with ¢ > max{l, N/2}. Let \* € C¥ () with 0 < Apin < A*(x) <
Amax < 00 in §2 and [A*]ca* () < C*. Let u be a weak solution to P(f.p.1") in §2 and let
Xo € 2N d{u > 0}.

Then there are constants o, 6o and C such that if

u € F(o,1;00) in B,(xo) in direction v
with power p, slope A* and rhs f, with 0 < 6o and p small enough, then
B,/a(x0) N d{u > 0} is a C* surface,
more precisely, a graph in direction v of a C* function, and, for x, y on this surface,

o

P

v(x) —v(y)| < Co |

The constants «, 6o and C depend only on N, pumin, Pmax | fllLoo@)nwia(2)
IPllw1.co@)nw2.a(2) Amins Amax, &%, C* and q.

Proof. Since

lim sup |[Vu(x)| < 1*(xo),
x%xo

u(x)>0
given 0¢ and o < Gy, there exists p; = p1(u, Xo, 09, 0, Amin) such that, if p < pq,

5'()0'2

IVu(x)| < /\*(xo)(l 4 ) for x € B,(xo). @.11)

We take T = G¢0? and obtain
u € F(o,1;7) in B,(xp) in direction v,

with power p, slope A* and rhs f.
Applying Proposition 3.1 we have that

u € F(Coo, Cyo; 1) in By2(xp) in direction v,
with the same power, slope and rhs, if 0 is small enough so that, in particular, ¢ < ¢ and p <

p2(C*, ™, Amin, 0) so that C*p"‘* < Amin0.
Let x1 € B,/2(x0) N d{u > 0}. From (4.11) and the Holder continuity of A*(x) we get

(_7062

VU] < (% (0 +C(p/2) (14 25 ) <A@ +71) in Bya(x1),

if p < p3(C*, o™, Amin, G0, 0), so that C*(,o/Z)“* < Amin 60;72.
Then,

U e F(CoU, 1;7) in B,/ (x1) in direction v,
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with power p, slope A* and rhs f, for any constant Cy =z Co + 2. B
If we let 6¢ small enough, so that, in particular, T < Cyo, and take p < p4(C*, @™, Amin, Co,0)
so that C*(g)a < AminCo0, we can apply again Proposition 3.1 and deduce that

u € F(Co,Co;7)in By4(x1) in direction v,

with the same power, slope and rhs.
We want to apply Lemma 3.12 in B,/4(x1) for some 0 < 6 < 1. In fact, we need Co < oy,

7 < 04(Co)? and C~‘(§))7 < AminT, Which is satisfied if we let 69 < %‘9, G0 < 0gC? and p <
p5(Cs )77 A'I‘l’lil’ls 605 0)'

Moreover, we want to apply Lemma 3.12 inductively in order to get sequences p,, and v,,, with
po = p/4 and vy = v, such that

ue F(0"Co,0™Co;0* 1) in By, (x1) in direction vy,

with power p, slope A* and ths f, with cgom < pm+1 < pm/4and |vy41 — vi| < 6™Co.
For this purpose, we have to verify at each step

0"mCo <09, 0°"1 <0y(8™Co)?, C,o}';S)kmmszr.

Since p;, < 47" po, this is satisfied if, in addition, we let § = 277 < 1.

Now the proof follows as that of Theorem 4.1, with ¢ = 1?&—2" and the conclusion is obtained

gCo

if p < po = min{p1, p2, p3, P4, P5}. O
As a consequence of Theorem 4.3 we obtain

Theorem 4.4 Let f, p and A* be as in Theorem 4.3. Let u be a weak solution of P(f, p,A*) in §2
and let xo € §2Ndeq{u > 0}. There exists Fo > 0 such that By, (xo)Nd{u > 0} is a C1* surface for
some 0 < a < 1. It follows that, for some 0 <y < 1,u is C'7 up to By, (xo)Nd{u > 0} and the free
boundary condition is satisfied in the classical sense. In addition, for every x1 € By, (xo)N0{u > 0}
there is a neighborhood N such that Vu # 0in W N{u > 0}, u € Wlﬁf(u N {u > 0}) and the
equation is satisfied in a pointwise sense in U N {u > 0}.

If moreover Vp and f are Holder continuous in 2, then u € C>(\ N {u > 0}) and the
equation is satisfied in the classical sense in U N {u > 0}.

Proof. The result follows from Theorem 4.3, by applying Lemma 3.10 at the point xp.
The C'” smoothness of u up to d{u > 0}, for some 0 < y < 1, follows from the regularity
results up to the boundary of [14] (see Theorem 1.2 in [14]). O

We can also obtain higher regularity of d{u > 0} if the data are smoother. We have

Corollary 4.1 Let u, xo and 7o be as in Theorem 4.4. Assume moreover that p € C?(82), f €
Cl(£2) and A* € C?(2), then Bi,(xo) N d{u > 0} € C** forevery0 < u < L. If p €
CmTLI(Q), f € C™H(R) and A*¥ € C™TLI(Q) for some 0 < u < 1 and m = 1, then
Biy(x0) N d{u > 0} € CMF2:H,

Finally, if p, f and A* are analytic, then By, (xo) N 0{u > 0} is analytic.

Proof. As in Theorem 8.4 in [1], Theorem 6.3 and Remark 6.4 in [2] and Corollary 9.2 in [8], we
use Theorem 2 in [19].
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In fact, we apply this theorem with our equation seen in the form F(x,u, Du, D?u) = 0, with

— qi4;
F(x.s.q.M) = |q|P™ 2[2(&7 + () =2) 75 Mij + > Py (x) log |q|q,.] — f(x).
ij J
in a neighborhood of the free boundary where |Vu| = '{g‘", and boundary condition in the form

g(x, Du) = 0, with
g(x,q) = |gI> = A*?(x).

Already in [1] it was observed that Theorem 2 in [19] holds with u € C2in {u > 0} andu € C ¥
up to d{u > 0}, even though the result in [19] is stated with u € C2 up to d{u > 0}. O

5. Application to a singular perturbation problem

In this section we apply the regularity results obtained in the previous section to a singular
perturbation problem we studied in [25]. Our regularity results apply to limit functions satisfying
suitable conditions that are fulfilled, for instance, under the situation we considered in [26].

For a different application of these regularity results we refer to our work [26].

We next consider the following singular pertubation problem for the p.(x)-Laplacian:

Apg(x)ua =Be’)+ [, u*=0 (Pe(f%, pe))

in a domain 2 C RY. Here ¢ > 0, B.(s) = % B(%), with B a Lipschitz function satisfying 8 > 0 in
(0,1), B = O outside (0, 1) and [ B(s)ds = M.

We assume that 1 < ppin < pe(X) < Pmax < 00, ||V pe|lLe < L and that the functions u® and
f¢ are uniformly bounded.

In [25] we proved local uniform Lipschitz regularity for solutions of this problem, we passed
to the limit (¢ — 0) and we showed that, under suitable assumptions, limit functions are weak
solutions to the free boundary problem: ¥ > 0 and

Apoyu = f in {u > 0}

u=0, |Vu| = A*(x) on d{u > 0} (P(f.p.A"))

1/p(x) . . .
) ,p=1limp, and f = lim f°.

with A* (x) = ( pG)_ g
p(x)—1
Before giving the precise statement of one of the results we proved in [25], we need the following

definitions

DEFINITION 5.1 Let u be a continuous nonnegative function in a domain 2 C R¥. Let xo €
£2 N d{u > 0}. We say that xq is a regular point from the positive side if there is a ball B C {u > 0}
with xo € dB.

DEFINITION 5.2 Let u be a continuous nonnegative function in a domain 2 C R¥. Let xo €
£2 N ofu > 0}.

We say that condition (D) holds at x if there exist y > 0 and 0 < ¢ < 1 such that, for
every X € By, (x9) N d{u > 0} which is regular from the positive side and r < y, there holds that
{u =0} N Br(x)| = c|Br(x)|.
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DEFINITION 5.3 Let u be a continuous nonnegative function in a domain 2 C R¥. Let xo €
£2 N ofu > 0}.

We say that condition (L) holds at xg if there exist y > 0, 8 > 0 and 59 > 0 such that for every
point y € By (x9) N d{u > 0} which is regular from the positive side, and for every ball B, (z) C
{u > 0} with y € 0B,(z) and r < y, there exists a unit vector é,, with (¢,,z — y) > 6||z — y||,
such that u(y —sé,) = 0for0 < s < sp.

In [25] we obtained the following result:

Theorem 5.1 Let u®/ be a family of solutions to P, (f*/, pe;) in a domain 2 C RN with 1 <
Pmin < Pe; (X) € pmax < 00 and pe;(x) Lipschitz continuous with |V pe; ||Lee < L, for some
L > 0. Assume that u® — u uniformly on compact subsets of 2, f¢ — f x—weakly in L*°(S2),
Pe; — p uniformly on compact subsets of §2 and e — 0.

Assume that u is locally uniformly nondegenerate on 2 N d{u > 0} and that at every point
xo € £2 N d{u > 0} either condition (D) or condition (L) holds.

Then, u is a weak solution to the free boundary problem: u = 0 and

Apoyu = f in{u > 0}

u=0, |Vu| = A*(x) on d{u > 0} (P(f. p.A")

1/p(x)
) and M = [ B(s) ds.

; * _ (_px)
with A*(x) = (WH M

REMARK 5.1 In [26] we proved that if u®, fé, Dejs Ejs f and p are as in Theorem 5.1 and
u®/ — u uniformly on compact subsets of §2 with u®/ local minimizers of an energy functional,
then u is under the assumptions of Theorem 5.1.

As a first application of Theorem 4.4 we obtain the following result on the regularity of the free
boundary for limit functions of the singular perturbation problem Pg; (f*/, pe; ).

Theorem 5.2 Let u®, f%, De;» ), U, f and p be as in Theorem 5.1. Assume moreover that
feWhi(R2)and p € W9(2) with g > max{l, N/2}.

Let xg € £2 N Orea{u > 0}. Then, there exists ro > 0 such that Br,(xo) N 0{u > 0} is a cle
surface for some 0 < o < 1. It follows that, for some 0 < y < 1, uis C1¥ up to Bj,(xo) N
d{u > 0} and the free boundary condition is satisfied in the classical sense. In addition, for every
X1 € Bf,(x0) N 0{u > 0} there is a neighborhood k. such that Vu # 0 in W N {u > 0},
u € Wliiz(u N {u > 0}) and the equation is satisfied in a pointwise sense in U N {u > 0}.

If moreover Vp and f are Holder continuous in 2, then u € C2(W N {u > 0}) and the
equation is satisfied in the classical sense in U N {u > 0}.

Proof. The result follows from the application of Theorems 5.1 and 4.4 above. O

We also obtain higher regularity from the application of Corollary 4.1.

Corollary 5.1 Let u, xo and iy be as in Theorem 5.2. Assume moreover that p € C?(82) and
f € CY(82), then Bry(xo) N d{u > 0} € C** forevery0 < u < 1. If p € C™TLH(2) and
f € C™1(82) for some 0 < ju < 1 and m = 1, then By, (xo) N d{u > 0} € C™ 21,

Finally, if p and f are analytic, then By, (xo) N d{u > 0} is analytic.
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