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This paper introduces an elliptic quasi-variational inequality (QVI) problem class with fractional
diffusion of order s 2 .0; 1/, studies existence and uniqueness of solutions and develops a solution
algorithm. As the fractional diffusion prohibits the use of standard tools to approximate the QVI,
instead we realize it as a Dirichlet-to-Neumann map for a problem posed on a semi-infinite cylinder.
We first study existence and uniqueness of solutions for this extended QVI and then transfer the
results to the fractional QVI: This introduces a new paradigm in the field of fractional QVIs. Further,
we truncate the semi-infinite cylinder and show that the solution to the truncated problem converges
to the solution of the extended problem, under fairly mild assumptions, as the truncation parameter
� tends to infinity. Since the constraint set changes with the solution, we develop an argument using
Mosco convergence. We state an algorithm to solve the truncated problem and show its convergence
in function space. Finally, we conclude with several illustrative numerical examples.
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1. Introduction

The purpose of this work is twofold: (1) To introduce a new class of quasi-variational inequalities
(QVIs) involving a fractional power of an elliptic operator and study existence and uniqueness of
solutions; (2) To develop a solution algorithm suitable for numerical implementation. The problem
class of interest is the following: Let ˝ be an open, bounded and connected domain of Rn,
n > 1, with Lipschitz boundary @˝ and f 2 L1.˝/ non-negative be given. Consider the following
fractional QVI:

Find u 2 K.u/ W hLsu;u � vi�s;s 6 hf;u � vi�s;s in ˝; 8v 2 K.u/; (P)

where w 7! K.w/ is defined as

K.w/ WD
˚
v 2 Hs.˝/ j v 6 	.w/ a.e. in ˝

	
; (1.1)
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Hs.˝/ is defined in Section 2.1, 	.u/ W ˝ ! R is measurable and non-negative for all u 2 Hs.˝/
and additional assumptions are later specified on 	 in Section 3.

The operator Ls , s 2 .0; 1/, is a fractional power of the second order, symmetric and uniformly
elliptic operator L, supplemented with homogeneous Dirichlet boundary conditions (see [2] for a
discussion on nonhomogeneous boundary conditions). That is, Lw WD �divx.Arxw/C cw; where
0 6 c 2 L1.˝/, and A.x/ D Aij .x/ D Aj i .x/, i; j D 1; : : : ; n, is bounded, measurable in˝ and
satisfies the uniform ellipticity condition �1j�j2 6 A.x/� � � 6 �2j�j

2, for all � 2 Rn for almost
every x 2 ˝, for some ellipticity constants 0 < �1 6 �2.

Fractional derivatives have been around for as long as the standard derivatives. The recent
popularity of this topic can be attributed to advancements in computing (fractional operators usually
lead to dense systems) and a few applications, for instance image processing [1, 24], turbulence
[20, 21] etc. In particular, the study of constrained optimization problems such as the fractional
obstacle problem (both elliptic and parabolic, and 	 independent of u) have been the focal point
of recent research. Such problems appear, for instance, in finance as a pricing model for American
options, we refer to [42] for modeling and [15, 47] for a functional analytic and numerical treatment
of the underlying variational inequalities.

When s D 1, QVIs are known to appear in many applications: They arise for instance in game
theory, solid mechanics, elastoplasticity and superconductivity. We refer to [13, 22, 23, 29, 34–36,
40, 41, 44, 48, 49, 51, 52] and the monographs [6, 38] as well as the references therein for diverse
theoretical approaches and possible applications. The development of approximation methods and
solution algorithms for QVIs require problem-tailored approaches due to their non-convex and
non-smooth nature. Although some work has been done in finite dimensions, the literature in
infinite dimensions is rather scarce. The first sequential method of approximation of solutions was
developed by Bensoussan (an account can be found in [11, 12, 25]) where ordering properties are
exploited and convergence rates for such problems were obtained in [27, 28]. The semismooth
Newton in combination with fixed point approaches have been developed in [30–32] for gradient
and obstacle type constraints and several approaches involving dualization of the problems were
pioneered by Prigozhin and Barrett (see [7–10]).

In view of the aforementioned applications of fractional order PDEs and QVIs, it is only natural
to merge these ideas together which then leads to (P). To the best of our knowledge this is the first
work that addresses the well-posedness of (P) and develops solution algorithms for such a problem.
Further, we provide a precise example of application in what follows, and for the sake of simplicity
we consider it on an unbounded domain. Let ˝ D Rn with n > 1 denote the location of a semi-
permeable membrane that forms the base of the cylinder C D ˝ � .0;1/, where the latter contains
a slightly incompressible fluid. We denote by U the negative pressure of the fluid and by 	 the
negative osmotic pressure. In other words, the flow across the membrane occurs only when U D 	
on ˝ � f0g and there is no flow if U < 	 on ˝ � f0g. In case the (average) pressure in C has an
impact on the pressure of a domain Cout which contains a certain solution, and where Cout is such
that Cout \ C D ; and @C \ @Cout D ˝, then 	 is a function of U within C. Such mechanisms are
usually in place on biological systems where homeostasis is of the utmost importance. In particular,
at equilibrium, this implies that U 6 	.U / on ˝ � f0g, andˆ

C
rU � r.V �U / > 0;

for all V such that V 6 	.U / on ˝ � f0g which can be equivalently formulated as (P) when
s D 1=2 by an analogous result to Lemma 3.1 for unbounded domains.
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We emphasize that (P) is nonlocal and many of the classical techniques dealing with QVIs are
not applicable. Indeed, existence of solutions for QVIs involve, in general, ordering properties of
the associated monotone operator, in this case Ls , and/or compactness properties of the obstacle
map 	 . Even though, it does not hold

˝
LsuC;u�

˛
�s;s
D 0 for each u 2 Hs.˝/ and s ¤ 1, it is

available that
˝
LsuC;u�

˛
�s;s

6 0 for all u 2 Hs.˝/: By equation (1.3) in [18] (see also [53] where
this result was first shown using probabilistic arguments in smooth domains) we have˝

LsuC;u�
˛
�s;s
D

ˆ
˝

ˆ
˝

.uC.x/ � uC.z//.u�.x/ � u�.z//Ks.x; z/dxdz

D �

ˆ
˝

ˆ
˝

.uC.x/u�.z/C uC.z/u�.x//Ks.x; z/dxdz 6 0;

since Ks.x; z/ > 0. Hence, it is possible to pursue the proof of existence of solutions based on
the property above. However, since we are interested in creating a numerical method to solve the
original QVI of interest, we will exploit the analogous property on an extended domain by invoking
the so-called Caffarelli-Silvestre or Stinga-Torrea extension.

The extension idea was introduced by Caffarelli and Silvestre in Rn [17] and its extension to
bounded domains is given in [19, 54]. We refer to the extension in bounded domains as the Stinga-
Torrea extension. This idea was applied to the fractional obstacle problem in [15, 16] of both elliptic
and parabolic type. In a nutshell, the Caffarelli-Silvestre extension says that fractional powers of the
spatial operator L can be realized as an operator that maps a Dirichlet boundary condition to a
Neumann condition via an extension problem on the semi-infinite cylinder C D ˝ � .0;1/.

Related to the nonlocal QVI given in (P), we introduce the following extended QVI problem
which is local in nature and includes one extra spatial dimension y:

Find U 2 K.U / W a.U ;U � V / 6 hf; tr˝.U � V /i�s;s; 8V 2 K.U /; (P)

where W 7! K.W / is defined as

K.W / D
˚
V 2 VH 1

L.y
˛; C/ j tr˝ V 6 	.tr˝ W / a.e. in ˝

	
; (1.2)

where VH 1
L.y

˛; C/ and tr˝ are defined in section 2.2 and the bilinear form a is given by

a.W ;V / WD
1

ds

ˆ
C
y˛A.x; y/rW � rV C y˛c.x/W V ; (1.3)

for W ;V 2 VH 1
L.y

˛; C/ with ˛ D 1 � 2s 2 .�1; 1/, and ds D 2˛� .1 � s/=� .s/. Moreover,
A.x; y/ D diagfA.x/; 1g. We will call y, the extended variable, and the dimension n C 1 in
RnC1C , the extended dimension of problem (P). We expect that u solving (P) fulfills u D U j˝�f0g,
where U solves (P); further, in Lemma 3.1 we prove that the solution set of (P) and the one of (P)
have the same cardinality. The result of Lemma 3.1 is in accordance with [17, 19, 54] but requires
extra care and does not follow immediately from these well-known papers. However, it has serious
consequences: It allows us to transfer the well-posedness of (P) to the seemingly intractable (P).
This initiates a new paradigm in the field of QVIs.

The paper is organized as follows: The material in Section 2 is well-known and is provided only
so that the paper is self-contained. In Section 2.1 we set up the notation and define the fractional
powers of L based on spectral theory. We supplement this definition with fractional Sobolev spaces.
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In Section 2.2 we state the Stinga-Torrea extension. In Section 2.3 we state the L1-regularity result
for solution to the linear problem. Our main work starts from Section 3 where we first state a
general result, Lemma 3.1, which allows us to establish the relation between (P) and (P). With the
help of this result, in conjunction with Assumption 3.2 .i/, we show the existence of solutions to
(P) and (P) in Theorem 3.3. The Assumption 3.2 .i i/, in addition, leads to uniqueness of solutions
to these problems. Since we are interested in developing a numerical method to solve (P), owing to
the fact that C is unbounded, in Section 4 we propose a truncated problem on a bounded domain
C� D ˝ � .0; �/ with � < 1. In Theorem 4.6 we prove the convergence of truncated solutions to
U , solving (P), as � ! 1 under fairly mild assumptions. Such a result is made possible because
of our Mosco convergence result in Lemma 4.5. In Section 5 we develop an algorithm in function
space to solve the truncated problem. We prove the convergence of this algorithm in Theorem 5.1.
Finally, we conclude with several illustrative examples in Section 6.

2. Notation and preliminaries

To some extent, in this section, we will use the notation from [3].

2.1 Spectral fractional operator

Let ˝ be an open, bounded and connected domain of Rn, n > 1, with Lipschitz boundary @˝. For
any s > 0, we introduce the following fractional order Sobolev space

Hs.˝/ WD

(
u D

1X
kD1

uk'k 2 L2.˝/ W kuk2Hs.˝/ WD
1X
kD1

�sku2k <1

)
;

where �k are the eigenvalues of L with associated normalized (in L2.˝/) eigenfunctions 'k and

uk D .u; 'k/L2.˝/ D
ˆ
˝

u'k dx:

It is well-known that

Hs.˝/ D

8̂<̂
:
H s
0 .˝/ D H

s.˝/ if 0 < s < 1
2
;

H
1
2

00.˝/ if s D 1
2
;

H s
0 .˝/ if 1

2
< s < 1:

(2.1)

Here

H s
0 .˝/ WD D.˝/H

s.˝/
;

where D.˝/ denotes the space of infinitely continuously differentiable functions with compact
support in ˝, and

H
1
2

00.˝/ WD

�
u 2 H

1
2 .˝/ W

ˆ
˝

u2.x/

dist.x; @˝/
dx <1

�
;
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is the so-called Lions–Magenes space [55] with norm

kuk
H
1
2
00
.˝/
D

�
kuk2

H
1
2 .˝/
C

ˆ
˝

u2.x/

dist.x; @˝/
dx

� 1
2

:

We denote by H�s.˝/ the dual of Hs.˝/ and by h�; �i�s;s we denote the duality pairing between
H�s.˝/ and Hs.˝/. We next define the fractional powers of L (cf. [18]).

DEFINITION 2.1 The spectral fractional operator Ls is defined on the space C10 .˝/ by

Lsu D
1X
kD1

�skuk'k with uk D
ˆ
˝

u'k : (2.2)

By density, the operator Ls extends to an operator mapping from Hs.˝/ to H�s.˝/.

2.2 ˛-Harmonic Extension

The extension approach in Rn is due to Caffarelli and Silvestre and its restriction to bounded
domains was given by Stinga and Torrea. The key property of the extension is that it localizes
the nonlocal operator Ls at the expense of an extra spatial dimension. Before we discuss it, we
introduce some notation. We denote by C WD ˝ � .0;1/ the semi-infinite cylinder with lateral
boundary @LC WD @˝ � Œ0;1/. We let � > 0 denote a truncation of cylinder C to C� WD ˝ � Œ0; ��
and define @LC� WD .@˝ � Œ0; ��/ [ .˝ � f�g/. Notice that both C and C� are the objects in
RnC1. Furthermore, we let y denote the extended variable such that a vector x0 2 RnC1 admits
the following representation: x0 D .x1; : : : ; xn; xnC1/ D .x; xnC1/ D .x; y/ with xi 2 R for
i D 1; : : : ; n, x 2 Rn and y 2 R.

Let D � RnC1 be an open set, such as C or C� . Next we define the weighted spaces with weight
function �˛ with ˛ 2 .�1; 1/. These weighted spaces are necessary to tackle the singular/degenerate
nature of the extended problem. We refer to [56, Section 2.1], [39] and [26, Theorem 1] for a more
detailed discussion on such spaces. We denote by L2.�˛;D/ the space of measurable functions
defined on D with finite norm kW kL2.�˛ ;D/ WD k�

˛
2 W kL2.D/. Further, let H 1.�˛;D/ denote

the space of measurable functions W 2 L2.�˛;D/ with weak gradients rW in L2.�˛;D/, and
endowed with the norm

kW kH1.�˛ ;D/ WD
�
kW k2

L2.�˛ ;D/ C krW k2
L2.�˛ ;D/

� 1
2

:

We are now ready to define the Sobolev space on C that is of interest to us

VH 1
L.�

˛; C/ WD
˚
W 2 H 1.�˛; C/ j W D 0 on @LC

	
:

The space VH 1
L.�

˛; C� / is defined in a similar manner. We will denote the trace of a function on ˝
by tr˝ .

Consider a function u W ˝ ! R. We then define an ˛-harmonic extension of u (cf. [17, 54]) to
the cylinder C, as the function U that solves(

�div .y˛ArU /C y˛cU D 0 in C;
U D 0 on @LC; U D u on ˝ � f0g:

(2.3)
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Given u 2 Hs.˝/, this problem has a unique solution U 2 VH 1
L.y

˛; C/; in fact, U 2 VH 1
L.y

˛; C/
solves problem (2.3) if and only if it solves the minimization problem

min
ˆ
C
y˛.rW ;A.x; y/rW /C y˛c.x/jW j2 dx dy over W 2 VH 1

L.y
˛; C/;

subject to tr˝ W D u;

where the objective functional is coercive, continuous and strictly convex (hence weakly lower
semicontinuous). We define the solution mapping u 7! U of (2.3) as H˛ W Hs.˝/ ! VH 1

L.y
˛; C/,

i.e., U D H˛u.
The fundamental result of [54], see also [19, Lemma 2.2], can be stated as follows:

Theorem 2.2 (Stinga–Torrea extension) If s 2 .0; 1/, u 2 Hs.˝/, and U solves (2.3) then

dsLsu D @˛�U ;

in the sense of distributions, where ds D 2˛� .1 � s/=� .s/ and @˛�U is the conormal exterior
derivative of U at˝ �f0g given by @˛�U D � limy!0C y

˛Uy ; where the limit must be understood
in the distributional sense.

Note that the above result for ˝ � Rn was obtained by Caffarelli and Silvestre in [17]. In
particular, the Stinga-Torrea extension entails (see [54, Theorem 1.1] and [19, Lemma 2.2]) that

hLsu; tr˝ W i�s;s D a.H˛u;W /; 8W 2 VH 1
L.y

˛; C/; (2.4)

for a.�; �/ defined in (1.3), and where H˛u denotes the ˛-Harmonic Extension of u as defined in the
previous paragraphs.

2.3 Boundedness of the solution to the linear problem

In what follows we need that the solution to the following linear problem is essentially bounded:
Find u 2 Hs.˝/ such that

Lsu D f in ˝: (2.5)

The L1.˝/ characterization of the solution of the above problem is expected in several settings.
We state the following result that can be found in [3].

Theorem 2.3 (Lipschitz domains) Let A D I , ˝ be Lipschitz and f 2 Lp.˝/ with

p > n
2s

if n > 2s;
p > 1 if n D 2s;
p D 1 if n < 2s;

0 6 c 2 L1.˝/, and denote by u to the solution of (2.5). Then u 2 L1.˝/ and there exists a
constant C D C.n; s; p;˝/ such that kukL1.˝/ 6 CkfkLp.˝/.

REMARK 2.4 We remark that by following [3] we can immediately extend the result of Theorem 2.3
to a case where A is a symmetric matrix with bounded entires. Moreover, the results in [3] applies
to semilinear problems.

For the paper remainder, we will assume that the conditions of Theorem 2.3 and Remark 2.4
hold true, i.e., the solution to (2.5) belongs to L1.˝/.
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3. Solutions to (P) and (P)

In this section we address the existence and uniqueness of solutions to the QVIs determined by
(P) and (P), and the relationship between their solution sets. As mentioned before, existence and
uniqueness of solutions for QVIs involve, in general, ordering properties of the associated monotone
operator and/or compactness of the obstacle map 	 . Before considering existence of solutions, we
first study the relationship between solution set of fractional QVI in (P) and extended QVI in (P) (in
case they exist).

Lemma 3.1 Let SP and SP denote the set of solutions to (P) and (P), respectively. Then, the maps

tr˝ W SP ! SP and H˛ W SP ! SP ;

are bijections.

Proof. Suppose that u 2 Hs.˝/ solves (P) and let U be its canonical extension, i.e., U WD H˛u.
By definition of the bilinear form a.�; �/ and the extension result (2.4), we observe that for any
V 2 K.U /

a.U ;V �U / D hLsu; tr˝.V �U /i�s;s D hLsu; tr˝ V � ui�s;s > hf; tr˝ V � ui�s;s
D hf; tr˝.V �U /i�s;s

where we have used that tr˝ V 2 K.tr˝ U / and tr˝ U D u. Since U 2 K.U / given that tr˝ U 2
K.tr˝ U /, and V 2 K.U / is arbitrary, then U solves (P). This shows that H˛.SP/ � SP , and the
injectivity of H˛ follows since H˛.v1/ D H˛.v2/ implies that v1 D v2 because tr˝ H˛.vi / D vi
with i D 1; 2.

Suppose that U solves (P). We first prove that U D H˛.tr˝ U /, i.e., the solution to (P) is
identical to the canonical extension of its trace. Consider R 2 VH 1

L.y
˛; C/ and tr˝ R D 0 a.e. in ˝,

then V WD U ˙R satisfies V 2 K.U /. Hence, considering this V in (P), we observe that

a.U ;R/ D 0; R 2 VH 1
L.y

˛; C/; tr˝ R D 0 a.e. in ˝:

That is, U solves the problem: Find W 2 VH 1
L.y

˛; C/ such that(
�div .y˛ArW /C y˛cW D 0 in C;
W D 0 on @LC; W D tr˝ U on ˝ � f0g:

Therefore, U D H˛.tr˝ U /. The extension result (2.4) implies that

hLs.tr˝ U /; tr˝ V � tr˝ U i�s;s D a.U ;V �U / > hf; tr˝ V � tr˝ U i�s;s

for each V 2 K.U /. Since, tr˝ W K.U /! K.tr˝ U / is surjective, then tr˝ U solves (P). Hence,
tr˝.SP / � SP and if Vi 2 SP and tr˝ V1 D tr˝ V2, then V1 D V2 since we have proven that
Vi D H˛ tr˝ Vi for i D 1; 2. That is, tr˝ is injective and the surjectivity of the map follows since
tr˝ H˛v D v for any v 2 SP. Finally, the surjectivity of H˛ follows as we have proven that if
V 2 SP , then V is the canonical extension of its trace tr˝ V 2 SP, so that H˛.tr˝ V / D V .

The previous results allows us to study problem (P) and subsequently transfer solution properties
to (P). We start by considering the following assumption on the obstacle map 	 :
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ASSUMPTION 3.2 (first assumption on 	 ) (i) If 0 6 u1 6 u2, then 0 6 	.u1/ 6 	.u2/ a.e. in
˝.

(ii) For every non-negative u and � 2 Œ0; 1/, there exists ˇ 2 .�; 1/ such that 	.�u/ > ˇ	.u/ a.e.
in ˝.

We refer to (i) in Assumption 3.2 as the non-decreasing property of 	 . This will be used to show
existence of solutions. On the other hand, (ii) in Assumption 3.2 will be used to show uniqueness
(cf. [41] where this property was used for the first time). Unless otherwise stated, we shall not use
(ii), however, (i) in Assumption 3.2 is assumed to hold true for the remainder of the paper.

Both items, (i) and (ii), in Assumption 3.2 are satisfied by the map

	.u/.x/ WD � C inf
�>0; xC�2˝

u.x C �/; (3.1)

for some � > 0 with � WD f�ig and where � > 0 means �i > 0 for i D 1; 2; : : : ; n. This map arises
in optimal impulse control problems.

We are now in position to present an existence and uniqueness result.

Theorem 3.3 The set of solutions SP of (P) is non-empty, it satisfies tr˝ SP � L1.˝/ and if
U 2 SP then

0 6 tr˝ U 6 u�; a.e. in ˝

where u� solves (weakly) the problem: Find u 2 Hs.˝/ such that Lsu D f. If in addition to (i) the
obstacle map 	 satisfies (ii) in Assumption 3.2, then SP is a singleton.

Proof. For a given f 2 L1.˝/, and any W 2 VH 1
L.y

˛; C/, let T .f;W / denote the solution to the
variational inequality

Find U 2 K.W / W a.U ;U � V / 6 hf; tr˝.U � V /i�s;s; 8V 2 K.W /: (3.2)

Since a W VH 1
L.y

˛; C/ � VH 1
L.y

˛; C/ ! R is bilinear, continuous and coercive, then T .f;W / 2
VH 1
L.y

˛; C/ is uniquely defined (see [37]).
Note that if U 2 VH 1

L.y
˛; C/, then U C D max.0;U / and U � D �min.0;U / belong to

VH 1
L.y

˛; C/ and also a.U C;U �/ D 0. Additionally, if V 6 W a.e., V0 2 K.V /, and W0 2

K.W /, it follows that min.V0;W0/ 2 K.V / and max.V0;W0/ 2 K.W /, which yields (see [50,
Theorem 5.1, Chapter 4]) that

f1 6 f2; W1 6 W2 H) T .f1;W1/ 6 T .f2;W2/;

where all inequalities hold in the “a.e.” sense. From this, the fact that 	.u/ > 0 a.e. in ˝ for all
u 2 Hs.˝/, and since f is non-negative by initial assumption, we know that for all W 2 VH 1

L.y
˛; C/,

it holds that that 0 D T .0;W / 6 T .f;W / a.e. in C. Furthermore, T .f;W / 6 U � a.e., where U �

solves the unconstrained version of (3.2), i.e.,

Find U 2 VH 1
L.y

˛; C/ W a.U ;V / D hf; tr˝.V /i�s;s; 8V 2 VH 1
L.y

˛; C/: (3.3)

This latter fact follows since the solutions are monotone with respect to the obstacle: Consider
another obstacle map Q	 such that 	.v/ 6 Q	.v/ a.e. for all v 2 Hs.˝/, together with QK.�/ defined
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as (1.2) but with Q	 instead of 	 . For any W , it follows that if V 2 K.W / and QV 2 QK.W /,
then min.V ; QV / 2 K.W / and max.V ; QV / 2 QK.W /. Define the associated variational inequality
solution map QT analogous to the map T but where K.�/ is replaced by QK.�/. Therefore, we have
that T .f;V / 6 QT .f;V / for all V 2 VH 1

L.y
˛; C/ (see [50, Theorem 5.1, Chapter 4]). Hence, for

Q	 � C1, we have QT .f;V / D U �, and the inequality T .f;W / 6 U �, follows.
The previous paragraph determines that 0 and U � are sub- and super-solutions of the map

W 7! T .f;W /, i.e., 0 6 T .f; 0/ and T .f;U �/ 6 U � a.e. in C. Since W 7! T .f;W / is non-
decreasing, this entails that (P) admits solutions (see [5, Chapter 15, 15.2, Theorem 3]), and for
each solution U , we have 0 6 U 6 U �.

In view of Lemma 3.1, we have that tr˝ U � � u�, where u� solves (weakly) the problem:
Find u 2 Hs.˝/ such that Lsu D f. Further, we observe that u� 2 L1.˝/ by the assumptions in
Section 2.3. Finally, since tr˝ preserves the pointwise order in VH 1

L.y
˛; C/, we have that

0 6 tr˝ U 6 u�: (3.4)

Hence tr˝ U 2 L1.˝/ for any solution U to (P).
If in addition to (i), 	 also satisfies (ii) in Assumption 3.2, uniqueness of solutions for (P)

follows directly by the same arguments as in [41].

Theorem 3.3 and Lemma 3.1 amount to the following result: If the obstacle map 	 satisfies (i)
in Assumption 3.2. Then, Problems (P) and (P) admit solutions. Moreover, the set of solutions SP
and SP of (P) and (P), respectively, have the same cardinality. If in addition to (i), the obstacle map
	 satisfies also (ii) in Assumption 3.2, solutions to (P) and (P) are unique.

4. The truncated QVI problem

The focus of this section is on approximation and numerical methods for problems (P) and (P).
Direct discretization of (P), via finite elements, requires dealing with a stiffness matrix Ki;j WD˝
Lsui ;uj

˛
�s;s

which is dense (this can be easily seen by using the equivalent integral representation
of Ls cf. [18]), and hence the dimension of the associated discretized problem is bounded by
memory limitations (similar situation occurs when we use the integral definition of fractional
operators [4]). In addition, directly using the spectral definition (2.2) needs access to eigenvalues and
eigenvectors of L which is, again, intractable in general domains. The discretization of problem (P)
is a more suitable choice for numerical methods. In this case, although the dimension is increased
by one, the stiffness matrix Ki;j WD a.Ui ;Uj / is sparse. The evident limitation here is that the
domain C associated to (P) is not finite. In this vein, we consider a truncation of the domain C, i.e.,
we define C� D ˝ � .0; �/ and the problem

Find U 2 K� .U / W a� .U ;U � V / 6 hf; tr˝.U � V /i�s;s; 8V 2 K� .U /; (P� )

with
K� .V / D fW 2 VH 1

L.y
˛; C� / j tr˝ W 6 	.tr˝ V / a.e. in ˝g;

and where we define a� .�; �/ identically as a.�; �/ in (1.3) but where the domain of integration is C�
instead of C.

In this section we study the � -limiting behavior of solutions to (P� ). We consider an approach
that under mild assumptions on the obstacle map guarantees strong convergence of solutions of (P� )
to the solution of (P).
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Associated to problem (P� ) we define the following map. Let K be a closed, convex and non-
empty set in VH 1

L.y
˛; C/ and g 2 H�s.˝/, then we define R.g;K/ 2 VH 1

L.y
˛; C/ to be the unique

solution to

Find U 2 K W a.U ;U � V / 6 hg; tr˝.U � V /i�s;s; 8V 2 K: (4.1)

We further define the set valued map W 7! K� .W / as

K� .W / WD
˚
V 2 K.W / j V 6 0 a.e. in ˝ � .�;C1/

	
;

and we utilize the following shorthand notation: when g is clear in the context, we denote

S.K/ WD R.g;K/; and S � .W / WD S
�
K� .W /

�
; (4.2)

for W 2 VH 1
L.y

˛; C/. The following characterization of the map S � will be useful for the remaining
paper.

Lemma 4.1 The map

RC � VH 1
L.y

˛; C/ 3 .�;W / 7! S � .W / 2 VH 1
L.y

˛; C/

is non-decreasing.

Proof. Let � 6 � 0 and W 6 W 0 a.e. in C. Hence, tr˝ W 6 tr˝ W 0 a.e. in ˝ and implies
that 	.tr˝ W / 6 	.tr˝ W 0/ a.e. in ˝ and then for V 2 K.W / and V 0 2 K.W 0/, we
have min.V ;V 0/ 2 K.W / and max.V ;V 0/ 2 K.W 0/. Further, for any Z 2 VH 1

L.y
˛; C/, if

U 2 K� .Z / and U 0 2 K� 0.Z /, it is straightforward to check that min.U ;U 0/ 2 K� .Z / and
max.U ;U 0/ 2 K� 0.Z /. Therefore, it follows that

Y 2 K� .W /;Y 0 2 K� 0.W 0/ H) min.Y ;Y 0/ 2 K� .W /;max.Y ;Y 0/ 2 K� 0.W 0/:

This yields (see [50, Theorem 5.1, Chapter 4]) the non-decreasing property of .�;W / 7! S � .W /.

We now prove that fixed points of S � W VH 1
L.y

˛; C/! VH 1
L.y

˛; C/ can be equivalently defined as
extensions by zero, of solutions to (P� ), to C (from C� ).

Proposition 4.2 Let E W VH 1
L.y

˛; C� / ! VH 1
L.y

˛; C/ be the extension by zero operator. If U 2

VH 1
L.y

˛; C� / is a solution to (P� ) then EU 2 VH 1
L.y

˛; C/ is a fixed point of S � . Conversely, if

U 2 VH 1
L.y

˛; C/ is a fixed point of S � , then its restriction U jC� belongs to VH 1
L.y

˛; C� / and solves
(P� ).

Proof. Analogously as in the proof of Theorem 3.3 with the map T .�; �/, we have for any W that
0 6 R.f;K� .W // 6 U � where U � solves (3.3) (note that f > 0 a.e. in˝). This also implies that if
U D S � .U / D R.f;K� .U // then U > 0. Define K� .W /C D K� .W / \ fW W W > 0 a.e. in Cg.
Since R.f;K� .W // 2 K� .W /C and R.f;K� .W /C/ 2 K� .W /, it is straightforward to prove that
for any W , we have R.f;K� .W // D R.f;K� .W /C/. Since

K� .U /C WD
˚
V 2 K.U / j V > 0 a.e. in C� ; V D 0 a.e. in ˝ � .�;C1/

	
;
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we have that K� .U /C � fEV j V > 0 a.e. in C� ; V 2 K� .U /g. Hence, the solution to U D

S � .U / D R.f;K� .U // is equivalently defined as the extension by zero of the solution to

Find OU 2 K� . OU /C W a� . OU ; OU � V / 6 hf; tr˝. OU � V /i�s;s; 8V 2 K� . OU /C;

where K� .W /C D K� .W / \ fW W W > 0 a.e. in C�g. We are only left to prove that if OU solves
the above QVI, then it solves equivalently (P� ) and this is done analogously as in the beginning of
the proof considering that R.f;K� .W // > 0 and that R.f;K� .W // 2 K� .W /C, for any W .

In addition to (i) in Assumption 3.2, we consider the following assumption on the obstacle
mapping to hold true for the rest of the paper.

ASSUMPTION 4.3 (second assumption on 	 ) (i) 	.u/ > � > 0 a.e. in ˝, for all u 2 Hs.˝/.
(ii) For un;u� 2 Hs.˝/ with n 2 N: If un ! u� in Lp.˝/, for all p > 1 then 	.un/! 	.u�/

in L1.˝/.

Note that the map 	 in (3.1) does not satisfy (ii) in Assumption 4.3. However, such property
would hold for an appropriate regularization Q	 of 	 defined as Q	.u/ WD 	 ı I.u/ where I is some
integral approximation of the identity.

In what follows, we prove convergence of solutions of (P� ) to the solution of (P) in a general
framework. First, we define Mosco convergence for closed, convex and non-empty subsets on a
reflexive Banach space (see [43, 50]).

DEFINITION 4.4 (MOSCO CONVERGENCE) Let K and Kn, for each n 2 N, be non-empty, closed
and convex subsets of a reflexive Banach space X . We say that the sequence fKng converges to K
in the sense of Mosco as n!1, if the following two conditions hold:

(i) For each v 2 K, there exists fvng such that vn 2 Kn and vn ! v in X .
(ii) If vn 2 Kn and vn * v in X along a subsequence, then v 2 K.

The importance of Mosco convergence lies in the fact that if Kn ! K in the sense of Mosco
for VH 1

L.y
˛; C/, then it follows that S.Kn/ ! S.K/ in VH 1

L.y
˛; C/ (see [43, 50]). We now provide

conditions for Mosco convergence for fK� .Vn/g and fK�n.Vn/g for sequences fVng and f�ng in
VH 1
L.y

˛; C/ and RC, respectively.

Lemma 4.5 Let fVng be a bounded sequence in VH 1
L.y

˛; C/ and satisfy 0 6 Vn 6 VnC1 6 Y � for

some Y � 2 VH 1
L.y

˛; C/ such that tr˝ Y � 2 L1.˝/. Then, given �� 2 .0;C1� and a sequence f�ng

in .0;C1/ such �n ! ��, there exists V � 2 VH 1
L.y

˛; C/ such that

K��.Vn/! K��.V �/; and K�n.Vn/! K��.V �/;

both in the sense of Mosco, as n ! 1, where Vn * V �; in VH 1
L.y

˛; C/ and Vn " V � pointwise
a.e. in C. Here, if �� D C1, we denote K��.V �/ WD K.V �/.

Proof. Since fVng is a bounded sequence in VH 1
L.y

˛; C/, then Vn * V � in VH 1
L.y

˛; C/, along a
subsequence, as n!1. However, 0 6 Vn 6 VnC1 6 Y � which implies 0 6 tr˝ Vn 6 tr˝ VnC1 6
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tr˝ Y � 2 L1.˝/ and this yields that for some V � 2 VH 1
L.y

˛; C/ we have

Vn " V �; pointwise a.e. in CI

Vn * V �; in VH 1
L.y

˛; C/I
	.tr˝ Vn/! 	.tr˝ V �/; in L1.˝/I

for the whole sequence fVng and not only a subsequence (the gap between the subsequence
argument and the entire sequence is bridged by the monotonicity of the entire sequence fVng). Here
we have used Assumption (4.3) with the fact that tr˝ Vn; tr˝ V � 2 Hs.˝/ for n 2 N and tr˝ Vn !
tr˝ V � in Lp.˝/ for all p > 1: Note that we immediately have that tr˝ Vn * tr˝ V � in Lp.˝/
for all p > 1, and by the monotone convergence theorem k tr˝ VnkLp.˝/ ! k tr˝ V �kLp.˝/ which
implies the claim (see Proposition 3.32 in [14] which shows that weak convergence in conjunction
with convergence of the norms implies strong convergence).

Suppose that Wn 2 K��.Vn/ for n 2 N and that Wn * W � in VH 1
L.y

˛; C/ for some W �. Since
tr˝ VH 1

L.y
˛; C/ � Hs.˝/ and Hs.˝/ compactly embeds into L2.˝/, from tr˝ Wn 6 	.tr˝ Vn/

a.e. in ˝ and Wn 6 0 a.e. in ˝ � .�;C1/, we observe that W � 2 K��.V �/ by taking the limit as
n!1 (along a subsequence) since Assumption 4.3 holds.

Let W 2 K��.V �/ be arbitrary. Since 	.tr˝ Vn/ > � > 0, we define ˇn WD .1 C k�n �

��kL1.˝/=�/
�1, where �n WD 	.tr˝ Vn/ and �� WD 	.tr˝ V �/, and observe that ˇn " 1 and

further ˇn�n 6 ��. Therefore, Wn WD ˇnW 2 K��.Vn/ and Wn ! W in VH 1
L.y

˛; C/. This proves
that K��.Vn/! K��.V �/ in the Mosco sense.

Suppose that Wn 2 K�n.Vn/ and that Wn * W � in VH 1
L.y

˛; C/ for some W �. Then, we obtain
that tr˝ W � 6 	.tr˝ V �/ a.e. in ˝ from taking the n ! 1 limit (along a subsequence) in
tr˝ Wn 6 	.tr˝ Vn/ a.e. in ˝, i.e., W � 2 K��.V �/.

Let W 2 K��.V �/ be arbitrary and without loss of generality consider �� D C1 (the case
�� 2 .0;C1/ is handled analogously). Then, as before, Wn WD ˇnW satisfies tr˝ Wn 6 	.tr˝ Vn/

for the same ˇn defined in the previous paragraphs and also Wn ! W in VH 1
L.y

˛; C/ as n ! 1.
Define �n W C ! R such that �n.˝ � .�n;C1// � 0, �n.˝ � Œ0; �n � �// � 1, and smooth on
˝ � Œ�n� �; �n/ and such that jr�nj 6 m a.e. for somem > 0. Then, we define Yn WD �nWn which
satisfies that Yn 2 K�n.Vn/. In addition, we observe that

jW � Ynj2
VH1
L
.y˛ ;C/

6 I 1n .�n/C I
2
n .�n/C I

3.�n/;

where

I 1n .�n/ WD

ˆ
˝�Œ0;�n��/

y˛jr.W �Wn/j
2; I 2n .�n/ WD

ˆ
˝�Œ�n��;�n/

y˛jr.W � �nWn/j
2;

and I 3n .�n/ WD
´
˝�Œ�n;C1//

y˛jrW j2. Note that

I 1n .�n/ 6
ˆ
˝�Œ0;C1/

y˛jr.W �Wn/j
2
! 0; as n!1;

given that Wn ! W in VH 1
L.y

˛; C/ as n!1. Since �n is smooth, jr�nj 6 m a.e. for some m > 0

and also ˇn 2 .0; 1/, it follows that

I 2n .�n/ 6 C

ˆ
˝�Œ�n��;�n/

y˛jrW j2 ! 0; as n!1;
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for some C > 0 independent of n 2 N. In addition, we also have that I 3.�n/ ! 0 as n ! 1.
This shows that Yn ! W in VH 1

L.y
˛; C/ as n!1 and consequently that K�n.Vn/! K��.V �/ �

K.V �/ in the Mosco sense.

We are now in position to provide the proof of how problem (P� ) approximates (P). The result
is made available at this point by Proposition 4.2 and Lemma 4.5. From now on, we omit the use of
the extension by zero operator E and consider all functions to be defined on C.

Theorem 4.6 Problem (P� ) admits solutions for � 2 .0;1/. Further, let f�ng be a positive sequence
such that �n ! 1 for n ! 1, then there exists a sequence fU�ng, where U�n solves .P�n/ for
n 2 N, such that

U�n ! U ; in VH 1
L.y

˛; C/;
as n!1 for some U that solves (P).

Proof. Existence of solutions to (P� ) follow from the same arguments as in Theorem 3.3. We
concentrate on the second part of the statement.

Since � 7! S � .W / is an increasing map, we have for � 6 � 0 that

0 6 S � .W / 6 S �
0

.W / 6 T .W / 6 U �; (4.3)

a.e. where T .W / denotes the solution to (3.2) and U � the solution to the unconstrained problem
(3.3). Further, the maps W 7! S � .W /, for � 2 .0;C1/ and W 7! T .W /, are non-decreasing,
which implies that the sequences fVng and fUng defined as Vn D S� .Vn�1/, Wn D T .Wn�1/

with V0 D W0 D 0 are non-decreasing, as well, and located on the interval Œ0;U ��. A simple
optimization argument shows that fVng and fWng are also bounded in VH 1

L.y
˛; C/, and then the

sequences satisfy the assumptions of Lemma 4.5. This implies

K� .Vn/! K� .V �/; in the sense of Mosco;

as n ! 1 where Vn * V � in VH 1
L.y

˛; C/. Therefore, we have that Vn D S � .Vn�1/ D

S.K� .Vn�1//! S � .V �/ in VH 1
L.y

˛; C/ as n!1, and hence

Vn ! V �; in VH 1
L.y

˛; C/;

as n ! 1 and V � solves (P� ). The same argument applies to the sequence fWng and we obtain
also that Wn ! W � in VH 1

L.y
˛; C/ and that W � solves (P).

From the above argument and (4.3), we observe that if U�n and U�nC1 are solutions, obtained
by the above paragraph iteration procedure, to .P�n/ and .P�nC1/, respectively, we have

0 6 U�n 6 U�nC1 6 W � 6 U �; (4.4)

which implies that U�n " U pointwise in C and also U�n * U in VH 1
L.y

˛; C/, for some U . Hence
by Lemma 4.5 we have that

K�n.U�n/! K.U /; in the sense of Mosco: (4.5)

Finally, since U�n D S.K�n.U�n// and (4.5) holds, U�n D S.K�n.U�n//! S.K.U //. Given that
U�n * U , we have U�n ! U in VH 1

L.y
˛; C/. Hence, U D S.K.U //, i.e., U is a solution to

(P).
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5. An algorithm

In this section we introduce a solution algorithm for (P) or (P� ). In particular, we consider a
sequential minimization solution algorithm that converges under mild assumptions to the solution
of (P) or (P� ), depending on if the limit of the truncation parameter sequence is finite or not.

Algorithm 1 Increasing Monotonic Sequential Minimization
Data: f 2 L1.˝/ and f > 0 a.e. in ˝, non-negative real valued sequence f�mg1mD0

1: Set U0 2 VH
1
L.y

˛; C/ to satisfy 0 6 U0 6 S.K�0.U0// and n D 0.
2: repeat
3: Compute UnC1 WD S.K�n.Un//:

4: Set n D nC 1.
5: until some stopping rule is satisfied.

Before we establish the convergence result for the above algorithm note that U0 in Algorithm 1
can be taken to be zero.

Theorem 5.1 Let fUng
1
nD0 be generated by Algorithm 1 for a monotonically increasing sequence

f�mg
1
mD0. Then,

Un ! U ; in VH 1
L.y

˛; C/;
where U solves (P) if limm!1 �m D1 and U jC� solves (P� ) if limm!1 �m D � <1

Proof. The map .�;U / 7! S.K� .U // is non-decreasing for � > 0 and U > U0 (see Lemma 4.1),
then we prove that

0 6 U0 6 Un 6 UnC1 6 U � (5.1)

where U � denotes the solution to the unconstrained problem (3.3). We proceed by induction. Since
by definition U0 is a sub-solution of W 7! S.K�0.W //, we have that U0 6 S.K�0.U0// DW U1.
Suppose that for some n 2 N, we observe that Un�1 6 Un, then by the non-decreasing property of
the map .�;U / 7! S.K� .U // and the definition of Un and UnC1, we observe

U0 6 Un WD S
�
K�n�1.Un�1/

�
6 S

�
K�n.Un/

�
DW UnC1:

The fact that UnC1 6 U � follows since S.K� .W // 6 U � holds for all W 2 VH 1
L.y

˛; C/.
Suppose that limm!1 �m D 1. Since fUng is bounded in VH 1

L.y
˛; C/, (5.1) holds for n 2 N0

and tr˝ U � 2 L1.˝/, we observe by Lemma 4.5 that

K�n.Un/! K.U /;

in the sense of Mosco, where Un * U (along the entire sequence) in VH 1
L.y

˛; C/ as n!1. Hence,
UnC1 D S.K�n.Un// ! S.K.U // in VH 1

L.y
˛; C/ as n ! 1. This implies that U D S.K.U //,

i.e., U solves (P) and that Un ! U in VH 1
L.y

˛; C/ as n!1.
If limm!1 �m D �� < C1, then again by Lemma 4.5 we have by the same argument in the

previous paragraph that
K�n.Un/! K��.U /;

and consequently Un ! U in VH 1
L.y

˛; C/ as n!1, where U jC�� solves (P� ).
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6. Numerical realization

Before proceeding further, we shall elaborate on the Step 3 of Algorithm 1. In practice, we consider
�n D � for all n and some large enough � in Algorithm 1; this is a fixed point iteration to
approximate a solution to (P� ). If fUng is the sequence generated, the stopping criterion considered
is satisfied, for this fixed point iteration, as soon as

kUnC1 �Unk VH1
L
.y˛ ;C� /

kUnC1k VH1
L
.y˛ ;C� /

< "1; (6.1)

or n D nmax.
As a sub-step, in this fixed point iteration, we need solution to a variational inequality. We

employ a Semismooth Newton Algorithm with Regularization, see [33, pp. 248] for details:

Algorithm 2 Semismooth Newton Algorithm with Regularization
1: Input: �, � , 	 D 	.tr˝ Un/, kmax and set k D 0, � D �n, Uk D Un

2: Output: UkC1

3: repeat
4: Set Ak D fx W .�C �.tr˝ Uk � 	/.x/ > 0/g, Ik D ˝ nAk .
5: Solve UkC1 2

VH 1
L.y

˛; C� /:

a.U ;V /C
�
�C �.tr˝ U � 	/; �Ak tr˝ V

�
L2.˝/

D .f; tr˝ V /L2.˝/;

for all V 2 VH 1
L.y

˛; C� /.
6: Set

�kC1 D

�
0 on Ik ;

�C �.tr˝ UkC1 � 	/ on Ak
7: k D k C 1

8: until some stopping rule is satisfied.

The above algorithm converges superlinearly for any � provided that iterations are initiated close
enough to a solution of the regularized variational inequality (see Theorem 8.25 in [33]). Further,
the sequence of solutions converge, as � ! 1, strongly to the solution of the original variational
inequality of interest (see Theorem 8.26 in [33]).

If fUkC1g is the sequence generated in Step 5 of Algorithm 2, then the stopping criterion
considered is satisfied as soon as: AkC1 D Ak or

kUkC1 �Ukk VH1
L
.y˛ ;C� /

kUk �Uk�1k VH1
L
.y˛ ;C� /

< "2;

or k D kmax.

6.1 Discretization

The discretization of the linear equation (3.3) was introduced and analyzed in [46], see also [45]
for an application to the fractional obstacle problem. Owing to the singular behavior of the solution
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towards ˝ � f0g it is preferable to use anisotropic meshes, to compensate the singular behavior.
In our context such meshes can be defined as follows: Let T˝ D fEg be a conforming and quasi-
uniform triangulation of ˝, where E 2 Rn is an element that is isoparametrically equivalent to
either to the unit cube or to the unit simplex in Rn. We assume #T˝ /M n. Thus, the element size
hT˝ fulfills hT˝ / M

�1. Furthermore, let I� D fIkgM�1kD0
, where Ik D Œyk ; ykC1�, be a graded

mesh of the interval Œ0; �� in the sense that Œ0; �� D
SM�1
kD0 Ik with

yk D

�
k

M

�
�; k D 0; : : : ;M;  > 3=.1 � ˛/ D 3=.2s/ > 1:

We construct the triangulations T� of the cylinder C� as tensor product triangulations by using T˝
and I� . Let T denotes the collection of such anisotropic meshes T� .

For each T� 2 T we define the finite element space V.T� / as

V.T� / WD
˚
V 2 C 0.C� / W V jT 2 P1.E/˚ P1.I / 8T D E � I 2 T� ; V j@LC� D 0

	
:

In case E is a simplex then P1.E/ D P1.E/, the set of polynomials of degree at most 1. If E is a
cube then P1.E/ equals Q1.E/, the set of polynomials of degree at most 1 in each variable. In our
numerical illustrations we shall work with simplices.

For our numerical examples we consider n D 2, ˝ D .0; 1/2, c.x/ D 0, and A.x/ D 1 in (P� ).
We set the force f.x1; x2/ D x1.1 � x1/x2.1 � x2/ in first three examples and f D 1 in the final
example. In Algorithm 1 we choose a fixed “large” � defined as � D 1C 1

3
log.#T˝/. Such a choice

is motivated by the linear equation where it leads to error balance between the truncation .�/ and
the finite element approximation; see [46, Remark 5.5]. We further set total degrees of freedom of
T� equal to 12716.

Next we shall study four examples. In all cases we set "1 D 5e � 4, nmax D 150 (see (6.1)).
Moreover, we set "2 D 1e � 2, kmax D 10 and � D 0 in Algorithm 2. We notice that the total
number of iterations, using a continuation technique for the parameter � , remained stable under
mesh refinements (cf. Algorithm 2). In our computations, we set �max D 1e C 10 and increase � ,
starting with 10, such that the ratio between two consecutive values of � is 1.5.

Note that the 	 maps in Examples 1 and 2, both satisfy .i/ in Assumption 3.2, so existence
of solutions for the QVI problems is guaranteed. Further, while 	 in Example 2 satisfies
Assumption 4.3, Example 1 only satisfies .i/ in Assumption 4.3. Also, Example 3 satisfies
Assumption 3.2 and .i/ in Assumption 4.3. Finally, 	 in Example 4 has the same structure as
Example 2.

6.2 Example 1

We first consider the case where the obstacle 	.u/ is given by

	.u/.x1; x2/ D 5
�

sin.x1/u.x1; x2/
�C
C ı;

where ı D 1e � 10. Figures 1, 2, and 3 illustrate the final solution, the obstacle, and the active set
respectively for different values of s D 0:2; 0:4; 0:6, and s D 0:8. We clearly notice the solution
dependence on s. In each case we observe that it takes between 5 to 10 iterations for Algorithm 2
to converge. On the other hand it takes n D 49; 47; 44 and n D 42 iterations for us to achieve the
criterion in (6.1) for s D 0:2; 0:4; 0:6 and s D 0:8 respectively.
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FIG. 1. Example 1: The top panels illustrate the solution for s D 0:2 (left) and s D 0:4 (right). On the other hand, the
bottom panels show the solutions when s D 0:6 (left) and s D 0:8 (right). The dependence on s is clearly visible.

FIG. 2. Example 1: The top panels illustrate the obstacle 	 for s D 0:2 (left) and s D 0:4 (right). On the other hand, the
bottom panels show the obstacle when s D 0:6 (left) and s D 0:8 (right). The dependence on s is apparent.
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FIG. 3. Example 1: The panels illustrate the active sets for s D 0:2, s D 0:4, s D 0:6, and s D 0:8. In this example, the
active sets for s D 0:2, s D 0:4, s D 0:6 look similar.

6.3 Example 2

As a second example we take a nonlocal 	 , i.e., we set

	.u/ D 2
ˇ̌̌̌ˆ
˝

u dx
ˇ̌̌̌
C ı;

where ı D 1e� 10. Figure 4 and 5 illustrate the solution and the active set respectively for different
values of s D 0:2; 0:4; 0:6, and s D 0:8. As the final 	 is a constant in this case so we decided not
to plot it here. Again we clearly notice a different solution behavior with respect to s. We further
notice that it takes between 5 to 10 iterations for Algorithm 2 to converge. On the other hand it takes
n D 47; 48; 50; 52 when s D 0:2; 0:4; 0:6; 0:8, respectively, for us to achieve the criterion in (6.1).

FIG. 4. Example 2: The top panels illustrate the solution for s D 0:2 (left) and s D 0:4 (right). On the other hand, the
bottom panels show the solutions when s D 0:6 (left) and s D 0:8 (right).
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FIG. 5. Example 1: The panels illustrate the active sets for s D 0:2, s D 0:4, s D 0:6, and s D 0:8.

6.4 Example 3

Finally we present an example where	 is as given in (3.1) with � D 5e�3. We illustrate the solution
in Figure 6 and the active set in Figure 7 for s D 0:2; 0:4; 0:6, and s D 0:8. As in Section 6.3 we
again observe that the 	 is a constant under the current configuration therefore we chose not to plot
it here.

Clearly the solution behaves differently with respect to s. We observe that Algorithm 2 takes 2
iterations to achieve (6.1).

FIG. 6. Example 3: The top panels illustrate the solution for s D 0:2 (left) and s D 0:4 (right). On the other hand, the
bottom panels show the solutions when s D 0:6 (left) and s D 0:8 (right). The changes with respect to s are significant.
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FIG. 7. Example 3: The panels illustrate the active sets for s D 0:2, s D 0:4, s D 0:6, and s D 0:8.

6.5 Example 4: f D 1

In the final example we consider f D 1. Notice that 1 62 H1�s.˝/ when s < 1
2

. We let

	.u/ D 1:45
ˇ̌̌̌ˆ
˝

u dx
ˇ̌̌̌
C ı;

where ı D 1e � 10. We illustrate the solution in Figure 8 and the active set in Figure 9 for s D
0:2; 0:4; 0:6, and s D 0:8. We have omitted the plots of 	 since it is constant. We again notice
that it takes between 5 to 10 iterations for Algorithm 2 to converge. On the other hand it takes
n D 131; 130; 130; 130 iterations when s D 0:2; 0:4; 0:6; 0:8, respectively, for us to achieve the
criterion in (6.1).

FIG. 8. Example 4: The top panels illustrate the solution for s D 0:2 (left) and s D 0:4 (right). On the other hand, the
bottom panels show the solutions when s D 0:6 (left) and s D 0:8 (right).
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FIG. 9. Example 4: The panels illustrate the active sets for s D 0:2, s D 0:4, s D 0:6, and s D 0:8.
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