
Interfaces and Free Boundaries 19 (2017), 305–350
DOI 10.4171/IFB/384

Sharp stability inequalities for planar double bubbles
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In this paper we address the global stability problem for double-bubbles in the plane. This is
accomplished by combining the improved convergence theorem for planar clusters developed in
[8] with an ad hoc analysis of the problem, which addresses the delicate interaction between the
(possible) dislocation of singularities and the multiple-volumes constraint.
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1. Introduction

The double-bubble theorem in R3 [22] asserts that the total perimeter of two regions bounding
given volumes is minimized by standard double-bubbles, which are the familiar soap bubble
configurations where three spherical caps meet at 120 degree angles along a circle; see Figure 1.
A mathematical formulation of this result in the context of finite perimeter sets is given as follows.
One says that a family E D fE.h/gN

hD1
of sets of locally finite perimeter in Rn is a N -cluster in

Rn if jE.h/j > 0 for h D 1; : : : ; N and jE.h/ \ E.k/j D 0 for 1 6 h < k 6 N . We use the term
double-bubble in place of 2-cluster. Setting E.0/ D Rn n

SN
hD1 E.h/ for the exterior chamber of E,

one defines the perimeter and the volume of E as

P.E/ D
1

2

NX
hD0

P
�
E.h/

�
; vol .E/ D

�
jE.1/j; : : : ; jE.N /j

�
;

where P.E/ and jEj denote, respectively, the distributional perimeter and the Lebesgue measure of
a Lebesgue-measurable set E � Rn. (In this way, P.E/ D Hn�1.@E/ whenever E is an open set
with Lipschitz boundary in Rn, where Hk is the k-dimensional Hausdorff measure on Rn).
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E0.2/E0.1/ E0.2/

E0.1/

FIG. 1. Standard double-bubbles: three .n� 1/-dimensional spherical caps meeting at 120 degrees angles along a .n� 2/-
dimensional sphere (depicted by a dashed line).

For every m2 > m1 > 0, there exists a unique way (up to isometries) to enclose volumes m1
and m2 in Rn by three .n � 1/-dimensional spherical caps meeting at 120 degrees angles along a
.n � 2/-dimensional sphere. The corresponding shape is called the standard double-bubble in Rn
(with volumes m1 and m2) and provides the only minimizer (up to isometries) in the isoperimetric
problem

inf
˚
P.E/ W vol .E/ D .m1; m2/

	
; m2 > m1 > 0 ; (1.1)

as shown in [10] when n D 2, in [22] when n D 3, and in [26] when n > 4. In other words, if E0
denotes a generic reference standard double-bubble in Rn, then

P.E/ > P.E0/ ; for every double-bubble E with vol .E/ D vol .E0/ ; (1.2)

with equality if and only if E D E0 modulo isometries. Our goal here is, in the planar case n D 2,
to strengthen this isoperimetric inequality in two directions. Our first result is the following sharp
quantitative form of (1.2):

Theorem 1.1 (Global stability inequalities) If m2 > m1 > 0, then there exists � > 0 depending
on m1 and m2 only such that, if E is a planar double-bubble with vol .E/ D vol .E0/ D .m1; m2/,
then, up to isometries,

P.E/ > P.E0/
n
1C �

�
jE.1/�E0.1/j C jE.2/�E0.2/j

�2o
: (1.3)

REMARK 1.2 We stress the global character of (1.3), that is to say, E does not need to be a small
perturbation of E0, or to be parameterized on E0 in any sense. Moreover, the decay rate in (1.3) is
sharp: if ' W Œ0;1/ ! Œ0;1/ is such that P.E/ > P.E0/.1 C '.

P2
iD1 jE.i/�E0.i/j// for every

planar double-bubble E with vol .E/ D vol .E0/ D .m1; m2/, then there exist C > 0 and t0 > 0

such that '.t/ 6 C t2 for every t 6 t0; see the discussion before Theorem 2.2 below.

The typical situation in which we expect to observe double-bubbles E whose perimeter is close
to that of a standard double-bubble E0 with vol .E0/ D vol .E/, is when E is the solution to a
geometric variational problem sufficiently close to (1.1), like

inf
n
P.E/C ˇ

Z
E.1/[E.2/

J.x/ dx W vol .E/ D .m1; m2/
o
; ˇ > 0 small ; (1.4)
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where J is the density of some potential energy (see also [27] for an account on the interaction
between the cluster perimeter and a nonlocal repulsive potential). Of course one expects such
minimizers to be close to standard double bubbles in a much stronger sense than the one expressed
in (1.3), and we obtain such a quantitative estimate in the following theorem.

Theorem 1.3 (Perturbed minimizing clusters) If m2 > m1 > 0 and J W R2 ! R is a continuous
function with J.x/ ! 1 as jxj ! 1, then there exist C0 > 0 and ˇ0 > 0, depending on m1,
m2, and J only, with the following property. If Eˇ is a minimizer in the variational problem (1.4)
with ˇ 2 .0; ˇ0/, then there exists a standard double-bubble E0 with vol .E0/ D .m1; m2/ and a
C 1;1-diffeomorphism fˇ between @E0 and @Eˇ such that

kfˇ � Idk3
C0.@E0/

C krfˇ � Idk6
C0.@E0/

6 C0 ˇ :

We now comment on the related literature on quantitative isoperimetric inequalities, and on
the strategy of proof of our main results. After the pioneering contributions by Bernstein [4] and
Bonnesen [5], the analysis of global stability problems has received a renewed attention in recent
years, with the proof of the sharp stability inequality for the Euclidean isoperimetric problem [7, 11,
12, 15, 17–20], the Wulff isoperimetric problem [16], the Gaussian isoperimetric problem [2, 6, 25],
Plateau-type problems [9], fractional isoperimetric problems [14], and isoperimetric problems in
higher codimension [3]. (This list is probably incomplete, and it does not mention contributions to
stability problems for functional inequalities.)

Among the various methods developed to deal with global stability problems in the above
mentioned papers, the selection principle method from [7] has proven to be the more widely
applicable. At the heart of this approach lies the use of regularity theory to obtain what we call
improved convergence theorems. Referring to the introduction of [8] for a more detailed account on
this kind of results, we just notice here that by exploiting the main result from [8] in combination
with a selection principle we can reduce the proof of (1.3) to the case when @E D f .@E0/ for aC 1;1-
diffeomorphism f between @E0 and @E such that kf � IdkC1.@E0/ is as small as needed. In the case
of the standard isoperimetric problem, following Fuglede [17, 18], one can directly address this
“reduced” stability problem by an expansion in spherical harmonics, which is elementary if n D 2.

In the case of double-bubbles, even when n D 2, the situation is much subtler, due to the
presence of singularities and of the multiple-volumes constraint. We shall address this problem
by combining Fourier series arguments in the spirit of Fuglede with the solution of certain one-
dimensional variational problems, to proceed through a case by case analysis. Different cases will
correspond to different behaviors of the perturbed interfaces, based for example on the relative size
between their L2-mean deviation and their L2-distance from the corresponding interfaces of the
reference standard double-bubble. The resulting argument, although based on rather elementary
mathematical tools, sheds light on the non-trivial interactions between the three interfaces, on
which the global stability of standard double-bubbles ultimately depends. As an entirely analogous
structure underlies the stability problem for standard double-bubbles in higher dimensions, we
expect the methods of this paper to be useful also in that case.

We notice that, at present, there is only another instance of isoperimetric problem with
multiple volume constraints whose minimizers are explicitly known. This is the case of the
planar triple bubble problem, addressed by Wichiramala in [28]. It is reasonable to expect that
by further exploiting the arguments developed in this paper, and again in combination with the
improved convergence theorem from [8], one should be able to obtain results like Theorem 1.1 and
Theorem 1.3 in the case of planar triple bubbles too.
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The paper is organized as follows. In Section 2 we reduce the proof of Theorem 1.1 to the case
of small diffeomorphic images of E0. In Section 3 we introduce the notion of ."; �/-perturbation of a
standard double-bubble, and prove Theorem 1.1 and Theorem 1.3 assuming Theorem 1.1 on ."; �/-
perturbations. Finally, in Section 4, we address the proof of Theorem 1.1 on ."; �/-perturbations.

2. Reduction to small perturbations

2.1 Sets of finite perimeter, clusters, and improved convergence

We describe bubble clusters in the framework of the theory of sets of finite perimeter. Referring
to [24] for more details, given a set E of locally finite perimeter in Rn, we denote by �E D
�E Hn�1x@�E its Gauss–Green measure, where �E and @�E are the measure-theoretic outer unit
normal and the reduced boundary of E, respectively. In this way the perimeter of E relative to the
Borel set F is P.EIF / D j�E j.F / D Hn�1.F \ @�E/, and we set P.E/ D P.EIRn/. We work
under the normalization by a Lebesgue negligible set which ensures that

@�E D spt�E D
˚
x 2 A W 0 < jE \ Bx;r j < !n r

n
8r > 0

	
D @E :

Given a N -cluster E in Rn, we set

@�E D
N[
hD1

@�E.h/ ; @E D
N[
hD1

@E.h/ ; ˙.E/ D @E n @�E ;

so that @�E D @E. We set d.E; F / D .1=2/
PN
hD0 jE.h/�F .h/j for the L1-distance between the

N -clusters E and F , and say that E is a .�; r0/-minimizing cluster in Rn if

P.E/ 6 P.F /C� d.E; F / ; (2.1)

whenever E.h/�F .h/ �� Bx;r0 for some x 2 Rn and every h D 1; :::; N . Referring to [8, Section
4] for an account on the regularity properties of .�; r0/-minimizing clusters in Rn for n arbitrary,
here we just need to recall what happens when n D 2. Let us say that E is a C k;˛-cluster in R2
(k 2 N, ˛ 2 .0; 1�) if there exist a locally finite family f
igi2I of closed C k;˛-curves with boundary
in R2 and a locally finite family of points fpj gj2J such that

@E D
[
i2I


i ; @�E D
[
i2I

int .
i / ; ˙.E/ D
[
i2I

bd .
i / D
[
j2J

fpj g ;

where int .
/ and bd .
/ denote the interior and the boundary points of the curve 
 . If E is a .�; r0/-
minimizing cluster in R2 then E is a C 1;1-cluster in R2: moreover, each 
i to have distributional
curvature bounded by �, and each pj to be a boundary point of exactly three curves from f
igi2I ,
which form three 120 degrees angles at pj . For a proof of all these facts we refer, for example,
to [8, Theorem 5.2].

Given a C 1;1-cluster E in R2 and a map f W @E ! R2 one says that f 2 C 1;1.@EIR2/ if f is
continuous on @E and

kf kC1;1.@E/ WD sup
i2I

kf kC1;1.
i / <1I

moreover, given C 1;1-clusters E and F , one says that f is a C 1;1-diffeomorphism between @E and
@F if f is an homeomorphism between @E and @F with f 2 C 1;1.@EIR2/, f �1 2 C 1;1.@F IR2/
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and f .˙.E// D ˙.F /. Finally, given a map f W @E! R2, and denoted by � W @�E! S1 a vector
field with �.x/ 2 f�E.h/.x/; �E.k/.x/g for every x 2 @�E.h/ \ @�E.k/, we define the tangential
component �E W @

�E! R2 of f with respect to E by setting

�Ef .x/ D f .x/ �
�
f .x/ � �.x/

�
�.x/ x 2 @�E :

(Note that the continuity of � is not essential here, as �Ef depends quadratically from �.) The
following result is [8, Theorem 1.5].

Theorem 2.1 Given � > 0, r0 > 0 and a bounded C 2;1-cluster E0 in R2, there exist positive
constants �0 and C0 (depending on � and E) with the following property.

If fEkgk2N is a sequence of .�; r0/-minimizing clusters in R2 such that d.Ek ;E0/ ! 0 as
k !1, then for every � < �0 there exist k.�/ 2 N and a sequence of maps ffkgk>k.�/ such that
each fk is a C 1;1-diffeomorphism between @E0 and @Ek with

kfkkC1;1.@E0/ 6 C0 ; (2.2)

lim
k!1

kfk � IdkC1.@E0/ D 0 ; (2.3)

�E0.fk � Id/ D 0 ; on @E0 n I�
�
˙.E0/

�
; (2.4)

k�E0.fk � Id/kC1.@�E0/ 6
C0

�
kfk � IdkC0.˙.E0// : (2.5)

2.2 A selection principle

Let now E0 denote a reference standard double-bubble in R2 with vol .E0/ D .m1; m2/, and for
every planar double-bubble E set

ı.E/ D P.E/ � P.E0/ ;

˛.E/ D inf
˚
d
�
E; f .E0/

�
W f W R2 ! R2 is an isometry

	
;

and

�.E0/ D inf
�

lim inf
k!1

ı.Ek/

˛.Ek/2
W vol .Ek/ D .m1; m2/ ; ˛.Ek/ > 0 ; lim

k!1
d.Ek ;E0/ D 0

�
: (2.6)

Notice that, by pushing the interfaces of E0 as depicted in Figure 2, one defines a one-parameter
family of double-bubbles fEtg0<t<1 such that

vol .Et / D vol .E0/ ; P.Et / 6 P.E0/C C t
2 ; d.Et ;E0/ > C t ; 8t 2 .0; 1/ I

E0 Et

FIG. 2. The deformations Et of E0 used to prove that �.E0/ <1 is depicted on the right.
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moreover, by exploiting the symmetry of Et (see [23, Lemma 5.2] for the kind of argument used
here) one has

d.Et ;E0/ 6 C ˛.Et / ; 8t 2 .0; 1/ ;

so that �.E0/ < 1. This last fact shows, in particular, the sharpness of the decay rate in (1.3)
claimed in Remark 1.2. Now, Theorem 1.1 is equivalent to �.E0/ > 0, and Theorem 2.2 below
allows one to reduce the proof of Theorem 1.1 to the case when @E is a C 1;1-diffeomorphic image
of @E0 (in the sense of Theorem 2.1) by a map f that is arbitrarily C 1-close to the identity.

Theorem 2.2 There exist positive constants C0 and �0 (depending on m1 and m2 only) and a
sequence of planar double-bubbles fEkgk2N with vol .Ek/ D .m1; m2/, such that

inf
k2N

˛.Ek/ > 0 ; lim
k!1

d.Ek ;E0/ D 0 ; lim
k!1

ı.Ek/

˛.Ek/2
D �.E0/ ; (2.7)

and such that for every � 2 .0; �0/ there exist k.�/ 2 N and, for each k > k.�/, a C 1;1-
diffeomorphism fk between @E0 and @Ek , in such a way that (2.2)–(2.5) hold.

Proof. By Theorem A.2 in Appendix Appendix A there exists a sequence fEkgk2N of .�; r0/-
minimizing 2-clusters in R2 with vol .Ek/ D .m1; m2/ satisfying (2.7). Since d.Ek ;E0/ ! 0,
by applying Theorem 2.1 we find diffeomorphisms fk between @E0 and @Ek with the required
properties.

3. Proofs of the main theorems

Given " > 0 and � 2 .�1; 1/, and denoted by �E0 a normal vector field to @�E0, one says that a
planar double-bubble E is an ."; �/-perturbation of E0 if vol .E/ D vol .E0/ and there exist g 2
C 1.@E0IR2/ with

g D Id on ˙.E0/ ; .g � Id/ � �E0 D 0 on @�E0 ; kg � IdkC1.@E0/ < " ; (3.1)

and such that @E D .1C �/ g.@E0/. In the next section, see Theorem 4.7, we show the existence of
positive constants "1 and �1 such that (1.3) hold on every ."; �/-perturbation of E0 with " < "1 and
j� j < �1. Based on Theorem 2.2 and Theorem 4.7 one can prove Theorem 1.1 as follows.

Proof of Theorem 1.1. By Theorem 2.2 and Theorem 4.7 it suffices to show that if fEkgk2N is a
sequence of .�; r0/-minimizing clusters such that d.Ek ;E0/! 0, then for every k large enough Ek
is an ."k ; �k/-perturbation of E0, where "k ; �k ! 0 as k ! 1. In other words, we want to prove
that, up to isometries, @Ek is a C 1-small normal perturbation of the small rescaling .1C �k/@E0 of
@E0.

We already know @Ek to be aC 1-small perturbation of @E0 with a small tangential displacement.
Indeed, if C0 and �0 are as in Theorem 2.1, then by Theorem 2.2 and for every � < �0 we find
ffkgk>k.�/ (the dependence of fk from � is tacitly understood) such that (2.2)–(2.5) hold. We now
exploit the existence of the maps fk to show that (3.1) holds with E D Ek for some � D �k ! 0,
" D "k ! 0 and g D gk .

Let us set ˙.E0/ D fp1; p2g and let f
ig3iD1 be the circular arcs such that @E0 D
S3
iD1 
i and

bd .
i / D fp1; p2g for i D 1; 2; 3. Up to a translation of E0 (and, correspondingly, of each Ek) we
may assume that p1Cp2 D 0. Setting pkj D fk.p

k
j /, we have˙.Ek/ D fpk1 ; p

k
2 g and pkj ! pj by
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(2.3), so that, up to moving each Ek by an isometry (with the corresponding sequence of isometries
which converges to the identity map) we entail

pkj D .1C �k/ pj ; lim
k!1

�k D 0 : (3.2)

If we set 
ki D .1C �k/
�1 fk.
i /, then

.1C �k/
�1@Ek D

3[
iD1


ki ; bd .
ki / D fp1; p2g :

Thanks to (2.2)–(2.5), by 
ki D .1C �k/
�1 fk.
i /, and since �k ! 0, one has:

(i) if �
 W bd .
/! S1 is the outer unit tangent vector to a curve 
 at its boundary points, then

lim
k!1

hd.
ki ; 
i /C max
jD1;2

ˇ̌
�
k
i
.pj / � �
i .pj /

ˇ̌
D 0 I

moreover, by exploiting the fact that fk parameterizes 
ki over 
i , one constructs unit normal vector
fields �ki 2 C

0;1.
ki IS
1/ to 
ki such thatˇ̌

�ki .x/ � .y � x/
ˇ̌

6 L jx � yj2 ; j�ki .x/ � �
k
i .y/j 6 L jx � yj ; 8x; y 2 
ki ;

where L is independent from k;

(ii) if we set Œ
i �t D fx 2 
i W dist.x; bd .
i // > tg, t > 0, and  k D .1C�k/�1 .fk � Id/ � �i , then
 k 2 C

1;1.Œ
i ��/ for every i D 1; 2; 3 with

sup
k>k.�/

k kkC1;1.Œ
i ��/ 6 C0 ; lim
k!1

k kkC1.Œ
i ��/ D 0 ; Œ
ki �2� � .IdC  k�i /.Œ
i ��/ � 

k
i ;

where �i 2 C 0;1.
i IS1/ is a fixed outer unit normal to 
i .

Thanks to (i) and (ii) we can apply [8, Theorem 3.5] to construct a C 1;1-normal diffeomorphism Ogki
between 
i and 
ki such that Ogki ! Id in C 1.
i /. Note that, in fact, Ogki is a normal diffeomorphism
as bd .
i / D bd .
ki /, cf. with [8, Equation (3.85)]. Setting gk D Ogki on 
i , we thus define a normal
C 1;1-diffeomorphism between @E0 and .1C �k/�1@Ek with "k D kgk � IdkC1.@E0/ ! 0.

Proof of Theorem 1.3. We directly focus on the casem2 > m1, the casem2 D m1 being analogous.
Let us pick an arbitrary sequence ˇk ! 0C, and let Ek be minimizers in (1.4) with ˇ D ˇk . By
arguing as in [8, Proof of Theorem 1.10] we prove the existence of � > 0 and r0 > 0 such
that fEkgk2N is a sequence of .�; r0/-minimizers such that, up to isometries, d.Ek ;E0/ ! 0. By
the argument used to prove Theorem 1.1, we see that Ek is an ."k ; �k/-perturbation of E0 with
"k ; �k ! 0. As a first consequence, we note that if R > 0 is such that E0.h/ � BR for h D 1; 2,
then for k large enough Ek.h/ � B2R for h D 1; 2, and thus by minimality of Ek ,

P.Ek/ � P.E0/ 6 C ˇk kJ kC0.B2R/

2X
hD1

ˇ̌
Ek.h/�E0.h/

ˇ̌
6 C ˇk :
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At the same time, if with the same notation of the previous proof we denote by f
ig2iD0 the circular
arcs composing @E0, then there exist uk;i 2 C

1;1
0 .
i / such that

lim
k!1

kuk;ikC1.
i / D 0 ; sup
k2N
ku00k;ikL1.
i / 6 � ; 8i D 0; 1; 2 ; (3.3)

and such that, by setting

Ngk.x/ D .1C �k/
�
x C uk;i .x/ �i .x/

�
; x 2 
i ;

one defines a C 1;1-diffeomorphism Ngk between @E0 and @Ek with

k Ngk � IdkCj .@E0/ 6 C
�
j�kj C

2X
iD0

kuk;ikCj .
i /

�
; j D 1; 2 ; (3.4)

Since "k ; �k ! 0, for k large enough we can use Theorem 4.7 to deduce that

P.Ek/ � P.E0/ > �
�
�2k C

2X
iD0

Z

i

u2k;i

�
; (3.5)

and then apply Lemma 3.1 below to get

k Ngk � Idk3
C0.@E0/

C kr Ngk � Idk6
C0.@E0/

6 C ˇk :

By the arbitrariness of ˇk we conclude the proof of the theorem.

Lemma 3.1 If v 2 C 1;1.Œa; b�/ with v.a/ D v.b/ D 0, then

C kvk
2=3

L1.a;b/
kv00k

1=3

L1.a;b/
> kvkC0.Œa;b�/ ;

C kvk
1=3

L1.a;b/
kv00k

2=3

L1.a;b/
> kv0kC0.Œa;b�/ :

(3.6)

Proof. The argument is elementary and it is included just for the sake of clarity. Without loss of
generality, let x0 2 .a; b/ be such that kvkC0.Œa;b�/ D jv.x0/j D v.x0/ > 0. Since v.b/ D 0, there
exists Nx 2 .x0; b� such that v > 0 on .x0; Nx/ and v. Nx/ D 0. By v0.x0/ D 0 we find

jv.x/j D v.x/ > v.x0/ �
kv00kL1.a;b/

2
.x � x0/

2 ; 8x 2 .x0; Nx/ :

The right-hand side of this inequality is positive for x 2 .x0; x0 C r/ where

r D

 
2kvkC0.Œa;b�/

kv00kL1.a;b/

!1=2
;

hence .x0; x0 C r/ � .x0; Nx/, and thus

kvkL1.a;b/ >
Z
.x0;x0Cr/

�
v.x0/ �

kv00kL1.a;b/

2
.x � x0/

2
�
dx D

2
p
2

3

kvk
3=2

C0.Œa;b�/

kv00k
1=2

L1.a;b/

;
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which is the first estimate in (3.6). Now we take x1 2 Œa; b� such that jv0.x1/j D kv0kC0.Œa;b�/.
Without loss of generality we can assume that jv0.x1/j D v0.x1/ > 0 and that v.x1/ > 0. (Indeed,
this can be achieved by possibly replacing v with �v and then by reflecting v with respect to the
mid-point of Œa; b�. Notice that this operation may in principle change the sign of v.x0/, but this
will not affect our argument as we shall not need to refer to v.x0/ anymore.) Since v.b/ D 0, there
exists x2 2 .x1; b/ such that v0 D jv0j > 0 on .x1; x2/ and v0.x2/ D 0, and thus, by v.x1/ > 0,
jvj D v on .x1; x2/. In particular,

jv.x/j D v.x/ > v.x1/C v
0.x1/.x � x1/ �

kv00kL1.a;b/

2
jx � x1j

2

> v0.x1/.x � x1/ �
kv00kL1.a;b/

2
jx � x1j

2 ; 8x 2 .x1; x2/ ;

where the right-hand side of this inequality is non-negative for x 2 .x1; x1 C s/, where

s D
2kv0kC0.Œa;b�/

kv00kL1.a;b/
:

In particular .x1; x1 C s/ � .x1; x2/, and thus

kvkL1.a;b/ >
Z
.x1;x1Cs/

�
v0.x1/.x � x1/ �

kv00kL1.a;b/

2
jx � x1j

2
�
dx D

2

3

kv0k3
C0.Œa;b�/

kv00k2
L1.a;b/

:

4. Stability on ."; �/-perturbations

We now turn to the proof of Theorem 1.1 on ."; �/-perturbations of E0, see Theorem 4.7 below.
We begin by introducing some specific notation for spherical caps and sectors, and for their normal
perturbation by a given function. Let B D fx 2 R2 W jxj < 1g. Given � 2 .0; �/, we define a
circular arc A.�/ � @B and a circular sector S.�/ � B by setting

A.�/ D
˚
x 2 R2 W jxj D 1 ; x1 > cos �

	
; S.�/ D

˚
t x W x 2 A.�/ ; 0 < t < 1

	
;

while, given u 2 W 1;2
0 .A.�// we denote by A.�; u/ � R2 and S.�; u/ � R2 the perturbed circular

arc and perturbed circular sector defined as

A.�; u/ D
˚
.1C u.x// x W x 2 A.�/

	
; S.�; u/ D

˚
t .1C u.x// x W x 2 A.�/ ; 0 < t < 1

	
I

see Figure 3. (Notice that A.�; 0/ D A.�/ and S.�; 0/ D S.�/.) In the analysis of the case
m1 D m2, where the interface between the chambers is a segment, it is convenient to introduce
as a reference domain the vertical open segment H and its perturbations H.u/ defined as

H D
˚
x 2 R2 W jx2j <

p
3

2
; x1 D 0

	
; H.u/ D

˚
x C u.x/ e1 W x 2 H

	
; (4.1)

in correspondence of u 2 W 1;2
0 .H/. We occasionally identify A.�/ with the interval .��; �/ and

H with the interval .�
p
3=2;
p
3=2/; correspondingly, we identify W 1;2

0 .A.�// with W 1;2
0 .��; �/

and W 1;2
0 .H/ with W 1;2

0 .�
p
3=2;
p
3=2/.
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Lemma 4.1 If u 2 C 10 .��; �/, then

ˇ̌
S.�; u/

ˇ̌
�
ˇ̌
S.�/

ˇ̌
D

Z �

��

uC
u2

2
; (4.2)

H1
�
A.�; u/

�
�H1

�
A.�/

�
D

Z �

��

uC
.u0/2

2
C kukC1.��;�/ O.kuk2

W 1;2.��;�/
/ : (4.3)

Moreover, if juj 6 1, then ˇ̌
S.�; u/�S.�/

ˇ̌
6
3

2

Z �

��

juj : (4.4)

Proof. Identity (4.2) follows from jS.�; u/j D .1=2/
R �
��
.1C u/2, which also implies (4.4) since,

if juj 6 1, then ˇ̌
S.�; u/�S.�/

ˇ̌
D

Z �

��

ˇ̌̌ .1C u/2 � 1
2

ˇ̌̌
6
3

2

Z �

��

juj :

Concerning (4.3), we notice that A.�; u/ D T .A.�// where we have set T W A.�/ ! A.�; u/,
T .x/ D .1C u.x//x, x 2 A.�/. The Jacobian of T on A.�/ is JT D

p
.1C u/2 C ju0j2, and thus

(4.3) follows from
p
1C t D 1C .t=2/ � .t2=8/C O.t3/.

Next, given m2 > m1 > 0, we fix a reference standard double-bubble E0 with vol .E0/ D
.m1; m2/ by requiring that the two point singularities of E0 belong to the x2-axis, and that their
middle-point lies at the origin (indeed, these geometric requirements uniquely identify E0). In the
case that m2 > m1, there exist Lk W R2 ! R2 isometries, rk > 0, and �k 2 .0; �/ such that

@E0.1/ \ @E0.2/ D L0 r0A.�0/ ; (4.5)
@E0.1/ n @E0.2/ D L1 r1A.�1/ ; (4.6)
@E0.2/ n @E0.1/ D L2 r2A.�2/ : (4.7)

x1x1
� �

S.�; u/S.�/

A.�/ A.�; u/

FIG. 3. The circular arc A.�/, the circular sector S.�/, and their perturbations defined by u 2W 1;2
0 .A.�//.
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�0
�2�1

P0 P1 P2

S

r0 r1
r2

x1

E0.1/ E0.2/

FIG. 4. The reference standard double-bubble E0

With reference Figure 4, we thus have

r0 D jS � P0j ; �0 D .P1P0S/ ;

r1 D jS � P1j ; �1 D .P0P1S/ ;

r2 D jS � P2j ; �2 D � � .P1P2S/ ;

and it holds

r0 sin �0 D r1 sin �1 ; r0 sin �0 D r2 sin �2 : (4.8)

By Plateau’s laws (vanishing of first variation), the three circular arcs meet at 120 degrees angles,

�1 C �0 D
2�

3
; �2 � �0 D

2�

3
; (4.9)

and, correspondingly, the following inequalities hold true

0 < �0 <
�

3
;

�

3
< �1 <

2�

3
;

2�

3
< �2 < � : (4.10)

Vanishing of first variation also implies the following “law of pressures”,

1

r1
D

1

r2
C
1

r0
: (4.11)

Identities (4.8) and (4.9) provide four constraints on the six parameters rk and �k , k D 0; 1; 2. Up
to a scaling, which leaves the ratiom2=m1 invariant, we may add to (4.8) and (4.9) a fifth constraint
by requiring that

r2 D 1 :
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r
p
3

r

x1

r

P1 P2

E0.1/ E0.2/

2�=3

FIG. 5. The reference standard double-bubble E0 withm1 D m2

This choice allows to express the remaining five parameters as functions of r1 2 .0; 1/:

r0 D
r1

1 � r1
; (4.12)

�0 D arctan
� 1 � r1
1C r1

p
3
�
; (4.13)

�1 D
2�

3
� �0 ; (4.14)

�2 D
2�

3
C �0: (4.15)

Finally, in the case m1 D m2, we set m D m1 D m2, r D r1 D r2, we have

�1 D �2 D
2�

3
; �0 D 0 ; r0 D C1 ;

and describe the interfaces of the reference standard double-bubble E0 as

@E0.1/ \ @E0.2/ D L0 r H; (4.16)

@E0.1/ n @E0.2/ D L1 r A

�
2�

3

�
; (4.17)

@E0.2/ n @E0.1/ D L2 r A

�
2�

3

�
; (4.18)

for some isometries Lk W R2 ! R2, k D 0; 1; 2; see Figure 5. Notice that (4.17) and (4.18) are
obtained from (4.6) and (4.7) by setting �1 D �2 D .2=3/� , while (4.16) is not directly related to
(4.5). Finally, we show the following useful formula for P.E0/ in terms of m1, m2, r1, and r2.

Lemma 4.2 If E0 is the standard double-bubble with m2 > m1, then

P.E0/ D 2
�m1
r1
C
m2

r2

�
; (4.19)

m1 D �1 r
2
1 C �0 r

2
0 �

p
3

2
r0 r1 ; (4.20)

m2 D �2 r
2
2 � �0 r

2
0 C

p
3

2
r0 r2 : (4.21)
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P0 D .0; 0/ P1 D .t1; 0/ P2 D .t2; 0/

r0

�0

r1
r2

�=3�=3

FIG. 6. We have t1= sin.�=3/ D r1= sin �0 and t2= sin.2�=3/ D r2= sin �0

Moreover, (4.19) holds true also when m2 D m1 D m, and in that case, we have

m D
�2�
3
C

p
3

4

�
r2 : (4.22)

Proof. We apply the divergence theorem on the chamber E0.1/ to the vector field x � P1, and on
the chamber E0.2/ to the vector field x � P2, to find that

2m1 D 2�1 r
2
1 C

Z
@E0.1/\@E0.2/

.x � P1/ � �E0.1/.x/ dH1.x/ ; (4.23)

2m2 D 2�2 r
2
2 C

Z
@E0.1/\@E0.2/

.x � P2/ �
�
� �E0.1/.x/

�
dH1.x/ : (4.24)

(Here, �E0.1/ denotes the outer unit normal to E0.1/.) In the case m2 > m1, we set the origin at P0
(see Figure 4), and parameterize @E0.1/ \ @E0.2/ as fr0 ei� W j� j < �0g. In this way, see Figure 6,
we have P1 D .t1; 0/ and P2 D .t2; 0/, where

t1

sin.�=3/
D

r1

sin �0
;

t2

sin.2�=3/
D

r2

sin �0
;

and, correspondinglyZ
@E0.1/\@E0.2/

.x � P1/ � �E0.1/.x/ dH1.x/ D

Z �0

��0

�
r0 e

i�
� .t1; 0/

�
� ei � r0 d�

D 2�0 r
2
0 � 2 sin �0 r0 t1 D 2�0 r20 �

p
3 r0 r1 ;Z

@E0.1/\@E0.2/
.P2 � x/ � �E0.1/.x/ dH1.x/ D

Z �0

��0

�
.t2; 0/ � r0 e

i�
�
� ei � r0 d�

D �2�0 r
2
0 C 2 sin �0 r0 t2 D �2�0 r20 C

p
3 r0 r2 :

We plug these identities into (4.23) and (4.24) to find (4.20) and (4.21); moreover, dividing (4.20)
and (4.21) by r1 and r2 respectively, by adding up the resulting inequalities, and by (4.11),

2

 
m1

r1
C
m2

r2

!
D 2�1 r1 C 2�2 r2 C 2�0

 
r20
r1
�
r20
r2

!
D 2�1 r1 C 2�2 r2 C 2�0 r0 D P.E0/ ;
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that is (4.19). In the casem2 D m1, �E0.1/.x/ D e1 and .x �P1/ � e1 D .P2 � x/ � e1 D ` for every
x 2 @E0.1/ \ @E0.2/, where, by Pythagoras’ theorem, ` D r=2. Therefore, (4.23) gives

2m D 2
2�

3
r2 C `H1.@E0.1/ \ @E0.2// D

4�

3
r2 C

p
3

2
r2 D

P.E0/

2
r ;

and (4.19) holds true when m2 D m1 too.

We now describe the generic ."; �/-perturbation of E0 by means of the coordinates introduced
above. Let E be a planar double-bubble with vol .E/ D vol .E0/ D .m1; m2/. If m2 > m1, then E is
an ."; �/-perturbation of E0 if there exist functions uk 2 C 10 .A.�k//with kukkC1 6 " (k D 0; 1; 2),
such that (compare with (4.5), (4.6), and (4.7)),

@E.1/ n @E.2/ D .1C �/L1 r1A.�1; u1/ ; (4.25)
@E.2/ n @E.1/ D .1C �/L2 r2A.�2; u2/ ; (4.26)
@E.1/ \ @E.2/ D .1C �/L0 r0A.�0; u0/ : (4.27)

If m2 D m1, then E is an ."; �/-perturbation of E0 provided there exist functions v0 2 C 10 .H/, and
uk 2 C

1
0 .A.�k//, kv0kC1 6 " and kukkC1 6 " (k D 1; 2), such that (4.25) and (4.26) hold true for

u1 and u2, and, moreover (compare with (4.16)), @E.1/ \ @E.2/ D .1C �/L0 r H.v0/.

Lemma 4.3 If E is an ."; �/-perturbation of E0 and m2 > m1, then

P.E/ � P.E0/

1C �
D

2X
kD0

rk

Z �k

��k

 
.u0
k
/2

2
�
u2
k

2

!
C
�2

2
P.E0/C "O.kuk2

W 1;2/C O.j� j3/ : (4.28)

If otherwise m2 D m1 (and we set r1 D r2 D r), then we have

P.E/ � P.E0/

1C �
D r

Z p3=2
�
p
3=2

.v00/
2

2
C r

2X
kD1

Z 2�=3

�2�=3

 
.u0
k
/2

2
�
u2
k

2

!
C
�2

2
P.E0/

C "O.kuk2
W 1;2/C O.j� j3/ : (4.29)

Here we have set

kuk2
W 1;2 D

8̂̂̂̂
<̂
ˆ̂̂:

2X
kD0

Z �k

�k

u2k C .u
0
k/
2 ; if m2 > m1 ;Z p3=2

�
p
3=2

v20 C .v
0
0/
2
C

2X
kD1

Z 2�=3

�2�=3

u2k C .u
0
k/
2 ; if m2 D m1 :

Proof. We just give the details for the case m2 > m1. By (4.3), (4.25), (4.26) and (4.27),

P.E/ � P
�
.1C �/E0

�
D .1C �/

2X
kD0

rk

�
H1
�
A.�k ; uk/

�
�H1

�
A.�k/

��
;

D .1C �/

2X
kD0

rk

Z �k

��k

 
.u0
k
/2

2
C uk

!
C "O.kuk2

W 1;2/ :
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Therefore we may write

P.E/ � P.E0/

1C �
D

2X
kD0

rk

Z �k

��k

 
.u0
k
/2

2
C uk

!
C .� � �2/ P.E0/C "O

�
kuk2

W 1;2

�
C O.j� j3/

D

2X
kD0

rk

Z �k

��k

 
.u0
k
/2

2
�
u2
k

2

!
C

2X
kD0

rk

Z �k

��k

 
u2
k

2
C uk

!
(4.30)

C .� � �2/P.E0/C "O.kuk2
W 1;2/C O.j� j3/ :

Again by (4.25), (4.26) and (4.27) we find thatˇ̌
E.1/

ˇ̌
� .1C �/2

ˇ̌
E0.1/

ˇ̌
D .1C �/2r21

�ˇ̌
S.�1; u1/

ˇ̌
�
ˇ̌
S.�1/

ˇ̌�
C .1C �/2r20

�ˇ̌
S.�0; u0/

ˇ̌
�
ˇ̌
S.�0/

ˇ̌�
; (4.31)ˇ̌

E.2/
ˇ̌
� .1C �/2

ˇ̌
E0.2/

ˇ̌
D .1C �/2r22

�ˇ̌
S.�2; u2/

ˇ̌
�
ˇ̌
S.�2/

ˇ̌�
� .1C �/2r20

�ˇ̌
S.�0; u0/

ˇ̌
�
ˇ̌
S.�0/

ˇ̌�
: (4.32)

Since vol .E/ D vol .E0/ D .m1; m2/, by (4.2), (4.31) and (4.32) we infer� 1

.1C �/2
� 1

�
m1 D r

2
1

Z �1

��1

�
u1 C

u21
2

�
C r20

Z �0

��0

�
u0 C

u20
2

�
; (4.33)� 1

.1C �/2
� 1

�
m2 D r

2
2

Z �2

��2

�
u2 C

u22
2

�
� r20

Z �0

��0

�
u0 C

u20
2

�
: (4.34)

We now divide (4.33) and (4.34) by r1 and r2 respectively and sum the resulting identities to find
that� 1

.1C �/2
� 1

� �m1
r1
C
m2

r2

�
D r1

Z �1

��1

�
u1 C

u21
2

�
C r2

Z �2

��2

�
u2 C

u22
2

�
C

�
1

r1
�
1

r2

�
r20

Z �0

��0

�
u0 C

u20
2

�
:

Taking into account (4.11) and (4.19) we conclude that�
1

.1C �/2
� 1

�
P.E0/

2
D

2X
kD0

rk

Z �k

��k

 
uk C

u2
k

2

!
:

Plugging this relation into (4.30) we find

P.E/ � P.E0/

.1C �/
D

2X
kD0

rk

Z �k

��k

 
.u0
k
/2

2
�
u2
k

2

!

C

 � 1

.1C �/2
� 1

�
C 2.� � �2/

!
P.E0/

2
C "O

�
kuk2

W 1;2

�
C O

�
j� j3

�
: (4.35)

We conclude the proof since ..1C �/�2 � 1/C 2.� � �2/ D �2 C O.j� j3/.
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We now provide an upper bound on the relative asymmetry of an ."; �/-perturbation of E0.

Lemma 4.4 There exists a constant C (depending on m1=m2 only) with the following property. If
E is an ."; �/-perturbation of E0 with j� j < 1=2, then, in case m2 > m1,

˛.E/2 6 C
�
m22�

2
C

2X
kD0

r4k�k

Z �k

��k

u2k

�
; (4.36)

while, in case m2 D m1 D m, setting r1 D r2 D r ,

˛.E/2 6 C

 
m2 �2 C r4

2X
kD1

Z 2�=3

�2�=3

u2k C r
4

Z p3=2
�
p
3=2

v20

!
:

Proof. We just address the case m2 > m1. Since

ˇ̌
E.1/�.1C �/E0.1/

ˇ̌
D .1C �/2

1X
kD0

r2k
ˇ̌
S.�k ; uk/�S.�k/

ˇ̌
;

by the triangular inequality one gets

ˇ̌
E.1/�E0.1/

ˇ̌
6 .1C �/2

1X
kD0

r2k
ˇ̌
S.�k ; uk/�S.�k/

ˇ̌
C
ˇ̌
.1C �/E0.1/�E0.1/

ˇ̌
:

By [13, Lemma 4], if j� j < 1=2 and E � BR � Rn, then jE�.1 C �/Ej 6 C.n/R j� jP.E/.
Moreover, by scaling, E0.1/ � BCpm1 and P.E0.1// 6 C

p
m1. Hence,ˇ̌

.1C �/E0.1/�E0.1/
ˇ̌

6 C m1 j� j :

Thus, by .1C �/2 6 9=4 (recall that j� j < 1=2), we conclude

ˇ̌
E.1/�E0.1/

ˇ̌
6 C

 
1X
kD0

r2k

Z �k

��k

jukj Cm1j� j

!
6 C

 
1X
kD0

r2k�
1=2

k

� Z �k

��k

u2k

�1=2
Cm1j� j

!
;

where (4.4) was also taken into account. In conclusion,

ˇ̌
E.1/�E0.1/

ˇ̌2 6 C

 
1X
kD0

r4k�k

Z �k

��k

u2k Cm
2
1 �

2

!
:

By arguing similarly with E.2/ in place of E.1/, and since m2 > m1, we obtain (4.36).

The previous results indicate that in order to prove (1.3) on ."; �/-perturbation (say, in the case
m2 > m1) we have to provide a control over

2X
kD0

Z �k

��k

u2k (4.37)
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in terms of
2X
kD0

Z �k

��k

.u0k/
2
� u2k : (4.38)

However Z �

��

.u0/2 � u2 ; (4.39)

is not L2-coercive on W 1;2
0 .��; �/, unless � < �=2. Indeed, we easily see that

inf

( Z �

��

.u0/2 W u 2 W
1;2
0 .��; �/ ;

Z �

��

u2 D 1

)
D

� �
2�

�2
; 8� > 0 ;

so that the best control over kuk2
L2.��;�/

in terms of ku0k2
L2.��;�/

is

Z �

��

.u0/2 >
� �
2�

�2 Z �

��

u2 ; 8u 2 W
1;2
0 .��; �/ : (4.40)

In other words, if � > �=2, then

inf

( Z �

��

.u0/2 � u2 W u 2 W
1;2
0 .��; �/

)
D �1 :

Taking into account that �1 and �2 may possibly range on .�=2; �/, see (4.10), we conclude that in
order to control (4.37) in terms of (4.38) we necessarily have to exploit the interaction between the
single perturbations uk through the multiple volume constraints. We now discuss this issue through
a careful application of two Poincaré-type inequalities. We start by addressing the minimization of
(4.39) under a constraint on the mean value of u.

Lemma 4.5 If � 2 .0; �/ and s 2 R, then

inf

( Z �

��

.u0/2 � u2 W u 2 W
1;2
0 .��; �/ ;

Z �

��

u D s

)
D

s2 cos �
2.sin � � � cos �/

: (4.41)

Notice that sin � � � cos � defines an increasing function on .0; �/, with values in .0; �/. Thus the
right-hand side of (4.41) decreases from C1 to 0 as � 2 .0; �=2/, is equal to 0 for � D �=2, and
decreases from 0 to �s2=2� as � 2 .�=2; �/.

Proof. Given u 2 W 1;2
0 .��; �/ with

R �
��
u D s, let v.t/ D u.t�=�/. Thus v 2 W 1;2

0 .��; �/,Z �

��

v D s
�

�
;

Z �

��

.u0/2 � u2 D

Z �

��

�

�
.v0/2 �

�

�
v2 : (4.42)

Let f�kgk2N � L2.��; �/ be the orthonormal basis of trigonometric functions with �0 D
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.2�/�1=2, and let ck D
R �
��
v �k the k-th Fourier coefficient of v. We haveZ �

��

�

�
.v0/2 �

�

�
v2 D

�
�

�
�
�

�

�Z �

��

.v0/2 �
�

�

Z �

��

v2 � .v0/2

D

�
�

�
�
�

�

�Z �

��

.v0/2 C
�

�

 
1X
kD1

k2 c2k �

1X
kD0

c2k

!
>
�
�

�
�
�

�

�Z �

��

.v0/2 �
�

�
c20

D

�
�

�
�
�

�

�Z �

��

.v0/2 �
s2

2�
;

where in the last equality we used (4.42) to compute c0. We have thus proved thatZ �

��

.u0/2 � u2 >
�
1 �

� �
�

�2�Z �

��

.u0/2 �
1

2�

� Z �

��

u
�2
; 8u 2 W

1;2
0 .��; �/ ;

which immediately lead to prove the existence of minimizers in (4.41) by a standard application of
the Direct Method. We may thus consider a minimizer u in (4.41), that has to be a smooth solution
to the Euler–Lagrange equation (

u00 C u D c ;

u.�/ D u.��/ D 0 ;
(4.43)

for some c 2 R. If � D �=2, then u.t/ D cos.t/ solves (4.43) (with c D 0), and, correspondingly,
the infimum in (4.41) is equal to zero. If, instead, � ¤ �=2, then (4.43) has solution

u.t/ D c
�
1 �

cos t
cos �

�
; jt j < � :

A simple computation then gives,

s D

Z �

��

u D 2c .� � tan �/ ; that is c D
s

2.� � tan �/
:

Therefore, again by direct computation,Z �

��

.u0/2 � u2 D
�s2

2.� � tan �/
D

s2 cos �
2.sin � � � cos �/

:

Lemma 4.6 For every � 2 .0; �/ there exists M DM.�/ such that, if u 2 W 1;2
0 .��; �/ with Z �

��

u

!2
6

1

M

Z �

��

u2 ; (4.44)
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then Z �

��

.u0/2 � u2 >
1

4

�
1 �

�2

�2

� Z �

��

.u0/2 C
1

2

��2
�2
� 1

� Z �

��

u2 : (4.45)

A possible value for M DM.�/ is

M D
1

�

2�2

�2 � �2
: (4.46)

Proof. Given u 2 W 1;2
0 .��; �/, define v 2 W 1;2

0 .��; �/ as v.t/ D u.t �=�/. By (4.44),�Z �

��

v

�2
6

�

� M

Z �

��

v2 : (4.47)

Let �k and ck be defined as in the proof of Lemma 4.5. For every � 2 .0; 1/ we have

.1 � �/

Z �

��

.u0/2 �

Z �

��

u2 D
�

�
.1 � �/

1X
kD1

k2c2k �
�

�

1X
kD0

c2k

>
�
�

�
.1 � �/ �

�

�

� 1X
kD0

c2k �
�

�
.1 � �/c20

>
�

�

�
�

�
.1 � �/ �

�

�
�
�.1 � �/

2�2M

�Z �

��

u2; (4.48)

where we have estimated c0 thanks to (4.44) as follows,

c20 D
1

2�

�Z �

��

v

�2
6

1

2�M

Z �

��

v2 D
�

2�2M

Z �

��

u2 :

Let us now rearrange (4.48) asZ �

��

.u0/2 � u2 > �

Z �

��

.u0/2 C

�
�2

�2

�
1 �

1

2� M

�
.1 � �/ � 1

� Z �

��

u2 :

We prove (4.45) by choosing M as in (4.46), by setting

� D
1

4

 
1 �

�2

�2

!
D
1

4

�2

�2

 
�2

�2
� 1

!
;

and finally noticing that

�2

�2

 
1 �

1

2� M

!
.1 � �/ � 1 >

�2

�2
� 1 �

�2

�2

 
�C

1

2�M

!
D
1

2

 
�2

�2
� 1

!
:

We finally prove Theorem 1.1 in the case of ."; �/-perturbations.
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Theorem 4.7 For every m2 > m1 > 0, there exist positive constants "1, �1, and �1 (depending
on m1=m2 only) with the following property. If E is an ."; �/-perturbation of E0 with vol .E0/ D
.m1; m2/, and if " < "1 and j� j < �1, then, in the case m2 > m1

P.E/ � P.E0/ > �1

 
�2 C

2X
kD0

rk

Z �k

��k

u2k

!
; (4.49)

while, in the case m2 D m1 (and r2 D r1 D r),

P.E/ � P.E0/ > �1

 
�2 C r

Z p3=2
�
p
3=2

v20 C

2X
kD1

r

Z 2�=3

�2�=3

u2k

!
: (4.50)

In both cases, by Lemma 4.4, there exists ��1 depending on m1 and m2 such that

P.E/ > P.E0/
˚
1C ��1˛.E/

2
	
: (4.51)

Proof. Step one: Let � 2 .0; �/, and let M.�/ be as in (4.46). We notice that for every � 2 .0; �/
there exists ".�/ > 0 such that if

kukC0.��;�/ 6 ".�/ ;

 Z �

��

uC
u2

2

!2
6

1

2M.�/

Z �

��

u2 ;

then  Z �

��

u

!2
6

1

M.�/

Z �

��

u2 :

In the rest of the proof, given m1 and m2, and thus fixed �1 and �2 according to (4.14) and (4.15),
we shall assume to work with ."; �/-perturbations of E0 with " < minf".�1/; ".�2/g.

Step two: We start considering the casem2 > m1. If E is an ."; �/-perturbation of E0 with functions
u0, u1, and u2, then, for t > 0, t E is an ."; �/-perturbation of t E0 with the same functions u0,
u1, and u2. Therefore, without loss of generality, in the following we may assume that r2 D 1. For
the sake of symmetry (and, thus, of clarity) we shall keep writing r2 in place of 1 in the following
formulas, until we exploit this scaling assumption. Let us now set

Ik D

Z �k

��k

uk C
u2
k

2
; k D 0; 1; 2 ;

so that the volume constraints (4.33) and (4.34) take the form

I0 D �

 
r1

r0

!2
I1 C

m1

r20

 
1

.1C �/2
� 1

!
; (4.52)

I0 D

 
r2

r0

!2
I2 �

m2

r20

 
1

.1C �/2
� 1

!
: (4.53)
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Multiplying (4.52) by m2=.m1 Cm2/, (4.53) by m1=.m1 Cm2/, and then adding up, we find

I0 D
m1

m1 Cm2

 
r2

r0

!2
I2 �

m2

m1 Cm2

 
r1

r0

!2
I1 : (4.54)

Similarly, multiplying both (4.52) and (4.53) by r20 , and then subtracting the resulting identities, we
come to r21 I1 C r

2
2 I2 D .m1 Cm2/..1C �/

�2 � 1/, which gives

�2 C O.j� j3/ D
.r21I1 C r

2
2I2/

2

4.m1 Cm2/2
: (4.55)

By (4.55) we deduce that

�2 C O
�
j� j3

�
6
r41I

2
1 C r

4
2I

2
2

2.m1 Cm2/2
C "O

�
kuk2

L2

�
; (4.56)

and, since Ik 6 C
R �k
��k

u2
k

, that j� j D O.kukL2/. (This is a reflection of the fact that if the uk’s are
all zero, then, by the volume constraint, we necessarily have � D 0.) Thus (4.28) gives

2
P.E/ � P.E0/

1C �
D

2X
kD0

rk

Z �k

��k

.u0k/
2
� u2k C P.E0/ �

2
C
�
"C j� j

�
O
�
kuk2

W 1;2

�
: (4.57)

We now claim that, for a suitable constant C (depending on E0) we have

C
�
P.E/ � P.E0/

�
> r1 I

2
1 C r2 I

2
2 C

�
"C j� j

�
O
�
kuk2

W 1;2

�
: (4.58)

To this end, let us set for the sake of brevity

g.�/ D
cos �

2.sin � � � cos �/
; 0 < � < � : (4.59)

By Lemma 4.5, for k D 0; 1; 2 we haveZ �k

��k

.u0k/
2
� u2k > g.�k/

 
Ik �

Z �k

��k

u2
k

2

!2
D g.�k/ I

2
k C "O.kuk2

L2
/ ; (4.60)

and thus, by inserting (4.55) and (4.60) into (4.57),

2
P.E/ � P.E0/

1C �
>

2X
kD0

rk g.�k/I
2
k C

P.E0/.r21I1 C r
2
2I2/

2

4.m1 Cm2/2
C
�
"C j� j

�
O
�
kuk2

W 1;2

�
D ˇ1 r1 I

2
1 C ˇ2 r2 I

2
2 C 2ˇ3

p
r1r2 I1 I2 C

�
"C j� j

�
O
�
kuk2

W 1;2

�
: (4.61)

Here, by taking into account (4.54), we have set

ˇ1 D g.�0/
r31
r30

m22
.m1 Cm2/2

C g.�1/C
r31
4

P.E0/

.m1 Cm2/2
; (4.62)

ˇ2 D g.�0/
r32
r30

m21
.m1 Cm2/2

C g.�2/C
r32
4

P.E0/

.m1 Cm2/2
; (4.63)

ˇ3 D �g.�0/
r
3=2
1 r

3=2
2

r30

m1m2

.m1 Cm2/2
C
r
3=2
1 r

3=2
2

4

P.E0/

.m1 Cm2/2
: (4.64)
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FIG. 7. Plotting of ˇ1.r/ (left) and of .ˇ1.r/ˇ2.r/ � ˇ3.r/2/=r (right) for r 2 .0; 1/. In particular, ˇ1.r/ˇ2.r/ �
ˇ3.r/

2 � r for r small. The plots have been drawn by Maxima v.5.28.0 (http://maxima.sourceforge.net) starting
from equations r2 D 1, r1 D r 2 .0; 1/, (4.12), (4.13), (4.14), (4.15), (4.19), (4.20), (4.21), (4.59), (4.62), (4.63), and
(4.64).

The quadratic form in .
p
r1 I1;

p
r2 I2/ on the right-hand side (4.61) is coercive: indeed, it suffices

to show the existence of ˇ� > 0 (depending on m1=m2 only) such that

min
˚
ˇ1; ˇ1ˇ2 � ˇ

2
3

	
> ˇ� : (4.65)

To this end, let us note that, having set r2 D 1, it turns out that r0, �0, �1, �2, m1, and m2 are all
explicit functions of r1 2 .0; 1/ according to equations (4.12), (4.13), (4.14), (4.15), (4.20), and
(4.21). Correspondingly, the coefficients ˇk can be easily expressed as functions of r1 2 .0; 1/, and
the validity of (4.65) can be deduced by a numerical plot; see Figure 7. A formal proof is contained
in Appendix B.

As a consequence of (4.65), and up to decrease the value of ˇ�, we find

ˇ1 r1 I
2
1 C ˇ2 r2 I

2
2 C 2ˇ3

p
r1r2 I1 I2 > ˇ�.r1 I

2
1 C r2 I

2
2 / :

We combine this inequality with (4.61) to prove (4.58), as claimed. Now, by (4.56) and (4.58),

C
�
P.E/ � P.E0/

�
> �2 C r1 I

2
1 C r2 I

2
2 C

�
"C j� j

�
O
�
kuk2

W 1;2

�
: (4.66)

By the choice of " performed in step one, we now notice that, if for some k D 1; 2 we have

I 2k 6
1

2M.�k/

Z �k

��k

u2k ;

then, by Lemma 4.6,Z �k

��k

.u0k/
2
� u2k >

1

4

 
1 �

�2
k

�2

! Z �k

��k

.u0k/
2
C
1

2

 
�2

�2
k

� 1

! Z �k

��k

u2k : (4.67)

Therefore, for k D 1; 2, either (4.67) holds true, or

I 2k >
1

2M.�k/

Z �k

��k

u2k : (4.68)

http://maxima.sourceforge.net
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Concerning u0, let us notice that, by the sharp Poincaré inequality (4.40), and since �0 < �=3,Z �0

��0

.u00/
2 >

� �
2�0

�2 Z �0

��0

u20 >
9

4

Z �0

��0

u20 ;

which gives Z �0

��0

.u00/
2
� u20 >

1

3

Z �0

��0

.u00/
2
C

�3
2
� 1

� Z �0

��0

u20 : (4.69)

We are now going to use (4.67), (4.68), and (4.69) together with (4.66) to prove that, for some
constant C depending on E0, we always have

C
�
P.E/ � P.E0/

�
> �2 C

2X
kD0

rk

Z �k

��k

.u0k/
2
C u2k : (4.70)

We divide the argument in three cases:

Case one: We assume that (4.67) holds true for k D 1; 2. By this assumption, (4.57), and (4.69),

C
�
P.E/ � P.E0/

�
> �2 C

2X
kD0

rk

Z �k

��k

.u0k/
2
C u2k C

�
"C j� j

�
O
�
kuk2

W 1;2

�
; (4.71)

from which (4.70) is easily proved.

Case two: We assume that (4.68) holds true for k D 1; 2. In this case, by (4.57) we obtain

2
P.E/ � P.E0/

1C �
> �

 
2X
kD0

rk

Z �k

��k

.u0k/
2
� u2k

!
C .1 � �/ 2

P.E/ � P.E0/

1C �

C ."C j� j/O.kuk2
W 1;2/

(by (4.69)) > �

 
r0

3

Z �0

��0

.u00/
2
C
r0

2

Z �0

��0

u20

!
C �

2X
kD1

rk

Z �k

��k

.u0k/
2
� u2k

(by (4.66)) C
1 � �

C

�
�2 C r1 I

2
1 C r2 I

2
2

�
C ."C j� j/O.kuk2

W 1;2/

> �

 
r0

3

Z �0

��0

.u00/
2
C
r0

2

Z �0

��0

u20

!
C �

2X
kD1

rk

Z �k

��k

.u0k/
2
� u2k

(by (4.68) for k D 1; 2) C
1 � �

C

 
�2 C

2X
kD1

rk

2M.�k/

Z �k

��k

u2k

!
C ."C j� j/O.kuk2

W 1;2/

> �

 
r0

3

Z �0

��0

.u00/
2
C
r0

2

Z �0

��0

u20

!
C �

2X
kD1

rk

Z �k

��k

.u0k/
2

C
1 � �

2C

 
�2 C

2X
kD1

rk

2M.�k/

Z �k

��k

u2k

!
C ."C j� j/O.kuk2

W 1;2/ ;
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where in the last inequality we have absorbed the negative terms in u2
k

, k D 1; 2, by choosing � so
small to have

� 6
1 � �

4C
min
kD1;2

1

M.�k/
:

We have thus proved (4.71), and thus (4.70), up to suitably choose " and C .

Case three: We assume that (4.67) holds true for k D 1, while (4.68) holds true for k D 2. By
arguing as in case two we find, for any � 2 .0; 1/,

2
P.E/ � P.E0/

1C �
> �

 
r0

3

Z �0

��0

.u00/
2
C
r0

2

Z �0

��0

u20

!
C �

2X
kD1

rk

Z �k

��k

.u0k/
2
� u2k

C
1 � �

C

�
�2 C r1 I

2
1 C r2 I

2
2

�
C
�
"C j� j

�
O
�
kuk2

W 1;2

�
:

By using (4.67) for k D 1 and (4.68) for k D 2, and discarding some positive terms, we find

2
P.E/ � P.E0/

1C �
> � c

�
r0

Z �0

��0

�
.u00/

2
C u20

�
C r1

Z �1

��1

�
.u01/

2
C u21

�
C r2

Z �2

��2

.u02/
2

�
C
1 � �

C

 
�2 C

r2

2M.�2/

Z �2

��2

u22

!
� � r2

Z �2

��2

u22 C
�
"C j� j

�
O
�
kuk2

W 1;2

�
;

for some positive constant c depending on E0. As in case two, we may choose � small enough to
have the negative term in u22 absorbed by its positive counterpart, and come to prove (4.71). Finally,
when (4.67) holds true for k D 2 and (4.68) holds true for k D 1 (note that, formally, this is a
fourth different case, as m2 > m1), then we just repeat the very same argument. Summarizing, we
have proved the validity of (4.70), which of course implies (4.49). The theorem is proved in the case
m2 > m1.

Step three: We now address the case m2 D m1. In this case we set r D r1 D r2, m D m1 D m2,
and � D �1 D �2 D 2�=3. Once again, up to scaling, we may assume that r D 1, so that

m D
2�

3
C

p
3

4
; P.E0/ D 4m D

8�

3
C
p
3 :

The volume constraints now take the form�
.1C �/�2 � 1

�
m D I1 C

Z p3=2
�
p
3=2

v0 D I2 �

Z p3=2
�
p
3=2

v0 ;

so that, by arguing as in step one, we find, in analogy to (4.54) and (4.55),Z p3=2
�
p
3=2

v0 D
I2 � I1

2
; �2 C O

�
j� j3

�
D
.I1 C I2/

2

4m2
: (4.72)

By Lemma 4.5 we have (4.60) for k D 1; 2, and, similarly,Z p3=2
�
p
3=2

.v00/
2 >

Z p3=2
�
p
3=2

v20 C g

 p
3

2

! Z p3=2
�
p
3=2

v0

!2
D

Z p3=2
�
p
3=2

v20 C g

 p
3

2

!
.I2 � I1/

2

4
:

(4.73)
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(Notice that
p
3=2 < �=2, thus g.

p
3=2/ is positive.) By (4.72) and (4.73), and since j� j D

O.kuk2
L2
/, from (4.29) we deduce

2
P.E/ � P.E0/

1C �
D

Z p3=2
�
p
3=2

.v00/
2
C

2X
kD1

Z 2�=3

�2�=3

.u0k/
2
� u2k C

�2

2
P.E0/C

�
"C j� j

�
O
�
kuk2

W 1;2

�
>
Z p3=2
�
p
3=2

v20 C g

 p
3

2

!
.I2 � I1/

2

4
C g

 
2�

3

!
.I 21 C I

2
2 /C

.I1 C I2/
2

2m

C
�
"C j� j

�
O
�
kuk2

W 1;2

�
>
Z p3=2
�
p
3=2

v20 C ˛1 I
2
1 C ˛2 I

2
2 C 2˛3 I1 I2 ;C

�
"C j� j

�
O
�
kuk2

W 1;2

�
;

provided we set

˛1 D ˛2 D
1

4
g

 p
3

2

!
C g

 
2�

3

!
C

1

2m

˛3 D �
1

4
g

 p
3

2

!
C

1

2m
:

By direct evaluation we see that ˛1 > 0 and ˛1˛2 � ˛23 > 0. Therefore there exists ˛� > 0 such
that ˛1 I 21 C ˛2 I

2
2 C 2˛3 I1 I2 > ˛�.I

2
1 C I

2
2 /, and thus

2
P.E/ � P.E0/

1C �
>
Z p3=2
�
p
3=2

v20 C ˛� .I
2
1 C I

2
2 /C

�
"C j� j

�
O
�
kuk2

W 1;2

�
: (4.74)

We conclude the proof exactly as in step two, with (4.74) playing the role of (4.58), and withZ p3=2
�
p
3=2

.v00/
2 >

1

2

Z p3=2
�
p
3=2

.v00/
2
C v20 (4.75)

playing the role of (4.69). (Note that (4.75) follows trivially from (4.73).) This completes the proof
of Theorem 4.7.

Appendix A. The qualitative stability theorem and a selection principle

Here we prove a qualitative stability theorem (Theorem A.1) and a selection principle for
quantitative stability inequalities (Theorem A.2) on isoperimetric N -clusters in Rn with n and N
arbitrary. These results are not entirely standard because of some compactness issues that need
to be handled under a multiple volumes constraint. Such compactness issues are usually simpler
to address in dimension n D 2 (because perimeter controls diameter on indecomposable sets of
finite perimeter), and in this paper we only need the above results in the case N D n D 2.
However, Theorem A.1 is interesting in itself and it is useful knowing its validity in the general
case. Theorem A.2, although of course of more technical nature, should still reveal useful in
addressing the quantitative stability problem for double-bubbles in higher dimensions. Moreover,
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the simplifications one has setting n D 2 seem not that significant, at least if one exploits the
arguments we know to prove these results. For these reasons we have decided to prove these
theorems in full generality.

The setting considered in this appendix will be as follows. Given a N -cluster E0 in Rn one
says that E0 is an isoperimetric cluster if P.E0/ 6 P.E/ whenever vol .E/ D vol .E0/, and that
E0 is uniquely minimizing if P.E/ D P.E0/ and vol .E/ D vol .E0/ imply the existence of an
isometry f W Rn ! Rn such that f .E/ D E0, where we have set f .E/.h/ D f .E.h// for every
h D 1; : : : ; N . For a uniquely minimizing isoperimetric cluster E0 in Rn, we set

M0 D
˚
E W E is an N -cluster, vol .E/ D vol .E0/

	
;

ı.E/ D P.E/ � P.E0/ ;

˛.E/ D inf
˚
d.E; f .E0// W f W Rn ! Rn is an isometry

	
;

where d.E; F / D .1=2/
PN
hD0 jE.h/�F .h/j. Note that if E 2 M0, then ı.E/ and ˛.E/ are both

positive unless E is isometric to E0. In analogy with the case N D 1 [15], one may ask about the
validity of a quantitative stability inequality of the form

ı.E/ > � ˛.E/2 ; 8E 2M0 ; (A.1)

for some � > 0. As a first step in this direction, one wants to prove the following theorem.

Theorem A.1 If E0 is a uniquely minimizing isoperimetric cluster in Rn, n > 2, then for every
� > 0 there exists ı > 0 such that if vol .E/ D vol .E0/ and P.E/ 6 P.E0/C ı, then ˛.E/ 6 �.

Once Theorem A.1 is proved, and following the approach proposed in [7] to address (A.1) in
the case N D 1, one notices that by a simple contradiction argument (A.1) is equivalent to showing
that �.E0/ > 0, where we have set

�.E0/ D inf
n

lim inf
k!1

ı.Ek/

˛.Ek/2
W fEkgk2N �M0 ; ˛.Ek/ > 0 ;Ek ! E0

o
: (A.2)

By applying a selection principle to minimizing sequences in (A.2), one ends up reducing the proof
of (A.1) to the case when E is a .�; r0/-minimizing cluster in Rn for some � > 0 and r0 > 0

depending on E0 only. In the caseN D 1, as shown in [7], this reduction allows one to complete the
proof of (A.1) quite easily thanks to a decomposition in spherical harmonics originally introduced
by Fuglede [17]. At the same time, as shown in this paper, this strategy works to prove (A.1) when
N D n D 2. It thus seems interesting to know that one can always attack (A.1) from this angle.
More precisely, we have the following result.

Theorem A.2 If E0 is a uniquely minimizing isoperimetric cluster in Rn with �.E0/ < 1,
then there exist positive constants �, r0, and R0 and a sequence of .�; r0/-minimizing clusters
fEkgk2N �M0 with

inf
k2N

˛.Ek/ > 0 ; lim
k!1

d.Ek ;E0/ D 0 ; lim
k!1

ı.Ek/

˛.Ek/2
D �.E0/ :

Moreover, Ek.h/ � BR0 for every h D 1; : : : ; N , and each Ek satisfies the global, volume-
constrained minimality property

P.Ek/ 6 P.F /C 3
p
˛.Ek/ d.F ;Ek/ ; 8F 2M0 : (A.3)
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REMARK A.3 The assumption �.E0/ < 1 is essentially equivalent to showing the existence of a
one-parameter family of clusters fEtgjt j<" with vol .Et / D vol .E0/, ˛.Et / > 0, P.Et / � P.E0/ 6
C t2, and ˛.Et / > jt j=C for every jt j < ". By Theorem A.4 below, it is not difficult to define
Et satisfying the first three conditions: what is not immediate, however, is proving that ˛.Et / >
jt j=C . When N D 1 or N D 2 (see section 2.2 for the latter case) one can easily address this
point by exploiting the symmetries of the corresponding isoperimetric clusters (balls or standard
double-bubbles). For general N one does not expect to have symmetry properties or to explicitly
characterize isoperimetric clusters. Nevertheless, it is always true that �.E0/ < 1. We shall not
further discuss this issue here.

We now turn to prove Theorem A.1 and Theorem A.2. As explained the issue is the lack of global
compactness, and thus of the possible loss of volume at infinity. This can be fixed by exploiting an
argument similar to the one used in Almgren’s proof [1] of the existence of isoperimetric clusters
for every given volume vector, see also [24, Chapter 29]. Almgren’s argument uses truncations and
translations of pieces of the quasi-isoperimetric clusters, so what one needs to do is taking track of
what happens to ˛.E/ under these operations. The following theorem is a key tool in implementing
this strategy. It is a variant of [1, Proposition VI.12], see also [24, Corollary 29.17]. The necessary
modifications with respect to [24, Corollary 29.17] are described in [8, Appendix B], so that we
omit to give a detailed proof in here.

Theorem A.4 (Volume-fixing variations) If E0 is a N -cluster in Rn, then there exist positive
constants r0, "0, R0 and C0 (depending on E0) with the following property. Let E be a N -cluster in
Rn with

d.E;E0/ 6 "0 ; (A.4)

and let F be a N -clusters in Rn such that either
N[
hD1

F .h/�E.h/ �� Bx;r0 ; for some x 2 Rn ; (A.5)

or

d.E; F / 6 !n r
n
0 ;

N[
hD1

F .h/�E.h/ � Rn n BR ;
if there exists R > 0 s.t.SN
hD1 E0.h/ �� BR :

(A.6)

Then there exists a N -cluster F 0 such that
N[
hD1

F 0.h/�F .h/ ��

�
BR0 n Bx;r0 ; if (A.5) holds ;
BR ; if (A.6) holds ;

(A.7)

vol .F 0/ D vol .E/ ; (A.8)ˇ̌
P.F 0/ � P.F /

ˇ̌
6 C0 P.E/

ˇ̌
vol .F / � vol .E/

ˇ̌
; (A.9)ˇ̌

d.F 0;E/ � d.F ;E/
ˇ̌

6 C0 P.E/
ˇ̌
vol .F / � vol .E/

ˇ̌
; (A.10)

NX
hD0

Z
F 0.h/�F .h/

J 6 C0 kJ kL1.BR0 /
P.E/

ˇ̌
vol .F / � vol .E/

ˇ̌
; (A.11)

for every Borel function J W Rn ! Œ0;1/ which is locally bounded.
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We now prove Theorem A.1 and Theorem A.2 for a fixed uniquely minimizing isoperimetric
cluster E0. Thanks to [24, Theorem 29.1], there exists R > 0 such that E0.h/ �� BR for every
h D 1; : : : ; N . Moreover we shall use the obvious inequalityˇ̌

˛.E/ � ˛.F /
ˇ̌

6 d.E; F / ; for every N -clusters E and F : (A.12)

Proof of Theorem A.1. The argument has several points in common with [24, Proof of Theorem
29.1]. Arguing by contradiction, we assume the existence of �� > 0 and of a sequence fEkgk2N of
N -clusters such that vol .Ek/ D vol .E0/ for every k 2 N and

lim
k!1

P.Ek/ D P.E0/ ; lim
k!1

˛.Ek/ D �� :

By arguing as in step one of the proof of [24, Theorem 29.1] we identify for each cluster Ek a
suitable region (constructed as a union of balls of radius S , see the right-hand side of (A.13)) inside
of which, in the spirit of Theorem A.4, we can perform volume-fixing variations of Ek with uniform
bounds in k. More precisely, there exist positive constants "1, C1, and S , points fxk.h/gk2N �
Rn (1 6 h 6 N ), and C 1-maps ˚k W ..�"1; "1/NC1 \ V / � Rn ! Rn, (here V D fa 2
RNC1 W

PN
hD0 a.h/ D 0g) with the property that (up to extracting subsequences in k) ˚k.a; �/

is a C 1-diffeomorphism on Rn for every a 2 .�"1; "1/NC1 \ V , and, moreover, for every a 2
.�"1; "1/

NC1 \ V and for every Hn�1-rectifiable set ˙ � Rn, it holds

˚
x 2 Rn W ˚k.a; x/ ¤ x

	
��

N[
hD1

B
�
xk.h/; S

�
; (A.13)ˇ̌

˚k
�
a;Ek.h/

�ˇ̌
D
ˇ̌
Ek.h/

ˇ̌
C a.h/ ; (A.14)ˇ̌

Hn�1
�
˚k.a; ˙/

�
�Hn�1.˙/

ˇ̌
6 C1 Hn�1.˙/ jaj ; (A.15)ˇ̌

˚k
�
a;Ek.h/

�
�Ek.h/

ˇ̌
6 C1 P

�
Ek.h/

�
jaj : (A.16)

Note that (A.16) is not mentioned in step one of the proof of [24, Theorem 29.1], but that it can
be easily achieved by exploiting [8, Lemma B.2]. At the same time, by arguing as in step two of
the proof of [24, Theorem 29.1], we see that there exist positive constants "0 and L (depending on
fEkgk2N only) such that for every � < "0, k 2 N, and h D 1; : : : ; N , we can find finitely many
points fyk.h; i/g

Lk.h/
iD1 � Rn such that

ˇ̌̌
Ek.h/ n

Lk.h/[
iD1

B.yk.h; i/; 2/
ˇ̌̌
<
�

N
; Lk.h/ 6

L

�n
: (A.17)

Let us now consider the closed sets

Fk D

N[
hD1

B
�
xk.h/; S

�
[

Lk.h/[
iD1

B
�
yk.h; i/; 2

�
; k 2 N :

Since, by (A.17),
NX
hD1

ˇ̌
Ek.h/ n Fk

ˇ̌
6 � ; 8k 2 N ; (A.18)
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the truncation lemma [24, Lemma 29.12] guarantees the existence of r0 2 Œ0; 7n �1=n� such that, if
I".X/ D fx 2 Rn W dist.x;X/ < "g denotes the "-neighborhood of X � Rn, and if fE0

k
gk2N are

the N -clusters defined by E0
k
.h/ D Ek.h/ \ Ir0.Fk/, 1 6 h 6 N , then

P.E0k/ 6 P.Ek/ �
d.E0

k
;Ek/

4 �1=n
: (A.19)

By (A.18) we have d.E0
k
;Ek/ 6 �, so that by (A.12)

˛.E0k/ > ˛.Ek/ � � ; 8k 2 N : (A.20)

If we set ak.h/ D jEk.h/j � jE0k.h/j D jEk.h/ n Ir0.Fk/j for 1 6 h 6 N and ak.0/ D
�
PN
hD1 ak.h/, and if we require � 6 "1, then ak 2 .�"1; "1/NC1 \ V for every k 2 N. We

may thus define a sequence of clusters fE00
k
gk2N by setting

E00k.h/ D ˚k
�
ak ;E0k.h/

�
; 1 6 h 6 N :

Let us notice that, by (A.13), ˚k.x/ D x in an open neighborhood of Rn n Fk , so that, in fact,
˚k.ak ;E0k.h// D ˚k.ak ;Ek.h//\Ir0.Fk/. Therefore, by (A.14), (A.15), (A.19), and the definition
of the ak’s, much as in step two of the proof of [24, Theorem 29.1], we obtain that

vol .E00k/ D vol .Ek/ D vol .E0/ ; (A.21)

P.E00k/ 6 P.Ek/C
�
4C1P.E0/ �

1

4�1=n

�
d.E0k ;Ek/ I (A.22)

moreover, this time taking into account (A.16), and since d.Ek ;E0k/ 6 �, we find that

d.E00k ;Ek/ 6 �C C1 P.Ek/ jakj 6 C2 � ; (A.23)

where C2 is a constant depending on fEkgk2N only; in particular, by (A.23) and (A.12)

˛.E00k/ > ˛.Ek/ � C2� >
��

2
; (A.24)

provided � is small enough; similarly, up to further decreasing the value of �, (A.22) gives us

P.E00k/ 6 P.Ek/ ; 8k 2 N : (A.25)

Summarizing, by taking into account (A.21), (A.25), and (A.24) we see that fE00
k
gk2N satisfies

lim
k!1

P.E00k/ D P.E0/ ; lim inf
k!1

˛.E00k/ >
��

2
I (A.26)

moreover, by the definition of E0
k

and E00
k

, and thanks to (A.13), for every k 2 N we find

N[
hD1

E00k.h/ �� Gk D I2 r0.Fk/ ;

where Gk is a closed set with at most L0 D L0.n;N;L; �/ connected components of diameter at
most S0 D S0.S; r0; L0/ with r0 6 7n�1=n. Clearly, the mutual distances between these connected
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components may tend to infinity or not: in any case we can find fzj
k
gMjD1 � Rn, 1 6 M 6 L0, such

that for every k 2 N and 1 6 j1 < j2 6 M (if M > 2)

N[
hD1

E00k.h/ ��
M[
jD1

B.z
j

k
; S0/ ; lim

k!1
jz
j1
k
� z

j2
k
j D 1 :

In particular, fB.zj
k
; S0/g

M
jD1 is a disjoint family of balls if M > 2 and k is large enough. Let us

assume, as we may up to isometries, that ˛.E00
k
/ D d.E00

k
;E0/. Up to relabeling the index j and up to

take k large enough, by taking into account E0.h/ �� BR for every h D 1; : : : ; N , we may ensure
that

˛.E00k/ D
NX
hD1

ˇ̌̌�
E00k.h/�E0.h/

�
\ B.z1k ; S0/

ˇ̌̌
; 0 D

NX
hD1

MX
jD2

ˇ̌̌
E0.h/ \ B.z

j

k
; S0/

ˇ̌̌
:

(This implies, in particular, that jz1
k
j 6 R C S0.) Let us finally consider vectors fyj

k
gMjD2 such that

the balls fB.zj
k
C y

j

k
; S0/g

M
jD2 lie at mutually positive distance at least 2 .S0 C R/ and at most

2 .S0CR/M one from each other and from B.z1
k
; S0/, and define a sequence fE000

k
gk2N so that, for

h D 1; : : : ; N ,

E000k .h/ \ B.z
1
k ; S0/ D E00k.h/ \ B.z

1
k ; S0/ ;

E000k .h/ \ B.z
j

k
C y

j

k
; S0/ D

�
E00k.h/ \ B.z

j

k
; S0/

�
C y

j

k
; 2 6 j 6 M ;

E000k .h/ n
�
B.z1k ; S0/ [

M[
jD2

B.z
j

k
; S0/

�
D ; :

In this way, by construction of yj
k

and since E0 �� BR, it must be ˛.E000
k
/ D ˛.E00

k
/ for every k

large enough, so that lim infk!1 ˛.E000k / > ��=2. At the same time, there exists Q depending on
S0, R, and M only, such that E000

k
� BQ for every k 2 N, so that by limk!1 P.E

000
k
/ D P.E0/,

vol .E000
k
/ D vol .E0/, and by the standard compactness theorem [24, Proposition 29.5], there exists

a N -cluster E� such that, up to extracting subsequences, d.E000
k
;E�/ ! 0 as k ! 1. Therefore,

it holds vol .E�/ D vol .E0/, P.E�/ D P.E0/, and ˛.E�/ > ��=2, a contradiction to the unique
minimality of E0.

Proof of Theorem A.2. Let us consider a recovery sequence fFkgk2N �M0 for �.E0/, that is

inf
k2N

˛.Fk/ > 0 ; lim
k!1

d.Fk ;E0/ D 0 ; �.E0/ D lim
k!1

ı.Fk/

˛.Fk/2
; (A.27)

and notice that, since �.E0/ <1, we have

lim
k!1

˛.Fk/ D 0 ; P.Fk/ D P.E0/C �.E0/ ˛.Fk/
2
C o

�
˛.Fk/

2
�
: (A.28)

Without loss of generality, we may assume that, for all k 2 N, and for ˇ > 0 to be suitably chosen,

P.Fk/ 6 P.E0/C
�
�.E0/C 1

�
˛.Fk/

2 ; ˛.Fk/ 6 ˇ : (A.29)
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We claim that for every k large enough there exists a minimizer Ek in the problem


k.E0/ D inf
n
P.E/C

ˇ̌
˛.E/ � ˛.Fk/

ˇ̌3=2
W E 2M0

o
; (A.30)

and that

˛.Ek/ >
˛.Fk/

3
; (A.31)ˇ̌

˛.Ek/ � ˛.Fk/
ˇ̌

6
�
�.E0/C 1

�2=3
˛.Fk/

4=3 ; (A.32)
N[
hD1

Ek.h/ � BR0 ; R0 D RC 7nˇ
1=n ; (A.33)

P.Ek/ D P.E0/C �.E0/ ˛.Ek/
2
C o

�
˛.Ek/

2
�
; as k !1 : (A.34)

Indeed, given k 2 N, let fEk;j gj2N be a minimizing sequence in (A.30). Since Fk is admissible in
(A.30) and by (A.29), provided ˇ is small enough, we may assume without loss of generality that(

P.Ek;j /C j˛.Ek;j / � ˛.Fk/j
3=2 6 P.Fk/

P.Ek;j / 6 P.E0/C 1
; 8k ; j 2 N : (A.35)

By subtracting P.E0/ in this last inequality, by P.Ek;j / > P.E0/, and by (A.29) we thus getˇ̌
˛.Ek;j / � ˛.Fk/

ˇ̌3=2 6
�
�.E0/C 1/ ˛.Fk

�2
; 8k ; j 2 N : (A.36)

In particular, provided ˇ is small enough, we find

˛.Fk/

2
6 ˛.Ek;j / 6

3

2
˛.Fk/ ; 8k ; j 2 N : (A.37)

We now construct new minimizing sequences feEk;j gj2N for the variational problems (A.30), with
the property that, for some k0 2 N

N[
hD1

eEk;j .h/ � BRC7nˇ1=n ; 8j 2 N ; k > k0 : (A.38)

Indeed, let us assume, as we may do up to isometries, that

˛.Ek;j / D d.Ek;j ;E0/ ; 8j ; k 2 N : (A.39)

For each k ; j 2 N and r > 0, we consider the cluster Er
k;j
.h/ D Ek;j .h/\Br , and correspondingly

define a decreasing function �k;j W .0;1/! Œ0;1/ by setting

�k;j .r/ D d.Ek;j ;Erk;j / D
NX
hD1

jEk;j .h/ n Br j ; k ; j 2 N ; r > 0 : (A.40)

By
SN
hD1 E0.h/ �� BR, (A.39), (A.37) and (A.29) we find

�k;j .R/ 6
d.Ek;j ;E0/

2
D
˛.Ek;j /

2
6
3

4
˛.Fk/ 6

3

4
ˇ : (A.41)
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Thus, by [24, Lemma 29.12], there exists r D rk;j 2 ŒR;RC 7nˇ1=n� such that

P.Erk;j / 6 P.Ek;j / �
�k;j .r/

4 ˇ1=n
; 8j ; k 2 N ; (A.42)

where in order to simplify the notation we have set Er
k;j
D E

rk;j
k;j

. Now let "0, r0, and C be the
constants associated with E0 by Theorem A.4, which we want to apply with the choices E D Ek;j
and F D Er

k;j
. This is possible because by (A.39), (A.37), and (A.29), and provided ˇ is small

enough, we have d.Ek;j ;E0/ 6 "0, while at the same time d.Ek;j ;Erk;j / 6 �k;j .R/ 6 ˇ 6 !n r
n
0

and Ek;j .h/�Er
k;j
.h/ � Rn nBR, where R > 0 is such that E0.h/ �� BR for every h D 1; : : : ; N .

By Theorem A.4 we thus construct clusterseEk;j such that

vol .eEk;j / D vol .Ek;j / D vol .E0/ ;ˇ̌
d.eEk;j ;Ek;j / � d.Erk;j ;Ek;j /

ˇ̌
6 C P.Ek;j / �k;j .r/ ;

P.eEk;j / 6 P.Erk;j /C C P.Ek;j / �k;j .r/ :

(A.43)

By (A.12), (A.43), (A.35), and (A.40) we find

P.eEk;j / � P.Erk;j /C j˛.eEk;j / � ˛.Ek;j /j 6 C1 �k;j .r/ ; (A.44)

for some constant C1 depending on E0 only. By (A.42) and (A.44) we find

P.eEk;j /Cˇ̌˛.eEk;j /�˛.Fk/ˇ̌3=2 6 P.Ek;j /C
ˇ̌
˛.eEk;j /�˛.Fk/ˇ̌3=2�� 1

4ˇ1=n
�C1

�
�k;j .r/ ; (A.45)

where, again thanks to (A.44) we haveˇ̌
˛.eEk;j / � ˛.Fk/ˇ̌3=2 6

�
j˛.Ek;j / � ˛.Fk/j C C1 �k;j .r/

�3=2
: (A.46)

If j˛.Ek;j / � ˛.Fk/j > C1 �k;j .r/, then, by noticing that .1C a/3=2 6 1C 2a for every a 2 Œ0; 1�,ˇ̌
˛.eEk;j / � ˛.Fk/ˇ̌3=2 6

ˇ̌
˛.Ek;j / � ˛.Fk/

ˇ̌3=2�
1C

2C1 �k;j .r/

j˛.Ek;j / � ˛.Fk/j

�
6
ˇ̌
˛.Ek;j / � ˛.Fk/

ˇ̌3=2
C 2C1

p
˛.Fk/ �k;j .r/

6
ˇ̌
˛.Ek;j / � ˛.Fk/

ˇ̌3=2
C C2

p
ˇ �k;j .r/ ; (A.47)

thanks to (A.29), and for a constant C2 depending on E0 only; if j˛.Ek;j / � ˛.Fk/j 6 C1 �k;j .r/,
then by (A.46), and up to possibly increasing the value of C2, we simply findˇ̌

˛.eEk;j / � ˛.Fk/ˇ̌3=2 6
�
2C1 �k;j .r/

�3=2 6 C2
p
ˇ �k;j .r/ ; (A.48)

where we have used again (A.41) and the fact that �k;j is decreasing. We finally combine (A.45),
(A.47), and (A.48), to conclude that, if ˇ is suitably small (in terms of C1, C2 and n), then

P.eEk;j /C j˛.eEk;j / � ˛.Fk/j3=2
6 P.Ek;j /C j˛.Ek;j / � ˛.Fk/j

3=2
�

� 1

4ˇ1=n
� C1 � C2

p
ˇ
�
�k;j .r/ (A.49)

6 P.Ek;j /C j˛.Ek;j / � ˛.Fk/j
3=2 : (A.50)
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By (A.50) and (A.38), for every k 2 N, we find that feEk;j gj2N � M0 is a minimizing sequence
in (A.30), uniformly bounded in space. By the Direct Method (see, e.g., [24, Propositons 29.4 and
29.5]), up to possibly extracting a subsequence in j , there exist minimizers Ek in (A.30) such that
d.eEk;j ;Ek/! 0 as j !1. If we denote by C3 the positive constant appearing in front of��k;j .r/
in (A.49), then by (A.49), (A.35), and (A.28), we find

P.E0/ 6 P.eEk;j /C j˛.eEk;j / � ˛.Fk/j3=2 C C3 �k;j .r/ 6 P.Fk/ (A.51)

D P.E0/C �.E0/ ˛.Fk/
2
C o.˛.Fk/

2/ : (A.52)

By subtracting P.E0/, we can thus find k0 2 N such that, if k > k0, then

sup
h2N

�k;j .r/ 6
�
�.E0/C 1

�
C3

˛.Fk/
2 6

˛.Fk/

6C1
;

possibly up to further decreasing the value of ˇ. Correspondingly, by (A.44) and by the lower bound
in (A.37), we find that

˛.eEk;j / > ˛.Ek;j / �
˛.Fk/

6
>
˛.Fk/

3
; 8j 2 N ; k > k0 ;

so that (A.31) follows by letting j ! 1 and by using (A.12). By a similar argument we see that
(A.51) and (A.29) give usˇ̌

˛.eEk;j / � ˛.Fk/ˇ̌3=2 6
�
�.E0/C 1

�
˛.Fk/

2 ; 8j; k 2 N : (A.53)

Thus (A.32) follows by letting j !1 in (A.53), while (A.33) follows by letting j !1 in (A.38).
By (A.51) and (A.52) we also see that

P.eEk;j / D P.E0/C �.E0/ ˛.Fk/2 C o.˛.Fk/2/ D P.E0/C �.E0/ ˛.Ek/2 C o�˛.Ek/2� ;
where ˛.Ek/=˛.Fk/ ! 1 as k ! 1 thanks to (A.36) and d.eEk;j ;Ek/ ! 0 as j ! 1. Since
lim infj!1 P.eEk;j / > P.Ek/ > P.E0/ we deduce (A.34). We have thus completed the proof of
the existence of minimizers Ek in (A.30) satisfying (A.31)–(A.34).

We now prove that (A.3) holds for k > k0. Indeed, if F 2M.E0/, then by minimality of Ek in
(A.30) we have

P.Ek/C
ˇ̌
˛.Ek/ � ˛.Fk/

ˇ̌3=2 6 P.F /C
ˇ̌
˛.F / � ˛.Fk/

ˇ̌3=2
: (A.54)

Since ja3=2 � b3=2j 6 .3=2/
p

maxfa; bgjb � aj for every a; b > 0, we easily find thatˇ̌
˛.F / � ˛.Fk/

ˇ̌3=2
�
ˇ̌
˛.Ek/ � ˛.Fk/

ˇ̌3=2 6
3

2

p
˛.Fk/

ˇ̌
˛.Ek/ � ˛.F /

ˇ̌
: (A.55)

We thus prove (A.3) by combining (A.54), (A.55), (A.31), and (A.12). We are left to prove that
each Ek is a .�; r0/-perimeter minimizer, for some constants depending on E0 only. Indeed, let "0,
r0, and C be the constants associated to E0 by Theorem A.4. By (A.32) and (A.29), up to further
decreasing the value of ˇ, we may assume that ˛.Ek/ 6 "0 for all k 2 N, so that, up to isometries,
we may assume that ˛.Ek/ D d.Ek ;E0/ 6 "0 for every k 2 N. Now we choose x 2 Rn and an
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N -cluster F such that F .h/�Ek.h/ �� B.x; r0/ for h D 1; : : : ; N . By applying Theorem A.4
with E D Ek , and up to further decreasing the value of ˇ to entail P.Ek/ 6 2P.E0/, we construct
a cluster F 0 satisfying F 0.h/�F .h/ �� Rn n B.x; r0/, vol .F 0/ D vol .F / and

max
˚ˇ̌
P.F 0/ � P.F /

ˇ̌
;
ˇ̌
d.F 0;Ek/ � d.F ;Ek/

ˇ̌	
6 2C P.E0/

ˇ̌
vol .F / � vol .Ek/

ˇ̌
:

By exploiting these properties and (A.3), and since jvol .F / � vol .Ek/j 6 d.F ;Ek/, we thus find

P.Ek/ 6 P.F 0/C 3
p
˛.Ek/ d.F 0;Ek/

6 P.F /C 2C P.E0/
�
1C 3

p
˛.Ek/

�
jvol .F / � vol .E0/j C 3

p
˛.Ek/ d.F ;Ek/

6 P.F /C� d.F ;Ek/ ;

for a suitable value of � determined by E0 only.

Appendix B. Proof of (4.65)

Here we justify the bound (4.65) used in proving our main theorem, namely

ˇ1.t/ > 0 ˇ1.t/ˇ2.t/ � ˇ3.t/
2 > 0 8t 2 .0; 1� : (B.1)

Explicit expressions for these functions can be obtained by combining the list of formulas (B.2)
and (B.3) below. The result is a complex mixture of rational functions of inverse tangents and
trigonometric functions which defies a simple direct analysis. The plotting of these functions on a
computer presents no difficulty and confirms the validity of (B.1), see Figure 7. Although it seems
reasonable to accept this numerical evidence as a proof of (B.1), we have decided to include a more
formal argument in its support. This argument reduces the proof of (B.1) to estimating the values
of some explicit functions at a few specific points, see equations (B.31) and (B.38) below. We now
begin our analysis. For the sake of clarity, we first recall that for each t 2 .0; 1/ we have set

r1.t/ D t; (B.2)
r2.t/ D 1;

r0.t/ D
r1

1 � r1
;

�0.t/ D arctan
�p

3
1 � r1

1C r1

�
;

�1.t/ D
2�

3
� �0;

�2.t/ D
2�

3
C �0;

m1.t/ D �1 r
2
1 C �0 r

2
0 �

p
3

2
r0 r1;

m2.t/ D �2 r
2
2 � �0 r

2
0 C

p
3

2
r0 r2;

g.�/ D
cos.�/

2.sin � � � cos �/
0 < � < �;

P.E0/ D 2
�m1
r1
C
m2

r2

�
;
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and then

ˇ1 D g.�0/
�r1
r0

�3� m2

m1 Cm2

�2
C g.�1/C

P.E0/

4

r31
.m1 Cm2/2

; (B.3)

ˇ2 D g.�0/
�r2
r0

�3� m1

m1 Cm2

�2
C g.�2/C

P.E0/

4

r32
.m1 Cm2/2

;

ˇ3 D �g.�0/
�pr1r2

r0

�3� pm1m2
m1 Cm2

�2
C
P.E0/

4

.
p
r1r2/

3

.m1 Cm2/2
:

Notice that r0.t/ D t=.1 � t / and g.�0.t// are not defined at t D 1 (and they both have limit equal
to C1 as t ! 1�). Nevertheless, ˇ1, ˇ2 and ˇ3 have finite limits as t ! 1�, and so turn out to be
continuous on .0; 1�. On noticing that

lim
t!1�

�0 r
2
0 �

p
3

2
r0 r1 D

p
3

4
D lim

t!1�

p
3

2
r0 r2 � �0 r

2
0 ;

lim
t!1�

g.�0/

r30
D

4
p
3
; g

�2�
3

�
D �

1

4
�
�
3
C

p
3
2

� ; lim
t!1�

m1.t/ D lim
t!1�

m2.t/ D
2�

3
C

p
3

4

we find that

ˇ1.1
�/ D ˇ2.1

�/ D
1
p
3
C

1

4
�
2�
3
C

p
3
4

� � 1

4
�
�
3
C

p
3
2

� ; (B.4)

ˇ3.1
�/ D �

1
p
3
C

1

4
�
2�
3
C

p
3
4

� ; (B.5)

so that ˇ1.1�/ D ˇ2.1�/ > 1=2 > ˇ3.1�/, and (B.1) holds at t D 1. From now on we thus restrict
t 2 .0; 1/. We first address the lower bound for ˇ1, and then the one for ˇ1ˇ2 � ˇ23 .

Lower bound on ˇ1. By direct computation one sees that�
g.�/ is strictly convex and decreasing on .0; �/
g.�=2/ D 0, g.1�/ D �1=2� , g.�/ �3 ! 3=2 as � ! 0C :

(B.6)�
�0 is strictly decreasing on .0; 1/
with �0.0/ D �=3, �0.1/ D 0

(B.7)�
�1 is strictly increasing on .0; 1/
with �1.0/ D �=3, �1.1/ D 2�=3, �1.1=2/ D �=2 ;

(B.8)

By combining (B.6) with (B.7) and (B.8) we find that

g.�0/ > g.�=3/ > 0 on .0; 1/ g.�1/ > 0 on .0; 1=2�, g.�1/ < 0 on .1=2; 1/ (B.9)

so that ˇ1 > 0 on .0; 1=2�. We conclude the proof of ˇ1 > 0 on .0; 1/ by showing that

g.�0/
�r1
r0

�3� m2

m1 Cm2

�2
C g.�1/ > 0 on Œ1=2; 1/ (B.10)
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To this end, we prove below that

g.�0/
�r1
r0

�3
D g.�0/.1 � t /

3
D

.1 � t /3

2
�p

3.1�t/
.1Ct/

� arctan
�p

3.1�t/
.1Ct/

�� is increasing on .1=2; 1/

(B.11)
which gives us

g.�0/
�r1
r0

�3
> g.�0/

�r1
r0

�3 ˇ̌̌
tD1=2

D
1

16
�
1p
3
�
�
6

� on .1=2; 1/: (B.12)

We now claim that

m1 is strictly increasing on .0; 1/ with m1.0/ D 0 and m1.1/ D �=3 ;
m2 is strictly decreasing on .0; 1/ with m2.0/ D � and m2.1/ D �=3 :

(B.13)

A stronger property holds for m1, and shall be needed in the sequel, namely

m1=r
2
1 is increasing on .0; 1/: (B.14)

Indeed
m1

r21
D
2�

3
C

� 1

.1 � t /2
� 1

�
arctan

�p
3
1 � t

1C t

�
�

p
3

2

1

1 � t

so that, setting ˛ D
p
3.1 � t /=.1C t / and using t D .

p
3 � ˛/=.

p
3C ˛/, we are bound to show

m1

r21
D  .˛/ D

2�

3
C
.�3˛2 C 2

p
3˛ C 3/ arctan.˛/ � .˛ C

p
3/
p
3˛

4˛2

to be decreasing for ˛ 2 .0;
p
3/. By elementary computations we get

 0.˛/ D �
3C
p
3˛

2˛3.1C ˛2/
..1C ˛2/ arctan.˛/ � ˛/ 6 0 8˛ 2 .0;

p
3/

since .1C ˛2/ arctan.˛/ > ˛ by strict concavity of arctan.˛/ on Œ0;C1/. This proves (B.14), thus
the first assertion in (B.13). The monotonicity of m2 is obtained by entirely similar computations.
Having proved (B.13), we use it to infer� m2

m1 Cm2

�2
D

� 1

.m1=m2/C 1

�2
>
� 1

.m1=m2/C 1

�2 ˇ̌̌
tD1
D
1

4
on .0; 1/ : (B.15)

By (B.12) and (B.15) we find

g.�0/
�r1
r0

�3� m2

m1 Cm2

�2
>

1

64
�
1p
3
�
�
6

� on .1=2; 1/ :

By (B.6) and (B.8), g.�1/ is strictly decreasing on .0; 1/ with

g.�1/ > g
�
�1.1/

�
D g

�2�
3

�
D �

1

2
p
3C 4

3
�
:
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By combining the last two estimates we conclude that for every t 2 .1=2; 1/ one has

ˇ1.t/ >
1

64
�
1p
3
�
�
6

� � 1

2
p
3C 4

3
�
> 0

as required. We are thus left to prove (B.11), that is

h.t/ D
1

.1 � t /3

 p
3.1 � t /

1C t
� arctan

�p3.1 � t /
1C t

�!
is decreasing on .1=2; 1/.

To this end we set s D
p
3.1 � t /=.1 C t /, t D .

p
3 � s/=.

p
3 C s/, so that s.t/ is decreasing,

h.t/ D c N.s.t//, and we thus have reduced in showing that

N.s/ D
.
p
3C s/3

�
s � arctan.s/

�
s3

D .
p
3C s/3

C1X
nD0

.�1/n
s2n

2nC 3
is increasing on .0; 1=

p
3/.

This is seen by noticing that when s 2 .0; 1=
p
3/ one has

N 0.s/ D 3.
p
3C s/2

C1X
nD0

.�1/n
s2n

2nC 3
C .
p
3C s/3

C1X
nD1

.�1/n
2n

2nC 3
s2n�1

> .
p
3C s/2

 
.1 � 3s2=5/ � .

p
3C s/

2

5
p
3

!

> .
p
3C s/2

 
4=5 � .

p
3C 1=

p
3/

2

5
p
3

!
> 3

�
4

5
�
2

5
�
2

15

�
D
12

15
:

Lower bound on ˇ1ˇ2 � ˇ23 . We compute that, setting M D m1 Cm2,

ˇ1ˇ2 D
�P.E0/

4

�2 .r1r2/3
M 4

C g.�0/
2 .r1r2/

3

r60

.m1m2/
2

M 4
C g.�1/ g.�2/

C
P.E0/

4
g.�0/

�r1r2
r0

�3 m21 Cm22
M 4

C
P.E0/

4

r31g.�2/C r
3
2g.�1/

M 2

C g.�0/

 
g.�2/

�r1
r0

�3 �m2
M

�2
C g.�1/

�r2
r0

�3 �m1
M

�2!
ˇ23 D

�P.E0/
4

�2 .r1r2/3
M 4

C g.�0/
2 .r1r2/

3

r60

.m1m2/
2

M 4

�
P.E0/

4
g.�0/

�r1r2
r0

�3 2m1m2
M 4
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so that
ˇ1ˇ2 � ˇ

2
3 D

AC B C C CD

M 2
; (B.16)

where

A.t/ D
P.E0/

4
g.�0/

�r1r2
r0

�3
(B.17)

B.t/ D
P.E0/

4

�
r31g.�2/C r

3
2g.�1/

�
C.t/ D g.�0/

 
g.�2/

�r1
r0

�3
m22 C g.�1/

�r2
r0

�3
m21

!
D.t/ D g.�1/ g.�2/M

2 :

If we set

G.t/ D g.�0/
�r1r2
r0

�3
D g.�0/.1�t /

3 ; h1.t/ D
1

2
Cg.�1/

m1

r21
; h2.t/ D

1

2
Cg.�2/

m2

r22
;

then we have the useful identity

AC C D
�
h1
m1

r1
C h2

m2

r2

�
G : (B.18)

We make a separate analysis on the intervals .0; 1=2/ and Œ1=2; 1/.

Proof of the lower bound when t 2 Œ1=2; 1/. By (B.14), and since g.�1/ is negative and decreasing
on Œ1=2; 1/ thanks to (B.6) and (B.8), we find that h1 is decreasing on Œ1=2; 1/. Since

lim
t!1

m1

r21
D
2�

3
C

p
3

4
; g.�1.1// D g

�2�
3

�
D �

1

4
�
�
3
C

p
3
2

�
we conclude from the monotonicity of h1 that

h1.t/ > h1.1/ D
1

2
�

2�
3
C

p
3
4

4
�
�
3
C

p
3
2

� >
1

6
8t 2 Œ1=2; 1/ : (B.19)

Next we notice that h2 is increasing on .0; 1/. Indeed,

�2 is strictly decreasing on .0; 1/
with �2.0/ D � , �2.1/ D 2�=3

(B.20)

so that by, (B.6), g.�2/ is negative and increasing on .0; 1/. Since h2 � 1=2 is the product of g.�2/
with m2=r22 D m2 (which is positive and decreasing, recall (B.13)) we deduce that h2 is increasing
on .0; 1/. By combining this fact with h2.0/ > 0, (B.19) and (B.18) we find that

AC C >
Gm1

6 r1
on Œ1=2; 1/: (B.21)
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We now prove that

LCD > �B on Œ1=2; 1/, where L D
Gm1

6 r1
: (B.22)

Thanks to (B.16) and (B.21), this last fact will conclude the proof of the required lower bound on
Œ1=2; 1/. In order to prove (B.22), we first show that

B is negative and decreasing on Œ1=2; 1/. (B.23)
L is positive and increasing on Œ1=2; 1/. (B.24)
D is positive and increasing on Œ1=2; 1/. (B.25)

To this end we first check that

t3g.�2.t// is negative decreasing on Œ1=2; 1/: (B.26)

Indeed

tan �2 D
sin
�
2�
3
C �0

�
cos

�
2�
3
C �0

� D p
3 cos.�0/ � sin.�0/

� cos.�0/ �
p
3 sin.�0/

D
tan.�0/ �

p
3

1C
p
3 tan.�0/

D
p
3

1�t
1Ct
� 1

1C 3 1�t
1Ct

D
p
3
�2t

4 � 2t
D

p
3 t

t � 2

so that

1

t3g.�2/
D 2

tan.�2/ � �2
t3

D
2
p
3

.t � 2/t2
�
2

t3

 
2�

3
C arctan

�p
3
1 � t

1C t

�!
D

h 2
p
3

.t � 2/t2
�
4�

3 t3

i
�

h 2
t3

arctan
�p

3
1 � t

1C t

�i
The function in the first square bracket is increasing on Œ1=2; 1/, while the

2

t3
arctan

�p
3
1 � t

1C t

�
D 2 �0.t/=t

3 is decreasing on Œ1=2; 1/

(as a product of positive decreasing functions). Since g.�2/ < 0 is negative, this proves (B.26). To
prove (B.23) we first show that

p.t/ D P.E0/ is positive and increasing on .0; 1/. (B.27)

While the positivity of p.t/ is obvious, proving the monotonicity requires some extra effort. First
of all we prove that

M.t/ D m1.t/Cm2.t/ is strictly increasing when t 2 .0; 1/. (B.28)
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Indeed by an easy computation one gets

M 0.t/ D 2t

�
2�

3
� arctan

�p
3
1 � t

1C t

��
C

p
3

2

�
1 �

4.1 � t /

.1C t /2 C 3.1 � t /2

�
>
p
3

2

�
1 �

4.1 � t /

.1C t /2 C 3.1 � t /2

�
D

2
p
3t2

.1C t /2 C 3.1 � t /2
> 0

whenever t 2 .0; 1/. Then we recall that the isoperimetric profile I.m1; m2/ is symmetric and
concave (see [21]) thus we only need to show that

p0.t/ D rI.m1; m2/ �
�
m01.t/;m

0
2.t/

�
> 0 : (B.29)

Notice that m01.t/ > jm
0
2.t/j D �m

0
2.t/ for all t 2 .0; 1/, which follows by the fact that m1 is

increasing, m2 is decreasing, and the derivative of m1.t/ C m2.t/ is positive according to (B.28).
Therefore if we set

v D .m01; m
0
2/ ; � D

m1 Cm2

m01 �m
0
2

; � D m1 � �m
0
1 D m2 � �m

0
2;

then by concavity and symmetry of I.m1; m2/, and since rI.�; �/ D .�; �/ for some � > 0,

rI.m1; m2/ � v > rI.�; �/ � v D �.m01 Cm
0
2/ > 0;

thus proving (B.27). Now we notice that

B.t/ D
P.E0/

4

�
t3g.�2/C g.�1/

�
where t3g.�2/ C g.�1/ is negative decreasing on Œ1=2; 1/ as both g.�1/ and t3g.�2/ are negative
decreasing on Œ1=2; 1/ (recall (B.6), (B.8) and (B.26)). Being the product of a positive increasing
function with a negative decreasing function, B.t/ must be negative decreasing on Œ1=2; 1/, as
claimed in (B.23).

In order to prove (B.24) we notice that L is the product of m1=r21 (which is positive and
increasing on .0; 1/ by (B.14)), r1=6 D t=6, and G.t/ (which is positive and increasing on Œ1=2; 1/
thanks to (B.11)). Finally we prove (B.25). Indeed we have g.�1.t// g.�2.t// > 0when t 2 .1=2; 1/
and �

g.�1.t// g.�2.t/
�0
D � 00

�
g0.�2/g.�1/ � g

0.�1/g.�2/
�

D � 00

�
g.�1/g.�2/

�g0.�2/g.�1/ � g0.�1/g.�2/
g.�1/g.�2/

D � 00

�
g.�1/g.�2/

��g0.�2/
g.�2/

�
g0.�1/

g.�1/

�
By a direct computation g0.�/=g.�/ is strictly decreasing, so that �1 < �2 coupled with � 00 < 0 and
the above identity implies that

g.�1/g.�2/ is increasing and positive on Œ1=2; 1/: (B.30)
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By combining (B.30) and (B.28) we find (B.25).
We are ready for the proof of (B.22). Having proved in (B.23), (B.24) and (B.25) that �B , L

and D are all positive and increasing on Œ1=2; 1/, in order to show that LCD > �B on Œ1=2; 1/ it
is enough to check that

.LCD/.1=2/ > 0:18 > 0:17 > �B.3=5/ (B.31)

.LCD/.3=5/ > 0:37 > 0:35 > �B.3=4/

.LCD/.3=4/ > 0:68 > 0:67 >

2�
3
C

p
3
4

2�
3
C
p
3
D �B.1/ :

This can be done by numerical evaluation of these functions at the specified values. (Note that the
formula for B.t/ which is obtained by combining (B.2) with (B.17) is not defined at t D 1. To
compute the value of B.1/ one needs to take a limit, and this is how the value of B.1/ given above
has been computed). The proof of ˇ1ˇ2 > ˇ23 on Œ1=2; 1/ is complete.

Proof of the lower bound when t 2 .0; 1=2�. Since the most involved functions appear in A C C ,
we shall work with a rather loose lower bound on A C C , and compensate for this sloppiness by
obtaining a rather precise upper bound on �.B CD/. We start noticing that

B.t/CD.t/ D
1

2

�m1
r1
C
m2

r2

� �
t3 g.�2/C g.�1/

�
C g.�1/ g.�2/ .m1 Cm2/

2 :

Since g.�1/ > 0 on .0; 1=2� and g.�2/ is increasing on .0; 1/, we can definitely replace g.�2.t//
with g.�2.0// D �1=2� to get

B.t/CD.t/ >
1

2

�m1
r1
C
m2

r2

� �
g.�1/ �

t3

2�

�
�
g.�1/ .m1 Cm2/

2

2�
:

Next, by exploiting the definition of m1, m2, r1 and r2 one easily finds that

m1

r1
C
m2

r2
D
2�

3
.1C t /C w.t/ �0.t/ w.t/ D

t2 � t C 1

1 � t
:

From this expression we find that m1=r1 Cm2=r2 is convex on Œ0; 1=2�: indeed

w0.t/ D
.2 � t /t

.1 � t /2
w00.t/ D

2

.1 � t /3
� 00.t/ D �

p
3

2

1

t2 � t C 1
� 000 .t/ D

p
3

2

2t � 1

.t2 � t C 1/2

so that w00�0 C 2w0 � 00 C w �
00
0 > 0 at some t if and only if

2

.1 � t /3
�0.t/ >

p
3.t C 1/

2.1 � t /2.t2 � t C 1/

or, equivalently

�0.t/ >
p
3.1 � t2/

4.t2 � t C 1/
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Now �0.t/ > �0.1=2/ D �=6 for every t 2 Œ0; 1=2�, while the right-hand side is always smaller
than 1=2. We have thus proved that m1=r1 C m2=r2 is convex on Œ0; 1=2�, and by exploiting this
property we easily find that

� C
�

3
t 6

m1

r1
C
m2

r2
6 � C

�
� �

p
3

2

�
t ; 8t 2 .0; 1=2� : (B.32)

By (B.32) and by g.�1/ > 0 on .0; 1=2�, we have

B.t/CD.t/ >
1

2

�
� C

�

3
t
�
g.�1/ �

t3

4�

 
� C

�
� �

p
3

2

�
t

!
�
g.�1/ .m1 Cm2/

2

2�
: (B.33)

To further simplify (B.33) we need the following elementary bound:

m1 Cm2 6 � C
��
3
C

p
3

2

�
t2 8t 2 .0; 1=2� : (B.34)

To obtain (B.34) let us notice that

m1 Cm2 D
2�

3
.1C t2/C .1 � t2/�0.t/C

p
3

2
t

takes the value � at t D 0, so that, in order to prove (B.34) it suffices to show�2�
3
C
p
3
�
t >

4�

3
t C

p
3

2
� 2t�0 C .1 � t

2/� 00 8t 2 Œ0; 1=2� : (B.35)

By noticing that
p
3

2
C .1 � t2/� 00 D

p
3

2

t.2t � 1/

t2 � t C 1

we can simplify a t and rephrase (B.35) as

p
3C 2�0 >

2�

3
C

p
3

2

.2t � 1/

t2 � t C 1
8t 2 Œ0; 1=2� :

The function on the right-hand side is bounded from above by 2�=3, while the function on the left-
hand side is decreasing, and has

p
3C�=3 > 2�=3 as its minimum value, on Œ0; 1=2�; hence (B.34)

is proved. By combining (B.34) with (B.33) we find

B.t/CD.t/ >

 
1

2

�
� C �

t

3

�
�

1

2�

�
� C

��
3
C

p
3

2

�
t2
�2!

g.�1/ �
t3

4�

 
� C

�
� �

p
3

2

�
t

!

D

 
�

6
t �

��
3
C

p
3

2

�
t2 �

1

2�

��
3
C

p
3

2

�2
t4

!
g.�1/ �

t3

4�

 
� C

�
� �

p
3

2

�
t

!
:

Dividing by t we thus find that

�
B.t/CD.t/

t
6 E.t/ 8t 2 .0; 1=2/ (B.36)
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where

E.t/ D p.t/ g.�1.t//C q.t/ ;

p.t/ D
1

2�

��
3
C

p
3

2

�2
t3 C

��
3
C

p
3

2

�
t �

�

6
;

q.t/ D
t2

4�

 
� C

�
� �

p
3

2

�
t

! (B.37)

We first notice that E.t/ is negative on Œ0; 1=5�. Indeed, by g.�1/ > 0 on Œ0; 1=2�, we can use

�

3
C

p
3

2
6 2

1

2�

��
3
C

p
3

2

�2
6
3

5
1 �

p
3

2�
6
4

5

to find

E.t/ 6
�
�
�

6
C 2t C

3

5
t3
�
g
�
�1.t/

�
C
t2

4
C
t3

5
8t 2 Œ0; 1=2� :

Since g.�1.t// is non-negative and decreasing on Œ0; 1=2� and ��=6 C 2t C 3t3=5 is negative on
Œ0; 1=5� we find that

E.t/ 6
�
�
�

6
C 2t C

3

5
t3
�
g
�
�1.1=5/

�
C
t2

4
C
t3

5
8t 2 Œ0; 1=5� :

Since
g
�
�1.1=5/

�
6
1

3
(B.38)

we find

E.t/ 6 �
�

18
C
2

3
t C

t2

4
C
2 t3

5
8t 2 Œ0; 1=5� :

Since the right-hand side of this inequality is increasing, and its value at 1=5 is .1099=7500/ �
�=18 < 0, we conclude that E 6 0 on Œ0; 1=5�. By (B.36), B C D > 0 on Œ0; 1=5�, and thus
ˇ1ˇ2 � ˇ

2
3 > 0 on .0; 1=5� by (B.16). We are thus left to prove the positivity of AC B C C CD

on Œ1=5; 1=2/. We start bounding A C C from below by noticing that, since h2 > 0 on Œ0; 1� and
h1 > 1=2 on Œ0; 1=2�,

A.t/C C.t/

t
D
G.t/

t

 
h1.t/

m1.t/

t
C h2.t/

m2.t/

t

!
>
G.t/

2

m1.t/

t2
: (B.39)

Now let us consider the formula

m1.t/

t2
D
2�

3
�

p
3

2

1

1 � t
C

� 1

.1 � t /2
� 1

�
arctan

�p
3
1 � t

1C t

�
:

As arctan.
p
3.1� t /=.1C t // is concave on .0; 1=2/ with values �=3 at t D 0 and �=6 at t D 1=2,

one has

arctan
�p

3
1 � t

1C t

�
>
�

3
.1 � t / 8t 2 .0; 1=2/
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and thus

m1.t/

t2
>
�

3
.1C t /C

��
3
�

p
3

2

� 1

1 � t
8t 2 .0; 1=2/ :

The function on the right-hand side of this last inequality is trivially convex, so that, bounding it
from below with its tangent line at t D 0 we find

m1.t/

t2
>
�2�
3
�

p
3

2

�
.1C t / 8t 2 .0; 1=2� ; (B.40)

By plugging (B.40) in (B.39) we find

A.t/C C.t/

t
> g

�
�0.t/

� .1 � t /3
2

�2�
3
�

p
3

2

�
.1C t / 8t 2 Œ0; 1=2� : (B.41)

Notice that g.�0/ is convex on Œ0; 1=2�: indeed, by simple direct calculations, g is strictly decreasing
and convex, while �0 is strictly decreasing and concave on Œ0; 1=2�, hence by�

g.�0/
�00
D g00.�0/.�

0
0/
2
C g0.�0/�

00
0

we see that g.�0/00 > 0 on Œ0; 1=2�. Now we find

g
�
�0.1=5/

�
D

p
3

2
�p
3 arctan.2=

p
3/ � 2

� >
3

2�
g.�0/

�0
.1=5/ D

25

7
p
3
�p

3 arctan
�
2=
p
.3/
�
� 2

�2 > 7 ;

so that
g
�
�0.t/

�
>
3

2
C 7

�
t �

1

5

�
8t 2 Œ1=5; 1=2� :

By this last inequality, and noticing that 2�=3 > 1C
p
3=2, we deduce that

A.t/C C.t/

t
> F.t/ 8t 2 Œ1=5; 1=2� : (B.42)

where we have set

F.t/ D

 
3

2
C 7

�
t �

1

5

�! .1 � t /3
2

.1C t / D
1C 68 t � 140t2 C 2 t3 C 139 t4 � 70 t5

20
:

It is easily seen that F 00.t/ D .�280C 12 t C 1668 t2 � 1400 t3/=20 6 0 for t 2 Œ1=5; 1=2�. Hence
F.t/ is concave on Œ1=5; 1=2�, with

F.1=5/ D
288

625
>
27

80
D F.1=2/ >

1

3
;

so that we conclude F > 1=3 on Œ1=5; 1=2�. By (B.16), (B.36), (B.42) we are left to prove

E.t/ 6
1

3
8t 2 Œ1=5; 1=2� : (B.43)
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We first notice that

p.1=5/ D
�896�2 C 304 .

p
3/3 � C 27

9000�
< 0 p.1=3/ D

112
p
3
3
� C 27 � 104�2

1944�
> 0

so that there exists a unique t0 2 R such that p.t0/ D 0 and t0 2 .1=5; 1=3/. Thus

E.t/ D p.t/ g
�
�1.t/

�
C q.t/ 6 q.t/ 8t 2 Œ1=5; t0�

and since q.t/ is increasing on t > 0 with

q.1=2/ D
1

16�

 
� C

�
� �

p
3

2

� 1
2

!
D
6� �

p
3

64�
<
1

10

we have completed the proof of (B.43) for t 2 Œ1=5; t0�. Now let t 2 Œt0; 1=2�. Since p.t/ > 0 on
Œt0; 1=2�, we need an upper bound on g.�1/. We just notice that g.�1/ is decreasing on Œ0; 1=2� so
that, being t0 > 1=5, we can definitely say that

E.t/ 6 p.t/ g
�
�1.1=5/

�
C q.t/

Now, p.t/ and q.t/ are increasing on t > 0 with

p.t/ 6 p.1=2/ D
4�2 C 52

p
3
3
� C 27

576�
<
3

5
8t 2 Œ1=5; 1=2�

and where g.�1.1=5// < 1=3 as seen in (B.38): hence, putting all together,

E.t/ 6
3

5

1

3
C

1

10
D

3

10
8t 2 Œt0; 1=5� :

This concludes the proof of (B.43), thus of the positivity of ˇ1ˇ2 � ˇ23 on .0; 1�.
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