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We consider the quasi-static evolution of a prescribed cohesive interface: dissipative under loading
and elastic under unloading. We provide existence in terms of parametrized BV -evolutions,
employing a discrete scheme based on local minimization, with respect to the H!-norm, of a
regularized energy. Technically, the evolution is fully characterized by: equilibrium, energy balance
and Karush—Kuhn-Tucker conditions for the internal variable. Catastrophic regimes (discontinuities
in time) are described by gradient flows of visco-elastic type.
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1. Introduction

In this work we study a quasi-static evolution for an elastic material containing a cohesive
crack. Models of this type have been studied under many different mechanical and mathematical
hypotheses. Before presenting our setting and our results, we recall some recent works, covering
different research directions.

First of all, we mention [10] and [8], a couple of results obtained in the framework of energetic
evolutions [17]. From our perspective, and from the mechanical point of view in general, it is
interesting that in these works the cohesive potential depends, at time ¢, both on the crack opening,
say [u](z), and on an internal variable, say £(¢), given (roughly speaking) by the maximal crack
opening [u] in the interval [0, ¢]. This feature allows to introduce irreversibility (by the monotonicity
of §) and to distinguish between different loading-unloading regimes: [10] considers a constant
unloading while [8] considers a more general convex unloading, introducing Young measures. These
energetic evolutions are obtained, as usual, taking the limit of time-discrete evolutions in which the
time-incremental problem is a (global) energy minimization problem. A similar approach is pursued
also in [22] employing a “damage like” interface energy, in place of an internal variable. In this
context we would like to point out also the weaker notion of directional local minimizers proposed
in [21], actually for a gradient damage model.

Let us turn to BV -evolutions, another class of quasi-static evolutions. In this framework,
developed to overcome some issues of energetic evolutions, the system attains, at each time, an
equilibrium configuration which is not necessarily an energy minimizer, as it is for energetic
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evolutions. Typically, BV -evolutions are obtained by vanishing viscosity, i.e., as the limit of
auxiliary time-continuous parabolic systems (see [17] for abstract results and [1, 7] for cohesive
models). Alternatively, see [19], they can be generated as the limit of time-discrete evolutions in
which the time-incremental problem is a local energy minimization problem. In both cases, it is
necessary to provide (or identify) a norm or a metric which, together with the energy, drives the
evolution. Clearly, different choices of this norm or metric are interesting from the mathematical
and mechanical point of view; for instance, in the frame of cohesive fracture, [7] employs the bulk
L?-norm while [1] employs a “metric” depending on the crack length (the surface energy actually
has an activation threshold followed by a cohesive behaviour).

Let us briefly mention some results in the one dimensional setting, i.e., for elastic bars with
cohesive cracks; this simplified setting is often useful to provide a representative picture of the
complex behaviour of more realistic problems. For instance, [5] and [11] contain fine studies of
(stable and unstable) equilibrium configurations, [ 16] studies a dynamic problem while [9] presents
a quasi-static evolution generated by gradient flows, as incremental problems, along different
loading-unloading paths.

We conclude this brief overview with some computational works, closely related to our work.
We first mention [3] which makes use of a regularized cohesive potential, similar to the one
employed here, in order to obtain convenient (differentiable) energies for numerical simulations.
The class of cohesive laws used here is inspired by [20] both for the loading-unloading regimes and
for the regularization of the density (labelled “Smith-Ferrante” in [20]). We finally remember the
recent [4] which contains an abstract approximation result (from discrete to continuum) applied to
the viscosity approach of [7] and also [24] which employs an arc-length approach, similar to ours,
to capture unstable regimes of propagation (see § 8).

Now, let us describe our setting and the main results, without going into technical details. We
work within the anti-plane setting. We start with a traction-separation law =(|[u])|, £) (depending
on the modulus of the opening [u] and on the internal variable £) which is linear in the unloading
branch 0 < |[u]| < &, decreasing and convex in the loading branch |[u]| > & (see Figure 2a). The
cohesive potential (-, £) is then obtained by integration of (-, £). We remark that the cohesive
density [u] +— ¥ (|[u]l, §) is not differentiable in the origin, unless & > 0. Given a function ¢ >
g(t) the potential energy is given by

Fltou.b) = %/Q\Kmvw + e dx + /K YLl &) dH!,

where §2 is the reference configuration, K is the cohesive interface (or crack), u € U =
fu e HY (R \ K) : u = OondpR} where dp2 C 0£2. Since differentiability of the
energy is a convenient property, both theoretically and numerically, we introduce a family of
regularized (differentiable) potentials ¥ (|[u]|, §) approximating v (|[u]|, £). We denote by F the
corresponding energy.

We work within the framework of parametrized BV -evolutions [19]. Our strategy, to find an
evolution for F, is the following. First, we define a family of evolutions for the regularized energies
Fe and then, passing to the limit as ¢ — 0, we find an evolution for F. To find an evolution for F,
we follow this approach. First, we employ a discrete (incremental) scheme, in which the updated
configuration is given by a local minimization problem. More precisely, let As, \ 0; for each n €
N define by induction a sequence (, k. Un k. &,k ), for k € N, as follows: if 0y Fe(ty i, Un k. En k) 7
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0 then
Ink+1 = Ink
Unk+1 € argmin{Fe(ln i, V. §n k) © [V — Unklgr < Asn},
Sn,k-i—l = én,k \% |[[un,k+1ﬂ|s

while, if 0y, Fe(ty k, Un k. En k) = O then

nk+1 =tk + Asp,
un,k+1 = un,kv
sn,k+l = sn,k-

Note that in this scheme the time variable is updated only when an equilibrium configuration
is attained (the approach is indeed inspired by minimizing movements for gradient flows). The
piecewise-affine interpolation of the sequence (¢, k. Un k. &n k), for k € N, in the discrete points
Spk = kAs, provides a parametrized “discrete” evolution s = (t,(s), U, (s), &, (s)) for s €
[0, +00). By construction, the evolutions (¢, u,, &), forn € N, are uniformly Lipschitz continuous
and thus (upon extracting a subsequence) there exists a limit, say s > (¢:(s), ue(s), £-(s)), which
is indeed the parametrized BV -evolution for the energy .. Finally, passing to the limit for & — 0
yields a parametrized BV -evolution s — (¢(s), u(s), £(s)) for the energy F.

Note that in general s is not the physical time variable but an auxiliary “length” parameter in
the (¢, u) space. In this framework discontinuities in time are represented by intervals, say [s~, s ],
where ¢’ = 0 while u (and possibly ) changes; on the contrary, continuity points in time correspond
to parametrization points in which ¢'(s) > 0.

Now we describe in more detail the characterization of this evolution (for the precise statement
see Definition 3.1):

(C) for almost every s € [0, +00) the following Karush—Kuhn—Tucker conditions hold,

g 20, u@ll <6,  FO(I-§6) =0,  H'-aeonk;

(S) forevery s € [0, +00) with t'(s) > 0 the following equilibrium condition holds,

|05, F(2(s). u(s),§(s))| = 0,
(E) forevery s € [0, 400) the following energy balance holds,

F(t(s), u(s), £(5)) =f(zo,wo,§o)+/0 N F(t(r),u(r),&(r)) ¢’ (r)dr +
_/0 |07 F(t (), u(r). £(r) | dr .

In () and (E) we have to consider the slope |0, F(t,u,§)| (see §2) since F is not everywhere
differentiable with respect to u. We remark that in our characterization the energy balance (E) is
an equality and, most important, that all the Karush—Kuhn—Tucker conditions (C) are provided in a
strong form. Moreover, it is noteworthy that for every T € (0, +00) there exists S € (0, +00) such
that £(S) = T'; as a by-product we also prove that discrete evolutions in a finite time horizon 7 > 0
are parametrized in a single, finite length, interval, say [0, S], and obtained by a finite number of
induction steps.
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Finally, considering in U the norm [[ul| = (fq\ g |Vu|® dx)'/2, conditions (S) and (E)
provide the following system of PDEs: for v(s) = u(s) + g((s)) + A(s)u’(s) and A(s) =
0, F(t(s), u(s), §(s))] it holds

Av =0 in H-1(2 \ K),

v = (t(s) ondpS2,
dfv=0,v=h onKk,

v =0 on [(32) \ K]\ dp 2,

where 1 € L*°(K) and

h=t(|[ull.€)(sen [u]) #H'-ae.on {([u].£) # (0.0)}.

|h| < 7(0,0) otherwise.

As we will see in §7 and §8 this system gives both the equilibrium conditions in the continuity
points, i.e., where t’(s) > 0, and the behaviour in the discontinuity intervals, i.e., where ¢’ = 0.
Note that, in the former case it turns out that A(s) = 0, by condition (E), and thus v(s) becomes
simply the (total) displacement u(s) + g(¢(s)); in the latter, when A(s) # 0, we formally obtain
a visco-elastic (Kelvin—Voigt) system; this is a consequence of the choice of the H'-norm in the
discrete scheme.

2. Preliminaries
L? vector-valued functions. Let us recall the following result (see, e.g., [15], § 2.22)

Lemma 2.1 Let X be a reflexive Banach space, and T > 0. Let @ be a bounded linear functional
on L?(0,T;X) (1 < p < +00). Then there exists u € L? (0, T; X') such that | ®|| = lull; »» and

T
®(v) =/0 (u(t),v(t))X,’X dt

foreveryv € L?(0,T; X).

REMARK 2.2 In particular, if X is a reflexive Banach space, then the space L*°(0, T'; X') can be
identified with the dual of the space L' (0, T'; X). The duality pair is given by

T
(1, ) Loo(0,7:x7),L1 (0.T;:X) =/0 {u@®),v(0)y, y dt

Let us also recall that L?(0,7;X) (1 < p < +00) is separable if (and only if) X is separable
(see, e.g., [15], § 2.20). Hence, if X is a separable reflexive Banach space, then bounded sets in
L*(0, T; X') are sequentially relatively compact with respect to the weak™* convergence.

Sobolev vector-valued functions. Let us recall (see, e.g., [6]) that if X is a Banach space and
g € LY(0,T; X) then the function u defined by u(t) = jot g(s) ds is a.e. differentiable in (0, T')
andu’ = gae.in (0, 7).
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We define the space W12(0, T; X) (with 1 < p < 00) as the space of function u: [0, T] — X
which can be represented as

u(t) = u(0) +/0 g(s)ds (t€[0,T])

for a suitable g € L?(0,T; X). The function g equals the derivative u’ of u a.e. in (0, T'). We set

lullwr.0.7:3) = lullLeo,r;x) + 1w llLr@,7:x)-

Assume that X is reflexive and separable (hence X' is reflexive and separable). Then ( [6],
Cor. A.2) the space of Lipschitz functions [0, T] — X’ coincides with W12 (0, T; X"). Moreover,
the following proposition holds.

Proposition 2.3 Let (u,) be a bounded sequence in W1>°(0, T; X"). Then there exists a function
u e W1’°°(O, T; X') such that, up to a subsequence,

un(t) = u(?) w-X" foreveryt €0,T],
u, — u' w*-L*(0,T; X').
Moreover, the w-X' convergence of u, (t) is uniform with respecttot € [0,T], i.e.,
ifty — t then un(ty) = u(t) w-X'.

We will refer to the convergence properties just stated as weak* convergence in W1°°(0, T; X').

Slope of a functional. Directional derivatives. Let X be a Banach space, and F a functional X —
R. We define the slope of F inug € X as

|07 F(uo)| := lim supw
uo [ —uol|

where [-]— denotes the negative part.
If F is Fréchet differentiable in 1, then

|07 F(uo)| = [|dF (uo)llx" -

Assume now that F admits only (unilateral) directional derivatives, i.e., for every z € X the
following limit exists and is finite:

0F (uo: z) = hlim Fluo +hz) — F(uo)‘

2.1
—0+ h 2.1

The following result provides a relationship between the slope and the directional derivatives.

Proposition 2.4 Let ug € X, and assume that the limit (2.1) is uniform with respect to ||z| < 1.
Then
|97 F (uo)| = sup{[dF (uo; 2)]- : |z]| <1}

Proof. Letz € X with ||z|]| < 1 and z # 0. Then by continuity of [-]—
[F(uo + hz) — F(uo)]-

[9F (uo:2)]- = lim el (EA
< lim sup @) = Fluo)l- 10~ F(uo)).

u—ug lu —uoll
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By the arbitrariness of z we have |07 F (ug)| = sup{[aF(uo; D= z]| < 1}. Let us address the
opposite inequality. Let u, — u be a sequence satisfying

i Wn) — Fuo)l- 9™ F (o).

n—>+o0 [ — uol|

Let hy, = ||uy —uol| and z, = (uy —ug)/ hn; thus u, = ug + hyz,, with ||z, || = 1. Fix ¢ > 0. By
assumption (see Remark 2.5 below, too) we can assume that for every n

F(uo + hnzn) — F(uo)
hy

— 0F (ug;zn)| < &,

thus
F(uo + hnzn) — F(uo)

hy

Since []— is monotone and [x — ¢]— < [x]- + &, we get

= 0F (uo; zn) — &.

[F(uo + hnzp) — F(uo)]-
hn

< [0F (uo; zn)]- + & < sup{[0F (uo: 2)]- @ ||z|| < 1} +&.

The first item of these inequalities tends to |0~ F (u¢)| and we conclude by the arbitrariness of ¢. [

REMARK 2.5 (a) The uniformity assumption in the preceding proposition can be expressed by
requiring that for any positive infinitesimal sequence (4,) and for every sequence (z,) in X,
with ||z, || < 1, we have

F h - F
tim L0 nzn) = F@0) 0] 2o,
n—-+o00 hn
(b) Itis easy to check that if F' is Fréchet differentiable in u¢ then the limit (2.1) is uniform with
respectto || z|| < 1.

3. Setting

Let A C R? be an open, bounded and connected set. We say that A is piecewise-C ! or that A has
piecewise-C ! boundary if every point x € A has a neighbourhood in which the boundary 94 is
the graph (in a suitable system of coordinates) of a piecewise-C ! function. Note that this condition
does not allow the boundary of A to have cusps.

Let 2 C R? be an open, bounded and connected set with a piecewise-C! boundary. Let
a1, ..., 0y, be C! simple curves [0, 1] — $2 such that the sets I'; = a; ((0, 1)) are pairwise disjoint,
see Figure 1(a). Let K := U]- a; ([0, 1]). We will assume that

(i) K N 0as2 is asubset of the set of endpoints of the arcs [; in particular, (3§2) \ K consists of a
finite number of arcs;
(i) up to a negligible set, £2 \ K is the disjoint union of finitely many connected piecewise-C'!
open sets §2;, see Figure 1(b); in particular, none of the curves [ is tangent to d2;
(iii) each arc I7 is part of the boundaries of exactly two sets of the family (£2;);.
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I's
I'
Ty Q\ K
Ot m Op§ OpQ2 Ips?
(a) Crack path K and Dirichlet boundary dp £2 (b) Decomposition of §2 \ K in piecewise-C ! domains

Fic. 1: Geometric setting

In the setting of anti-plane elasticity, the displacement is a scalar function on £2 \ K. On a portion
0,82 of the boundary 352 with H!(9,£2) > 0 we impose boundary conditions, parametrized
over the positive ‘time’ axis Rt = [0, 4-00): if g is a given function [0, +00) — H!(£2), we
require that the displacement equals g(¢) on 0,2 at any ¢t. More precisely, we assume that g €
C1([0, +00); H'(£2)) with [|gllc1 ([0, +o0):zr1) < -+00." In particular g € W ([0,T]: H'(2))
for every T > 0. Note that, directly from the definition of g’, the map Vg: [0, +00) — L2(£2,R?)
is a.e. differentiable, and
%Vg(t) =Vg'@) a.e.in £2.
For convenience, for every ¢, we will write the admissible displacements as v = g(¢) + u where
u € U, with

U= {u e H' (Q\K):u =00n8D.Q}.

This space will be equipped with the usual H! norm: we simply write |u| if u € U.

A natural assumption on dp €2 is that each connected component A of £2 \ K shares a part of
the boundary where the datum g is placed (for instance, this guarantees that we can control the H'!
norm on A by the L? norm of the gradient). Thus, we require that

H(3p2 N A) > 0, for every connected component 4 of 2 \ K.

Moreover, we require that dp §2 consists of a finite number of C L arcs.
If u € U, we denote by
[u] =ut —u”

the jump of u on K, with respect to a fixed orientation (however, the relevant results involve only
the absolute value of [u]; see Remark 3.2, too).
We consider an elastic energy with the simple form:

£(t.u) = %/Q\K“W(u +e®)Pdx (20, uel).

! The case of a datum g which is assigned on a bounded interval [0, 7] can be managed in a similar way.
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() Traction-separation law: function t(-, §) (b) Potential ¥ (-, §)

Fic.2: Traction-separation law and potential for a cohesive failure model

where > 0 is the shear modulus. For the sake of simplicity, we will assume, without loss of
generality, that & = 1. We match this energy with a cohesive potential energy, which we define
starting from the traction-separation law, as follows.

Let £:[0, +00) — [0, +00) be a C!, non-increasing, summable, convex function: 7 can be
interpreted as the traction-separation law for the originally unfractured configuration in a cohesive
failure model. Denote by w the crack opening, defined (pointwise) on the crack path K; consider
a configuration where the maximum opening previously experienced by the material is given
pointwise by the non-negative function £. If § = 0 we define T(w,&) = T(w). If § > 0 we
assume a linear loading-unloading regime followed by a softening loading regime; thus we get a
traction-separation law of the form (see Figure 2(a)):

E@/Ew  ifwsé
if w> £

T(w)

t(w.§) = {

Next, we define the cohesive energy density i as a function of both w and the maximum opening &
through the traction-separation law 7 (w, £) as (see Figure 2(b)):

£ £

v(w,§) = / T(r)dr —/ o(r, &) dr. 3.1
0 w

The first term in (3.1) corresponds to the energy of the opening crack &, while the second term gives

the released energy when the opening is reduced to w < &. Note that the underlying physical model

will naturally force the condition w < £ in the definition of an evolution path, however (3.1) defines

Y forevery (w, £) € RY x R™ (and not only for w < £). Clearly dy/dw = t.

We point out that ¥ can be equivalently expressed as

WWQZA

Y(w, &) = ¥ (w, &) + v (&), (3.3)

w

3
f(r)dr—i—/ [T(r) —t(r,&)]dr (3.2)

and also as
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where ;
V. = / Wneydr plE) = / () — <( ©)] dr
0 0

denote the stored and the dissipated energy, respectively. In the sequel, we will work with the
density ¥ without making the distinction between stored and dissipated energy. In Proposition 3.3
we gather the main properties of .

On the crack path K we consider the energy

K(u.§) = /Kw(l[[um,s)dﬂl, (3.4)

defined in U x L%r (K) (here L2+(K) denotes the space of positive functions in L?(K)). For ease of
notation, we extend ¥ (-, £) all over R as an even function; thus, we can also write

Ku.g) = /Kw([[uﬂ,s)dﬂl.

The two terms previously set forth give the energy functional F: R x U x L% (K) — R defined
by

Fleou.£) = E(tu) + K. £) = %/ﬂ\K|V(u+g(t))‘2dx+/l(1ﬂ(|[[uﬂ|,.§) dH!.

Let us now introduce the notion of quasi-static evolution we deal with in this paper; as in [19] we
express it in terms of parametrized BV evolutions.

DEFINITION 3.1 Letug € U and & € L% (K), with |[uo]] < & a.e.on K. Let (¢, u, £): [0, +00) —
Rt xU x L2+(K) be a Lipschitz map such that

(10).1(0).60) = O.u0.f0). L _1(s) = +oo.

with 7(-) a non-decreasing function.
The map (¢, u, §) is a parametrized BV evolution for F if

(C) for almost every s € [0, +00) we have
§6)=0,  |u®]| <t6).  FO(EI-56) =0,  H'aeonK; (3.5)
(S) forevery s € [0, +00) with t/(s) > 0 we have
|0, F(1(s). u(s). £(s))| = 0: (3.6)

(E) forevery s € [0, +00) we have

F(t().u(s).§()) = Fl(to. wo. o) + /OS U F(t(r),u(r), £(r)) ¢'(r)dr +

—/0 |8;]-'(t(r),u(r),§(r))‘dr. 3.7
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When the boundary condition is defined in a finite time interval [0, T'] the parametrization
(t,u, &) is defined in a finite interval [0, S] and correspondingly the conditions (C), (S) and (E)
hold in [0, S].

In Theorem 6.2 we prove the existence of a parametrized BV evolution for the energy F.

Finally, we collect here a few properties which we will need in the sequel.

REMARK 3.2 Let v be a unit, normal vector field on 052 and K N £2; assume that v|m is the exterior

normal vector, and that v r is continuous for every j. Letu € H'(£2 \ K). For every i, the trace
J

of u on 3£2; is well defined as a function in H'/2(3£2;). This yields a trace u° of u on (3£2) \ K.
As to the trace on K, let I" be any of the arcs I'; which decompose K. Let i1 and i_ be such that
I" € 9§2;, N 3$2;_ and that the orientation v on I" agrees with the outer unit normal of £2;_ on I".
We denote by u™ on I” the trace of u P I', and by u™ on I" the trace of u o, on r.

I+ 11—
Let us now point out some properties of these traces.

(a) By the continuity of the trace operator on each £2;, if u € H'(£2 \ K) then

|| [u] ||L2(K) < ||”+||L2(K) + v L2k < Cllull

for a suitable constant C depending only on §2 and K.

(b) Let I',i; and i_ be as above. Then the trace operators map continuously H!(£2; . H L)
to the space H'/2(I"), which is continuously and compactly embedded in L7 (I") for every
q € [2,+00) (see, e.g., [12], §§ 6 and 7).

(c) If (uy)is asequence in H!(£2\ K) which converges weakly to an element u, then the continuity
of the trace operator implies that u,jf — u¥T weakly in H'/2(I") for every I' as above, hence

uf — u* in L2(K) and in particular [u,] — [u] in L?(K).

Proposition 3.3 The following properties hold.

(@) V¥ is continuous and bounded in R* x R,
(b) Define (see Fig. 2(b))

¥ (w) = /“’ T(r)dr, for every w = 0.
0

Then, if ¢ > 0

U@ - 382 E-w?)  fosw<g
Y. =1
v (w) fw=E§

while Y (w,0) = @(w)for everyw = 0.

) v(-,§) € Cl([O,—i—oo)) for every § = 0, and 0y = 1. In particular, 0 < 0y ¥ < 7(0) on
[0, +00), and 0, ¥ (0,£) = 0 if £ > O; remembering that ¥ (-, £) is extended from R to R by
even symmetry, it follows that ¥ (-, £) € C1(R) for every £ > 0.

(d) ¥ (w,-) is non-decreasing on [0,+00) for every w = 0; moreover, it is continuously
differentiable on [w, +00), and 0 < dgf < %f(O).

(e) v is Lipschitz continuous on RT x RT (hence on R x RT).
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Proof. (a) The continuity is immediate; the boundedness follows from the fact that 7 is summable,
and both the integrals in (3.1) are bounded by f0+°° T.

(b) This follows from (3.1) making use of the explicit form of t.

(¢) The property can be immediately deduced from (3.1) since t(-, £) is continuous on [0, +o0) for
every £ = 0.

(d) Let w = 0. Since ¥(w,§) = 1/7(11)) if £ < w, to prove that ¥ (w, -) is non-decreasing we
have only to show that ¥ (w, &) < Y (w,&) if w < & < &: this follows immediately
from equation (3.1) since 7(-,&1) = 7(-, &) = 0 (indeed, this implies that —ff)' (r,§1)dr <

— [ 2(r ) dr).
Let us now prove the C !-differentiability of ¥ (w, -) on [w, +00). If w = 0 then

¥(0,8) = Y(§) — 11(£)E,  forevery & = 0,
and

d
d—sw(o,@ = 1(§) — 37/ ())§ — 31(6) = 3(T(®) — T (©)%):

now, taking the convexity of 7 into account, we have 0 < 7(§) — 7/(§)¢§ < 7(0).
Ifw>0and & > w, then ¥ (w, &) = Y (€) — %%(52 — w?), so that

d 2(E) — 7 (6)E
A %%

Since 0 < (£2 — w?)/£2 < 1, we conclude again by the convexity of Z.

(e) By (c) and (d) the functions v/ (-, §) and v (w, -) are Lipschitz continuous on Rt with Lipschitz
constants independent of £ and w (recall that ¥ (w, -) is constant on [0, w]): the global Lipschitz
continuity of 1 on R* x R™ then follows.

(% —w?).

O
Corollary 3.4 The functional K:U % Li (K) — R™ is Lipschitz continuous.
Proof. Take Proposition 3.3 (e) into account together with Remark 3.2 (a). O

Lemma 3.5 The functional & is of class C' on RT x U (i.e., it is Fréchet differentiable on RT x U
with continuous derivative), and

0:E(t,u) = /Q\K V(u+g()Vg' () dx.

aE(t,u)z] = /:2\1{ V(u+ g(t))Vzdx (z el).

Proof. 1t is enough to show that the partial Fréchet derivatives exist and are continuous. The result
about 9, £ (¢, u) is standard; that about d,E(¢, u), can be obtained by composition. O

Since the partial derivative dy, ¥ (w, £) does not exist in the origin, i.e., for w = & = 0, it will
be useful to have the directional derivative 9, (w, §;z) of ¥ in R x R™ (according to (2.1) with
X =R): forevery (w,§) € R x RT and z € R it turns out that

dwy(w,§)z = (jw].§)(sgnw)z i (w,§) # (0,0)

X , 3.8)
2(0)|z] = 7(0,0)|z]| if (w, §) = (0,0),

¥ (w,§;2) =
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where we have set sgn0 = 0 (however, note that if w = 0 then t(Jw|,§) = 0if & # 0). In the
following result we study the directional differentiability of F according to (2.1).

Lemma 3.6 The functional K admits (unilateral) directional derivative 0,K(u, &; z) for any z € U,
and

k. 2) = [ Buw (il & 2]) an! (3.9)

(where 0y, is defined in (3.8)). Moreover, the limit defining 0,k (u, &; z) is uniform with respect to
z € U, with ||z|| < 1. In particular, by Remark 2.5 if z, — z and h,, is positive and infinitesimal

then

KW+ hpzy, &) — K, &)
I
Proof. Letu e Y and £ € L2+(K ) be fixed. Let (4,) be a positive infinitesimal sequence and (z,)

a sequence in U, with ||z, || < 1. Denote [u] and [z,] by w and w,, respectively. According to
Remark 2.5 (a), consider

=0.

— 0uK(u,§:2p)

lim
n—+o0o

—/ B Y (W, & wp) dH
K

hn
<)
K

on = lgw, %0

"C(u + hnzn. §) — K(u.§)

Y(w+hawn. §) — Y (w,§)

I — ¥ (w, & wy)

dH! :/ 0n|wn|d7-[1,
K

where
Y (w + hywy, &) — ¥ (w, §)

hp|wy|

— dw ¥ (w, §:sgnwy)

(note that 9, ¥ (w, £; Aw,) = Adw ¥ (w, £ wy,) for A = 0). Since h,z, — 0in H'(2 \ K), we
can assume (up to a subsequence) that h,w, — 0 in L?(K) and pointwise a.e. on K. Setting
Nn = hy|wy| if w, > 0 we have

Y(w + hywn, &) — ¥ (w, §)

— dp ¥ (w, &; sgnwy)

B |wa
_ |y nn,jn) —vw.§ dw i (w, £; 1)‘
while for w, < 0
‘w(w thnwn ) ZYW.8) g san wn)
Iy |wy |
W = a6 — Y (w.§) _aww(w,g;—l)'-

Nn

Considering the subsequences where w, > 0 or w, < 0 we have in both the cases that the difference
quotient converge to the directional derivative and hence 0, — 0 a.e. on K.
By Holder’s inequality and Remark 3.2

/KonlwnldHl < Cllonll2alIznll < Cllonll2(x)-
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By the Lipschitz continuity of (-, &) (see Proposition 3.3 (e)) the incremental quotients in the
definition of o, are bounded by max |0y, ¥ (-, §; =1)| = 7(0). Therefore, |0, | < 27(0), and, by the
Dominated Convergence Theorem ||0y, || 2(x) — 0.

The convergence now proved yields both (3.9) (take a constant sequence (z,)) and the uniform
condition for the limit (2.1) for KC. o

Since the elastic energy £ is Fréchet differentiable we can introduce the directional derivative
W F(t.u,§:2) = 0,E(1, u)[z] + 9, K(u. §: 2). (3.10)
By the previous lemma and by Proposition 2.4 we can represent the slope as

|0, F (2, u,§)| = sup{[duF (1., u. & 2)]- : [|lz] < 1}. (3.11)

4. Regularized energy

The main result of this paper will be first proved for a modified energy F. where an additional
regularity is required for the energy density on the crack. Thus, a modified traction-separation law
is considered, to overcome the lack of differentiability in zero of the function ¥ (| - |, §) which enters
the line energy (3.4).

For every ¢ > 0 and w € R™ let (see Figure 3)

Te(w) = min [w/s, f(w)], 4.1)

Let &, > Osuchthat &, /e = (&), then the regularized function 7, takes the form 7. (w) = t(w, &).
For (w, £) € RT x R* we define

t(w, &) =Te(w)  if§ <&,

w08 =0 ) it > &,

4.2)

Thus, 7(0, ) = 0, and 7. (-, §) is Lipschitz continuous on R™, uniformly with respect to § € R™.
Moreover, it is worthwhile to note that §& — 0 as ¢ — 0 and that

e(w, &) = t(w, §) ifé =& orw = & (4.3)

Next, we define the regularized potential ¥, (w, £) by analogy with the definition of y:

£ £
¢Aw£%=ﬁ %@Mr—/iunﬁdr
w H
- / 2.y dr + / [2:(7) — e(r. ©)] dr 4.4)
0

= yi(w, &) + vd (),

where

w £
wﬁma=[;umam, wﬂ@=ﬁ[@m—um9wn
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%5(365) =T N

w - w

(a) Traction-separation law: Function 7z (-, §) (b) Potential ¥¢ (-, £).

Fi.3: A regularized model

We extend . (-, §) to the whole R as an even function. In the following proposition we collect some
of the main properties of the function ¥, (see Figure 3).

Let us now introduce the regularized energy as the energy corresponding to the potential in (4.4).
Let

Ko, ) = /K Ve[l &) dH"

and
Fe(t,u, &) = E(t,u) + Ke(u, &) = %/.Q\K |V (u+ g(t))|2dx + /K Ve([u]. &) dH! .

In analogy with Definition 4.1 a parametrized BV-evolution for F, can be defined as follows.

DEFINITION 4.1 Letug € U and & € L% (K), with |[uo]| < & a.e.on K. Let (r,u,£): [0, +00) —
Rt xU x L2+(K) be a Lipschitz map such that

(10).1(0).60) = O.u0.f0). L _1(s) = +oo.

with 7(-) a non-decreasing function.
The map (¢, u, §) is a parametrized BV evolution for F if

(C) for almost every s € [0, +00) we have
§6)=0,  |u®]| <t6).  FO(GI-§) =0,  H'aeonK; (45)
(S) foreverys € [0, +00) with t'(s) > 0 we have
19 Fe (£ (5), u(s). §()) lorr = 0 (4.6)
(E) forevery s € [0, +00) we have

Fe(1(s), u(s).£(s)) = Felto. wo. £o) +/0 3 Fe(r(r). u(r).6(r)) t'(r) dr +
4.7

_/OS 0w Fe (£ (r). u(r). (M) |, dr -
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Let us see the properties of the regularized energies and their convergence as ¢ vanishes.
Proposition 4.2 The following properties hold.

(a) V, is continuous and bounded, uniformly with respect to ¢ > 0, in R x RT;
(b) Define

w
gZAfs(w) = / Te(r) dr, for every w = 0.
0
Then y.(-, &) = 1/78 on RV if 0 < & < &. Moreover, if € = &, then

Pe®) - 352 @E —w?)  fo<w<E
w‘é‘(wvé) = .
Ye(w) ifw=§&.

) Ye(-. &) € CL(R) for every £ = 0, and 3y Ve = .
(d) Ye(w,-) is non-decreasing on [0, +00) for every w € R.

Proof. (a), (b) and (d) can be proved as the analogous properties in Proposition 3.3. Property (c)
follows from the fact that, as pointed out above, 7,(0, ) = 0. O

Proposition 4.3 As ¢ — 0 we have:

(@ Ye > Y inRx R*, uniformly;

(b) 0w ¥e — 0y V¥ uniformly on compact subsets of (R X R"’) \ {(0,0)}. Moreover,
lim sup 0y Ve, (Wn, &)z < A ¥ (w, §; 2)

n—+o00
whenever &, — 0, w, — w and &, — &.

Proof. (a) Itis enough to consider Rt x R, Let w, £ € R™ be fixed. From the definition of ¥ and
Ve, we have

£ £
V(W E) — Va(w. £) = /0 (2() — 2a(r)) dir — / (t(8) — (. £)) dr.

w

If £ = £, then the second integral vanishes by (4.2). Otherwise, its absolute value is not greater
than [;° (F(r) — 1 (r)) dr, which tends to zero as ¢ — 0, uniformly with respect to w and &,
since & — 0. The first integral is bounded by [;* (F(r)— fg(r)) dr, too.

(b) On compact subsets of (R x RT) \ {(0,0)} we have 3, ¥, = 7, and 3, = 7, hence

the uniform convergence is an immediate consequence of (4.3). This implies also the uniform
convergence on every compact subset of the whole (R X R+) \ {(0, 0)} since the extensions of

Ye(-, ) and ¥ (-, €) to R is even.
Letnow ¢, — 0, w, — w and &, — £.If (w, &) = (0,0) then dy ¥ (w, &;z) = 7(0)|z]| for
every z € R and

|8w1/fsn (Wn, &n)z| = te(lwnl, &)|z] < t(Jwal. &n)|z| < T(0)]z]:

therefore the lim sup inequality is trivial. If (w, ) # (0, 0) then (wy, &,) is bounded away from
(0,0) for n large enough, so that 9y, Ve, (Wn, En)z — ¥ (w, &)z = ¥ (w,§; z) for every
zeR. O
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Lemma 4.4 Forevery £ € Li(K) the functional Fe(-,-, ) is of class C' on RT x U, with
0 Fe(t,u, &) = 0,E(t,u),
uFe(t,u,&)[z] = 0uE(t u)[z] + 0uKe(u, §)[z],

where 0;E and 0,E are given in Lemma 3.5, and, for every z € U,

BuKo(u, £)[2] = /K D Ve ([u]. ) [2] 4H = /K re (1Dl &) sen ([u]) [] 4"

Moreover; the map u v+ 0, F¢(t,u, £) is Lipschitz continuous from U to U', uniformly with respect
to (t,§) € RT x L (K).
Proof. Let & € L2 be fixed. For every z € U we have

o Ke(u+hz, &) — Ke(u,§)
lim =
h—0 h

[ Bl )1 an
K

since V¢ (-, £) is C! with bounded derivative. The continuity of the right-hand side with respect to
z € U follows from Remark 3.2(a). Thus g (-, §) is Giteaux differentiable, with derivative

s (u, £)[z] = /K duwVe([u]. &)[z] dH' = /K 7o (|[u]]. &) sen ([u])[z] dH' .

Letu;,u, € U. For every z € U we have
100 KCe (1, §)[z] — 0o (uz, §)[2]] < Ls/KI[[ul]] — 2] [z dH" < Lifur —uall |12]],

where L, denotes a Lipschitz constant for the function r +— .(|r|, &) sgn(r) and L, takes the
constant C of property (a) in Remark 3.2 into account. Note that both L, and L can be choosen
independently of the regularization parameter ¢ > 0 and of the internal variable ¢ since 7, is
uniformly bounded. It follows that

100 Ke (1. 8) — 0uKe (uz. §) e < Lillur — uz||

and hence /. (-, £) is Fréchet differentiable, with Lipschitz derivative. The same Lipschitz property
is shared by d,,£(t, -), indeed

gte ) =l < [ (Vo -l 9] d

We conclude that the map u +— 9y, F (¢, u, §) is Lipschitz continuous from ¢/ to U’, uniformly with
respect to (¢,§) € RY x L% (K). O
Lemma 4.5 Let (t,), (un) and (&,) be such that

th >t Uy —uin HY (2 \ K); & — &in L>(K).
Then

(a) Fe(t,u,&) < liminf Fe(ty, un, &);

n—+oo
() N0uFe(t, u, )|l < liminf [|0y Fe(tn, un, &n)ller;
n—+00

(c) lim  0; Fe(tn, un,&n) = 0s Fe(t, u, §).
n—+o00



APPROXIMATION AND CHARACTERIZATION OF QUASI-STATIC H'-EVOLUTIONS 41

Proof. (a) By the weak-L? convergence of (Vu,) and the convergence of (Vg(t,)) in L?, we have
the lower semicontinuity inequality for £. As to K, consider a subsequence (not relabeled)
such that liminf,— o0 5 Ve([un]. £n)dH" is a limit. By the strong convergence of (§,) and
by Remark 3.2 (c), we can assume that (&,) and (Ju,]) converge a.e. on K. Hence, by Fatou’s

Lemma [ Ve ([u], §) dH' < liminfy— oo [ Ve([Un]. &n) dH .
(b) Letz € U with ||z|| < 1. Then

||8M‘F8(tn7 Up, En)”lxl/ = 0y Fe(tn, Un, En)[z]
= / V(un + g(ta))Vz dx + / e (|[un]l, &) sen ([un]) (2] dH" .
2\K K

Remembering that 7.(-, £) is continuous and that 7,(0,&) = 0, a similar argument as in (a)
yields the lower semicontinuity for both these integral terms; hence

lim inf [0y Fe (tn, tn. §n)lleer = / V(u +g())Vzdx +/ T (I[u]l. £) sgn ([u]) [2] d#'
n——+o00 2\K K

= 0uFe(t.u.§)z].
By the arbitrariness of z we get

Liminf ||0y, Fe(tn, Un, En)lur = |0uFe(t, u, &)l
n—-+o00

(c) This property is an immediate consequence of the expression of d;.F, and the continuity of the
map ¢ > Vg'(¢) in L?(£2,R?). O

Lemma 4.6 Let (t,), (u,) and (&) be sequences such that
th >t U, —uin HY(Q2\ K); & — &in L*(K).

Then, for e, — 0 we have

(a) F(t,u,&) <liminf F, (ty, upn, &) .

n—4oo
(b) 19, F(t,u,§)| < liminf |0y Fe, (tn, tn, En)llus
n—-+o00
() 0:F(t,u, &) = lim 0;F,(tn,un,&n).
n—-+o00

Proof. We can assume that ([u,]) and (§,) converge a.e. (recall Remark 3.2 (¢)).

(a) The Ls.c. inequality for £, which is independent of ¢, has already been checked in Lemma 4.5
(it follows from the weak-L? convergence of (Vu,) and the convergence of (Vg(z,)) in L?).
As to KC, it is enough to apply Lemma 4.3 (a) and Fatou’s Lemma, indeed

K(u,§) = / v (I[u]].€) dH' < lim inf/ Ve, (1[un]l, &) dH" = liminf Ks,, (Un, &)
K n—>+oo Jg n—+oo
(b) Letz € U be fixed, with |z|| < 1. Recall that, by Lemma 3.5 and Lemma 4.4

0o, (tn s En)[2] = /9 Yl g@) e+ /K B ey (n]. En)[2] A1
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The first integral in the right-hand side converges to |, 2\K V(u + g(t))VZ dx. Moreover, by
Proposition 4.3 (b), a.e. on K we have

lim sup dy Ve, ([un]. &) [2] < 9w ¥ ([u]. & [2])

n—+o00

since ([un], &r) — ([u], &) a.e. on K. Therefore Fatou’s Lemma yields

lim sup 0y Fe,, (tn, Un, En)[z] < / V(u + g(t))Vz dx + / 0w ([u]. & [z]) dH!
2\K K

n—+oo

= 0y, F(t,u,§;2),

where the directional derivative dy, F (¢, u, £; z) has been defined in (3.10). Note now that for
any real sequence (a,) it holds (limsupa,)— = (liminf(—a,))+; then by the monotonicity of

()-

(8uf(t7 u, & Z)), < <lim sup 0y Fe, (tn, Un, Sn)[Z])_

n—-+oo
= (Liga +ir£ Oy Fe, (tn,un, Sn)[—Z]) N

< liminf |0y Fe,, (tn s tn s &) lluer-
n—>—+oo

We can now conclude by taking the supremum with respect to z, thanks to (3.11).
(c) Since 0; F = 0;€ = 0;Fg,,, this item is as in Lemma 4.5. O

5. Quasi-static evolution for the regularized energy

In the space Rt x U x L2+ (K) of the variables ¢, u and & we first introduce (Section 5.1) a discrete
evolution (from an initial point (0, u¢, &)), depending on an incremental parameter As which acts
both as a time increment and as a range for the local minimality of the displacement (see below).
This sequence of points is read as a piecewise-affine function on the space of the parameter s.
Actually, the increment As varies along a sequence As, — 0; thus we get a sequence (Z,, Uy, &)
of piecewise-affine approximating evolutions. We prove (Section 5.2) its convergence (up to a
subsequence) to a parametrized BV evolution for F, according to Definition 3.1.

In Section 5.1 (Theorem 5.3) we prove that the functions #, satisfy a coercivity condition,
uniform with respect to n; this guarantees that the discrete evolution is globally defined in the time
interval [0, +00). Moreover, as a by-product, we get that the polygonal path in ¢/ given by (u,) has
locally-finite length, uniformly bounded with respect to n.

5.1 Discrete (in time) evolution

Fix ¢ > 0. Let As, N\ 0 (we assume As, < 1). Letug € U and & € Li(l() be given, with
[[uo]| < &o a.e.on K. Let

tno =0, Upo = Uo, Eno = &o.

and define (t, k. Un k. &x.k), for every k € N, by applying the following recursive rule:
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(r1) I 0, Fe(ty k. Un k. En i) = O then

Ink+1 = Ink + Asn
un,k+1 = un,k )
sn,k+1 = En,k .

(r2) If au}—e([n,ks Un,ks sn,k) # 0 then

tn,k+1 = tn,k ,
Up k+1 € argmin {Fe(ty k, V. En k) 1 v EU, [V —upill < Asn},
Enk+1 = Enk V |[[un,k+l]]|-
In the recursive rule (r;) the internal variable is updated a posteriori, i.e., after the minimization
of Fe(tn k.- & k). In particular it may happen that [, k+1] = &, . This is not an issue, since, a
posteriori, the minimization of F¢(t, k, -, &4 x+1) provides the same minimizer, as stated in the next
proposition.

Lemma 5.1 If 0, F¢(ty k. Un k- En k) 7 O then
Up k+1 € argmin{Fe(ty k4+1. V. Enk+1) 1 VEU, [V —upi| < Asn}.

Proof. Clearly t, 41 = tn by definition; hence Fe(ty k+1, *» Enk+1) = Feltuk. -+ Enk+1)-
Next, we show that for every v € U with ||[v —u, | < Asy,

}—e(tn,ks v, En,k-i—l) = }—e(tn,ks v, En,k) = ]:a(tn,kv Unk+1, En,k) = ]:a(tn,kv Unk+1, én,k+1) (5.1)

from which the thesis follows.

The first inequality is a direct consequence of the increasing monotonicity of ¥ (w,-) (see
Proposition 4.2 (d)). The second follows by minimality. As to the last equality, it is enough to
consider the points on K where |[u, k+1]| > &nk; in this case: &,k < Enpr1 = [[Unk+1]l,

which implies that Ve (|[uni+1]l-Enkr1) = Ve([unis1]) = Ve(llunkr1]l Enk) (recall
Proposition 4.2 (b)). Thus, the line integrals in the definition of both sides of the second inequality

in (5.1) are the same. O
At this point we define the map
(. £0): [0, +00) = [0, +00) x H'(2 \ K) x L2 (K) (52)

as a piecewise-affine function taking the values (¢, x, Un k. £n k) at the points s, x = kAs,.
The following proposition points out that the local minimization appearing in the recursive rule
behaves as a normalized gradient flow.

Proposition 5.2 Assume that 0y, Fe(ty k. Un k. En k) 7 0 and 0y Fe(ty k41, Un k+1:Enk+1) # 0.
Then ||upy g+1 — Un k|| = Asy and there exists A > 0 such that
Unk — Un k+1

————, V) g1 (5.3)
[tk — tn || 2O

au]:ez(tn,k+ls Un,k+1> En,k-i—l)[v] = (/\
foreveryv € U. In particular A = |0y Fe(tn k41, Un k+1, Enk+1) |l and

au]:a(tn,k-i-ls Up k+1, sn,k+1)[un,k+1 - un,k]
= —[|0uFe(tn k+15 Unk+15En e+ D e [Un k+1 — tn k|-



44 M. NEGRI AND E. VITALI

Proof. Let G = Fe(tyk+1: Enk+1)- Since 0y Fe(ty k. Un k. En k) # 0, by the previous lemma
Up k+1 Minimizes G on the closed ball in ¢/ with centre u,, ; and radius As,. Since G (1 x+1) # O,
we have |[uy g+1 — Un k|| = As, (otherwise, the minimality condition would require the vanishing
of the derivative). Let zo = u, x — Up k+1. It is easy to check that dG (u, r+1) vanishes on Z(J)‘, the
orthogonal complement of the span of zq in the subspace U/ of the Hilbert space H ! (£2\ K); indeed,
fixae >0and v € zd-, and let z = azg + v. Then ||(up k41 + hz) —un | < Asp, if 0 < h < 6,
with § > 0 sufficiently small; thus

d
0< —Gupks1 + hz) = 0G(Un k+1)[z] = 200G (Up g+1)[z0] + 0G (Up k1) [V].
dh lhzo+

Therefore dG (4, k+1)[v] = O by the arbitrariness of o and v.
Hence, we can represent 0G (1, k1) through an element of the span of zo, i.e., (5.3) holds (A is
positive since Uy, k41 iS a minimum). O

The following theorem proves a uniform coercivity condition for the time parametrization; it
implies that the whole time interval [0, +00) is parametrized.

Theorem 5.3 There exist ¢y, c1 > 0, independent of n, As,, and ¢, such that
ln(S) > coS —cq1,
forevery S = 0andn € N.

For the proof we need a technical lemma.

Lemma 5.4 Let (ty k., Un k. &0 k) be as above. Define

Wo i = [Uni], Wnit1 = [Uni+1]-

Then

[ (1wn el £0.6) €00 ) = 7ol 1 | En 1) SEN W41 | (W i1 = W)
< [2Enkr1) = 2| [wn k1 — Wkl (54)

a.e. on K.

Proof. If wy 41 > 0 > wy i or wy 41 < 0 < wy g, then the left-hand side in (5.4) is non-
positive, and the inequality holds. Therefore, we assume that wy, x and w, x4 have the same sign.
Let wy g, Wy k41 = 0.

If &, k+1 = &n i then the left-hand side of (5.4) is non-positive by the monotonicity of 7. (-, &, )
on [0, & k] I &n k1 > En i then wy k1 = En k1 > Enk = Wn ks thus Wy k41 > Wy i and

Ts(wn,k7 sn,k) - Ts(wn,k+1a En,k+1) < fs(i:n,kv En,k) - fs(sn,kJrl’ sn,kJrl)-

Now we have to consider two subcases. If &, x+1 < & (see (4.2)) then 7.(-, &, 1) and 7. (-, &4 k+1)
are the same linear function with slope 1/¢ on the interval [0, §]; therefore we have . (&, x, &n k) —
Te(€nk+15Enk+1) < 0, and (5.4) holds. If, on the contrary, &, k41 > &, then 7o (§n k+1, Enk+1) =
T(En k+1); thus

Te(gn,ks En,k) - Te(én,k+lv én,k+1) < %(én,k) - %(én,k+l) s
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and (5.4) follows again.
The proof in the case wy k, wp k+1 < 0 is analogous. O

Proof of Theorem 5.3. We need to consider separately the cases (r;) and (r,) in the recursive rule.
In particular, for the second, we will provide first an estimate for a pair of consecutive indices and
then an estimate for a “maximal” interval of indices where (r;) holds.

First step. For every k € Nlet yx = [|0uFe(tn k. Unk,Enk))|ler. Assume that yr # 0 and
Vk+1 # 0. Then, by Proposition 5.2:

8ufs(tn,k+17 Mn,k+1,§n,k+1)[un,k+1 - un,k] = —Vk+1 ||un,k+1 - un,k”-

Since 3y Fe(tn ks Un ks §n g ) Unke+1 — Unk] = — Vi [Un k+1 — tn k||, we deduce that

3u]:s(tn,k7 Un,k, Sn,k)[un,k+1 - un,k] - 8u]:s(tn,k+1v Up,k+1> En,k+1)[un,k+1 - un,k]
Z Vie+1 = Vi) lunge+1 — vn kel

Let us estimate the left-hand side; since #,, k41 = f; k, this term reads as

/ V(Mn,k - un,k+1)v(un,k+1 - un,k) dx +
2\K

L N T R R
- Ts(l[[un,k+lﬂ|s 5n,k+1) sgn([[un,k+1]])] [[Mn,k+1 - Mn,kﬂ dH'.

By Lemma 5.4 a bound from above is given by

=[NV un g1 — un,k)”iZ(Q\K) +/ T(Enk+1) — %(Sn,k)| [t ge+1 — un k]| dx.
K

Therefore
(Vk+1 - Vk)||un,k+1 - un,k” < _”V(un,k+1 - un,k)”iZ(_Q\K) +
+ 17Gnk+1) — %(Sn,k)”L2(K) (Tetn k41— un,k]]||L2(K)-

Let ¢,C > 0 be such that ||Vu||i2 > c|lul|? and ITulllL2x) < Cllull for every u € U (recall
Remark 3.2). Then

Vi1 = Vi) llun k1 — tnicll < =l a1 —unil* +
+ ClITEn k1) — TEn) 2y NUnk+1 — U k|l

Since y, x 7# 0 and y, k+1 # O then |[u, k41 — un k|| # O (by Proposition 5.2) and thus
Vir1 = Vie S —Cllunjes1 — un el + CllITEnit1) — TEn i) 2k -

i.e.
cllunr+1 —ungll < Ve = Vie+1 + ClITEnr+1) — TEn i) 2k - (5.5
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In order to get a telescopic sum, we need to replace the L2 norm by an L' term. By interpolation
inequality

12 GEnk+1) = TEn )2y < 1T Ener1) = TENT1 (g 1T Ener1) — 2 (ni) | Ll -

where o and ¢ satisfy 2 < g and 1/2 = o + (1 — «)/q. Apply now Young’s inequality to the
right-hand side: for every 6 > O there exists a constant Cg such that

17 Enk+1) — TEn ) lL2x) < CsllTGEnkr1) — TCEni)llLi k) + S1TGEnk+1) — TCEni)llLax) -
If L denotes a Lipschitz constant for 7, then
17 Enie+1) = TEn i) L2y < CsllTGnie+1) = TEn L () + SL1En je+1 — EniclliLack) - (5.6)
Note that
enier1 — nicl < |Iunges1]l = 1unidl] < |Tungs1] = [ni]| = n g1 — un ]l

so that

én k1 — EniliLaky < Clllunisr — unillo @\ k)

for a suitable constant C’ (here we used the Sobolev embedding: see property (b) in Remark 3.2).
From (5.5) and (5.6) we can choose § sufficiently small in such a way that

cllunirr = Unill < vk = Vir1 + ClTEnir1) — TEn) L1 ) (5.7

(possibly with a new value for ¢ and C). Note that, by monotonicity of the sequence (§, k)i and of
the function 7, we have

1 trn) — £Eni) it ) = /K (£ Eni) — 2Enirr)) dH.

Second step.  Given k € N with ko > 0 and 0y Fs (14,45 Un ky» §n,k,) 7 O let us denote
ki =min{0 < k <ky: 0, Fc(tnm:Unm:En.m) # 0 forevery k < m < kp}.
Note that the interval of indices [k1, k2] is “maximal on the left-side” and that
either ki =0 or 0uFe(tnk;—1:Uniy—1,Enj,—1) = 0.

Consider the case k; < kp. We will prove that there exists Cy > 0, independent of n, As, and &,
such that,

Co(Asn + / (k) = 2 Enp)) AH! + 1) ifky =0,
(k2 — k1)(Asp) < K (5.8)

Co (Asn + /K(%@"””) - f(é,,’kz)) d”Hl) otherwise.
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By (5.7)
ko—1
¢ 3 Ttnrs = tnkll < vy =12+ € [ (2nes) = 2nsn)) 4
k=k

<y £ C /K (£ Eny) — 2(Ensr)) dH

Consider now the case k1 = 0; then y, is bounded by a constant depending only on %o and &
(recall the form of 9, F, given in Lemma 4.4). Otherwise, by assumption, the index k¢ := k; — 1
satisfies 0y Fe(tn ko> Un.ko» §n,ko) = 0 and thus #, x, = ty ky + ASu, Unk, = Unk, and &, , =
£4.ko by (r1). Therefore, by the Lipschitz continuity of 9, £ (hence of 3, F) with respect to ¢, we
have

)/kl = ”au]:é‘(tn,ko + Asns un,kov én,ko) - aufa([n,kos un,kos En,ko)” s C//Asn

for a suitable constant C” depending on ||g|| 1[0, 4-o0); 1) This concludes the proof of (5.8), since,
as remarked in Proposition 5.2, it turns out that ||u, x+1 — Un k|| = As, forevery k1 < k < k.

Third step. Let now S > 0 be fixed, and denote by N,(S) = |S/(As,)] the integer part of
S/(Asy). Following the recursive rule, we set

An(S) = {k € [17Nn(S)] : 8u]:(tn,k7un,kvgn,k) = O},
Zn(S) = {k € [17Nn(S)] : 8u]:(tn,k7un,kvgn,k) 7& O}

For technical reasons it is useful to distinguish between isolated points and interval of indices in
Z,(S). Therefore we further split Z,(S) into the two subsets

ZY(S) = {k € Zn(S) : T (tnj—1.Unk—1.Enk—1) = 0 and 3y F (tn 1. Un k+1. Enke+1) = O},
Zp(S) = Zu(S)\ Z2(S).

Let I' = [ki,ki] with k! < k% (i = 1,...,l,) denote the maximal intervals of indices in Z,} (S).
By the recursive rule (r2) we have #4,(S) < (¢,(S)/As,) + 1, moreover

In
HZN(S) < (Na(S) + 1)/2. #Z3(S) <Y (k=KD +1), Iy S#4,(5) + 1.

i=1
Note that for every I' = [ki,ki] (i = 1,...,l,) we have
kll =min{0 <k < klz 2 OuFe(tnmUn,m, En,m) # 0 forevery k <m < klz}
Thus we can apply (5.8) to each interval 7?. At most one interval has k’i = 0 and thus

ln ln

> (ks — ki) Asy < Co(lnAsn +1+ /K 3 (%(En,k;) - %(én’ké)) dHl).
i=1 i=1

Since 7 is monotone decreasing we deduce that

In

Z(k; —ki)As, < Co(l,,As,, +1 +/ %(sn,kll)d}zl) < Co(lnAsn + 1+ 2(0)H' (K)).

i=1 Kk
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Up to a suitable change in the definition of C,

In
> (kb — ki) Asy < CollnAsy + 1),
i=1

It follows that

In
#Z1(S)Asn < n sy + Y (K — ki) Asy < CollnAsy + 1) < Cy(#An(S) Asy + 1)

i=1

Since
Nu(S) < #A4,(S) +#ZJ(S) +#Z1(S) < #An(S) + AN4(S) + 1 +#Z)(S)
we get
3Na(S)Asy < C1(#An(S)Asy + 1) < Cr1(1a(S) +2)
for a suitable C; > 0. We conclude since N, (S)As, = (S —1). O

Corollary 5.5 Let T > 0 and k,(T) = min{k : t,x = T} (note that k,(T) is finite by
Theorem 5.3). Then
kn(T)—1
D lunksr —unill < (T + c1)/co,
k=0
where co and cy are as in Theorem 5.3. Hence, the length of the polygonal path (wp k)o<k <k, (T) il
U is bounded independently of n and ¢ > 0.

Proof. By Theorem 5.3, co(kn(T)As,,) —c1 < Tisince ||up k+1 — Un il < Asy, for every k, we

deduce that
kn(T)—1

Y Mungrt —unkll < kn(T)Asy < (T +c1)/co.
k=0
O

The following energy estimate for the discrete evolution (¢, ., Un k., §n,k )k Will be used in the
next subsection to prove the energy balance for the limit evolution.

Proposition 5.6 Let T > 0 be fixed. For every k € N with t, x+1 < T we have

Ink+1

]:a(tn,k-i-ls Up k+1> En,k-i—l) < ]:a(tn,kv Un ks sn,k) + / 0s Fel(t, Un.ks En,k) dt +

In.k

- ”au]:a(tn,kv Un.ks En,k)”u’Asn + Ce(Asn)zs (5.9

where C¢ depends on e and || g||¢1 (0, +00): H! (2))-

Proof. Let wy g = |[un k]| and wy, k41 = |[Un k+1]|- First of all, note that Yo (Wy k+1, En k+1) =
Ye(Wy k41, Enk)- Clearly, the equality has to be checked only if k falls within recursive rule (r;)
and &, < &, k+1; in this case, §, x < Wy k+1 = &4,k+1 and, by Proposition 4.2 (b),

wg(wn,k+1w§n,k) = l/A’ez(wn,k+l) = l/’ez(wn,k+ls";'_n,k+1)-
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Therefore
Feltne+1>Un k+15Enke+1) = Felln k+15 Un k+15En k) (5.10)
Second,
tn k41
Filtnkt1:tn41.60.) = Felntncyr6n.) + [ e B0
0k

By Lemma 4.4 and Lemma 3.5
|0 Fet. tn kt1-§n i) — 0: Fe(t ttn i 6nic)| < Clttn 1 — n il ar\iy < CAsn

where C = | gllc1 ([0, +00):H1(s2))- Then

tn k41

]:s(tn,k+1v Up,k+1> En,k) < fs(tn,kv Up,k+1> Sn,k) + / 8tf8(t7 Un,k, En,k) dt + CT(ASn)2 .

Iy k
(5.11)
Third, it is not restrictive to assume that u, k41 7 U,k (otherwise ||0y Fe(tn k. Un k- Enk)ller =0
and there is nothing else to prove). Let z € U with ||z|| < 1, by the minimality property of u, x1
we have

]:s(tn,k7 Unk+1, En,k) < fs(tn,kv Upk + Asyz, Sn,k)‘ (5.12)
Moreover

Asy d
]:s(tn,k7 Uy i + Aspz, En,k) = fs(tn,kv Un.,k» En,k) + / %-Fs(tn,lm Up i + hz, En,k) dh
0

= Filtnko i) + [ ot tn + b2 g0 [
By Lemma 4.4, for every h € [0, Asy]
10w Fe(tnic. Un e +hz.En i) = uFeltnjestiniSn i)l < Cellhzllgr < Colsn,
for a suitable constant C, depending on ¢. Therefore
Feltn oo tin ke + AsnZ, En k) < Felln ke e En k) + AsnduFetn o tin ks En i) [2] + Ce(Asn)?;
by (5.12) we get

]:e(ln,ks Up k+1, én,k) < ]:e(ln,ks Up ks En,k) + Asnau}—e(ln,ks Up ks En,k)[z] + Ca(Asn)z-

By the arbitrariness of z we conclude that

]:e(ln,ks Up k+1> En,k) < ]:e(ln,ks Un ks En,k) — Asy ”au}—e(ln,ks Un .k, én,k)”u’ + Ca(ASn)z-

This, together with (5.10) and (5.11), gives the stated inequality. O
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5.2 Quasi-static evolution for the regularized energy

Let (tn, Un, &x) be the map defined in (5.2). Let S > 0 be fixed. From the definition it is easy to see
that:

(tn) is bounded in W 1°(0, §), (1) is bounded in W1>°(0, S; H(2 \ K)).

Moreover, these sequences are bounded uniformly with respect to €, for ¢ > 0 sufficiently small.
Remember that

1&nk+1 —nillLrk) < Cllung+1 —unil < CAsy (5.13)

for every 1 < p < +o00 and for a suitable constant C > 0, independent of n, k and . We conclude
that (£,) is bounded in W1°(0, S; L?(K)) forevery 1 < p < 4o00.

By recalling Proposition 2.3, and by applying a standard diagonal argument, we deduce the
following result.

Proposition 5.7 Let (1), (un) and (&,) be defined as above. Then, up to a subsequence (not
relabeled) tn, — t in WH®(0,S), uy — u in WHe(0,S: HY(2 \ K)), & — £ in
W20, S; LP(K)) for 1 < p < 400 and for any finite interval (0, S).

Theorem 5.8 Let (t,, uy, &) and (¢, u, §) be as in Proposition 5.7. Then (t,u, ) is a (parametrized)
BV evolution for the energy F, according to Definition 4.1.

Proof. By Theorem 5.3 it turns out that 7(s) — +o00 as s — +o00. The sequences (), (u,) and
&, are uniformly Lipschitz continuous in (0, +00), by the recursive rule and by (5.13), hence their
limits are Lipschitz continuous as well. Let S > 0 be fixed.

Proof of (C) in Definition 3.1.  'We will show that for almost every s € [0, S] it holds

§6) 20, |u®l| <t6).  FO(u6] -£6)=0 H'ae onk.

By definition &, 41 = &, pointwise on K for every k € N; then &,(s2) — £,(s1) = 0 pointwise
on K if 0 <1 < s < S. Passing to the limit (with respect to the weak convergence in L2(K)) we
get £(s2) — £(s1) = 0 and thus

£'(s) =0 H'-ae onK forae.s € [0,S].

Lets = Asp x +(1—=A)sy k41, forsome k € Nand A € [0, 1]. Then u, (s) = Auy i+ (1 —=A)uy g 41
and &,(s) = Ay k + (1 — )&, k+1. By linearity of the trace operator

H[un(s)]H < /XH[”n,k]H + (1 - l)|[[Mn,k+1ﬂ|-
Since |[un k]| < &n .k and |[un k+1]] < &n k+1 We deduce that
|[[u,,(s)]]| < E,(s) H'-ae. on K forevery s € [0, S].

Since u, (s) — u(s) in H'(£2\ K), by Remark 3.2 (c) we have that |[u, (s)]| — [[u(s)]|in L?(K)
for every s € [0, S]. Then, the w — L?(K) convergence of (én (s)) implies that:

H[u(s)]” < &(s) H'-ae. onK foreverys € [0, S].
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Let us now address the equation
E(s)(1[u)]| —&(s)) =0 H'-ae.onK forae.s €[0,S],

which is equivalent to

[ as [ £omen-senan =o
0
for every o € [0, S] and for every Borel subset B of K.

From the definition, we deduce that (pointwise on K) either &, x4+1 — &,k = 0 or &, k41 —
[[untk+1]l =0, ie.

Enit+1— Enge) (ITunk+1]l — Enje+1) =0 pointwise on K.

Then, for a.e. s € [0, S]
&0 () (Ilndes 1]l = Enie1) =0 (5.14)

where k = k(n, s) satisfies s, x <5 < Sy k+1-

Fix o and B as above. Since [u,] — [u] in L'(0,S;L*(K)) and since &, N £ in
L®(0, S; L?(K)), we have

. ? ’ 1 _ ? ’ 1
lim /0 ds/Bén(s)H[un(s)MdH —/0 ds/BS(s)H[u(s)MdH . (5.15)

n—+oo
Note now that, if k = k(n,s) is asin (5.14), and u, (s) = Au, x + (1 — A)uy k1. then we have
” [[un,k+1]] - [[un(s)ﬂ ||L2(K) = A“ [[un,k+1 - un,k]]“Lz(K) <C ||un,k+1 —Un,k H < CAsy.

Therefore

lim A a’s/BE;,(s)|[[u,,’k(,,’s)+1]]’d7-[1 :/0 ds/BE/(s)’[[u(s)]]’dHl. (5.16)

n—+o00

Let us now consider the term &, (s)&, x+1 in (5.14). By monotonicity of &, and by (5.14) we have

/Ogds/Bé,’l(s)én(s)dHI $/00dS/BE,/,(S)§n,k+ldHl :/OUdS/Bg;/;(S)H[“n,k-i-IMdHI

so that by (5.16)

limsup/0 ds/Bé,’l(s)En(s)dHI s/o dsLE’(s)‘ﬂu(s)ﬂ‘dHl. (5.17)

n—+o00

Since 2 € W1(0, S; L" (K)) for some r > 1 and (£2)" = 2£, £, (see Remark 5.9 below) we can
apply the fundamental theorem of calculus, see §2, to write

[ as [ souan =4 [ @o -go)an’. (5.18)
0 B B
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By the weak L2(K)-convergence of (£,(c)) we deduce that

g [0
liminf/ ds/ £l (5)En(s)dH' = %/(5(0)2—5(0)2)d7-[1 :/ ds/ £ (s)E(s)dH,
n—>+0 Jo B B 0 B
(5.19)
where the last equality follows again by Remark 5.9. Recalling (5.17) we get

7 / 1 < 1 1 ? ! 1
| as [ gwewant <timint [“as [ g0
< lim sup / ds / £l (8)En(s)dH'
0 B

n—>-+00
< /OG dsLE%s)H[u(s)]HdHl < /00 dsAé’(s)é(s)dHl,

where the last inequality follows from £'(s) = 0 and |[u(s)]| — £(s) < 0.
In addition, we have proved that

. ’ / v f° ’ 1_ 1 2 2 1
lim | ds/BEn(s)én(s)d’H —/0 ds/Bé(s)é(s)dH = 2/3(&(0) £(0) )d?—[ .

n—+o00

This allows to get an improvement of the convergence properties of the sequence (&,). Indeed, the
limit in the left-hand side equals lim;,—s 4 oo % I3 (En (0)? — 5(0)2)d’H1 by (5.18); thus

Jim /K £,(0)2dH! = /K E(0)2dH'.
Since &, (0) — £(0) weakly in L2(K), we deduce that
£,(0) — E(0) strongly in L%(K) for every o € [0, S].
By the uniform Lipschitz continuity of &, it is easy to check that for 0,, — o
£,(0n) — £(0)  strongly in L2(K). (5.20)
Proof of (S). 'We will prove that for every s € [0, S] with /(s) > 0 we have
10w Fe(t(s). u(s).§(s))ller = 0.

Let s € (0, S) be such that #/(s) > 0. Let § > 0 be fixed; we note that there exists 7 € N such that
for every n = 7 we can find k € N with the property that

|Spx—s| <8 and t,x <lyi+1-

Indeed, assume, by contradiction, that there exists an increasing sequence (7;) of integers such
that for every k satisfying [s, x — s| < & we have 1, x = 1, k+1. Then f; () is constant in a
neighbourhood of s, thus #/(s) = 0.

The arbitrariness of § implies that there exists a sequence s, ,, — s such that t, ¢, <ty k,+1-
By Proposition 5.7 we know that

tnk, = tn(sn,k,,) — 1(s), Unk, = un(sn,k,,) — u(s) w'Hl(Q \ K)
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while, by (5.20) and the equi-boundedness of the Lipschitz constants of (§,), (see (5.13)):

Enden = n(sn,) — () strongly in L*(K).

These convergences allow to apply Lemma 4.5 and get
19u Fe(t(s). u(s). & () lerr < lim inf 10w Fe (tn sy Un e+ Enoden)

Now, we conclude since 0y Fe(ty k,,» Un k, - £n.k,) = O: this is a direct consequence of the recursive
rule, otherwise #, k, = fn k,, +1-

Proof of (E). 'We will show that for every s € [0, S] we have

Fe(t(5).u(s). £(5)) = Felto.wo.60) + /Ox s Fo(t(r),u(r). £(r) ¢'(r) dr +

- /0 190 Fe (1) (). £G)) o i

It is useful to introduce the function (7, i1, §,,) as the right-continuous piecewise-constant function
on [0, +-00) taking the value (f, k. upn k,En k) ON [Sy k., Sn k+1)- In particular, the integral on the
right-hand side in (5.9) can be written as:

/ g Fultn(5). i (). £ ()L (1) i

Let s € [0, S) be fixed, and n sufficiently large so that s + As, < §. Let k,, be such that s, ¢, <
S < Spk,+1 (e, knAsy <5 < (kn + 1)Asy). Since t, p < kAs, < S foreveryk =0,...,k, +
1, we can apply the energy estimate (5.9) with the constant C, s (depending on ¢ > 0 and on
lgllw1.0000,5:11))- Summing up for every k = 0,..., k, yields the energy estimates

Sn.kp+1

]:s(ln,k,,+1,Mn,k,,+1,$n,k,,+1) < Fe(0,ug, &) + / at}—s([n(r)v ﬁn(r)vén(r))ly/l(r) dr

0

Sn.kn+1 " R ~
- / ||8uf8(t,,(r), Uy (r), E,,(r))||u/ dr + Ce, s AspS. (5.21)
0
As above, we have:

njp+1 —> 1(5), Un k41 — u(s), w-H' (2 \ K) Enknt1 — E(s) L*(K).

Therefore, Lemma 4.5 (a) implies that
f&(t(s)s u(s), E(S)) < lim inf]:a(l‘n,kn+l s Un ky+15 Sn,kn-i-l)-
n—4oo
Consider now the right-hand side in (5.21). Note that, for every r € [0, S),

tn(r) > 1) Ia(r) > 1(); Aa(r) = u(r) w-H'(RQ\K);  E(r) > £(r) L2(K).
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Denote now the second term in the right-hand side of (5.21) by I,}; then

S
Inl :/ 1,(r) 31}‘8(1,,(;’),12"(;’),%"(}’))t,/,(r)dr,
0

where 1, is the characteristic function of the interval (0, s, x,+1). Denote by 4,(r) the function

0; Fe (t,, (r), tn(r), é,, (r)); because of the convergence properties of (,, iy, én), by Lemma 4.5 (c)
we have
hy(r)1,(r) = 0; Fe (t(r), u(r), E(r)) Lo,s5)(7) fora.e.r € (0,S5),

where 1(q,s) denotes the characteristic function of the interval (0, §). Moreover (recall Lemma 4.4)
a1 < [ 19 G0n0) + g00(10)) T (001
2\K
< (lunllwrcoo,s:m1) + l€lwisoo,s:a1) 1€ llw .o, 5501 -

The equi-boundedness of (/1) on (0, S) follows. Hence hy, 1, converge in L'(0, S); since 1,, Sy
in L°°(0, §), we conclude that

lim 1! = /OS 0 Fe(t(r),u(r). £(r))t' (r) dr.

n—+o0o

Let now / ,% be the third term in the right-hand side of (5.21). It can be written as

s X .
2= _/0 Ln () |0 Fe (B (). 1 (). 0 (7)) e

Thus, by Lemma 4.5 and Fatou’s Lemma,
s
lim sup I,% < —/ ||8uf8(t(r),u(r),é(r))||u/ dr.
n——+o00 0

By collecting the estimates for the terms /,} and 7?, we conclude that

Fo(t(s), u(s), £(5)) < Fo(0, w0, o) + /0 D0, Fot()ou(r) £ () dr
- /0 10T (1 (7). (). £ o dr. (5.22)

We have now to prove the opposite inequality. To this aim we compute the derivative of the map
r > Fe (t (r),u(r),& (r)) which is Lipschitz continuous and, hence, differentiable a.e. in [0, S]. Fix
a differentiability point » € (0, S); by the monotonicity of F, with respect to £, it turns out that

4 () ). £ ()

ar ;l[fg(t(r + h),u(r + h).E(r + h)) — Fe(t(r), u(r). £(r))]

= lim -
h—0+

> 1}1232%[?8(:@ + h),u(r +h).£(r)) — Fe(t(r), u(r). £(r))].
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Since F¢ (-, -, §) is Fréchet differentiable for every &, it turns out that for a.e. r € (0, S) the last term
in the previous inequality can be computed by the usual chain rule. Thus, for a.e. r € (0, S), this
term equals

e Fe(t(r), u(r), £(r)e'(r) + 0uFe(t(r), u(r). &(r)) [’ (r)]
= 0, Fe(1(r), u(r). £() ' (r) = [8uFe(t(r). u(r). (1))

where we used that ||u/(r)|| < 1.
Therefore, we can estimate the right-hand side of (5.22):

Fe(0,u0.50) + /0 N Fe(t(r),u(r), £(r)’ (r) dr —/0 10 Fe (2 (). u(r). £(r)) lewr dr
Sd
< Fe(0,up, &) + / d—]:s(t(r), u(r), E(r)) dr = }-g(t(s), u(s), é(s)).
0 r
We conclude that in (5.22) the equality holds. O

REMARK 5.9 If z € W1>®(0,S; LP(K)) forevery 1 < p < oo then z2 € W1%(0,S; L"(K))
forevery 1 < r < 400 and (z2) = 2z'z. Since L”(K) is reflexive and separable, to prove that
z2 € W it is enough to show (see §2) that z2 is a Lipschitz map in L"(K). Let p1, p» € (2, 00),
andlet 7 > 1 be such that 1/r = (1/p1) + (1/ p2); then

1/r 1/r
( / |z2(s2)—zz(s1)|’dx) - ( / 12(s2) — 2(s1)]” |2(52) +z(s1)|’dx)
K K
< |lz(s2) = z(sD)||zr2 |2 (s2) + z(sD) L1t < Clsz2 — s1].
For the chain rule, let us write

22(s + h) — z2(s) _z(s+h)—z(s)
h B h

(z(s + h) + z(s))

Then for a.e. s € (0,S) the left-hand side converges strongly in L”(K), and thus in L!(K), to
(z2)'(s). Moreover (z(s + h) — z(s))/ h — z'(s) and z(s + h) — z(s) again strongly in L?(K).

6. Quasi-static evolution for the energy 7

Forevery ¢ > 0, Proposition 5.7 and Theorem 5.8 provide a triple (Z, u¢, &) which is a parametrized
BV evolution for the energy F;. By the estimates shown in introducing Proposition 5.7, for every
S > 0 the functions f¢, u,, and & turn out to be bounded, uniformly with respect to ¢ > 0, in
w120, S), Wh>®(0, S; H'(2\K)) and W1>®(0, §; LY(K)) (forany 1 < g < +00) respectively
and the map

s > (te(5), us(5), £(5)): [0, +00) — [0, +00) x H' (2 \ K) x L4(K)

has a Lipschitz constant independent of ¢ (see §5.2). Therefore, Proposition 2.3 and a standard
diagonal argument yield the following compactness result.
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Proposition 6.1 Let (s,) be a positive infinitesimal sequence. There exists a map
(t,u,£):]0, +00) — [0,4+00) x HY(£2 \ K) x LY(K) such that (up to a subsequence) te, St

in W0, 5), us, — uin WH(0,8: H' (2 \ K)) and &, — £ in WH(0,S: LI(K)) for
1 < g < +o00 and for any finite interval (0, S). Moreover, for any 1 < q < +00, the map (t,u, )
is Lipschitz continuous.

Theorem 6.2 The triple (t,u, £) in Proposition 6.1 is a (parametrized) BV evolution for the energy
F according to Definition 3.1.

Proof. The Lipschitz continuity has been checked in the previous proposition. Let S > 0 be fixed.
If (¢,) is as above, we denote F,, simply by F, and similarly for (#,), (u,) and (§,).

Let us retrace the proof of Theorem 5.8. Note that the convergence properties of the sequence
(tn,un, &) are the same in both cases.

First, let us prove condition (C) in Definition 3.1, i.e., for almost every s € [0, S]

£6)20,  |u@] <6,  FO(uE]-£6) =0, H'-aeonK. (61

The first two items of (6.1) follow by passing to the limit in the corresponding inequalities for &,
and uy.
Consider now the third item in (6.1). This, as in the proof of Theorem 5.8, is equivalent to

[ as [ £omo1-gw)ar o 62)
for every o € [0, S] and for every Borel subset B of K.We know that
g (s)(|[[u,,(s)]]| —&, (s)) =0, Hl-ae.on K.

By the same argument applied in Theorem 5.8, equation (5.15) continues to hold, i.e.

lim ; ds/lzé,’l(s)H[un(s)]HdHl =/0 dsLé’(s)|ﬂu(s)ﬂ|dHl.

n—+oo

Since &, (s)|[un (s)]| = &, (s)&x(s), this implies that
. ¢ / 1 __ 7 / 1
Jim [Cas [ gogeant = [Cas [ glmonan.

Since £, &, € W1®(0,S; L4(K)) (forany 1 < g < +00), we can apply Remark 5.9; then:

/ ds / £ ()| [u(s)]| dH!
0 B

n—+o00

= lim l/(g,,(o)z—g(of)aml
B

n—+oo 2

lim /0 " ds /B £ ()En(s) dH'

>l 2 _ 2 1 _ 7 ’ 1
> 5 [ (€0 —s07) an —/0 as [ ¢wewan’.

Since we know that [[u(s)]| < &(s), the first and the last term in the above inequalities must
coincide, i.e., (6.2) holds. Moreover, we deduce that [y §,(0)? dH' — [ £(0)? dH'; thus, the
weak L2-convergence implies

£,(0) — E(0) strongly in L?(K) for every o € [0, S].
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By the uniform Lipschitz continuity of &, we deduce that for 0, — o
£,(0n) — £(0) strongly in L2(K).
Now, let us address condition () of Definition 3.1, i.e.: for every s € [0, S| with t'(s) > 0
|05 F(t(s). u(s),§(s))| = 0. (6.3)

Let s € [0, S] be such that t'(s) > 0. Let us note that there exists a sequence s, — s such
that ,(s,) > 0 for n sufficiently large. Assume by contradiction that there exists § > 0 with the
property that, for every k € N we can find n > k such that#;, = 0in Is = (s — 8, s + ). Then, an
increasing sequence (nx ) would exist with ¢, « = 0in [g; this implies, in particular, that t'(s) = 0:
a contradiction. Then, from

ta(sn) = 1(5),  un(sp) =~ u(s), inH(2\K),  &l(sn) > E(s) inL*(K),
by Lemma 4.6 we have

‘8;]:(1(_9), u(s), E(S))| < l‘inﬁ;g H duFn (Zn(sn)v Un(Sn), &n (Sn))|

u’:

Being condition (S) satisfied by (¢, uy, &), the right-hand side of this inequality is zero, thus the
left-hand side is zero, too.
Let us now address condition (E) of Definition 3.1 i.e.: for every s € [0, S]

F(t(s),u(s),5(s)) = F(O, wo,Eo)+/0 O F(t(r),u(r),&(r) t'(rydr +
—/0 |8;]-'(t(r),u(r),§(r))\dr. (6.4)

By Theorem 5.8 this holds for the energy F;,, = F, and the triple (¢, un, &), i.e., (¢, , Ue, , &z, )-
Passing to the limit we get

fim inf 7 (1 ). 1n (5). £ (5))

< lim sup F,(0, ug, &) + lim sup/ 0t Jn (t,, (r),un(r), &, (r)) t,(rydr
0

n—+oo n—+o0o

n—+o0o

— liminf /0 [T (1 (). 0 (). £ (1)) 7

The pointwise convergence of vy, as ¢ — 0 (Proposition 4.3) together with the uniform
boundedness of ¥, (Proposition 4.2) yields F,, (0, ug, &) — F(0,uo, &) as n — +oo. Moreover,
0t Fn(tn(+), un(:), & (-)) converge to d; F(¢(-), u(-), £(-)) pointwise, by Lemma 4.6 (c), and then in
L'(0, s) by dominated convergence. Taking into account Lemma 4.6 (b) we manage the last term.
Summing up

F(t(s),u(s). £(5)) < F (0,10, 0) + /0 3 F (£(r), u(r), E(r) £'(r) dr
—/0 |0, F(e(r),u(r). ()| dr. (6.5
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As in the proof of Theorem 5.8, to get the opposite inequality note that r +— .7-'(t (r),u(r), é(r))
is Lipschitz continuous as a composition of Lipschitz functions; indeed, £ is locally Lipschitz
continuous on R™ x I/ since it is quadratic in u + g and both u and g are Lipschitz function
from [0, +-00) to H1(£2 \ K); moreover, K is Lipschitz by Corollary 3.4.

Let now r be a point of differentiability for the functions ¢, ¥ and F (t ), u(), & (~)). Let (h,) be
a positive infinitesimal sequence. By the monotonicity of ¢ with respect to £, it turns out that

d d
E}—(t(r)’”(r)f(r)) = Eg(f(r),u(r)) 1
+ lim h—[IC(u(r + ), E(r + 1)) — K(u(r), £(r))]

n—+o00 Ny

LI Gu(r + ha). £)) — K(u(r).£()].

d
> Eg(t(r), u(r)) + lln_})l_ilrrga

Since € is Fréchet differentiable, the usual chain rule yields:

%S(t(r), u(r)) = 9, E(t(r), u(r))t'(r) + 0 E(t(r), u(r)) ' (r)].

As to the other term, write u(r 4+ hy, ) —u(r) as hy, (u’(r) + Z(h,,)), where Z(h) — 0inlf ash — 0.
Let z, = u/(r) + Z(hy). Then, by Lemma 3.6

hL[IC(u(r) + hnzn £(r)) — K(u(r), £(r))] — 0K (u(r).£(r);zs)| > 0 asn — 4oo0.

It follows that

liminfhi[lC(u(r + hy), E(r)) - IC(u(r), E(r))] > };gnirg aulC(u(r), £(r); Z,,).

n—+o00 Ny
From the convergence z, — u’(r) in U and the explicit form of 0,,/C(u, §; z) given in Lemma 3.6
we deduce that aulC(u(r), E(); Z,,) — 8uIC(u(r), E(r); u’(r)), so that

d
Ef(t(r), u(r), §(r)) = 8, E(t(r), u(r)t' (r) + 9 E (2 (r), u(r)) ' (N] + 3L (u(r), §(r); ' (r)),
ie.

%}‘(t(r), u(r).£(r)) = 0:E(t(r), u(r))t’ (r) + 9 F (u(r), £(r): ' (r)). (6.6)

Now, recall that ||u’(r)|| < 1:
0 F (£ (). ()i (1) = = (0uF (1), u(r). £ (1))

= —sup{(i)uf(t(r),u(r),g(r);z))_: Iz]l < 1}

= —|0"F(t(r), u(r).£(r))

where in the last line we have used the representation (3.11) of the slope. We conclude that

3

%f(r(rm(r),sm) = 0,E(t(r), u (M) (r) = |0, F(t (1) u(r) () |-
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This inequality, together with (6.5), implies
F(t(s),u(s).§(s)) < F(0,uo, o) +/0 9 F(t(r),u(r),&(r)) ' (r)dr

—/0 |0, F(t(r).u(r). £(r))| dr

< F(0,up,%0) + /0 %}'(t(r),u(r),é(r)) dr = F(t(s),u(s).£(s)).

Therefore, inequality (6.5) must actually be an equality. O

7. Equilibrium condition in PDE form

In this section we express the equilibrium condition [9,, F (¢ (s), u(s), £(s))| = 0 of equation (3.6)
in a more explicit form. We need some preliminary remarks.

Letv € H'(£2 \ K) be such that the distributional Laplacian Av is in L?(£2 \ K). For every
z € HY(2 \ K) define

Lyz :/ VuVzdx +/ (Av)z dx. (7.1)
2\K £2\K

Then L, is linear and continuous on H'(£2 \ K).

REMARK 7.1 For simplicity let us first consider the case of a smooth function v. Assume, e.g., that
veC®(R2\K), and veC>®(R2;) foreveryi

(where the sets £2; are introduced in § 3). In the same way we followed introducing the trace u™ for
a functionu € H'(£2 \ K) according to the chosen orientation v on K (Remark 3.2), we can define
the normal traces of Vv on K and 952 (actually, since Vv is smooth in every £2;, these are simply
restrictions). For every z € H'(£2 \ K), and for every i, we have:

/ Vszdx+/ (Av)zdx:/ z(Vv) -ndH?,
2; 2; 082;

1 1

where n is the outer unit normal. Summing up over i we get
Lyz = / 2°(Vv)-vdH' + / Vo)t v dH! —/ 27 (Vv)~ -vdHY;
(O\K K K
by introducing the integral operators ,v, v with density (Vv) - v or (Vv)* - v on 982 and K,
respectively, this equation can be written as:
Lyz = (9yv,2°) + (0Fv,zT) — (9, v,27) (7.2)

Hence, the value L,z depends on z only through the trace trz := (z°,z ", z7). This is true even in
the general case, where we do not assume that v is smooth; this is stated in the following result.

Proposition 7.2 Let v € H'(2\ K) be such that the distributional Laplacian Av is in L*(2\ K).
Letz € HY(2 \ K) and let Ly, be as in (7.1). Iftrz = 0 (i.e., z € H} (2 \ K)), then L,z = 0.
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Proof. 1t is enough to prove the statement assuming thatz = ¢ € C°(§2\ K). Let 2’ CC (£2\ K)
be a regular open set containing the support of ¢. Let V = Vv; thus V € L2(£2’;R?) and the
distributional divergence div V' is in L?(£2'). Then (see, e.g., [23], Theorem 1.1) there exists a

sequence (Vi) in C*(82'; R2) such that
Vi >V inL2(25R2), divVp —divV in L2(£).

An integration by parts gives

/ Vquoa’x—i—/ (dika)goa’x:/ oVi -ndH!,
Q7 Q7 a2’

where 7 is the outer unit normal. The right-hand side vanishes since ¢ = 0 on d2’. Now it is enough
to pass to the limit as k — oco. o

Therefore, L, defines a linear operator on the quotient space H'(£2 \ K)/H} (£2 \ K); this can
be identified with the space T'(£2 \ K) of the traces { = (z°,z T, z7) when z varies in H(£2 \ K):

Ly¢ =/ Vszdx+/ (Av)z dx, {=trz, z e HY(2 )\ K). (7.3)
2\K 2\K
It is standard that the operator L, is linear and continuous with respect to the quotient norm

1811 /mp = infillz g1k + trz = &5

Let us now turn to the equilibrium condition (3.6). Let us denote (¢(s), u(s),&(s)) simply by
(t,u,&). By (3.11) this is equivalent to

[0uF(t,u,&:2)]-=0 forevery z € U,
or
Oy F(t,u,&2z) =0 forevery z € U,

i.e.
/;Z\K V(u+g(t))Vzdx + /K ¥ ([u]. & [z]) dH' =0 for every z € U. (7.4)
If z € H'(£2) NU, then [z] = 0 on K and the second integral vanishes. By linearity:
[(Z\KV(u+g(t))Vzdx =0 forevery z € H'(2) NU.

This implies, in particular, that Av = 0in H (2 \ K), where v = u + g(t). Therefore L,{ =
fﬂ\K VuVzdx for§ € T(£2 \ K) with { = tr z; moreover

Ly¢ + / awl/f([[u]],é; [[Z]]) dH' =0, forevery z € U, with § = trz, (7.5)
K

Lyt =0  forevery¢ € T':={trz: ze H(2)NU}. (7.6)
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REMARK 7.3 Condition (7.6) can be “splitted” into
Ly,& =0 forevery¢ e Ty :={trz: ze H(2)} ST,
L, =0 forevery¢ e TI} ={trz: ze H'(@)NU, zt =z" =0} T".

Recalling the meaning of L, in case of a regular v (see (7.2)) we can understand these equations
respectively as a weak form of

ajv—E);v:O on K, dyv =0 on[(02)\ K]\ dp£2.

In the sequel we go further towards a more precise definition of these normal-derivative trace
operators. In order to do this we will define a “localization” of the functional L, to K and
[(92) \ K]\ dp 2.

Let y be a curve which is part of the boundary of a piecewise-C! open set A C R?. Let ¢ be
a function on 04 such that §|y e HY2(y) and §’y € H'2(y®), where y¢ = (dA) \ y. Theorem

1.5.2.3 in [14] gives necessary and sufficient (integrability) conditions that guarantee that ¢ has a
lifting to a function in H'(A). These conditions motivate the following definition.

c

DEFINITION 7.4 Let x:[0,/,] — y be the length distance along y. We denote by Wy(y) the
subspace of H '/2(y) consisting of the functions ¢ such that

L) @)

’

o ly—o
are integrable in a neighbourhood of 0 and /,,, respectively.

For instance, Wy(y) contains all piecewise-C ! functions with compact support.
From Theorem 1.5.2.3 in [14] we deduce the following result.

Theorem 7.5 Let A and y be as above. Let ¢ € H'/?(y); extend { to the whole of dA with value 0.
Then ¢ is the trace on dA of a function in H'(A) if and only if ¢ € Wy(y).

Let now I" be any of the arcs I'; which decompose K. Let i+ and i— be such that I" € 9§2;, N
082;_ and that the orientation v on I" agrees with the outer unit normal of §£2;, on I". Apply the
previous remarks with y = I'. Let { € Wy(I"). By the previous theorem there exists a function
z € Hl(.QiJr) whose trace on I" is {, and whose trace on (9£2; ) \ I is 0. The function z can be
extended (with value 0) to a function in H!(£2 \ K); therefore

ze H(Q\K)NU, and ¢4 :=(z°.z1,27) = (0.17,0). (1.7
In the same way we get the existence of a function z such that

ze HY(@Q\K)NU, and ¢_:=(z°,z7,27) = (0,0,1r0). (7.8)
This suggests the following definition.
DEFINITION 7.6 Let I' € K be as above, and ¢ € Wy(I"). We set

((3v+v)|p,é°)=LvC+, ((330)‘p,§)=—Lv§—,

where ¢ 4 are defined in (7.7) and (7.8) (and L, in (7.3)).
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We explicitly note the slight abuse in using a pointwise-restriction notation in denoting this
operator.

Let us now address the problem of the trace of the normal derivative on 952.

By assumption, (352) \ K consists of a finite number of piecewise-C! curves y;. Let z €
H'(£2) N U with z+ = z= = 0; then, for each i, we can apply Theorem 7.5 (to a suitable
neighbourhood of ;) and deduce that for every maximal arc y in y; \ dp§2, the trace of z on y
belongs to Wy (y). On the other hand, if ¢ is a function on [(9§2) \ K]\ dp §2 such that §|y € Wo(y)

for every maximal arc y in [(052) \ K]\ 0p£2, then it is the trace of a function z € H'(2) NU
with zT = z= = 0 on K. Therefore, the space of traces TI} in Remark 7.3 is the natural domain for
the normal-derivative operator on [(d£2) \ K]\ dp 2 along the line of Definition 7.6.

DEFINITION 7.7 Let § = (£,0,0) € Tg (i.e., { is the trace of z on (3£2) \ K for some z €
HY(2)NU withzt =z~ = 0 on K). We set

(@) anknape:§) = Lot
We are now in a position to prove the next result, following the analysis in [7].
Theorem 7.8 Let (t,u,£) := (1(s).u(s),&(s)) satisfy the equilibrium condition (3.6). Let v =
u(s) + g(t(s)). Then
Av =0 in H1(2 \ K),
v=g() on dpS2,
d0fv=0,v oneveryl; CK,
v =20 on [(02) \ K]\ dp$2,

(7.9

where the boundary operators are introduced in Definitions 7.6 and 1.7 and the sets I'; are defined
in Section 3.
In addition, there exists h € L°°(K) such that the following properties hold.

(a) Let I' be any of the arcs I'j which decompose K. Let { € Wy (I"). Then
0.0 = ov.0) = [ nean (7.10
r

and thus 37 v = 8, v = h in I (in the sense of Definition 7.6).
(b) Further

h=0uy(u].§) H'-ae onfx el : (u](x).£() # (0.0)}

|h| < 7(0) otherwise.

Proof. To prove (7.9) only the statement about the normal-derivative boundary conditions has to be
addressed.

Remark 7.3 immediately implies that the operator introduced in Definition 7.7 vanishes: this
condition is summed up in the equation d,v = O on [(3§2) \ K]\ dp 2.

Let I" be any of the arcs I; which decompose K. Let { € Wy(I") and let {4 be as in (7.7) and
(7.8). Then &4 + ¢— € Ty and Ly(§+ + §—) = 0 according to Remark 7.3. By linearity and the
definition of 3Fv we conclude that 3 v = ;v on I".

Let us now address the integral representation of aﬂtv. Let I', ¢, and &+ be as above.
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By (7.5) applied to {4 and —¢ we have

ILobil < [ [dwy (] & dH" < TO)ELrry-
r

It follows that the functional { + L,{y is linear and continuous on Wy (I") with respect to the
L'(I")-norm. Therefore, it can be extended to a bounded linear functional on L!(I") which admits
an integral representation through a function 1 € L*°(I"), i.e., we have (7.10). Moreover, |h| < 7(0)
a.e.onl .

As to property (b), by (7.5) and the definition of &, we get

/ he dH! +/ ¥ ([u].£:0)dH =0,  forevery ¢ € Wo(I').
r r

By density, and recalling the definition (3.8) of 9y, v, this inequality holds for every ¢ € L(I").

Letnow J := {x € I' : ([u](x),&(x)) # (0,0)}. Note that 0y, ¥ ([u]., &;¢) = 150w ([u].E) +
17¢%(0)|¢]. Then

/ [h— 1,aww([[u]],s)];dﬂl +/ 17c2(0)|¢|dH' =0, for every ¢ € L (I').
r r

By choosing ¢ > 0 and ¢ < 0, this implies that
|h =170 ¥([u],&)] <15¢2(0)  H'-ae.onT.

In particular, H!-a.e. on J we have |h — dy, ¥ ([u], £)| = 0. O

8. Jump transition in PDE form

Let t* € [0, T]. Let us assume that t 1 (¢*) = [s~,sT] with s~ < sT. Clearly #(s) = t* for
every s € [s7,sT]. Denote u(s*) = u® and £(s*) = £*. Under these assumptions, the map
s (u(s),£(s)) for s € [s7,s™] describes (in the parametric setting) the instantaneous transition
from (u™,£7) to (ut,£T) at time t*. The following theorem provides a characterization of the
evolution in PDE form; it is formally that of Theorem 7.8 for a different function v.

Theorem 8.1 Assume the space U is equipped with the equivalent norm |u| =
(f.Q\K |Vu|? dx)'/2. Under the above assumptions, for t* = t(s), let A(s) = |3;]-(t*, u(s), i-'(s))|
Let v(s) = (u(s) + g(t*)) + A(s)u/(s). Then, a.e. in [s~, sT], v solves the following system

Av=0 in H-1(2 \ K),
v=g(t*) on dp$2,

d0fv=20,v oneveryl; CK,
=0 on[(d2)\ K]\ dp2,

8.1

where the boundary operators are introduced in Definitions 7.6 and 7.7 and the sets I'; are defined
in Section 3. In addition, a.e. in [s~,sT], there exists h € L™ (K) such that the following properties
hold.
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(a) Let I' be any of the arcs I'; which decompose K. Let { € Wy (I"). Then
0.0 = 0.0 = [ eawt 8.2)
r

and thus 3 v = 8, v = h in I' (in the sense of Definition 7.6).
(b) Further

h=0uy(u].§) H'-aeonix el : (u](x).£() # (0.0)}

|h| < 7(0) otherwise.

Note that, being t(s) = t* constant in [s~,sT], we can write v(s) = (u(s) + g(t*)) + A(s)(u(s) +
g(t*)). In this way (8.1) becomes formally a visco-elastic (Kelvin—Voigt) system with stress
Vo(s) = V(u(s) + g(t*) + A(s)V(uls) + g(™))".

Proof. From the proof of Theorem 6.2 (see (6.6)) we know that r +— F(t(r),u(r),&(r)) is
a.e. differentiable and

SFE0).60) 2 BECE)LuN C) + 0T (0 u0) 5 )

for a.e. r € [0, +00). On the other hand, the energy balance (6.4) yields

d
Ef(t(r), u(r), £(r)) = 9, F(t(r), u(r),§(r) '(r) — |9, F(t(r), u(r), £(r))|
=30, E(u(r), §(r) 1'(r) — |0, F(1(r), u(r), £(r))|.
Therefore, we deduce that
QW F(t(r), u(r). §(r);u’ (r)) < —|8, F(t(r), u(r).£(r))|.

Let us now express the right-hand side as a supremum according to (3.11); then (being —(a)— < a)
we have

O (£(r). u(r).§(r):u'(r)) < —sup{[auf(t(r),u(r),é(r);z)], szl s 1}
= inf{—[auf(z(r),u(r),s(r);z)], ozl = 1}
< inf{auf(z(r),u(r),s(r);z) ozl = 1}-
Hence u'(r) € argmin{d, 7 (¢(r), u(r).§(r): z) - ||z|| < 1} and
0uF (). u(r). £0r):u (1) = —[0 F (). u(r). £() |

Let G be the functional 8u.7:(t(r), u(r),&(r); ) on U; now we use the fact that the space U/ is

equipped with the norm [[ul| = ([ [Vul? dx)'/? and denote by (,) the corresponding scalar
product. G is convex, continuous and positively 1-homogeneous. Denote by B the closed unit ball
in U and by Ip the indicator function of B. Since u’(r) minimizes G + Ip on U we have

0€d(G+ Ip)(u'(r)). (8.3)



APPROXIMATION AND CHARACTERIZATION OF QUASI-STATIC H'-EVOLUTIONS 65

where the right-hand side denotes the subdifferential of G+ I'g in u’(r). We know that (see, e.g., [13,
Proposition 5.6]) that

{0} if f|z] <1,
{Az: A =0} if|z|| =1.

(G + 1) (' (r)) = 3G (u'(r)) + 01 (' (r)). dlp(z) =
Then, by (8.3) we deduce the existence of A(r) = 0 such that
—A(r)u'(r) € 3G (' (r))
(note that A(r) = 0 if ||u’(r)|| < 1). Therefore, by the definition of subdifferential we have:
G(z) =G (r)) = A(r) (' (r), z —u'(r)) for every z € U.
If |u/(r)]| = 1 then, by taking z = 2u’(r) and z = 0, we get G(u'(r)) + A(r) = 0, so that

Ar) = =G('(r)) = [0, F(t(r).u(r).£(r))

’

and the previous inequality yields
G2)+ A (W' (r),z) =G’ (r)) + A(r) =0 for every z € U.

If |4/ (r)|| < 1 then A(r) = 0 and, by the positive 1-homogeneity of G, we have that the minimum
value G(u'(r)) of G is 0, too. In any case, we have proved that A(r) = |0, F(¢(r),u(r),&(r))| =0
satisfies

G@) + A (r),z) =0 forevery z € U.

At this point, remembering that the duality above is in H1(£2 \ K) endowed with the norm |Ju| =
(. 2\K |[Vu|? dx)'/2, we can write the previous variational inequality as

/ V(u(r)+g@) +A(ru'(r))Vz dx+/ O ([u](r), £(r): [z]) dH =0 forevery z € U.
2\K K

Defining v(r) = (u(r) + g(t)) + A(r)u’(r) and following step by step the proof of Theorem 7.8
we get the thesis. O

REMARK 8.2 The PDE characterizations of Theorem 7.8 and Theorem 8.1 distinguish between
equilibrium configurations (in continuity points) and jump transitions (in discontinuity points)
because the mechanical behaviour is different. However, it is possible to provide a unified
mathematical characterization: the system of PDEs is indeed the same and the function v(s) =
(u(s) + g()) + A(s)u'(s), appearing in Theorem 8.1, boils down to v(s) = u(s) + g(¢) when,
under the assumptions of Theorem 7.8, A(s) = |9, F(¢(s), u(s),&(s))| = 0.
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