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Hysteresis in porous media: Modelling and analysis
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Unsaturated flow through porous media can be modelled by a partial differential equation using
saturation s and pressure p as unknowns. Experimental data as well as elementary physical
arguments show that the coupling of the two variables must take into account hysteresis. In
this survey, we describe the physical origins of porous media hysteresis, present the ideas of its
mathematical description, and review the analysis of the resulting hysteresis models.
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1. Introduction

The quantitative modelling of groundwater flow is a young field – compared to the modelling
of heat or electric conduction. It has its foundations in the work of Darcy of 1856, but partial
differential equations for its description appear as late as 1931, formulated by Richards in [79].
Richards identified saturation and pressure as the two fundamental variables for the description of
porous media. He formulated the law of capillary pressure and combined it with mass conservation
and Darcy’s law. Additionally, he described how the “water retention curves” (capillary pressure
curves) can be measured, and observed that hysteresis is important in the system: After a description
of experimental data, Richards writes in [79]:

It is apparent for a 4 mm layer of soil in a rather loose state of packing there is a
considerable hysteresis effect over the pressure range studied.

The development of a model for the hysteresis effect took some time. In the year 1954, Everett and
Smith described a first model in [27] as follows:

[. . . ] a system exhibiting hysteresis can be treated, at least formally, as an assembly
of independent domains. Each domain is supposed to exist either in state I or in state
II, conversion from one to the other being brought about by a change in the external
variable x.

The idea that hysteresis can be modelled as a collection of switches had tremendeous impact, and
the name domain theory has been used since then. The (independent) domain theory assumes that
the system is a collection of independent switches (= domains = relays); here the external variable
is the pressure, x Š p. We emphasize that the following names really describe the same idea:

domain modelD assembly of independent switchesD Preisach model
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We want to outline the theory and its mathematical description in this overview.
In the engineering community, the name “domain” is used, mathematicians prefer the name

“Relay”. We take the different names as a method to distinguish different points of view: In Section 3
we discuss the more applied developments under the name “domain models”. In Section 4 we
discuss the mathematical developments using the names “Relay” and “Preisach model”.

Outline of this survey. Section 1.1 of this introduction contains some remarks on hysteresis in
general. In Section 1.2 we discuss the modelling of porous media and, in particular, the arguments
leading to the assumption of a capillary pressure relation (coupling pressure p and saturation s).
The analysis of the resulting porous media models (without hysteresis) is sketched in Section 1.3.

Section 2 is devoted to the effect of hysteresis in the p-s-relation: We describe experimental
methods to measure the relation and sketch the qualitative outcome, which exhibits hysteresis. We
illustrate the three fundamental mechanisms behind the effect: velocity dependent contact angle,
bottle-neck effect, snap-off effect. We also mention some phenomenological models.

Section 3 is devoted to the development of the domain model for hysteresis. We discuss the
influencial contributions of Everett, Enderby, Poulovassillis, Philip, Mualem and others. Essentially,
in these models, the pressure p is regarded as a macroscopic quantity that triggers each of the
switches (each of the domains) simultaneously. The local water content is 0 or 1 in every switch and
the saturation s is an average over all the switches. We review the development of this theory and
its practical applications.

Section 4 is concerned with the mathematical analysis of hysteresis models. We start from the
elementary switch-type models (hysterons) and indicate how generalized models are obtained by a
superposition of hysterons. We review mathematical results for these models.

Section 5 is devoted to combinations with rate-dependent effects and other extensions. In
particular, we discuss the effect of gravity fingering. This effect is important for us, since it can only
be explained with hysteresis equations. In this sense, gravity fingering is a test-case for hysteresis
models.

Let us mention here two recent overview articles. The survey [1] discusses hysteresis
mechanisms and models. In comparison to that survey, we discuss the subject from a more analytical
perspective. The overview [103] is more general, it is concerned with the mathematical treatment of
partial differential equations with hysteresis and not focussed on porous media.

1.1 The phenomenon of hysteresis

The word “hysteresis” is ancient Greek for “to lag behind” and expresses nicely an important
qualitative property of a system with hysteresis. Consider the classical hysteresis loop of Figure 1
(left), where the dependence of an output w on an input u is sketched. When u increases, also
w increases, when u decreases, also w decreases. But after the reversal of the input direction, the
pair .u;w/ does not follow the original path. The output is not in an algebraic relation w D F.u/

with the input. Instead, w lags behind u: For an increasing input u, the values of the output w are
somehow “too small”, while for a decreasing u, the values of w are “too large”. We observe that
the values of w depend not only on the current value of u, but also on the history of the process
(memory effect).

Let us describe here briefly two other important hysteresis phenomena: Ferromagnetism and
plasticity. For overviews, also on the history of hysteresis modelling, we refer to [11, 98].
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FIG. 1. Left: A hysteresis loop. An increasing input u results in an increasing output w , and a decreasing u results in a
decreasingw . But the changes ofw lag behind those of u. Right: The Relay hysteron, a switch with delay. The Relay shares
qualitative properties with the hysteresis loop. It can be used as a building block for more complex hysteresis effects.

Ferromagnetism. Among the best know hysteresis effects is that of magnetism: When a
ferromagnet (e.g., iron) is exposed to a magnetic field with strength u Š H , the magnetization
w Š M of the sample shows the behavior of the loop in Figure 1 (left). The effect was already
well-known in the 19th century and Lord Rayleigh proposed in 1887 a first model (in modern
terminology: a Prandtl–Ishlinskiı̆ model of Play type, see Section 4.2). More influential was the
model of Preisach from 1935 [77], since he could complement his model with a geometrical
interpretation (the Preisach plane, see Section 4.1).

Plasticity. The other famous example for hysteresis is the plastic deformation of metals: Applying
a force (stress) u Š � , the sample responds with a deformation (strain) w Š ". Deforming the
sample (moving it to the top right point of the hysteresis loop) and then releasing the force (moving
along the loop back to u D 0), the material remains deformed (w > 0). We remark that the hysteresis
loop for plastic deformations looks quite different from that of Figure 1, but qualitative features are
shared.

While plastic behavior has certainly been observed since thousands of years, the quantitative
description of plastic hysteresis started in the 19th century with Tresca (maximum shear stress yield
criterion in 1864) and Saint Vénant (perfect plasticity in 1870). Later, von Mises introduced multi-
dimensional yield-criteria (1913) and Prandtl formulated a model using Stop-hysterons and their
superposition (1924 and 1928). Due to his fundamental contributions and the parallel invention by
the Russian mathematician Ishlinskiı̆, the model is today called the Prandtl–Ishlinskiı̆ model. We
describe it in Section 4.2.

1.2 Fundamentals of porous media modelling

For the rest of this introduction, we are not concerned with hysteresis, but only with the modelling
of porous media (without hysteresis).

The essence of most models for flow in porous media is to describe the state of the medium (in
every point x in space and at any time t ) by two variables: s D s.x; t/ stands for the saturation in
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the medium, p D p.x; t/ for the fluid pressure in the medium. The saturation s is related to the
mass of fluid per volume; it is a macroscopic variable in the sense that it denotes an average over
many pores. One usually defines s to be the fraction of pore space that is occupied by water; in this
way, s takes values between 0 (no water) and 1 (complete saturation). To calculate the proportion of
fluid volume in the medium, one has to make use of the porosity � (pore volume per unit volume):
At saturation s, the fluid occupies the percentage � s of the volume. Conservation of mass takes the
form @t .� s/Cr �F D 0 for some flux function F . We will suppress the constant � in the following
and set it equal to 1 (which can be done by normalizing the flux function).

To describe the flux function F one uses Darcy’s law: The pressure p generates locally the
force �rp. Combined with the gravity force g, the driving force for a fluid particle is �rp C g.
Darcy’s law assumes that the flux F is proportional to the force field in the porous medium, with a
proportionality factor k D k.s/ that depends on the saturation s, hence F D k.s/Œ�rpC g�. Here,
k W Œ0; 1� ! Œ0;1/ is a non-negative and bounded coefficient function, usually monotonically
increasing. We remark that, in applications, the function k depends also on the spatial position x.

The combination of mass conservation and Darcy’s law leads to the porous media model

@ts D r �
�
k.s/Œrp � g�

�
; (1.1)

which must be complemented by some relation between p and s.
When the porous medium occupies a domain ˝ � Rn and processes occur on a time interval

.0; T /, the problem is to find two fields s W ˝T ! R and p W ˝T ! R that solve (1.1) on the
space-time domain ˝T WD ˝ � .0; T /. The diffusion coefficient k D k.:/ and the gravity force
g are given. An initial condition for s and boundary conditions for p along @˝ � .0; T / must be
prescribed.

Equation (1.1) expresses mass conservation, using Darcy’s law for the flux. It is widely accepted
as an accurate model for unsaturated single-phase flow. Hysteresis in porous media concerns the
relation between p and s. Below, we will briefly describe the arguments that lead to the capillary
pressure assumption p D ˚.s/, the model without hysteresis. We emphasize that this law does not
express a physical principle and that we will modify it later on in order to take hysteresis effects
into account.

The capillary pressure function. In order to close the system (1.1), the simplest choice is to assume
that p is in a monotone algebraic relation with s,

p D ˚.s/ : (1.2)

By this relation we mean the pointwise dependence p.x; t/ D ˚.s.x; t// for a strictly monotone
function ˚ W Œ0; 1� ! R. The latter may also be assumed to be x-dependent. It is often denoted as
p D pc.s/ for “capillary pressure”.

Essentially, the argument for (1.2) is as follows: Let us consider a hydrophillic medium which
is in contact with water. When some pores of the medium are partially filled with water, there are
interfaces between water and air in these pores (compare Figure 2). These interfaces are curved due
to contact angle conditions. Surface tension generates a pressure difference in the two fluids. When
we assume that air has the constant pressure 0, then the pressure of the water is negative (capillary
pressure).

This negative pressure is the cause of the absorption of water by a hydrophillic material:
Negative water pressure at the interfaces (menisci) leads to a pressure gradient in the pore channels.
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FIG. 2. The origin of capillary pressure. Left: A fluid-fluid interface in an idealized pore. The width 2d of the pore together
with the contact angle condition determine the curvature 1=R of the meniscus. Right, from [35]: A change in the position of
the interface results in a change of the capillary pressure, since the pore diameter changes.

In the absence of other forces, the result is a water flow from the reservoir towards the menisci. This
leads to an advancement of the interfaces and an increasing saturation in the specimen.

The capillary pressure is high in absolute value when the interfaces are located in small pores.
When much water is contained in the medium (the value s is large), then the small pores are already
filled and only large pores suck in water. In large pores, the curvature of menisci is small, hence
the pressure is small (in absolute value). We conclude that the pressure difference decreases when s
increases. With this argument, the capillary pressure (which coincides with the water pressure p if
the air pressure is set to zero) can be regarded as a function of the saturation, p D ˚.s/ as stated in
(1.2).

Notation in the literature.. The pressure function p (or its absolute value jpj) is often denoted
as 	 . It is helpful to keep in mind how a pressure can be measured: If a (hydrophillic) porous
medium is in contact with a water basin, then the suction of the porous medium leads to a (partially)
wetted medium even if the medium is above the water level of the basin (compare Figure 3, right).
The difference in height is the “suction”. The suction is proportional to the capillary pressure. The
saturation s is often called “water content” and denoted with the symbol � . With the inverse � WD
˚�1, the capillary pressure relation can also be written as s D �.p/.

The Richards model is widely used and many analytical results are available, but we must recall
that the relation p 2 ˚.s/ is phenomenological: Not even in a crude approximation, a porous
medium can be constructed as a collection of straight tubes, since the tubes must have junctions
to form a connected pore space. And, in fact, the capillary pressure law does not give a correct
description: It does not include hysteresis, and hysteresis is an experimental fact.

1.3 Analysis of porous media models without hysteresis

Inserting the pressure-saturation relation (1.2) into (1.1), we obtain the Richards equation

@ts D r �
�
k.s/

�
r
�
˚.s/

�
� g

��
: (1.3)

Due to non-negativity of k and monotonicity of ˚ , this is a quasilinear parabolic equation for the
unknown s. Equation (1.3) with its (possibly) degenerate coefficient functions k and ˚ played an
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important role in the development of analytical tools, comparable to that of minimal surfaces or
mean curvature flow.

Equation (1.3) with a strictly positive coefficient function k and a strictly monotone
differentiable coefficient function ˚ is a non-degenerate quasilinear parabolic equation. Existence
and uniqueness results for an initial-boundary value problem can be obtained in a quite
straightforward way and no surprising qualitative effects can be observed. But the derivation of
the equation suggests that the coefficient functions have other properties.

On the physics of (1.3).
Small diffusion. A dry medium is not permeable. This is due to the fact that there are no connected
water channels inside the porous medium that can transport water. As a result, the permeability
function k W s 7! k.s/ satisfies k.0/ D 0, there is only little diffusion for small values of s. This can
lead to the formation of a free boundary between areas with a positive and areas with a vanishing
saturation.

Large diffusion. In a fully saturated medium (s � 1), the value of the pressure is not determined:
The water pressure in a fully saturated rock sample can be increased to any value. This fact means
that the function ˚ should be considered to be multivalued, it has vertical parts. We note that a
large derivative of ˚ implies that fast diffusion occurs in (1.3). Also the multivalued character of ˚
can lead to the formation of free boundaries, namely the one of the groundwater table: In a crude
approximation (namely: neglecting the capillary pressure), the pressure is arbitrary in the saturated
flow below the groundwater table and it is essentially zero above the groundwater table. This leads
to the free boundary problem called “dam problem”.

For multi-valued ˚ (or an otherwise degenerate function ˚ ), it is often convenient to work with
� D ˚�1 and to write the left hand side of (1.3) as @t Œ�.p/�, the coefficient as k D k.�.p//, and
to use the pressure p as the primary unknown.

On the mathematics of (1.3). The degeneracies of equation (1.3) lead to interesting effects, most
importantly to the formation of free boundaries. Many modern analytical tools have been developed
originally for the porous media equation: variational inequalities, compactness results for degenerate
equations, L1-contraction methods for parabolic problems.

One must distinguish between two different degeneracies. In the static case, the large diffusion
limit leads to the free boundary problem known as the “dam problem”: In the fully saturated region
˝s below the free boundary (s D 1 in˝s), the permeability k.s/ is constant. As a consequence, the
pressure is harmonic in ˝s . Above the free boundary (outside ˝s), one assumes that the pressure
is constant (i.e., ˚.s/ D p0 for every s 2 .0; 1/ for the atmospheric pressure p0 2 R). The first
existence result for the dam problem was obtained by Baiocchi [7]. He already formulated the free
boundary problem with a variational inequality. His result makes use of what today is called the
Baiocchi transform: Instead of the pressure p, a spatial integral z.x1; x2/ WD

R x2

0
p.x1; t / dt is

used as the unknown of the problem. The general three dimensional dam problem was treated by
Alt in [2]. The problem is again written as a variational inequality, existence and uniqueness are
shown in the primary variables.

The second degeneracy of the porous media equation is related to a vanishing permeability,
k.0/ D 0. If we simplify (1.3) by studying the constitutive laws k.s/ D s˛ and ˚.s/ D s for ˛ > 0
in the case g D 0, we are lead to the special porous media equation @ts D r � .s˛rs/. For this
famous equation, Barenblatt found explicit solutions s D s.x; t/ > 0 that exhibit a free boundary
between a dry region with s D 0 and a partially saturated region with s > 0. For an introduction to
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the special porous media equation we refer to [93]. The case of quite general degenerate coefficient
functions k and˚ was treated first in [3, 4]. The key to these existence results for the time dependent
problem are new compactness methods and the Kirchhoff transformation: With the constitutive
law s D �.p/ one uses u WD

R p
0
k.�.�// d� as the new unknown of the problem. The relation

ru D k.�.p//rp reduces the right hand side of (1.3) to �u � r � .k.s/g/. The operator is
non-degenerate elliptic in the variable u.

We remark that, in parallel, tools from convex analysis were used to formulate the problem with
the pair .s; p/ and to show p 2 ˚.s/ for a monotone multi-valued function ˚ , see [99]. Variational
inequalities were further developed and they became the standard tool to represent free boundary
problems.

The seminal paper [3] contains existence, regularity, and uniqueness results. But the uniqueness
was only shown for regular solutions; this gap was closed much later in [66] with methods that are
borrowed from the theory of hyperbolic conservation laws, see also [17]. The homogenization of
the degenerate system is interesting since trapping effects can occur on the micro-scale, [83, 91].
We refer to [86] for more on modelling aspects and fundamental mathematical results.

2. Hysteresis effects in porous media

2.1 Hysteresis in the p-s-relation

Having in mind the physical arguments of Section 1.2, let us now analyze the assumption p D ˚.s/.
We recall that s is a macroscopic variables that provides an information about a collection of pores.

Let us consider an experiment in which the tested porous medium is sufficiently small; for small
volumes, we may assume that p and s are constant in the whole specimen. Two variables can be

FIG. 3. Left: From Mualem [62]. Capillary pressure curves or “water retention curves”. We note that in a more
natural representation (flipping the vertical axis), all curves of the diagram (water pressure against water saturation) are
monotonically increasing. Right: From Poulovassilis [75]. Apparatus for the measurement of the capillary head.
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measured: the total saturation S (proportional to the total amount of water in the test volume, an
integral over s), and the pressure P (the value of the constant function p). Poulovassilis describes
such an experiment in [75], the right part of Figure 3 shows his sketch of the experimental set-
up. A piece of rock (A) is in contact with water (below the rock). A tube connects the water with
a reservoir (C). Since the rock absorbs water, one can lift the rock above the water level of the
reservoir, the capillary forces of the pores lift the water to the higher level. The difference of the two
levels is the “suction” of the porous medium. It is proportional to the pressure P (after normalizing
the atmospheric pressure to 0). Lifting the rock higher, we can imagine that some water leaves the
rock: The large pores do not exert any longer the necessary capillary force. We therefore have a loss
of S when P is increased (in absolute value). Measuring S and P , the experiment yields a curve ˚
with P D ˚.S/.

A result of such an experiment is shown in the left part of Figure 3: Starting with the rock
position at the water level of the reservoir (	 Š P D 0) one has maximal saturation (� Š S �

0:31). Lifting the rock to a level of 50 cm above reservoir level (	 D �50), the saturation �
decreases to a value below 0:1.

Hysteresis is observed when the process is reversed: Saturation and pressure do not follow the
same curve. Instead, lowering the rock such that imbibition takes place, the water content� at level,
say, 30 cm, is much lower than it had been during the drainage process at 30 cm (0:13 instead of
0:3). This is the fundamental observation of hysteresis in porous media.

Understanding the effect is very important in applications such as oil recovery or CO2-storage.
The first modelling attempts have been made in the 1950s, but modelling and analysis of porous
media hysteresis is an active field of research until today.

2.2 Three effects that lead to hysteresis

We next sketch three effects that are regarded as the main sources of hysteresis in the p-s-relation.
The first concerns a physical law which enters the microscopic description of interfaces: the law for
the contact angle for preceding and receding contact lines. The second regards the bottle-neck effect,
which is generated by the complex geometry of the porous medium; models for this effect are the
basis for most of the conceptual hysteresis laws. The third principle is again related to geometrical
considerations: the full model should take into account trapped water and trapped gas.

(i) The contact angle is velocity dependent. It is very difficult to model dynamic contact angles.
Only the static approximation is simple: The free interface between the two fluids tends to minimize
the total contact energy (the sum of the energies that are attributed to the three interfaces fluid 1–
fluid 2, fluid 1–solid, fluid 2–solid). When the interfaces minimize this energy, all interfaces hit the
solid at a fixed angle, which is determined by the three materials.

Measurements indicate that the dynamic contact angle depends on the direction in which the
interface moves. The effect is sometimes called “rain-drop effect”: A rain-drop that moves down
an inclined plate has a different contact angle at the front (the bottom part) than at the rear (the top
part), see left of Figure 5. The detailed analysis includes many effects that cannot be discussed here:
precursor films, the roughness of the solid surface (related to the lotus-effect), the disambiguation
between microscopic and macroscopic contact angle.

Let us take it as an experimental fact that the contact angle depends on the velocity and,
furthermore, in good approximation, only on the direction of the motion. In a porous medium this
means that, even if all interfaces were spherical caps in straight tubes, we see an hysteresis effect,
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FIG. 4. The contact angle is velocity dependent. As a result, the curvature of the meniscus is different for imbibition and for
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FIG. 5. Left: Sketch of a rain-drop, motivating the name “rain-drop effect” for the velocity dependent contact angle. Right:
The “bottle-neck effect” in an illustration from [75] with a classical ink-bottle. The ink-bottle acts as a relay: it takes a high
suction Se to empty the ink-bottle and a lower suction Sf to fill the ink-bottle (note that the suction is jpj, the positive
difference of water levels).

see Figure 4: If fluid 1 enters the medium (motion to the right, imbibition), a low curvature and
hence a low pressure difference is observed (if fluid 1 is water, the material is hydrophillic; for air
pressure 0, the water has a negative pressure, small in absolute value). If fluid 1 leaves the medium
(motion to the left, drainage), a high curvature of the meniscus and hence a high pressure difference
is observed (the negative pressure of the water is high in absolute value).

Let us cast this thought-experiment into formulas: We are given two material laws, ˚low and
˚upp (connected to the different contact angles). The water pressure can take values between the
two extremes,

p.x; t/ 2
�
˚low

�
s.x; t/

�
; ˚upp

�
s.x; t/

��
: (2.1)

The law is complemented with a condition of Kuhn-Tucker type: For an increasing saturation s, the
upper value must be attained, for a decreasing saturation s, the lower value must be attained. When
s is not changing with time, the pressure can have any value in the interval.

(ii) The bottle-neck effect. The effect was already studied around 1930, see [32, 33]: For a fixed
contact angle, the water-air interface in an undulated tube has a discrete set of positions that
correspond to one given pressure, compare Figure 6. The movement from one such position to
the next occurs in fast processes, Haines calls them “per saltum movements” and “quantum jumps”,
later on they were called “Haines jumps”. For an older illustration see also the right part of Figure 5,
where a pore is drawn as a classical ink-bottle. Richards refers to the analysis of Haines and writes
in [79]:

[. . . ] the height to which a liquid stands in such a tube depends on whether the liquid
is first raised and allowed to sink to its equilibrium level or whether the liquid rises of
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FIG. 6. A tube with narrow and wide parts. In the left figure, the interface is at a wide point of the pore, curvature and
pressure are low (in absolute value). In the right figure, the interface is at a narrow point, curvature and pressure are high.

itself to the rest position. [. . . ] (in) a mass of soil [. . . ] some of these tubes would have
a varying cross-section and hence a hysteresis effect might be expected.

Let us describe the effect with the help of Figure 6. The hydrophillic fluid is on the left of the
interface (water), the hydrophobic fluid on the right (air, with constant pressure 0). The capillary
pressure induces a negative fluid pressure near the interface, hence water is sucked in by the tube.
Water intake continues until a wide position is reached; at this point, the process may stop since the
suction is not sufficient to pull in more water (against other forces, e.g., gravity). The imbibition
pressure is therefore low in absolute value, see the left part of Figure 6. In contrast, let us study a
drainage process: An external force pulls water out, the interface moves to the left until it reaches
a point with a large suction; at such a narrow point, the water cannot be removed any further. As a
result, the pressure for drainage is higher (in absolute value) than for imbibition.

A mathematical analysis of a dynamic process in such undulated tubes was performed in [81].
In a special geometry it is shown that only the widest and the narrowest points of the tube are of
importance: For increasing saturation of the hydrophillic fluid, only the lowest pressure matters, for
a decreasing saturation, only the highest pressure matters. The pressure has one value for imbibition,
another for drainage. The result is once more the law (2.1).

(iii) Snap-off effect. This effect refers to the formation of residual fluid volumes in the porous
medium. If these volumes are not any more connected with the fluid transporting channels, the
residual fluid cannot be removed (unless it becomes again connected with the network).

The effect is difficult to model. While in the other two effects we observe the possibility of
flat parts of the pressure function (at the same saturation, different values of the pressure can be
observed), the snap-off effect can lead to flat parts of the saturation function: At the same pressure
value, different saturation values can be observed. These values depend in a complex way on the
history of the process. Compare Figure 7 for an illustration, once more in a tube geometry.

2.3 Empirical approaches to model hysteresis

We want to mention only briefly some approaches that are not concerned with a conceptual
description of hysteresis. In these approaches, one tries to provide formulas to calculate hysteresis
processes.

An example in this direction is [87], where all drainage and wetting curves (monotone relations
in the s-p plane) are parametrized. Adapting the parametrization constants, also secondary drainage
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FIG. 7. Two effects in which the dark fluid remains trapped and cannot be removed from the porous medium. They lead to
residual water (or oil) content and to an irreversible process. Left: When the non-wetting fluid (white) enters the pores, some
of the wetting fluid (dark) remains trapped. Right: Also when a wetting fluid (white) pushes out a non-wetting fluid (dark),
residuals may remain.

and wetting curves are described with the same family of curves. The numerical code determines
for each point x in space the constants that describe the current process at this point. Following the
corresponding path in the s-p plane, one introduced a model for hysteresis.

A similar approach is taken in [36]: Every drying or wetting process, primary, secondary or of
higher order, is described by a shape function. The scaling of the shape function is characterized
by five parameters. If a process is reverted, adequate five parameters are chosen and the solution
follows the corresponding s-p relation.

In [47] the aim is to provide closed form expressions for the conceptually derived formulas
of Mualem (that we discuss in the next section). Some quite crude interpolation algorithms are
compared in [42]. In [44], the curves are fitted with third order polynomials and the behavior of
the system is investigated numerically. The numerical investigation of a hysteresis model is also
performed in [68].

3. Domain models for capillary hysteresis

The name “domain model” is inspired by magnetic hysteresis, where distinct domains inside a
ferromagnet have a uniform magnetization. Even though switching processes are more complicated
in ferromagnets (since the domain walls can move), the name “domain” was used to describe a
switch that can be either in state I or in state II.

3.1 Independent domain model

The porous medium as a collection of switches. Many ideas are collected 1955 by Enderby in
the very accessible article [25], where ideas of Everett [27, 28] are summarized and extended. We
describe these ideas with the notation of the original works. Enderby starts with the observation
that hysteresis in a physical system is related to the existence of meta-stable states. The presence
of meta-stable states implies that, at the same macroscopic quantity � (in our case the pressure,
� Š p), at every point ˛, two states are possible (in principle), x.1/˛ .�/ and x.2/˛ .�/. In the porous
media application, these are two possible local saturation values, x Š s. The index ˛ labels the
“domain”, a collection of atoms (here: pores) on a mesoscopic scale. Enderby demands that the
domain is large enough to be independent of thermal fluctuations, but small enough such that a
discontinuous behavior of the domain ˛ still allows the macroscopic evolution to appear continuous.
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Every microscopic element ˛ has two parameters �˛ and ��˛ . For increasing �, at � D �˛

the system in the point ˛ switches from the curve x.1/˛ to the curve x.2/˛ , from state I to state II.
Conversely, for decreasing �, at � D ��˛ , it switches from x

.2/
˛ to the curve x.1/˛ . The macroscopic

quantity X Š s in its dependence on � Š p is obtained by summing over the domains as

X D
X

˛; domains in state I

n˛x
.1/
˛ .�/C

X
˛; domains in state II

n˛x
.2/
˛ .�/ ; (3.1)

where n˛ is the number of domains that are identical and have the properties that are labelled by
˛. Finally, Enderby describes how to determine graphically from the parameter-curves �˛ and ��˛
those domains ˛ that are in state I and in state II (in dependence of the history of �).

We recognize in Enderby’s description what mathematicians call a Relay (switch from x
.1/
˛ to

x
.2/
˛ and back), the averaging procedure is the one of the Preisach model (we note that also an

integral version of (3.1) is provided by Enderby). Also the Preisach plane graphical analysis is
(re-)invented (we recall that the work of Preisach is 20 years older than that of Enderby).

More specific to porous media modelling is Poulovassillis [75]. He uses the above model to
describe the relation between the two parameters s and p (in [75] they are called water volume
V and the suction S ). The collection of switches is labelled with the two parameters of lower and
upper switch point (the two corresponding suction values), and a function F of these two parameters
indicates the proportion of this type of switch. The author speaks of an “independent domain
theory”, since the switches act independently. Poulovassillis describes nicely the corresponding
experimental set-up (see Figure 3), explains how the density function F can be read off from
experimental data and how F can be used for predictions. He provides sketches of pore geometries
that explain hysteresis and also a sketch of two connected pores that do not behave like a switch.
The latter is possible since the two pores are not independent.

An experimental test of the independent domain model was performed in 1966 by Topp and
Miller [90]. Essentially, their result is that the theory performs poorly, even for artificial (glass-bead)
porous media.

The similarity assumption of Philip and Mualem. The hysteresis model of Poulovassillis [75] (we
recall that it is an interpretation of the Preisach model) was not easy to apply, since the density
function F cannot be determined: A typical experiment yields an imbibition and a drainage curve –
possibly one secondary hysteresis loop. It is not possible to reconstruct the density function F from
these curves.

We change the notation slightly and use now the one of Philip [71]: The two switching values
are now ˛ and ˇ and the distribution function is f D f .˛; ˇ/. Philip introduced an assumption,
namely that the distribution function for the lower switching values f .:; ˇ/ has the same shape for
all ˇ. He writes his “similarity assumption” as

f .˛; ˇ/ D �g.ˇ/H.˛=ˇ/=ˇ : (3.2)

Under this similarity assumption, the two-dimensional field f is already determined with two
curves, g and H . The assumption made it possible to extract all model parameters (namely g and
H ) from experimental data.

The idea was made popular with the contributions of Mualem, who also had the aim to derive
practical formulas. In [60] and [61], the two parameters�˛ and��˛ receive a very tangible meaning.
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FIG. 8. Active regions for various switches from Mualem [60]. In b and c, the horizontal coordinate axis is�	d , the pressure
value at which drainage occurs (the upper switching value). The vertical coordinate axis is the wetting pressure �	w (the
lower switching value). In a wetting process, a horizontal line moves downward (the height is the macroscopic pressure at
every time instance), all switches above the line are flipped (the pores are filled). In a drying process, a vertical line moves
right (the horizontal position is the macroscopic pressure at every time instance), all switches left of the line are flipped (the
pores are emptied).

Two parameters � and r are introduced, they are measures for the size of the pore openings. In
a wetting process, � indicates the pressure at which the pore is filled with water. In a drainage
process, r indicates the pressure at which the pore is drained. One of the basic model assumptions
is that gas and fluid phase are connected to every pore; in this way the pore is immediately filled or
emptied at certain pressures. In the practical use of the model one has to determine the distribution
f D f .r; �/ of pores. In order to have less parameters, Mualem uses the similarity assumption in
the form f .r; �/ D h.r/l.�/. The result is a formula for all hysteresis loops: From two boundary
loops, all relevant data of the model can be obtained and a “rational interpolation formula” is created
(this name for what is done by Mualem is used in [67]).

Model II of [61] differs from Model I of [60] through the fact that “trivial switches” are
introduced, switches for which entry and exit pressure are identical. These pores make a reversible
contribution, which is formulated in Model II by extending the distribution function f .r; �/ to
arguments with r > �. Mathematically equivalent would be to introduce a finite contribution of
the f .r; r/-values, i.e., a measure-valued part of f on the diagonal in the .r; �/-plane.

The aim of Parlange in [67] is to use the knowledge of only one boundary curve to obtain
all relevant data (this is achieved by exploiting the knowledge of a derivative). This means that
an extrapolation rather than interpolation is performed. With this method, quite irregular scanning
curves can be obtained. For a more recent contribution on the reconstruction of density functions
we refer to [76], where a calculation procedure is suggested that is based on three measured curves.
A thorough fitting procedure of the Preisach model to experimental data can also be found in [29],
where also a detailed description of the Preisach model (= independent domain model) is included.

3.2 Dependent domains and additional variables

The fundamental assumption of domain independence (the independence of the different switches)
is related to the physical principle that, in any state, every pore has access to water (to get filled) and
access to air (to get drained). This is not always the case, blocking by neighboring pores can occur.
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While this is a relevant problem regarding the access to air, it is observed in [63] that the everlasting
access to water seems to be a reasonable assumption (in a hydrophillic medium).

One model that includes the blocking effect has already been suggested by Everett: He
introduces two weight functions Pd and Pw such that, during a drying process, not f is integrated
over the region of activated switches, but the function Pd � f (to take into account only those
switches that have access to air). The model is applied by Topp in [89] and further analyzed in [63].
A deficiency of that model (denoted as model III by Mualem) is the requirement of many measured
data; this problem is resolved in [62], where an explicit formula for one of the functions reduces the
number of model parameters.

The analysis of Enderby in [26] starts from physical considerations: if two switches with indices
˛ and ˇ are neighbors in space, then the state of switch ˇ influences the two switching values �˛
and ��˛ of switch ˛. The formula (3.1) can still be used to relate the macroscopic quantities � and
X , but it is more difficult to determine for which ˛ the switch ˛ is in state I.

Additional variables. The domain model relies on the consideration of empty and filled pores. But
many more processes occur in the porous medium and it seems to be desirable to improve the model
by taking more effects into consideration. One attempt is to model the snap-off effect of Section 2.2
(iii) and to introduce a “trapped saturation” as an additional state variable, see, e.g., [37]. A further
effect regards the connectedness properties of filled pores. This is taken into account in a model
of [20], where percolating and nonpercolating phases are modelled separately.

Another extension of the model uses the interfacial area as an additional variable. This approach
is rooted in the observation that a fixed saturation s can be realized with quite different geometries:
either with water in large clusters (small water-air interface), or with water scattered in a fine pore
network (large water-air interface). Using interfacial area as an additional variable, one can take
into account that the medium behaves differently in the two configurations. Complex re-distribution
mechanisms can be modelled, see, e.g., [31, 43].

Today, some of the extended models are studied extensively. Research is concerned with
modelling aspects (closure assumptions for the additional variables), parameter extraction methods,
but also analytical tools (see, e.g., [74]).

3.3 Combination with flow equations

So far, we essentially discussed only the hysteretic relation between p and s in a given spatial point
x 2 ˝ (averaged quantities in the macroscopic variable). In this short section we indicate some
contributions concerning the combination of hysteresis with the flow equation. In particular, we
want to explain why there are models that include hysteresis in the diffusion constant.

In [72], the diffusion equation (1.1) is considered for a horizontal column, i.e., for x 2 R
and g D 0. It is observed that, during a wetting process, some relation p D ˚w.s/ holds and,
during a drying process, p D ˚d .s/ holds. Differentiating this relation, we may reduce (1.1) to
@ts D @x.k.s/˚

0
w.s/@xs/ for wetting and to @ts D @x.k.s/˚ 0d .s/@xs/ for drying. In this sense, one

may think of (1.1) as a standard parabolic problem and state that the diffusion constants Dw.s/ WD
k.s/˚ 0w.s/ and Dd .s/ WD k.s/˚ 0

d
.s/ are different for imbibition and drainage. For this reason,

other publications such as, e.g., [73] assume the diffusion parameter to be hysteretic.
Another observation of [72] is that hysteresis is important only in redistribution processes (in

contrast to pure imbibition or pure drainage processes). The initial condition in [72] is a constant
high saturation on the left part of the horizontal column (x < 0) and a constant low saturation on
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the right part (x > 0). It is investigated how the redistribution of the water occurs; hysteresis is only
present in the fact that the diffusion parameter is Dd .s/ in the left part and Dw.s/ in the right part.
We will encounter higher dimensional redistribution problems in Section 5.2.

When a 3-dimensional situation is averaged in vertical direction to obtain a 2-dimensional
model, one assumes that an equilibrium situation is obtained in every point of the 2-dimensional
plane. Averaging accordingly the capillary pressure curves for imbibition and drainage, one obtains
two effective curves. For a simple hysteresis model using a single switch in every point, the
corresponding averaged curve is calculated in [21].

4. Mathematical analysis of hysteresis models

A fundamental first step in the mathematical analysis of hysteresis models is to write hysteresis
operators as maps on time dependent function spaces and to investigate their properties. It seems
that such a viewpoint was first taken in 1966 [13] and then fully developed by the Russian school
around Krasnoselskiı̆ and Pokrovskiı̆ around 1970 [48].

An effect of hysteresis is that some sort of memory is present in the system. Denoting the input
by u (the pressure p in the porous medium) and the output by w (the saturation s in the porous
medium), the hysteresis operator is a map u 7! w, where w.t/ depends on the whole history of u.
Continuous hysteresis can be described with a map

C
�
Œ0; T �;R

�
3 u 7! w 2 C

�
Œ0; T �;R

�
: (4.1)

We tacitly assume that the operator is causal, i.e., that w.t/ depends only on ujŒ0;t�. Not every
hysteresis operator maps into the space of continuous functions, e.g., a finite superposition of Relays
does not. On the other hand, under assumptions on its weight function, the Preisach operator maps
in the space of continuous functions, see, e.g., [15, 49].

Here are some other properties that hysteresis operators may have: rate independence,
irreversible path property, piecewise monotonicity, Hilpert’s inequality. For mathematically oriented
overviews we refer to [51, 57, 98, 102].

4.1 Mathematical description of Relay and Preisach operator

We describe here the Relay operator (more precisely: “delayed Relay”, in this text often also denoted
simply as “switch”). In a second step, the Preisach operator is constructed as a superposition of
Relays. These constructions are outlined in many textbooks, we follow here mainly [98] and [14].
We will sketch mathematical results and the relations between different models. With this aim, we
recall also the construction of the building blocks.

The Relay hysteron. We are given an input variable u and an output variable w, both are assumed
to be scalar. Since hysteresis describes a memory dependent effect, we have to regard the input as
a time evolution: For some time horizon T > 0 we assume that we are given a continuous function
u W Œ0; T � ! R. Our aim is to construct the output w W Œ0; T � ! R. The right part of Figure 1
essentially describes how w is constructed from u. The only further information that we need is
an initial condition for w, i.e., the position of the switch at time t D 0; we denote this value by
� 2 f�1;C1g.

Before we write down a formula for w.t/, let us describe in words how we want to define the
output: If the input u has never taken one of the two values �1 and �2, then the output should still
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be �. Otherwise, let St 2 Œ0; t � be the last time instance when u had the value �1 or �2. In the case
u.St / D �1, the last switching process was from C1 to �1 and we set w.t/ D �1. If u.St / D �2,
we set w.t/ D C1. In formulas: With Xt WD f� 2 Œ0; t � W u.�/ D �1 or u.�/ D �2g we set
St WD maxf� 2 Œ0; t � W � 2 Xtg if Xt ¤ ; and

w.t/ WD

8̂<̂
:
� if Xt D ; ;
�1 if u.St / D �1 ;
C1 if u.St / D �2 :

(4.2)

The Relay operator is defined as the corresponding map h�1;�2
that maps an input u 2 C.Œ0; T �;R/

and an initial value � 2 R to an output w W Œ0; T �! R. We write w � h�1;�2
.uI �/ as a function on

Œ0; T �, i.e.,
w.t/ D h�1;�2

.uI �/ .t/ 8t 2 Œ0; T � : (4.3)

Properties of the Relay hysteron.. The Relay operator shares some of the properties that are also
observed in many systems with hysteresis (for precise statements see, e.g., [98, Chapter IV]): (1)
Order preservation of h�1;�2

in u: Larger inputs create larger outputs. (2) Semigroup property:
Two processes, one performed after the other, produce the same output as the combined (longer)
process. (3) Piecewise monotonicity: If u is increasing on some time interval, also w is increasing
on that time interval. (4) Rate independence: If we run the process t 7! u.t/ faster, the output w is
the same, we only run the output faster. In formulas: Let the monotonically increasing continuous
map ' W Œ0; Qt � ! Œ0; t � be a parametrization of the time domain. We consider the output w.t/ D
h�1;�2

.uI �/ .t/ on the original interval Œ0; t � and, for the re-parametrized input Qu. Q�/ D u.'. Q�// on
Œ0; Qt � the output Qw.Qt / D h�1;�2

. QuI �/ .Qt /. Then there holds Qw.Qt / D w.t/.
Some more advanced properties are related, e.g., to measurability properties or estimates of w

in BV , the space of functions with bounded variation. An interesting aspect of the Relay is that, in
order to determine an output w.t/, we do not need to know the whole process u W Œ0; t �! R, but we
only need to know the sequence of local maxima and minima of u (“reduced memory sequence”).

Application to capillary hysteresis. The single Relay models a single pore, the input u is the
pressure p and the output w is the local water content (we note that, in the application, the output
should be non-negative, the Relays should be normalized to have outputs 0 and 1). The value �1
stands for the pressure value at which the pore is drained. If the input pressure p Š u takes this
value, the local water content w (which contributes to the saturation) is lowered. Vice versa, at the
pressure value �2, the pore is filled and the local water content w is increased.

The Preisach operator. The Preisach operator is constructed by a superposition of Relays h�1;�2
.

The set of all admissible pairs .�1; �2/ is given by the restriction �2 > �1, the corresponding half
plane is called the Preisach plane P WD f� D .�1; �2/ 2 R2j�2 > �1g. In order to simplify, let
us restrict ourself to the initial condition that all switches are initially in position C1 (every pore is
filled). Let us furthermore assume that the weight is given by a continuous function� W P ! Œ0;1/.
Then the Preisach operator H� for the weight � is defined as

H�.u/ .t/ WD

Z
P
h�.uIC1/ .t/ �.�/ d� : (4.4)



HYSTERESIS IN POROUS MEDIA 433

In order to have a simple formula, we assume here that � is a function, but for applications it is
often necessary to generalize to a measure � 2 M.P /. This generalization allows for example to
consider a finite number of Dirac measures as distribution�, which corresponds to the superposition
of a finite number of switches.

Geometric interpretation of the Preisach operator. We already described the geometric
interpretation in Section 3.1, see Figure 8. For a more detailed sketch see Figure 9. To facilitate
the comparison, we keep the choice of coordinate axes of Mualem from 1974: Using �2 as the
horizontal coordinate and �1 as the vertical coordinate, the Preisach plane f� D .�1; �2/j�2 > �1g

is the lower right half plane. The shaded region marks those switches .�1; �2/ that are in state C1,
the other switches are in state �1. As the input increases (indicated by the two arrows, @tu.t/ > 0),
those switches with the high switch value �2 D u.t/ change from�1 toC1. Graphically, the vertical
line at u.t/ moves to the right and all switches to the left of it have been changed to the valueC1.

When the process is reversed and u.t/ is lowered (@tu.t/ < 0), those switches are flipped from
C1 to �1 that have the low switch value �1 D u.t/. This corresponds to a horizontal line at height
u.t/ such that all Relays above the line are switched back to �1. Let us denote by A.t/ � P the set
of those Relays .�1; �2/ that have the valueC1 at time t . After multiple reversions of the process, the
boundary of A.t/ forms a zig-zag line that consists of vertical and horizontal pieces. The boundary
of A.t/ (more precisely: the part inside P ) encodes the information that the Preisach operator has
about the history of the process.

ρ

ρ
1

2

+1

−1

u(t)

ρ

ρ
1

2

+1

−1

u(t)

FIG. 9. The Preisach plane. Left: An increasing input function u results in flipping all switches along a vertical line at
position u.t/. Right: A decreasing input function u results in flipping all switches along a horizontal line at vertical position
u.t/.

Application to capillary hysteresis. The idea of combining switches to obtain a quite general
hysteresis operator (to model magnetism) goes back to [104] and (with its geometric interpretation)
to [77]. Everett and Enderby use the same model in the context of capillary hysteresis, calling it
“domain model” (they do not make reference to Preisach’s work). Enderby gives in [25] also a
graphical interpretation similar to the Preisach plane, with the difference that the single piece of
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@A.t/ is not a straight line, but a curve. Instead, the geometric interpretation of Mualem (who also
doesn’t quote Preisach) is already as the modern one which is given above, see Figure 8.

Let us make clear that formula (4.4) is essentially the same as (3.1). The input function � in
(3.1) is the pressure, u Š �. The single switch is labelled by ˛ Š �, the output value of the single
switch is either x.1/˛ Š �1 or x.2/˛ Š C1. Since the weight n˛ Š � can be chosen freely, it is no
restriction to use only the two values˙1 as outputs of the single switch.

Once that the Preisach model had been suggested to model the hysteretic behavior between p
and s, the main task for the application was the identification problem: Given a hysteresis operator
H� (given by measurements of curves such as in Figure 3), find the measure (or the density) �.
On theoretical grounds, this problem has been investigated in [98], see page 129. Essentially, the
result is that � is determined by H�. In this context we recall our discussion of Section 3.1: Even
though the measure � is determined by the hysteresis operator, only the similarity assumption made
it possible to reconstruct � from experimental data.

Properties of the Preisach operator. For any finite Borel measure �, the Preisach operator is
causal and rate independent; it is therefore a hysteresis operator in the mathematical sense of
[98]. For a large class of weights �, the Preisach operator maps into the space of continuous
functions. Furthermore, qualitative properties regarding minor hysteresis loops can be proved: The
“congruency property” and the “wiping-out property”.

Since the single Relay operator has discontinuous outputs t 7! w.t/ (even for smooth input
functions t 7! u.t/), in general we cannot expect the Preisach operator H� to provide smooth
outputs w. But it can be shown that H� maps every input u 2 C 0.Œ0; T �;R/ to w 2 C 0.Œ0; T �;R/
if the �-measure of all vertical and all horizontal lines vanishes (this condition is also necessary). In
particular, for measures �.x/ dx as described above (regular with respect to the Lebesgue measure),
the Preisach operator maps into the space of continuous functions. These and more refined results are
contained in [98]: uniform continuity, estimates in Hölder and Sobolev spaces, vectorial extensions
and much more. A numerical approximation scheme for the Preisach model is studied in [94].

4.2 Play hysteron and further hysteresis models

In recent years, much research was devoted to another hysteresis model: The Play-type hysteron
and the corresponding averaged system, the Prandtl–Ishlinskiı̆ model.

The Play hysteron. Loops of the Play hysteron are sketched in the left part of Figure 10. Let us give
a loose description of how the input u generates the output w: Within certain w-dependent bounds,
u can vary freely without inducing any change of w. Once the limits are reached, w must increase
with u, keeping a certain prescribed distance (or w must decrease with u, keeping the distance).

As in the Relay hysteron, there are horizontal parts in the output curve, but in contrast to the
Relay hysteron, there are no jumps of the output function. The Play hysteron can be written with an
ordinary differential equation (or, more precisely, with a differential inclusion). We use the multi-
valued sign function sign W R ! R, sign.�/ D ˙1 for ˙� > 0 and sign.0/ D Œ�1;C1�. Denoting
by 2 > 0 the width of the flat parts, we can write

u � w 2  sign.@tw/ : (4.5)

This relation expresses with one formula that either @tw vanishes, in which case u is free within
the interval Œw � ;w C �, or @tw has a sign, in which case u D w ˙  , the sign is that of @tw.
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u
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FIG. 10. Left: The Play-hysteron. In porous media, u is the pressure and w is the saturation (hence the coordinates are
exchanged in comparison to Figure 3). Right: The generalized Play.

To generalize the model, the parameter  can be chosen to depend on w. Likewise, the parameter
w on the left hand side may be replaced by a function of w. With these alterations, the system (4.5)
describes a generalized Play. The generalized Play can describe quite general loops such as the one
sketched in the right part of Figure 10.

Writing the hysteron as an ordinary differential equation makes clear that no internal parameters
are used: If a system starts in state .u0; w0/ at time t0, the evolution of u D u.t/ for t > t0
determines w.t/ for t > t0. The evolution is independent of any possible other parameter and it is
independent of the history of u before time t0 (semigroup property).

It can be shown that the generalized Play is a special case of a Preisach operator and hence shares
all the basic properties: (1) Order preservation, (2) Semigroup property, (3) Piecewise monotonicity,
(4) Rate independence. We refer to [49] or [98], where also some more specific properties are
derived: Continuity properties of the generalized Play, a formulation with variational inequalities,
Hilpert’s inequality, and an extension to the vectorial case.

Relation to capillary hysteresis. Let us imagine the pore space as a collection of many undulated
tubes as in Figure 6. Within a certain range, the pressure u Š p can vary without affecting the
saturation w Š s: The interface in the single tube can move the short way from the narrow to the
wide part, which changes the pressure (since the curvature of the interface changes), but it does not
change the (macroscopic) saturation. Once that the maximal or minimal pressure is obtained, all
tubes with this maximal/minimal diameter are filled completely and the (macroscopic) saturation is
affected.

Of course, the affine relation u D w ˙ 1 between pressure u Š p and saturation w Š s for
an ongoing imbibition or an ongoing drainage process must be replaced by a more realistic relation
such as p D pc.s/˙ .s/, which results in the generalized Play model

p 2 pc.s/C .s/ sign.@ts/ : (4.6)

The main feature of the Play-type model (4.6) are the horizontal scanning curves (vertical with the
choice of axes as in Figure 3). Physical arguments for this relation on the basis of the “contact angle
hysteresis” are presented in [35]. Essentially, at the same saturation, the pressure can vary between
two extreme values due to the varying contact angle, see Figure 4. The model was investigated in an
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extended version with an additional parameter � > 0 in [9] and [10]. Formally, upon setting � D 0,
these models reduce to (4.6).

We emphasize that the model can be read in two different ways. An elementary possibility is to
interpret it globally: At a fixed saturation s, the pressure p can take any value between a value pdr .s/
(the pressure on the drainage curve) and a value pim.s/ (the pressure on the imbibition curve). If
we read (4.6) in this way, we construct a crude solution to the problem of constructing secondary
scanning curves: We use only vertical scanning curves between imbibition and drainage curve. We
recall that the construction of scanning curves is one of the main difficulties in applications.

The more sophisticated point of view is to interpret (4.6) as a model at the scale of the pores
(we recall that we also interpreted Relays as a description of pores in the domain model). We should
therefore average the elementary hysteresis model (4.6) over many Play-type parameters. Just as we
obtained the Preisach model from Relay hysterons, this construction provides the Prandtl–Ishlinskiı̆
model from Play hysterons.

The Prandtl–Ishlinskiı̆ model. We keep the notation of (4.6) and assume that for every � 2 P (an
abstract parameter in some parameter region P ) we are given a base function s 7! p

�
c .s/ and an

interval function s 7! �.s/. Let us assume that every pair .p�c ; �/ defines a hysteresis operator
w.:/ D e�.u.:// according to (4.6) with pc and  depending on � (we suppress the initial condition).
Then, for a measure � on the parameter space P , the Prandtl–Ishlinskiı̆ operator is

E� W u 7! w ; w.t/ D

Z
P
e�.u/.t/ d�.�/ : (4.7)

Many properties have been analyzed for this operator, e.g., the existence of reduced memory
sequences and the inversion problem. Some relations to the Preisach model can be established:
if the density function � of the Preisach model is supported on a graph, then the Preisach model is
equivalent to a Prandtl–Ishlinskiı̆ model. Vice versa, under technical assumptions on the parameters,
every Prandtl–Ishlinskiı̆ model can be written as a Preisach model, see Chapter IV in [98].

Other models. The Stop-hysteron is a variant of the Play-hysteron. In the Stop-hysteron, free
movements are allowed as long as the difference u � w remains constant, and w cannot exceed
a certain value. Upon a normalization, we may write

w 2 sign
�
@t .u � w/

�
: (4.8)

The Stop-hysteron is closely related to the Play-hysteron: Introducing Qw WD u�w in (4.5) with  D
1, we find the relation Qw 2 sign.@t .u � Qw//, hence the pair .u; Qw/ satisfies (4.8). A superposition
of Stops is called a Prandtl–Ishlinskiı̆ model of Stop-type.

Of a quite different nature is the Duhem model of hysteresis, which has some undesired
properties and is therefore not used in the modelling of porous media. For more on the model
we refer to [98, 103].

4.3 Partial differential equations coupled to hysteresis operators

Among the earliest investigations of partial differential equations coupled to hysteresis are [95, 96].
The contribution [95] deals with the parabolic problem @tw C Au D f , where A is an elliptic
operator such as �� and a relation w D E.u/ expresses the hysteretic dependence of w on u.
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Under restrictive assumptions on the hysteresis operator E, an existence result is derived, the proof
is performed by time discretization. Essential for the limit process are a priori estimates for time
discrete solutions. These estimates rely on a careful exploitation of monotonicity properties of the
hysteresis operator.

A similar model is provided by the equation

@t .uC w/ ��u D f ; (4.9)

accompanied by the hysteretic dependence w D E.u/. Equation (4.9) must be solved on the
space-time cylinder ˝T D ˝ � .0; T /. The hysteresis relation must be interpreted as w.x; t/ D
E.u.x; ://.t/ for almost every x 2 ˝ and almost every t 2 .0; T /. In this setting, quite general
hysteresis operators can be studied, e.g., the Preisach operator. For existence results see [97] and
[98], Chapter XI, Theorem 4.1.

Let us make the connection of (4.9) to capillary hysteresis: As before, u stands for the pressure
(or, possibly, its Kirchhoff transformation as in Section 1.3), �ru is the driving force and, for a
normalized permeability, also the flux according to Darcy’s law. The conserved quantity u C w

then stands for the saturation. The model therefore assumes a strictly monotone hysteretic relation
between p D u and s D uC w. The fact that the hysteretic relation u 7! uC w has no flat parts
helps in the analysis of the system. Furthermore, the analysis uses that coefficients are constant and,
in particular, not depending on the solution (linearity of relation (4.9) in u and w).

The books [14, 51, 98] contain many more existence results for models with hysteresis. In
particular, the early contributions are embedded into a larger theory and the essential ingredients for
existence results are identified. One aspect regards the monotonicity of hysteresis operators: While
standard L2-monotonicity cannot be expected for hysteresis operators, the notion of piecewise
monotonicity turns out to be useful: This property is satisfied by many hysteresis operators and it is
sufficient to derive estimates for solutions. In order to obtain the uniqueness of solutions, Hilpert’s
inequality is used. The inequality may be stated as

@t jw1 � w2j 6 sign.u1 � u2/@t .w1 � w2/ :

In the original work [39], the inequality was stated for inputs u1; u2 and the corresponding
generalized Play outputs w1; w2.

Results typically concern existence, uniqueness and L1-contraction properties. Other results are
on long time behavior (e.g., [45, 54] and, for an interesting ODE-problem with resonance, [52]) and
control problems (compare [40] and references therein).

Beyond plasticity and porous media, a wide range of applications with hysteresis has already
been treated: Phase field models [14, 40, 54], Maxwell systems [101], variational inequalities and
contact problems [53], fatigue [23], transport [69]. Much work is available for hyperbolic equations,
such as the (one-dimensional) dynamic plasticity equation @2t u � @xE.@xu/ D f in [50], see also
[100] and the references therein. We do not comment further on the more complex question of
vector-valued hysteresis and refer instead to [98, 101].

Nonlinear porous medium equation. The nonlinear porous media equation (1.1) with a Preisach
operator relation between pressure and saturation has been investigated in [5]. The authors treat
the full problem with general boundary conditions, a general Preisach operator, and a degenerate
coefficient k D k.s/. Degeneracy of k is meant in the sense of a vanishing permeability for small
saturations, k.0/ D 0, which corresponds to a lack of ellipticity in the equation. We note that
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the latter makes some regularization of the model necessary, the hysteresis relation is modified by
adding a monotone function ˇ (comparable to the above “regularization” by setting s D u C w

instead of s D w).
A similar analysis is performed in [6] for a generalized Play operator in the hysteresis relation.

Here, another regularization is chosen: A time convolution in the permeability coefficient k allows
the derivation of an existence result.

We mention already here two existence results for the nonlinear problem in the case that the
hysteresis relation is regularized with a rate-dependent term (� > 0): The nonlinear Richards
equation with Play type hysteresis was studied in [55], a degenerate nonlinear system was studied in
[85]. We note that the former contribution does not allow for a degenerate permeability (k.0/ D 0),
the latter contribution allows this degeneracy, but the constructions are possible due to a degenerate
behavior of pc D pc.s/, which prevents the system from developing a vanishing saturation. We are
not aware of any other existence result for the degenerate nonlinear partial differential equation with
hysteresis.

Homogenization. A homogenization of the Preisach model is performed in Chapter XI of [98]: A
Relay in every spatial point, with highly oscillatory switch parameters, results in a Prandtl–Ishlinskiı̆
model in every macroscopic point. Furthermore, the coupling of the partial differential equation
(4.9) to a highly oscillatory Relay relation between u and w is analyzed. The effective equation is
again @t .uC w/ D �u, now u and w are coupled through a Prandtl–Ishlinskiı̆ model.

The problem @ts D �p coupled to (4.6) with an affine law pc and with  D .x/ is treated
in [82]. In the framework of stochastic homogenization, it is assumed that the (randomly chosen,
ergodic) parameters of the Play-type law are different in different spatial points. For a parameter
" > 0 that stands for typical distances, it is assumed that the mixing of different materials is getting
finer as " ! 0. The result is an effective equation which is again a linear porous media equation,
but now s and p are coupled with a Prandtl–Ishlinskiı̆ law.

Energetic solutions. We mention that a quite different perspective on rate-independent systems
was introduced with the concept of energetic solutions, see [58, 59] and the references therein. The
approach has some similarities with gradient flow structures: The evolutionary system is described
with two functionals, dissipation and energy. These two functionals on a Banach space encode
all the information that is needed for the evolution, typically a partial differential equation with
rate-independent material laws (i.e., hysteresis). The approach is extremely successful with many
applications in the context of plasticity. It seems to be an interesting challenge to explore the
possibilities of this new approach in the porous media area and to investigate the connections to
existing results.

5. Extensions and applications, gravity fingering

5.1 Rate-dependent effects

Since experiments in porous media are typically performed at low rates, it is often reasonable to
assume that the porous medium is in an equilibrium state in every instant of time (quasi-static
evolution). This equilibrium assumption is reflected by the fact that hysteresis is a rate-independent
phenomenon.

Nevertheless, some experiments demonstrate non-equilibrium effects. The most striking
evidence for a rate-dependent relation between p and s is probably the effect of saturation
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overshoots in imbibition problems. We briefly describe this effect below. It is not directly linked
to hysteresis, but we will observe a connection with hysteresis in Section 5.2.

It seems that [9] was the first contribution in which the (rate-independent) hysteresis was
combined with a dynamic term in the p-s-relation. Model (11) of [9] can be written in the form

p 2 pc.s/C .s/ sign.@ts/C �@ts : (5.1)

The real number � > 0 is a model parameter that quantifies the rate-dependent effects. We read (5.1)
as an ordinary differential equation for s: as time increases, s moves towards one of its equilibrium
positions. With this interpretation, we can regard � as a measure of typical redistribution times. Note
that the rate-independent Play model (4.6) is recovered by setting � D 0.

In [9], the authors suggest the model and show that the relation provides a thermodynamically
admissible model (see also [34]). In [10] the model is formulated as above, a one-dimensional
existence result was proved and a numerical scheme was developed. In [55, 78] higher dimensional
existence results are obtained for flow equations coupled to (5.1) with � > 0. A variety of related
dynamic capillary pressure models is discussed in [65].

Saturation overshoot behind wetting fronts. Many imbibition processes involve an advancing
wetting front. In such processes, the porous medium has initially a low saturation, and it has a
high saturation behind the wetting front. The process can occur with a monotonic saturation profile
such that, for a fixed point x in space, the saturation increases at all times. But some experiments
show non-monotonic saturation profiles. In such a case (for a fixed time t the saturation profile has
a local maximum near the front), we speak of a saturation overshoot.

The non-monotonic saturation profile cannot be explained with the standard Richards equation.
We emphasize that it also cannot be explained by (only) adding hysteresis in the Richards equation:
Since we consider a pure imbibition process, only the imbibition curve of the hysteresis loop is of
importance in this process. Instead, equation (5.1) can produce overshoots, even without hysteresis
(i.e., for  D 0), at least in the two-phase flow context [38, 92]. A recent overview on saturation
overshoot effects and their modelling can be found in [105]. The overshoot is usually interpreted as
a result of redistribution effects. It can also be modelled with the additional variable of interfacial
area (compare Section 3.2).

5.2 Gravity fingering

Gravity fingering is a beautiful experimental observation (see Figure 11) and, at the same time, an
effect that depends crucially on hysteresis. In this sense, gravity fingering is an ideal test-case for
hysteresis models in porous media. We sketch here the effect and its analysis.

The underlying experiment is easily described: An initially dry porous medium is wetted from
the top. Under the influence of gravity, the liquid moves downwards in the porous medium. It has
two possibilities to do so: (A) As a planar wetting front. In this case, the saturation of the medium
increases in every point .x1; x2; x3/ in space and remains essentially independent of the horizontal
coordinates .x1; x2/. (B) In the form of fingers as in Figure 11. For experimental results we refer
to [8, 64, 88].

Both possibilities (A) and (B) can be observed in experiments. Which pattern is formed depends
on many parameters: on the medium (typical pore size, pore size distribution, material parameters
and the corresponding contact angle), the initial saturation, and on the rate of the wetting process.
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Without careful choices of parameters, one will typically obtain pattern (A), the fingering pattern
(B) can be observed, e.g., in very dry sand at low flow rates.

Important for us is the fact that the standard model for porous media (no hysteresis) cannot
explain fingering: The Richards equation has stability properties (L1-contraction principle) that
exclude fingering [17, 66]. To avoid misunderstandings: In principle, also the two-phase flow
equation can explain a fingering phenomenon (in contrast to the Richards equation). But we note
that the inertia of air in dry sand is extremely low. This is a clear indication that the fingering effect
is not a two-phase flow effect, but has some other origin.

Hysteresis as an important factor. A simple argument makes clear that hysteresis is important for
fingering, compare [24, 30]. Let us describe here the basic mechanism. The Richards equation (1.3)
is always dissipative: Saturation differences lead to pressure differences and these lead to flow from
high to low saturation areas. What does this imply in a situation with fingers as in Figure 11? The
saturation is high in the finger and low in the space between two fingers. Dissipation leads to a
flow from the finger to the dry neighborhood. Hence, without hysteresis, the fingers become wider
with time. But the experiments do not show any spreading. The fingers are not wider in the top part
(where they had a long time to spread) than in the bottom part.

Hysteresis is a mechanism that can prevent the fingers from spreading. Hysteresis in the s-p-
relation allows for different values of s at the same pressure p. This is what we observe in the
fingering phenomenon: The saturation is very different in the finger and in the vicinity, but the
pressure is essentially identical (since no spreading occurs). Already the simple Play hysteresis law
(4.6) makes the effect possible: For @ts D 0, different values of s can be attained at the same value
of p.

FIG. 11. Left: An experimental result for fingering in a porous medium (courtesy of R. J. Glass of the Soil and Water
Laboratory at Cornell). Right: Numerical solution of a model with hysteresis and dynamic effect [78].
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The possible influence of hysteresis is analyzed in mathematical terms in [84]: The Richards
equation with Play-type hysteresis does not define an L1-contraction, hence fingering is possible.

Hysteresis alone cannot explain fingering. A priori, it is not clear whether the porous medium
equation with hysteresis and without dynamic term (� D 0) can explain fingering. Since we see an
imbibition process in every point for all times, one might expect the strict inequality @ts > 0 in
the whole domain. In this case, hysteresis does not play a role and cannot explain the effect. The
numerical evidence of [55, 78] indeed indicates that hysteresis with � D 0 does produce a more
unstable behavior of the system, but it does not produce the fingering effect.

The situation changes dramatically when the dynamic term is included: � > 0 can generate
a saturation overshoot in the finger-tips, which means that a drainage process takes place in the
fingers behind the saturation maximum. Hysteresis sets in and explains the stability of the fingers.
This argument is analyzed in [78] with one-dimensional calculations. In the same contribution, also
the numerical result of Figure 11 (right) is obtained for a Play-type hysteresis model with � > 0.

Well-posedness for the Richards equation with Play-type hysteresis and dynamic term is shown
in [55]; for the two-phase flow model, existence is shown in [46] and uniqueness in [16]. For a result
with degenerate pc-curve see [85]. Numerical experiments in [46, 55, 78] confirm that these models
can generate the fingering effect.

Other approaches to fingering. Similar models are studied in [80]. A one-dimensional analysis of
the model with � > 0 is performed to confirm the saturation overshoot. With a hysteresis model
that is constructed with the help of explicit formulas for primary and secondary curves, numerical
results are performed in one and two space dimensions. In one space dimension, � > 0 produces
the saturation overshoot, the inclusion of hysteresis removes secondary oscillations. In two space
dimensions, the profile of one finger is calculated.

Other non-equilibrium Richards equations that include rate-dependent terms have been studied,
e.g., in [22, 65]. One application is that a low-frequency instability criterion can be introduced and
used to predict the occurrence of an instability.

A completely different approach with a phase-field model is introduced in [19]. An “apparent
surface tension” leads to the appearance of fingers. It is an ongoing discussion, whether or not the
physical principles of the model are sound. In any case, the model does not fit into the framework
that is discussed here.

5.3 Further directions and open questions

Much research has been performed on hysteresis in porous media. The main focus of the last
60 years was to develop Preisach and Play-type models for hysteresis and to couple them to the
Richards equation for unsaturated porous media flow. We discussed the importance of additional
dynamic terms (or other non-equilibrium extensions). In this final section, we collect some further
directions of research and open questions.

Fingering. Regarding the fingering effect, many questions are open: What determines the typical
diameter of fingers, what determines typical distances? Fingers essentially occur only in dry sand;
is there a saturation threshold such that, beyond this threshold, no fingering is possible? A similar
question can be asked with respect to the imbibition rate, which also must lie in a certain (material-
dependent) range. These questions are completely open. Certainly, instability criteria as in [22, 65]
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can be useful in such an analysis. We also see a connection with [52] which investigates whether or
not the dissipation due to hysteresis can prevent a solution from blow up due to resonance.

Beyond Richards equations. We essentially restricted this survey to the Richards equation and its
coupling to hysteresis. For two-phase flow equations we already mentioned [46], where hysteresis
is introduced completely analogous to the unsaturated flow case. Another approach is taken in [56],
where hysteresis is introduced with a two-state model and a hyperbolic framework is used. Coupling
of porous media hysteresis with other materials is interesting, see, e.g., [41] for a coupling with an
elasto-plastic material. But even the further development of the unsaturated flow equation is an
interesting field when non-equilibrium effects are taken into account (e.g., the interfacial area).

Upscaling. Rigorous mathematical upscaling of a porous medium equation with hysteresis in the
sense of homogenization seems to be available only under very restrictive assumptions. One either
has to assume that the hysteresis law is strictly monotone [98] or that the permeability function is
constant [82]. A non-rigorous result is obtained in [18]. Rigorous upscaling of general hysteresis
laws in nonlinear partial differential equations is essentially open.

Energetic solutions. We already mentioned that the connection to energetic solutions should
certainly be explored, since this regards the intersection of two very active fields, see Section 4.3.

Numerical methods. We did not discuss the development of numerical methods to solve the
hysteresis equations. Numerical methods are used, e.g., in [46, 55, 64, 78, 80]. Our impression is
that the numerical methods still must be optimized. They show slow convergence and, as of today,
they do not permit three-dimensional calculations. For a recent contribution and further references,
we mention [70].

Pore network models. Today, more than 80 years after the thoughts of Haines about spherical
packings, resulting pore-scale geometries, and corresponding capillary pressures, the design and
the analysis of pore-scale geometries has become an active field of research. With todays computer
power, the geometry of a pore network can be implemented and modern algorithms allow to
calculate physical quantities.

A computer experiment can be performed by specifying a geometry, contact angles, densities,
viscosities, and boundary conditions. By computer experiments, one can determine permeability
and capillary pressure curves and, in particular, study the hysteretic behavior. The residual saturation
and the interfacial area can be calculated and one can study the dependence of these parameters on
the data. We emphasize that some of these quantities are hard to measure in physical experiments.
For a comprehensive overview over the state of the art in 2001 we refer to [12], for a more recent
contribution and further references see [43].
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23. Eleuteri, M., Kopfová, J. & Krejčı́, P., Non-isothermal cyclic fatigue in an oscillating elastoplastic beam.
Commun. Pure Appl. Anal. 12 (2013), 2973–2996. Zbl1264.74244 MR3060919

24. Eliassi, M. & Glass, R., On the continuum-scale modeling of gravity-driven fingers in unsaturated porous
media: The inadequacy of the Richards equation with standard monotonic constitutive relations and
hysteretic equation of state. Water Resources Research 37 (2001), 2019–2035.

25. Enderby, J., The domain model of hysteresis, Part 1. Independent domains. Trans. Faraday Soc. 51
(1955).

http://www.emis.de/MATH-item?0552.76075
http://www.ams.org/mathscinet-getitem?mr=0765926
http://www.emis.de/MATH-item?0977.35072
http://www.ams.org/mathscinet-getitem?mr=1812655
http://www.emis.de/MATH-item?1073.76066
http://www.ams.org/mathscinet-getitem?mr=2111820
http://www.emis.de/MATH-item?0258.76069
http://www.ams.org/mathscinet-getitem?mr=0408443
http://www.ams.org/mathscinet-getitem?mr=1948682
http://www.emis.de/MATH-item?1026.76050
http://www.ams.org/mathscinet-getitem?mr=1892965
http://www.emis.de/MATH-item?1117.34047
http://www.emis.de/MATH-item?0152.42103
http://www.ams.org/mathscinet-getitem?mr=0201106
http://www.emis.de/MATH-item?0951.74002
http://www.ams.org/mathscinet-getitem?mr=1411908
http://www.emis.de/MATH-item?0682.47034
http://www.ams.org/mathscinet-getitem?mr=1022792
http://www.ams.org/mathscinet-getitem?mr=3320281
http://www.emis.de/MATH-item?0932.35129
http://www.ams.org/mathscinet-getitem?mr=1701806
http://www.emis.de/MATH-item?1026.86001
http://www.ams.org/mathscinet-getitem?mr=1911540
http://www.ams.org/mathscinet-getitem?mr=3148139
http://www.emis.de/MATH-item?1264.74244
http://www.ams.org/mathscinet-getitem?mr=3060919


444 B. SCHWEIZER

26. Enderby, J., The domain model of hysteresis, Part 2. Independent domains. Trans. Faraday Soc. 52
(1956).

27. Everett, D. & Smith, F., A general approach to hysteresis. Part 2: Development of the domain theory.
Transactions of the Faraday Society 50 (1954), 187–197.

28. Everett, D. & Whitton, W., A general approach to hysteresis. Trans. Faraday Soc. 48 (1952), 749–757.
29. Flynn, D., McNamara, H., O’Kane, J. & Pokrovskii, A., Application of the Preisach model to soil-

moisture hysteresis. Bertotti, M. (ed.) The Science of Hysteresis 3 (2005). Zbl1136.76048
30. Glass, R., Steenhuis, T. & Parlange, J., Mechanism for finger persistence in homogeneous, unsaturated,

porous media: Theory and verification. Soil Science 148 (1989), 60–70.
31. Gray, W. & Hassanizadeh, S., Unsaturated flow theory including interfacial phenomena. Water Resources

Research 27 (1991), 1855–1863.
32. Haines, W., Studies in the physical properties of soil. iv. a further contribution to the theory of capillary

phenomena in soil. The Journal of Agricultural Science 17 (1927), 264–290.
33. Haines, W., Studies in the physical properties of soil. v. the hysteresis effect in capillary properties, and

the modes of moisture distribution associated therewith. The Journal of Agricultural Science 20 (1930),
97–116.
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