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We present the analysis of advection-diffusion equations with random coefficients on moving

hypersurfaces. We define a weak and a strong material derivative, which account for the spatial

movement. Then we define the solution space for these kind of equations, which is the Bochner-type

space of random functions defined on a moving domain. We consider both cases, uniform and log-

normal distributions of the diffusion coefficient. Under suitable regularity assumptions we prove the

existence and uniqueness of weak solutions of the equation under analysis, and also we give some

regularity results about the solution.
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1. Introduction

There is a growing interest in partial differential equations (PDEs) with random coefficients that

model problem parameters which include some uncertainty. The uncertainty can come from intrinsic

variability of the physical system or when the input data of the real system are not completely

known [26]. This work addresses specifically parabolic PDEs with random coefficients which have

so far been studied in several papers (see, e.g., [3, 7, 22, 25]). Furthermore, these PDEs occur in

many applications, such as hydrogeology, material science, fluid dynamics, biological fluids etc.

All these works have considered equations on some bounded flat fixed domain in R
d . On the

other hand, it is known and well studied that in a variety of applications these models can be better

formulated on both stationary and evolving curved domains, cf., e.g., [36]. Over the last years,

surface PDEs have garnered increasing interest due to a variety of applications, such as image

processing [21], computer graphics [4], biological modelling [27] and engineering [30]. Particularly

for this paper, the motivating example is modelling the transport of a surface active agent (surfactant)

on the interface between two fluids [23, 37].

The numerical analysis of surface PDEs started with the paper [12] and later it developed in

[11, 14, 24] etc. Dziuk and Elliott have introduced the evolving surface finite element method for

PDEs on moving hypersurfaces [13, 15]. Recently this topic has been generalized in [1] and [2] to

a more abstract level, i.e., to parabolic PDEs on any evolving Hilbert space.

Uncertainty naturally appears in all these applications (for example through randomness of the

input data). However, there is no mathematical theory that merges these two frameworks, uncertainty

quantification and surface PDEs. This serves to motivate the topic of this paper to consider PDEs

with random coefficients on moving surfaces. More precisely, we wish to analyse the following

c
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advection-diffusion equation

@�u � r� � .˛r� u/ C ur� � w D f

u.0/ D u0

(1.1)

where r� is a tangential surface gradient, @� is the material derivative and w is a velocity field

of the evolution. Note that we assume the surface evolution to be prescribed. In contrast to the

deterministic case, the diffusion coefficient ˛, the source function f and the initial value u0 are

random. Hence the solution u will also be a random function. The equation (1.1) models the

transport of a scalar quantity, e.g., a surfactant, along a moving two-dimensional interface [37].

The surfactant is transported by advection via the tangential fluid velocity and by diffusion within

the surface.

Let .˝; F ;P/ be a complete probability space. In analogy to the elliptic case [28], for the

parabolic PDE with random coefficients there exist two weak formulations: path-wise (for fixed

sample !) and “mean” (includes also integration over ˝). The more direct way (as in [3]) of

proving the integrability of the solution with respect to P is when we integrate the equation over the

spatial domain and in addition also take expectations, which allows us to apply the Banach–Nečas–

Babuška [BNB] theorem directly to the whole solution space. We will call this approach the “mean-

weak” formulation. This result guarantees the measurability and the existence of the first and second

moments of the solution and bounds of their norms, which motivates us to adopt this approach in the

uniform case when the bilinear forms are uniformly bounded. The main task is to define properly

the framework for the equation which will take into account the L2.˝/ space and to keep track of

the constants in estimates that we perform, i.e., to show that the constants are independent of !.

In particular, we will choose an appropriate Gelfand triple, precisely define the material derivative

and a solution space. Another difficulty is that our domain changes over time. To deal with this, we

will connect the space at arbitrary time t with the fixed initial space and incorporate this pull-back

into the definition of the solution space. This construction is adapted from [1] where the abstract

setting of the PDE on an evolving Hilbert space has been considered. This setting will enable us

to apply [BNB] which gives us the well-posedness of the PDE with uniformly distributed random

coefficients on an evolving space. First main result is stated in Theorem 4.3. Furthermore, we prove

that for more regular input data, our solution also has more regularity in its material derivative.

In many practical applications in the geosciences but also in biology [9], flow and transfer

in porous media are processes that are usually analysed and log-normally distributed random

coefficients play an important role. As explained for example in [19], if the diffusion coefficient

varies drastically within a layer, it is appropriate to expand its logarithm in an affine series of

independent identically distributed normal random variables. The log-normal random parameter has

been already analysed for the elliptic equations in many papers, for example in [7, 8, 19, 34] and

in parabolic case in [25, 31]. However, in this case the bilinear forms are not uniformly distributed

any more, thus we cannot consider the “mean-weak” formulation. Instead, we will consider the

path-wise formulation (as in [22] and [25]). In this approach for each realisation we consider the

deterministic problem. Therefore, we get the family of deterministic weak formulations over the

spatial domain that can be solved P-almost surely by applying the [BNB] theorem in the parabolic

case. This implies the existence and uniqueness of the solution u.!/ for P-a.e. !. Since we are

considering the PDE with random coefficients, we are interested in statistics of the solution, i.e., we

want to prove that the solution is in L2.˝/. In order to achieve that with the path-wise approach,

one needs to prove the measurability of the solution with respect to P and a uniform bound for the
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L2.˝/-norm (or higher order norm). Usually the latter is reduced to controlling the constants from

the existence theory for the solution of the deterministic PDE (for example to bound the inf-sup

constant). The final result on regularity and stability of the family of path-wise solutions is stated in

Theorem 5.6.

The paper is organized as follows. We start the next section by setting up the notation,

description of the hypersurfaces and assumptions on the evolution of the hypersurfaces.

Furthermore, since our spaces will have tensor structure, we briefly summarize, without proofs,

the relevant material on tensor products. At the end of the section we present notation and results

about the log-normal distribution. In the third section we proceed with setting up the function spaces

and defining the material derivative. Moreover, we show that the general framework from [1] is

applicable. Section 4 concerns the uniformly bounded diffusion coefficient and contains the proofs

of the main results about the existence, uniqueness and regularity of solutions. In the fifth section

we discuss the case of log-normally distributed random coefficients and we prove the integrability

of the solution. In the final section we discuss possible extensions to this paper for further research.

2. Preliminaries

Let .˝; F ;P/ be a complete probability space with sample space ˝ , a �-algebra of events F and

a probability P W F ! Œ0; 1�. In addition, we assume that L2.˝/ is a separable space. For this

assumption it suffices to assume that .˝; F ;P/ is separable [5, Theorem 4.13].

We will only consider a fixed finite time interval Œ0; T �, where T 2 .0; 1/: Furthermore, we

will denote by D.Œ0; T �I V / the space of infinitely differentiable functions with values in a Hilbert

space V and compact support in .0; T /:

2.1 Hypersurfaces

Let us first recall some basic theory about hypersurfaces and Sobolev spaces on hypersurfaces. For

more details we refer to [10] or [16]. We will assume that � is a C
2 compact, connected, orientable,

without a boundary, n�dimensional hypersurface, embedded in R
nC1 for n D 1; 2; or 3. For a

function f W � ! R which is differentiable in an open neighborhood of � we define the tangential

gradient by

r� f .x/ WD r Qf .x/ � r Qf .x/ � �.x/�.x/ x 2 �;

where �.x/ is the unit normal on Tx� and r Qf .x/ is the usual gradient in R
nC1 of an arbitrary

smooth extension of f to its neighborhood. Note that r� f .x/ is the orthogonal projection of

rf .x/ onto Tx� (thus it is a tangential vector) and it depends only on the values of f on � [16,

Lemma 2.4], which makes the previous definition of the tangential gradient independent of the

extension Qf . The tangential gradient is a vector-valued quantity and for its components we will use

the notation

r� f .x/ D .D1f .x/; : : : ; DnC1f .x//:

Now we can define the Laplace–Beltrami operator by

�� f .x/ D r� � r� f .x/ D
nC1
X

iD1

Di Dif .x/ x 2 �:
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Let us state the integration by parts formula for function f 2 C
1.� IRnC1/ and @� D ;

Z

�

r� � f D
Z

�

f � H� (2.1)

where H is the mean curvature with respect to �. Furthermore, we state Green’s formula
Z

�

r� f � r� g D �
Z

�

f�� g: (2.2)

From (2.1) and (2.2) we derive the following
Z

�

f r� g D �
Z

�

.r� f � fH�/g: (2.3)

We will consider a weak formulation of PDEs on � , which leads to the concept of Sobolev spaces

on surfaces. We define L2.� / as usual, i.e. as a set of all measurable functions f W � ! R such

that

kf kL2.� / WD
�Z

�

jf .x/j2
�1=2

< 1:

We say that a function f 2 L2.� / has a weak derivative gi D Dif 2 L2.� /; .i D f1; : : : ; nC1g/
if for every function � 2 C

1
c .� / and every i it holds
Z

�

f Di � D �
Z

�

�gi C
Z

�

f �H�i :

The Sobolev space on � is defined by

H 1.� / D
˚

f 2 L2.� / j Di f 2 L2.� /; i D 1; : : : ; n C 1
	

with the norm

kf kH 1.� / D
q

kf k2
L2.� /

C kr� f k2
L2.� /

:

Let us define the family of evolving surfaces f� .t/g for t 2 Œ0; T � that we will consider. For each t 2
Œ0; T � we assume that � .t/ satisfies the same properties as � and we set �0 WD � .0/. Furthermore,

we assume the existence of a flow ˚ W Œ0; T � � R
nC1 ! R

nC1 such that for all t 2 Œ0; T � its

restriction ˚0
t WD ˚.t; �/ W �0 ! � .t/; ˚ 2 C

1.Œ0; T �; C
2.�0// is a diffeomorphism that satisfies

d

dt
˚0

t .�/ D w
�

t; ˚0
t .�/

�

˚0
0 .�/ D Id.�/:

where w W Œ0; T � � R
nC1 ! R

nC1 is a velocity field. We assume that w.�; t/ 2 C
2.� .t// and that it

has uniformly bounded divergence

jr� .t/ � w.t/j 6 Cw for all t 2 Œ0; T �: (2.4)

REMARK Besides the normal velocity w� D w � ��, which is enough to define the evolution of the

surface, we assume that the surface also has an advective tangential velocity w� , that describes the

motion of points along the surface. Hence we assume that we are given a global velocity field w

that can be decomposed as w D w� C w� . In addition, we assume that the physical velocity agrees

with the velocity of the parametrisation. For remark about the different notions of velocities for an

evolving hypersurface see for example [2, Remark 2.6].
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2.2 Tensor products

Since the function spaces which will be used later have tensor product structure, let us recall some

basic results about it (see [20] or [33] for more details). Let H1 and H2 be Hilbert spaces and

vi 2 Hi ; i D 1; 2. We define v1 ˝ v2 as a conjugate bilinear form on H1 � H2 by

.v1 ˝ v2/.w1; w2/ WD .v1; w1/H1
.v2; w2/H2

:

Let S be the set of finite linear combinations of such conjugate bilinear forms. We can define an

inner product on S by

.v1 ˝ v2; w1 ˝ w2/ WD .v1; w1/H1
.v2; w2/H2

(2.5)

and extend it by linearity to S. The tensor product H1 ˝ H2 is the completion of S under the inner

product (2.5).

Theorem 2.1 The tensor space H1 ˝ H2 is a Hilbert space. If fej gj 2N and ffkgk2N are basis of

Hilbert spaces H1 and H2, then fej ˝ fkgj;k2N constitute a basis of H1 ˝ H2.

Proof. The proof can be found for example in [33].

Theorem 2.2 Let .X; �/ and .Y; �/ be measure spaces such that L2.X; �/ and L2.Y; �/ are

separable. Then, the following holds:

(a) There is a unique isometric isomorphism

L2.X; �/ ˝ L2.Y; �/ Š L2.X � Y; � � �/

so that f ˝ g 7! fg:

(b) If H is a separable Hilbert space then there is a unique isometric isomorphism

L2.X; �/ ˝ H Š L2.X; �I H/

so that f .x/ ˝ ' 7! f .x/':

Proof. The proof can be found for example in [33].

2.3 Log-normal expansion

In this subsection we will recall some definitions about the log-normal distribution that we will use

in Section 5. For more details we refer to [19, 31, 34].

DEFINITION 2.3 Let S � R
n and a W ˝ � S ! R be a random field (RF), i.e., a is a measurable

function from .˝ � S; F ˝ B.S// to .R; B.R//. Then

� a is called Gaussian if for every k 2 N, x1; : : : ; xk 2 S the multivariate random variable

.a.x1/; : : : ; a.xk// is multivariate Gaussian distributed, i.e.,
Pk

iD1 cia.xi / is normally distributed

random variable for every ci 2 R; i D 1; : : : ; k.

� ˛ W ˝ � S ! RC is log-normal, RF if log ˛ is a Gaussian RF on S .

In our setting, the diffusion coefficient is defined on the space-time domain GT WD
S

t � .t/�ftg.

Hence, let ˛ W ˝ � GT ! RC be a log-normal diffusion coefficient. We will consider a series

expansion of its logarithm.
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ASSUMPTION 2.4 There exists a sequence .Yk/k2N of i.i.d. standard Gaussian random variables on

˝ and functions ˛k 2 L1.GT / for k 2 N with b WD .k˛kkL1.GT //k2N 2 l1.N/ i.e.
P

k bk < 1;

where bk WD k˛kkL1.GT /, such that the diffusion coefficient has the form

˛.!I x; t/ D exp
�

X

k>1

˛k.x; t/Yk.!/
�

: (2.6)

REMARK 2.5 Without loss of generality we assumed that logarithm of ˛ is a centred Gaussian

random field.

REMARK 2.6 Necessary conditions to satisfy Assumption 2.4 are discussed, e.g., in [29] and

the references given therein. It is shown that standard measurability conditions (more precisely:

measurability, finite-variance and isotropy) imply mean-square continuity of a random field. This in

turn is necessary for representation (2.6) to hold.

Motivated by the analysis in [19] and [34], for the log-normal case, we will reformulate the

problem with the parameter domain R
N instead of ˝ (for details how this can be done see [19, 34]).

Thus, our probability space is .RN; B.RN/; 
/ with


 WD
O

k>1

N1 (2.7)

where N1 is the standard Gaussian measure on R. We underline this change by switching from the

notation ! to y and from Yk.!/ to yk . Therefore, the diffusion coefficient now has the form

˛.yI x; t/ D exp
�

X

k>1

˛k.x; t/yk

�

(2.8)

for y D .yk/k2N 2 R
N and we assume that yk are i.i.d. standard Gaussian random variables on R.

In order to have the convergence of the series (2.8) we consider

�b WD
n

y 2 R
N j
X

k>1

bkjyk j < 1
o

: (2.9)

With Assumption 2.4, from [19, Lemma 2.2] the series in (2.8) converges in L1.GT / in the

parameter space �b .

Lemma 2.7 For any b 2 l1.N/ it holds �b 2 B.RN/ and 
.�b/ D 1:

Proof. We refer to [19, Lemma 2.3].

Instead of the whole space R
N, due to Lemma 2.7, we will consider � D �b as the parameter

space with the measure that is restriction of 
 on �. From Assumption 2.4 it follows that the

diffusion coefficient is bounded from above and has positive lower bound for every y 2 �:

Lemma 2.8 For all y 2 �, the diffusion coefficient ˛.y/ is well-defined and satisfies

0 < ˛min.y/ WD ess inf
.x;t/2GT

˛.yI x; t/ 6 ess sup
.x;t/2GT

˛.yI x; t/ DW ˛max.y/ < 1 (2.10)
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with

˛max.y/ 6 exp
�

X

k>1

bkjykj
�

˛min.y/ > exp
�

�
X

k>1

bkjyk j
�

:

Proof. The proof can be found in [34, Lemma 2.29], as a direct consequence of Assumption 2.4.

2.4 Product measures on the probability space

Results of this section can be found in [19] or [31], we state those that we will use in the log-normal

case, for the convenience of the reader.

For any � D .�k/k2N 2 exp.l1.N //, i.e., �k D exp.sk/ with .sk/k2N 2 l1.N/, we define the

product measure on .RN; B.RN// by


� WD
O

k>1

N�2
k

where N�2
k

is a centered Gaussian measure on R with standard deviation �k . Note that 
 D 
1 is

the standard Gaussian measure on R
N:

Theorem 2.9 For all � 2 exp.l1.N//, the measure 
� is equivalent to 
 and the density of 
� with

respect to 
 is given by

�� .y/ D
�

Y

k>1

1

�k

�

exp
�

� 1

2

X

k>1

.��2
k � 1/y2

k

�

:

Proof. We refer to [19, Proposition 2.11].

From the previous theorem we get that 
� .�/ D 1 for every � 2 exp.l1.N//, thus restriction of


� on � is a probability measure. Let � be the sequence that depends exponentially on b D .bk/k2N,

for bk WD k˛kkL1.GT /defined in Assumption 2.4. We will consider the class

�k WD exp.�bk/ � 2 R; k 2 N

and we will use the following notation 
� WD 
�.�/ and �� WD ��.�/.

Lemma 2.10 Let � < � and m > 0. Then, for every y 2 � it holds

��.y/

��.y/
exp

�

m
X

k>1

bkjykj
�

6 exp

 

�m2 exp.2�kbkl1 /

4.� � �/
C � � �

�

kbkl1

!

:

Proof. The proof can be found in [34, Lemma 2.32].

We will need the special case from the previous Lemma, when � D 0, which gives us the bound

for the 1=��.y/ exp
�

m
P

k>1 bk jykj
�

.

3. Function spaces

In this section we will define the function spaces that we will mainly consider in the case when

diffusion coefficient has uniform distribution.
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3.1 Gelfand triple

In this section, we will define the basic Gelfand triple that will be used in the uniform case to define

the solution space for (1.1). We begin by recalling the notion of Gelfand triple. Let V and H be

separable Hilbert spaces. A Gelfand triple is a construction

V ,�!
i

H Š H � ,�!
i 0

V �

where both embeddings i and i 0 are continuous and dense, and H is identified with its dual space

H � via the Ritz representation theorem (see [39, Def 17.1] for more general definition). The duality

pairing between V and V � is compatible with the inner product on H in the sense that

hu; viV �;V D .u; v/H whenever u 2 H; v 2 V:

In order to define the Gelfand triple for each t 2 Œ0; T �, let us define

V.t/ WD L2
�

˝; H 1
�

� .t/
��

and H.t/ WD L2
�

˝; L2
�

� .t/
�

�

:

Then the dual space of V.t/ is the space V �.t/ D L2.˝; H �1.� .t/// where H �1.� .t// is the dual

space of H 1.� .t//.

Since all spaces L2.˝/; L2.� .t// and H 1.� .t// are separable Hilbert spaces, using

Theorem 2.2 we have

L2
�

˝; H 1
�

� .t/
�

�

Š L2.˝/ ˝ H 1
�

� .t/
�

(3.1)

L2
�

˝; L2
�

� .t/
�

�

Š L2.˝/ ˝ L2
�

� .t/
�

: (3.2)

REMARK For convenience we will often (but not always) write u.!; x/ instead of u.!/.x/, which

is justified by the aforementioned isomorphisms.

Lemma 3.1 V.t/ ,�! H.t/ ,�! V �.t/ is a Gelfand triple for every t 2 Œ0; T �.

Proof. Since H 1.� .t// is dense in L2.� .t//, the proof follows from (3.1), (3.2) and [20, Lemma

4.34], using the density argument.

3.2 Compatibility of spaces

In order to treat the evolving spaces, we need to define special Bochner-type function spaces such

that for every t 2 Œ0; T � we have u.t/ 2 V.t/. In general, if we have an evolving family of Hilbert

spaces X D .X.t//t2Œ0;T �, the idea is to connect the space X.t/ at any time t 2 Œ0; T � with some

fixed space, for example with the initial space X.0/. We do that using the family of maps �t W
X.0/ ! X.t/, which we call the pushforward map. We denote the inverse of �t by ��t W X.t/ !
X.0/ and call it the pullback map. The following definition is adapted from [1].

REMARK This approach is similar to Arbitrary Lagrangian Eulerian [ALE] framework.

DEFINITION 3.2 The pair fX; .�t /t2Œ0;T �g is compatible if the following conditions hold:

� for every t 2 Œ0; T �; �t is linear homeomorphism such that �0 is the identity map
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� there exists a constant CX which is independent of t such that

k�t ukX.t/ 6 CXkukX.0/ for every u 2 X.0/

k��t ukX.0/ 6 CXkukX.t/ for every u 2 X.t/

� the map t 7! k�t ukX.t/ is continuous for every u 2 X.0/.

We will denote the dual operator of �t by ��
t W X�.t/ ! X�.0/. As a consequence of the

previous conditions, we obtain that ��
t and its inverse are also linear homeomorphisms which satisfy

the following conditions

k��
t f kX�.0/ 6 CXkf kX�.t/ for every f 2 X�.t/

k��
�t f kX�.t/ 6 CXkf kX�.0/ for every f 2 X�.0/:

For the Gelfand triple L2.˝; H 1.� .t/// � L2.˝; L2.� .t/// � L2.˝; H �1.� .t/// we define the

pullback operator ��t W L2.˝; L2.� .t/// ! L2.˝; L2.�0// in the following way

.��t u/.!/.x/ WD u.!/
�

˚0
t .x/

�

for every x 2 � .0/; ! 2 ˝:

REMARK Since we are interested only in the dual operator of �t

ˇ

ˇ

V
, we will denote it by ��

t W
V �.t/ ! V �

0 .

The next step is to prove that .H; �.�// and .V; �.�/

ˇ

ˇ

V0
/ are compatible pairs. The proof is similar

to the proof of [38, Lemma 3.2].

Let J 0
t .�/ WD det D�0

˚0
t .�/ denote the Jacobian determinant (where .D�0

˚0
t /ij WD Dj .˚0

t /i ),

i.e. it presents the change area of the element when transformed from �0 to � .t/: The assumptions

for the flow ˚0
t imply J 0

t 2 C
1.Œ0; T � � �0/ and that the field J 0

t is uniformly bounded

1

CJ

6 J 0
t .x/ 6 CJ for every x 2 �0 and for all t 2 Œ0; T �; (3.3)

where CJ is positive constant.

The substitution formula for integrable functions � W � .t/ ! R reads
Z

� .t/

� D
Z

�0

.� ı ˚0
t /J 0

t D
Z

�0

��t �J 0
t :

Using the Leibniz formula for differentiation of a parameter dependent surface integral [13, Lemma

2.1] it can be shown [38, Lemma 3.2] that

d

dt
J 0

t D ��t

�

r� .t/ � w.t/
�

J 0
t : (3.4)

Lemma 3.3 The pairs .H; .�t /t2Œ0;T �/ and .V; .�t

ˇ

ˇ

V0
/t2Œ0;T �/ are compatible.

Proof. The proof is similar to the proof of [38, Lemma 3.3]. However, we will state the proof in

order to show that constants that appear are independent of the sample !.

First we will prove the statement for the pair
�

H; .�t /t2Œ0;T �

�

. Let u be from L2.˝; L2.� .t///.

Then we have

k��t uk2
L2.˝;L2.�0//

D
Z

˝

Z

� .t/

ju.!/.y/j2 1

J 0
t ..˚0

t /�1.y//
6 CJ kuk2

L2.˝;L2.� .t///
;
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where we have used the substitution formula and boundedness of J 0
t . It is clear that ��t is linear and

that its continuity follows immediately from the previous estimate. Since ˚0
t is C

2-diffeomorphism,

it follows that ��t is bijective and its inverse (the pushforward) is defined by

�t W L2
�

˝; L2.�0/
�

! L2
�

˝; L2
�

� .t/
�

�

; .�t v/.!; x/ D v.!/ ı .˚0
t /�1.x/:

Similarly as for ��t , we can prove that �t is well defined, satisfies the norm boundedness relation

and is continuous. Thus, �t is linear homeomorphism.

Since the probability space does not depend on time, the continuity of the map t 7!
k�t ukL2.˝;L2.� .t/// follows directly from [38, Lemma 3.3.] and the triangle inequality.

In order to prove compatibility of the family .V; .�t

ˇ

ˇ

V0
/t2Œ0;T �/, let v 2 L2.˝; H 1.� .t/// and

' 2 L2.˝; C
1.�0//. Using the substitution formula and integration by parts on � .t/ we get

Z

˝

Z

�0

��t v.!; x/r� '.!; x/ D
Z

˝

Z

� .t/

v.!; x/.D N̊
t .x//T r�

�

�t '.!; x/
�

J 0
�t .x/

D �
Z

˝

Z

� .t/

�t'.!; x/s.!; x/J 0
�t .x/

D �
Z

˝

Z

�0

�

��t s.!; x/ � H0�0��tv.!; x/
�

'.!; x/

C H0�0��t v.!; x/'.!; x/; (3.5)

where s is the function that we get from the partial integration. Note that s depends only on the

mean curvature and derivative of N̊
t which can be bounded independently of time and !. Thus,

ks.!/kL2.� .t//.nC1/ 6 C kv.!/kH 1.� .t//, where C does not depend on ! and t . Furthermore, we

get

kskL2.˝;L2.� .t//nC1/ 6 C kvkL2.˝;H 1.� .t///:

Hence, using the estimate from the first part of the proof we get

��t v 2 L2
�

˝; L2.�0/
�

and k��t vkL2.˝;L2.�0// 6 C 0kvkL2.˝;H 1.� .t///: (3.6)

On the other hand, from the partial integration on hypersurface we get

Z

˝

Z

�0

��t v.!; x/r� '.!; x/ D �
Z

˝

Z

�0

'.!; x/
�

r� .��tv/.!; x/ C ��tv.!; x/H0�0

�

:

From the last relation and (5.10), since they hold for every ' 2 L2.˝; C
1.�0//, we get

r� .��t v/.!; x/ D ��t s.!; x/ � H0�0.��t v/.!; x/: (3.7)

For v 2 L2.˝; L2.� .t///, we have already proved that

k��t vkL2.˝;L2.�0// 6 CH kvkL2.˝;L2.� .t///:

Therefore, the following estimate follows

kH0�0.��tv/.!; x/kL2.˝;L2.�0// 6 jH0jCH kvkL2.˝;L2.� .t///:
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Using the last inequality, (3.6) and (3.7), we get

k��t vkL2.˝;H 1.�0// 6 CV kvkV.t/;

where CV depends on global bound on jHt j, k@ N̊
t k and k@ij

N̊
t k with 1 6 i; j 6 n C 1; t 2 Œ0; T �

and these bounds are deterministic and independent of time.

Similarly to the previous case, the continuity of the map t 7! k�t ukL2.˝;H 1.� .t/// follows

from [38, Lemma 3.3] and the independence of the probability space of time, which completes the

proof.

3.3 Bochner-type spaces

In this section, we want to define Bochner-type spaces of random functions that are defined on

evolving spaces. In order to strictly define these spaces we will ask that the pull-back of u belongs

to the fixed initial space V.0/. These spaces are a special case of general function spaces defined

in [1]:

DEFINITION 3.4 For a compatible pair .X; .�t /t / we define spaces:

L2
X WD

�

u W Œ0; T � !
[

t2Œ0;T �

X.t/ � ftg; t 7! . Nu.t/; t/ j ��.�/ Nu.�/ 2 L2.0; T I X0/

�

L2
X� WD

�

f W Œ0; T � !
[

t2Œ0;T �

X�.t/ � ftg; t 7! . Nf .t/; t/ j ��
.�/

Nf .�/ 2 L2.0; T I X�
0 /

�

:

REMARK In the following we will identify u.t/ D .u.t/; t/ with u.t/.

The spaces L2
X and L2

X� are separable Hilbert spaces ( [1], Corollary 2.11) with the inner product

defined as

.u; v/L2
X

D
Z T

0

�

u.t/; v.t/
�

X.t/
dt

.f; g/L2
X�

D
Z T

0

�

f .t/; g.t/
�

X�.t/
dt:

By Lemma 3.3, the spaces L2
V , L2

V � and L2
H are well-defined. Furthermore, from [1, Lemma 2.15]

it follows that we can identify L2
V � and .L2

V /�. Using Lemma 3.1 and [1, Lemma 2.19] we conclude

the following result.

Lemma 3.5

L2
L2.˝;H 1.� .t///

,�! L2
L2.˝;L2.� .t///

,�! L2
L2.˝;H �1.� .t///

is a Gelfand triple.

3.4 Material derivative

This subsection is motivated by the abstract framework from the Chapter 2.4 in [1]. We want to

define a time derivative that will also take into account the spatial movement, i.e., the material



536 A. DJURDJEVAC

derivative for random functions. First let us consider the spaces of pushed-forward continuously

differentiable functions

C
j
V WD

n

u 2 L2
V j ��.�/u.�/ 2 C

j
�

Œ0; T �; L2
�

˝; H 1.�0/
�

�o

for j 2 f0; 1; : : : g:

DEFINITION 3.6 For u 2 C
1
V the strong material derivative Pu 2 C

0
V is defined by

Pu.t/ D �t

�

d

dt
��tu.t/

�

for every t 2 Œ0; T �:

By smoothness of � .t/ and evolution ˚0
t , for every ! 2 ˝ each function u.t; !/ W � .t/ ! R

can be extended to a neighbourhood of
S

t2Œ0;T �

� .t/�ftg � R
nC2 in which ru.!/ and ut .!/ for the

extension are well defined for every ! (for the construction of extension see [16]). Using the chain

rule, for u 2 C
1
V and y 2 �0, we get

d

dt
��t u.t/ D d

dt

�

u
�

t; !; ˚0
t .y/

�

�

D ut

�

t; !; ˚0
t .y/

�

C ru j.t;!;˚0
t .y// � w

�

t; ˚0
t .y/

�

D ��tut .t; !; y/ C ��t ru.t; !; y/ � ��t

�

w.t; y/
�

:

Thus, we get the following explicit formula for the strong material derivative

Pu.t; !; x/ D ut .t; !; x/ C ru.t; !; x/ � w.t; x/; (3.8)

for every x 2 � .t/ and ! 2 ˝ .

REMARK Note that the right hand side of (3.8) does not depend on extension, so it is irrelevant that

every extension (i.e., neighbourhood) will depend on !.

Just as in the deterministic case, it might happen that the equation does not have a solution if

we ask that u 2 C
1
V . Hence, we want to define a weak material derivative that needs less regularity.

In addition to the case when we consider a fixed domain, we will have an extra term that will take

into account the movement of the domain. As usual in this setting (see for example [1]), the idea

is to pull-back the inner product on L2.˝; L2.� .t/// onto the fixed space L2.˝; L2.�0//, which

will be the bilinear form Ob. Furthermore, we define Oc as a regular time derivative of this bilinear

form. Thus, the extra term c in the weak material derivative will be the push-forward of Oc onto

H.t/ � H.t/.

Let us define the bounded bilinear form Ob.t; �; �/ W L2.˝; L2.�0// � L2.˝; L2.�0// ! R for

every t 2 Œ0; T �

Ob.t; u0; v0/ WD .�t u0; �t v0/L2.˝;L2.� .t///

D
Z

˝

Z

� .0/

u0.!; x/v0.!; x/J 0
t .x/:

Moreover, we define the map � W Œ0; T � � L2.˝; L2.�0// ! R that is the classical time derivative

of the norm on L2.˝; L2.� .t///

�.t; u0/ WD d

dt
k�t u0k2

L2.˝;L2.� .t///
8u0 2 L2

�

˝; L2.�0/
�

:
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Lemma 3.7 (a) The map � is well defined and for each t 2 Œ0; T � the map

u0 7! �.t; u0/ u0 2 L2
�

˝; L2.�0/
�

(3.9)

is continuous.

(b) For every t 2 Œ0; T � there exists deterministic constant C that is independent of time such that

ˇ

ˇ�.t; u0 C v0/ � �.t; u0 � v0/
ˇ

ˇ 6 C ku0kL2.˝;L2.�0//kv0kL2.˝;L2.�0//:

Proof. (a) Using the substitution formula, the formula (3.4) and the assumption (2.4) we get:

�.t; u0/ D
Z

˝

Z

� .0/

�

u0.!; x/
�2

��t

�

r� .t/ � w.t; x/
�

J 0
t .x/ 6 C ku0k2

L2.˝;L2.�0//
:

Hence, � is well-defined. In order to prove continuity of (3.9) note that u 2 L2.˝; L2.�0//

implies u2 2 L1.˝; L1.�0//. This implies that if un ! u in L2.˝; L2.�0//, then u2
n ! u2 in

L1.˝; L1.�0//: Now continuity follows from:

ˇ

ˇ�.t; un/ � �.t; u/
ˇ

ˇ 6

Z

˝

Z

�0

ˇ

ˇu2
n.!; x/ � u2.!; x/

ˇ

ˇ

ˇ

ˇ��t .r� .t/ � w.t; x//J 0
t .x/

ˇ

ˇ

6 C ku2
n � u2kL1.˝;L1.�0// ! 0:

(b) Using the Cauchy–Schwarz inequality, (3.3) and (3.4) we get the estimate:

ˇ

ˇ�.t; u0 C v0/ � �.t; u0 � v0/
ˇ

ˇ D








4

d

dt
Ob.t I u0; v0/










D 4
ˇ

ˇ

ˇ

Z

˝

Z

�0

u0.!; x/v0.!; x/
d

dt
J 0

t .x/
ˇ

ˇ

ˇ

6 C j .u0; v0/ jL2.˝;L2.�0//

6 C ku0kL2.˝;L2.�0//kv0kL2.˝;L2.�0//:

Now we can define the bilinear form Oc.t I �; �/ W L2.˝; L2.�0// � L2.˝; L2.�0// ! R as a

partial time derivative of Ob

Oc.t I u0; v0/ WD @

@t
Ob.t I u0; v0/ D 1

4

�

�.t; u0 C v0/ � �.t; u0 � v0/
�

D
Z

˝

Z

�0

u0.!; x/v0.!; x/��t

�

r� .t/ � w.t; x/
�

J 0
t .x/:

From [1, Lemma 2.27] it follows that for every u; v 2 C
1.Œ0; T �I L2.˝; L2.�0/// the map

t 7! Ob
�

t I u.t/; v.t/
�

is differentiable in the classical sense and the formula for differentiation of the scalar product on

L2.˝; L2.� .t/// is

d

dt
Ob
�

t I u.t/; v.t/
�

D Ob
�

t I u0.t/; v.t/
�

C Ob
�

t I u.t/; v0.t/
�

C Oc
�

t I u.t/; v.t/
�

:
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We will generalise this result in Section 3.5, to less regular functions u and v.

Now we can define the extra term that appears in the definition of the weak material

derivative. As we have already announced, we pull the functions back to � .0/ and apply bilinear

form Oc to them. More precisely, we define the bilinear form c.t I �; �/ W L2.˝; L2.� .t/// �
L2.˝; L2.� .t/// ! R by

c.t I u; v/ WD Oc.t I ��t u; ��t v/ D
Z

˝

Z

� .t/

u.!; z/v.!; z/
�

r� .t/ � w.t; x/
�

:

Lemma 3.8 For every u; v 2 L2
V , the map

t 7! c
�

t I u.t/; v.t/
�

is measurable. Furthermore, c is bounded independently of t by deterministic constant:

ˇ

ˇc.t I u; v/
ˇ

ˇ 6 C kukL2.˝;L2.� .t///kvkL2.˝;L2.� .t///:

Proof. From Lemma 3.7 it follows that we can apply a corollary of [1, Lemma 2.26], which proves

the Lemma.

Now we can define the weak material derivative.

DEFINITION 3.9 We say that @�u 2 L2
V � is a weak material derivative of u 2 L2

V if and only if

Z T

0

˝

@�u.t/; �.t/
˛

V �.t/;V.t/
D �

Z T

0

�

u.t/; P�.t/
�

H.t/
�
Z T

0

c
�

t I u.t/; �.t/
�

D
Z T

0

Z

˝

Z

� .t/

u.t; !; x/ P�.t; !; x/

�
Z T

0

Z

˝

Z

� .t/

u.t; !; x/�.t; !; x/r� .t/ � w.t; x/;

holds for all � 2 DV .0; T / D f� 2 L2
V j ��.�/�.�/ 2 D..0; T /I L2.˝; H 1.�0///g:

Note that it can be directly shown that if it exists, the weak material derivative is unique and

every strong material derivative is also a weak material derivative.

3.5 Solution space

We will ask for the solution of the equation (1.1) to be in the space L2
V and also to have a weak

material derivative. Hence, we define the solution space as:

W.V; V �/ WD
˚

u 2 L2
V j @�u 2 L2

V �

	

:

In order to prove that the solution space is Hilbert space and also that it has some additional

properties, we will connect it with the standard Sobolev–Bochner space for which these properties

are known. Thus, let us define the following space:

W.V0; V �
0 / D

n

u 2 L2
�

0; T I L2
�

˝; H 1.�0/
�

�

j u0 2 L2
�

0; T I L2
�

˝; H �1.�0/
�

�o

:
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The space W.V0; V �
0 / is Hilbert space with the inner product defined via:

.u; v/W.V0;V �
0

/ WD
Z T

0

Z

˝

�

u.t; !/; v.t; !/
�

H 1.�0/
C
Z T

0

Z

˝

�

u0.t; !/; v0.t; !/
�

H �1.�0/
:

We will use that the embedding

D
�

Œ0; T �I V0

�

� W.V0; V �
0 / (3.10)

is dense. More properties of this space can be found for example in [38, Lemma 2.2].

We want to show that the previous two types of spaces are connected in a natural way, i.e. that

the pull-back of the functions from the solution space belong to Sobolev–Bochner space and vice

versa. In addition, we also have the equivalence of the norms. First we will prove the technical result

which is similar to [38, Lemma 3.6.].

Lemma 3.10 Let w 2 W.V0; V �
0 / and f 2 C

1.Œ0; T � � �0/: Then f w 2 W.V0; V �
0 / and

.f w/0 D @t f w C f w0; (3.11)

where hf w0; 'iL2.˝;H �1.�0//;L2.˝;H 1.�0// D hw0; f 'iL2.˝;H �1.�0//;L2.˝;H 1.�0// :

Proof. We will first prove the Lemma for ' 2 D.Œ0; T �; L2.˝; H 1.�0///: From the proof of [38,

Lemma 3.6] it follows that f 2 C
1.Œ0; T � � �0/ implies

f 2 C
�

Œ0; T �; C
1.�0/

�

and f 2 C
1
�

Œ0; T �; C.�0/
�

: (3.12)

In order to prove that f ' 2 L2.Œ0; T �I L2.˝; H 1.�0/// we can treat deterministic function f

as a random function that is constant in !. More precisely, if we define the function Qf .t; !; x/ WD
f .t; x/, from (3.12) it follows Qf 2 C.Œ0; T �; L2.˝; C

1.�0//. This can be strictly shown by defining

the function g W C.�0/ ! L2.˝; C.�0//; g.f /.!; x/ WD f .x/. Note that g is linear, thus a C
1-

function and for every t we have g.f .t// D Qf .t/:

It is then clear that we have

Qf ' 2 C

�

Œ0; T �; L2
�

˝; H 1.�0/
�

�

\ C
1
�

Œ0; T �; L2
�

˝; L2.�0/
�

�

which implies Qf ' 2 L2.Œ0; T �I L2.˝; H 1.�0/// and hence, f ' 2 L2.Œ0; T �I L2.˝; H 1.�0///.

It is left to prove that formula (3.11) is valid. We will prove this using the characterisation of the

weak derivative [1, Theorem 2.2] and partial integration [1, Lemma 2.1(3)]:

Z T

0

hf w0; 'iL2.˝;H �1.� .t///;L2.˝;H 1.� .t/// D �
Z T

0

˝

w; .f '/0
˛

L2.˝;H 1.� .t///;L2.˝;H �1.� .t///

D �
Z T

0

h@t f w; 'iL2.˝;H �1.� .t///;L2.˝;H 1.� .t///

�
Z T

0

˝

f w; ' 0
˛

L2.˝;H �1.� .t///;L2.˝;H 1.� .t///
:

It follows

Z T

0

˝

f w; ' 0
˛

L2.˝;L2.�0//
D
Z T

0

˝

@t f w C f w0; '
˛

L2.˝;H �1.� .t///;L2.˝;H 1.� .t///
;
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i.e., .f w/0 D @t f w C f w0: Using the density result (3.10) we can approximate every function f w

by continuous L2.˝; H 1.�0//�valued functions and conclude that f w 2 L2.˝; H 1.�0//. The

similar argument implies that .f w/0 2 L2.˝; H �1.�0//:

Corollary 3.11 If Tt W L2.˝; L2.�0// ! L2.˝; L2.�0// is defined as Tt u0.!; x/ WD
u0.!; x/J 0

t .x/; then it holds:

u 2 W.V0; V �
0 / if and only if T.�/u.�/ 2 W.V0; V �

0 /: (3.13)

Proof. Apply Lemma 3.10 to the functions f D J 0
.�/

and f D 1

J 0
.�/

, which are both from the space

C
1.Œ0; T � � �0/.

Theorem 3.12 The following equivalence holds

v 2 W.V; V �/ if and only if ��.�/v.�/ 2 W.V0; V �
0 /; (3.14)

and the norms are equivalent

C1k��.�/v.�/kW.V0;V �
0

/ 6 kvkW.V;V �/ 6 C2k��.�/v.�/kW.V0;V �
0

/: (3.15)

REMARK Following the notation from [1], we say that there exists an evolving space equivalence

between the spaces W.V; V �/ and W.V0; V �
0 / if and only if they satisfy (3.14) and (3.15).

Proof. Let u 2 W.V0; V �
0 /. For every t 2 Œ0; T � we define a map OS.t/ W V �

0 ! V �
0 by

OS.t/u0.t/ WD J 0
t u0.t/:

Note that since J 0
t is bounded independently of t and has an inverse, this implies that OS.t/ has an

inverse, and both OS.t/ and OS�1.t/ are bounded independently of t . Furthermore, from the uniform

bound on J 0
t we have that OS.�/u0.�/ 2 L2.0; T I V �

0 /. In the end, using the product rule (3.11), we

get

�

Ttu.t/
�0 D

�

J 0
t u.t/

�0 D ��t

�

r� .t/ � w.t/
�

J 0
t u.t/ C J 0

t u0.t/ D OS.t/u0.t/ C OC .t/u.t/;

where Tt is defined in the previous corollary and OC .t/ W L2.˝; L2.�0// ! L2.˝; L2.�0// is

defined as OC .t; !; x/ D ��t .r� .t/ � w.t//J 0
t .x/; i.e., h OC.t/u0; v0i WD Oc.t I u0; v0/: Thus, using in

addition Corollary 3.11, we can apply [1, Theorem 2.32.], which yields that there exists the evolving

space equivalence between W.V; V �/ and W.V0; V �
0 /.

Corollary 3.13 The solution space W.V; V �/ is a Hilbert space with the inner product defined via

.u; v/W.V;V �/ D
Z T

0

Z

˝

�

u.t/; v.t/
�

H 1.� .t//
C
Z T

0

Z

˝

�

@�u.t/; @�v.t/
�

H �1.� .t//
:

More properties of the space W.V; V �/ can be found in [1].

We have shown how to differentiate the inner product of functions from C
1
H on H.t/ D

L2.˝; L2.� .t///. We can generalize this result to functions from the solution space.
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Theorem 3.14 (Transport theorem.) For all u; v 2 W.V; V �/; the map

t 7!
�

u.t/; v.t/
�

L2.˝;L2.� .t///

is absolutely continuous on Œ0; T � and

d

dt

�

u.t/; v.t/
�

H.t/
D
˝

@�u.t/; v.t/
˛

V �.t/;V.t/
C
˝

@�v.t/; u.t/
˛

V �.t/;V.t/
C c

�

t I u.t/; v.t/
�

; (3.16)

for almost all t 2 Œ0; T �:

Proof. The proof is based on the density of the space DV Œ0; T � in the space W.V; V �/ and the

Transport formula for the functions from C
1
H . For a detailed proof, we refer the reader to [1,

Theorem 2.38.].

4. Uniform random diffusion coefficient

In this section we will consider the case when the diffusion coefficient is uniformly bounded away

from zero and from above, which allows us to consider the ”mean-weak” formulation and directly

apply the [BNB] theorem about the existence and uniqueness of the solution. The formulation of

the [BNB] theorem can be found for example in [17].

4.1 Formulation of the problem

We want to consider the following equation

@�u � r� � .˛r� u/ C ur� � w D f in L2
V �

u.0/ D u0:
(4.1)

REMARK The initial condition is meaningful thanks to the embedding W.V; V �/ � C
0
V [1, Lemma

2.35].

Let us state assumptions for the initial data that we need in order to prove the existence and

uniqueness of the solution.

ASSUMPTION 4.1 The initial value u0 belongs to L2.˝; L2.�0//: For the source term we assume

f 2 L2
V � : Moreover, ˛ W ˝ �GT ! R is assumed to be a random F ˝B.GT /�measurable function,

where GT is the space-time surface GT WD
S

t � .t/�ftg. Furthermore, we assume that the diffusion

coefficient ˛ is bounded and uniformly coercive in the sense that there are constants ˛min; ˛max such

that

0 < ˛min 6 ˛.!; x; t/ 6 ˛max < 1 8.x; t/ 2 GT (4.2)

holds for P� a.e. ! 2 ˝:

DEFINITION 4.2 We say that u is a “mean-weak” solution of (4.1) if it satisfies the initial condition

u.0/ D u0 and u 2 W.V; V �/ and a.e. in Œ0; T �:

˝

@�u.t/; v
˛

L2.˝;H �1.� .t///;L2.˝;H 1.� .t///
C
Z

˝

Z

� .t/

˛.t/r� u.t/ � r� v

C
Z

˝

Z

� .t/

u.t/vr� � w D
˝

f .t/; v
˛

L2.˝;H �1.� .t///;L2.˝;H 1.� .t///
; (4.3)
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for every v 2 L2.˝; H 1.� .t///.

In order to simplify the notation we define the bilinear form a.t I �; �/ W V.t/ � V.t/ ! R by

a.t I u; v/ WD
Z

˝

Z

� .t/

˛.!; x; t/r� u.!; x/ � r� v.!; x/: (4.4)

Let us state some of the properties of the bilinear form a.

Lemma 4.3 The map

t 7! a
�

t I u.t/; v.t/
�

(4.5)

is measurable for all u; v 2 L2
V . Furthermore, there exist positive deterministic constants C1; C2

and C3 that are independent of t such that the following holds for almost every t 2 Œ0; T �

a.t I v; v/ > C1kvk2
L2.˝;H 1.� .t///

� C2kvk2
L2.˝;L2.� .t///

8v 2 V.t/ (4.6)

ˇ

ˇa.t I u; v/
ˇ

ˇ 6 C3kukL2.˝;H 1.� .t///kvkL2.˝;H 1.� .t/// 8u; v 2 V.t/: (4.7)

Proof. The measurability of (4.5) follows directly from the Fubini-Tonelli theorem. Moreover, the

assumption (4.2) directly implies that

a.t I v; v/ > ˛minkr� vk2
L2.˝;L2.� //

;

thus we can take C1 D C2 D ˛min. Using again (4.2) and the Cauchy–Schwarz inequality we get

that C3 D ˛max

ˇ

ˇ

ˇ

Z

˝

Z

� .t/

˛.!; x; t/r� u � r� v
ˇ

ˇ

ˇ
6 ˛max

ˇ

ˇ hr� u; r� viL2.˝;L2.� .t///

ˇ

ˇ

6 ˛maxkukL2.˝;H 1.� .t///kvkL2.˝;H 1.� .t///:

4.2 Existence and uniqueness

After developing all the necessary results, we can now formulate the theorem about the existence

and uniqueness of a “mean-weak” solution of the equation (4.3).

Theorem 4.4 Under the Assumption 4.1 for given f 2 L2
V � and u0 2 H0; there exists a unique

“mean-weak” solution u 2 W.V; V �/ satisfying (4.3) such that

kukW.V;V �/ 6 C
�

ku0kH0
C kf kL2

V �

�

where V D .V .t//t2Œ0;T � is the family of spaces V.t/ D L2.˝; H 1.� .t///; V � is the family of

corresponding dual spaces and H0 D L2.˝; L2.�0//:

Proof. Lemma 3.3, Theorem 3.12 and Lemma 4.3 imply that we can apply [1, Theorem 3.6] about

the existence and uniqueness of the solution of the parabolic PDE on an abstract evolving space.

The main idea of the proof of [1, Theorem 3.6] is to use the Banach–Nečas–Babuška theorem. This

proves the theorem.
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4.3 Regularity

Let us now assume more regularity of the input data. More precisely, let f 2 L2
H and u0 2 V0. We

will prove that in this case we also have more regularity for the solution, i.e., its material derivative.

Before we state this result, we will prove some technical results.

First we define the solution space for the case when the solution has more regularity.

DEFINITION 4.5 We define

W.V; H/ WD
˚

u 2 L2
V j @�u 2 L2

H

	

:

Lemma 4.6 There is an evolving space equivalence between W.V; H/ and W.V0; H0/ � fv 2
L2.0; T I L2.˝; H 1.�0/// j v0 2 L2.0; T I L2.˝; L2.�0///g.

Proof. Since the Jacobian J 0
t is uniformly bounded, both in time and space (see 3.3), applying [1,

Theorem 2.33] to the restriction OS.t/ WH0 ! H0 of the map defined in the proof of Theorem 3.12,

completes the proof.

Corollary 4.7 W.V; H/ is a Hilbert space.

If u0 2 V0 and f 2 L2
H , the Definition 4.2 of the “mean-weak” solution transforms to: Find

u 2 W.V; H/ such that u.0/ D u0 and a.e. in Œ0; T � holds

Z

˝

�

@�u.t/; v
�

H 1.� .t//
C
Z

˝

Z

� .t/

˛.t/r� u.t/ � r� v C
Z

˝

Z

� .t/

u.t/vr� � w.t/ D
Z

˝

Z

� .t/

f v; (4.8)

for every v 2 L2.˝; H 1.� .t///.

Lemma 4.8 There exists a basis f�0
j gj 2N of V0 � L2.˝; H 1.�0// and for every u0 2 V0 there

exists a sequence fu0kgk2N such that u0k 2 spanf�0
1; : : : ; �0

k
g for every k, such that

u0k ! u0 in V0;

ku0kkH0
6 ku0kH0

;

ku0kkV0
6 ku0kV0

:

Proof. Since H 1.�0/ is compactly embedded in L2.�0/, there exists an orthonormal basis fwmg in

L2.�0/ such that

.u; wm/L2.�0/ D ��1
m .u; wm/H 1.�0/ 8u 2 H 1.�0/ (4.9)

and in addition, f��1=2
m wmgm2N is an orthonormal basis of H 1.�0/ (see for instance [32, Theorem

6.2-1]). On the other hand, since L2.˝/ is separable, it has an orthonormal basis fengn2N. It

follows according to Theorem 2.1 that fwmengm;n2N is an orthonormal basis of L2.˝; L2.�0//

and f��1=2wmengm;n2N is an orthonormal basis of L2.˝; H 1.�0//. Let u0 2 L2.˝; H 1.�0// be

arbitrary. Then, (4.9) implies

.u0; enwm/L2.˝;L2.�0// D ��1
m .u0; enwm/L2.˝;H 1.�0//: (4.10)

Thus we have

u0 D
X

m;n

.u0; enwm/L2.˝;L2.�0//enwm D
X

m;n

.u0; enwm/L2.˝;H 1.�0//�
�1
m enwm:
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Now we can define

u0k WD
X

nD1;:::;Nk
mD1;:::;Mk

.u; enwm/L2.˝;L2.�0//enwm D
X

nD1;:::;Nk
mD1;:::;Mk

.u; enwm/L2.˝;H 1.�0//�
�1
m enwm;

where the last equality follows from (4.10). We choose Mk and Nk such that they both converge to

1, as k ! 1. Defined like this, u0k satisfies the conditions from the Lemma.

If we write �t
j WD �t .�

0
j /; where f�0

j gj 2N is a basis of V0, then by [1, Lemma 5.1] it follows

that f�t
j gj 2N is a countable basis of V.t/. Now we define the space

QC 1
V WD

n

u j u.t/ D
m
X

j D1

j̨ .t/�t
j ; m 2 N; j̨ 2 AC.Œ0; T �/ and ˛0

j 2 L2.0; T /
o

;

where AC.Œ0; T �/ is the space of absolutely continuous functions from Œ0; T �.

For improved regularity of the solution, we will also need the following assumption on the

material derivative of the random coefficient ˛. More precisely, we assume that there exists a

deterministic constant C that does not depend on time such that

ˇ

ˇ P̨ .!; x; t/
ˇ

ˇ 6 C; P � almost everywhere (4.11)

where P̨ is a strong material derivative. For this assumption to be fulfilled, it suffices to assume that

˛.!; �; �/ 2 C
1.GT / holds P�almost everywhere, which implies the boundedness of j P̨ .!/j on GT

and in addition we assume that this bound is uniform in !.

Lemma 4.9 (a) The map

t 7! a
�

t I y.t/; y.t/
�

is an absolutely continuous function on Œ0; T � for all y 2 QC 1
V .

(b)

a.t I v; v/ > 0 for all v 2 V.t/:

(c)
d

dt
a
�

t I y.t/; y.t/
�

D 2a
�

t I y.t/; @�y.t/
�

C r
�

t I y.t/
�

8y 2 QC 1
V ;

where the derivative is taken in the classical sense and r.t I �/ W V.t/ ! R satisfies

ˇ

ˇr.t I v/
ˇ

ˇ 6 C3kvk2
V.t/ 8v 2 V.t/:

Proof. Part (b) follows immediately from the assumption (4.2). In order to prove parts (a) and (c),

let us first take � 2 C 1
V . Since the probability space ˝ does not depend on time, it does not have

any influence in taking time derivative, thus the analogue Transport formulae from the deterministic

case (that can be found in [15, Lemma 2.1]) still hold in our setting. By applying this formula to the

bilinear form a.t I �; �/ we get

d

dt
a
�

t I �.t/; �.t/
�

D 2a
�

t I �.t/; @��.t/
�

C r
�

t I �.t/
�

; (4.12)
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where the function r.t I �.t// is defined by

r
�

t I �.t/
�

WD
Z

˝

Z

� .t/

P̨ jr� �j2 C ˛jr� �j2r� � w � 2r� �
�

D� .w/
�

r� �

with the deformation tensor .D� w.t//ij WD Dj wi .t/.

By the similar arguments as in [2, Ch. 5.1], which are based on the density result of space

C 1
V in QC 1

V , we can conclude that the previous formula is also true for every function � 2 QC 1
V .

Furthermore, the boundedness of r.t I �/ follows directly from the assumptions about the velocity

(2.4) and assumption (4.11). This proves (c). It remains to prove part (a). This claim follows directly

from the previous calculation, which implies that both the function a.t I �.t/; �.t// and its time

derivative (i.e., the right hand side of (4.12)) belong to L1.0; T /, from which it follows that t 7!
a.t I �.t/; �.t// has an absolutely continuous representative.

Theorem 4.10 Let Assumption 4.1 hold and additionally assume (4.11). Then for given f 2 L2
H

and u0 2 V0, there exists a unique “mean-weak” solution u 2 W.V; H/ satisfying (4.8) and the

following a priori estimate holds

kukW.V;H/ 6 C.ku0kV0
C kf kL2

H
/:

Proof. From Lemma 4.3, Lemma 4.8 and Lemma 4.9, it follows that we can apply the general

theorem [1, Theorem 3.13] about the regularity of the solution of parabolic PDEs on evolving space,

which implies the theorem.

5. Log-normal random diffusion coefficient

In this section we will consider the case when the diffusion coefficient has a log-normal distribution

introduced by Definition 2.3 and satisfies Assumption 2.4. We will use results and definitions from

Sections 2.3 and 2.4, especially our sample space � will be defined by (2.9) with measure 
 defined

by (2.7). Since in this case the random coefficient is not uniformly bounded in the parameter y 2 �,

integration of the path-wise formulation over � with respect to 
 does not lead to a well-posed

“mean-weak” formulation. Thus we can not apply the [BNB] theorem as we did in the uniform case

in the section 4. Instead, we will consider for each realization y a path-wise formulation for which

we know from the deterministic case that it has a unique solution u.y/. Since we are interested in

the statistics of the solution, especially expectation and variance, we want to prove p-integrability

of the solution with respect to 
 . This consists of two steps, first, proving the measurability of the

map y 7! u.y/ and second, proving the bound for the norm.

5.1 Path-wise formulation of the problem

For the path-wise formulation we will consider the Gelfand triple H 1.� .t// � L2.� .t// �
H �1.� .t//: Let us define

V.t/ WD H 1
�

� .t/
�

and H.t/ WD L2
�

� .t/
�

:

For simplicity we will assume that the source term f 2 L2
V� and the initial data u0 2 L2

H
are

deterministic. Furthermore, let us remark that we can transform the problem (1.1) into a PDE with
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zero initial condition, the reader can find a more detailed argument in [1]. Thus, from now we will

assume that u0 D 0.

The solution space for the path-wise formulation will be

W0.V; V
�/ D

˚

u 2 L2
V

j @�u 2 L2
V� ; u.0/ D 0

	

which is a Hilbert space, as a closed linear subspace of W.V; V
�/.

Let us now state the path-wise weak formulation of (1.1):

For every y 2 � find u.y/ 2 W0.V; V
�/ such that almost everywhere in Œ0; T � it holds

˝

@�u.y/; v
˛

V�.t/;V.t/
C
Z

� .t/

˛.y/r� u.y/ � r� v C
Z

� .t/

u.y/vr� � w D hf; viV�.t/;V.t/; (5.1)

for every v 2 V.t/.

In order to get a coercive bilinear form, we write (1.1) as

@�u � r� � .˛r� u/ C .� C r� � w/u � �u D f (5.2)

for any � 2 R. Introducing

Ou.y/ WD e��t u.y/ and Of .y/ WD e��t f .y/

and using the product rule, we can rewrite (5.2) as

@� Ou � r� � .˛r� Ou/ C .� C r� � w/ Ou D Of : (5.3)

Furthermore, the path-wise weak form of (5.3) is given by:

for every y 2 � find Ou.y/ 2 W0.V; V
�/ such that almost everywhere in Œ0; T � it holds

˝

@� Ou.y/; Ov
˛

V�.t/;V.t/
C Oa.y; t I Ou; Ov/ D

˝ Of ; Ov
˛

V�.t/;V.t/
8Ov 2 V.t/; (5.4)

where the parametric bilinear form Oa.y; t I �; �/ W V.t/ � V.t/ ! R is defined by

Oa.y; t I �; �/ WD
Z

� .t/

˛.y/r� � � r� � C .� C r� � w/��:

The advantage of writing the equation in this form is that now the induced bilinear form Oa.y; t I �; �/
is coercive and bounded, for sufficiently large �. Namely for � > Cw and C� WD � � Cw we have

Oa.y; t I �; �/ > m.y/k�k2
V.t/ (5.5)

j Oa.y; t I �; �/j 6 M.y/k�kV.t/k�kV.t/ (5.6)

where m.y/ WD min.˛min.y/; C�/ and M.y/ WD max.˛max.y/; � C Cw/.

Furthermore, we will also use the following estimate

Oa.y; t I �; �/ > min
�

˛min.y/;
C�

2

�

k�k2
V.t/ C C�

2
k�k2

H.t/: (5.7)
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We define the bilinear form d.y/ W W0.V; V
�/ � L2

V
! R by

d.yI �; �/ WD
Z T

0

h@��; �iV�;V C Oa.y; t I �; �/:

Then the inf-sup constant is given by

ˇ.y/ WD inf
�2W0.V;V�/

sup
�2L2

V

jd.yI �; �/j
k�kW0.V;V�/k�kL2

V

:

Lemma 5.1 Let Assumption 2.4 hold and additionally assume � > 3Cw and (2.4). Then for every

y 2 �, there exists a unique solution Ou.y/ 2 W0.V; V
�/ to the problem (5.4). Moreover, the

following estimate holds

k Ou.y/kW0.V;V�/ 6
1

ˇ.y/
k Of kL2

V�
(5.8)

where the inf-sup constant is bounded from below by

ˇ.y/ >

min
�

m.y/

M.y/2 ; ˛min.y/;
C�

2

�

p

2 max.m.y/�2; 1/
: (5.9)

Proof. Under Assumption 2.4, the existence and uniqueness of the solution, as well as the estimate

(5.8) follow from the deterministic result for � > 3Cw, which can be found in [2] and [13]. In order

to prove the bound (5.9) we will use the idea from [35]. The main difference in the proof is that

our domain is curved and changing in time, therefore we can not use the standard partial integration

formula, but instead we will use partial integration that follows from the Transport theorem and has

an additional term that reflects the spatial change in time.

Let y 2 � be arbitrary. We start with defining the linear operator A.y; t/ W V.t/ ! V
�.t/

induced by
˝

A.y; t/�; �
˛

V�.t/;V.t/
WD Oa.y; t I �; �/:

Given an arbitrary 0 ¤ w.y/ 2 W0.V; V
�/, we define

zw .y; t/ WD A�1.y; t/@�w.y; t/ 2 V.t/

and select the test function

vw .y; t/ WD zw .y; t/ C w.y; t/ 2 V.t/:

Using (5.5) and (5.6) we obtain

h@�w; zw iV�.t/;V.t/ >
m.y/

M.y/2
k@�wk2

V�.t/: (5.10)

The definition of zw directly implies

Oa.y; t I w; zw / D hAw; A�1@�wiV�.t/;V.t/ D hw; @�wiV.t/;V�.t/: (5.11)



548 A. DJURDJEVAC

Analogous to Theorem 3.14, the Transport formula for the scalar product in H.t/ holds with

c.t I u; v/ WD
Z

� .t/

uvr� � w:

As a consequence, we obtain the following integration by parts formula (see [1, Corollary 2.41])

�

u.T /; v.T /
�

H.t/
�
�

u.0/; v.0/
�

H.t/
D
Z T

0

h@�u; viV�.t/;V.t/ C h@�v; uiV�.t/;V.t/ C c.t I u; v/:

(5.12)

Using (5.10) and (5.11) we arrive at

d.yI w; vw / >

Z T

0

m.y/

M.y/2
k@�wk2

V�.t/ C h@�w; wiV�.t/;V.t/ C hw; @�wiV.t/;V�.t/ C Oa.y; t I w; w/

>

Z T

0

m.y/

M.y/2
k@�wk2

V�.t/ � Cwkwk2
H.t/ C C�

2
kwk2

H.t/

C min
�

˛min.y/;
C�

2

�

kwk2
V.t/

where for the last inequality we used (5.7), (5.12) and (2.4). Taking � > 3Cw gives C� > 2Cw and

we get

d.yI w; vw / > min
� m.y/

M.y/2
; ˛min.y/;

C�

2

�

kwk2
W0.V;V�/: (5.13)

It is left to estimate the norm kvwkL2
V

, which follows directly from (5.5)

kvwk2

L2
V

6 2
�

kA�1@�wk2

L2
V

C kwk2

L2
V

�

6 2 max
�

m.y/�2; 1
�

kwk2
W0.V;V�/:

Since w is arbitrary, the last estimate together with (5.13) implies the bound (5.9).

Using Lemma 5.1 we can prove the bound for the path-wise solution.

Theorem 5.2 Let Assumptions 2.4 hold and additionally assume (2.4). Then problem (5.1) has a

unique solution u.y/ 2 W0.V; V
�/ for every y 2 � and it satisfies

ku.y/kW.V;V�/ 6

OC
ˇ.y/

kf kL2
V�

where OC is independent of y and the inf-sup constant ˇ.y/ is bounded from below by (5.9).

Proof. Similarly as in the previous Lemma, the existence and uniqueness of the path-wise solution

follow from the deterministic results (see [2, 13]). In order to get the estimate of the solution norm,

we compare the norms ku.y/kW0.V;V�/ and k Ou.y/kW0.V;V�/. Since





@�u.y/






2

L2
V�

6 2e2�T
�

C �




 Ou.y/






2

L2
V

C




@� Ou.y/






2

L2
V�

�
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where C is the embedding constant of L2
V

into L2
V� , using Lemma 5.1 we obtain





u.y/






2

W0.V;V�/
6 e2�T

�





 Ou.y/k2

L2
V

C 2C �




 Ou.y/k2

L2
V

C 2




@� Ou.y/






2

L2
V�

�

6 e2�T max.2; 1 C 2C �/
1

ˇ.y/2
k Of k2

L2
V�

6 OC 2 1

ˇ.y/2
kf k2

L2
V�

where OC 2 D e�T max.2; 1 C 2C �/ is independent of y, which completes the proof.

REMARK 5.3 Without loss of generality we can assume

˛min.y/ 6 Cw 6
˛max.y/

4

for almost every y. Furthermore, without loss of generality we can assume that ˛min.y/ 6 1 and

˛max.y/ > 1 for almost every y. Previous assumptions are without loss of generality and just makes

the calculations less technical, since it simplifies the bound of the inf-sup constant.

Under Assumption 5.3, by taking � D 3Cw, the bound (5.9) becomes

ˇ.y/ >
1p
2

˛min.y/2

˛max.y/2
for a.e. y:

Previous together with Lemma 2.8 imply





u.y/






W0.V;V�/
6

p
2

OC
˛min.y/2

˛max.y/2
6

p
2

OC

�

4
X

k>1

bkjykj
�

(5.14)

for almost every y.

5.2 Integrability of the solution

In this section we will prove the p-integrability of the solution u with respect to 
 . The first step is

to show the measurability of the map y 7! u.y/, � ! W0.V; V
�/: The main idea of the proof is

adopted from [19, Lemma 3.4]. It consists of proving that the solution u is almost surely the limit

of measurable functions un that are the “mean-weak” solutions of (1.1) in the uniform case.

REMARK 5.4 Let us note that since the sample space � is independent of time, it holds

L2.�; L2
V

/ Š L2.�/ ˝ L2
V

Š L2
L2.�;V/

:

From this we deduce

W.V; V �/ Š L2.�/ ˝ W.V; V
�/ Š L2

�

�; W.V; V
�/
�

:

We will exploit this isomorphism in the proof of the p-integrability of the solution u with respect to


 , where we consider the problem in a path-wise sense.

Theorem 5.5 The solution u W � ! W.V; V
�/, y 7! u.y/ of (5.1) is B.RN/-measurable.
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Proof. Since we have proved the well-posedness of the “mean-weak” formulation in the uniform

case, the proof of the measurability can be adopted from [19, Lemma 3.4]. Here we just sketch

its main idea. We start with defining a subspace �n of �, for every n 2 N, where the diffusion

coefficient is uniformly bounded

�n WD
n

y 2 � j ˛max.y/ < n; ˛min.y/ >
1

n

o

� �:

Note that �n is increasing and � D [n�n: Then we consider the “mean-weak” formulation on the

parameter space �n. In the uniform case, from the Theorem 4.4 it follows that there exists a unique

solution un 2 L2.�n; 
 I W0.V; V
�//. In particular, un is a measurable function on �n. The last

step is proving that u is a.s. limit of un, thus it is measurable. This follows because un also solves

the path-wise equation (5.1) for a.e. y 2 �n.

Now we can state the result about the p-integrability of the solution.

Theorem 5.6 Let 0 < p < 1, � > 0 and f 2 L2
V� . If Assumption 2.4 holds and additionally we

assume (2.4), then the solution u of (5.1) belongs to Lp.�; 
 I W0.V; V
�// and satisfies

kukLp.�;
 IW0.V;V�// 6 cp;�kf kL2
V�

with

cp;� D
p

2

OC
exp

�4p exp.2�kbkl1 /

�
C �

p

�

kbkl1 :

Proof. With previous results in mind, the proof is similar to the proof stated in [31, Prop. 3.3.2].

However, since the bound for the inf-sup constant ˇ is a bit different in our case, we give the main

ideas of the proof. From Theorem 5.2 and Theorem 5.5 we obtain

Z

�





u.y/






p

W0.V;V�/
d
 6

Z

�

1

ˇ.y/p
kf kp

L2
V�

d


D
Z

�

��.y/�1 1

ˇ.y/p
kf kp

L2
V�

d
� 6 ess sup
y

� 1

��.y/ˇ.y/p

�

kf kp

L2
V�

;

where �� and 
� are defined in Section 2.4. In order to bound 1
��.y/ˇ.y/p we use Lemma 2.10 and

bound (5.14), which completes the proof.

6. Outlook

Although we have stated and solved the problem of finding the unique solution of advection-

diffusion PDEs with random coefficients on a moving hypersurface, only the continuous case has

been discussed. The next step is to consider the numerical approximation of the solution of the

equation. More strictly, since the solution is a random variable, we are interested in a numerical

approximation of the expected value of the solution. One approach for discretization in space would

be to use the evolving surface finite element method from [13], for which we approximate the

hypersurface by an evolving interpolated polyhedral surface. In order to deal with uncertainty, one

could use the Monte Carlo method which approximates the expected value. The goal would be to

find the error estimate for this approximation. These results are the subject of ongoing research and

a paper is in preparation.
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