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1. Introduction

The present contribution is devoted to the study of the relations between a diffuse and a sharp

interface Cahn–Hilliard–Darcy model for tumor growth.

The morphological evolution of a growing solid tumor is the result of the dynamics of a complex

system that includes many nonlinearly interacting factors, such as cell-cell and cell-matrix adhesion,

mechanical stress, cell motility and angiogenesis just to name a few. It is clear that mathematics

could make a huge contribution to many areas of experimental cancer investigation since there

is now a wealth of experimental data which requires systematic analysis. At the current stage of

cancer research, most of the mathematical models are built and developed from the following three

perspectives: discrete (microscopic), continuous (macroscopic), and hybrid (micro-macroscopic).

Numerous mathematical models have been developed to study various aspects of tumor progression

and this has been an area of intense research (see the recent reviews by Fasano et al. [12], Graziano

and Preziosi [16], Friedman et al. [14], Bellomo et al. [5], Cristini et al. [7], and Lowengrub et

al. [21]). The existing models can be classified into two main categories: continuum models and

discrete models. We concentrate on the former ones. This category can be subsequently split in two

basic types of models namely the (classical) sharp interface models, where the interface between the

fluids is modeled as a (sufficiently smooth) surface, and so-called diffuse interface models, where

the sharp interface is replaced by an interfacial region, where a suitable order parameter (� in what

follows) varies smoothly, but with a large gradient between two distinguished values.
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The necessity of dealing with multiple interacting constituents has led, in particular, to the

consideration of diffuse-interface models based on continuum mixture theory (see, for instance, [8]

and references therein). In the diffuse approach, sharp interfaces are replaced by narrow transition

layers that arise due to differential adhesive forces among the cell-species. The main advantages of

the diffuse interface formulation are:

– it eliminates the need to enforce complicated boundary conditions across the tumor/host tissue

and other species/species interfaces that would have to be satisfied if the interfaces were assumed

sharp, and

– it eliminates the need to explicitly track the position of interfaces, as is required in the sharp

interface framework.

Then, the natural question arises how diffuse and sharp interface models are related if a suitable

parameter " > 0, which measures the width of the diffuse interface, tends to zero. There are already

some results on this question, which are based on formally matched-asymptotics calculations

(cf. the recent work by Garcke et. al. [15]), but so far there are very few mathematically rigorous

convergence results (cf. [25]). This is indeed the aim of the present contribution.

The mathematical technique we exploit here consists mainly in considering the known results

for Cahn–Hilliard equations by [6] and trying to extend them to the coupled Cahn–Hilliard–Darcy

system (first neglecting the nutrient) in the spirit of what Abels et al. (cf. [1] and also [3]) did for

a two-phase fluid model. The problem of dealing with a complete tumor-growth model coupling

Cahn–Hilliard equation for the tumor phase with a non-zero source, Darcy law for the velocity, and

a reaction-diffusion equation for the nutrient (cf., e.g., [10] or [15]) is still open.

Other techniques could also be investigated. For example, recently in [25] the authors exploited

Gamma convergence tools for Gradient Flows systems in order to prove the passage from diffuse

to sharp interfaces for a variant of a different tumor growth model proposed in [17] (cf. also [18])

where the velocity field is not considered and a coupled Cahn–Hilliard-Reaction-Diffusion system

is analyzed. It is worth mentioning that a Gamma-convergence approach cannot be applied to the

problem considered in this paper due to the lack of gradient structure of system under consideration.

The initial boundary value problem we are interested in here is indeed the following one:

@t� ���C r � .u�/ D 0 in ˝ � .0;1/, (1.1)

� D �"�� C
1

"
F 0.�/ in ˝ � .0;1/, (1.2)

u D �rP C �r� in ˝ � .0;1/, (1.3)

r � u D 0 in ˝ � .0;1/, (1.4)

� � r� D � � r� D � � u D 0 on @˝ � .0;1/, (1.5)

�.0/ D �0;" in ˝ , (1.6)

where˝ is a bounded subset of Rd with a smooth boundary @˝ , � denotes the outward unit normal

vector to @˝ , F is a double-well potential with minima in �1 and 1, e.g. F.r/ D 1
8
.1 � r2/2,

and " is a small positive parameter related to the interface thickness. Moreover, �0;" is a family of

approximating initial data which satisfy a well-preparedness condition (see below). The dynamics of

the phase variable � (and of the chemical potential �) is regulated by the convective Cahn–Hilliard

equation (1.1)-(1.2). The velocity field u fulfills the Darcy’s law (1.3) (here P denotes a pressure)

including the so-called Korteweg term �r�.
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The PDE system we consider here (as well as some generalizations of it) has been already

studied from the point of view of existence of solutions, regularity, and long-time behavior in [22]

(cf. also [19] and [10] for more general models), while the formal expansion method for the sharp

interface limit has been recently performed in [15] again for a more complicated system, where also

the nutrient variable and chemotaxis effects have been taken into account.

The matched asymptotic expansion performed in [15] shows, formally, that system (1.1)–(1.6)

converges, for " ! 0, to the sharp-interface limit problem given by

� D 1 in ˝T , (1.7)

� D �1 in ˝H , (1.8)

2.�V C u � n/ D Œr��TH � n on ˙ , (1.9)

� D �k on ˙ , (1.10)

Œ��TH D 0 on ˙ , (1.11)

��� D 0 in ˝T [˝H , (1.12)

u D �rP in ˝T [˝H , (1.13)

r � u D 0 in ˝T [˝H , (1.14)

Œu�TH � n D 0 on ˙ , (1.15)

ŒP �TH D 2�k on ˙: (1.16)

Here tumor region˝T and the healthy region˝H are two open and disjoint subset of ˝ separated

by a smooth interface ˙ which moves with normal velocity V . Moreover, � is a constant related to

the potential given by � D
R 1

�1

q

F .r/
2

dr , k is the mean curvature of˙ , n is the outward unit normal

to ˙ pointing towards ˝T , and Œf �TH denotes the jump of f from ˝T to ˝H across the interface

˙ . As for the diffuse interface case we close the system with boundary and initial conditions

� � u D 0 on @˝ � .0;1/,

� � r� D 0 on @˝ � .0;1/,

˝T .0/ D ˝T
0 ,

where ˝T
0 is the tumor region at the initial time t D 0.

Our goal is to prove the convergence rigorously. More precisely, in the rest of the paper we

address the following question: under which assumptions on the potential F do weak solutions of

(1.1)–(1.6) converge to weak/generalized solutions of (1.7)–(1.16)? We show that if F satisfies

proper growth conditions at infinity, which are fulfilled in particular by the so-called standard

double-well potential F.r/ D 1
8
.1 � r2/2, then the weak solutions of (1.1)–(1.6) converge to the

so-called varifold solutions of (1.7)–(1.16), which are defined in the spirit of [6] in Section 3.

The paper is organized as follows: in Section 2 we introduce some notation and preliminaries we

need in the rest of the paper. In Section 3 we state our assumptions on the data and the main result

of the paper together with the notion of solutions. Finally, in the last two Sections 4, 5 we prove

the main Theorem 4 by establishing suitable a-priori estimates (independent of ") on the solution to

(1.1)–(1.6) leading to the passage to the limit as " ! 0.



574 S. MELCHIONNA AND E. ROCCA

2. Preliminaries and notation

In this section we fix the notation and recall some known facts about functions of bounded variation

and varifolds.

Given ˝ � R
d a bounded set with a smooth boundary, d;N 2 N, X a Banach space with

separable dual space X�, we use the following notations for these functional spaces.

� Lp.˝/ and Lp.˝;X/, for p 2 Œ1;1�, denote the standard Lebesgue spaces for scalar and X

valued functions, respectively.

� C0.˝;R
N / is the closure of compactly-supported continuous functions f W ˝ ! R

N , in the

supremum norm.

� C k
0 .˝/, k 2 N [ f1g is the set of k-times-differentiable compactly-supported functions.

� C k. N̋ /, k 2 N [ f1g is the set of k-times-differentiable functions such that all derivatives have

a continuous extension on N̋ .

� C1
0;div.˝/ D ff 2 C1

0 .˝/ W r � f D 0g and L2
div.˝/ D C1

0;div.˝/
L2.˝/

.

� L
p
loc.0;1IX/ for p 2 Œ1;1/ denotes the space of all measurable functions f W .0;1/ ! X

such that f 2 Lp.0; t IX/ for all t > 0.

� M.˝IRN / for N 2 N, denotes the space of all finite R
N -valued Radon measures. M.˝IR/ DW

M.˝/.

� BV.˝/ is the space of functions of bounded variations.

� L1
!�.˝IX�/ denotes the space of all functions f W ˝ ! X� that are weakly* measurable and

essentially bounded.

Given f 2 BV.˝/ we denote by Df its distributional gradient and by jDf j the Radon measure

generated by

jDf j.A/ D sup
Y 2C0.AIRd /WjY j61

Z

A

f r � Y dx, for all A open in ˝:

Moreover, one can show (cf., e.g., [13]) that there exists a jDf j-measurable unit vector valued

function n such that Df D njDf j, jDf j-a.e.. We recall that

BV.˝/ D
˚

f 2 L1.˝/ W Df 2 M
�

˝IRd
�	

and

kf kBV.˝/ D kf kL1.˝/ C kDf kM.˝IRd / D kf kL1.˝/ C jDf j. N̋ /:

LetE be a set in˝ . If the characteristic function�E belongs to BV.˝/, then we say thatE has finite

perimeter and we denoteD�E D nE jD�E j. Note that, if @E is smooth, then nE is the unit inward

norm to @E . Moreover, we recall that there exists a separable Banach spaceX such that its dual space

coincide with BV.˝/, (cf. [4]). As a consequence the space L1
!� .0; sI BV.˝// D

�

L1.0; sIX/
��

is well defined.

Let now

P D Sd�1=f�;��g

be the set of unit normals of unoriented .d � 1/-dimensional hyperplanes in R
d . A varifold V is a

Radon measure on ˝ � P . We define the mass measure kV k as the Radon measure on ˝ given by

kV k .A/ D

Z Z

A�P

dV.x; p/ for all A open in ˝:
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The first variation ıV of a varifold V is the linear functional on C 1
0 .˝IRd / defined by

hıV; Y i WD

Z Z

˝�P

rY W .I � p ˝ p/ dV.x; p/ for all Y 2 C 1
0 .˝IRd /

and its mean curvature vector H (wherever it exists) is a kV k-measurable vector-valued function

on ˝ defined by

� hıV; Y i D hkV k ;H � Y i D

Z

˝

.Y.x/ �H.x// d kV k .x/ for all Y 2 C 1
0 .˝IRd /:

3. Assumptions and main results

In this section we introduce the main assumptions on the problem data and the statement of the main

results.

Let the potential F be such that F 2 C 3.R/, F.˙1/ D 0, and F.r/ > 0 if r ¤ ˙1. Moreover,

let the constants c0; Cc0
> 0, p > 4 exist such that F 00.r/ > Cc0

jr jp�2 for all r such that jr j >

1 � c0. An example of potential F satisfying the above assumption is the classical double-well

potential F.r/ D 1
8
.1 � r2/2.

REMARK 1 Note that the same conditions with p > 3 are assumed in [1], where the authors

consider the sharp interface limit of a Cahn–Hilliard equation coupled with a Navier-Stokes

equation, instead of the Darcy’s law (1.3), for the velocity field. Here we need stronger coercivity

assumptions on F as solutions u to the Darcy’s law (1.3) are, in general, less regular than solutions

to the Navier-Stokes equation.

We also assume uniform boundedness of the initial energy. More precisely, let �0;" 2 H 1.˝/\

Lp.˝/ be such that there exists a positive constant E0 satisfying

E".�0;"/ 6 E0, (3.1)

where the energy functionalE" is defined by

E".�/ D

Z

˝

."
1

2
jr�j2 C

1

"
F.�//dx: (3.2)

Finally, we ask the initial tumor mass to be independent of ", namely

N�0;" D
1

j˝j

Z

˝

�0;"dx D m0 2 .�1; 1/:

Before stating our main result, let us rigorously define solutions to system (1.1)–(1.6) and system

(1.7)–(1.16).

DEFINITION 2 (Weak solutions to (1.1)–(1.6)) We call .�"; �"; u"/ a weak solution to system (1.1)–

(1.6) if these functions belong to the regularity class:

�" 2 C 0
�

Œ0;1/IH 1.˝/
�

\L2
loc

�

0;1IH 2.˝/
�

\H 1
loc

�

0;1IL2.˝/
�

,

�" 2 L2
loc

�

0;1IL2.˝/
�

, r�" 2 L2
�

0;1IL2.˝/
�

,

u" 2 L2
�

0;1IL2
div.˝/

�

;
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and the following integral identities hold:

Z t

0

Z

˝

.�"@t C �"u" � r � r�" � r / dxds D

Z

˝

�".t/ .t/dx �

Z

˝

�0;" .0/dx, (3.3)

for all  2 C1
0 .Œ0; t � �˝/, t > 0, and

d

dt
E".�"/C

Z

˝

jr�"j
2dx C

Z

˝

ju"j
2dx D 0; (3.4)

where

�" D ���" C
1

"
F 0.�"/ a.e. in ˝ � Œ0;1/, (3.5)

u" D �rP C �"r�" a.e. in ˝ � Œ0;1/, (3.6)

� � r�" D 0 a.e. on @˝ � Œ0;1/, (3.7)

E".�"/ D

Z

˝

e".�"/dx D

Z

˝

"
1

2
jr�"j

2 C
1

"
F.�"/dx a.e. in Œ0;1/: (3.8)

DEFINITION 3 (Varifold solutions to (1.7)–(1.16)) Let ˝T
0 be a set of finite perimeter. Then,

.u;˝T ; �; V / is called a varifold solution to (1.7)–(1.16) if the following conditions are satisfied:

1. u 2 L2.0;1IL2.˝//, � 2 L2
loc.0;1IL2.˝//, r� 2 L2.0;1IL2.˝//.

2. ˝T can be decomposed as ˝T D [t>0.˝
T
t � ftg/, where ˝T

t is a measurable subset of ˝ .

Furthermore,

�˝T 2 C
�

Œ0;1/IL1.˝/
�

\L1
w�.0;1I BV.˝//

and j˝T
t j D j˝T

0 j for all t > 0.

3. V is a Radon measure on N̋ � P � .0;1/ such that V D V t dt where V t is a Radon measure

on N̋ � P for almost all t 2 .0;1/. Moreover, for a.a. t 2 .0;1/, V t admits the representation

Z

N̋ �P

 .x; p/dV t .x; p/ D

d
X

iD1

Z

N̋
bt

i .x/ 
�

x; pt
i .x/

�

d�t .x/ (3.9)

for all  2 C
�

N̋ � P
�

, some Radon measure �t on N̋ , and some �t -measurable functions bt
i ,

pt
i with values in R and P respectively such that

0 6 bt
i 6 1,

d
X

iD1

bt
i > 1,

d
X

iD1

pt
i ˝ pt

i D I �t -a.e.,

and
jD�˝T

t
j

�t
6

1

2�
: (3.10)

4. For every t > 0 and every  2 C1
0 .Œ0; t � �˝/,

Z t

0

Z

˝

Œ2�˝T
s
@t � r�r C 2�˝T

s
u � r �dxds D

Z

˝

2�˝T
t
 .t/dx �

Z

˝

2�˝T
0
 .0/dx:

(3.11)
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5. For every t > 0 and every Y 2 C 1
0 .˝;R

d /,

�
˝

D�˝T
t
; �Y

˛

D

Z

˝

�˝T
t

r � .�Y /dx D
1

2

˝

ıV t ; Y
˛

: (3.12)

6. For every 0 6 � < t ,

�t . N̋ /C

Z t

�

Z

˝

jr�j2dxds C

Z t

�

Z

˝

juj2dxds 6 �� . N̋ /: (3.13)

7. For every t > 0 and every ' 2 C1
0;div.˝/, we have

Z t

0

Z

˝

u'dxds D

Z t

0

Z

˙s

2�'dSds, (3.14)

where ˙t D @˝T
t n @˝ .

Let us postpone some remarks and comments on the definition of solutions and state our main

result.

Theorem 4 (Sharp interface limit) Let the above assumptions be satisfied. Then, there exists a

sequence " ! 0 such that the following holds.

1. There exists ˝T D [t>0.˝
T
t � ftg/ � ˝ � Œ0;1/ such that

�" ! �1C 2�˝T a.e. in ˝ � Œ0;1/ and in C
1

17 .Œ0; t/IL2.˝// for any t > 0: (3.15)

2. There exists � 2 L2
loc.0;1; IL2.˝// such that r� 2 L2.0;1; IL2.˝// and

�" ! � weakly in L2
loc.0;1; IH 1.˝//:

3. There exists u 2 L2.0;1IL2
div.˝// such that

u" ! u weakly in L2.0;1IL2
div.˝//:

4. There exist a Radon measure � and measures �ij , i; j 2 f1; : : : ; d g, on N̋ � Œ0;1/ such that

e".�"/dxdt ! � as a Radon measure N̋ � Œ0;1/,

i.e., weakly star in M.˝;R/, (3.16)

"@xi
�"@xj

�"dxdt ! �ij as a measure on N̋ � Œ0;1/,

for i; j 2 f1; : : : ; d g, (3.17)

where e".�"/ denotes the energy density:

e".�"/ D "
1

2
jr�"j

2 C
1

"
F.�"/:

5. There exists a Radon measure V D V t dt on N̋ �P �Œ0;1/ such that .u;˝T ; �; V / is a Varifold

solution of (1.7)–(1.16) in the sense of Definition 3, with d�t .x/dt D d�.x; t/ (where �t as in

(3.13) and � as in (3.16)) and with � D
R 1

�1

q

F .r/
2

dr . Moreover,

Z t

0

hıV s; Y i ds D

Z t

0

Z

˝

rY W
�

d�.x; s/I �
�

d�ij .x; s/
�

d�d

�

(3.18)

for all Y in C 1
0 .˝ � Œ0; t �IRd / and for all t > 0.
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REMARK 5 Let us now comment on the notion of solutions introduced in Definition 2 and

Definition 3.

1. The weak formulation (3.3) is derived by testing (1.1) with some 2 C1
0 .Œ0; t ��˝/, integrating

by parts in time and space, and using the boundary and the initial conditions. We remark that, as

�" 2 H 1.0; t IL2.˝//, relation (3.3) can be equivalently rewritten as

Z

˝

.�@t�" C �"u" � r � r�" � r /dx D 0 a.e. in .0; t/; �".0/ D �0;":

2. The energy identity (3.2) can be formally obtained by testing equation (1.1) by �" and (1.2) by

@t�", comparing the two, integrating by parts (taking into account the boundary conditions) and

using (1.3).

3. As stated in Theorem 4, �t . N̋ / is the limit of the energy functional E".�".t// as " ! 0.

The energy functional for the sharp interface problem is instead given by the interfacial energy:

2� j�˝T
t

j.˝/. A natural question is how the two relate. Modica and Mortola [24] and Sternberg [26]

proved that the functional E" converge to 2� j�˝T j.˝/ in the Gamma-convergence sense with

respect to the topology of L1.˝/. As a consequence of this result and of convergence (3.15), we

have that

�t . N̋ / D lim
"!0

E"

�

�".t/
�

D lim inf
"!0

E"

�

�".t/
�

> 2� j�˝T
t

j.˝/: (3.19)

A second approach to obtain inequality (3.19) is the following. Consider the relation

"

Z

˝

jr�"j
2dx D

Z

˝

e".�"/dx C

Z

˝

�".�"/dx, (3.20)

where the discrepancy density �" is given by �".�"/ D "=2 jr�"j
2 � 1="F.�"/. We will prove

that the discrepancy measure is nonpositive in the limit " ! 0, namely
R

˝ .�".�"//
C

dx ! 0 as

" ! 0 (see Lemma 7). This yields, by passing to the limit as " ! 0 in (3.20), inequality (3.19).

Note that, in general, it is not possible to prove equality in (3.19) even in the simpler case u D 0,

(cf. Section 2.4 of [6]). For example, a strict inequality holds true in case the initial data develop a

so-called phantom interface, i.e.,

2
ˇ

ˇD�˝T
0

ˇ

ˇ.˝/ D
ˇ

ˇD lim
"!0

�0;".t/
ˇ

ˇ.˝/ < lim inf
"!0

ˇ

ˇD�0;"

ˇ

ˇ.˝/:

However, in the case u D 0, under some additional assumptions, e.g., radial symmetry of the

solutions [6] or limit equipartition of the energy:
R

˝ .�".�"// dx ! 0 (which holds true if d 6 3)

[20], it is possible to show equality in (3.19). Let us mention that the techniques used in [20] strongly

rely on the gradient-flow structure of equation (1.1)–(1.2) in the case u D 0. Thus, it seems hard to

generalize that result to the system under consideration.

4. Using the definition of V (3.9), we have that

dV t .x; p/ D

d
X

iD1

bt
i .x/ıpt

i
.x/d�

t .x/:
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Thus, by definition of mass measure of a varifold and as a consequence of the properties of bt
i , we

get

d


V t


 .x/ D

d
X

iD1

bt
i .x/d�

t .x/ > d�t .x/:

Let H t denote the mean curvature vector of V t . Then, by definition, we have, for all Y 2

C 1
0 .˝IRd /,

�
˝

ıV t ; Y
˛

D
˝


V t


 ;H � Y
˛

D

Z

˝

H.x/ � Y.x/d


V t


 .x/

D

Z

˝

2�mH.x/ � Y.x/jD�˝T
t

j.x/dx, (3.21)

where

m WD
d



V t


 .x/

2� jD�˝T
t

j.x/dx
: (3.22)

Note that the two measures d


V t


 .x/ and jD�˝T
t

j.x/dx are absolutely continuous one with

respect to the other as a consequence of relation (3.10). Moreover, m > 1. Furthermore, using

formula (3.12), we have

�
˝

ıV t ; Y
˛

D �2

Z

˝

�˝T
t

r � .�Y /dx D 2

Z

˝

�n˝T
t

� Y.x/jD�˝T
t

j.x/dx

D

Z

˝

�

m�
n˝T

t
� Y.x/d



V t


 .x/, (3.23)

where n˝T
t

is the unit vector associated with D�˝T
t

defined as in Section 2. Comparing (3.21) and

(3.23), we deduce
�

m
n˝T

t
D �H:

Multiplying by n˝T
t

, as jn˝T
t

j D 1, we get

�

m
D �n˝T

t
�H D �k:

Here k WD n˝T
t

�H is the so-called generalized mean curvature. As m > 1, we have that

� D m�k > �k on ˙:

Thus, relation (1.10) is satisfied up to a multiplicative constant m > 1 (if m D 1, we get equation

(1.10)). We remark that, in general, it is not possible to show m D 1 even in the simpler case u D 0

(cf Section 2.4 of [6]). This is related to a possible gap between the limit of the energy and the

energy of the limit problem as already discussed above. Indeed, under some growth assumptions on

�t , it is possible to show that �t D


V t


 (cf. [6]). In this case, thanks to (3.22), we have

�t D 2�mjD�˝T
t

j > 2� jD�˝T
t

j; (3.24)

which is a quantitative version of inequality (3.19). In particular, this shows that, in the case �t D


V t


, equality in (3.19) and relation m D 1 are equivalent.
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5. From (1.10) and (1.16), we easily deduce

ŒP �TH D 2� on˙: (3.25)

Equation (3.14) is obtained by multiplying equation (1.13) by some ' 2 C1
0;div.˝/, integrating by

parts, and using (3.25), and the boundary conditions:
Z t

0

Z

˝T
s [˝H

s

u � 'dxds D �

Z t

0

Z

˝T
s [˝H

s

rP � 'dxds

D

Z t

0

Z

˙s

ŒP �TH � 'dSds D

Z t

0

Z

˙s

2� � 'dSds:

6. Equation (3.12) together with (3.18) imply
Z

˝

2�˝T
t

r �
�

�.t/Y
�

dx D

Z

˝

rY W
�

d�.x; t/I �
�

d�ij .x; t/
�

d�d

�

for a.a. t > 0:

This relation can be obtained by passing to the limit " ! 0 in formula (5.2). Therefore, equation

(3.12) stands as a reformulation of identity (3.5) and of condition �" 2 ıE"

ı�
(here ıE"

ı�
denotes the

first variation of E") in the limit " ! 0.

7. Inequality (3.13) has the meaning of energy dissipation inequality. It is obtained starting from

(4.1) and by passing to the liminf as " ! 0. We remark that equality does not hold in general.

Indeed, we have just weak convergence for r�" and u".

8. Note that, for all  2 C1
0 .Œ0; t � � ˝/, we have

R t

0

R

˝T [˝H @t dxds D
R

˝T [˝H  .t/dx �
R

˝T [˝H  .0/dx and
R t

0

R

˝T [˝H u" � r dxds D 0. Thus, the weak formulation of the diffuse

interface problem (3.3) is equivalent to

Z t

0

Z

˝T [˝H

˚

.�" C 1/ @t C .�" C 1/ u" � r � r�" � r 
	

dxds

D

Z

˝T [˝H

�

�".t/C 1
�

 .t/dx �

Z

˝T [˝H

�

�0;" C 1
�

 .0/dx: (3.26)

By passing to the limit as " ! 0 and using the convergence results of Theorem 4, one gets the

weak formulation of the sharp interface problem (3.11). Moreover, equation (3.11) can be formally

deduced as follows. Test equation (1.12) with some  2 C1
0 ..Œ0; t � � ˝//, multiply (1.14) by

.�1C 2�˝T / , and take the sum getting

0 D

Z t

0

Z

˝T [˝H

˚

�� � .�1C 2�˝T /r � u 
	

dxds:

By integrating by parts and using equation (1.9) and the boundary conditions on � and u, one

obtains

0 D

Z t

0

Z

˝T [˝H

˚

.�r�/r C .�1C 2�˝T /u � r 
	

dxds

C

Z t

0

Z

˙

�

Œr��TH � n � 2u � n
�

 dSds

D

Z t

0

Z

˝T [˝H

˚

.�r�/r C .�1C 2�˝T /u � r 
	

dxds C

Z t

0

Z

˙

.�2V / dSds: (3.27)



SHARP INTERFACE LIMIT OF A MODEL FOR TUMOR GROWTH 581

InterpretingV as the velocity describing the evolution of the interface˙ , we intuitively and formally

have
Z

˙

2V dS D

Z

˝T [˝H

@t .�1C 2�˝T / dx:

By (formally) integrating by parts this relation and substituting into (3.27) and using relations
R

˝T [˝H u �r dx D 0 and
R t

0

R

˝T [˝H @t dxds D
R

˝T [˝H  .t/dx�
R

˝T [˝H  .0/dx, we get

(3.11). This suggests that condition (3.11) encodes equations (1.9), (1.12), (1.14), and the boundary

conditions.

4. A priori estimates

In this section we derive some uniform-in-" estimates for solutions .u"; �"; �"/ to system (1.1)–

(1.6). In what follows C will denote a positive constant independent of " which possibly varies even

within the same line.

Let .u"; �"; �"/ be a solution to system (1.1)–(1.6). Integrating identity (3.4) over Œ�; t � and

recalling well preparedness of initial data (3.1),

E"

�

�".t/
�

C

Z t

�

Z

˝

jr�"j2dxds C

Z t

�

Z

˝

ju"j
2dxds D E"

�

�".�/
�

6 E".�0;"/ 6 C: (4.1)

Thus, recalling the definition of the energy functional

E".�"/ D

Z

˝

�

"
1

2
jr�"j

2 C
1

"
F.�"/

�

dx,

we have

Z

˝

"
1

2

ˇ

ˇr�".t/
ˇ

ˇ

2
dx C

1

"
F

�

�".t/
�

C

Z t

�

Z

˝

ˇ

ˇr�"

ˇ

ˇ

2
dxds C

Z t

�

Z

˝

ˇ

ˇu"

ˇ

ˇ

2
dxds 6 C: (4.2)

By using p-growth of F for large � and positivity of F 00.˙1/, we get that F.�/ >
1
C
.j�j � 1/2 for

all � 2 R. In particular, by using again p-growth of F , we deduce the estimates:



r�"





L2.0;1IL2.˝//
6 C , (4.3)



u"





L2.0;1IL2.˝//
6 C , (4.4)



"1=2r�"





L1.0;1IL2.˝//
6 C , (4.5)

Z

˝

j�".t/j
pdx 6 C for all t > 0, (4.6)

Z

˝

�

j�".t/j � 1
�2

dx 6 "C for all t > 0: (4.7)

Following [6], we define

W.�/ D

Z �

�1

q

2 QF .r/dr , where QF .r/ D min
n

F.r/; max
z2Œ�1;1�

F.z/C r2
o
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and

w".x; t/ D W
�

�".x; t/
�

for a.a. .x; t/ 2 ˝ � .0;1/:

Note that by definition F.r/ D QF .r/ for all r 2 Œ�1; 1�. By applying the Young inequality, we

easily estimate
Z

˝

jrw"jdx D

Z

˝

q

2 QF .�"/jr�"jdx 6 E".�"/ 6 C: (4.8)

In particular, the functionsw" are uniformly bounded in L1.0;1IW 1;1.˝//. We now prove that

kw"k
C

1
16 .Œ0;1/IL1.˝//

6 C ,

k�"k
C

1
16 .Œ0;1/IL2.˝//

6 C:

To this aim let � 2 C1.Rd / be any fixed mollifier satisfying

0 6 � 6 1 in B1, � D 0 in R
d n B1,

Z

B1

�dx D 1:

For any �0 > 0 and any � 2 .0; �0�, we define

��
" .x; t/ D

Z

B1

�.y/�".x � �y; t/dy for all x 2 ˝ , t > 0:

Here we have assumed that �" has been extended to a small neighborhood of ˝ as follows: for any

x … ˝ such that dist.x;˝/ 6 �0, we define

�"

�

S C ��.S/; t
�

D �"

�

S � ��.S/; t
�

for all S 2 @˝ , � 2 Œ0; �0�, t > 0

where � denotes the outward normal to @˝ . Note that, by standard properties of mollifiers, we have


r��
" .t/





Lq.˝/
6 C��1



�".t/




Lq.˝/
6 C��1 for all 1 < q 6 p: (4.9)

and



��
" .t/ � �".t/





2

L2.˝/
6

Z

˝

Z

B1

ˇ

ˇ�".x � �y; t/ � �".x; t/
ˇ

ˇdxdy

6 C

Z

˝

Z

B1

ˇ

ˇw".x � �y; t/ �w".x; t/
ˇ

ˇdxdy

6 C�


rw".t/




L1.˝/
6 C�: (4.10)

Here we have used inequality

c1j�1 � �2j 6 jW.�1/ �W.�2/j 6 c2j�1 � �2j
�

1C j�1j C j�2j
�

, (4.11)

for all �1; �2 2 R and some positive constant c1; c2, which follows directly from the definition of

W . We fix 0 < � < t . Taking the difference of equation (3.3) at time t and the same equation at

time � , and using a density argument
Z

˝

�".t/ dx �

Z

˝

�".�/ dx D

Z t

�

Z

˝

�

�"@t � .r�" � u"�"/r 
�

dxds

D

Z t

�

Z

˝

�

� .r�" � u"�"/r 
�

dxds



SHARP INTERFACE LIMIT OF A MODEL FOR TUMOR GROWTH 583

for all  2 H 1
0 .˝/. Choosing  D �

�
" .t/ � �

�
" .�/, as it is constant in time, we estimate

Z

˝

�

�".t/ � �".�/
��

��
" .t/ � ��

" .�/
�

dx

D �

Z t

�

Z

˝

�

r�".s/ � u".s/�".s/
��

r��
" .t/ � r��

" .�/
�

dxds

6

� Z t

�

Z

˝

ˇ

ˇr��
" .t/ � r��

" .�/
ˇ

ˇ

4
dxds

�
1
4
� Z t

�

Z

˝

ˇ

ˇr�".s/ � u".s/�".s/
ˇ

ˇ

4
3 dxds

�
3
4

6 C.t � �/
1
4 sup

s2.�;t/

kr��
" .t/kL4.˝/

�

1C

Z t

�

kr�".s/k
4
3

L
4
3 .˝/

ds

C

Z t

�

k�".s/k
4
L4.˝/

ku".s/k
2
L2.˝/

ds

�
3
4

6 C.t � �/
1
4 ��1

�

1C kr�".s/k
4
3

L2.0;1IL2.˝//

C k�".s/k
4
L1.0;1IL4.˝//

ku".s/k
2
L2.0;1IL2.˝//

�
3
4

6 C.t � �/
1
4 ��1: (4.12)

Here we used estimates (4.3), (4.4), (4.6) together with p > 4, and (4.9) for q D 4. Let now

a; b; c; d be real number such that a D b C c C d . Then,

a2 D a.b C c C d/ 6 ab C ac C ad 6 ab C
1

2
a2 C c2 C d 2: (4.13)

Using (4.13) for a D �" .t/ � �" .�/, b D �
�
" .t/ � �

�
" .�/, c D �" .t/ � �

�
" .t/, and d D �" .�/ �

�
�
" .�/, and estimates (4.10)–(4.12), we deduce



�".t/ � �".�/




2

L2.˝/
6 2



�".t/ � ��
" .t/





2

L2.˝/
C 2



�".�/ � ��
" .�/





2

L2.˝/

C 2

Z

˝

�

�".t/ � �" .�/
��

��
" .t/ � ��

" .�/
�

dx

6 C
�

�C jt � � j
1
4 ��1

�

:

Choosing � D jt � � j
1
8 , we get

k�"k
C

1
16 .Œ0;1/IL2.˝//

6 C

and, recalling (4.11),

kw".t/ � w".�/kL1.˝/ 6 k�".t/ � �".�/k
2
L2.˝/

�

C C k�".t/k
2
L2.˝/

C k�".�/k
2
L2.˝/

�

6 C.t � �/
1

16 ,

which implies

kw"k
C

1
16 .Œ0;1/IL1.˝//

6 C:
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Starting from the elliptic equation �" D �"��" C 1
"
F.�"/, it is possible to derive uniform

estimates for �" and for the discrepancy density

�".�"/ D
"

2

ˇ

ˇr�"

ˇ

ˇ

2
�
1

"
F.�"/:

Lemma 6 [6, Lemma 3.4] There exist positive constants C and "0 such that for every t and

" 2 .0; "0/ the following holds

k�".t/kH 1.˝/ 6 C
�

E".t/C kr�".t/kL2.˝/

�

:

In particular, for every s > 0 there exists a positive constantC.s/, such that k�".t/kL2.0;sIL2.˝// 6

C.s/.

Lemma 7 [6, Theorem 3.6] There exist a positive constant �0 2 .0; 1� and continuous

nondecreasing functions M1.�/ and M1.�/ defined on Œ0; �0/ such that for all " 2 .0; 1
M1.�/

/ and

all t > 0, we have

Z t

0

Z

˝

.�".�"//
C dxds 6 �

Z t

0

E".�"/dxds C "M2.�/

Z t

0

Z

˝

j�"j2dxds:

In particular,

lim
"!0

Z t

0

Z

˝

�

�".�"/
�C

dxds D 0: (4.14)

5. Convergence

Starting from the above uniform estimates, we now deduce some convergence results.

Lemma 8 For every sequence " ! 0, there exists a (not relabeled) subsequence and a

nonincreasing function E , such that

E"

�

�".t/
�

! E.t/ for all t > 0:

Proof. Define E".t/ D E".�".t//. Note that E".t/ is uniformly bounded as a consequence

of identity (4.1). Furthermore, the sequence E".�/ is uniformly continuous as a consequence

of monotonicity, of the energy identity (4.1), and of the uniform bounds of r�" and u" in

L2.0; T IL2.˝//. Thus, the statement of the lemma follows by applying the Ascoli–Arzelà

theorem.

Lemma 9 For every sequence " ! 0, there exists a (not relabeled) subsequence and a set ˝T �

˝ � Œ0;1/, such that

w" ! 2��˝T a.e. in ˝ � Œ0;1/and in C
1

17

�

Œ0; t �IL1.˝/
�

for all t > 0,

�" ! �1C 2�˝T a.e. in ˝ � Œ0;1/ and in C
1

17

�

Œ0; t �IL2.˝/
�

for all t > 0,

�" ! � weakly in L2
loc

�

0;1IH 1.˝/
�

,

u" ! u weakly in L2
�

0;1IL2
div.˝/

�

:
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Moreover,
Z

˝

j�˝T
t

� �˝T
�

jdx 6 C jt � � j
1
8 for any 0 6 � < t ,

j˝T
t j D j˝T

0 j for any t > 0, �˝T 2 L1
�

0;1I BV.˝/
�

and

2� jD�˝T
t

j.˝/ 6 E.t/ 6 E.0/:

Proof. As kw"kL1.0;1IW 1;1.˝// C kw"k
C

1
16 .Œ0;1/IL1.˝//

6 C and W 1;1.˝/ is compactly

embedded in L1.˝/, there exists a (not relabeled) sequence " ! 0 such that

w" ! w a.e. in ˝ � Œ0;1/ and in C
1

17

�

Œ0; t �IL1.˝/
�

for all t > 0,

for some limit w 2 C
1

17 .Œ0; t �IL1.˝// (cf. [23, Prop. 1.1.4] and [2, Thm 4.4]). Recalling the

definition of w" and estimate (4.11), we conclude that there exists � 2 C
1

17 .Œ0; t �IL2.˝// such that

�" ! � a.e. in ˝ � Œ0;1/ and in C
1

17

�

Œ0; t �IL2.˝/
�

for all t > 0:

As a consequence of estimate (4.7), we deduce

Z

˝

�

j�"j � 1
�2

dx 6 C

Z

˝

F.�"/dx 6 "C .

Thus, the limit � takes values in f�1; 1g. In particular, there exists a set˝T � ˝ � Œ0;1/ such that

� D �1C 2�˝T :

Hence, by definition of w" and continuity of QF , we get

w D

Z �

�1

q

2 QF .r/dr D 2��˝T ,

where � D
R 1

�1

q

1
2

QF .r/dr D
R 1

�1

q

1
2
F.r/dr . Here we used the fact that F.r/ D QF .r/ for

r 2 Œ�1; 1�, which directly follows from the definition of QF . Let now˝T
t D fx 2 ˝ W .x; t/ 2 ˝T g.

Then, for every 0 6 � < t , we have

Z

˝

ˇ

ˇ�˝T
t

� �˝T
�

ˇ

ˇdx D

Z

˝

ˇ

ˇ�˝T
t

� �˝T
�

ˇ

ˇ

2
dx D lim

"!0

1

4

Z

˝

ˇ

ˇ�".t/ � �".�/
ˇ

ˇ

2
dx

6 C jt � � j
1
8 :

As a consequence of the mass conservation

Z

˝

�".t/dx D

Z

˝

�0dx D m0j˝j,

we have

j˝T
t j D

Z

˝

�˝T
t

dx D lim
"!0

1

2

Z

˝

.�".t/C 1/ dx D
m0 C 1

2
j˝j D j˝T

0 j:
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Moreover, as a consequence of estimate (4.8), we have jDw".t/j.˝/ D krw".t/kL1.˝/ 6

E".�".t//. Taking the liminf for " ! 0 and using the lower semicontinuity of the BV norm, we

conclude

2� jD�˝T
t

j.˝/ 6 jDwj.˝/ 6 E.t/:

Finally, convergences

�" ! � weakly in L2
loc

�

0;1; IH 1.˝/
�

,

u" ! u weakly in L2
�

0;1IL2.˝/
�

follow directly from Lemma 6 and estimate (4.1) respectively.

As a consequence of estimate (4.1) and (4.5), we have that convergences (3.16) and (3.17) hold

for some limit measures � and �ij . Thus, we proved the convergence results stated in Theorem 4.

We now construct the varifold V and show that the limits �, u, �, and �ij solve the sharp-interface

problem.

We first note that, for any 0 6 � < t , we have

Z t

�

Z

˝

d�.x; s/ D lim
"!0

Z t

�

Z

˝

e".�"/dxds D

Z t

�

E.s/ds:

Moreover, � can be decomposed (in the sense of Radon measures) as follows

d�.x; t/ D d�t .x/dt ,

where �t . N̋ / D E.t/ for a.a. t 2 .0;1/. In particular, using relation (4.1) and the weak lower

semicontinuity of the norm, we obtain

�t . N̋ / D E.t/ D lim
"!0

E".t/

6 � lim inf
"!0

�Z t

�

Z

˝

jr�"j2dxds C

Z t

�

Z

˝

ju"j
2dxds

�

C lim
"!0

E".�".�//

6 �

Z t

�

Z

˝

jr�j2dxds �

Z t

�

Z

˝

juj2dxds C E.�/ D �� . N̋ /,

which is equivalent to (3.13). Moreover, as a consequence of condition 2� jD�˝T
t

j.˝/ 6 E.t/

obtained in Lemma 9, we deduce estimate (3.10). Next we study the relation between �ij and �. Let

Y;Z 2 C
�

N̋ � Œ0; t �IRd
�

and observe that

Z t

0

Z

˝

Y � ."r�" ˝ r�"/ �Zdxds 6

Z t

0

Z

˝

jY jjZje".�"/dxds C

Z t

0

Z

˝

jY jjZj�".�"/dxds:

Using Lemma 7, we have that

lim
"!0

Z t

0

Z

˝

jY jjZj�".�"/dxds 6 0:

Hence, taking the limit for " ! 0, we get

Z t

0

Z

˝

Y �
�

d�ij .x; s/
�

d�d
�Z 6

Z t

0

Z

˝

jY jjZjd�.x; s/: (5.1)
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Thus, �ij are absolutely continuous with respect of � in the sense of measures. Consequently, we

can define the Radon-Nikodin derivative of �ij with respect to � as a �-measurable function vij

such that

d�ij .x; t/ D vij .x; t/d�.x; t/ �-a.e.

From formula (5.1), it follows that

0 6 .vij /d�d 6 I �-a.e.

and that

�

vij

�

d�d
D

d
X

iD1

civi ˝ vi �-a.e.

for some �-measurable functions ci and unit vectors vi , i D 1; : : : ; d . Moreover, they satisfy

0 6 ci 6 1,

d
X

iD1

ci 6 1;

d
X

iD1

vi ˝ vi D I:

In order to construct the varifold V , we observe that, by multiplying equation

�" D �"��" C
1

"
F 0.�"/

with Y � r�" for some Y 2 C 1. N̋ IRd / and integrating over˝ , we get

Z

˝

Y � r�"�"dx D

Z

˝

Y � r�"

�

� "��" C
1

"
F 0.�"/

�

dx

D �

Z

˝

rY W
�

e".�"/I � "r�" ˝ r�"

�

dx C

Z

@˝

e" .��/ Y � �dS: (5.2)

By passing to the limit for " ! 0 in relation (5.2), we obtain, for every t > 0 and Y 2 C 1
0

�

˝IRd
�

,

2

Z

˝

�˝T
t

r � .�.t/Y /dx D

Z

˝

rY W
�

I �

d
X

iD1

ci .x; t/vi .x; t/˝ vi .x; t/
�

d�t .x/

D

Z

˝

rY W

d
X

iD1

bt
i .x/

�

I � vi .x; t/˝ vi .x; t/
�

d�t .x/

where the coefficients bt
i are given by

bt
i .x/ D ci .x; t/C

1

d � 1

�

1 �

d
X

iD1

ci .x; t/
�

:

Note that

0 6 bt
i 6 1,

d
X

iD1

bt
i > 1:
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Finally, we define pt
i 2 P by

pt
i D

˚

vi .x; t/;�vi .x; t/
	

;

V t as in (3.9), and V by

dV.x; t; p/ D dV t .x; p/dt:

Moreover, by construction V satisfies conditions (3.12) and (3.18).

Relation (3.11) follows from (3.26) by passing to the limit " ! 0, and using the above

convergences.

We are only left to show relation (3.14). To this aim, let ' 2 C1
0;div

�

˝IRd
�

. Then, by using

relation u" D �rP C �"r�", for every t > 0, we have

Z t

0

Z

˝

u"'dxds D �

Z t

0

Z

˝

r�" � '�"dxds:

The above convergence results allow us to pass to the limit for " ! 0 getting

Z t

0

Z

˝

u'dxds D �

Z t

0

Z

˝

r� � '
�

� 1C 2�˝T
s

�

dxds:

Integrating by parts the right-hand side, we obtain

Z t

0

Z

˝

u'dxds D

Z t

0

Z

˙s

2�'dSds:

This concludes the proof of Theorem 4.
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(Istituto Nazionale di Alta Matematica) for E. R. S. M. acknowledges support by the Austrian

Science Fund (FWF) project P27052-N25. The Authors would like to acknowledge the kind

hospitality of the Erwin Schrödinger International Institute for Mathematics and Physics, where

part of this research was developed under the frame of the Thematic Program Nonlinear Flows.

References

1. Abels, H. & Lengeler, D., On a sharp interface limit for diffusive interface models for two-phase flows.

Interfaces Free Bound. 16 (2014), 395–418. MR3264795

2. Amann, H., Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. Ser. III 35

(2000), 161–177. Zbl0997.46029 MR1783238
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