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We consider the quasi-static evolution of a prescribed cohesive interface: dissipative under loading

and elastic under unloading. We provide existence in terms of parametrized BV -evolutions,

employing a discrete scheme based on local minimization, with respect to the H1-norm, of a

regularized energy. Technically, the evolution is fully characterized by: equilibrium, energy balance

and Karush–Kuhn–Tucker conditions for the internal variable. Catastrophic regimes (discontinuities

in time) are described by gradient flows of visco-elastic type.
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1. Introduction

In this work we study a quasi-static evolution for an elastic material containing a cohesive

crack. Models of this type have been studied under many different mechanical and mathematical

hypotheses. Before presenting our setting and our results, we recall some recent works, covering

different research directions.

First of all, we mention [10] and [8], a couple of results obtained in the framework of energetic

evolutions [17]. From our perspective, and from the mechanical point of view in general, it is

interesting that in these works the cohesive potential depends, at time t , both on the crack opening,

say JuK.t/, and on an internal variable, say �.t/, given (roughly speaking) by the maximal crack

opening JuK in the interval Œ0; t �. This feature allows to introduce irreversibility (by the monotonicity

of �) and to distinguish between different loading-unloading regimes: [10] considers a constant

unloading while [8] considers a more general convex unloading, introducing Young measures. These

energetic evolutions are obtained, as usual, taking the limit of time-discrete evolutions in which the

time-incremental problem is a (global) energy minimization problem. A similar approach is pursued

also in [22] employing a “damage like” interface energy, in place of an internal variable. In this

context we would like to point out also the weaker notion of directional local minimizers proposed

in [21], actually for a gradient damage model.

Let us turn to BV -evolutions, another class of quasi-static evolutions. In this framework,

developed to overcome some issues of energetic evolutions, the system attains, at each time, an

equilibrium configuration which is not necessarily an energy minimizer, as it is for energetic
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evolutions. Typically, BV -evolutions are obtained by vanishing viscosity, i.e., as the limit of

auxiliary time-continuous parabolic systems (see [17] for abstract results and [1, 7] for cohesive

models). Alternatively, see [19], they can be generated as the limit of time-discrete evolutions in

which the time-incremental problem is a local energy minimization problem. In both cases, it is

necessary to provide (or identify) a norm or a metric which, together with the energy, drives the

evolution. Clearly, different choices of this norm or metric are interesting from the mathematical

and mechanical point of view; for instance, in the frame of cohesive fracture, [7] employs the bulk

L2-norm while [1] employs a “metric” depending on the crack length (the surface energy actually

has an activation threshold followed by a cohesive behaviour).

Let us briefly mention some results in the one dimensional setting, i.e., for elastic bars with

cohesive cracks; this simplified setting is often useful to provide a representative picture of the

complex behaviour of more realistic problems. For instance, [5] and [11] contain fine studies of

(stable and unstable) equilibrium configurations, [16] studies a dynamic problem while [9] presents

a quasi-static evolution generated by gradient flows, as incremental problems, along different

loading-unloading paths.

We conclude this brief overview with some computational works, closely related to our work.

We first mention [3] which makes use of a regularized cohesive potential, similar to the one

employed here, in order to obtain convenient (differentiable) energies for numerical simulations.

The class of cohesive laws used here is inspired by [20] both for the loading-unloading regimes and

for the regularization of the density (labelled “Smith-Ferrante” in [20]). We finally remember the

recent [4] which contains an abstract approximation result (from discrete to continuum) applied to

the viscosity approach of [7] and also [24] which employs an arc-length approach, similar to ours,

to capture unstable regimes of propagation (see ÷ 8).

Now, let us describe our setting and the main results, without going into technical details. We

work within the anti-plane setting. We start with a traction-separation law �.jJuKj; �/ (depending

on the modulus of the opening JuK and on the internal variable �) which is linear in the unloading

branch 0 < jJuKj 6 �, decreasing and convex in the loading branch jJuKj > � (see Figure 2a). The

cohesive potential  .�; �/ is then obtained by integration of �.�; �/. We remark that the cohesive

density JuK 7!  .jJuKj; �/ is not differentiable in the origin, unless � > 0. Given a function t 7!

g.t/ the potential energy is given by

F.t; u; �/ D 1
2

Z

˝nK

�jr.uC g.t//j2 dx C

Z

K

 .jJuKj; �/ dH1;

where ˝ is the reference configuration, K is the cohesive interface (or crack), u 2 U D

fu 2 H 1.˝ n K/ W u D 0 on @D˝g where @D˝ � @˝ . Since differentiability of the

energy is a convenient property, both theoretically and numerically, we introduce a family of

regularized (differentiable) potentials  ".jJuKj; �/ approximating  .jJuKj; �/. We denote by F" the

corresponding energy.

We work within the framework of parametrized BV -evolutions [19]. Our strategy, to find an

evolution for F , is the following. First, we define a family of evolutions for the regularized energies

F" and then, passing to the limit as " ! 0, we find an evolution for F . To find an evolution for F"
we follow this approach. First, we employ a discrete (incremental) scheme, in which the updated

configuration is given by a local minimization problem. More precisely, let �sn & 0; for each n 2

N define by induction a sequence .tn;k; un;k ; �n;k/, for k 2 N, as follows: if @uF".tn;k; un;k ; �n;k/ ¤
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0 then
8

ˆ

<

ˆ

:

tn;kC1 D tn;k ;

un;kC1 2 argmin fF".tn;k; v; �n;k/ W kv � un;kkH1 6 �sng;

�n;kC1 D �n;k _ jJun;kC1Kj;

while, if @uF".tn;k; un;k ; �n;k/ D 0 then

8

ˆ

<

ˆ

:

tn;kC1 D tn;k C�sn;

un;kC1 D un;k;

�n;kC1 D �n;k :

Note that in this scheme the time variable is updated only when an equilibrium configuration

is attained (the approach is indeed inspired by minimizing movements for gradient flows). The

piecewise-affine interpolation of the sequence .tn;k ; un;k; �n;k/, for k 2 N, in the discrete points

sn;k D k�sn provides a parametrized “discrete” evolution s 7! .tn.s/; un.s/; �n.s// for s 2

Œ0;C1/. By construction, the evolutions .tn; un; �n/, for n 2 N, are uniformly Lipschitz continuous

and thus (upon extracting a subsequence) there exists a limit, say s 7! .t".s/; u".s/; �".s//, which

is indeed the parametrized BV -evolution for the energy F". Finally, passing to the limit for " ! 0

yields a parametrized BV -evolution s 7! .t.s/; u.s/; �.s// for the energy F .

Note that in general s is not the physical time variable but an auxiliary “length” parameter in

the .t; u/ space. In this framework discontinuities in time are represented by intervals, say Œs�; sC�,

where t 0 D 0while u (and possibly �) changes; on the contrary, continuity points in time correspond

to parametrization points in which t 0.s/ > 0.

Now we describe in more detail the characterization of this evolution (for the precise statement

see Definition 3.1):

.C / for almost every s 2 Œ0;C1/ the following Karush–Kuhn–Tucker conditions hold,

� 0.s/ > 0; jJu.s/Kj 6 �.s/; � 0.s/
�

jJu.s/Kj � �.s/
�

D 0 ; H1-a.e. on K;

.S/ for every s 2 Œ0;C1/ with t 0.s/ > 0 the following equilibrium condition holds,

ˇ

ˇ@�
uF

�

t.s/; u.s/; �.s/
�
ˇ

ˇ D 0;

.E/ for every s 2 Œ0;C1/ the following energy balance holds,

F
�

t.s/; u.s/; �.s/
�

D F.t0; w0; �0/C

Z s

0

@tF
�

t.r/; u.r/; �.r/
�

t 0.r/ dr C

�

Z s

0

ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇdr :

In .S/ and .E/ we have to consider the slope j@�
uF.t; u; �/j (see ÷ 2) since F is not everywhere

differentiable with respect to u. We remark that in our characterization the energy balance .E/ is

an equality and, most important, that all the Karush–Kuhn–Tucker conditions .C / are provided in a

strong form. Moreover, it is noteworthy that for every T 2 .0;C1/ there exists S 2 .0;C1/ such

that t.S/ D T ; as a by-product we also prove that discrete evolutions in a finite time horizon T > 0

are parametrized in a single, finite length, interval, say Œ0; S�, and obtained by a finite number of

induction steps.
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Finally, considering in U the norm kuk D .
R

˝nK jruj2 dx/1=2, conditions .S/ and .E/

provide the following system of PDEs: for v.s/ D u.s/ C g.t.s// C �.s/u0.s/ and �.s/ D

j@�
uF.t.s/; u.s/; �.s//j it holds

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�v D 0 in H�1.˝ nK/,

v D g
�

t.s/
�

on @D˝ ,

@C
� v D @�

� v D h on K ,

@�v D 0 on
�

.@˝/ nK
�

n @D˝;

where h 2 L1.K/ and

(

h D �
�

jJuKj; �
��

sgn JuK
�

H1-a.e. on
˚

.JuK; �/ ¤ .0; 0/
	

,

jhj 6 �.0; 0/ otherwise.

As we will see in ÷ 7 and ÷ 8 this system gives both the equilibrium conditions in the continuity

points, i.e., where t 0.s/ > 0, and the behaviour in the discontinuity intervals, i.e., where t 0 D 0.

Note that, in the former case it turns out that �.s/ D 0, by condition (E), and thus v.s/ becomes

simply the (total) displacement u.s/ C g.t.s//; in the latter, when �.s/ ¤ 0, we formally obtain

a visco-elastic (Kelvin–Voigt) system; this is a consequence of the choice of the H 1-norm in the

discrete scheme.

2. Preliminaries

Lp vector-valued functions. Let us recall the following result (see, e.g., [15], ÷ 2.22)

Lemma 2.1 Let X be a reflexive Banach space, and T > 0. Let ˚ be a bounded linear functional

on Lp.0; T IX/ (1 6 p < C1). Then there exists u 2 Lp
0

.0; T IX 0/ such that k˚k D kukLp0 and

˚.v/ D

Z T

0

˝

u.t/; v.t/
˛

X 0;X
dt

for every v 2 Lp.0; T IX/.

REMARK 2.2 In particular, if X is a reflexive Banach space, then the space L1.0; T IX 0/ can be

identified with the dual of the space L1.0; T IX/. The duality pair is given by

hu; viL1.0;T IX 0/;L1.0;T IX/ D

Z T

0

˝

u.t/; v.t/
˛

X 0;X
dt

Let us also recall that Lp.0; T IX/ (1 6 p < C1) is separable if (and only if) X is separable

(see, e.g., [15], ÷ 2.20). Hence, if X is a separable reflexive Banach space, then bounded sets in

L1.0; T IX 0/ are sequentially relatively compact with respect to the weak� convergence.

Sobolev vector-valued functions. Let us recall (see, e.g., [6]) that if X is a Banach space and

g 2 L1.0; T IX/ then the function u defined by u.t/ D
R t

0 g.s/ ds is a.e. differentiable in .0; T /

and u0 D g a.e. in .0; T /.
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We define the space W 1;p.0; T IX/ (with 1 6 p 6 1) as the space of function uW Œ0; T � ! X

which can be represented as

u.t/ D u.0/C

Z t

0

g.s/ ds .t 2 Œ0; T �/

for a suitable g 2 Lp.0; T IX/. The function g equals the derivative u0 of u a.e. in .0; T /. We set

kukW 1;p.0;T IX/ D kukLp.0;T IX/ C ku0kLp.0;T IX/.

Assume that X is reflexive and separable (hence X 0 is reflexive and separable). Then ( [6],

Cor. A.2) the space of Lipschitz functions Œ0; T � ! X 0 coincides with W 1;1.0; T IX 0/. Moreover,

the following proposition holds.

Proposition 2.3 Let .un/ be a bounded sequence in W 1;1.0; T IX 0/. Then there exists a function

u 2 W 1;1.0; T IX 0/ such that, up to a subsequence,

un.t/ * u.t/ w-X 0 for every t 2 Œ0; T �,

u0
n * u0 w�-L1.0; T IX 0/:

Moreover, the w-X 0 convergence of un.t/ is uniform with respect to t 2 Œ0; T �, i.e.,

if tn ! t then un.tn/ * u.t/ w-X 0:

We will refer to the convergence properties just stated as weak� convergence inW 1;1.0; T IX 0/.

Slope of a functional. Directional derivatives. Let X be a Banach space, and F a functionalX !

R. We define the slope of F in u0 2 X as

j@�F.u0/j WD lim sup
u!u0

ŒF .u/ � F.u0/��

ku � u0k
;

where Œ��� denotes the negative part.

If F is Fréchet differentiable in u0, then

j@�F.u0/j D kdF.u0/kX 0 :

Assume now that F admits only (unilateral) directional derivatives, i.e., for every z 2 X the

following limit exists and is finite:

@F.u0I z/ WD lim
h!0C

F.u0 C hz/ � F.u0/

h
: (2.1)

The following result provides a relationship between the slope and the directional derivatives.

Proposition 2.4 Let u0 2 X , and assume that the limit (2.1) is uniform with respect to kzk 6 1.

Then

j@�F.u0/j D sup
˚

Œ@F.u0I z/�� W kzk 6 1
	

:

Proof. Let z 2 X with kzk 6 1 and z ¤ 0. Then by continuity of Œ���

Œ@F.u0I z/�� D lim
h!0C

ŒF .u0 C hz/ � F.u0/��

hkzk
kzk

6 lim sup
u!u0

ŒF .u/ � F.u0/��

ku � u0k
D j@�F.u0/j:
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By the arbitrariness of z we have j@�F.u0/j > sup
˚

Œ@F.u0I z/�� W kzk 6 1
	

. Let us address the

opposite inequality. Let un ! u be a sequence satisfying

lim
n!C1

ŒF .un/ � F.u0/��

kun � u0k
D j@�F.u0/j:

Let hn D kun � u0k and zn D .un � u0/=hn; thus un D u0 C hnzn, with kznk D 1. Fix " > 0. By

assumption (see Remark 2.5 below, too) we can assume that for every n

ˇ

ˇ

ˇ

ˇ

F.u0 C hnzn/ � F.u0/

hn
� @F.u0I zn/

ˇ

ˇ

ˇ

ˇ

< ";

thus
F.u0 C hnzn/ � F.u0/

hn
> @F.u0I zn/ � ":

Since Œ��� is monotone and Œx � "�� 6 Œx�� C ", we get

ŒF .u0 C hnzn/ � F.u0/��

hn
6 Œ@F.u0I zn/�� C " 6 sup

˚

Œ@F.u0I z/�� W kzk 6 1
	

C ":

The first item of these inequalities tends to j@�F.u0/j and we conclude by the arbitrariness of ".

REMARK 2.5 (a) The uniformity assumption in the preceding proposition can be expressed by

requiring that for any positive infinitesimal sequence .hn/ and for every sequence .zn/ in X ,

with kznk 6 1, we have

lim
n!C1

ˇ

ˇ

ˇ

ˇ

F.u0 C hnzn/ � F.u0/

hn
� @F.u0I zn/

ˇ

ˇ

ˇ

ˇ

D 0:

(b) It is easy to check that if F is Fréchet differentiable in u0 then the limit (2.1) is uniform with

respect to kzk 6 1:

3. Setting

Let A � R
2 be an open, bounded and connected set. We say that A is piecewise-C 1 or that A has

piecewise-C 1 boundary if every point x 2 @A has a neighbourhood in which the boundary @A is

the graph (in a suitable system of coordinates) of a piecewise-C 1 function. Note that this condition

does not allow the boundary of A to have cusps.

Let ˝ � R
2 be an open, bounded and connected set with a piecewise-C 1 boundary. Let

˛1; : : : ; ˛m be C 1 simple curves Œ0; 1� ! ˝ such that the sets �j D j̨ ..0; 1// are pairwise disjoint,

see Figure 1(a). Let K WD
S

j j̨ .Œ0; 1�/. We will assume that

(i) K \ @˝ is a subset of the set of endpoints of the arcs �j ; in particular, .@˝/ nK consists of a

finite number of arcs;

(ii) up to a negligible set, ˝ n K is the disjoint union of finitely many connected piecewise-C 1

open sets ˝i , see Figure 1(b); in particular, none of the curves �j is tangent to @˝;

(iii) each arc �j is part of the boundaries of exactly two sets of the family .˝i /i .
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Ω \K

∂DΩ∂DΩ

Γ1

Γ2

Γ3

Γ4

(a) Crack path K and Dirichlet boundary @D˝

Ω3

∂DΩ∂DΩ

Ω1

Ω2

Ω4

(b) Decomposition of˝ nK in piecewise-C1 domains

FIG. 1: Geometric setting

In the setting of anti-plane elasticity, the displacement is a scalar function on ˝ nK . On a portion

@D˝ of the boundary @˝ with H1.@D˝/ > 0 we impose boundary conditions, parametrized

over the positive ‘time’ axis R
C D Œ0;C1/: if g is a given function Œ0;C1/ ! H 1.˝/, we

require that the displacement equals g.t/ on @D˝ at any t . More precisely, we assume that g 2

C 1
�

Œ0;C1/IH 1.˝/
�

with kgkC1.Œ0;C1/IH1/ < C1.1 In particular g 2 W 1;1
�

Œ0; T �IH 1.˝/
�

for every T > 0. Note that, directly from the definition of g0, the map rgW Œ0;C1/ ! L2.˝;R2/

is a.e. differentiable, and
d

dt
rg.t/ D rg0.t/ a.e. in ˝ .

For convenience, for every t , we will write the admissible displacements as v D g.t/ C u where

u 2 U , with

U D
˚

u 2 H 1.˝ nK/ W u D 0 on @D˝
	

:

This space will be equipped with the usual H 1 norm: we simply write kuk if u 2 U .

A natural assumption on @D˝ is that each connected component A of ˝ n K shares a part of

the boundary where the datum g is placed (for instance, this guarantees that we can control the H 1

norm on A by the L2 norm of the gradient). Thus, we require that

H1.@D˝ \ @A/ > 0; for every connected componentA of ˝ nK .

Moreover, we require that @D˝ consists of a finite number of C 1 arcs.

If u 2 U , we denote by

JuK D uC � u�

the jump of u on K , with respect to a fixed orientation (however, the relevant results involve only

the absolute value of JuK; see Remark 3.2, too).

We consider an elastic energy with the simple form:

E.t; u/ D 1
2

Z

˝nK

�
ˇ

ˇr
�

uC g.t/
�
ˇ

ˇ

2
dx .t > 0; u 2 U/;

1 The case of a datum g which is assigned on a bounded interval Œ0; T � can be managed in a similar way.
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ξ w

τξ = τ(·, ξ)

τ̂

(a) Traction-separation law: function �.�; �/

ξ w

ψ(·, ξ)

ψ̂

(b) Potential  .�; �/

FIG. 2: Traction-separation law and potential for a cohesive failure model

where � > 0 is the shear modulus. For the sake of simplicity, we will assume, without loss of

generality, that � D 1. We match this energy with a cohesive potential energy, which we define

starting from the traction-separation law, as follows.

Let O� W Œ0;C1/ ! Œ0;C1/ be a C 1, non-increasing, summable, convex function: O� can be

interpreted as the traction-separation law for the originally unfractured configuration in a cohesive

failure model. Denote by w the crack opening, defined (pointwise) on the crack path K; consider

a configuration where the maximum opening previously experienced by the material is given

pointwise by the non-negative function �. If � D 0 we define �.w; �/ D O�.w/. If � > 0 we

assume a linear loading-unloading regime followed by a softening loading regime; thus we get a

traction-separation law of the form (see Figure 2(a)):

�.w; �/ D

(

�

O�.�/=�
�

w if w 6 �;

O�.w/ if w > �:

Next, we define the cohesive energy density  as a function of both w and the maximum opening �

through the traction-separation law �.w; �/ as (see Figure 2(b)):

 .w; �/ D

Z �

0

O�.r/ dr �

Z �

w

�.r; �/ dr: (3.1)

The first term in (3.1) corresponds to the energy of the opening crack �, while the second term gives

the released energy when the opening is reduced to w 6 �. Note that the underlying physical model

will naturally force the conditionw 6 � in the definition of an evolution path, however (3.1) defines

 for every .w; �/ 2 R
C � R

C (and not only for w 6 �). Clearly @ =@w D � .

We point out that  can be equivalently expressed as

 .w; �/ D

Z w

0

O�.r/ dr C

Z �

w

Œ O�.r/ � �.r; �/� dr (3.2)

and also as

 .w; �/ D  s.w; �/C  d .�/; (3.3)
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where

 s.w; �/ D

Z w

0

�.r; �/ dr;  d .�/ D

Z �

0

Œ O�.r/ � �.r; �/� dr

denote the stored and the dissipated energy, respectively. In the sequel, we will work with the

density  without making the distinction between stored and dissipated energy. In Proposition 3.3

we gather the main properties of  .

On the crack pathK we consider the energy

K.u; �/ D

Z

K

 
�

jJuKj; �
�

dH1 ; (3.4)

defined in U �L2C.K/ (here L2C.K/ denotes the space of positive functions in L2.K/). For ease of

notation, we extend  .�; �/ all over R as an even function; thus, we can also write

K.u; �/ D

Z

K

 
�

JuK; �
�

dH1 :

The two terms previously set forth give the energy functional F WRC � U � L2C.K/ ! R
C defined

by

F.t; u; �/ D E.t; u/C K.u; �/ D 1
2

Z

˝nK

ˇ

ˇr
�

uC g.t/
�
ˇ

ˇ

2
dx C

Z

K

 
�

jJuKj; �
�

dH1:

Let us now introduce the notion of quasi-static evolution we deal with in this paper; as in [19] we

express it in terms of parametrized BV evolutions.

DEFINITION 3.1 Let u0 2 U and �0 2 L2C.K/, with jJu0Kj 6 �0 a.e. onK . Let .t; u; �/W Œ0;C1/ !

R
C � U � L2C.K/ be a Lipschitz map such that

�

t.0/; u.0/; �.0/
�

D .0; u0; �0/; lim
s!C1

t.s/ D C1;

with t.�/ a non-decreasing function.

The map .t; u; �/ is a parametrized BV evolution for F if

.C / for almost every s 2 Œ0;C1/ we have

� 0.s/ > 0;
ˇ

ˇJu.s/K
ˇ

ˇ 6 �.s/; � 0.s/
�

jJu.s/Kj � �.s/
�

D 0 ; H1-a.e. on K; (3.5)

.S/ for every s 2 Œ0;C1/ with t 0.s/ > 0 we have

ˇ

ˇ@�
uF

�

t.s/; u.s/; �.s/
�
ˇ

ˇ D 0 I (3.6)

.E/ for every s 2 Œ0;C1/ we have

F
�

t.s/; u.s/; �.s/
�

D F.t0; w0; �0/C

Z s

0

@tF
�

t.r/; u.r/; �.r/
�

t 0.r/ dr C

�

Z s

0

ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�ˇ

ˇ dr : (3.7)



34 M. NEGRI AND E. VITALI

When the boundary condition is defined in a finite time interval Œ0; T � the parametrization

.t; u; �/ is defined in a finite interval Œ0; S� and correspondingly the conditions .C /, .S/ and .E/

hold in Œ0; S�.

In Theorem 6.2 we prove the existence of a parametrized BV evolution for the energy F .

Finally, we collect here a few properties which we will need in the sequel.

REMARK 3.2 Let � be a unit, normal vector field on @˝ andK\˝; assume that �ˇ
ˇ@˝

is the exterior

normal vector, and that �ˇ
ˇ�j

is continuous for every j . Let u 2 H 1.˝ nK/. For every i , the trace

of u on @˝i is well defined as a function in H 1=2.@˝i /. This yields a trace uı of u on .@˝/ n K .

As to the trace on K , let � be any of the arcs �j which decompose K . Let iC and i� be such that

� � @˝iC \ @˝i� and that the orientation � on � agrees with the outer unit normal of ˝iC on � .

We denote by uC on � the trace of uˇ

ˇ˝iC

on � , and by u� on � the trace of uˇ

ˇ˝i�

on � .

Let us now point out some properties of these traces.

(a) By the continuity of the trace operator on each ˝i , if u 2 H 1.˝ nK/ then



JuK




L2.K/
6 kuCkL2.K/ C ku�kL2.K/ 6 Ckuk

for a suitable constant C depending only on˝ andK .

(b) Let �; iC and i� be as above. Then the trace operators map continuously H 1.˝iC/;H
1.˝i�/

to the space H 1=2.� /, which is continuously and compactly embedded in Lq.� / for every

q 2 Œ2;C1/ (see, e.g., [12], ÷÷ 6 and 7).

(c) If .un/ is a sequence inH 1.˝nK/which converges weakly to an element u, then the continuity

of the trace operator implies that u˙
n * u˙ weakly in H 1=2.� / for every � as above, hence

u˙
n ! u˙ in L2.K/ and in particular JunK ! JuK in L2.K/.

Proposition 3.3 The following properties hold.

(a)  is continuous and bounded in R
C � R

C.

(b) Define (see Fig. 2(b))

O .w/ D

Z w

0

O�.r/ dr; for every w > 0.

Then, if � > 0

 .w; �/ D

8

ˆ

<

ˆ

:

O .�/ � 1
2

O�.�/
�
.�2 �w2/ if 0 6 w 6 �,

O .w/ if w > �

while  .w; 0/ D O .w/ for every w > 0.

(c)  .�; �/ 2 C 1
�

Œ0;C1/
�

for every � > 0, and @w D � . In particular, 0 6 @w 6 O�.0/ on

Œ0;C1/, and @w .0; �/ D 0 if � > 0; remembering that  .�; �/ is extended from R
C to R by

even symmetry, it follows that  .�; �/ 2 C 1.R/ for every � > 0.

(d)  .w; �/ is non-decreasing on Œ0;C1/ for every w > 0; moreover, it is continuously

differentiable on Œw;C1/, and 0 6 @� 6
1
2

O�.0/.

(e)  is Lipschitz continuous on R
C � R

C (hence on R � R
C).
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Proof. (a) The continuity is immediate; the boundedness follows from the fact that O� is summable,

and both the integrals in (3.1) are bounded by
R C1

0
O� .

(b) This follows from (3.1) making use of the explicit form of � .

(c) The property can be immediately deduced from (3.1) since �.�; �/ is continuous on Œ0;C1/ for

every � > 0.

(d) Let w > 0. Since  .w; �/ D O .w/ if � 6 w, to prove that  .w; �/ is non-decreasing we

have only to show that  .w; �1/ 6  .w; �2/ if w 6 �1 6 �2: this follows immediately

from equation (3.1) since �.�; �1/ > �.�; �2/ > 0 (indeed, this implies that �
R �1

w
�.r; �1/ dr 6

�
R �2

w
�.r; �2/ dr).

Let us now prove the C 1-differentiability of  .w; �/ on Œw;C1/. If w D 0 then

 .0; �/ D O .�/ � 1
2

O�.�/�; for every � > 0,

and
d

d�
 .0; �/ D O�.�/ � 1

2
O� 0.�/� � 1

2
O�.�/ D 1

2

�

O�.�/ � O� 0.�/�
�

I

now, taking the convexity of O� into account, we have 0 6 O�.�/ � O� 0.�/� 6 O�.0/.

If w > 0 and � > w, then  .w; �/ D O .�/ � 1
2

O�.�/
�
.�2 �w2/, so that

@

@�
 .w; �/ D 1

2

O�.�/ � O� 0.�/�

�2
.�2 �w2/:

Since 0 6 .�2 � w2/=�2 6 1, we conclude again by the convexity of O� .

(e) By .c/ and .d/ the functions .�; �/ and  .w; �/ are Lipschitz continuous on R
C with Lipschitz

constants independent of � andw (recall that  .w; �/ is constant on Œ0; w�): the global Lipschitz

continuity of  on R
C � R

C then follows.

Corollary 3.4 The functional KWU � L2C.K/ ! R
C is Lipschitz continuous.

Proof. Take Proposition 3.3 (e) into account together with Remark 3.2 .a/.

Lemma 3.5 The functional E is of class C 1 on R
C � U (i.e., it is Fréchet differentiable on R

C � U
with continuous derivative), and

@tE.t; u/ D

Z

˝nK

r
�

uC g.t/
�

rg0.t/ dx;

@uE.t; u/Œz� D

Z

˝nK

r.uC g.t/
�

rz dx .z 2 U/:

Proof. It is enough to show that the partial Fréchet derivatives exist and are continuous. The result

about @uE.t; u/ is standard; that about @tE.t; u/, can be obtained by composition.

Since the partial derivative @w .w; �/ does not exist in the origin, i.e., for w D � D 0, it will

be useful to have the directional derivative @w .w; �I z/ of  in R � R
C (according to (2.1) with

X D R): for every .w; �/ 2 R � R
C and z 2 R it turns out that

@w .w; �I z/ D

(

@w .w; �/z D �.jwj; �/.sgnw/z if .w; �/ ¤ .0; 0/

O�.0/jzj D �.0; 0/jzj if .w; �/ D .0; 0/,
(3.8)
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where we have set sgn 0 D 0 (however, note that if w D 0 then �.jwj; �/ D 0 if � ¤ 0). In the

following result we study the directional differentiability of F according to (2.1).

Lemma 3.6 The functionalK admits (unilateral) directional derivative @uK.u; �I z/ for any z 2 U ,

and

@uK.u; �I z/ D

Z

K

@w 
�

JuK; �I JzK
�

dH1 (3.9)

(where @w is defined in (3.8)). Moreover, the limit defining @uK.u; �I z/ is uniform with respect to

z 2 U , with kzk 6 1. In particular, by Remark 2.5 if zn ! z and hn is positive and infinitesimal

then

lim
n!C1

ˇ

ˇ

ˇ

ˇ

K.uC hnzn; �/ � K.u; �/

hn
� @uK.u; �I zn/

ˇ

ˇ

ˇ

ˇ

D 0:

Proof. Let u 2 U and � 2 L2C.K/ be fixed. Let .hn/ be a positive infinitesimal sequence and .zn/

a sequence in U , with kznk 6 1. Denote JuK and JznK by w and wn, respectively. According to

Remark 2.5 .a/, consider

ˇ

ˇ

ˇ

ˇ

K.uC hnzn; �/ � K.u; �/

hn
�

Z

K

@w .w; �Iwn/ dH
1

ˇ

ˇ

ˇ

ˇ

6

Z

K

ˇ

ˇ

ˇ

ˇ

 .w C hnwn; �/ �  .w; �/

hn
� @w .w; �Iwn/

ˇ

ˇ

ˇ

ˇ

dH1 D

Z

K

�njwnjdH1;

where

�n D 1fwn¤0g

ˇ

ˇ

ˇ

ˇ

 .w C hnwn; �/ �  .w; �/

hnjwnj
� @w .w; �I sgnwn/

ˇ

ˇ

ˇ

ˇ

(note that @w .w; �I�wn/ D �@w .w; �Iwn/ for � > 0). Since hnzn ! 0 in H 1.˝ n K/, we

can assume (up to a subsequence) that hnwn ! 0 in L2.K/ and pointwise a.e. on K . Setting

�n D hnjwnj if wn > 0 we have

ˇ

ˇ

ˇ

ˇ

 .w C hnwn; �/ �  .w; �/

hnjwnj
� @w .w; �I sgnwn/

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

 .w C �n; �/ �  .w; �/

�n
� @w .w; �I 1/

ˇ

ˇ

ˇ

ˇ

while for wn < 0

ˇ

ˇ

ˇ

ˇ

 .w C hnwn; �/ �  .w; �/

hnjwnj
� @w .w; �I sgnwn/

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

 .w � �n; �/ �  .w; �/

�n
� @w .w; �I �1/

ˇ

ˇ

ˇ

ˇ

:

Considering the subsequences wherewn > 0 orwn < 0we have in both the cases that the difference

quotient converge to the directional derivative and hence �n ! 0 a.e. on K .

By Hölder’s inequality and Remark 3.2

Z

K

�njwnjdH1
6 Ck�nkL2.K/kznk 6 Ck�nkL2.K/:
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By the Lipschitz continuity of  .�; �/ (see Proposition 3.3 (e)) the incremental quotients in the

definition of �n are bounded by max j@w .�; �I ˙1/j D O�.0/. Therefore, j�nj 6 2 O�.0/, and, by the

Dominated Convergence Theorem k�nkL2.K/ ! 0.

The convergence now proved yields both (3.9) (take a constant sequence .zn/) and the uniform

condition for the limit (2.1) for K.

Since the elastic energy E is Fréchet differentiable we can introduce the directional derivative

@uF.t; u; �I z/ D @uE.t; u/Œz� C @uK.u; �I z/: (3.10)

By the previous lemma and by Proposition 2.4 we can represent the slope as

ˇ

ˇ@�
uF.t; u; �/

ˇ

ˇ D sup
˚

Œ@uF.t; u; �I z/�� W kzk 6 1
	

: (3.11)

4. Regularized energy

The main result of this paper will be first proved for a modified energy F" where an additional

regularity is required for the energy density on the crack. Thus, a modified traction-separation law

is considered, to overcome the lack of differentiability in zero of the function .j � j; �/ which enters

the line energy (3.4).

For every " > 0 and w 2 R
C let (see Figure 3)

O�".w/ D min
�

w="; O�.w/
�

: (4.1)

Let �" > 0 such that �"=" D O�.�"/, then the regularized function �" takes the form O�".w/ D �.w; �"/.

For .w; �/ 2 R
C � R

C we define

�".w; �/ D

(

�.w; �"/ D O�".w/ if � 6 �",

�.w; �/ if � > �".
(4.2)

Thus, �".0; �/ D 0, and �".�; �/ is Lipschitz continuous on R
C, uniformly with respect to � 2 R

C.

Moreover, it is worthwhile to note that �" ! 0 as " ! 0 and that

�".w; �/ D �.w; �/ if � > �" or w > �". (4.3)

Next, we define the regularized potential  ".w; �/ by analogy with the definition of  :

 ".w; �/ D

Z �

0

O�".r/ dr �

Z �

w

�".r; �/ dr

D

Z w

0

O�".r/ dr C

Z �

w

�

O�".r/ � �".r; �/
�

dr

D  s" .w; �/C  d" .�/;

(4.4)

where

 s" .w; �/ D

Z w

0

�".r; �/ dr;  d" .�/ D

Z �

0

�

O�".r/ � �".r; �/
�

dr:
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τε(·, ξ)

wξε ξ

τ̂ε(·, ξε) = τ̂ε

(a) Traction-separation law: Function �".�; �/

ψε(·, ξ)

w
ξ

ψ̂ε

(b) Potential  ".�; �/:

FIG. 3: A regularized model

We extend ".�; �/ to the whole R as an even function. In the following proposition we collect some

of the main properties of the function  " (see Figure 3).

Let us now introduce the regularized energy as the energy corresponding to the potential in (4.4).

Let

K".u; �/ D

Z

K

 ".JuK; �/ dH
1 ;

and

F".t; u; �/ D E.t; u/C K".u; �/ D 1
2

Z

˝nK

ˇ

ˇr
�

uC g.t/
�ˇ

ˇ

2
dx C

Z

K

 ".JuK; �/ dH
1 :

In analogy with Definition 4.1 a parametrized BV-evolution for F" can be defined as follows.

DEFINITION 4.1 Let u0 2 U and �0 2 L2C.K/, with jJu0Kj 6 �0 a.e. onK . Let .t; u; �/W Œ0;C1/ !

R
C � U � L2C.K/ be a Lipschitz map such that

�

t.0/; u.0/; �.0/
�

D .0; u0; �0/; lim
s!C1

t.s/ D C1;

with t.�/ a non-decreasing function.

The map .t; u; �/ is a parametrized BV evolution for F" if

.C / for almost every s 2 Œ0;C1/ we have

� 0.s/ > 0;
ˇ

ˇJu.s/K
ˇ

ˇ 6 �.s/; � 0.s/
�

jJu.s/Kj � �.s/
�

D 0 ; H1-a.e. on K; (4.5)

.S/ for every s 2 Œ0;C1/ with t 0.s/ > 0 we have

k@uF"
�

t.s/; u.s/; �.s/
�

kU 0 D 0 I (4.6)

.E/ for every s 2 Œ0;C1/ we have

F"
�

t.s/; u.s/; �.s/
�

D F".t0; w0; �0/C

Z s

0

@tF"
�

t.r/; u.r/; �.r/
�

t 0.r/ dr C

�

Z s

0



@uF"
�

t.r/; u.r/; �.r/
�



U 0 dr :

(4.7)
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Let us see the properties of the regularized energies and their convergence as " vanishes.

Proposition 4.2 The following properties hold.

(a)  " is continuous and bounded, uniformly with respect to " > 0, in R � R
C;

(b) Define

O ".w/ D

Z w

0

O�".r/ dr; for every w > 0:

Then  ".�; �/ D O " on R
C if 0 6 � 6 �". Moreover, if � > �" then

 ".w; �/ D

8

ˆ

<

ˆ

:

O ".�/ � 1
2

O�.�/
�
.�2 �w2/ if 0 6 w 6 �,

O ".w/ if w > �.

(c)  ".�; �/ 2 C 1.R/ for every � > 0, and @w " D �".

(d)  ".w; �/ is non-decreasing on Œ0;C1/ for every w 2 R.

Proof. .a/, .b/ and .d/ can be proved as the analogous properties in Proposition 3.3. Property .c/

follows from the fact that, as pointed out above, �".0; �/ D 0.

Proposition 4.3 As " ! 0 we have:

(a)  " !  in R � R
C, uniformly;

(b) @w " ! @w uniformly on compact subsets of
�

R � R
C

�

n f.0; 0/g. Moreover,

lim sup
n!C1

@w "n
.wn; �n/z 6 @w .w; �I z/

whenever "n ! 0, wn ! w and �n ! �.

Proof. (a) It is enough to consider RC �R
C. Letw; � 2 R

C be fixed. From the definition of  and

 ", we have

 .w; �/ �  ".w; �/ D

Z �

0

�

O�.r/ � O�".r/
�

dr �

Z �

w

�

�.r; �/ � �".r; �/
�

dr:

If � > �" then the second integral vanishes by (4.2). Otherwise, its absolute value is not greater

than
R �"

0

�

O�.r/ � O�".r/
�

dr , which tends to zero as " ! 0, uniformly with respect to w and �,

since �" ! 0. The first integral is bounded by
R �"

0

�

O�.r/ � O�".r/
�

dr , too.

(b) On compact subsets of
�

R
C � R

C
�

n f.0; 0/g we have @w " D �" and @w D � , hence

the uniform convergence is an immediate consequence of (4.3). This implies also the uniform

convergence on every compact subset of the whole
�

R � R
C

�

n f.0; 0/g since the extensions of

 ".�; �/ and  .�; �/ to R is even.

Let now "n ! 0, wn ! w and �n ! �. If .w; �/ D .0; 0/ then @w .w; �I z/ D O�.0/jzj for

every z 2 R and

j@w "n
.wn; �n/zj D �".jwnj; �n/jzj 6 �.jwnj; �n/jzj 6 O�.0/jzjI

therefore the lim sup inequality is trivial. If .w; �/ ¤ .0; 0/ then .wn; �n/ is bounded away from

.0; 0/ for n large enough, so that @w "n
.wn; �n/z ! @w .w; �/z D @w .w; �I z/ for every

z 2 R.
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Lemma 4.4 For every � 2 L2C.K/ the functional F".�; �; �/ is of class C 1 on R
C � U , with

@tF".t; u; �/ D @tE.t; u/;

@uF".t; u; �/Œz� D @uE.t; u/Œz� C @uK".u; �/Œz�;

where @tE and @uE are given in Lemma 3.5, and, for every z 2 U ,

@uK".u; �/Œz� D

Z

K

@w "
�

JuK; �
�

JzKdH1 D

Z

K

�"
�

jJuKj; �
�

sgn
�

JuK
�

JzKdH1:

Moreover, the map u 7! @uF".t; u; �/ is Lipschitz continuous from U to U 0, uniformly with respect

to .t; �/ 2 R
C � L2C.K/.

Proof. Let � 2 L2C be fixed. For every z 2 U we have

lim
h!0

K".uC hz; �/ � K".u; �/

h
D

Z

K

@w "
�

JuK; �
�

JzKdH1

since  ".�; �/ is C 1 with bounded derivative. The continuity of the right-hand side with respect to

z 2 U follows from Remark 3.2(a). Thus K".�; �/ is Gâteaux differentiable, with derivative

@uK".u; �/Œz� D

Z

K

@w ".JuK; �/JzKdH
1 D

Z

K

�"
�

jJuKj; �
�

sgn
�

JuK
�

JzKdH1 :

Let u1; u2 2 U . For every z 2 U we have

j@uK".u1; �/Œz� � @uK".u2; �/Œz�j 6 L"

Z

K

jJu1K � Ju2KjjJzKj dH
1

6 L0
"ku1 � u2k kzk ;

where L" denotes a Lipschitz constant for the function r 7! �".jr j; �/ sgn.r/ and L0
" takes the

constant C of property (a) in Remark 3.2 into account. Note that both L" and L0
" can be choosen

independently of the regularization parameter " > 0 and of the internal variable � since �" is

uniformly bounded. It follows that

k@uK".u1; �/ � @uK".u2; �/kU 0 6 L0
"ku1 � u2k

and hence K".�; �/ is Fréchet differentiable, with Lipschitz derivative. The same Lipschitz property

is shared by @uE.t; �/, indeed

ˇ

ˇ@uE.t; u1/Œz� � @uE.t; u2/Œz�
ˇ

ˇ 6

Z

˝nK

jr.u1 � u2/j jrzj dx:

We conclude that the map u 7! @uF.t; u; �/ is Lipschitz continuous from U to U 0, uniformly with

respect to .t; �/ 2 R
C �L2C.K/.

Lemma 4.5 Let .tn/, .un/ and .�n/ be such that

tn ! t I un * u in H 1.˝ nK/; �n ! � in L2.K/.

Then

.a/ F".t; u; �/ 6 lim inf
n!C1

F".tn; un; �n/I

.b/ k@uF".t; u; �/kU 0 6 lim inf
n!C1

k@uF".tn; un; �n/kU 0 I

.c/ lim
n!C1

@tF".tn; un; �n/ D @tF".t; u; �/ :
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Proof. (a) By the weak-L2 convergence of .run/ and the convergence of
�

rg.tn/
�

in L2, we have

the lower semicontinuity inequality for E . As to K"; consider a subsequence (not relabeled)

such that lim infn!C1

R

K
 ".JunK; �n/dH

1 is a limit. By the strong convergence of .�n/ and

by Remark 3.2 .c/, we can assume that .�n/ and .JunK/ converge a.e. on K . Hence, by Fatou’s

Lemma
R

K
 ".JuK; �/ dH

1
6 lim infn!C1

R

K
 ".JunK; �n/ dH

1 :

(b) Let z 2 U with kzk 6 1. Then

k@uF".tn; un; �n/kU 0 > @uF".tn; un; �n/Œz�

D

Z

˝nK

r
�

un C g.tn/
�

rz dx C

Z

K

�"
�

jJunKj; �n
�

sgn
�

JunK
�

JzKdH1 :

Remembering that �".�; �/ is continuous and that �".0; �/ D 0, a similar argument as in .a/

yields the lower semicontinuity for both these integral terms; hence

lim inf
n!C1

k@uF".tn; un; �n/kU 0 >

Z

˝nK

r.uC g.t//rz dx C

Z

K

�"
�

jJuKj; �
�

sgn
�

JuK
�

JzKdH1

D @uF".t; u; �/Œz� :

By the arbitrariness of z we get

lim inf
n!C1

k@uF".tn; un; �n/kU 0 > k@uF".t; u; �/kU 0 :

(c) This property is an immediate consequence of the expression of @tF" and the continuity of the

map t 7! rg0.t/ in L2.˝;R2/.

Lemma 4.6 Let .tn/, .un/ and .�n/ be sequences such that

tn ! t I un * u in H 1.˝ nK/; �n ! � in L2.K/.

Then, for "n ! 0 we have

.a/ F.t; u; �/ 6 lim inf
n!C1

F"n
.tn; un; �n/ ;

.b/ j@�
uF.t; u; �/j 6 lim inf

n!C1
k@uF"n

.tn; un; �n/kU 0 ;

.c/ @tF.t; u; �/ D lim
n!C1

@tF"n
.tn; un; �n/ :

Proof. We can assume that .JunK/ and .�n/ converge a.e. (recall Remark 3.2 .c/).

(a) The l.s.c. inequality for E , which is independent of ", has already been checked in Lemma 4.5

(it follows from the weak-L2 convergence of .run/ and the convergence of
�

rg.tn/
�

in L2).

As to K, it is enough to apply Lemma 4.3 .a/ and Fatou’s Lemma, indeed

K.u; �/ D

Z

K

 
�

jJuKj; �
�

dH1
6 lim inf
n!C1

Z

K

 "n

�

jJunKj; �n
�

dH1 D lim inf
n!C1

K"n
.un; �n/:

(b) Let z 2 U be fixed, with kzk 6 1. Recall that, by Lemma 3.5 and Lemma 4.4

@uF"n
.tn; un; �n/Œz� D

Z

˝nK

r
�

un C g.tn/
�

rz dx C

Z

K

@w "n
.JunK; �n/JzKdH

1:
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The first integral in the right-hand side converges to
R

˝nK r
�

u C g.t/
�

rz dx. Moreover, by

Proposition 4.3 .b/, a.e. onK we have

lim sup
n!C1

@w "n

�

JunK; �n
�

JzK 6 @w 
�

JuK; �I JzK
�

since .JunK; �n/ ! .JuK; �/ a.e. on K . Therefore Fatou’s Lemma yields

lim sup
n!C1

@uF"n
.tn; un; �n/Œz� 6

Z

˝nK

r
�

uC g.t/
�

rz dx C

Z

K

@w .JuK; �I JzK/ dH
1

D @uF.t; u; �I z/;

where the directional derivative @wF.t; u; �I z/ has been defined in (3.10). Note now that for

any real sequence .an/ it holds .lim sup an/� D .lim inf.�an//C; then by the monotonicity of

.�/�

�

@uF.t; u; �I z/
�

�
6

�

lim sup
n!C1

@uF"n
.tn; un; �n/Œz�

�

�

D
�

lim inf
n!C1

@uF"n
.tn; un; �n/Œ�z�

�

C

6 lim inf
n!C1

k@uF"n
.tn; un; �n/kU 0 :

We can now conclude by taking the supremum with respect to z, thanks to (3.11).

(c) Since @tF D @tE D @tF"n
, this item is as in Lemma 4.5.

5. Quasi-static evolution for the regularized energy F"

In the space RC � U �L2C.K/ of the variables t; u and � we first introduce (Section 5.1) a discrete

evolution (from an initial point .0; u0; �0/), depending on an incremental parameter �s which acts

both as a time increment and as a range for the local minimality of the displacement (see below).

This sequence of points is read as a piecewise-affine function on the space of the parameter s.

Actually, the increment �s varies along a sequence �sn ! 0; thus we get a sequence .tn; un; �n/

of piecewise-affine approximating evolutions. We prove (Section 5.2) its convergence (up to a

subsequence) to a parametrized BV evolution for F" according to Definition 3.1.

In Section 5.1 (Theorem 5.3) we prove that the functions tn satisfy a coercivity condition,

uniform with respect to n; this guarantees that the discrete evolution is globally defined in the time

interval Œ0;C1/. Moreover, as a by-product, we get that the polygonal path in U given by .un/ has

locally-finite length, uniformly bounded with respect to n.

5.1 Discrete (in time) evolution

Fix " > 0. Let �sn & 0 (we assume �sn 6 1). Let u0 2 U and �0 2 L2C.K/ be given, with

jJu0Kj 6 �0 a.e. on K . Let

tn;0 D 0; un;0 D u0; �n;0 D �0;

and define .tn;k; un;k; �n;k/, for every k 2 N, by applying the following recursive rule:
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.r1/ If @uF".tn;k; un;k ; �n;k/ D 0 then
8

ˆ

<

ˆ

:

tn;kC1 D tn;k C�sn ;

un;kC1 D un;k ;

�n;kC1 D �n;k :

.r2/ If @uF".tn;k; un;k ; �n;k/ ¤ 0 then
8

ˆ

<

ˆ

:

tn;kC1 D tn;k ;

un;kC1 2 argmin fF".tn;k; v; �n;k/ W v 2 U ; kv � un;kk 6 �sng;

�n;kC1 D �n;k _ jJun;kC1Kj:

In the recursive rule .r2/ the internal variable is updated a posteriori, i.e., after the minimization

of F".tn;k; �; �n;k/. In particular it may happen that Jun;kC1K > �n;k . This is not an issue, since, a

posteriori, the minimization of F".tn;k ; �; �n;kC1/ provides the same minimizer, as stated in the next

proposition.

Lemma 5.1 If @uF".tn;k; un;k ; �n;k/ ¤ 0 then

un;kC1 2 argmin fF".tn;kC1; v; �n;kC1/ W v 2 U ; kv � un;kk 6 �sng:

Proof. Clearly tn;kC1 D tn;k by definition; hence F".tn;kC1; � ; �n;kC1/ D F".tn;k; � ; �n;kC1/:

Next, we show that for every v 2 U with kv � un;kk 6 �sn

F".tn;k; v; �n;kC1/ > F".tn;k; v; �n;k/ > F".tn;k ; un;kC1; �n;k/ D F".tn;k; un;kC1; �n;kC1/ (5.1)

from which the thesis follows.

The first inequality is a direct consequence of the increasing monotonicity of  ".w; �/ (see

Proposition 4.2 (d)). The second follows by minimality. As to the last equality, it is enough to

consider the points on K where jJun;kC1Kj > �n;k; in this case: �n;k < �n;kC1 D jJun;kC1Kj,

which implies that  ".jJun;kC1Kj; �n;kC1/ D O ".jJun;kC1Kj/ D  ".jJun;kC1Kj; �n;k/ (recall

Proposition 4.2 (b)). Thus, the line integrals in the definition of both sides of the second inequality

in (5.1) are the same.

At this point we define the map

.tn; un; �n/W Œ0;C1/ ! Œ0;C1/ �H 1.˝ nK/ �L2C.K/ (5.2)

as a piecewise-affine function taking the values .tn;k; un;k ; �n;k/ at the points sn;k D k�sn.

The following proposition points out that the local minimization appearing in the recursive rule

behaves as a normalized gradient flow.

Proposition 5.2 Assume that @uF".tn;k; un;k ; �n;k/ ¤ 0 and @uF".tn;kC1; un;kC1; �n;kC1/ ¤ 0.

Then kun;kC1 � un;kk D �sn and there exists � > 0 such that

@uF".tn;kC1; un;kC1; �n;kC1/Œv� D h�
un;k � un;kC1

kun;k � un;kC1k
; viH1.˝nK/ (5.3)

for every v 2 U . In particular � D k@uF".tn;kC1; un;kC1; �n;kC1/kU 0 and

@uF".tn;kC1; un;kC1; �n;kC1/Œun;kC1 � un;k �

D �k@uF".tn;kC1; un;kC1; �n;kC1/kU 0kun;kC1 � un;kk:
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Proof. Let G D F".tn;kC1; �; �n;kC1/. Since @uF".tn;k; un;k ; �n;k/ ¤ 0, by the previous lemma

un;kC1 minimizesG on the closed ball in U with centre un;k and radius�sn. Since @G.un;kC1/ ¤ 0,

we have kun;kC1 � un;kk D �sn (otherwise, the minimality condition would require the vanishing

of the derivative). Let z0 D un;k � un;kC1. It is easy to check that @G.un;kC1/ vanishes on z?
0 , the

orthogonal complement of the span of z0 in the subspace U of the Hilbert spaceH 1.˝ nK/; indeed,

fix ˛ > 0 and v 2 z?
0 , and let z D ˛z0 C v. Then k.un;kC1 C hz/ � un;kk < �sn if 0 < h < ı,

with ı > 0 sufficiently small; thus

0 6
d

dh
G.un;kC1 C hz/ˇ

ˇ

hD0C
D @G.un;kC1/Œz� D ˛@G.un;kC1/Œz0�C @G.un;kC1/Œv�:

Therefore @G.un;kC1/Œv� D 0 by the arbitrariness of ˛ and v.

Hence, we can represent @G.un;kC1/ through an element of the span of z0, i.e., (5.3) holds (� is

positive since un;kC1 is a minimum).

The following theorem proves a uniform coercivity condition for the time parametrization; it

implies that the whole time interval Œ0;C1/ is parametrized.

Theorem 5.3 There exist c0; c1 > 0, independent of n, �sn and ", such that

tn.S/ > c0S � c1 ;

for every S > 0 and n 2 N.

For the proof we need a technical lemma.

Lemma 5.4 Let .tn;k; un;k ; �n;k/ be as above. Define

wn;k D Jun;kK; wn;kC1 D Jun;kC1K:

Then

h

�"
�

jwn;kj; �n;k
�

sgn.wn;k/ � �"
�

jwn;kC1j; �n;kC1

�

sgn.wn;kC1/
i

.wn;kC1 � wn;k/

6
ˇ

ˇ O�.�n;kC1/ � O�.�n;k/
ˇ

ˇjwn;kC1 � wn;kj (5.4)

a.e. onK .

Proof. If wn;kC1 > 0 > wn;k or wn;kC1 < 0 < wn;k , then the left-hand side in (5.4) is non-

positive, and the inequality holds. Therefore, we assume that wn;k and wn;kC1 have the same sign.

Let wn;k; wn;kC1 > 0.

If �n;kC1 D �n;k then the left-hand side of (5.4) is non-positive by the monotonicity of �".�; �n;k/

on Œ0; �n;k �. If �n;kC1 > �n;k then wn;kC1 D �n;kC1 > �n;k > wn;k; thus wn;kC1 > wn;k and

�".wn;k; �n;k/ � �".wn;kC1; �n;kC1/ 6 �".�n;k; �n;k/ � �".�n;kC1; �n;kC1/:

Now we have to consider two subcases. If �n;kC1 6 �" (see (4.2)) then �".�; �n;k/ and �".�; �n;kC1/

are the same linear function with slope 1=" on the interval Œ0; �"�; therefore we have �".�n;k; �n;k/�

�".�n;kC1; �n;kC1/ 6 0, and (5.4) holds. If, on the contrary, �n;kC1 > �", then �".�n;kC1; �n;kC1/ D

O�.�n;kC1/; thus

�".�n;k ; �n;k/ � �".�n;kC1; �n;kC1/ 6 O�.�n;k/ � O�.�n;kC1/ ;
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and (5.4) follows again.

The proof in the case wn;k; wn;kC1 6 0 is analogous.

Proof of Theorem 5.3. We need to consider separately the cases .r1/ and .r2/ in the recursive rule.

In particular, for the second, we will provide first an estimate for a pair of consecutive indices and

then an estimate for a “maximal” interval of indices where .r2/ holds.

First step. For every k 2 N let k D k@uF".tn;k; un;k ; �n;k//kU 0 : Assume that k ¤ 0 and

kC1 ¤ 0. Then, by Proposition 5.2:

@uF".tn;kC1; un;kC1; �n;kC1/Œun;kC1 � un;k� D �kC1kun;kC1 � un;kk:

Since @uF".tn;k; un;k ; �n;k/Œun;kC1 � un;k � > �kkun;kC1 � un;kk, we deduce that

@uF".tn;k; un;k; �n;k/Œun;kC1 � un;k� � @uF".tn;kC1; un;kC1; �n;kC1/Œun;kC1 � un;k�

> .kC1 � k/kun;kC1 � un;kk:

Let us estimate the left-hand side; since tn;kC1 D tn;k , this term reads as

Z

˝nK

r.un;k � un;kC1/r.un;kC1 � un;k/ dx C

C

Z

K

h

�"
�

jJun;kKj; �n;k
�

sgn.Jun;kK/ C

� �"
�

jJun;kC1Kj; �n;kC1

�

sgn.Jun;kC1K/
i

Jun;kC1 � un;kKdH
1 :

By Lemma 5.4 a bound from above is given by

�kr.un;kC1 � un;k/k
2
L2.˝nK/

C

Z

K

ˇ

ˇ O�.�n;kC1/ � O�.�n;k/
ˇ

ˇ jJun;kC1 � un;kKj dx:

Therefore

.kC1 � k/kun;kC1 � un;kk 6 �kr.un;kC1 � un;k/k
2
L2.˝nK/

C

C kO�.�n;kC1/ � O�.�n;k/kL2.K/ kJun;kC1 � un;kKkL2.K/:

Let c; C > 0 be such that kruk2
L2 > ckuk2 and kJuKkL2.K/ 6 Ckuk for every u 2 U (recall

Remark 3.2). Then

.kC1 � k/kun;kC1 � un;kk 6 � ckun;kC1 � un;kk2 C

C CkO�.�n;kC1/ � O�.�n;k/kL2.K/ kun;kC1 � un;kk:

Since n;k ¤ 0 and n;kC1 ¤ 0 then kun;kC1 � un;kk ¤ 0 (by Proposition 5.2) and thus

kC1 � k 6 �ckun;kC1 � un;kk C CkO�.�n;kC1/ � O�.�n;k/kL2.K/ ;

i.e.

ckun;kC1 � un;kk 6 k � kC1 C CkO�.�n;kC1/ � O�.�n;k/kL2.K/ : (5.5)
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In order to get a telescopic sum, we need to replace the L2 norm by an L1 term. By interpolation

inequality

kO�.�n;kC1/ � O�.�n;k/kL2.K/ 6 kO�.�n;kC1/ � O�.�n;k/k
˛
L1.K/

kO�.�n;kC1/ � O�.�n;k/k
1�˛
Lq.K/ ;

where ˛ and q satisfy 2 < q and 1=2 D ˛ C .1 � ˛/=q. Apply now Young’s inequality to the

right-hand side: for every ı > 0 there exists a constant Cı such that

kO�.�n;kC1/ � O�.�n;k/kL2.K/ 6 CıkO�.�n;kC1/ � O�.�n;k/kL1.K/ C ıkO�.�n;kC1/ � O�.�n;k/kLq.K/ :

If L denotes a Lipschitz constant for O� , then

kO�.�n;kC1/ � O�.�n;k/kL2.K/ 6 CıkO�.�n;kC1/ � O�.�n;k/kL1.K/ C ıLk�n;kC1 � �n;kkLq.K/ : (5.6)

Note that

j�n;kC1 � �n;k j 6
ˇ

ˇjJun;kC1Kj � jJun;kKj
ˇ

ˇ 6
ˇ

ˇJun;kC1K � Jun;kK
ˇ

ˇ D jJun;kC1 � un;kKj;

so that

k�n;kC1 � �n;kkLq.K/ 6 C 0kun;kC1 � un;kkH1.˝nK/

for a suitable constant C 0 (here we used the Sobolev embedding: see property (b) in Remark 3.2).

From (5.5) and (5.6) we can choose ı sufficiently small in such a way that

ckun;kC1 � un;kk 6 k � kC1 C CkO�.�n;kC1/ � O�.�n;k/kL1.K/ (5.7)

(possibly with a new value for c and C ). Note that, by monotonicity of the sequence .�n;k/k and of

the function O� , we have

kO�.�n;kC1/ � O�.�n;k/kL1.K/ D

Z

K

�

O�.�n;k/ � O�.�n;kC1/
�

dH1:

Second step. Given k2 2 N with k2 > 0 and @uF".tn;k2
; un;k2

; �n;k2
/ ¤ 0 let us denote

k1 D minf0 6 k 6 k2 W @uF".tn;m; un;m; �n;m/ ¤ 0 for every k 6 m 6 k2g:

Note that the interval of indices Œk1; k2� is “maximal on the left-side” and that

either k1 D 0 or @uF".tn;k1�1; un;k1�1; �n;k1�1/ D 0:

Consider the case k1 < k2. We will prove that there exists C0 > 0, independent of n, �sn and ",

such that,

.k2 � k1/.�sn/ 6

8

ˆ

ˆ

<

ˆ

ˆ

:

C0

�

�sn C

Z

K

�

O�.�n;k1
/ � O�.�n;k2

/
�

dH1 C 1
�

if k1 D 0,

C0

�

�sn C

Z

K

�

O�.�n;k1
/ � O�.�n;k2

/
�

dH1
�

otherwise.

(5.8)
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By (5.7)

c

k2�1
X

kDk1

kun;kC1 � un;kk 6 k1
� k2

C C

Z

K

�

O�.�n;k1
/ � O�.�n;k2

/
�

dH1

6 k1
C C

Z

K

�

O�.�n;k1
/ � O�.�n;k2

/
�

dH1:

Consider now the case k1 D 0; then k1
is bounded by a constant depending only on u0 and �0

(recall the form of @uF" given in Lemma 4.4). Otherwise, by assumption, the index k0 WD k1 � 1

satisfies @uF".tn;k0
; un;k0

; �n;k0
/ D 0 and thus tn;k1

D tn;k0
C �sn, un;k1

D un;k0
and �n;k1

D

�n;k0
by .r1/. Therefore, by the Lipschitz continuity of @uE (hence of @uF") with respect to t , we

have

k1
D k@uF".tn;k0

C�sn; un;k0
; �n;k0

/ � @uF".tn;k0
; un;k0

; �n;k0
/k 6 C 00�sn

for a suitable constant C 00 depending on kgkC1.Œ0;C1/IH1/ This concludes the proof of (5.8), since,

as remarked in Proposition 5.2, it turns out that kun;kC1 � un;kk D �sn for every k1 6 k < k2.

Third step. Let now S > 0 be fixed, and denote by Nn.S/ D bS=.�sn/c the integer part of

S=.�sn/. Following the recursive rule, we set

An.S/ D
˚

k 2 Œ1; Nn.S/� W @uF.tn;k; un;k ; �n;k/ D 0
	

;

Zn.S/ D
˚

k 2 Œ1; Nn.S/� W @uF.tn;k; un;k ; �n;k/ ¤ 0
	

:

For technical reasons it is useful to distinguish between isolated points and interval of indices in

Zn.S/. Therefore we further split Zn.S/ into the two subsets

Z0n.S/ D
˚

k 2 Zn.S/ W @uF.tn;k�1; un;k�1; �n;k�1/ D 0 and @uF.tn;kC1; un;kC1; �n;kC1/ D 0
	

;

Z1n.S/ D Zn.S/ nZ0n.S/:

Let I i D Œki1; k
i
2� with ki1 < ki2 (i D 1; : : : ; ln) denote the maximal intervals of indices in Z1n.S/.

By the recursive rule .r2/ we have #An.S/ 6 .tn.S/=�sn/C 1, moreover

#Z0n.S/ 6 .Nn.S/C 1/=2; #Z1n.S/ 6

ln
X

iD1

�

.ki2 � ki1/C 1
�

; ln 6 #An.S/C 1:

Note that for every I i D Œki1; k
i
2� (i D 1; : : : ; ln) we have

ki1 D minf0 6 k 6 ki2 W @uF".tn;m; un;m; �n;m/ ¤ 0 for every k 6 m 6 ki2g:

Thus we can apply (5.8) to each interval I i . At most one interval has ki1 D 0 and thus

ln
X

iD1

.ki2 � ki1/�sn 6 C0

�

ln�sn C 1C

Z

K

ln
X

iD1

�

O�.�n;ki
1
/ � O�.�n;ki

2
/
�

dH1
�

:

Since O� is monotone decreasing we deduce that

ln
X

iD1

.ki2 � ki1/�sn 6 C0

�

ln�sn C 1C

Z

K

O�.�n;k1
1
/ dH1

�

6 C0
�

ln�sn C 1C O�.0/H1.K/
�

:
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Up to a suitable change in the definition of C0,

ln
X

iD1

.ki2 � ki1/�sn 6 C0.ln�sn C 1/:

It follows that

#Z1n.S/�sn 6 ln�sn C

ln
X

iD1

.ki2 � ki1/�sn 6 C0.ln�sn C 1/ 6 C 0
0.#An.S/�sn C 1/:

Since

Nn.S/ 6 #An.S/C #Z0n.S/C #Z1n.S/ 6 #An.S/C 1
2
Nn.S/C 1C #Z1n.S/

we get
1
2
Nn.S/�sn 6 C1.#An.S/�sn C 1/ 6 C1.tn.S/C 2/

for a suitable C1 > 0. We conclude since Nn.S/�sn > .S � 1/.

Corollary 5.5 Let T > 0 and kn.T / D minfk W tn;k > T g (note that kn.T / is finite by

Theorem 5.3). Then
kn.T /�1

X

kD0

kun;kC1 � un;kk 6 .T C c1/=c0;

where c0 and c1 are as in Theorem 5.3. Hence, the length of the polygonal path .un;k/06k6kn.T / in

U is bounded independently of n and " > 0.

Proof. By Theorem 5.3, c0
�

kn.T /�sn
�

� c1 6 T ; since kun;kC1 � un;kk 6 �sn for every k, we

deduce that
kn.T /�1

X

kD0

kun;kC1 � un;kk 6 kn.T /�sn 6 .T C c1/=c0 :

The following energy estimate for the discrete evolution .tn;k; un;k ; �n;k/k will be used in the

next subsection to prove the energy balance for the limit evolution.

Proposition 5.6 Let T > 0 be fixed. For every k 2 N with tn;kC1 < T we have

F".tn;kC1; un;kC1; �n;kC1/ 6 F".tn;k; un;k; �n;k/C

Z tn;kC1

tn;k

@tF".t; un;k ; �n;k/ dt C

� k@uF".tn;k; un;k ; �n;k/kU 0�sn C C".�sn/
2; (5.9)

where C" depends on " and kgkC1.Œ0;C1/IH1.˝//.

Proof. Let wn;k D jJun;kKj and wn;kC1 D jJun;kC1Kj. First of all, note that  ".wn;kC1; �n;kC1/ D

 ".wn;kC1; �n;k/. Clearly, the equality has to be checked only if k falls within recursive rule .r2/

and �n;k < �n;kC1; in this case, �n;k < wn;kC1 D �n;kC1 and, by Proposition 4.2 .b/,

 ".wn;kC1; �n;k/ D O ".wn;kC1/ D  ".wn;kC1; �n;kC1/:
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Therefore

F".tn;kC1; un;kC1; �n;kC1/ D F".tn;kC1; un;kC1; �n;k/: (5.10)

Second,

F".tn;kC1; un;kC1; �n;k/ D F".tn;k; un;kC1; �n;k/C

Z tn;kC1

tn;k

@tF".t; un;kC1; �n;k/ dt:

By Lemma 4.4 and Lemma 3.5

ˇ

ˇ@tF".t; un;kC1; �n;k/ � @tF".t; un;k ; �n;k/
ˇ

ˇ 6 Ckun;kC1 � un;kkH1.˝nK/ 6 C�sn ;

where C D kgkC1.Œ0;C1/IH1.˝//. Then

F".tn;kC1; un;kC1; �n;k/ 6 F".tn;k; un;kC1; �n;k/C

Z tn;kC1

tn;k

@tF".t; un;k ; �n;k/ dt C CT .�sn/
2 :

(5.11)

Third, it is not restrictive to assume that un;kC1 ¤ un;k (otherwise k@uF".tn;k ; un;k; �n;k/kU 0 D 0

and there is nothing else to prove). Let z 2 U with kzk 6 1, by the minimality property of un;kC1

we have

F".tn;k ; un;kC1; �n;k/ 6 F".tn;k; un;k C�snz; �n;k/: (5.12)

Moreover

F".tn;k; un;k C�snz; �n;k/ D F".tn;k ; un;k; �n;k/C

Z �sn

0

d

dh
F".tn;k ; un;k C hz; �n;k/ dh

D F".tn;k ; un;k; �n;k/C

Z �sn

0

@uF".tn;k; un;k C hz; �n;k/Œz� dh:

By Lemma 4.4, for every h 2 Œ0;�sn�

k@uF".tn;k; un;k C hz; �n;k/ � @uF".tn;k; un;k ; �n;k/kU 0 6 C"khzkH1 6 C"�sn ;

for a suitable constant C" depending on ". Therefore

F".tn;k ; un;k C�snz; �n;k/ 6 F".tn;k; un;k ; �n;k/C�sn@uF".tn;k; un;k ; �n;k/Œz�C C".�sn/
2I

by (5.12) we get

F".tn;k; un;kC1; �n;k/ 6 F".tn;k; un;k; �n;k/C�sn@uF".tn;k; un;k; �n;k/Œz�C C".�sn/
2:

By the arbitrariness of z we conclude that

F".tn;k; un;kC1; �n;k/ 6 F".tn;k; un;k; �n;k/ ��snk@uF".tn;k; un;k ; �n;k/kU 0 C C".�sn/
2:

This, together with (5.10) and (5.11), gives the stated inequality.
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5.2 Quasi-static evolution for the regularized energy

Let .tn; un; �n/ be the map defined in (5.2). Let S > 0 be fixed. From the definition it is easy to see

that:

.tn/ is bounded in W 1;1.0; S/; .un/ is bounded in W 1;1.0; S IH 1.˝ nK//:

Moreover, these sequences are bounded uniformly with respect to ", for " > 0 sufficiently small.

Remember that

k�n;kC1 � �n;kkLp.K/ 6 Ckun;kC1 � un;kk 6 C�sn (5.13)

for every 1 6 p < C1 and for a suitable constant C > 0, independent of n, k and ". We conclude

that .�n/ is bounded in W 1;1.0; S ILp.K// for every 1 6 p < C1.

By recalling Proposition 2.3, and by applying a standard diagonal argument, we deduce the

following result.

Proposition 5.7 Let .tn/; .un/ and .�n/ be defined as above. Then, up to a subsequence (not

relabeled) tn
�
* t in W 1;1.0; S/, un

�
* u in W 1;1.0; S IH 1.˝ n K//, �n

�
* � in

W 1;1.0; S ILp.K// for 1 < p < C1 and for any finite interval .0; S/.

Theorem 5.8 Let .tn; un; �n/ and .t; u; �/ be as in Proposition 5.7. Then .t; u; �/ is a (parametrized)

BV evolution for the energy F" according to Definition 4.1.

Proof. By Theorem 5.3 it turns out that t.s/ ! C1 as s ! C1. The sequences .tn/, .un/ and

�n are uniformly Lipschitz continuous in .0;C1/, by the recursive rule and by (5.13), hence their

limits are Lipschitz continuous as well. Let S > 0 be fixed.

Proof of .C / in Definition 3.1. We will show that for almost every s 2 Œ0; S� it holds

� 0.s/ > 0;
ˇ

ˇJu.s/K
ˇ

ˇ 6 �.s/; � 0.s/
�ˇ

ˇJu.s/K
ˇ

ˇ � �.s/
�

D 0 H1-a.e. onK .

By definition �n;kC1 > �n;k pointwise on K for every k 2 N; then �n.s2/ � �n.s1/ > 0 pointwise

on K if 0 6 s1 6 s2 6 S . Passing to the limit (with respect to the weak convergence in L2.K/) we

get �.s2/ � �.s1/ > 0 and thus

� 0.s/ > 0 H1-a.e. on K for a.e. s 2 Œ0; S�.

Let s D �sn;kC.1��/sn;kC1, for some k 2 N and � 2 Œ0; 1�. Then un.s/ D �un;kC.1��/un;kC1

and �n.s/ D ��n;k C .1 � �/�n;kC1. By linearity of the trace operator

ˇ

ˇJun.s/K
ˇ

ˇ 6 �
ˇ

ˇJun;kK
ˇ

ˇ C .1 � �/
ˇ

ˇJun;kC1K
ˇ

ˇ:

Since jJun;kKj 6 �n;k and jJun;kC1Kj 6 �n;kC1 we deduce that

ˇ

ˇJun.s/K
ˇ

ˇ 6 �n.s/ H1-a.e. on K for every s 2 Œ0; S�.

Since un.s/ * u.s/ inH 1.˝ nK/, by Remark 3.2 .c/ we have that jJun.s/Kj ! jJu.s/Kj in L2.K/

for every s 2 Œ0; S�. Then, the w � L2.K/ convergence of
�

�n.s/
�

implies that:

ˇ

ˇJu.s/K
ˇ

ˇ 6 �.s/ H1-a.e. on K for every s 2 Œ0; S�.
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Let us now address the equation

� 0.s/
�

jJu.s/Kj � �.s/
�

D 0 H1-a.e. onK for a.e. s 2 Œ0; S�,

which is equivalent to

Z �

0

ds

Z

B

� 0.s/
�

jJu.s/Kj � �.s/
�

dH1 D 0

for every � 2 Œ0; S� and for every Borel subset B of K .

From the definition, we deduce that (pointwise on K) either �n;kC1 � �n;k D 0 or �n;kC1 �

jJun;kC1Kj D 0, i.e.

.�n;kC1 � �n;k/
�

jJun;kC1Kj � �n;kC1

�

D 0 pointwise on K .

Then, for a.e. s 2 Œ0; S�

� 0
n.s/

�

jJun;kC1Kj � �n;kC1

�

D 0; (5.14)

where k D k.n; s/ satisfies sn;k < s < sn;kC1.

Fix � and B as above. Since JunK ! JuK in L1.0; S IL2.K// and since �n
�
* � in

L1.0; S IL2.K//, we have

lim
n!C1

Z �

0

ds

Z

B

� 0
n.s/

ˇ

ˇJun.s/K
ˇ

ˇdH1 D

Z �

0

ds

Z

B

� 0.s/
ˇ

ˇJu.s/K
ˇ

ˇdH1 : (5.15)

Note now that, if k D k.n; s/ is as in (5.14), and un.s/ D �un;k C .1 � �/un;kC1, then we have



Jun;kC1K � Jun.s/K




L2.K/
D �



Jun;kC1 � un;kK




L2.K/
6 C



un;kC1 � un;k


 6 C�sn :

Therefore

lim
n!C1

Z �

0

ds

Z

B

� 0
n.s/

ˇ

ˇJun;k.n;s/C1K
ˇ

ˇdH1 D

Z �

0

ds

Z

B

� 0.s/
ˇ

ˇJu.s/K
ˇ

ˇdH1 : (5.16)

Let us now consider the term � 0
n.s/�n;kC1 in (5.14). By monotonicity of �n and by (5.14) we have

Z �

0

ds

Z

B

� 0
n.s/�n.s/dH

1
6

Z �

0

ds

Z

B

� 0
n.s/�n;kC1dH

1 D

Z �

0

ds

Z

B

� 0
n.s/

ˇ

ˇJun;kC1K
ˇ

ˇdH1

so that by (5.16)

lim sup
n!C1

Z �

0

ds

Z

B

� 0
n.s/�n.s/dH

1
6

Z �

0

ds

Z

B

� 0.s/
ˇ

ˇJu.s/K
ˇ

ˇdH1 : (5.17)

Since �2n 2 W 1;1.0; S ILr .K// for some r > 1 and .�2n/
0 D 2� 0

n�n (see Remark 5.9 below) we can

apply the fundamental theorem of calculus, see ÷2, to write

Z �

0

ds

Z

B

� 0
n.s/�n.s/dH

1 D 1
2

Z

B

�

�2n.�/ � �2.0/
�

dH1 : (5.18)
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By the weak L2.K/-convergence of .�n.�// we deduce that

lim inf
n!C1

Z �

0

ds

Z

B

� 0
n.s/�n.s/dH

1
>

1
2

Z

B

�

�.�/2 � �.0/2
�

dH1 D

Z �

0

ds

Z

B

� 0.s/�.s/dH1 ;

(5.19)

where the last equality follows again by Remark 5.9. Recalling (5.17) we get

Z �

0

ds

Z

B

� 0.s/�.s/dH1
6 lim inf
n!C1

Z �

0

ds

Z

B

� 0
n.s/�n.s/dH

1

6 lim sup
n!C1

Z �

0

ds

Z

B

� 0
n.s/�n.s/dH

1

6

Z �

0

ds

Z

B

� 0.s/
ˇ

ˇJu.s/K
ˇ

ˇdH1
6

Z �

0

ds

Z

B

� 0.s/�.s/dH1;

where the last inequality follows from � 0.s/ > 0 and jJu.s/Kj � �.s/ 6 0.

In addition, we have proved that

lim
n!C1

Z �

0

ds

Z

B

� 0
n.s/�n.s/dH

1 D

Z �

0

ds

Z

B

� 0.s/�.s/dH1 D 1
2

Z

B

�

�.�/2 � �.0/2
�

dH1:

This allows to get an improvement of the convergence properties of the sequence .�n/. Indeed, the

limit in the left-hand side equals limn!C1
1
2

R

B

�

�n.�/
2 � �.0/2

�

dH1 by (5.18); thus

lim
n!C1

Z

K

�n.�/
2dH1 D

Z

K

�.�/2dH1 :

Since �n.�/ * �.�/ weakly in L2.K/, we deduce that

�n.�/ ! �.�/ strongly in L2.K/ for every � 2 Œ0; S�.

By the uniform Lipschitz continuity of �n it is easy to check that for �n ! �

�n.�n/ ! �.�/ strongly in L2.K/. (5.20)

Proof of .S/. We will prove that for every s 2 Œ0; S� with t 0.s/ > 0 we have

k@uF".t.s/; u.s/; �.s//kU 0 D 0 :

Let s 2 .0; S/ be such that t 0.s/ > 0. Let ı > 0 be fixed; we note that there exists n 2 N such that

for every n > n we can find k 2 N with the property that

jsn;k � sj < ı and tn;k < tn;kC1 :

Indeed, assume, by contradiction, that there exists an increasing sequence .nj / of integers such

that for every k satisfying jsn;k � sj < ı we have tn;k D tn;kC1. Then tnj
.�/ is constant in a

neighbourhood of s, thus t 0.s/ D 0.

The arbitrariness of ı implies that there exists a sequence sn;kn
! s such that tn;kn

< tn;knC1.

By Proposition 5.7 we know that

tn;kn
D tn.sn;kn

/ ! t.s/; un;kn
D un.sn;kn

/ * u.s/ w-H 1.˝ nK/
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while, by (5.20) and the equi-boundedness of the Lipschitz constants of .�n/n (see (5.13)):

�n;kn
D �n.sn;kn

/ ! �.s/ strongly in L2.K/.

These convergences allow to apply Lemma 4.5 and get

k@uF".t.s/; u.s/; �.s//kU 0 6 lim inf
n!C1

k@uF".tn;kn
; un;kn

; �n;kn
/kU 0 :

Now, we conclude since @uF".tn;kn
; un;kn

; �n;kn
/ D 0: this is a direct consequence of the recursive

rule, otherwise tn;kn
D tn;knC1.

Proof of (E). We will show that for every s 2 Œ0; S� we have

F"
�

t.s/; u.s/; �.s/
�

D F".t0; w0; �0/C

Z s

0

@tF"
�

t.r/; u.r/; �.r/
�

t 0.r/ dr C

�

Z s

0

k@uF"
�

t.r/; u.r/; �.r/
�

kU 0 dr :

It is useful to introduce the function .Otn; Oun; O�n/ as the right-continuous piecewise-constant function

on Œ0;C1/ taking the value .tn;k; un;k ; �n;k/ on Œsn;k ; sn;kC1/. In particular, the integral on the

right-hand side in (5.9) can be written as:

Z sn;kC1

sn;k

@tF"
�

tn.s/; Oun.r/; O�n.r/
�

t 0n.r/ dr:

Let s 2 Œ0; S/ be fixed, and n sufficiently large so that s C �sn < S . Let kn be such that sn;kn
6

s < sn;knC1 (i.e., kn�sn 6 s < .kn C 1/�sn). Since tn;k 6 k�sn 6 S for every k D 0; : : : ; kn C

1, we can apply the energy estimate (5.9) with the constant C";S (depending on " > 0 and on

kgkW 1;1.0;SIH1/). Summing up for every k D 0; : : : ; kn yields the energy estimates

F".tn;knC1; un;knC1; �n;knC1/ 6 F".0; u0; �0/C

Z sn;knC1

0

@tF"
�

tn.r/; Oun.r/; O�n.r/
�

t 0n.r/ dr

�

Z sn;knC1

0

k@uF"
�

Otn.r/; Oun.r/; O�n.r/
�

kU 0 dr C C";S�snS: (5.21)

As above, we have:

tn;knC1 ! t.s/; un;knC1 * u.s/; w-H 1.˝ nK/ �n;knC1 ! �.s/ L2.K/:

Therefore, Lemma 4.5 .a/ implies that

F"
�

t.s/; u.s/; �.s/
�

6 lim inf
n!C1

F".tn;knC1; un;knC1; �n;knC1/:

Consider now the right-hand side in (5.21). Note that, for every r 2 Œ0; S/,

tn.r/ ! t.r/I Otn.r/ ! t.r/I Oun.r/ * u.r/ w-H 1.˝ nK/I O�n.r/ ! �.r/ L2.K/:
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Denote now the second term in the right-hand side of (5.21) by I 1n ; then

I 1n D

Z S

0

1n.r/ @tF"
�

tn.r/; Oun.r/; O�n.r/
�

t 0n.r/ dr;

where 1n is the characteristic function of the interval .0; sn;knC1/. Denote by hn.r/ the function

@tF"
�

tn.r/; Oun.r/; O�n.r/
�

; because of the convergence properties of .tn; Oun; O�n/, by Lemma 4.5 (c)

we have

hn.r/1n.r/ ! @tF"
�

t.r/; u.r/; �.r/
�

1.0;S/.r/ for a.e. r 2 .0; S/,

where 1.0;S/ denotes the characteristic function of the interval .0; S/. Moreover (recall Lemma 4.4)

jhn.r/j 6

Z

˝nK

jr
�

un.r/C g
�

tn.r/
��

rg0
�

tn.r/
�

j dx

6
�

kunkW 1;1.0;SIH1/ C kgkW 1;1.0;SIH1/

�

kgkW 1;1.0;SIH1/ :

The equi-boundedness of .hn/ on .0; S/ follows. Hence hn1n converge in L1.0; S/; since t 0n
�
* t 0

in L1.0; S/, we conclude that

lim
n!C1

I 1n D

Z s

0

@tF"
�

t.r/; u.r/; �.r/
�

t 0.r/ dr:

Let now I 2n be the third term in the right-hand side of (5.21). It can be written as

I 2n D �

Z S

0

1n.r/k@uF"
�

Otn.r/; Oun.r/; O�n.r/
�

kU 0 dr:

Thus, by Lemma 4.5 and Fatou’s Lemma,

lim sup
n!C1

I 2n 6 �

Z s

0

k@uF"
�

t.r/; u.r/; �.r/
�

kU 0 dr:

By collecting the estimates for the terms I 1n and I 2n , we conclude that

F"
�

t.s/; u.s/; �.s/
�

6 F".0; u0; �0/C

Z s

0

@tF"
�

t.r/; u.r/; �.r/
�

t 0.r/ dr

�

Z s

0

k@uF"
�

t.r/; u.r/; �.r/
�

kU 0 dr: (5.22)

We have now to prove the opposite inequality. To this aim we compute the derivative of the map

r 7! F"
�

t.r/; u.r/; �.r/
�

which is Lipschitz continuous and, hence, differentiable a.e. in Œ0; S�. Fix

a differentiability point r 2 .0; S/; by the monotonicity of F" with respect to �, it turns out that

d

dr
F"

�

t.r/; u.r/; �.r/
�

D lim
h!0C

1

h

�

F"
�

t.r C h/; u.r C h/; �.r C h/
�

� F"
�

t.r/; u.r/; �.r/
��

> lim inf
h!0C

1

h

�

F"
�

t.r C h/; u.r C h/; �.r/
�

� F"
�

t.r/; u.r/; �.r/
��

:
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Since F".�; �; �/ is Fréchet differentiable for every �, it turns out that for a.e. r 2 .0; S/ the last term

in the previous inequality can be computed by the usual chain rule. Thus, for a.e. r 2 .0; S/, this

term equals

@tF"
�

t.r/; u.r/; �.r/
�

t 0.r/C @uF"
�

t.r/; u.r/; �.r/
�

Œu0.r/�

> @tF"
�

t.r/; u.r/; �.r/
�

t 0.r/ � k@uF"
�

t.r/; u.r/; �.r/
�

kU 0

where we used that ku0.r/k 6 1.

Therefore, we can estimate the right-hand side of (5.22):

F".0; u0; �0/C

Z s

0

@tF"
�

t.r/; u.r/; �.r/
�

t 0.r/ dr �

Z s

0

k@uF"
�

t.r/; u.r/; �.r/
�

kU 0 dr

6 F".0; u0; �0/C

Z s

0

d

dr
F"

�

t.r/; u.r/; �.r/
�

dr D F"
�

t.s/; u.s/; �.s/
�

:

We conclude that in (5.22) the equality holds.

REMARK 5.9 If z 2 W 1;1.0; S ILp.K// for every 1 6 p < 1 then z2 2 W 1;1.0; S ILr .K//

for every 1 < r < C1 and .z2/0 D 2z0z. Since Lr.K/ is reflexive and separable, to prove that

z2 2 W 1;1 it is enough to show (see ÷2) that z2 is a Lipschitz map in Lr .K/. Let p1; p2 2 .2;1/,

and let r > 1 be such that 1=r D .1=p1/C .1=p2/; then

�Z

K

jz2.s2/ � z2.s1/j
r dx

�1=r

D

�Z

K

jz.s2/ � z.s1/j
r jz.s2/C z.s1/j

r dx

�1=r

6 kz.s2/ � z.s1/kLp2 kz.s2/C z.s1/kLp1 6 C js2 � s1j:

For the chain rule, let us write

z2.s C h/ � z2.s/

h
D
z.s C h/ � z.s/

h

�

z.s C h/C z.s/
�

Then for a.e. s 2 .0; S/ the left-hand side converges strongly in Lr .K/, and thus in L1.K/, to

.z2/0.s/. Moreover .z.s C h/ � z.s//=h ! z0.s/ and z.s C h/ ! z.s/ again strongly in L2.K/.

6. Quasi-static evolution for the energy F

For every " > 0, Proposition 5.7 and Theorem 5.8 provide a triple .t"; u"; �"/which is a parametrized

BV evolution for the energy F". By the estimates shown in introducing Proposition 5.7, for every

S > 0 the functions t", u", and �" turn out to be bounded, uniformly with respect to " > 0, in

W 1;1.0; S/,W 1;1.0; S IH 1.˝nK// andW 1;1.0; S ILq.K// (for any 1 6 q < C1) respectively

and the map

s 7!
�

t".s/; u".s/; �".s/
�

W Œ0;C1/ ! Œ0;C1/ �H 1.˝ nK/� Lq.K/

has a Lipschitz constant independent of " (see ÷5.2). Therefore, Proposition 2.3 and a standard

diagonal argument yield the following compactness result.
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Proposition 6.1 Let ."n/ be a positive infinitesimal sequence. There exists a map

.t; u; �/W Œ0;C1/ ! Œ0;C1/ � H 1.˝ n K/ � Lq.K/ such that (up to a subsequence) t"n

�
* t

in W 1;1.0; S/, u"n

�
* u in W 1;1.0; S IH 1.˝ n K// and �"n

�
* � in W 1;1.0; S ILq.K// for

1 < q < C1 and for any finite interval .0; S/. Moreover, for any 1 6 q < C1, the map .t; u; �/

is Lipschitz continuous.

Theorem 6.2 The triple .t; u; �/ in Proposition 6.1 is a (parametrized)BV evolution for the energy

F according to Definition 3.1.

Proof. The Lipschitz continuity has been checked in the previous proposition. Let S > 0 be fixed.

If ."n/ is as above, we denote F"n
simply by Fn and similarly for .tn/; .un/ and .�n/.

Let us retrace the proof of Theorem 5.8. Note that the convergence properties of the sequence

.tn; un; �n/ are the same in both cases.

First, let us prove condition .C / in Definition 3.1, i.e., for almost every s 2 Œ0; S�

� 0.s/ > 0; jJu.s/Kj 6 �.s/; � 0.s/
�

jJu.s/Kj � �.s/
�

D 0 ; H1-a.e. onK . (6.1)

The first two items of (6.1) follow by passing to the limit in the corresponding inequalities for �n
and un.

Consider now the third item in (6.1). This, as in the proof of Theorem 5.8, is equivalent to
Z �

0

ds

Z

B

� 0.s/
�

jJu.s/Kj � �.s/
�

dH1 D 0 (6.2)

for every � 2 Œ0; S� and for every Borel subset B of K .We know that

� 0
n.s/

�

jJun.s/Kj � �n.s/
�

D 0 ; H1-a.e. on K .

By the same argument applied in Theorem 5.8, equation (5.15) continues to hold, i.e.

lim
n!C1

Z �

0

ds

Z

B

� 0
n.s/

ˇ

ˇJun.s/K
ˇ

ˇdH1 D

Z �

0

ds

Z

B

� 0.s/
ˇ

ˇJu.s/K
ˇ

ˇdH1 :

Since � 0
n.s/jJun.s/Kj D � 0

n.s/�n.s/, this implies that

lim
n!C1

Z �

0

ds

Z

B

� 0
n.s/�n.s/ dH

1 D

Z �

0

ds

Z

B

� 0.s/
ˇ

ˇJu.s/K
ˇ

ˇ dH1 :

Since �; �n 2 W 1;1.0; S ILq.K// (for any 1 < q < C1), we can apply Remark 5.9; then:
Z �

0

ds

Z

B

� 0.s/jJu.s/Kj dH1 D lim
n!C1

Z �

0

ds

Z

B

� 0
n.s/�n.s/ dH

1

D lim
n!C1

1

2

Z

B

�

�n.�/
2 � �.0/2

�

dH1

>
1

2

Z

B

�

�.�/2 � �.0/2
�

dH1 D

Z �

0

ds

Z

B

� 0.s/�.s/ dH1 :

Since we know that jJu.s/Kj 6 �.s/, the first and the last term in the above inequalities must

coincide, i.e., (6.2) holds. Moreover, we deduce that
R

K
�n.�/

2 dH1 !
R

K
�.�/2 dH1; thus, the

weak L2-convergence implies

�n.�/ ! �.�/ strongly in L2.K/ for every � 2 Œ0; S�.



APPROXIMATION AND CHARACTERIZATION OF QUASI-STATIC H1-EVOLUTIONS 57

By the uniform Lipschitz continuity of �n we deduce that for �n ! �

�n.�n/ ! �.�/ strongly in L2.K/.

Now, let us address condition .S/ of Definition 3.1, i.e.: for every s 2 Œ0; S� with t 0.s/ > 0
ˇ

ˇ@�
uF

�

t.s/; u.s/; �.s/
�
ˇ

ˇ D 0: (6.3)

Let s 2 Œ0; S� be such that t 0.s/ > 0. Let us note that there exists a sequence sn ! s such

that t 0n.sn/ > 0 for n sufficiently large. Assume by contradiction that there exists ı > 0 with the

property that, for every k 2 N we can find n > k such that t 0n � 0 in Iı D .s � ı; s C ı/. Then, an

increasing sequence .nk/k would exist with t 0nk
� 0 in Iı ; this implies, in particular, that t 0.s/ D 0:

a contradiction. Then, from

tn.sn/ ! t.s/; un.sn/ * u.s/; in H 1.˝ nK/, �n.sn/ ! �.s/ in L2.K/,

by Lemma 4.6 we have
ˇ

ˇ@�
uF

�

t.s/; u.s/; �.s/
�
ˇ

ˇ 6 lim inf
n!C1



@uFn
�

tn.sn/; un.sn/; �n.sn/
�




U 0 :

Being condition .S/ satisfied by .tn; un; �n/, the right-hand side of this inequality is zero, thus the

left-hand side is zero, too.

Let us now address condition .E/ of Definition 3.1 i.e.: for every s 2 Œ0; S�

F
�

t.s/; u.s/; �.s/
�

D F.0; w0; �0/C

Z s

0

@tF
�

t.r/; u.r/; �.r/
�

t 0.r/ dr C

�

Z s

0

ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ dr : (6.4)

By Theorem 5.8 this holds for the energy Fn D F"n
and the triple .tn; un; �n/, i.e., .t"n

; u"n
; �"n

/.

Passing to the limit we get

lim inf
n!C1

Fn
�

tn.s/; un.s/; �n.s/
�

6 lim sup
n!C1

Fn.0; u0; �0/C lim sup
n!C1

Z s

0

@tFn
�

tn.r/; un.r/; �n.r/
�

t 0n.r/ dr

� lim inf
n!C1

Z s

0



@uFn
�

tn.r/; un.r/; �n.r/
�




U 0 dr :

The pointwise convergence of  " as " ! 0 (Proposition 4.3) together with the uniform

boundedness of  " (Proposition 4.2) yields Fn.0; u0; �0/ ! F.0; u0; �0/ as n ! C1. Moreover,

@tFn.tn.�/; un.�/; �n.�// converge to @tF.t.�/; u.�/; �.�// pointwise, by Lemma 4.6 (c), and then in

L1.0; s/ by dominated convergence. Taking into account Lemma 4.6 (b) we manage the last term.

Summing up

F
�

t.s/; u.s/; �.s/
�

6 F.0; u0; �0/ C

Z s

0

@tF
�

t.r/; u.r/; �.r/
�

t 0.r/ dr

�

Z s

0

ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ dr : (6.5)
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As in the proof of Theorem 5.8, to get the opposite inequality note that r 7! F
�

t.r/; u.r/; �.r/
�

is Lipschitz continuous as a composition of Lipschitz functions; indeed, E is locally Lipschitz

continuous on R
C � U since it is quadratic in u C g and both u and g are Lipschitz function

from Œ0;C1/ to H 1.˝ nK/; moreover, K is Lipschitz by Corollary 3.4.

Let now r be a point of differentiability for the functions t , u and F
�

t.�/; u.�/; �.�/
�

. Let .hn/ be

a positive infinitesimal sequence. By the monotonicity of  with respect to �, it turns out that

d

dr
F

�

t.r/; u.r/; �.r/
�

D
d

dr
E

�

t.r/; u.r/
�

C lim
n!C1

1

hn

�

K
�

u.r C hn/; �.r C hn/
�

� K
�

u.r/; �.r/
��

>
d

dr
E

�

t.r/; u.r/
�

C lim inf
n!C1

1

hn

�

K
�

u.r C hn/; �.r/
�

� K
�

u.r/; �.r/
��

:

Since E is Fréchet differentiable, the usual chain rule yields:

d

dr
E

�

t.r/; u.r/
�

D @tE
�

t.r/; u.r/
�

t 0.r/C @uE
�

t.r/; u.r/
�

Œu0.r/�:

As to the other term, write u.rChn/�u.r/ as hn
�

u0.r/CZ.hn/
�

, whereZ.h/ ! 0 in U as h ! 0.

Let zn D u0.r/CZ.hn/. Then, by Lemma 3.6

ˇ

ˇ

ˇ

ˇ

1

hn

�

K
�

u.r/C hnzn; �.r/
�

� K
�

u.r/; �.r/
��

� @uK
�

u.r/; �.r/I zn
�

ˇ

ˇ

ˇ

ˇ

! 0 as n ! C1.

It follows that

lim inf
n!C1

1

hn

�

K
�

u.r C hn/; �.r/
�

� K
�

u.r/; �.r/
��

> lim inf
n!C1

@uK
�

u.r/; �.r/I zn
�

:

From the convergence zn ! u0.r/ in U and the explicit form of @uK.u; �I z/ given in Lemma 3.6

we deduce that @uK
�

u.r/; �.r/I zn
�

! @uK
�

u.r/; �.r/Iu0.r/
�

, so that

d

dr
F

�

t.r/; u.r/; �.r/
�

> @tE
�

t.r/; u.r/
�

t 0.r/C @uE
�

t.r/; u.r/
�

Œu0.r/�C @uK
�

u.r/; �.r/Iu0.r/
�

;

i.e.
d

dr
F

�

t.r/; u.r/; �.r/
�

> @tE
�

t.r/; u.r/
�

t 0.r/C @uF
�

u.r/; �.r/Iu0.r/
�

: (6.6)

Now, recall that ku0.r/k 6 1:

@uF
�

t.r/; u.r/; �.r/Iu0.r/
�

> �
�

@uF
�

t.r/; u.r/; �.r/Iu0.r/
�

�

�

> � sup
n�

@uF
�

t.r/; u.r/; �.r/I z
�

�

�
W kzk 6 1

o

D �
ˇ

ˇ@�F
�

t.r/; u.r/; �.r/
�
ˇ

ˇ;

where in the last line we have used the representation (3.11) of the slope. We conclude that

d

dr
F

�

t.r/; u.r/; �.r/
�

> @tE
�

t.r/; u.r/
�

t 0.r/ �
ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ:
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This inequality, together with (6.5), implies

F.t.s/; u.s/; �.s// 6 F.0; u0; �0/C

Z s

0

@tF
�

t.r/; u.r/; �.r/
�

t 0.r/ dr

�

Z s

0

ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ dr

6 F.0; u0; �0/C

Z s

0

d

dr
F

�

t.r/; u.r/; �.r/
�

dr D F
�

t.s/; u.s/; �.s/
�

:

Therefore, inequality (6.5) must actually be an equality.

7. Equilibrium condition in PDE form

In this section we express the equilibrium condition j@�
uF.t.s/; u.s/; �.s//j D 0 of equation (3.6)

in a more explicit form. We need some preliminary remarks.

Let v 2 H 1.˝ n K/ be such that the distributional Laplacian �v is in L2.˝ n K/. For every

z 2 H 1.˝ nK/ define

Lvz D

Z

˝nK

rvrz dx C

Z

˝nK

.�v/z dx: (7.1)

Then Lv is linear and continuous on H 1.˝ nK/.

REMARK 7.1 For simplicity let us first consider the case of a smooth function v. Assume, e.g., that

v 2 C1.˝ nK/; and v 2 C1.˝ i / for every i

(where the sets˝i are introduced in ÷ 3). In the same way we followed introducing the trace u˙ for

a function u 2 H 1.˝ nK/ according to the chosen orientation � onK (Remark 3.2), we can define

the normal traces of rv on K and @˝ (actually, since rv is smooth in every ˝i , these are simply

restrictions). For every z 2 H 1.˝ nK/, and for every i , we have:

Z

˝i

rvrz dx C

Z

˝i

.�v/z dx D

Z

@˝i

z.rv/ � ndH1;

where n is the outer unit normal. Summing up over i we get

Lvz D

Z

.@˝/nK

zı.rv/ � � dH1 C

Z

K

zC.rv/C � � dH1 �

Z

K

z�.rv/� � � dH1I

by introducing the integral operators @�v, @˙
� v with density .rv/ � � or .rv/˙ � � on @˝ and K ,

respectively, this equation can be written as:

Lvz D h@�v; z
ıi C h@C

� v; z
Ci � h@�

� v; z
�i (7.2)

Hence, the value Lvz depends on z only through the trace tr z WD .zı; zC; z�/. This is true even in

the general case, where we do not assume that v is smooth; this is stated in the following result.

Proposition 7.2 Let v 2 H 1.˝ nK/ be such that the distributional Laplacian�v is in L2.˝ nK/.

Let z 2 H 1.˝ nK/ and let Lv be as in (7.1). If tr z D 0 (i.e., z 2 H 1
0 .˝ nK/), then Lvz D 0.
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Proof. It is enough to prove the statement assuming that z D ' 2 C1
c .˝ nK/. Let˝ 0 �� .˝ nK/

be a regular open set containing the support of '. Let V D rv; thus V 2 L2.˝ 0IR2/ and the

distributional divergence divV is in L2.˝ 0/. Then (see, e.g., [23], Theorem 1.1) there exists a

sequence .Vk/ in C1.˝
0
IR2/ such that

Vk ! V in L2.˝ 0IR2/, divVk ! divV in L2.˝ 0/.

An integration by parts gives

Z

˝0

Vkr' dx C

Z

˝0

.divVk/ ' dx D

Z

@˝0

'Vk � ndH1;

where n is the outer unit normal. The right-hand side vanishes since ' D 0 on @˝ 0. Now it is enough

to pass to the limit as k ! 1.

Therefore,Lv defines a linear operator on the quotient spaceH 1.˝ nK/=H 1
0 .˝ nK/; this can

be identified with the space T .˝ nK/ of the traces � D .zı; zC; z�/ when z varies in H 1.˝ nK/:

Lv� D

Z

˝nK

rvrz dx C

Z

˝nK

.�v/z dx; � D tr z; z 2 H 1.˝ nK/: (7.3)

It is standard that the operator Lv is linear and continuous with respect to the quotient norm

k�kH1=H1
0

D inffkzkH1.˝nK/ W tr z D �g:

Let us now turn to the equilibrium condition (3.6). Let us denote .t.s/; u.s/; �.s// simply by

.t; u; �/. By (3.11) this is equivalent to

Œ@uF.t; u; �I z/�� D 0 for every z 2 U ,

or

@uF.t; u; �I z/ > 0 for every z 2 U ,

i.e.
Z

˝nK

r
�

uC g.t/
�

rz dx C

Z

K

@w .JuK; �I JzK/ dH
1

> 0 for every z 2 U . (7.4)

If z 2 H 1.˝/\ U , then JzK D 0 onK and the second integral vanishes. By linearity:

Z

˝nK

r
�

uC g.t/
�

rz dx D 0 for every z 2 H 1.˝/ \ U .

This implies, in particular, that �v D 0 in H�1.˝ nK/, where v D u C g.t/. Therefore Lv� D
R

˝nK rvrz dx for � 2 T .˝ nK/ with � D tr z; moreover

Lv� C

Z

K

@w 
�

JuK; �I JzK
�

dH1
> 0; for every z 2 U , with � D tr z, (7.5)

Lv� D 0 for every � 2 T 1 WD
˚

tr z W z 2 H 1.˝/ \ U
	

. (7.6)
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REMARK 7.3 Condition (7.6) can be “splitted” into

Lv� D 0 for every � 2 T 10 WD ftr z W z 2 H 1
0 .˝/g � T 1,

Lv� D 0 for every � 2 T 1K WD ftr z W z 2 H 1.˝/ \ U ; zC D z� D 0g � T 1.

Recalling the meaning of Lv in case of a regular v (see (7.2)) we can understand these equations

respectively as a weak form of

@C
� v � @�

� v D 0 on K , @�v D 0 on Œ.@˝/ nK� n @D˝ .

In the sequel we go further towards a more precise definition of these normal-derivative trace

operators. In order to do this we will define a “localization” of the functional Lv to K and

Œ.@˝/ nK� n @D˝ .

Let  be a curve which is part of the boundary of a piecewise-C 1 open set A � R
2. Let � be

a function on @A such that �ˇ
ˇ

2 H 1=2./ and �ˇ
ˇc

2 H 1=2.c/, where c D .@A/ n  . Theorem

1.5.2.3 in [14] gives necessary and sufficient (integrability) conditions that guarantee that � has a

lifting to a function in H 1.A/. These conditions motivate the following definition.

DEFINITION 7.4 Let xW Œ0; l � !  be the length distance along  . We denote by W0./ the

subspace of H 1=2./ consisting of the functions � such that

� 7!
�
�

x.�/
�2

�
; � 7!

�
�

x.�/
�2

l � �

are integrable in a neighbourhood of 0 and l , respectively.

For instance,W0./ contains all piecewise-C 1 functions with compact support.

From Theorem 1.5.2.3 in [14] we deduce the following result.

Theorem 7.5 Let A and  be as above. Let � 2 H 1=2./; extend � to the whole of @A with value 0.

Then � is the trace on @A of a function in H 1.A/ if and only if � 2 W0./.

Let now � be any of the arcs �j which decomposeK . Let iC and i� be such that � � @˝iC \

@˝i� and that the orientation � on � agrees with the outer unit normal of ˝iC on � . Apply the

previous remarks with  D � . Let � 2 W0.� /. By the previous theorem there exists a function

z 2 H 1.˝iC/ whose trace on � is �, and whose trace on .@˝iC/ n � is 0. The function z can be

extended (with value 0) to a function in H 1.˝ nK/; therefore

z 2 H 1.˝ nK/\ U ; and �C WD .zı; zC; z�/ D .0; 1� �; 0/: (7.7)

In the same way we get the existence of a function z such that

z 2 H 1.˝ nK/\ U ; and �� WD .zı; zC; z�/ D .0; 0; 1� �/: (7.8)

This suggests the following definition.

DEFINITION 7.6 Let � � K be as above, and � 2 W0.� /. We set

h
�

@C
� v

�

ˇ

ˇ�
; �i D Lv�C; h

�

@�
� v

�

ˇ

ˇ�
; �i D �Lv��;

where �˙ are defined in (7.7) and (7.8) (and Lv in (7.3)).
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We explicitly note the slight abuse in using a pointwise-restriction notation in denoting this

operator.

Let us now address the problem of the trace of the normal derivative on @˝ .

By assumption, .@˝/ n K consists of a finite number of piecewise-C 1 curves i . Let z 2

H 1.˝/ \ U with zC D z� D 0; then, for each i , we can apply Theorem 7.5 (to a suitable

neighbourhood of i ) and deduce that for every maximal arc  in i n @D˝ , the trace of z on 

belongs toW0./. On the other hand, if � is a function on Œ.@˝/ nK� n @D˝ such that �ˇ
ˇ

2 W0./

for every maximal arc  in Œ.@˝/ n K� n @D˝ , then it is the trace of a function z 2 H 1.˝/ \ U
with zC D z� D 0 onK . Therefore, the space of traces T 1K in Remark 7.3 is the natural domain for

the normal-derivative operator on Œ.@˝/ nK� n @D˝ along the line of Definition 7.6.

DEFINITION 7.7 Let � D .�; 0; 0/ 2 T 1K (i.e., � is the trace of z on .@˝/ n K for some z 2

H 1.˝/\ U with zC D z� D 0 on K). We set

h
�

@�v
�

Œ.@˝/nK�n@D˝
; �i D Lv�:

We are now in a position to prove the next result, following the analysis in [7].

Theorem 7.8 Let .t; u; �/ WD
�

t.s/; u.s/; �.s/
�

satisfy the equilibrium condition (3.6). Let v D

u.s/C g.t.s//. Then
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�v D 0 in H�1.˝ nK/,

v D g.t/ on @D˝ ,

@C
� v D @�

� v on every �j � K ,

@�v D 0 on Œ.@˝/ nK� n @D˝;

(7.9)

where the boundary operators are introduced in Definitions 7.6 and 7.7 and the sets �j are defined

in Section 3.

In addition, there exists h 2 L1.K/ such that the following properties hold.

(a) Let � be any of the arcs �j which decomposeK . Let � 2 W0.� /. Then

h@C
� v; �i D h@�

� v; �i D

Z

�

h� dH1: (7.10)

and thus @C
� v D @�

� v D h in � (in the sense of Definition 7.6).

(b) Further
(

h D @w .JuK; �/ H1-a.e. on fx 2 � W .JuK.x/; �.x// ¤ .0; 0/g

jhj 6 O�.0/ otherwise.

Proof. To prove (7.9) only the statement about the normal-derivative boundary conditions has to be

addressed.

Remark 7.3 immediately implies that the operator introduced in Definition 7.7 vanishes: this

condition is summed up in the equation @�v D 0 on Œ.@˝/ nK� n @D˝ .

Let � be any of the arcs �j which decomposeK . Let � 2 W0.� / and let �˙ be as in (7.7) and

(7.8). Then �C C �� 2 T 10 and Lv.�C C ��/ D 0 according to Remark 7.3. By linearity and the

definition of @˙
� v we conclude that @C

� v D @�
� v on � .

Let us now address the integral representation of @˙
� v. Let � , �, and �C be as above.
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By (7.5) applied to �C and ��C we have

jLv�Cj 6

Z

�

ˇ

ˇ@w .JuK; �I �/
ˇ

ˇ dH1
6 O�.0/k�kL1.� /:

It follows that the functional � 7! Lv�C is linear and continuous on W0.� / with respect to the

L1.� /-norm. Therefore, it can be extended to a bounded linear functional on L1.� / which admits

an integral representation through a function h 2 L1.� /, i.e., we have (7.10). Moreover, jhj 6 O�.0/

a.e. on � .

As to property (b), by (7.5) and the definition of h, we get

Z

�

h� dH1 C

Z

�

@w .JuK; �I �/ dH
1

> 0; for every � 2 W0.� /.

By density, and recalling the definition (3.8) of @w , this inequality holds for every � 2 L1.� /.

Let now J WD fx 2 � W .JuK.x/; �.x// ¤ .0; 0/g. Note that @w .JuK; �I �/ D 1J@w .JuK; �/� C

1J c O�.0/j�j. Then

Z

�

�

h� 1J@w .JuK; �/
�

� dH1 C

Z

�

1J c O�.0/j�j dH1
> 0; for every � 2 L1.� /.

By choosing � > 0 and � < 0, this implies that

jh � 1J @w .JuK; �/j 6 1J c O�.0/ H1-a.e. on � .

In particular, H1-a.e. on J we have jh� @w .JuK; �/j D 0.

8. Jump transition in PDE form

Let t� 2 Œ0; T �. Let us assume that t�1.t�/ D Œs�; sC� with s� < sC. Clearly t.s/ D t� for

every s 2 Œs�; sC�. Denote u.s˙/ D u˙ and �.s˙/ D �˙. Under these assumptions, the map

s 7! .u.s/; �.s// for s 2 Œs�; sC� describes (in the parametric setting) the instantaneous transition

from .u�; ��/ to .uC; �C/ at time t�. The following theorem provides a characterization of the

evolution in PDE form; it is formally that of Theorem 7.8 for a different function v.

Theorem 8.1 Assume the space U is equipped with the equivalent norm kuk D

.
R

˝nK jruj2 dx/1=2. Under the above assumptions, for t� D t.s/, let �.s/ D j@�
uF

�

t�; u.s/; �.s/
�

j.

Let v.s/ D .u.s/C g.t�//C �.s/u0.s/. Then, a.e. in Œs�; sC�, v solves the following system

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�v D 0 in H�1.˝ nK/,

v D g.t�/ on @D˝ ,

@C
� v D @�

� v on every �j � K ,

@�v D 0 on Œ.@˝/ nK� n @D˝;

(8.1)

where the boundary operators are introduced in Definitions 7.6 and 7.7 and the sets �j are defined

in Section 3. In addition, a.e. in Œs�; sC�, there exists h 2 L1.K/ such that the following properties

hold.
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(a) Let � be any of the arcs �j which decomposeK . Let � 2 W0.� /. Then

h@C
� v; �i D h@�

� v; �i D

Z

�

h� dH1 (8.2)

and thus @C
� v D @�

� v D h in � (in the sense of Definition 7.6).

(b) Further
(

h D @w .JuK; �/ H1-a.e. on fx 2 � W .JuK.x/; �.x// ¤ .0; 0/g

jhj 6 O�.0/ otherwise.

Note that, being t.s/ D t� constant in Œs�; sC�, we can write v.s/ D .u.s/C g.t�//C�.s/.u.s/C

g.t�//0. In this way (8.1) becomes formally a visco-elastic (Kelvin–Voigt) system with stress

rv.s/ D r.u.s/C g.t�//C �.s/r.u.s/C g.t�//0.

Proof. From the proof of Theorem 6.2 (see (6.6)) we know that r 7! F.t.r/; u.r/; �.r// is

a.e. differentiable and

d

dr
F

�

t.r/; u.r/; �.r/
�

> @tE
�

t.r/; u.r/
�

t 0.r/C @uF
�

t.r/; u.r/; �.r/Iu0.r/
�

for a.e. r 2 Œ0;C1/. On the other hand, the energy balance (6.4) yields

d

dr
F

�

t.r/; u.r/; �.r/
�

D @tF
�

t.r/; u.r/; �.r/
�

t 0.r/ �
ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ

D @tE
�

u.r/; �.r/
�

t 0.r/ �
ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ:

Therefore, we deduce that

@uF
�

t.r/; u.r/; �.r/Iu0.r/
�

6 �
ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ:

Let us now express the right-hand side as a supremum according to (3.11); then (being �.a/� 6 a)

we have

@uF
�

t.r/; u.r/; �.r/Iu0.r/
�

6 � sup
n

�

@uF
�

t.r/; u.r/; �.r/I z
��

�
W kzk 6 1

o

D inf
n

�
�

@uF
�

t.r/; u.r/; �.r/I z
��

�
W kzk 6 1

o

6 inf
n

@uF
�

t.r/; u.r/; �.r/I z
�

W kzk 6 1
o

:

Hence u0.r/ 2 argminf@uF.t.r/; u.r/; �.r/I z/ W kzk 6 1g and

@uF
�

t.r/; u.r/; �.r/Iu0.r/
�

D �
ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ:

Let G be the functional @uF
�

t.r/; u.r/; �.r/I �
�

on U ; now we use the fact that the space U is

equipped with the norm kuk D .
R

˝nK jruj2 dx/1=2 and denote by h ; i the corresponding scalar

product. G is convex, continuous and positively 1-homogeneous. Denote by B the closed unit ball

in U and by IB the indicator function of B . Since u0.r/ minimizes G C IB on U we have

0 2 @
�

G C IB
��

u0.r/
�

; (8.3)
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where the right-hand side denotes the subdifferential of GCIB in u0.r/. We know that (see, e.g., [13,

Proposition 5.6]) that

@
�

G C IB
�

.u0.r// D @G
�

u0.r/
�

C @IB
�

u0.r/
�

; @IB.z/ D

(

f0g if kzk < 1,

f�z W � > 0g if kzk D 1.

Then, by (8.3) we deduce the existence of �.r/ > 0 such that

��.r/u0.r/ 2 @G
�

u0.r/
�

(note that �.r/ D 0 if ku0.r/k < 1). Therefore, by the definition of subdifferential we have:

G.z/ > G
�

u0.r/
�

� �.r/hu0.r/; z � u0.r/i for every z 2 U .

If ku0.r/k D 1 then, by taking z D 2u0.r/ and z D 0, we get G.u0.r//C �.r/ D 0, so that

�.r/ D �G
�

u0.r/
�

D
ˇ

ˇ@�
uF

�

t.r/; u.r/; �.r/
�
ˇ

ˇ;

and the previous inequality yields

G.z/C �.r/hu0.r/; zi > G
�

u0.r/
�

C �.r/ D 0 for every z 2 U .

If ku0.r/k < 1 then �.r/ D 0 and, by the positive 1-homogeneity of G, we have that the minimum

value G.u0.r// of G is 0, too. In any case, we have proved that �.r/ D j@�
uF.t.r/; u.r/; �.r//j > 0

satisfies

G.z/C �.r/hu0.r/; zi > 0 for every z 2 U .

At this point, remembering that the duality above is in H 1.˝ nK/ endowed with the norm kuk D

.
R

˝nK jruj2 dx/1=2, we can write the previous variational inequality as

Z

˝nK

r
�

u.r/Cg.t/C�.r/u0.r/
�

rz dxC

Z

K

@w .JuK.r/; �.r/I JzK/ dH
1

> 0 for every z 2 U .

Defining v.r/ D .u.r/ C g.t// C �.r/u0.r/ and following step by step the proof of Theorem 7.8

we get the thesis.

REMARK 8.2 The PDE characterizations of Theorem 7.8 and Theorem 8.1 distinguish between

equilibrium configurations (in continuity points) and jump transitions (in discontinuity points)

because the mechanical behaviour is different. However, it is possible to provide a unified

mathematical characterization: the system of PDEs is indeed the same and the function v.s/ D

.u.s/ C g.t// C �.s/u0.s/, appearing in Theorem 8.1, boils down to v.s/ D u.s/ C g.t/ when,

under the assumptions of Theorem 7.8, �.s/ D j@�
uF.t.s/; u.s/; �.s//j D 0.
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MR0348562

7. Cagnetti, F., A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed

crack path. Math. Models Methods Appl. Sci. 18 (2008), 1027–1071. Zbl1154.49005 MR2435184

8. Cagnetti, F., & Toader, R., Quasistatic crack evolution for a cohesive zone model with different response to

loading and unloading: A Young measures approach. ESAIM Control Optim. Calc. Var. 17 (2011), 1–27.

Zbl1210.49046 MR2775184

9. Comi, C., Mariani, S., Negri, M., & Perego, U., A 1d variational formulation for quasi-brittle fracture.

Journal of Mechanics of Materials and Structures 1 (2006), 1323–1343.

10. Dal Maso, G., & Zanini, C., Quasi-static crack growth for a cohesive zone model with prescribed crack

path. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 253–279. Zbl1116.74004 MR2360770

11. Del Piero, G., & Truskinovsky, L., Elastic bars with cohesive energy. Contin. Mech. Thermodyn. 21 (2009),

141–171. Zbl1170.74378 MR2516259

12. Di Nezza, E., Palatucci, G., & Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci.

Math., 136 (2012), 521–573. Zbl1252.46023 MR2944369

13. Ekeland, I., & Temam, R., Convex Analysis and Variational Problems. North-Holland Publishing Co.,

Amsterdam, 1976. Zbl0322.90046 MR0463994

14. Grisvard, P., Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in

Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985. Zbl0695.35060 MR0775683
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