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Numerical investigation of the free boundary regularity
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We study the free boundary regularity of the traveling wave solutions to a degenerate advection-
diffusion problem of Porous Medium type, whose existence was proved in [24]. We set up a finite
difference scheme allowing to compute approximate solutions and capture the free boundaries, and
we carry out a numerical investigation of their regularity. Based on some nondegeneracy assumptions
supported by solid numerical evidence, we prove the Lipschitz regularity of the free boundaries. Our
simulations indicate that this regularity is optimal, and the free boundaries seem to develop Lipschitz
corners at least for some values of the nonlinear diffusion exponent. We discuss analytically the
existence of corners in the framework of viscosity solutions to certain periodic Hamilton–Jacobi
equations, whose validity is again supported by numerical evidence.
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1. Introduction

Consider the standard advection-diffusion equation

@tT � div.�rT /C V � rT D 0; t > 0; x 2 Rd ;

with unknown temperature T .t; x/ > 0, conductivity � > 0, and prescribed flow V.x/ 2 Rd . In the
context of high temperature hydrodynamics the conductivity cannot be assumed to be constant as
for standard diffusion, but should rather be of the form

� D �.T / D �0T
m; m > 0

for some fixed conductivity exponent and constant �0 > 0 depending on the model [28]. For
example in physics of plasmas, and particularly in the context of Inertial Confinement Fusion,
the dominant mechanism of heat transfer is the so-called electronic Spitzer heat diffusion and
corresponds to m D 5=2 (see, e.g., [13, 23]). Suitably rescaling time and space yields the nonlinear
parabolic problem

@tT ��
�
TmC1

�
C V � rT D 0: (1.1)

When V � 0 this corresponds to the celebrated Porous Medium Equation

@tT ��
�
TmC1

�
D 0; (PME)
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which has been widely studied in the literature as the basic example of a degenerate diffusion
equation supporting finite speed of propagation. We refer the reader to the classical monograph [26]
and references therein for an exhaustive bibliography, and to [2, 3, 7] for well-posedness of the
Cauchy problem and regularity questions. Writing �TmC1 D div..m C 1/TmrT /, it is clear
that the diffusion degenerates at the levelset fT D 0g whenever m > 0. In this setting it is well
known [18, 26] that free boundaries � D @fT > 0g separate the “hot” region DC D fT > 0g from
the “cold” one fT D 0g, and propagate with finite speed. In order to study the propagation it is more
convenient to use the pressure variable

p D
mC 1

m
Tm;

which is well defined for physical temperatures T > 0 and formally satisfies

@tp �mp�p C V � rp D jrpj2: (1.2)

Since m > 0 and p / Tm, the degeneracy corresponds now to a vanishing “coefficient” p D 0

along � in the diffusion term. As for most free boundary scenarios we cannot expect classical C2

solutions to exist, since gradient discontinuities may and usually do occur across the free boundaries.
A main difficulty is therefore to develop a suitable notion of viscosity and/or weak solutions, see,
e.g., [10, 14, 26] and references therein and thereof. For the pure PME, V � 0 in (1.2), the
parametrization, time evolution and regularity of the free boundary have been studied in details
in [8, 11, 12], and turn out to be difficult questions. These delicate issues are strongly related to the
so-called nondegeneracy of the free boundary � , i-e the growth rpj� ¤ 0 of solutions across � .
To see this one can formally evaluate the equation at the free boundary where p vanishes, and get
@tp D jrpj

2 along �t D @fp.t; :/ > 0g in some suitable (viscosity) sense [10]. This differential
equation formally tells us that the free boundary moves in the outward normal direction with speed
� rpj

�
C
t

(the hot support fp > 0g invades the cold region fp D 0g, which is the only remainder at
the interface of the diffusive nature of the model), thus enlightening the role of the nondegeneracy.
The regularity and growth/nondegeneracy are also closely related to parabolic Harnack inequalities
and monotonicity properties, see, e.g., [16, 18] and [1, 9].

The case of potential flows V D r˚ has been studied in [21], where the authors investigate
the long-time asymptotics of the free boundary for compactly supported solutions with an external
confining potential (˚.x/ / jxj2 at infinity). Finally, PME wave propagation in cylinders has been
investigated in [27].

In this article we focus on incompressible shear flows in the two dimensional periodic setting x D
.x; y/ 2 D D R � T1, and we consider

V.x; y/ D
�
˛.y/

0

�
; ˛.y C 1/ D ˛.y/;

Z 1

0

˛.y/dy D 0

for a sufficiently smooth ˛ (the last condition is just a normalization). Expressed in terms of the
pressure variable, (1.1) reads now in the cylinder

@tp �mp�p C ˛.y/@xp D jrpj
2; .t; x; y/ 2 RC � R � T1: (1.3)
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Looking for traveling wave solutions p.t; x; y/ D p.x C ct; y/ with speed c > 0 yields the
stationary PDE for the wave profiles

�mp�p C .c C ˛.y//@xp D jrpj
2; .x; y/ 2 R � T1; (1.4)

and the following existence result was proved in [24]:

Theorem 1 Let c� WD �min˛ > 0. For any c > c� there exists a continuous (very weak and
viscosity) solution p.x; y/ > 0 of (1.4) in the infinite cylinder D D R � Td�1 satisfying

(i) p 2 C1.DC/ and 0 < @xp 6 c1 in DC WD fp > 0g,
(ii) p is globally Lipschitz in D,

(iii) p is planar and linear at infinity in the direction of propagation p.x; y/ � cx, @xp.x; y/ �
c > 0, and py.x; y/! 0 uniformly in y when x !C1,

(iv) p.x; y/ � 0 for x sufficiently negative.

The free boundary � D @fp > 0g ¤ ; can be parametrized as follows: there exists a bounded,
periodic upper semi-continuous interface function I.y/ such that

p.x; y/ > 0, x > I.y/:

Furthermore,

(a) I is characterized by
I.y/ D inf .x 2 R; p.x; y/ > 0/ : (1.5)

(b) If y0 is a continuity point of I then � \ fy D y0g D fI.y0/g.
(c) If y0 is a discontinuity point then � \ fy D y0g D ŒI.y0/; I.y0/�, where I.y0/ WD lim inf

y!y0
I.y/.

Let us stress that Theorem 1 was proved in [24] in arbitrary dimensions .x; y/ 2 R � Td�1
(d > 2). These solutions are the exact equivalent of the planar wave solutions

pc.x; y/ D cŒx�
C

for the pure PME (1.2) with V � 0, written here in the steady wave frame x C ct and defined up to
shifts (Œ:�C D maxf:; 0g stands for the positive part). Note that c > 0means propagation in the x < 0
direction, and that any speed c > 0 is admissible for the PME while c > c� in Theorem 1. For these
PME planar waves the interfaces in the moving frame are stationary C1 flat hypersurfaces fx D 0g,
up to shifts in the x direction. For general solutions to the PME, the interfaces tend to become or
remain C 1;˛ depending on the initial regularity, see [8, 11, 12, 19].

Note however that, when ˛.y/ 6� 0, the parametrization function I.y/ in Theorem 1 is only
upper semi-continuous. At this stage the free-boundaries may have cusps, and we cannot exclude
discontinuities of I.:/ corresponding to horizontal segments ŒI.y0/; I.y0/� � fy0g � � as in
Theorem 1(c). Due to the presence of the advection term, the by-now classical monotonicity
techniques from [1, 9] do not immediately apply, and the purpose of this article is to investigate
numerically (in dimension d D 2) the free boundary regularity missing so far in Theorem 1.

Using a finite difference scheme, we construct approximate solutions in truncated cylinders
with suitable boundary conditions and track the free boundaries. The simulations indicate that
the solutions tend to grow linearly across the interface in the direction of propagation x, which
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is a strong nondegenerate behaviour and will be crucial in the subsequent analysis. Assuming this
nondegeneracy, and under an additional regularity hypothesis, we will prove rigorously that the
interface parametrization I.y/ is Lipschitz continuous, solves a certain periodic Hamilton–Jacobi
equation of the form

jryIj
2
D g.y/; y 2 Td�1; (1.6)

and the free boundary is therefore the Lipschitz graph � D fx D I.y/g. Both assumptions will be
supported by strong numerical evidence. From the theory of periodic Hamilton–Jacobi equations
we expect this Lipschitz regularity to be optimal, and this will be confirmed by our numerical
experiments: depending on the value of the diffusion exponent, the interfaces appear to be regular
when m > 1, but seem to systematically develop Lipschitz corners for m 2 .0; 1/. The value
m D 1 appears to be a sharp transition, at least in dimension d D 2, and the very existence
of corners is somewhat surprising: since our traveling waves are entire solutions to the parabolic
problem (1.1) one could expect smoothing as t ! 1 and at least to some extent, even though the
diffusion is degenerate. This is in sharp contrast with the pure PME: in the original stationary x
frame the planar wave solutions pc.t; x; y/ D cŒx C ct �C have of course smooth free boundaries,
and for compactly supported initial data it is known [17, 22, 26] that the free boundaries become
(spherical) C1 hypersurfaces jxj � Ctˇ asymptotically as t ! 1 for some scaling exponent
ˇ � ˇ.m; d/ > 0. In order to base here the existence of corners on more solid grounds than the
mere observation of corner-looking points in 2D plots obtained from simulations, we shall use in
this paper the framework of Hamilton–Jacobi equations. Indeed the classical theory for viscosity
solutions [5, 14, 20, 25] tells us that the regularity of I.y/ in (1.6) is essentially related to the
number of zeros of the right-hand side g.y/ in the torus. This more tractable condition can be
checked numerically, and will confirm the existence of corners in a more analytical context.

The article is organized as follows: in section 2 we introduce the discrete scheme, prove its
positivity (Lemma 1), and highlight the numerical convergence in slowly drifting frames. Section 3
contains the investigation of the nondegeneracy, based on numerical evidence. Our main regularity
result (Theorem 2) is proved in section 4, which also contains the numerical validations as well as
the interpretation in the framework of Hamilton–Jacobi equations. A short conclusion summarizing
our approach and results is finally presented in section 5.

2. Numerical scheme

For the sake of simplicity we shall only consider the following three flows

˛1.y/ WD 0:5 sin.2�y/; ˛2.y/ WD 10
�
y2.1 � y/2 � 1

30

�
; ˛3.y/ WD

1
4

4P
kD1

sin.2k�y/

in our computations. These are all normalized to be mean zero as required above, and ˛3.y/ is just
a truncation of the Fourier expansion of a triangular sawtooth.

In order to approximate the wave profiles from Theorem 1 we use a classical idea: traveling
waves are usually attractors for the long-time dynamics of the associated Cauchy problems. Fixing
an admissible propagation speed c > c� as in Theorem 1 (namely such that cC˛.y/ > c0 > 0) we
work in the corresponding left-moving frame x C ct , in which (1.3) reads

@tp �mp�p C
�
c C ˛.y/

�
@xp D jrpj

2: (2.1)



INTERFACE REGULARITY FOR AN ADVECTION-DIFFUSION PROBLEM 375

Starting with some suitable initial datum to be precised below, we expect a long-time convergence
p.t; x; y/ ! p.x; y/ of the Cauchy solution to the stationary wave profile satisfying (1.4). Since
there exists a whole continuum of admissible speeds c 2 .c�;C1/, the speed selection by the
long-time asymptotics is quite delicate. According to Theorem 1(iii) we know that the stationary
wave profile satisfies @xp � c > 0 when x ! C1, and roughly speaking the slope at infinity
determines the propagation speed. This will be taken into account by imposing the Neumann
boundary conditions @xp.t; :/ D c “at infinity”, or, rather, on the right boundary x D Xmax of a large
but finite computational cylinder .x; y/ 2 Œ0; Xmax� � T1. This is consistent with the construction
in [24], where the solutions of Theorem 1 were precisely obtained by solving the problem in
truncated cylinders with suitable boundary conditions and letting the length of the cylinders tend
to infinity.

2.1 Time and space discretization

Choosing some large Xmax > 0 and integers Nx ; Ny 2 N, we work in the finite domain

.x; y/ 2 D D Œ0; Xmax� � T1

and build a logically rectangular mesh .i; j / 2 J1;NxK� J1;NyK as in Figure 1. Each cell is of size

dx D
Xmax

Nx � 1
; dy D

1

Ny � 1
;

and we denote the nodes by

xi D .i � 1/dx; yj D .j � 1/dy; .i; j / 2 J1;NxK � J1;NyK:

.xi ; yj /

ıx

y

1

dy

x
Xmax0

FIG. 1. Logically rectangular mesh. The top and bottom boundaries are identified through y-periodicity.



376 L. MONSAINGEON

Since the Cauchy problem (1.3) is of course time-dependent, we also choose a large maximal
time T max and time steps

0 D t0 < : : : < tn < tnC1 < : : : < T N D T max; dtn D tnC1 � tn:

For each iteration the adaptative time step will be chosen in order to satisfy some Courant–
Friedrichs–Lewy stability condition to be precised shortly. We write as usual

P ni;j � p.t
n; xi ; yj /;

and the y-periodicity j � j mod .Ny � 1/ is used to compute @y derivatives on the top and bottom
boundaries j D 1 � Ny . In order to obtain an explicit scheme we approximate the time derivative
by the forward difference

@tp.t
n; xi ; yj / � �

C
t P

n
i;j WD

P nC1i;j � P
n
i;j

dtn
:

For the diffusion term we use the centered differences

�p.tn; xi ; yk/ D
�
@2xxp C @

2
xxp

�
.tn; xi ; yj / � �

2
xxP

n
i;j C�

2
yyP

n
i;j ;

�2xxP
n
i;j WD

P niC1;j C P
n
i�1;j � 2P

n
i;j

2dx2
;

�2yyP
n
i;j WD

P ni;jC1 C P
n
i;j�1 � 2P

n
i;j

2dy2
:

Since we always assume c > c� D �min˛, c C ˛.y/ > c0 > 0 in Theorem 1, we naturally use
an upwind approximation for the advection term

.c C ˛/@xp.t
n; xi ; yj / �

�
c C ˛.yj /

�
��xP

n
i;j ; ��xP

n
i;j WD

P ni;j � P
n
i�1;j

dx
: (2.2)

Finally, we use centered differences for the right-hand side

jrpj2.tn; xi ; yj / �
�
�xP

n
i;j

�2
C
�
�xP

n
i;j

�2
;

�xP
n
i;j WD

P niC1;j � P
n
i�1;j

2dx
;

�yP
n
i;j WD

P ni;jC1 � P
n
i;j�1

2dy
:

Replacing each term in (2.1) by their discrete counterpart leads to the scheme

P nC1i;j D P ni;j C dtn
h
mP ni;j

�
�2xxP

n
i;j C�

2
yyP

n
i;j

�
�
�
c C ˛.yj /

�
��xP

n
i;j C

��
�xP

n
i;j

�2
C
�
�yP

n
i;j

�2� i
: (S)

With this choice of discretization we expect first order accuracy in time and space, but we shall not
investigate convergence orders in this work because no explicit solution is known so far.
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From Theorem 1(i)–(iii) we know that the stationary solution should, at least qualitatively,
resemble the classical PME planar wave pc.x; y/ D c Œx�C up to translation in the x direction.
We naturally use this profile as an initial condition

p0.x; y/ D c Œx � ��C ) P 0i;j D c Œxi � ��
C ;

where the shift parameter � 2 .0; Xmax/ is chosen so that the initial free-boundary �0 D fx D �g is
well within the computational domain (say � D Xmax=2).

Since we are working in finite cylinders we also need to prescribe suitable boundary conditions
on the sides x 2 f0;Xmaxg. As stated in Theorem 1–(iii) for the theoretical wave profile, the slope
at infinity prescribes the propagation speed as p.x; y/ � cx and @xp � c when x ! 1. We
consequently impose the Neumann condition on the right boundary i D Nx

@xp.t; Xmax; y/ D c )
P nNx ;j � P

n
Nx�1;j

dx
D c; j 2 J1;NyK: (2.3)

As for the left boundary condition, let us recall that we chose an initial datum p0.x; y/ D cŒx���C
whose free boundary �0 D fx D � > 0g is away from x D 0 at time t D 0 (typically we use
� D Xmax=2 with Xmax large). Let us recall that the free boundary �t D @fp.t; :/ > 0g should
propagate with finite speed [26], and that the sought solution is stationary in the wave frame. Since
the theoretical stationary free-boundary has finite amplitude (I is bounded in Theorem 1) and starts
at a large distance � D Xmax=2 � 1 from the left boundary x D 0, we reasonably expect that �t
should stay away from x D 0 for later times t > 0 if Xmax is large enough. Thus the left boundary
of the domain should never “see” the solution p.t; 0; y/ � 0, and we apply now the homogeneous
Dirichlet condition

p.t; 0; y/ � 0 ) P n1;j D 0; j 2 J1;NyK: (2.4)

This leads to

ALGORITHM 1 (Numerical solver for the Cauchy problem) Initialize t0 D 0 and P 0i;j D

c Œxi � ��
C.

1. For n > 0 choose

dtn 6
1

2. 1
dx2
C

1
dx2
/mmax

i;j
P ni;j C .c C k˛k1/=dx

(2.5)

and update tnC1 WD tn C dtn.
2. Update P n ! P nC1 applying first (S) in the interior i 2 J2;Nx � 1K, and then (2.4)(2.3) at the

boundaries i D 1;Nx .
3. If P nC1i;j < 0, replace by P nC1i;j WD 0.
4. While tnC1 < T max, repeat from step 1.

A typical computation is shown in Figure 2: The pressure p.t; x; y/ evolves according to (1.3) and
the initially flat free boundary adjusts in time.

The first expression in the denominator of (2.5) corresponds to the exact optimal CFL condition

dt 6 dtdiff D
dx2dy2

2�.dx2 C dy2/
D O.dx2 C dy2/
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FIG. 2. Snapshots of p.t; :/ plotted for .x; y/ 2 Œ0:5; 1:5� � T1 with parameters m D 1:1, ˛.y/ D ˛1.y/, c D 0:6,
Xmax D 10, dx D dy D 5:e�3.

for explicit schemes that one would get when considering the diffusion part @tp � mp�p D 0 in
(1.3) as a linear diffusion equation @tp �D�p D 0, with a diffusion coefficient D D mp.t; x; y/

and � D kDk1. The second term in the denominator corresponds to the usual stability condition
dt 6 dtadv D dx=kVk1 for the advection part @tp D �.cC˛.y//@xp in (2.1) with the upwinding
(2.2). In our simulations P ni;j remains of order one at least on the right boundary, thus the diffusive
(quadratic) CFL condition takes over the hyperbolic (linear) condition and in practice (2.5) always
selects dtn � dtnCFL D O.dx2 C dy2/. Moreover from our numerical experiments the quasilinear
diffusion �mp�p seems to provide sufficient stability and (2.5) seems optimal, in the sense that
the scheme appears to be stable when this CFL condition is enforced, whereas instabilities started
building up when dtn > dtCFL. Note that, due to the practical necessity of computing on finite
domains, any rigorous limit dx ! 0 would only result in the convergence of the scheme towards a
solution p.t; x; y/ to the parabolic Dirichlet–Neumann problem pjxD0 D 0, @xpjxDXmax D c set
on the finite cylinder x 2 Œ0; Xmax �. However, this solution is only relevant to the current analysis
in the limit Xmax ! 1 (and then t ! C1), and the double limit would be much more involved
and necessarily local in space (even though the truncated limit Xmax ! 1 is exactly how we
constructed in [24] the stationary solution from Theorem 1 on the infinite cylinder). For this reason
we do not pretend here to prove any rigorous stability/convergence results, and we shall rather
observe numerical stability from our computations.
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It is worth stressing that (2.1) satisfies a comparison principle at the continuous level:
nonnegative initial data should therefore produce nonnegative solutions, and step 3 accordingly
prevents numerical errors from producing undesired negative values. This truncation is actually
never performed during the computations, and in fact the scheme is positive:

Lemma 1 Assume that P ni;j > 0 and that the CFL condition (2.5) holds. Then P nC1i;j > 0 as well.

Proof. Using j�xP ni;j j
2 C j�yP

n
i;j j

2 > 0, the interior scheme (S) gives

P nC1i;j > P ni;j C dt
�
mP ni;j

�
�2xxP

n
i;j C�

2
yyP

n
i;j

�
�
�
c C ˛.yj /

�
��xP

n
i;j

�
D ˇni;jP

n
i;j C

X
jk�i jCjl�j jD1

ˇnk;lP
n
k;l

for i 2 J2;Nx�1K and suitable explicit coefficients ˇni;j . For the off-diagonal indexes in the last sum,
the consistent discretization of the diffusion terms and the upwinding (2.2) automatically guarantee
that ˇk;l > 0. Moreover with our CFL condition (2.5) the diagonal coefficient reads

ˇni;j D 1 � dtn
��

2

dx2
C

2

dy2

�
mP ni;j C

c C ˛.yj /

dx

�
> 0:

Thus P nC1i;j > 0 as a positive linear combination of the nonnegative P n
k;l

’s, at least in the interior
.i; j / 2 J2;Nx �1K� J1;NyK. On the left boundary i D 1 we set the Dirichlet condition P nC11;j D 0

so our statement trivially holds. Finally on the right boundary the Neumann condition immediately
gives P nC1Nx ;j

D P nC1Nx�1;j
C c dx > P nC1Nx�1;j

> 0 and the proof is achieved.

Typical sufficient conditions for the convergence of such parabolic schemes are stability,
consistency, and monotonicity [6, 15]. The positivity Lemma 1 goes of course in the right direction,
but for the sake of simplicity we shall not look any further into the discrete properties of the scheme.

We implemented Algorithm 1 in Fortran90, and all the simulations presented here were carried
out on dedicated servers at the Institut de Mathématiques de Toulouse, France.

2.2 Long-time convergence and slow drift

As just discussed we aim at computing the stationary wave profile as the long-time asymptotic of the
Cauchy solutions in the wave frame xCct , and we applied Neumann condition @xp.t; Xmax; y/ D c

on the right boundary in order to mimic the “slope=speed” behaviour in Theorem 1(ii). However,
since we necessarily compute on finite domains x 2 Œ0; Xmax�, there is an inevitable discrepancy
between the numerical paradigm on finite domains @xp.t; Xmax; y/ D c and the theoretical model
@xp.C1; y/ D c. As a result we cannot really expect any long-time convergence, even at the
continuous level, and the finiteness of the domain will always lead to some residual error. This is
illustrated in Figure 3: we see that k@tp.t; :/kL2 ! C2 > 0 and k@tp.t; :/kL1 ! C1 > 0 as
t !C1, compared to the expected @tp ! 0 for any long-time convergence.

A natural but heuristic explanation, which we observed from our simulations, is the following:
since the difference between the numerical and theoretical models comes from Xmax < C1, the
numerical solution tends to globally shift in the x < 0 direction in order to drive away from the right
boundary and accommodate for the discrepancy. If p.x; y/ denotes the stationary wave profile, this
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FIG. 3. Long-time asymptotics and residual error. k@tp.t; :/k plotted versus time in the L2 (left) and L1 (right) norms,
with parametersm D 0:1, ˛.y/ D ˛2.y/, c D 0:4, dx D dy D 5:e�3

means that we expect the ansatz

p.t; x; y/ � p
�
x CX�.t/; y

�
: (2.6)

In order to determine and measure numerically the shift X�.t/ we choose an arbitrary y0 2 T1 and
monitor the quantity

Qp.t/ WD p.t; Xmax; y0/; (2.7)

which can be numerically evaluated. Indeed, this marker should evolve as

d Qp

dt
.t/ D @tp.t; Xmax; y0/ � @xp

�
Xmax CX

�.t/; y0
� dX�
dt

.t/:

Since Xmax is chosen large and X�.t/ increases we expect the aforementioned “slope=speed”
behaviour @xp .Xmax CX

�.t/; y0/ � @xp.1; y0/ D c > 0, and the shift X�.t/ can thus be
computed approximately as

dX�

dt
.t/ �

1

c

d Qp

dt
.t/: (2.8)

In our computations X�.t/ grows almost linearly in time but very slowly (typical values were
dX�=dt � O.10�3/ over simulated 30 � 100s times), and the solution accordingly drifts to the
left.

The ansatz (2.6) also suggests that one should in fact look for long-time convergence in the
slowly moving frame xCX�.t/, rather than in the fixed computational frame of reference. In order
to do so we observe from (2.6) that

@tp.t; x; y/ � @xp
�
x CX�.t/; y

�dX�
dt

.t/ � @xp.t; x; y/
dX�

dt
.t/:

This explains the previous residual error @tp ¹ 0 (see again Figure 3), but also implies that we
should have in the steady computational x-frame

@tp � @xp
dX�

dt
�!
t!C1

0: (2.9)
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FIG. 4. Long-time convergence (2.9) in the steady numerical frame. To the left: the corrected error ecorr .t/ D
k@tp.t; :/ � @xp.t; :/dX

�=dt.t/k1 decays to zero, whereas the uncorrected k@tp.t; :/k1 does not. To the right:
plotting log ecorr .t/ as a function of time indicates exponential convergence in the frame x CX�.t/. The parameters are
m D 0:1, ˛.y/ D ˛2.y/, c D 0:4, and dx D dy D 5:e�3.

This convergence in the slowly drifting frame x C X�.t/ can be checked numerically using (2.7)-
(2.8) to compute the drift dX�=dt : as shown in Figure 4, the convergence (2.9) seems to be
exponential and confirms our ansatz (2.6), and the scheme should therefore correctly approximate
the stationary wave profiles in the long-time regime.

3. Free boundaries and nondegeneracy

As stated in Theorem 1, the free boundary � D @fp > 0g for the stationary wave profile can be
parametrized in the privileged direction of propagation as

p.x; y/ > 0, x > I.y/;

where I.y/ is a periodic upper semi-continuous function. In most free boundary problems,
one expects a gradient discontinuity across the interface, and the free boundary is said to be
nondegenerate if the solution has a nontrivial growth across the interface. This can be characterized
by jrpj�C ¤ 0, where jrpj�C stands for the inner limit from the “hot side”,

jrpj�C WD lim
.x;y/

DC
! �

jrpj

whenever this quantity makes sense.
As already discussed in the introduction, the nondegeneracy is crucial to the study the free-

boundary evolution and regularity since at least formally �t moves in the normal direction with
velocity � rpj�C . In [12] it is proved for the pure PME (˛.y/ � 0) that, if the initial free
boundary is nondegenerate at time t D 0, then it starts to move immediately, never stops afterward,
and remains nondegenerate. In the present case ˛.y/ 6� 0 we expect a similar scenario: since
we start with an initial datum p0.x; y/ D cŒx � ��C whose free boundary is nondegenerate
@xp

0jxD�C D c > 0, the free boundary should stay nondegenerate as time evolves (although we
do not claim here to prove this highly non-trivial statement). This persisting gradient discontinuity
across the interface should therefore be well adapted to detect the (moving) free boundary. Since
we are interested in traveling waves, the direction of propagation x naturally plays an important
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FIG. 5. Discontinuity of @xp across the free boundary. Plots of p.x; y/ (left) and @xp.x; y/ (right), with parameters
m D 1:1, ˛.y/ D ˛1.y/, c D 0:6, Xmax D 10, and dx D dy D 5:e�3. The time t D 30 is large enough so that the
Cauchy solution has converged to the stationary wave profile.

role. The numerical computations indeed always exhibit a jump of @xp across the free boundary,
as illustrated in Figure 5, and therefore, supported by this numerical evidence, we always assume
that all the free boundaries remain nondegenerate. Thus @xp will be a relevant quantity to monitor,
and in fact the nondegeneracy @xpj� > c0 > 0 will be the key ingredient to prove the Lipschitz
regularity in Section 4 (see Theorem 2 later on). The discontinuity of @xp moreover leads to a
(positive) Dirac singularity @2xxp D C1 at �t , and this blowup is very easy to track numerically in
order to detect the free boundary (recall from Theorem 1 that the solution is C1 in fp > 0g, hence
singularities of @2xxp can only occur at the interface). Once the free boundary is detected we can
compute numerically @xp “at” � and check the nondegeneracy. More precisely, we use

ALGORITHM 2 (Free Boundary detection by @2xxp singularity and computation of @xpj�C )
Choose some integer parameter s > 0, and for each j 2 J1;NyK:

1. for i 2 J2;Nx � 1K, compute �xxPi;j D
PiC1;j C Pi�1;j � 2Pi;j

dx2
,

2. find the maximum of �xxPi;j over i 2 J2;Nx � 1K, and denote by I.j / it’s location,
3. the position of the free boundary is given by I.yj / � xI.j /

4. compute @xp at the free boundary as @xpj�C .yj / �
PI.j /CsC1;j � PI.j /Cs;j

dx
.

Note that this detection procedure only sweeps in space (in the x direction), and can
therefore be used dynamically for any fixed time to detect moving free boundaries �t D
@fp.t; :/ > 0g for the Cauchy problem (2.1). Due to the numerical diffusion smoothing the
gradient discontinuity, @xp actually jumps across a small O.dx/ numerical boundary layer where
the finite difference approximations may become inaccurate. Our first order approximation @2xxp �
Pi�1;j�2Pi;jCPiC1;j

dx2
involves the closest i ˙ 1 neighboors: if the numerical boundary layer is Nb-

meshes thick, then one should roughly step s D Nb C 2 meshes away before computing any
derivatives. In our numerical experiments we observed a 3-meshes boundary layer, as apparent
in Figure 6 (bottom-left image), and the choice s D 5 accordingly gave satisfactory results
even for high resolutions dx D dy D 1:e�3. Note also that the approximation @xpj�C �

PI.j /CsC1;j � PI.j /Cs;j

dx
in step 4 is a forward difference: the relevant information to compute
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FIG. 6. Example of a numerical computation with Algorithm 2. View of @xp from different angles (top and bottom left),
detection of the free boundary x D I.y/ (top right), and computation of @xpj�C as a function of y (bottom right). The
parameters arem D 1:1, ˛.y/ D ˛2.y/, c D 0:4,Xmax D 10, dx D dy D 5:e�3. The time t D 30 is large enough so
that the Cauchy solution has converged to the stationary wave profile.

@xpj�C “at the free boundary” should come indeed from the hot side DC D fp > 0g, here to
the x > I.y/ side of the free boundary as in Theorem 1.

A typical result obtained with Algorithm 2 is illustrated in Figure 6: clearly @xp jumps across the
interface and stays bounded away from zero in fp > 0g, the solution grows linearly in x across � ,
and the interface is thus nondegenerate in the direction of propagation. Note the apparent boundary
layer and numerical diffusion in the bottom left image, where a few meshpoints are visible inside
the numerical boundary layer.

4. Free boundary regularity and corners

In the rest of the paper we consider the general d dimensional case .x; y/ 2 R � Td�1 for the
mathematical analysis, but still restrict to d D 2 for the simulations.

4.1 A regularity result

Let us recall from Theorem 1 that p 2 C1.DC/ and @xp > 0 in DC D fp > 0g. Hence for any
" > 0 the levelset �" D fp D "g can be parametrized by the Implicit Functions Theorem as a graph

.x; y/ 2 �" , p.x; y/ D " , x D X".y/; y 2 Td�1



384 L. MONSAINGEON

for some function X" W Td�1 ! R satisfying in particular

ryX".y/ D �
1

@xp .X".y/; y/
ryp .X".y/; y/ : (4.1)

Differentiating again w.r.t y, using (1.4), and dividing by @xp .X".y/; y/ > 0 leads to

� "
m

@xp
�yX" C

ˇ̌
ryX"

ˇ̌2„ ƒ‚ …
WDH.ryX"/

C "
m

@xp

h
@2xxp

�
1 �

ˇ̌
ryX"

ˇ̌2�
� 2@2xyp � ryX"

i
„ ƒ‚ …

WDH1;".y;ryX"/

D

�c C ˛
@xp

� 1
�

„ ƒ‚ …
WDg".y/

; (4.2)

where the terms @xp; @2xxp 2 R and @2xyp 2 Rd�1 are implicitly evaluated at the "-levelset x D
X".y/ and considered as functions of y 2 Td�1 only with a slight abuse of notations. Because � D
@fp > 0g is in some sense the 0-levelset closest to fp > 0g, it seems natural that we should recover
the free boundary parametrization fx D I.y/g as the limit of the "-parametrization fx D X".y/g

along the levelset descent " & 0. This is exactly the strategy of proof of the following regularity
result:

Theorem 2 When "! 0C assume that

"
�ˇ̌
@2xxp

ˇ̌
�"
.y/C

ˇ̌
@2xyp

ˇ̌
�"
.y/
�
L1.Td�1/
�! 0; H1

f".y/ WD @xpj�" .y/
L1.Td�1/
�! f .y/ > 0 H2

for some limit f .y/ > C > 0. Then the interface parametrization I.y/ is a periodic viscosity
solution of the Hamilton–Jacobi equation

ˇ̌
ryI

ˇ̌2
D g in Td�1; g.y/ WD

 
c C ˛.y/

f .y/
� 1

!
: (HJ)

Moreover I.:/ is globally Lipschitz and semi-concave, and the free boundary � D @fp > 0g

coincides with the Lipschitz graph fx D I.y/g. In dimension d D 2 the function I.y/ is everywhere
left and right differentiable on T1.

Note that Theorem 2 holds in any dimension d > 2, and that the Hamilton–Jacobi equation
(HJ) is not equivalent to �jryIj2 D �g in the viscosity sense (this will be important later on in
section 4.3). Let us first comment on our hypotheses H1H2, which will be validated numerically
in the next section 4.2. The first assumption H1 is rather technical and is only needed to retrieve
the Hamilton–Jacobi equation, but seems reasonable compared to the usual PME scenario. Indeed
the PME planar wave pc.x; y/ D cŒx�C is linear @2xyp � 0 in fpc > 0g and trivially satisfies
H1, and for more general situations this hypothesis is consistent with the celebrated Aronson-
Bénilan semiconvexity estimate �p.t; :/ > ��=t in the steady frame [2, 26] (giving in particular
�p > 0 in the wave frame, taking t ! 1 for the stationary wave profile). Assumption H2
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is a more fundamental nondegeneracy condition. It can be viewed as an approximation to the
strong nondegeneracy @xpj�C > 0 along descending levelsets " & 0, which is consistent with
and supported by the numerical results in section 3. A closer look at the proof below will reveal
that, regardless of H1, this second condition is sufficient to retrieve that � is the Lipschitz graph
fx D I.y/g. In fact the Lipschitz regularity was proved in [24, Prop. 1.1] under a nondegeneracy
condition slightly weaker than H2, and the main novelty is here the Hamilton–Jacobi equation. It
is worth stressing that in [24] we were not able to prove H1H2, and this is precisely why we use
numerical computations in this paper as an investigation tool.

Proof. Considering @xpj�" ; @
2
xxp

ˇ̌
�"
; @2xyp

ˇ̌
�"

as known functions of y, (4.2) can be recast as

�"
m

f".y/
�yX" CH

�
ryX"

�
C "H1;"

�
y;ryX"

�
D g".y/

with f".y/ WD @xpj�" .y/ and Hamiltonians H.�/, H1;".y; �/ and g".y/ as in (4.2). Observe from
H2 that this PDE for X" is uniformly elliptic for fixed " > 0.

By (4.1) with k@ypk1 6 C from Theorem 1(ii), we see that H2 gives Lipschitz bounds on
X".:/ uniformly in ". We can therefore assume that

X".:/! X0.:/ uniformly in Td�1

at least for some discrete subsequence, and the limit X0 is also Lipschitz. Hypothesis H2 implies
@xp > C > 0 in some right neighborhood of the interface, and this strong monotonicity condition
together with the characterization (1.5) of I.y/ immediately imply that the limit is actually

X0.y/ D lim
"!0

X".y/ D inf fx 2 R W p.x; y/ > 0g D I.y/:

Because I.:/ is now Lipschitz we can conclude by continuity that the free boundary � D @fx >

I.y/g is really the graph fx D I.y/g.
In order to establish (HJ), observe that H1-H2 imply convergence �m"=f".:/ ! 0 uniformly

on Td�1, and

"H1;".y; �/! 0; g".y/! g.y/ D

 
c C ˛.y/

f .y/
� 1

!
locally uniformly in .y; �/ 2 Td�1 � Rd�1 when " ! 0C. By standard stability results [5, 14]
the uniform limit I.y/ D X0.y/ D lim

"!0
X".y/ is a viscosity solution of the limiting equation

H.ryX0/ D g, which is exactly (HJ). Note that this is exactly the classical construction of viscosity
solutions by the vanishing viscosity method (up to the first order perturbation "H1;".y; �/ ! 0).
Since our periodic solution X0.y/ D I.y/ is globally Lipschitz on the torus and the Hamiltonian
H.�/ D j�j2 is coercive, the results in [25] for stationary solutions apply and I.y/ is semi-concave in
any dimension d > 2. The stronger everywhere left- and right-differentiability in dimension d D 2
is finally a direct consequence of [20, Theorem 1], or alternatively follows by semiconcavity.

4.2 Numerical validation of hypotheses H1-H2

In Theorem 2 we assumed the regularity H1 as well as the nondegeneracy condition H2 to get the
Hamilton–Jacobi equation (HJ) and the Lipschitz regularity of the free boundary, and we need to
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validate numerically those strong assumptions. Since @xp > 0 in fp > 0g it is easy to detect the
levelsets by sweeping the numerical solution in the x < 0 direction. More precisely, for fixed " > 0
we approximate the "-levelset �" D fx D X".y/g as

X".yj / � xI".j /; I".j / D min
˚
i 2 J1;NxK W Pi;j > "

	
: (4.3)

We then compute finite difference approximations to @2xxp and @2xyp at the "-levelset as

@2xxp
ˇ̌
�"
.yj / � �

2
xxPI".j /;j D

PI".j /�1;j � 2PI".j /;j C PI".j /C1;j

dx2
;

@2xyp
ˇ̌
�"
.yj / � �x.�yPI".j /;j /

D
.PI".j /C1;jC1 � PI".j /C1;j�1/ � .PI".j /�1;jC1 � PI".j /�1;j�1/

4dx dy
;

and the slope is simply

@xpj�" .yj / � �xPI".j /;j D
PI".j /C1;j � PI".j /�1;j

2dx
:

The result is shown in Figures 7 and 8: "@2xxp
ˇ̌
�"

and "@2xyp
ˇ̌
�"

appear to converge uniformly to
zero as in H1, and @xpj�" stays bounded away from zero as in H2. For practical reasons and since
p grows linearly in x across the free boundary, " > 0 cannot be chosen too small compared to the
mesh size dx; dy in order for the "-levelset to be consistent. Indeed if " is too small the numerical
levelset �" D fx D X".y/g $ fi D I".j /g is eventually detected by (4.3) inside the O.dx/
numerical boundary layer surrounding the actual free boundary, and the spatial derivatives become
inaccurate. This is apparent in Figures 7 and 8 with dx D dy D 5:e�3: numerical oscillations start
to develop for the smallest tested value " D 1:e�2.

FIG. 7. Numerical validation of hypothesis H1. "@2xxp j�" (left) and "@2xyp j�" (right) as functions of y at the "-levelset,
plotted for several values of " between 5 � 10�1 and 1 � 10�2. The parameters are ˛.y/ D ˛2.y/, c D 0:4, m D 0:1,
Xmax D 10, dx D dy D 5:e�3. The time t D 30 is large enough so that the Cauchy solution has converged to the
stationary wave profile.
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FIG. 8. Numerical validation of hypothesis H2. To the left: @xpj�" as a function of y at the "-levelset, plotted for several
values of " between 5 � 10�1 and 1 � 10�2. To the right: view of @xp as a function of .x; y/ close to the free boundary.
The parameters are as in Figure 7.

4.3 Existence of corners

According to Theorem 2, the interface parametrization I.y/ is semi-concave as a periodic solution
to the Hamilton–Jacobi equation (HJ), of the form

jryIj
2
D g.y/ in Td�1:

Roughly speaking, semi-concavity means that I has only smooth (C1) minimum points, but that
corner-shaped maximum points are allowed. This semiconcavity comes from the minus sign in the
diffusive term �" m

@xp
�yX" for the vanishing viscosity approximation (4.2), or equivalently from

the fact that in the limit " D 0 we are solving solving CjryIj2 D g in the viscosity sense and not
�jryIj

2 D �g (which in general is not equivalent, see, e.g., [5, 14]).
It is well known [4, 5, 25] that the uniqueness and regularity of such periodic solutions strongly

depend on the number of zeros of the right-hand side g.y/ in the torus. A necessary condition for
classical C1 solutions to exist is that g.y/ should vanish at least twice, in which case uniqueness
fails. If now g.y/ vanishes only once, any solution to the Hamilton–Jacobi equation has nonsmooth
semiconcave maximum points (in agreement with Theorem 2), and the free boundary fx D I.y/g

should accordingly develop corners pointing in the x > 0 direction . Indeed in this case ryI can
vanish only once at a minimum point (the unique zero g.y0/ D 0), but I has at least one maximum
point where the derivative fails to exist and the equation cannot be satisfied pointwise (but in the
viscosity sense). As a consequence we expect minimum points to be regular, whereas maximum
points may be generically corner shaped.

Strangely enough, our simulations indicate that the interface has corners only for diffusion
exponents m 2 .0; 1/. For m > 1 we could never observe corners, and the interfaces always looked
like regular C1 graphs. This is illustrated in Figure 9, where the same computations are compared
for m < 1 and m > 1: corners clearly appear in the first case, whereas the free boundaries look
smooth in the latter case. Our computations also suggest that m D 1 is a sharp threshold, at least
in dimension d D 2: corners systematically developed for all tested values up to m < 0:99, and
completely disappeared as early as m > 1:01. We do not have any clue for this phenomenon and
cannot explain the threshold so far.
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FIG. 9. View from top of @xp at time t D 30 for ˛1.y/ with c D 0:6 (top), ˛2.y/ with c D 0:5 (middle), and ˛3.y/
with c D 0:4 (bottom). The conductivity exponent ism D 0:1 to the left,m D 1:1 to the right, dx D dy D 5:e�3.

Deciding qualitatively from numerical computations whether corners appear or not is a delicate
matter, due to the intrinsic subjectivity of any graphical representation: what appears to be corners
in the plots of Figure 9 (left column) may actually reveal to be smooth when zooming on the
supposedly Lipschitz tips. This does not seem to be the case, but the zooming possibilities are
of course limited by the resolution and accuracy of the computations, hence this criterion is not very
satisfactory.

Let us recall at this stage that (HJ) was established in Theorem 2 under the assumptions
H1H2, which were numerically validated in Section 4.2. As a consequence we can safely rely
on the Hamilton–Jacobi scenario just discussed to push further the analysis: the forcing term
g.y/ D cC˛.y/

@xpj�C .y/
� 1 in jryIj2 D g.y/ can be evaluated numerically using Algorithm 2 to

compute (an approximation of) @xpj�C , and if g does not vanish at a corner-looking point y� 2 T1
then the free boundary � D fx D I.y/g must have a Lipschitz corner there. This is illustrated
in Figure 10 in a test case: the forcing term is non-negative (as it should be, since it must equal
jryIj

2 > 0), vanishes only once at the C1 minimum y � 0 � 1 of I, and is clearly bounded away
from zero in a y-neighborhood of the semiconcave corner at y� � 0:5.
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FIG. 10. Numerical validation of the corners. Interface parametrization I.y/ to the left and forcing term g.y/ D
cC˛.y/
@xpj�C .y/

� 1 of (HJ) to the right, plotted as functions of y 2 T1. The time t D 30 is large enough so that the

Cauchy solution has converged exponentially fast to the stationary wave profile. Parameters m D 0:1, ˛.y/ D ˛2.y/,
c D 0:4, and dx D dy D 5:e�3.

5. Conclusion

Based on a positive explicit Finite Difference scheme in truncated domains, we approximated
the traveling wave solutions to the Porous Medium Equation with shear flow (1.4) constructed
in [24] and possessing free boundaries. The scheme converges exponentially fast in slowly drifting
frames to the stationary wave profiles, and allows to capture the free boundaries. Assuming
two regularity and nondegeneracy conditions, both confirmed by strong numerical evidence, we
proved that the free boundaries can be parametrized as Lipschitz graphs in the direction of the
wave propagation, and that the interface parametrizations solve related periodic Hamilton–Jacobi
equations. In contrast with the advection-free pure Porous Medium Equation, we showed that this
regularity is optimal and that the free boundaries possess Lipschitz corners, at least in dimension
two and for diffusion exponents below a sharp threshold. The existence of corners, observed on the
numerically detected free boundaries, was further analyzed in the theoretical framework of viscosity
solutions to Hamilton–Jacobi equations and confirmed by supporting numerical evidence.
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