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The existence, uniqueness, and asymptotic behavior of steady transonic flows past a curved wedge,
involving transonic shocks, governed by the two-dimensional full Euler equations are established.
The stability of both weak and strong transonic shocks under the perturbation of the upstream
supersonic flow and the wedge boundary is proved. The problem is formulated as a one-phase free
boundary problem, in which the transonic shock is treated as a free boundary. The full Euler equations
are decomposed into two algebraic equations and a first-order elliptic system of two equations in
Lagrangian coordinates. With careful elliptic estimates by using appropriate weighted Hölder norms,
the iteration map is defined and analyzed, and the existence of its fixed point is established by
performing the Schauder fixed point argument. The careful analysis of the asymptotic behavior of
the solutions reveals particular characters of the full Euler equations.
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1. Introduction

We are concerned with the existence, uniqueness, and asymptotic behavior of steady transonic
flows past a curved wedge, involving transonic shocks, governed by the two-dimensional full Euler
equations. When a supersonic flow passes through a straight-sided wedge whose half-angle �w is
less than the detachment angle, a shock attached to the wedge vertex is expected to form. If the
upstream steady flow is a uniform supersonic state, we can find the corresponding constant flow
downstream along the straight-sided wedge boundary, together with a straight shock separating
the two states (see Fig. 1.1), by using the shock polar determined by the Rankine–Hugoniot jump
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FIG. 1.1. (a) Constant transonic flows; (b) Perturbed transonic flows rotated clockwise by angle �w

conditions and the entropy condition (cf. Fig. 1.2). However, these conditions do not determine
the downstream state uniquely. In general, there are two solutions, one of which corresponds to a
weaker shock than the other. As normally expected, a physically admissible shock should be stable
under small perturbations. Therefore, it is important to analyze the stability of these shocks in order
to understand underlying physics.

The wedge problem described above has a long history at least dating back to the 1930s. Prandtl
[26] in 1936 first conjectured that the weak shock solution is stable, and hence physically admissible.
There has been a long debate about whether the strong shock is stable for decades; see Courant-
Friedrichs [17], Section 123, and von Neumann [28]. See also Liu [25] and Serre [27].

When the downstream flow is supersonic, the corresponding shock is called a supersonic shock,
which is a weak shock. This case has been analyzed for the potential flow equation in [13, 14]
with certain convexity assumption on the wedge and in [30] for an almost straight-sided wedge.
The existence and stability of the steady supersonic shocks for the full Euler equations have been
established under the BV perturbation of both the upstream flow and the slope of the wedge
boundary in Chen-Zhang-Zhu [12] and Chen-Li [11] for Lipschitz wedges.

For transonic shocks (i.e., the downstream flow is subsonic), there are two cases: the transonic
shock with the subsonic state corresponding to arc TS (which is a weak shock) and the one
corresponding to arc TH (which is a strong shock) (see Fig. 1.2). The strong shock case has been
studied in Chen-Fang [16] for the potential flow (also see [8]).

It is well known that the jump of the entropy function across the shock is of cubic order of the
shock strength. In general, the strength of transonic shocks is large, so the full Euler system is a
more accurate model than the potential flow or isentropic Euler equations. In Fang [19], the Euler
equations were first studied with a uniform Bernoulli constant for both strong and weak transonic
shocks. However, the asymptotic behavior of the shock slope or the subsonic part of the solution was
not analyzed in [19], partly because the approach in [19] is based on the weighted Sobolev spaces.
On the other hand, the asymptotic behavior can be seen more conveniently within the framework
of Hölder spaces. In Yin-Zhou [29], the Hölder norms were used for the estimates of the full Euler
equations with the assumption on the sharpness of the wedge angle, which means that the subsonic
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FIG. 1.2. The shock polar in the .u1; u2/-plane

state is near point H in the shock polar. In Chen-Chen-Feldman [6], the weak transonic shock,
which corresponds to the whole arc TS , was investigated; and the existence, uniqueness, stability,
and asymptotic behavior of subsonic solutions were obtained. In [6, 29], a potential function is used
to reduce the four Euler equations into one elliptic equation in the subsonic region. The method was
first proposed in [5] and has the advantage of integrating the conservation properties of the Euler
system into a single elliptic equation. However, working on the potential function further requires
its Lipschitz estimate, besides the C 0-estimate, to keep the subsonicity of the flow.

There are other related papers about transonic shocks, such as [8, 23] for transonic flows past
three-dimensional wedges and [7] about transonic flows past a perturbed cone; see also [9, 15] for
the approaches developed earlier for dealing with transonic shock flows and [20] for the uniqueness
of transonic shocks.

The purpose of this paper is to analyze both strong and weak transonic shocks and establish the
existence, uniqueness, and asymptotic behavior of the subsonic solutions under the perturbation of
both the upstream supersonic flows and the wedge boundaries. In particular, we are able to prove
the stability of both weak and strong transonic shocks. The strategy is to use the physical variables
to make the estimates, instead of the potential function. The advantage of this method is that only
the lower regularity (i.e., the C 0-estimate) is sufficient to guarantee the subsonicity. Furthermore,
estimating the physical state function U D .u; p; �/> directly (see equations (2.1)) also yields a
better asymptotic decay rate: For weak transonic shocks, the decay rate is only jxj�ˇ in our earlier
paper [6]; while, in this paper, we will show that the subsonic solution decays to a limit state at rate,
jxj�ˇ�1, with ˇ 2 .0; 1/ depending only on the background states (see Remark 2.2).

More precisely, we first use the Lagrangian coordinates to straighten the streamlines. The reason
for this is that the Bernoulli variable and entropy are conserved along the streamlines, and using
the streamline as one of the coordinates simplifies the formulation, especially for the asymptotic
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behavior of the solution. Then, as in [15, 19], we decompose the Euler system into two algebraic
equations and two elliptic equations. Differentiating the two elliptic equations gives rise to a second-
order elliptic equation in divergence form for the flow direction w D u2

u1
. Given U in an expected

function space for solutions, we obtain the updated function Qw as the solution of the linear equation
for iterations whose coefficients are evaluated on the given function U . Once we solve for Qw and
obtain the desired estimates, the other variables are then updated. Thus, we construct a map ıeU D
Q.ıU /, where ıU and ıeU are the perturbations from the background subsonic state. The estimates
based on our method do not yield the contraction for Q. Therefore, the Banach fixed point argument
does not work; Instead, we employ the Schauder fixed point argument to obtain the existence of
the subsonic solution. For the uniqueness, we estimate the difference of two solutions by using the
weighted Hölder norms with a lower decay rate.

One point we want to emphasize here is that the decay pattern is different from that for potential
flow. In a potential flow, the decay is with respect to jxj. For example, if ' converges to '0 at
rate jxj�ˇ , then r' converges at rate jxj�ˇ�1. For the Euler equations, because the Bernoulli
variable and the entropy function are constant along streamlines, the physical variables .u1; �/
do not converge to the background state along the streamlines. They converge only across the
streamlines away from the wedge. Therefore, when the elliptic estimates are performed, the scaling
is with respect to the distance from the wedge, rather than jxj. This results in the following decay
pattern: In Lagrangian coordinates y, there exists an asymptotic limit U1 D .u11 ; 0; p

C
0 ; �

1/; U
converges to U1 at rate jyj�ˇ , but rU converges at rate jyj�ˇ .y2 C 1/�1. That is, the extra decay
for the derivatives is only along the y2-direction.

Finally, we remark that our analysis of transonic shocks for the Euler equations for potential
and non-potential flows, started in Chen-Feldman [9] to formulate the transonic shock problems as
one-phase free boundary problems, is motivated by the previous works on variational one-phase free
boundary problems for nonlinear elliptic equations in Alt-Caffarelli [1], Alt-Caffarelli-Friedman [2,
3], and the references cited therein. One of the main difficulties in dealing with the transonic shock
problems is that the corresponding elliptic one-phase free boundary problems are non-variational in
general, so that the complete solution to the free boundary problems requires different approaches
and new techniques which are further developed in this paper in the physical realm of the full Euler
equations for compressible fluids.

The rest of the paper is organized in the following sections. In �2, the wedge problem is
formulated as a free boundary problem and the main theorem is stated. In �3, the problem is
reformulated in Lagrangian coordinates. In �4, the Euler equations are decomposed into two
algebraic equations and a first-order elliptic system of two equations. In �5, the linear elliptic system
and the boundary conditions for iterations are introduced. In �6, the key estimates of solutions
for the linear second-order elliptic equation for iterations are obtained. In �7, the iteration map
is constructed and the corresponding estimates are obtained, leading to the existence of a weak
transonic shock solution. In �8, the uniqueness of the weak transonic shock solution is proved. In
�9, the asymptotic behavior and the decay rate of solutions are discussed. In �10, the difference
between the weak and the strong transonic shocks is revealed in terms of the estimates and the
asymptotic behavior of the solution.

2. Mathematical setup and the main theorem

In this section, we formulate the transonic wedge problem as a free boundary problem and state the
main theorem.
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The governing equations are two-dimensional steady, full Euler equations:8̂̂<̂
:̂
r � .�u/ D 0;
r � .�u˝ u/Crp D 0;

r �
�
�u.E C

p

�
/
�
D 0;

(2.1)

where r is the gradient in x D .x1; x2/ 2 R2, u D .u1; u2/ the velocity, � the density, p the
pressure, and 
 > 1 the adiabatic exponent, as well as

E D
1

2
juj2 C

p

.
 � 1/�

is the energy. The sonic speed of the flow is

c D

r

p

�
:

The flow is subsonic if juj < c and supersonic if juj > c. For a transonic flow, both cases occur in
the flow.

System (2.1) can be written in the following general form as a system of conservation laws:

r � F.U / D 0; x 2 R2; (2.2)

with U D .u; p; �/>. Such systems often govern time-independent solutions for multidimensional
quasilinear hyperbolic systems of conservation laws; cf. Dafermos [18] and Lax [22].

To be a weak solution of the Euler equations (2.1), the Rankine–Hugoniot conditions must be
satisfied along the shock-front x1 D �.x2/:8̂̂̂̂

<̂̂
ˆ̂̂̂:
Œ �u1 � D �

0.x2/Œ �u2 �;

Œ �u21 C p � D �
0.x2/Œ �u1u2 �;

Œ �u1u2 � D �
0.x2/Œ �u2

2
C p �;h

�u1
�
E C

p

�

��
D � 0.x2/Œ �u2.E C

p

�
/ �;

(2.3)

where Œ � � denotes the jump of the quantity between the two states across the shock front; that is, if
w� and wC represent the left and right states, respectively, then Œw� WD wC � w�.

For a given constant upstream supersonic flow U�0 D .u�10; 0; p
�
0 ; �

�
0 /
> and a fixed straight-

sided wedge with wedge angle �w, the downstream constant flow can be determined by the Rankine–
Hugoniot conditions (3.6)–(3.9). According to the shock polar (see Fig. 1.2), there are two subsonic
solutions (for a large-angle wedge), or one subsonic solution and one supersonic solution (for a
small-angle wedge). We choose the subsonic constant state for the downstream flows. When the
wedge angle �w is between 0 and the detachment angle �d

w, arc HS is divided by the tangent point
T into two open arcs TH and TS , which correspond to the strong and weak transonic shocks,
respectively.

For convenience, we rotate the plane clockwise by angle �w so that the downstream flows
become horizontal. Then u�

20

u�
10
D � tan �w, U�0 D .u�10;�u

�
10 tan �w; p

�
0 ; �

�
0 /
>, and UC0 D

.uC10; 0; p
C
0 ; �

C
0 /
> (cf. Fig. 1.1).
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FIG. 2.1. Domains˝� and˝� in Eulerian coordinates

Suppose that the background shock is the straight line given by S0 WD fx1 D �0.x2/ WD k0x2g.
Let ˝� be the region for the upstream flows defined by

˝� D
n
x W 0 < x1 <

4

3
k0x2

o
:

We use a function b.x1/ to describe the wedge boundary:

@W WD
˚
x 2 R2 W x2 D b.x1/; b.0/ D 0

	
: (2.4)

Along the solid wedge boundary @W, the slip condition is satisfied:

u2

u1

ˇ̌̌̌
@W

D b0: (2.5)

Suppose that the shock front S we seek is

S WD
˚
x W �.0/ D 0; x1 D �.x2/; x2 > 0

	
:

Then the domain for the subsonic flow is denoted by

˝�
WD
˚
x 2 R2 W x1 > �.x2/; x2 > b.x1/

	
: (2.6)

Therefore, the problem can be formulated as the following free boundary problem:

PROBLEM (Free Boundary Problem; see Fig. 2.1) Let .U�0 ; U
C
0 / be a constant transonic solution

with transonic shock S0. For any upstream flow U� for equations (2.1) in domain ˝�, which is a
small perturbation of U�0 , find a subsonic solution U and a shock-front S, which are close to UC0
and S0, respectively, such that

(i) U satisfies equations (2.1) in domain ˝� ;
(ii) The slip condition (2.5) holds along the boundary @W;
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(iii) The Rankine–Hugoniot conditions (2.3) as free boundary conditions hold along the shock-
front S.

When UC0 corresponding to a state on arc TS gives a weak transonic shock, the problem is denoted
by Problem WT , while the strong transonic shock problem corresponds to arc TH , denoted by
Problem ST .

To state our results, we need to introduce the weighed Hölder norms for our subsonic domainE,
whereE is either a truncated triangular domain or an unbounded domain with the vertex at origin O
and one side as the wedge boundary. There are two weights: One is the distance function to origin
O, and the other is to the wedge boundary @W. For any x; x0 2 E, define

ıo
x WD min.jxj; 1/; ıo

x;x0 WD min.ıo
x ; ı

o
x0/;

ıw
x WD min.dist.x; @W/; 1/; ıw

x;x0 WD min.ıw
x ; ı

w
x0/;

�x WD jxj C 1; �x;x0 WD min.�x; �x0/;e�x WD dist.x; @W/C 1; e�x;x0 WD min.e�x;e�x0/:

Let ˛ 2 .0; 1/, �; l; 
1; 
2 2 R with 
1 > 
2, and k be a nonnegative integer. Let k D .k1; k2/ be
an integer-valued vector, where k1; k2 > 0, jkj D k1 C k2, and Dk D @

k1
x1@

k2
x2 . We define

Œf �
.
1IO/.
2I@W/

k;0I.�;l/IE
WD sup

x2E
jkjDk

˚
.ıo

x/
maxf
1Cminfk;�
2g;0g.ıw

x /
maxfkC
2;0g��x

e�lCkx jDkf .x/j
	
; (2.7)

Œf �
.
1IO/.
2I@W/

k;˛I.�;l/IE
WD sup

x;x02E
x¤x0
jkjDk

(
.ıo

x;x0/
maxf
1CminfkC˛;�
2g;0g.ıw

x;x0/
maxfkC˛C
2;0g

���x;x0
e�lCkC˛x;x0

jDkf .x/�Dkf .x0/j
jx�x0j˛

)
; (2.8)

kf k
.
1IO/.
2I@W/

k;˛I.�;l/IE
WD

kX
iD0

Œf �
.
1IO/.
2I@W/

i;0I.�;l/IE
C Œf �

.
1IO/.
2I@W/

k;˛I.�;l/IE
: (2.9)

For a vector-valued function f D .f1; f2; � � � ; fn/, we define

kfk.
1IO/.
2I@W/

k;˛I.�;l/IE
WD

nX
iD1

kfik
.
1IO/.
2I@W/

k;˛I.�;l/IE
:

Let
C
k;˛I.�;l/

.
1IO/.
2I@W/
.E/ WD ff W kf k

.
1IO/.
2I@W/

k;˛I.�;l/IE
<1g: (2.10)

Remark 2.1. The requirement that 
1 > 
2 in the definition above means that the regularity up to
the wedge boundary is no worse than the regularity up to the vertex. When 
1 D 
2, the ıo-terms
disappear so that .
1IO/ in the superscript or subscript can be dropped.

If there is no weight .
2I @W/ in the superscript, the ı-terms for the weights should be
understood as .ıo

x/
maxfkC
1;0g and .ıo

x/
maxfkC˛C
1;0g in (2.7) and (2.8), respectively. When no weight

appears in the superscripts of the seminorms in (2.7)–(2.8), it means that neither ıo nor ıw is present.
For a function of one variable defined on .0;1/, the weighted norm kf k.
2I0/

k;˛I.l/IRC is understood
in the same sense as the definition above with weight to f0g and the decay at infinity.
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Since the components of U are expected to have different regularity, we distinguish these
variables by defining U1 D .u1; �/ and U2 D .w; p/, where w D u2

u1
. Let UC10 and UC20 be the

corresponding background subsonic states.

Theorem 2.1 (Main Theorem) There are positive constants ˛; ˇ; C0, and ", depending only on the
background states .U�0 ; U

C
0 /, such that

(i) When UC0 2 TS , then, for every upstream flow U� and wedge boundary x2 D b.x1/

satisfying

kU� � U�0 k2;˛I.1Cˇ;0/I˝� C kb
0
k
.�˛I0/

1;˛I.1Cˇ/IRC 6 ";

there exists a solution .U; �/ of Problem WT satisfying

kU � UC0 kX C k�
0
� k0k

.�˛I0/

2;˛I.1Cˇ/IRC

6 C0

�
kU� � U�0 k2;˛I.1Cˇ;0/I˝� C kb

0
k
.�˛I0/

1;˛I.1Cˇ/IRC

�
;

(2.11)

where

kU � UC0 kX WD kU1 � U
C
10k

.�˛I@W/

2;˛I.0;1Cˇ/I˝�
C kU2 � U

C
20k

.�˛IO/.�1�˛I@W/

2;˛I.1Cˇ;0/I˝�
I

(ii) When UC0 2 TH , then, for every upstream flow U� and wedge boundary x2 D b.x1/

satisfying

kU� � U�0 k2;˛I.ˇ;0/I˝� C kb
0
k
.�˛�1I0/

2;˛I.ˇ/IRC 6 ";

there exists a solution .U; �/ of Problem ST satisfying

kU � UC0 kX 0 C k�
0
� k0k

.�˛�1I0/

2;˛I.ˇ/IRC

6 C0

�
kU� � U�0 k2;˛I.ˇ/I˝� C kb

0
k
.�˛�1I0/

2;˛I.ˇ/IRC

�
;

(2.12)

where

kU � UC0 kX 0 WD kU1 � U
C
10k

.�1�˛I@W/

2;˛I.0;ˇ/I˝�
C kU2 � U

C
20k

.�1�˛IO/
2;˛I.ˇ;0/I˝�

:

The solution .U; �/ is unique within the class such that the left-hand side of (2.11) for Problem WT
or (2.12) for Problem ST is less than C0".

Remark 2.2. The dependence of constants ˛; ˇ; C0, and " in Theorem 2.1 is described as follows:
˛ and ˇ depend on U�0 and UC0 , but are independent of C0 and "; C0 depends on U�0 ; U

C
0 ; ˛, and

ˇ, but is independent of "; and " depends on all U�0 ; U
C
0 ; ˛; ˇ, and C0.

Remark 2.3. The difference in the results of the two problems is that the solution of Problem WT
has less regularity at corner O and decays faster with respect to jxj (or the distance from the wedge
boundary) than the solution of Problem ST .

Remark 2.4. The asymptotic behavior of the subsonic solution can be stated more clearly in
Lagrangian coordinates. Thus we leave it in the statement of Theorem 3.1 and Remark 3.1.
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3. The problem in Lagrangian coordinates

From the first equation in (2.1), there exists a unique stream function  in region ˝� [ ˝� such
that

 x1 D ��u2;  x2 D �u1

with  .0/ D 0. To simplify the analysis, we employ the following Lagrangian coordinate
transformation: (

y1 D x1;

y2 D  .x1; x2/;
(3.1)

under which the original curved streamlines become straight. In the new coordinates y D .y1; y2/,
we still denote the unknown variables U.x.y// by U.y/ for notational simplicity.

The Euler equations in (2.1) in Lagrangian coordinates become the following equations in
divergence form: � 1

�u1

�
y1
�

�u2
u1

�
y2
D 0; (3.2)�

u1 C
p

�u1

�
y1
�

�pu2
u1

�
y2
D 0; (3.3)

.u2/y1 C py2 D 0; (3.4)�1
2
juj2 C


p

.
 � 1/�

�
y1
D 0: (3.5)

Let T WD fy1 D O�.y2/g be a shock-front in the y-coordinates. Then, from the equations above, we
can derive the Rankine–Hugoniot conditions along T :h 1

�u1

i
D �

hu2
u1

i
O� 0.y2/; (3.6)h

u1 C
p

�u1

i
D �

hpu2
u1

i
O� 0.y2/; (3.7)

Œ u2 � D Œ p � O�
0.y2/; (3.8)h1

2
juj2 C


p

.
 � 1/�

i
D 0: (3.9)

The background shock-front now is T0 WD fy1 D O�0.y2/ WD k1y2g, where k1 D k0

�
C

0
u
C

10

. Without

loss of generality, we assume that the supersonic solution U� exists in region D� defined by

D� WD
n
y W 0 < y1 <

4

3
k1y2

o
: (3.10)

Let

D D fy W 0 < k1y2 < y1g ; (3.11)
L1 D fy W y1 > 0; y2 D 0g ; (3.12)
L2 D fy W y1 > 0; y1 D k1y2g : (3.13)
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For a given shock function O�.y2/, let

D O� D fy W y2 > 0; O�.y2/ < y1g : (3.14)

Then Theorem 2.1 can be stated in Lagrangian coordinates as follows:

Theorem 3.1 There exist positive constants ˛; ˇ; C0, and ", depending only on the background
states U�0 and UC0 , such that, if the upstream flow U� for (3.2)–(3.5) and the wedge boundary
y2 D b.y1/ satisfy

(i) kU� � U�0 k2;˛I.1Cˇ;0/ID� C kb
0k
.�˛I0/

1;˛I.1Cˇ/IRC 6 " for Problem WT;

(ii) kU� � U�0 k2;˛I.ˇ;0/ID� C kb
0k
.�˛�1I0/

2;˛I.ˇ/IRC 6 " for Problem ST,

then there exist a transonic shock T WD fy1 D O�.y2/g and a subsonic solution U of the Euler
equations (3.2)–(3.5) satisfying the Rankine–Hugoniot conditions (3.6)–(3.9) along T and the slip
condition wjL1 D b0, and there exists a limit function U1.y2/ D .u11 .y2/; 0; p

C
0 ; �

1.y2// and
U11 .y2/ D .u

1
1 .y2/; �

1.y2// such that U satisfies the following estimates:

(i) For Problem WT,

kU � U1kY C kO�
0
� k1k

.�˛I0/

2;˛I.1Cˇ/IRC C kU
1
1 � U

C
10k

.�˛I0/

2;˛I.1Cˇ/IRC

6 C0

�
kU� � U�0 k2;˛I.1Cˇ;0/ID� C kb

0
k
.�˛I0/

1;˛I.1Cˇ/IRC

�
;

(3.15)

where

kU � U1kY WD kU1 � U
1
1 k

.�˛IL1/

2;˛I.1Cˇ;0/ID O� C kU2 � U
C
20k

.�˛IO/.�1�˛IL1/
2;˛I.1Cˇ;0/ID O� I

(ii) For Problem ST,

kU � U1kY 0 C kO�
0
� k1k

.�˛�1I0/

2;˛I.ˇ/IRC C kU
1
1 � U

C
10k

.�˛�1I0/

2;˛I.ˇ/IRC

6 C0
�
kU� � U�0 k2;˛I.ˇ;0/ID� C kb

0
k1;˛I.ˇ/IRC

�
;

(3.16)

where
kU � U1kY 0 WD kU1 � U

1
1 k

.�1�˛IL1/

2;˛I.ˇ;0/ID O� C kU2 � U
C
20k

.�1�˛IO/
2;˛I.ˇ;0/ID O� :

Moreover, solution U is unique in the class such that the left-hand side of estimate (3.15) (for
Problem WT) or (3.16) (for Problem ST) is less than C0". See also Fig. 3.1.

Remark 3.1. In general, the asymptotic limit U11 is not a constant, which indicates that .u1; �/ does
not converge to the background state .uC10; �

C
0 / as y1 ! 1 (along the streamlines); while .u1; �/

converges to the background state as y2 !1 (transversal to the streamlines away from the wedge).
Such an asymptotic behavior is owing to the conservation of the Bernoulli quantity and the entropy
function along the streamlines, which is different from that for potential flows.
Remark 3.2. Estimates (3.15)–(3.16) in Theorem 3.1, together with the Rankine–Hugoniot
conditions (3.6), imply that the coordinate transformation (3.1) is bi-Lipschitz across the shock-front
and has the corresponding regularity in each supersonic or subsonic domain. Therefore, Theorem 3.1
implies Theorem 2.1.
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O y1

y2

T : y1 = σ̂(y2)

Dσ̂

D−

L2 : y1 = k1y2

L1 : y2 = 0

D

FIG. 3.1. Domains D and D O� in Lagrangian coordinates

4. Decomposition of the Euler system

We now use the left eigenvectors to decompose the Euler equations (3.2)–(3.5) into an elliptic
system and two algebraic equations.

Rewrite system (3.2)–(3.5) into the following nondivergence form for U D .u; p; �/>:

A.U /Uy1 C B.U /Uy2 D 0; (4.1)

where

A.U / D

266664
�

1

�u2
1

0 0 �
1

�2u1

1 � p

�u2
1

0 1
�u1

�
p

�2u1

0 1 0 0

u1 u2



.
�1/�
�


p

.
�1/�2

377775 ;

B.U / D

266664
u2
u2
1

�
1
u1

0 0

pu2
u2
1

�
p
u1
�
u2
u1

0

0 0 1 0

0 0 0 0

377775 :

Solving det.�A � B/ D 0 for �, we obtain four eigenvalues:

�1 D �2 D 0;

�3;4 � �˙ D �
c�

c2 � u21

�
cu2 � u1

p
c2 � q2i

�
;
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where q D
q
u21 C u

2
2 < c in the subsonic region. The corresponding left-eigenvectors are

l1 D .0; 0; 0; 1/;

l2 D .�pu1; u1; u2;�1/;

l3;4 D

�� 
p2

.
 � 1/�u1
�
pu1


 � 1

�
�3;4 C


p2u2

.
 � 1/u1
;

�

�
u1 C


p

.
 � 1/�u1

�
�3;4 �


pu2

.
 � 1/u1
;

p


 � 1
� u2�3;4; �3;4

�
:

Then

(i) Multiplying equations (4.1) from the left by l1 leads to the same equation (3.5). This, together
with the Rankine–Hugoniot condition (3.9), implies the Bernoulli law:

1

2
q2 C


p

.
 � 1/�
D B.y2/ (4.2)

in both supersonic and subsonic domains, and across the shock-front. Therefore, B.y2/ can
be computed from the upstream flow U�. If u1 is a small perturbation of uC10, then u1 > 0.
Therefore, we can solve (4.2) for u1:

u1 D

q
2B � 2
p

.
�1/�
p
1C w2

(4.3)

with w WD u2
u1

.
(ii) Multiplying system (4.1) from the left by l2 gives� p

�


�
y1
D 0: (4.4)

(iii) Multiplying equations (4.1) from the left by l3 and separating the real and imaginary parts of
the equation lead to the elliptic system:

DRw C eDIp D 0; (4.5)
DIw � eDRp D 0; (4.6)

where e D
p
c2�q2

c�u2
1

and

DR D @y1 C �R@y2 ; DI D �I@y2 ; �R D �
c2�u2

c2 � u21
; �I D

c�u1
p
c2 � q2

c2 � u21
:

Therefore, equations (3.2)–(3.5) are decomposed into (4.3)–(4.6).
We will follow the steps below to solve this problem:

1. Given a shock-front O� , introduce a linear system (5.2)–(5.3) for iterations;
2. For a given U , find eU by solving the linear system (5.2)–(5.3) with equations (4.3)–(4.4) and the

corresponding boundary conditions;
3. Use solution eU to update the shock-front and obtain Q� , so that we construct a map Q from
.ıU; ı O� 0/ to .ıeU ; ı Q� 0/;

4. Prove the existence of the solution as a fixed point of Q by applying the Schauder fixed point
theorem.
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5. Linear boundary value problem for iterations

For a given shock-front O� , the subsonic domain D O� depends on O� . For the convenience of solving
the problem, we make the following coordinate transformation to change the domain from D O� to D:(

z1 D y1 � ı O�.y2/;

z2 D y2;
(5.1)

where ı O�.y2/ D O�.y2/ � O�0.y2/. In the z-coordinates, U.y/ becomes U O� .z/, depending on O� .
When there is no ambiguity, we may omit the subscript and still denote U O� .z/ by U.z/. However,
the upstream flow U� involves an unknown variable explicitly depending on O� :

U�
O� .z/ D U

�.z1 C ı O�.z2/; z2/;

where U� is the given upstream flow in the y-coordinates. Hence, equations (4.5)–(4.6) become the
following equations in the z-coordinates: eDRw C eeDIp D 0; (5.2)eDIw � eeDRp D 0; (5.3)

where eDR D .1 � ı O�
0�R/@z1 C �R@z2 ;

eDI D �I .�ı O� 0@z1 C @z2/:
Using system (5.2)–(5.3) to solve for .pz1 ; pz2/ yields the linear system for iterations:

.ı Qp/z1 D
�R � ı O�

0.�2R C �
2
I /

e�I
.ı Qw/z1 C

�2R C �
2
I

e�I
.ı Qw/z2 ; (5.4)

.ı Qp/z2 D �
.1 � ı O� 0�R/

2 C .ı O� 0�I /
2

e�I
.ı Qw/z1 �

�R � ı O�
0.�2R C �

2
I /

e�I
.ı Qw/z2 : (5.5)

In the z-coordinates, the Rankine–Hugoniot conditions (3.6)–(3.9) keep the same form, except that
O� 0.y2/ is replaced by O� 0.z2/ and U� is replaced by U�

O�
along line L2. Among the four Rankine–

Hugoniot conditions, (3.9) is used in the Bernoulli law. From condition (3.8), we have

O� 0.z2/ D
Œu1w�

Œp�
.k1z2; z2/; (5.6)

which will be used to update the shock-front later. Now, because of (4.3), we can use NU D .w; p; �/
as the unknown variables along L2. Using (5.6) to eliminate O� 0 in conditions (3.6)–(3.7) gives

G1.U
�

O� ;
NU/ WD Œp�

h 1

�u1

i
C Œw�Œu1w� D 0; (5.7)

G2.U
�

O� ;
NU/ WD Œp�

h
u1 C

p

�u1

i
C Œpw�Œu1w� D 0: (5.8)

We linearize the conditions above as

r NUGi .U
�
0 ;
NUC0 / � ı

eNU D r NUGi .U�0 ; NUC0 / � ı NU �Gi .U�O� ; NU/; (5.9)
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O

w = u2

u1

p

T

p0

H

S

FIG. 5.1. The shock polar in the .w;p/-variables

denoted by
bi1ı Qw C bi2ı Qp C bi3ı Q� D gi .U

�

O� ;
NU/; i D 1; 2; (5.10)

where

.bi1; bi2; bi3/ WD r NUGi .U
�
0 ;
NUC0 /; (5.11)

gi .U
�

O� ;
NU/ WD r NUGi .U

�
0 ;
NUC0 / � ı

NU �Gi .U
�

O� ;
NU/: (5.12)

Using the two conditions (5.10), for i D 1; 2, to eliminate ı Q� leads to

.b11b23 � b21b13/ı Qw C .b12b23 � b22b13/ı Qp D b23g1 � b13g2: (5.13)

A direct calculation shows

b11b23 � b21b13 D .�u
�
20/Œp0�

�

pC0

.
 � 1/.�C0 /
2uC10

C
p�0
u�10

� 1

.�C0 /
2
C


pC0

.
 � 1/.�C0 /
3.uC10/

2

��
> 0:

Therefore, condition (5.13) becomes

ı Qw C b1ı Qp D g3; (5.14)

where

b1 D
b12b23 � b22b13

b11b23 � b21b13
; g3 D

b23g1 � b13g2

b11b23 � b21b13
: (5.15)

Remark 5.1. The shock polar is a one-parameter curve determined by the Rankine–Hugoniot
conditions. If p is used as the parameter, by equation (5.14), we obtain that ıw D �b1ıpCg3.ıp/,
which shows that �b1ıp is the linear term and g3.ıp/ is the higher order term. From Fig. 5.1, we
know that w.p/ is decreasing in p on arc TH and increasing on TS . Therefore, it is easy to see that
b1 > 0 corresponds to the state on arc TH , b1 < 0 to TS , and b1 D 0 at the tangent point T .
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We compute

b13 D �Œp0�
� pC0

.�C0 /
2uC10

C

pC0

.
 � 1/.�C0 /
3.uC10/

3

�
< 0:

Thus condition (5.10) for i D 1 can be rewritten as

ı Q� D g4 � b2ı Qw � b3ı Qp; (5.16)

where g4 D g1
b13
; b2 D

b11
b13

, and b3 D b12
b13

.
We notice that conditions (5.14)–(5.16) are equivalent to conditions (5.10) for i D 1; 2.

6. Key elliptic estimates

Consider the elliptic equation
.aij vzi /zj D 0 in D; (6.1)

with boundary conditions:

vjL1 D g5.z1/; (6.2)
Dv

D�

ˇ̌̌̌
L2

� rv � �jL2 D g6.z2/; (6.3)

where D is the unbounded triangular domain with two boundaries L1 and L2 defined by (3.11)–
(3.13), and � D .�1; �2/ is a constant vector with j�j D 1. Let !0 2 .0; �2 / be the angle between
L1 and L2, and let �n D � � .� sin!0; cos!0/ and �t D � � .cos!0; sin!0/ be the normal and
tangent components of �, respectively. Note that .� sin!0; cos!0/ is the outer normal to L2, and
.cos!0; sin!0/ is tangent to L2 directed away from the corner on domain D. We assume that �n >
0.

Lemma 6.1 Consider the boundary value problem (6.1)–(6.3).

(i) When �t < 0, there exist suitably small ˛; ˇ 2 .0; 1/, depending only on � and !0 2 .0; �2 /,
such that, if

kaij � ıij k
.�˛IL1/
1;˛I.0;1Cˇ/ID 6 ı (6.4)

for a suitably small constant ı > 0 depending only on �; !0; ˛, and ˇ, and

ıij D

(
1 if i D j;

0 if i ¤ j;

g5 2 C
1;˛I.1Cˇ/

.�˛I0/
.RC/, and g6 2 C

1;˛I.2Cˇ/

.1�˛I0/
.RC/, then there exists a unique solution v 2

C
2;˛I.1Cˇ;0/

.�˛IO/.�1�˛IL1/
.D/ of problem (6.1)–(6.3). Furthermore, there exists a constant C > 0,

depending only on �; !0; ˛, and ˇ, such that the following estimate holds:

kvk
.�˛IO/.�1�˛IL1/
2;˛I.1Cˇ;0/ID 6 C

�
kg5k

.�˛I0/

1;˛I.1Cˇ/IRC C kg6k
.1�˛I0/

1;˛I.2Cˇ/IRC

�
: (6.5)
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(ii) When �t > 0, there exist suitably small ˛; ˇ 2 .0; 1/, depending only on � and !0 2 .0; �2 /,
such that, if

kaij � ıij k1;˛I.0;ˇ/ID 6 ı (6.6)

for a suitably small constant ı > 0 depending only on �; !0; ˛, and ˇ, g5 2 C
2;˛I.ˇ/

.�1�˛I0/
.RC/,

and g6 2 C
1;˛I.1Cˇ/

.�˛I0/
.RC/, then there exists a unique solution v 2 C 2;˛I.ˇ/

.�1�˛IO/.D/ satisfying
the following estimate:

kvk
.�1�˛IO/
2;˛I.ˇ/ID 6 C

�
kg5k

.�1�˛I0/

2;˛I.ˇ/IRC C kg6k
.�˛I0/

1;˛I.1Cˇ/IRC

�
; (6.7)

where C > 0 is a constant, depending only on �; !0; ˛, and ˇ.

In the following estimates, all constants C;Ci ; ci , etc. are generic positive constants depending
only on the background states U�0 and UC0 (or � and !0 in Lemma 6.1), ˛, and ˇ.

6.1 C 0-estimates

We first prove part .i/ of Lemma 6.1.
We truncate domain D by line LR D fz W z1 D Rg, R > 2k1, into a triangle DR D fz W 0 <

k1z2 < z1 < Rg and prescribe the following boundary condition:

vjLR D g5.R/: (6.8)

Since DR is a bounded domain, we can start with a Neumann condition on L2 and Dirichlet
conditions on L1 and LR, and then use the continuity method to prove that there exists a unique
solution vR 2 C 0.DR/

T
C 2;˛.DR/ (cf. Theorem 1 in [24]). The process is standard, based on the

apriori estimates for vR. We will focus on obtaining the desired estimates of vR, independent of R.
Denote

M WD kg5k
.�˛I0/

1;˛I.1Cˇ/IRC C kg6k
.1�˛I0/

1;˛I.2Cˇ/IRC :

The C 0-estimates consist of two parts – corner estimates and decay estimates.

Corner estimates. Let NvR.z/ WD vR.z/ � g5.0/. Assume M > 0 (otherwise, the
maximum principle applied to the zero boundary conditions implies a trivial solution), and set
N� WD .˛ C �/� C �0. Define a comparison function:

v1 D CM
�
r˛ sin N� C z˛2

�
;

where .r; �/ are the polar coordinates. Choose �; �0 > 0 suitably small, so that .˛C�/!0C�0 < �
2

.
Now we estimate .aij .v1/zi /zj in the following steps. First,

�v1 D CM
�
.˛2 � .˛ C �/2/r˛�2 sin N� C ˛.˛ � 1/z˛�22

�
6 �Cc1Mr˛�2

�
1C .sin �/˛�2

�
:

Condition (6.4) implies that

j.aij � ıij /@ij v1j 6 CMC1ır
˛�2.sin �/˛�2:
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Also,

.aij /zj D O.ı/
�

max.z2; 1/
��2�ˇ �min.z2; 1/

�˛�1
D O.ı/

�
max.z2; 1/

��˛�ˇ�1�max.z2; 1/min.z2; 1/
�˛�1

D O.ı/
�

max.z2; 1/
��˛�ˇ�1

z˛�12

D O.ı/.z2 C 1/
�˛�ˇ�1r˛�1.sin �/˛�1

D O.ı/r�1.sin �/�1:

This gives rise to the following estimate:

j.aij /zj .v1/zi j D O.ı/Mr�1.sin �/�1
�
r˛�1 C z˛�12

�
6 C2Mır˛�2.sin �/˛�2:

The estimate above yields�
aij .v1/zi

�
zj
D
�
�C .aij � ıij /@

2
zizj

�
v1 C .aij /zj .v1/zi 6 0;

if ı is chosen sufficiently small.
On the boundaries, we compute

Dv1

D�

ˇ̌̌̌
L2

D CMr˛�1
�
�n.˛ C �/ cos N� C �t˛ sin N� C ˛.sin �/˛�1.�t sin � C �n cos �/

�ˇ̌
�D!0

> Cc2Mr˛�1 .by choosing a suitably small ˛/
> g6 .by choosing a suitably large C/;

v1jL1 D CMz˛1 > g5.z1/ � g5.0/;

v1jLR > g5.R/ � g5.0/:

Therefore, by the comparison principle, we conclude

NvR 6 v1:

By adding a negative sign to v1, we obtain that NvR > �v1. Thus, we have

j NvR.z/j 6 CM jzj˛ for any z 2 DR; (6.9)

jvR.z/j 6 CM.1C jzj˛/ for any z 2 DR: (6.10)

In particular, for z 2 D2k1 , we have
jvR.z/j 6 CM: (6.11)

Decay estimates. Now we estimate the decay rate of vR in DRnDk1 . Denote N� WD .1CˇC �/�C
�0, and let

v2.z/ WDMr�1�ˇ
�
C3 sin N� C C4.sin �/˛

�
:
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For z 2 DRnDk1 , we calculate

�v2.z/ DMr�3�ˇ
n
C3
�
.1C ˇ/2 � .1C ˇ C �/2

�
sin N�

C C4
�
˛.˛ � 1/.sin �/˛�2 C

�
.ˇ C 1/2 � ˛2

�
.sin �/˛

�o
6 �CMr�3�ˇ .sin �/˛�2

by adjusting C3
C4

suitably large. Then

j.aij /zj .v2/zi j D O.ı/r
�1.sin �/�1r�ˇ�2.sin �/˛�1 6 C5ır

�ˇ�3.sin �/˛�2

implies that �
aij .v2/zi

�
zj

6 0

for a sufficiently small ı.
Moreover, using �n > 0, �t < 0, and N� 2 .0; �

2
/, we have

Dv2

D�

ˇ̌̌̌
L2

DMr�2�ˇ
n
C3
�
�n.1C ˇ C �/ cos N� � �t .1C ˇ/ sin N�

�
C C4

�
�n˛.sin �/˛�1 cos � � �t .1C ˇ/.sin �/˛

�oˇ̌̌
�D!0

> CMr�2�ˇ .for large C3 and C4/
> g6

and
v2jL1[LR[Lk1

> vRjL1[LR[Lk1
:

By the comparison principle, we conclude

jvR.z/j 6 CM jzj�1�ˇ for z 2 DRnDk1 ; (6.12)

which yields the following C 0-estimate:

kvRk0;0I.1Cˇ;0/IDR 6 CM: (6.13)

6.2 C 1;˛-estimates

Since we will let R approach to1 eventually, the estimates in DR
2 will be sufficient.

Our estimates are based on the standard Schauder interior or boundary estimates in the discs
with appropriate scalings; cf. Gilbarg-Trudinger [21]. On the other hand, we have different scalings
for the corner and away from the corner.

Corner estimates. First, we focus on the estimates near corner O. For any point z0 2 Dk1 with
polar coordinates .r0; �0/, we divide the situation into three cases: !0

4
6 �0 6 3!0

4
, 3!0
4
< �0 < !0,

and 0 < �0 < !0
4

.
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6.2.1 Case 1: !0
4

6 �0 6 3!0
4

. Let Nr D r0
4

sin.!0
4
/ and Bn Nr D Bn Nr .z0/ for n 2 N. We rescale

Bn Nr into Bn WD Bn.O/ by the coordinate transformation:

y D
z � z0

Nr
:

Let Qv.y/ D vR.z0 C Nry/ and Ov.y/ D Qv.y/ � g5.0/. By the C 0-estimate near the corner, we haveˇ̌
Ov.y/

ˇ̌
6 CM Nr˛:

Equation (6.1) becomes
. Qaij Ovyi /yj D 0;

where Qaij .y/ D aij .z0 C Nry/. Since Nr 6
q
1C k21 , it is easy to see that

Œ Qaij �0;˛IB2 D Nr
˛Œaij �0;˛IB2Nr 6 Cı;

k Qaij k0;˛IB2 6 �;

Qaij .y/�i�j > �j�j2 for y 2 B2

for a suitably small ı, where �;� > 0 are constants depending only on !0; �; ˛, and ˇ.
We apply the Schauder interior estimate (cf. Theorem 8.32 in [21]) to obtain

k Ovk1;˛IB1 6 Ck Ovk0;0IB2 6 CM Nr˛:

Let ˝ be a domain, let u be a function defined in ˝, and set d WD diam˝. We define the
following norm k � k0:

kuk0kI˝ D

kX
jD0

d j Œu�j;0I˝ ;

kuk0k;˛I˝ D kuk
0
kI˝ C d

kC˛Œu�k;˛I˝ :

Then we obtain the estimate for NvR WD vR � g5.0/:

k NvRk
0
1;˛IBNr

6 CM Nr˛;

which implies
kvRk

.�˛IO/
1;˛IBNr

6 CM: (6.14)

Case 2: 3!0
4
< �0 < !0. Let Nr D r0 sin.!0

4
/; Bn Nr D Bn Nr .z0/; BCn Nr D Bn Nr\D, and T D B2 Nr\L2.

We use the same scaling as in Case 1. Then the boundary estimates for the Poisson equation with
the oblique derivative conditions (see Theorem 6.26 in [21]), followed by the technique of freezing
the coefficients (cf. Lemma 6.29 in [21]), imply that

k NvRk
0

1;˛IB
C

Nr

6 C
�
k NvRk0;0IBC

2Nr

C Nrkg6k
0
0;˛IT

�
6 CM Nr˛: (6.15)
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Case 3: 0 < �0 <
!0
4

. Now Nr and BCn Nr are defined in the same fashion as in Case 2, while
T D B2 Nr \ L1. The Schauder boundary estimates for the Dirichlet conditions give rise to the
C 1;˛-estimates near boundary L1 (cf. Corollary 8.36 in [21]):

k NvRk
0

1;˛IB
C

Nr

6 C
�
k NvRk0;0IBC

2Nr

C kg5 � g5.0/k
0
1;˛IT

�
6 CM Nr˛: (6.16)

Therefore, estimates (6.14)–(6.16) in the cases above give the desired corner estimate:

kvRk
.�˛IO/
1;˛IDk1

6 CM: (6.17)

Decay estimates. Now we consider the domain away from the corner: D� WD DR
2 nDk1 . The

estimates below follow the similar way to the corner estimates, but with a different scaling.
For any z0 D .z01 ; z

0
2/ 2 D�, set �0 D 1

2

q
1Ck2

1

. Then we consider two cases: z02 < �0 and

z02 > �0.

Case 1: z02 < �0. Set Bn D Bn�0.z
0/, BCn D Bn\D, and T D B2\L1. Similarly, the Schauder

boundary estimate yields

kvRk
0

1;˛IB
C

1

6 C
�
kvRk0;0IBC

2

C kg5k
0
1;˛IT

�
6 CM jz0j�ˇ�1; (6.18)

by using (6.12).

Case 2: z02 > �0. Set Nr D z0
2

2
; Bn Nr D Bn Nr .z0/, BCn Nr D Bn Nr \ D, and T D B2 Nr \ L2. Similar

to the C 0-estimates away from the corner in �6.1, we rescale to the unit disc by the coordinate
transformation z D z0 C Nry and then do either the Schauder boundary or the interior estimates for
Qv.y/ D vR.z0 C Nry/. Since

Œ Qaij �0;˛IBC
2

D Nr˛Œaij �0;˛IBC
2Nr

6 C Nr�ˇ�1Œaij �0;˛I.0;1Cˇ/IBC
2Nr

6 Cı;

we obtain the following estimate:

k Qvk
1;˛IB

C

1

6 C
�
k Qvk

0;0IB
C

2

C k Qg6k0;˛I QT
�
;

where Qg6 and QT are the rescaled function of g6 and the rescaled boundary of T , respectively.
Scaling back to BC

Nr leads to

kvRk
0

1;˛IB
C

Nr

6 C
�
kvRk0;0IBC

2Nr

C Nrkg6k
0
0;˛IT

�
6 CM jz0j�ˇ�1: (6.19)

Estimates (6.18)–(6.19) give rise to the C 1;˛-estimate in D�:

kvRk1;˛I.1Cˇ;0/ID� 6 CM: (6.20)

Combining estimates (6.17) in Dk1 with estimate (6.20) in D� renders the following C 1;˛-estimate
in DR

2 :
kvRk

.�˛IO/

1;˛I.1Cˇ;0/ID
R
2

6 CM: (6.21)
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6.3 C 2;˛-estimates

For the C 2;˛-estimates, we rewrite equation (6.1) into the following non-divergence form:

aij vzizj C .aij /zj vzi D 0: (6.22)

Following the same argument as the C 1;˛-estimates in �6.2, we let Nr D z0
2

4
; Bn Nr D Bn Nr .z0/, and

BCn Nr D Bn Nr \ D. For z02 > 1, we follow the same procedure as in the C 1;˛-estimates to conclude

kvRk
0

2;˛IB
C

Nr

6 C
�
kvRk0;0IBC

2Nr

C Nrkg6k
0
1;˛IT

�
6 CM jz0j�ˇ�1: (6.23)

To obtain the estimates for z02 < 1, we set

Nz0 D .z01 ;
z02
4
/;

Nv.z/ D vR.z/ � vR.Nz0/ � rvR.Nz0/ � .z � Nz0/:

For any z 2 B2 Nr ,
j Nv.z/j 6 C Nr1C˛ŒrvR�0;˛IB3Nr : (6.24)

When z02 < 1 and z01 > k1, the Schauder interior estimate, together with (6.24) and the C 1;˛-
estimate (6.21), leads to

k Nvk02;˛IBNr 6 Ck Nvk0;0IB2Nr 6 CM.z02/
1C˛: (6.25)

Finally, for z0 2 Dk1 , by the corner estimate (6.17),

ŒrvR�0;˛IB3Nr 6 CM jz0j�1:

Therefore, we have
k Nvk02;˛IBNr 6 Ck Nvk0;0IB2Nr 6 CM jz0j�1.z02/

1C˛: (6.26)

Estimates (6.23) and (6.25)–(6.26) imply

kvRk
.�˛IO/.�1�˛IL1/

2;˛I.1Cˇ;0/ID
R
4

6 CM: (6.27)

Taking R D n, we obtain a sequence fvngn2N. We can choose a proper subsequence fvni gi2N such
that fvni g converges to v in C 2;˛

0I.1Cˇ/

.�˛0IO/.�1�˛0IL1/
.D

ni
4 / for all i 2 N, where 0 < ˛0 < ˛. Therefore,

the limit function v is a solution with estimate (6.5).

6.4 Uniqueness of the solution

Suppose that v; Nv 2 C 2;˛I.1Cˇ;0/
.�˛IO/.�1�˛IL1/

.D/ both are the solutions for problem (6.1)–(6.3). Then Qv WD
v � Nv is also a solution of (6.1) with g5 and g6 vanishing in (6.2) and (6.3), respectively. Qv 2
C
2;˛I.1Cˇ;0/

.�˛IO/.�1�˛IL1/
.D/ implies that j Qv.z/j decays as jzj ! 1. For any small " > 0, there existsR > 0

such that j Qv.z/j < " on LR. Thus, by applying the maximum principle, we see that k Qvk0;0IDR 6 ".
We know that Qv � 0 in D as "! 0.
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6.5 Proof of Part (ii) of Lemma 6.1

The procedure of proving Part (ii) is primarily parallel to that of Part (i), except for the different
regularity at the corner and decay rate due to the opposite sign of �t . For the C 1;˛-regularity at
corner O, we can estimate Nv D vR.z/ � vR.0; 0/ � a � z, where a D .a1; a2/ is solved from the
equations: (

a1 D g
0
5.0/;

a � � D g6.0/:

Since �n > 0 and �t > 0 imply that �2 > 0, the equations above are uniquely solvable for a. Once
we prove that vR is C 1;˛ up to corner O, we can see that a D rvR.0; 0/.

We use
v3 DMr1C˛

�
C5 sin..1C ˛ C �/� C �0/C C6.sin �/˛

�
to control Nv near corner O. In fact, denoting N� WD .1C ˛ C �/� C �0, we have

�v3 D C5M
�
.1C ˛/2 � .1C ˛ C �/2

�
r˛�1 sin N�

C C6Mr˛�1
�
˛.˛ � 1/.sin �/˛�2 C .2˛ C 1/.sin �/˛

�
6 �C5c3Mr˛�1.sin �/˛�2

by choosing C5
C6

large enough. Then we compute

j.aij � ıij /@ij v3j 6 CMC5ır
˛�1.sin �/˛�2;

j.aij /zj .v3/zi j D O.ı/M.z2 C 1/
�ˇ�1r˛.sin �/˛�1 6 CMır˛�1.sin �/˛�2:

The estimates above yield

.aij .v3/zi /zj D
�
�C .a

'
ij � ıij /@

2
zizj

�
v3 C .a

'
ij /zj .v3/zi 6 0

for sufficiently small ı.
On the boundaries, we use that �n > 0, �t > 0, and N� 2 .0; �

2
/ to obtain

Dv3

D�

ˇ̌̌̌
L2

DMr˛
n
C5.�n.˛ C � C 1/ cos N� C �t .1C ˛/ sin N�/

C C6 .sin �/˛�1
�
�t .1C ˛/ sin � C �n˛ cos �

�oˇ̌̌
�D!0

> C5c4Mr˛

> g6 � g6.0/ .by choosing suitably large C5/;

v3jL1 D C5Mz1C˛1 sin �0 > g5.z1/ � g5.0/ � g
0
5.0/z1;

v3jLR > g5.R/ � g5.0/ � g
0
5.0/R:

Thus, by the comparison principle, we conclude

j Nv.z/j 6 CM jzj1C˛:
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On the other hand, the fact that �t > 0 results in the decay rate r�ˇ , which is slower than Part (i)
(�t < 0). This can be achieved by setting

v4 D CMr�ˇ
�

sin..ˇ C �/� C �0/C .sin �/˛
�
:

In the same way as in Part (i), we can prove that v4 is a supersolution of (6.22). What is different
from Part (i) is that, for �t > 0, we require ˇ small to guarantee the positivity of Dv4

D�
on L2. In fact,

we have

Dv4

D�

ˇ̌̌̌
L2

D CMr�1�ˇ
˚
�n
�
.ˇ C �/ cos..ˇ C �/!0 C �0/C ˛.sin!0/˛�1 cos!0

�
� �tˇ

�
sin..ˇ C �/!0 C �0/C .sin!0/˛

�	
;

which is greater than g6 if ˇ is small and C is large. After we obtain the C 0-estimate, we apply the
standard Schauder estimates with proper scalings to achieve estimate (6.7) in Part (ii).

7. Construction of the iteration map Q

We first focus on Problem WT.
For a given upstream flow U� and b in the slip condition (2.5) satisfying

kU� � U�0 k2;˛I.1Cˇ;0/ID� C kb
0
k
.�˛I0/

1;˛I.1Cˇ/IRC 6 ";

we define a map Q from ˙C0" to itself, provided that C0 and " are chosen properly, where ˙C0" is
given as follows:

˙ �
1 WD

n
v W kvk

.�˛IL1/
2;˛I.0;1Cˇ/ID C kvz1k

.1�˛IL1/
1;˛I.1Cˇ;1/ID 6 �

o
;

˙ �
2 WD

n
v W kvk

.�˛IO/.�1�˛IL1/
2;˛I.1Cˇ;0/ID 6 �

o
;

˙ �
3 WD

n
v W kvk

.�˛I0/

2;˛I.1Cˇ/IRC 6 �
o
;

˙ �
WD ˙ �

1 �˙
�
1 �˙

�
2 �˙

�
2 �˙

�
3 :

(7.1)

For notational convenience, we use k �k˙i to denote the norm for˙ �
i . The norm k �k˙ is understood

as the summation of the norms of all the components. Given V D .ıu1; ı�; ıw; ıp; ı O�
0/ 2 ˙C0",

we first solve equations (5.4)–(5.5) with the slip condition ı QwjL1 D b
0 and the boundary condition

(5.14) on L2. Once we obtain .ı Qw; ı Qp/, we use condition (5.16) on L2 and equation (4.4) to solve
for ı Q�. Then, by (4.3), we can compute ı Qu1. From equation (5.6), we update the shock function ı Q� .
Thus, we can define Q.V / � eV D .ı Qu1; ı Q�; ı Qw; ı Qp; ı Q� 0/.
7.1 Solve for ı Qw

We perform @
@z2

(5.4) � @
@z1

(5.5) to eliminate ı Qp and obtain�
aij ı Qwzi

�
zj
D 0; (7.2)
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where

a11 D
.1 � ı O� 0�R/

2 C .ı O� 0�I /
2

e�I
; a12 D a21 D

�R � ı O�
0.�2R C �

2
I /

e�I
; a22 D

�2R C �
2
I

e�I
:

In order to meet condition (6.4) in Lemma 6.1, we apply the following coordinate transformation:8̂<̂
:
Nz1 D

q
e0�0I z1;

Nz2 D

r
e0

�0
I

z2;

where .e0; �0I / are .e; �I / evaluated at the background state UC0 . Thus, equation (7.2) becomes�
Naij ı QNw Nzi

�
Nzj
D 0; (7.3)

where

Na11.Nz/ D e0�0Ia11.

s
1

e0�0I
Nz1;

s
�0I
e0
Nz2/; Na22.Nz/ D

e0

�0I
a22.

s
1

e0�0I
Nz1;

s
�0I
e0
Nz2/;

Na12.Nz/ D Na21.Nz/ D e0a12.

s
1

e0�0I
Nz1;

s
�0I
e0
Nz2/; ı QNw.Nz/ D ı Qw.

s
1

e0�0I
Nz1;

s
�0I
e0
Nz2/:

The boundary, L2, becomes NL2 W Nz1 D k2 Nz2 for k2 D k1�0I . Condition (5.14) becomes

ı QNw C b1ı QNp D Ng3 (7.4)

in the Nz-coordinates, where Ng3 is g3 rescaled in the Nz-coordinates. Differentiating (7.4) along NL2
and using equations (5.4)–(5.5) to eliminate the ı QNp terms give rise to�

k2 �
b1

e0
. Na11 � k2 Na12/

�
.ı QNw/ Nz1 C

�
1C

b1

e0
.k2 Na22 � Na12/

�
.ı QNw/ Nz2 D Ng

0
3: (7.5)

Slightly modify (7.5) into
�1.ı QNw/ Nz1 C �2.ı

QNw/ Nz2 D Ng7; (7.6)

where

�1 D k2 �
b1

e0
; �2 D 1C

b1

e0
k2;

Ng7 D Ng
0
3 C

b1

e0

�
. Na11 � 1/ � k2 Na12

�
. Nw/ Nz1 �

b1

e0

�
k2. Na22 � 1/ � Na12

�
. Nw/ Nz2 :

Conditions (7.5) and (7.6) are equivalent when Qw D w, i.e., when V D .ıu1; ı�; ıw; ıp; ı O�
0/ is a

fixed point of Q. For Problem WT, b1 < 0 (see Remark 5.1). Then we normalize � D .�1; �2/ into
� D �

j�j
and compute

�n D
�b1q

.e0/2 C b21

> 0; �t D
�e0q

.e0/2 C b21

< 0:
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Moreover, we have
k Naij � ıij k

.�˛IL1/
1;˛I.0;1Cˇ/ID 6 CC0" 6 ı

for sufficiently small ", so that condition (6.4) is satisfied. Therefore, applying part .i/ of Lemma
6.1 and scaling back to the z-coordinates, we have

kı Qwk
.�˛IO/.�1�˛IL1/
2;˛I.1Cˇ;0/ID 6 C

�
kb0k

.�˛I0/

1;˛I.1Cˇ/IRC C kg7k
.1�˛I0/

1;˛I.2Cˇ/IRC

�
; (7.7)

where g7 is Ng7 scaled back in the z-coordinates. We know that

kg7k
.1�˛I0/

1;˛I.2Cˇ/IRC 6 C
� X
iD1;2

kgik
.�˛I0/

2;˛I.1Cˇ/IRC C kV k
2
˙

�
: (7.8)

Since the Rankine–Hugoniot conditions (5.7)–(5.8) hold at the background states, we have

Gi .U
�
0 ;
NUC0 / D 0; i D 1; 2:

Therefore, gi defined by (5.12) can be rewritten as:

gi D r NUGi .U
�
0 ;
NUC0 / � ı

NU �Gi .U
�
0 ;
NU/CGi .U

�
0 ;
NUC0 /CGi .U

�
0 ;
NU/ �Gi .U

�

O� ;
NU/;

which gives rise to the following estimates:

kgik
.�˛I0/

2;˛I.1Cˇ/IRC 6 C
�
kV k2˙ C kıU

�

O� k2;˛I.1Cˇ;0/ID�
�

6 C
�
kV k2˙ C kıU

�
k2;˛I.1Cˇ;0/ID� C kı O�

0
k˙3krU

�
k1;˛I.2Cˇ;0/ID�

�
: (7.9)

Combining (7.8) with (7.9), estimate (7.7) becomes

kı Qwk˙2 6 C
�
1C C 20 "C C0"

�
":

Choosing C0 > 4C and " < 1

C2
0

, we have

kı Qwk˙2 6 3C" < C0"; (7.10)

which implies that ı Qw 2 ˙C0"
2 .

7.2 Higher decay rate for .ı Qw/z1

In order to estimate the C 0–norm of ı Qp in the next section, we need an extra decay rate for .ı Qw/z1
to control the logarithmic growth in z2 (cf. the argument from (7.19) to (7.20)).

Differentiating (7.2) with respect to z1 yields�
aij .ı Qwz1/zi

�
zj
D �

�
.aij /z1.ı Qw/zi

�
zj
: (7.11)

In domain DRnDk1 , we solve the equation:�
aijuzi

�
zj
D �

�
.aij /z1.ı Qw/zi

�
zj
DW f; (7.12)
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with the following Dirichlet boundary conditions:

ujL1[L2[Lk1
D .ı Qw/z1 jL1[L2[Lk1

; (7.13)

ujLR D .ı Qw/z1.R; 0/C
�
.ı Qw/z1.R;

R

k1
/ � .ı Qw/z1.R; 0/

�k1
R
z2: (7.14)

Condition (7.14) is artificially prescribed on LR so that the continuity of u at the intersection points
of LR with L1 and L2 is achieved.

Given R, we obtain a solution uR. The estimates of uR follow the same way as in Lemma 6.1.
Once we have the desired a priori estimates, by the continuity method, we also have the existence
of the solution. Therefore, we only need to point out the difference from the a priori estimates in
Lemma 6.1.

Equation (7.12) with conditions (7.13)–(7.14) is a Dirichlet boundary problem with an
inhomogeneous term on the right-hand side. Notice that

f D O."2/jzj�2ˇ�2.z2 C 1/�3
�

min.z2; 1/
�˛�2

;

which implies

jf j 6 C"2jzj�2ˇ�4C˛.sin �/˛�2 6 "r�ˇ�4.sin �/˛�2; (7.15)

provided that ˛ 6 ˇ.
We use the barrier function

v5 D C"r
�ˇ�2

�
sin..ˇ C 2C �/� C �0/C .sin �/˛

�
;

where ˇ; �0; � > 0 are small so that .ˇC2C�/!0C�0 < � . This can be achieved because !0 < �
2

.
It is easy to see that u 6 v5 on the boundary. Following the same computation, we have�

aij .v5/zi
�
zj

6 �C"r�ˇ�4.sin �/˛�2 6 f:

Therefore, we conclude that

juRj 6 C"r�ˇ�2:

With the C 0-estimate above, using the same scaling as in �6, we obtain the estimates in D� WD
DR
2 nDk1 :

kuk
.1�˛IO/.�˛IL1/
1;˛I.2Cˇ;0/ID� 6 C": (7.16)

Choose a subsequence of uR so that, as R ! 1, it converges to a solution u of (7.12) in DnDk1 .
Since both u and .ı Qw/z1 decay in the far field of domain D, the solution of problem (7.12)–(7.14)
is unique. Thus, we conclude thatˇ̌

.ı Qw/z1.z/
ˇ̌
D ju.z/j 6 C"jzj�ˇ�2: (7.17)
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7.3 Solve for ı Qp

To solve for ı Qp, we set the initial data for ı Qp from condition (5.14):

ı Qp D
1

b1
.g3 � ı Qw/ on L2: (7.18)

Using equation (5.5), we integrate in the z2-direction to solve for ı Qp. More precisely, let z0 be any
point in D. Let zI D .zI1 ; z

I
2 / be the intersection point of L2 and the vertical line passing through

z0. By equation (5.5) with initial data (7.18), we can express ı Qp explicitly in the following formula:

ı Qp.z0/ D
1

b1

�
g3.z

I
2 / � ı Qw.z

I /
�
C

Z z0
2

zI
2

�
� a11.ı Qw/z1 � a12.ı Qw/z2

�
.z01 ; s/ds: (7.19)

We first check the decay rate of ı Qp by (7.19). By the definition of g3 in (5.15) and estimate (7.9) for
g1 and g2, together with estimate (7.10) for ı Qw, we haveˇ̌

g3.z
I
2 / � ı Qw.z

I /
ˇ̌

6 C"
ˇ̌
z0
ˇ̌�1�ˇ

:

For the integral term in (7.19), observe that a12 D
�R�ı O�

0.�2
R
C�2

I
/

e�I
, giving jz0j�1�ˇ decay. Then we

use (7.17) and kı Qwk˙2 6 C" to obtainˇ̌̌̌
ˇZ z0

2

zI
2

�
� a11.ı Qw/z1 � a12.ı Qw/z2

�
.z01 ; s/ds

ˇ̌̌̌
ˇ 6 C"jz0j�1�ˇ

Z zI
2

z0
2

jz0j�1 ds 6 C"jz0j�1�ˇ
k1z

0
1

jz0j

6 C"jz0j�1�ˇ :

Therefore, we have
jı Qp.z0/j 6 C"jz0j�1�ˇ : (7.20)

For the corner regularity, for any z0 2 Dk1 , equation (7.19) impliesˇ̌
ı Qp.z0/ � ı Qp.0; 0/

ˇ̌
6 C"jz0j˛; (7.21)

indicating that ı Qp is C ˛ smooth up to corner O. The estimates for the derivatives of ı Qp follow from
the observation below.

Recall that (7.2) is obtained by differentiation @
@z2

(5.4)� @
@z1

(5.5). Notice that ı Qw satisfies (7.2)
and .ı Qw; ı Qp/ satisfies (5.5) in domain D, since ı Qp is solved from (5.5) with initial data (7.18) (see
(7.19) for the expression for ı Qp). Therefore, we obtain @

@z2
.5:4/, i.e.,

@

@z2

�
.ı Qp/z1 � a12.ı Qw/z1 � a22.ı Qw/z2

�
D 0: (7.22)

To recover (5.4), we integrate equation (7.22) along the z2-direction to deduce

.ı Qp/z1 � a12.ı Qw/z1 � a22.ı Qw/z2 D f .z1/; (7.23)

where
f .z1/ D

�
.ı Qp/z1 � a12.ı Qw/z1 � a22.ı Qw/z2

�
.z1;

z1

k1
/:



618 G.-Q. CHEN, J. CHEN AND M. FELDMAN

Notice that condition (7.6) is a modification from (7.5), so that f does not vanish on L2. Using
conditions (5.14) and (7.6), together with the fact that equation (5.5) holds up to boundary L2, we
obtain

f .z1/ D
��a11
k1
�

1

k1e0�
0
I

� a12
�
. Qw � w/z1 �

�
a22 �

�0I
e0
�
a12

k1

�
. Qw � w/z2

�
.z1;

z1

k1
/: (7.24)

Equation (5.4) will be recovered later, when we obtain a fixed point for Q. For now, we can
use equations (5.5) and (7.23) to estimate the derivatives of ı Qp in terms of ı Qw. Thus, together with
estimates (7.20)–(7.21), we see that ı Qp 2 ˙C0"

2 , by choosing large enough C0.

7.4 Solve for .ı Q�; ı Qu1/

We use (5.16) as the initial data on L2 and solve equation (4.4) to obtain ı Q� and directly compute ı Qu1
by (4.3). Since .ı Q�; ı Qu1/ are obtained by the algebraic equations, it is obvious that the smoothness
of .ı Q�; ı Qu1/ is the same as that of .ı Qw; ı Qp/. However, in equations (4.3)–(4.4), both p

�

and B are

conserved, rendering the non-decay of .ı Q�; ı Qu1/ in the z1-direction. On the other hand, .ı Q�; ı Qu1/
have the same decay rate as their initial data on L2 in the z2-direction.

More precisely, for any point z 2 D, let zI be the intersection of L2 and the horizontal line
passing through z. Since p

�

is constant along the z2-direction, we use

Qp

Q�

.z/ D

Qp

Q�

.zI /

to solve for ı Q�:

ı Q�.z/ D
�
Qp.z/
Qp.zI /

� 1



�.zI / � �C0

D

�
Qp.z/
Qp.zI /

� 1

 �
g4.z2/ � b2ı Qw.zI / � b3ı Qp.zI /

�
C

��
Qp.z/
Qp.zI /

� 1



� 1

�
�C0 ;

where Qp D pC0 C ı Qp and Q� D �C0 C ı Q�. From the above expression, we see that jı Q�.z/j 6
C".z2C1/

�ˇ�1. The derivatives of ı Q� also decay with appropriate rate adapted to the corresponding
norms in the z2-direction. Thus, we have

kı Q�k
.�˛IL1/
2;˛I.0;1Cˇ/ID 6 C":

To see that ı Q� 2 ˙C0"
1 , we need to obtain the estimate for the other part in the norm (cf. (7.1)). For

this purpose, we rewrite the expression of ı Q� into the following form:

ı Q�.z/ D A.z2/ Qp.z/
1

 � �C0 : (7.25)

Taking the partial derivative with respect to z1 on (7.25) yields

.ı Q�/z1 D
1



A.z2/ Qp.z/

1

 �1.ı Qp/z1 :

The expression above shows that .ı Q�/z1 and .ı Qp/z1 have the same decay pattern, giving the
following estimate:

k.ı Q�/z1k
.1�˛IL1/
1;˛I.1Cˇ;1/ID 6 C":

The same argument also applies to the decay of ı Qu1. Thus, we conclude that ı Q�; ı Qu1 2 ˙
C0"
1 .
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7.5 Update shock-front

From (5.6), we can update ı Q� 0 by

Q� 0.z2/ D
Œ Qu1 Qw�

Œ Qp�
.k1z2; z2/; (7.26)

where the left state is U�
O�

.
To estimate ı Q� 0, first let

G.U�; U / WD
u1w � u

�
1w
�

p � p�
:

Then equation (7.26) can be written as

Q� 0.z2/ D G.U
�

O� ;
eU/.k1z2; z2/: (7.27)

We know that (7.27) is satisfied for the background states so that

O� 00.z2/ D k1 D G.U
�
0 ; U

C
0 /: (7.28)

Taking the difference between equations (7.27) and (7.28) gives

ı Q� 0.z2/ D G.U
�

O� ;
eU/.k1z2; z2/ �G.U�0 ; UC0 /; (7.29)

which gives rise to the following estimates, similar to (7.9):

kı Q� 0k˙3 6 C
�
kıU�

O� k2;˛I.1Cˇ;0/ID� C kı Qu1k˙1 C k.ı Qw; ı Qp/k˙2
�

6 C
�
kıU�k2;˛I.1Cˇ;0/ID� C kı O�

0
k˙3krU

�
k1;˛I.2Cˇ;0/ID� C "

�
6 C":

Choosing C0 > C , we see that ı Q� 0 2 ˙C0"
3 . Therefore, we construct a map Q from ˙C0" to itself.

7.6 Fixed point of Q

We use the Schauder fixed point theorem to prove the existence of the subsonic solution and the
transonic shock. To fit into the framework of the Schauder fixed point theorem, we define the
following Banach space:

˙ 0 WD
˚
.f1; f2; f3; f4; f5/ W k.f1; f2/k˙ 0

1
C k.f3; f4/k˙ 0

2
C kf5k˙ 0

3
<1

	
;

where k �k˙ 0
i
; i D 1; 2; 3, are the same norms defined in (7.1), except that ˛ is replaced by ˛0, where

0 < ˛0 < ˛. Thus, ˙C0" is a nonempty, convex, and compact subset of ˙ 0, and Q is a map from
˙C0" into itself. Once we can show that Q is continuous, by the Schauder fixed point theorem, there
is a fixed point of Q. To show the continuity of Q, we can use the following compactness argument.

On the contrary, assume that Q is not continuous. Then there exist a sequence fV ngn2N, a
function V 0 in ˙C0", and a constant ı0 > 0 such that V n ! V 0 in ˙ 0, while kQV n �QV 0k˙ 0 >
ı0. Since fQV ng � ˙C0", which is compact in ˙ 0, we can select a subsequence QV nk such that
QV nk ! W 0 2 ˙C0" as k ! 1. Following the iteration process in �7.1–�7.5, we see that
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W 0 D QV 0, which leads to a contradiction. This shows that Q is a continuous map from˙C0" into
itself.

Therefore, by the Schauder fixed point theorem, there exists a fixed point of Q, denoted by
V D .ıu1; ı�; ıw; ıp; ı O�

0/. Thus, U D .uC10 C ıu1; .u
C
10 C ıu1/ıw; �

C
0 C ı�; p

C
0 C ıp/ gives a

subsonic solution, and O� gives the transonic shock-front in the y-coordinates. Therefore, we have
proved the existence of solutions in Part (i) of Theorem 3.1.

8. Uniqueness of the transonic solutions

Let V i D .ıui1; ı�
i ; ıwi ; ıpi ; ı O� i

0
/ 2 ˙C0"; i D 1; 2, be two fixed points of Q. Set

V d D .ıud1 ; ı�
d ; ıwd ; ıpd ; ı O�d

0
/ D V 2 � V 1:

Denote wi scaled in the Nz-coordinates by Nwi , and the rest of the variables are denoted in the same
manner. By the construction of Q, we know that ı Nwi satisfies (7.3) for i D 1; 2. Then taking the
difference of the two equations results in�

Naij . NV
2/.ı Nwd / Nzi

�
Nzj
D �

�
. Naij . NV

2/ � Naij . NV
1//.ıw1/ Nzi

�
Nzj
DW Nf : (8.1)

The inhomogeneous term Nf in (8.1) will result in the lower decay rate for ı Nwd . In definition (7.1),
we replace ˇ with ˇ

2
and denote the new norms by k � kėi ; i D 1; 2; 3.

Set M1 D kV
dkė. If M1 D 0, we see that V 1 D V 2. Now suppose that M1 > 0. Then the

estimates follow the same way as in the proof of Lemma 6.1, except that we need to take care of the
inhomogeneous term Nf .

We first estimate Nf as follows: For jNzj > 1,

j Nf .Nz/j 6 C"kV dkėjNzj�ˇ�1�max. Nz2; 1/
��ˇ2�2�min. Nz2; 1/

�˛�1
6 CM1"jNzj�ˇ�1 Nz˛�22

D CM1"jNzj�ˇC˛�3.sin �/˛�2

6 CM1"jNzj�
ˇ
2�3.sin �/˛�2;

provided that ˛ 6 ˇ
2

. For jNzj < 1,

j Nf .Nz/j 6 CC0"kV
d
kėjNzj�1 Nz˛�12 6 CC0"M1r

˛�2.sin �/˛�1:

Then we use the barrier function v6, similar to v1 in �6.1 for the corner estimates:

v6 D C7M1"
�
r˛ sin..˛ C �/� C �0/C Nz˛2

�
:

Observe that �
Naij . NV

2/.v6/ Nzi
�
Nzj

6 �C7c5M1"r
˛�2.sin �/˛�2 6 Nf ;

when C7 is chosen large enough.
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Since ı Nwd vanishes on L1, then we use (7.5) to obtain

D.ı Nwd /

D�

ˇ̌̌̌
ˇ
NL2

D b4g
d
7 . Nz2/

D b4
d

d Nz2

��
Ng3.U

�

O�2
; NU 2/ � Ng3.U

�

O�1
; NU 1/

�
.k2 Nz2; Nz2/

�
C Ng8. NV

2;rNz Nw
2/ � Ng8. NV

1;rNz Nw
1/;

where

b4 D
e0q

..e0/2 C b21/.k
2
2 C 1/

;

Ng8. NV ;rNz Nw/ D
b1

e0

�
. Na11. NV / � 1/ � k2 Na12. NV /

�
Nw Nz1 �

b1

e0

�
k2. Na22. NV / � 1/ � Na12. NV /

�
Nw Nz2 :

Thus, we have the following estimates for gd7 :

kgd7 k
.1�˛I0/

1;˛I.2Cˇ2 /IRC
6

X
iD1;2

C
�

�gi .U�O�2 ; NU 2/ � gi .U�O�1 ; NU 1/�ˇ̌ NL2

.�˛I0/2;˛I.1Cˇ2 /IRC

C C0"kV
d
kė�

6 C
�
C0"kV

d
kėC kıU�O�2 � ıU�O�1k2;˛I.1Cˇ2 ;0/ID��

6 C
�
C0"kV

d
kėC kıU�k2;˛I.1Cˇ2 ;0/ID�kı O�d 0kė3�

6 CC0"M1;

gd7 . Nz2/ 6 CC0"M1

�
max. Nz2; 1/

��ˇ2�2�min. Nz2; 1/
�˛�1

6 CC0"M1

�
max.r; 1/

��ˇ2�2�min.r; 1/
�˛�1

:

Thus, we conclude

Dv6

D�

ˇ̌̌̌
NL2

> Cc2M1"r
˛�1 > b4g

d
7 . Nz2/ D

D.ı Nwd /

D�

ˇ̌̌̌
ˇ
NL2

:

On the cutoff boundary LR, we know

ı Nwd 6 CC0"R
�ˇ�1 6 CM1"R

˛ 6 v6

for sufficiently large R. Therefore, we can use v6 to bound ı Nwd in DR. For the decay in DRnDk1 ,
we use

v7.Nz/ DM1"r
�
ˇ
2�1

�
C3 sin

��
ˇ
2
C 1C �

�
� C �0

�
C C4.sin �/˛

�
:

The same calculation as in �6.1 shows that�
Naij . NV

2/.v7/ Nzi
�
Nzj

6 �CM1"r
�
ˇ
2�3.sin �/˛�2 6 Nf :
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It is also easy to verify that

Dv7

D�

ˇ̌̌̌
NL2

> CM1"r
�
ˇ
2�2 >

D.ı Nwd /

D�

ˇ̌̌̌
ˇ
NL2

:

We choose R large enough, so that R�
ˇ
2 6 M1. Therefore, we obtain the control on LR:

ı Nwd 6 CC0"R
�ˇ�1 6 CC0M1"R

�
ˇ
2�1 6 v7:

By the comparison principle, we conclude

jı Nwd .Nz/j 6 CM1"jNzj�
ˇ
2�1 for z 2 DRnDk1 :

Once we have the C 0-estimates above, the rest is similar to the procedure as in �6. In the end, we
have

kV dkė 6 C"M1 D C"kV
d
kė:

Choose " sufficiently small, so that C" < 1
2

. We see thatM1 D 0, which contradicts our assumption
that M1 > 0. This completes the proof of the uniqueness of the solution for Problem WT in
Theorem 3.1.

9. Asymptotic behavior of the subsonic solution

The estimate that kV k˙ 6 C0" implies

kıpk
.�˛IO/.�˛�1IL1/
2;˛I.1Cˇ;0/ID 6 C0"; kıwk

.�˛IO/.�˛�1IL1/
2;˛I.1Cˇ;0/ID 6 C0":

This means that p ! pC0 and u2
u1
! 0 at rate jzj�ˇ�1. However, for fixed z2, .u1; �/ does not

converge to .uC10; �
C
0 /, as z1 !1. Observe that, from (7.25), � can be expressed by

�.z/ D A.z2/p.z/
1

 ; (9.1)

where A can be solved from the Rankine–Hugoniot conditions (3.6)–(3.9) when we find the shock
function O� . Then we define the limit for � in the far field:

�1.z2/ D A.z2/.p
C
0 /

1

 : (9.2)

Taking the difference between (9.1) and (9.2) yields

k� � �1k
.�˛IL1/
2;˛I.1Cˇ;0/ID 6 Ckıpk

.�˛IO/.�˛�1IL1/
2;˛I.1Cˇ;0/ID 6 C0":

In the same way, we use (4.3) to obtain the limit for u1:

u11 .z2/ D

s
2B.z2/ �

2
pC0
.
 � 1/�1.z2/

:
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Similarly, we have

ku1 � u
1
1 k

.�˛IL1/
2;˛I.1Cˇ;0/ID 6 C0":

Since ı O� 0 2 ˙
C0"
3 , the coordinate transformation (5.1) has higher regularity than U in the z-

coordinates. Therefore, kV k˙ 6 C0" with the estimates above yields the corresponding estimate
(3.15) in the y-coordinates. Thus, we have proved Part (i) of Theorem 3.1.

The coordinate transformation (3.1) between x and y also has higher regularity than U and O� 0

in the subsonic domain D O� , and is bi-Lipschitz across the shock-front T , thanks to the Rankine–
Hugoniot conditions (3.6). Therefore, estimate (3.15) implies estimate (2.11), so that the proof of
Part (i) of Theorem 2.1 is completed.

10. Key points in solving Problem ST

Based on Part (ii) of Lemma 6.1, we can prove Part (ii) of Theorem 3.1 in the same way as above.
Since most of the proof is parallel to that in Part (i) of Theorem 3.1, we will only point out the
difference from Part (i).

10.1 Estimates for the existence of solutions

The procedure to construct the iteration map is the same as in Part (i) for Problem WT. In �7.2, we
obtain the faster decay rate, r�2�ˇ , for .ı Qw/z1 , compared to the r�1�ˇ decay for ı Qw. For Problem
ST, we can only gain extra ˇ

2
decay rate, i.e., r�

3ˇ
2 decay for .ı Qw/z1 . Specifically, we use

v8 D CMr�
3ˇ
2

�
sin
��
3ˇ
2
C �

�
� C �0

�
C .sin �/˛

�
as the barrier function for .ı Qw/z1 to obtain the following estimate:�

aij .v8/zi
�
zj

6 �C"r�
3ˇ
2 �2.sin �/˛�2:

On the other hand, f in (7.12) satisfies

jf .z/j D O."2/jzj�2ˇ
�

max.z2; 1/
��3�min.z2; 1/

�˛�1
6 C"2r�2ˇ�2C˛.sin �/˛�2

6 "r�
3ˇ
2 �2.sin �/˛�2;

provided that ˛ 6 ˇ
2

, which is the same restriction on ˛ and ˇ as in �8.
There is no difference for the boundary estimates. Thus, we conclude

j.ı Qw/z1 j 6 C"r�
3ˇ
2 :
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With the estimate above and using expression (7.19) for ı Qp, we see that

jı Qp.z0/j 6 jg3.zI2 / � ı Qw.z
I /j C

ˇ̌̌̌
ˇZ z0

2

zI
2

�
� a11.ı Qw/z1 � a12.ı Qw/z2

�
.z01 ; s/ds

ˇ̌̌̌
ˇ

6 C"jz0j�ˇ C C"jz0j�ˇ
Z zI

2

z0
2

jz0j�
ˇ
2 .1C s/�1 ds

6 C"jz0j�ˇ C C"jz0j�ˇ
Z zI

2

0

.1C s/�
ˇ
2�1 ds

6 C"jz0j�ˇ :

10.2 Uniqueness of subsonic solutions

We need to take care of the decay estimate, since the rest is similar to those in �8.
Now Nf in (8.1) can be controlled as follows:

j Nf .Nz/j 6 C"kV dkėjNzj�ˇ �max. Nz2; 1/
��ˇ2�2

6 CM1"jNzj�ˇ . Nz2/
ˇ
2�2

6 CM1"jNzj�
ˇ
2�2.sin �/

ˇ
2�2:

The barrier function

v9 D CM1"r
�
ˇ
2

�
sin
��
ˇ
2
C �

�
� C �0

�
C .sin �/

ˇ
2

�
can be estimated as �

Naij . NV
2/.v9/ Nzi

�
Nzj

6 �CM1"r
�
ˇ
2�2.sin �/

ˇ
2�2 6 Nf :

With similar boundary estimates, we can conclude the uniqueness of the subsonic solution.
Therefore, we have proved that, given a constant transonic flow on arc TH or TS , if the

upstream flow and the wedge boundary are perturbed, then there exist a unique subsonic solution
and transonic shock, which are close to the background constant state and straight shock front.
This shows the stability of the constant transonic flows past wedges. For the constant states on TS ,
the regularity of the subsonic solution near the corner is C ˛ and the decay rate in the far field is
r�ˇ�1. Furthermore, we gain the higher decay rate r�ˇ�2 for the directional derivative along the
streamlines of w D u2

u1
, the direction of the flow. On TH , we obtain the C 1;˛-regularity at the

corner and r�ˇ decay in the far field.
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