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In this article, we consider and analyse a variant of a functional originally introduced in [9, 27] to

approximate the (geometric) planar Steiner problem. This functional depends on a small parameter

" > 0 and resembles the (scalar) Ginzburg-Landau functional from phase transitions. In a first part,

we prove existence and regularity of minimizers for this functional. Then we provide a detailed

analysis of their behavior as " ! 0, showing in particular that sublevel sets Hausdorff converge to

optimal Steiner sets. Applications to the average distance problem and optimal compliance are also

discussed.
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1. Introduction

In its simplest version, the original (planar) Steiner problem consists in finding, for a given collection

of points a0; : : : ; aN 2 R
2, a compact connected set K � R

2 containing all the ai ’s and having

minimal length, see, e.g., [24]. From the geometric analysis point of view, the Steiner problem

can be seen as the one dimensional version of the (unoriented) Plateau problem, which consists in

finding an (unoriented) surface of least area spanning a given boundary. Solutions to the Steiner

problem exist and are usually not unique. However, every solution consists of a finite tree made

of straight segments joining by number of three with 120ı angles. This rigid structure allows one

to reduce the Steiner problem to a discrete problem, but finding an exact solution is known to be

computationally very hard: it belongs to the original list of NP-complete problems proposed by

Karp [25]. And, obviously, the discrete approach is unadapted if one considers a perturbed version

of the problem as it may arise in some models from continuum mechanics. These facts motivate the

c
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development of specific analytic/geometric tools, and more precisely of approximation procedures

that can be numerically implemented.

Concerning minimal boundaries (boundaries of least area), the typical oriented Plateau problem,

such approximations are well known by now, the most common ones being the so-called phase

field approximations. They usually rely on the minimization of an energy functional based on the

van der Waals-Cahn-Hilliard theory for phase transitions (see, e.g., [23, 32, 33]), explaining the

terminology. Applications of phase field methods to unoriented problems are more recent. The

first one might be the Ambrosio-Tortorelli method [3, 4] used to approximate the Mumford-Shah

functional from image segmentation [34]. Nowadays, the Mumford-Shah functional receives a lot

of interest from the materials science community, and the Ambrosio-Tortorelli approximation is, for

instance, heavily used to simulate crack propagation in elastic solids [10, 11]. We may refer to the

monograph [12] for a detailed exposition on approximation methods for free discontinuity problems

and their applications.

For a long time, no phase field methods (for unoriented Plateau type problems) were designed

to include topological constraints such as connectedness. Only recently such a method has been

suggested, first in [27], and then in [9], to approximate the planar Steiner problem and/or related

minimization problems involving the length of connected sets. In [20] the same approach has

been successfully implemented (theoretically and numerically) to approximate the Willmore energy

of connected curves or surfaces. At the time of completion of this paper, two alternative (but

complementary) methods to solve the Steiner problem appeared as preprints [8, 17]. The approach

in [8] relies on the recent reformulation of the classical Steiner problem in terms of rectifiable

1-currents with coefficients in a suitable normed group [29]. The � -convergence result of [17]

resembles in a sense the one in [36] for the branched transport problem. In both papers [8, 17], the

method seems to be restricted to the classical Steiner problem (i.e., with finitely many source points

to connect), which is not the case here.

The main objective of this article is to complement the analysis initiated in [9, 27] in the

following way. Although the � -convergence result of [9, 27] proves that “some approximate

minimization problems” indeed approximate the Steiner problem (or variants), existence of

minimizers for the underlying functionals cannot be proved (at least easily), nor qualitative

properties of “almost” minimizers. This is essentially due to the analytical complexity in the

construction of those functionals. Here we introduce a tiny variant of [9, 27] with great benefits.

In few words, we are able to prove for a modified functional existence and regularity of minimizers,

as well as a more precise description of their behavior in the singular limit. Before going further, let

us describe our results in detail.

Consider a bounded and convex open set ˝0 � R2. Given a nonnegative Borel measurable

function w W ˝0 ! Œ0; 1/, we define the (generalized) geodesic distance between two points

a; b 2 ˝0 relative to the conformal metric w to be

D.wI a; b/ WD inf
� WaÝb

ˆ

�

w dH
1 2 Œ0; C1� ;

where � W a Ý b means that � is a rectifiable curve in ˝0 of finite length connecting a and b (i.e.,

� a Lipschitz image of Œ0; 1� contained in ˝0 running from a to b).

We fix a positive finite measure � supported on ˝0, a base point a0 2 ˝0, and a bounded

smooth open set ˝ � R2 such that ˝0 � ˝ . For a given set of parameters "; �"; ı" 2 .0; 1/, we
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consider the functional F
�
" W H 1.˝/ \ L1.˝/ ! Œ0; C1/ defined by

F �
" .u/ WD "

ˆ

˝

jruj2 dx C
1

4"

ˆ

˝

.u � 1/2 dx C
1

�"

ˆ

˝0

D
�
ı" C u2I a0; x

�
d� ;

where, in the D-term, ı" C u2 denotes the precise representative of the Sobolev function ı" C

u2 2 W 1;1.˝/ \ L1.˝/. In this way, the value of D
�
ı" C u2I a0; x

�
only depends on a0, x,

and the equivalence class of ı" C u2. Moreover, the function x 7! D
�
ı" C u2I a0; x

�
turns out to

be .ı" C kuk2
L1.˝/

/-Lipschitz continuous (see Remark 2.1), so that F
�
" is well defined (or more

precisely, its last term).

We are interested in the minimization problem

min
u21CH 1

0
.˝/\L1.˝/

F �
" .u/ : (1.1)

Our first main result deals with existence and regularity of solutions.

Theorem 1.1 Problem (1.1) admits at least one solution. In addition, any solution u" belongs to

W 1;p.˝/ for every p < 1 (in particular, u" 2 C 0;˛.˝/ for every ˛ 2 .0; 1/), and 0 6 u" 6 1.

Let us mention that the regularity above is essentially sharp in the sense that u" is in general not

Lipschitz continuous globally in ˝ (see Remarks 2.12 & 2.17). In the case where spt � is finite, we

shall see that u" is in fact C 1 away from finitely many C 1;˛-curves connecting a0 to spt � (given

by minimizing geodesics for the distance D
�
ı" C u2

" /).

We now describe the asymptotic behavior of minimizers of F
�
" as " ! 0. For this issue, we

shall assume (for simplicity) that the two parameters �" and ı" satisfy the following relation:

�" �!
"!0

0 and ı" D �ˇ
" for some ˇ 2 .1; 2/ : (1.2)

Provided that H
1.spt �/ < 1, our second main result shows that sublevel sets of minimizers

converge to a solution of the generalized Steiner problem (see [35])

min
n
H

1.K/ W K � R
2 compact and connected, K � fa0g [ spt �

o
: (1.3)

Note that for � D
PN

iD0 ıai
and some distinct points ai 2 ˝0, problem (1.3) coincides with the

classical Steiner problem described previously.

Theorem 1.2 Assume that spt � is not reduced to fa0g and that H
1.spt �/ < 1. Assume also that

(1.2) holds. Let "k # 0 and fukgk2N � 1 C H 1
0 .˝/ be such that

F �
"k

.uk/ D min
1CH 1

0
.˝/

F �
"k

for each k 2 N :

There exist a (not relabeled) subsequence and a compact connected set K� � ˝0 such that

fuk 6 tg ! K� in the Hausdorff sense for every t 2 .0; 1/. In addition, K� solves the Steiner

problem (1.3) relative to fa0g [ spt � , and the following holds:

(i) F
�
"k

.uk/ ! H
1.K�/;

(ii) D
�
ı"k

C u2
k
I a0; x

�
! dist.x; K�/ uniformly on ˝0;
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(iii) uk ! 1 in C 2
loc.˝ n K�/.

In proving this theorem, we make use of the main result in [9, 27] that we now briefly present.

The original functional introduced in [9, 27] is (essentially) eF �
" W 1 C H 1

0 .˝/ \ C 0.˝/ ! Œ0; 1/

given by

eF �
" .u/ WD

8
<̂

:̂
"

ˆ

˝

jruj2 dx C
1

4"

ˆ

˝

.1 � u/2 dx C
1

�"

ˆ

˝0

D.uI a0; x/ d� if 0 6 u 6 1 ;

C1 otherwise :

(1.4)

As explained [9, Section 5.4], the possible lack of lower semicontinuity of eF �
" prevents one to prove

existence of minimizers (at least easily – and existence is still unknown1). The main result of [9, 27]

is of � -convergence nature, and shows the two following facts: (1) if a sequence fv"g satisfies
eF �

" .v"/ D O.1/, then x 7! D.v"I a0; x/ (sub-)converges uniformly as " ! 0 to some function d�,

fd� D 0g is a compact connected set containing fa0g[spt �, and H
1.fd� D 0g/ 6 lim inf"

eF �
" .v"/;

(2) for every compact connected set K containing fa0g [ spt �, there exists a sequence fw"g of

functions of finite eF �
" -energy satisfying lim sup"

eF �
" .w"/ 6 H

1.K/. In particular, if the sequence

fv"g is “almost” minimizing in the sense that eF �
" .v"/� infeF �

" D o.1/, then the set fd� D 0g solves

the Steiner problem (1.3), and eF �
" .v"/ ! H

1.fd� D 0g/.

In conclusion, the main contribution of Theorem 1.2 is the Hausdorff convergence of the

sublevel sets fu" 6 tg, the convergence estimate away from the limiting Steiner set, and the

identification of the limiting function d�. Compare to eF �
" , this is made possible by introducing the

additional parameter ı" and replacing u by u2 in the D-term. The parameter ı", already suggested

in [9], can be seen as an elliptic regularisation term. In turn, the term u2 is the key new ingredient

which allows to get a linear elliptic equation for u" (at least if spt � is finite). A large part of

the arguments used to prove both Theorem 1.1 and Theorem 1.2 rests on this equation and rather

classical linear estimates. As in [9], the convexity of ˝0 is used to recover the Steiner problem in the

whole plane (see the discussion at the beginning of Section 4), and the introduction of the “safety

zone” ˝ n ˝0 (not present in [9]) is just a convenient way to avoid boundary effects, and has no

other importance. Finally, we impose relation (1.2) between �" and ı" for the following reason: on

one hand the condition ı" D o.�"/ is necessary to derive the Steiner problem in the limit; on the

other hand the condition �2
" D o.ı"/ allows us to use [9] in a straightforward way, even if it is

probably unnecessary.

We close this introduction mentioning a possible continuation of our work: the minimization

of a discretized version of F
�
" based on finite P

1-elements for instance. A special attention should

be devoted on how to handle the D-term in such discrete framework. Using the material of this

paper, one should be able to determine explicit estimates on the grid size in terms of " to ensure the

convergence of discrete minimizers to Steiner sets, in the spirit of Theorem 1.2.

This paper is organized as follows. In Section 2, we consider the case where � has a finite

support. We start establishing a priori estimates leading to existence and (as a byproduct) regularity

of minimizers (see Corollary 2.14). The case of a general measure � is treated in Section 3

through an approximation argument using finitely supported measures. In Subsection 3.2, we apply

our existence theory for F
�
" to prove existence of minimizers for functionals introduced in [9]

1 We learned from Dorin Bucur that the recent preprint [7] contains results solving some lower semicontinuity issues in

a similar direction.
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(and accordingly modified here) to approximate the average distance and compliance problems.

Theorem 1.2 is finally proved in Section 4.

Notation. We denote by B.x; r/ a ball of radius r centered at a point x. In case x D 0, we simply

write Br instead of B.0; r/. For a (possibly vector valued) measure � on ˝ , we denote by j�j its

total variation measure, and by k�k its total mass (i.e., k�k WD j�j.˝/). The support of � is written

spt �. Card.A/ stands for the cardinal of a set A. Finally, r and r2 denote the gradient and Hessian

operators respectively.

2. Existence and regularity for measures with finite support

Throughout this section, we assume that the measure � has finite support, i.e.,

� D

NX

iD1

ˇi ıai
(2.1)

for some distinct points a1; : : : ; aN 2 ˝0 and coefficients ˇi > 0. We fix a base point a0 2

˝0 (possibly equal to one of the ai ’s), and to the resulting collection of points, we associate the

following space of Lipschitz curves

P.a0; �/ WD
n
�!

 D .
i /

N
iD1 W 
i 2 P.a0; ai /

o
;

where we have set

P.a; b/ WD
n

 2 Lip.Œ0; 1�I ˝0/ W 
.0/ D a and 
.1/ D b

o
:

We endow P.a0; �/ with the topology of uniform convergence. In this way, P.a0; �/ appears to

be a subset of the complete metric space ŒC 0.Œ0; 1�I ˝0/�N . For
�!

 2 P.a0; �/, we write

� .
i / WD 
i .Œ0; 1�/ and � .
�!

 / WD

N[

iD1


i .Œ0; 1�/ :

For a given
�!

 2 P.a0; �/, we consider the functional E

�
" .�; �!


 / W H 1.˝/ ! Œ0; C1� defined by

E�
" .u; �!


 / WD "

ˆ

˝

jruj2 dx C
1

4"

ˆ

˝

.u � 1/2 dx C
1

�"

NX

iD1

ˇi

ˆ

� .
i /

.ı" C u2/ dH
1 ; (2.2)

where each term
´

� .
i /
.ı" C u2/ dH

1 is understood as the integration of the precise representative

of ı" C u2 with respect to the measure H
1 � .
i /, see Section 2.1 below.

By the very definition of F
�
" , the functional E

�
" relates to F

�
" through the formula

F �
" .u/ D inf

�!

 2P.a0;�/

E�
" .u;

�!

 / 8u 2 H 1.˝/ \ L1.˝/ : (2.3)

As we shall see, this identity is the key ingredient to investigate existence and regularity of

minimizers of F
�
" . In the same spirit, we also consider the functional G

�
" W P.a0; �/ ! Œ0; C1/

defined by

G�
" .�!
 / WD inf

u21CH 1
0

.˝/

E�
" .u; �!


 / ; (2.4)

and prove existence of minimizers.
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2.1 The precise representative of a Lebesgue function

The object of this subsection is to summarize some basic facts concerning the precise representative

of a function, and their implications for the generalized geodesic distance. In doing so, we consider

an open set U � Rn. For v 2 L1
loc.U /, the value of the precise representative of v at x 2 U is

defined by

v�.x/ WD

8
<
:

lim
r#0

 

B.x;r/

v.y/ dy if the limit exists ;

0 otherwise :

The pointwise defined function v� only depends on the equivalence class of v, and v� D v a.e. in

U . In turn, we say that v has an approximate limit at x if there exists t 2 R such that

lim
r#0

 

B.x;r/

jv.y/ � t j dy D 0 : (2.5)

The set Sv of points where this property fails is called the approximate discontinuity set. It is a L
n-

negligible Borel set, and for x 2 U the value t determined by (2.5) is equal to v�.x/. In addition,

the Borel function v� W ˝ n Sv ! R is approximately continuous at every point x 2 U n Sv (see,

e.g., [2, Section 3.6] and [21, Section 1.7.2]).

We shall make use of the following elementary properties:

(i) if v1 6 v2 a.e. in U , then v�
1 .x/ 6 v�

2 .x/ for every x 2 U n .Sv1
[ Sv2

/;

(ii) if f W R ! R is a Lipschitz function and w WD f ı v, then Sw � Sv and w�.x/ D f .v�.x//

for every x 2 ˝ n Sv.

Finally, by standard results on BV -functions (see [2, Section 3.7]), we have H
n�1.Sv/ D 0

whenever v 2 W
1;1

loc .U /.

Convention. In what follows, we may write v instead of v� if it is clear from the context.

REMARK 2.1 For a nonnegative v 2 W
1;1

loc .U / \ L1.U /, one has 0 6 v�.x/ 6 kvkL1.U / at every

point x 2 U n Sv, as a consequence of (i) above. If n D 2, then H
1.Sv/ D 0, and hence

0 6

ˆ

�

v dH
1

6 kvkL1.U /H
1.� /

for every rectifiable curve � � U � R2. As a consequence, if U is assumed to be convex, one has

0 6 D.vI a; b/ WD inf
� WaÝb

ˆ

�

v dH
1

6 kvkL1.U /ja � bj 8a; b 2 U ;

where the infimum is taken over all rectifiable curves � � U running from a to b. It is then

customary to prove that the function x 7! D.vI a; x/ is kvkL1.U /-Lipschitz continuous.

REMARK 2.2 In Rn with n > 3, the distance type function D.vI �; �/ relative to a Sobolev function

v can be defined provided that v 2 W
1;p

loc .U / with p > n � 1 (to ensure that H
1.Sv/ D 0, see,

e.g., [21]). This is the main reason why we restrict ourselves to the two dimensional setting.
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2.2 The minimization problem with prescribed curves

In this subsection, we investigate the minimization problem

min
u21CH 1

0
.˝/

E�
" .u;

�!

 / (2.6)

for a prescribed set of curves
�!

 satisfying a mild regularity constraint: we shall assume that it

belongs to

P�.a0; �/ WD
n
�!

 2 P.a0; �/ W Al

�
� .
i /

�
6 � for each i

o
;

for a given constant � > 2, where we have set

Al.K/ WD sup

�
H

1.K \ B.x; r//

r
W r > 0 ; x 2 K

�
for a closed set K � R

2 :

In this context, we establish existence and uniqueness of the solution, as well as regularity estimates.

The introduction of this regularity constraint is motivated by the following lemma, consequence of

a classical result due to N. G. Meyers & W. P. Ziemer [31]. In its statement, and according to our

convention, an integral over a curve of a Sobolev function is understood as the integral of its precise

representative.

Lemma 2.3 If
�!

 2 P�.a0; �/, then the functional

B�Œ�!
 � W .u; v/ 2 H 1.˝/ � H 1.˝/ 7!

NX

iD1

ˇi

ˆ

� .
i /

uv dH
1

defines a symmetric, nonnegative, and continuous bilinear form on H 1.˝/ satisfying


B�Œ�!
 �



 6 C˝k�k� ;

for some constant C˝ depending only on ˝ .

Proof. Step 1. For a given i 2 f1; : : : ; N g, we consider the finite measure on R2 defined by �i WD

H
1 � .
i /. Let x 2 R2 and r > 0 such that � .
i / \ B.x; r/ 6D ;. Choose a point z 2 � .
i / \

B.x; r/, and notice that � .
i / \ B.x; r/ � � .
i / \ B.z; 2r/. Then,

�i

�
B.x; r/

�
6 �i

�
B.z; 2r/

�
6 2rAl

�
� .
i /

�
;

which shows that

sup

(
�i

�
B.x; r/

�

r
W r > 0 ; x 2 R

2

)
6 2� :

Since W 1;1.R2/-functions are approximately continuous H
1-a.e. in R2, we can apply [37, Theorem

5.12.4] (see also [31, Theorem 4.7]) to infer that w 2 L1.�i / for every w 2 W 1;1.R2/ (or more

precisely, w� 2 L1.�i /), with the estimate2

ˆ

� .
i /

jwj dH
1 D

ˆ

R2

jwj d�i 6 C�

ˆ

R2

jrwj dx ; (2.7)

for some universal constant C > 0.

2 This estimate is implicitly written in the statement of [37, Theorem 5.12.4] or [31, Theorem 4.7]. The announced

inequality is however explicit in their proof.
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Step 2. Let u 2 H 1.˝/ 7! Nu 2 H 1.R2/ be a continuous linear extension operator (whose

existence is ensured by the smoothness of ˝). Note that for u; v 2 H 1.˝/, we have Nu Nv 2

W 1;1.R2/. Since
P

i ˇi D �.˝/ D k�k, it follows from Step 1 that Nu Nv 2 L1.�i / for each

i 2 f1; : : : ; N g (or more precisely, . Nu Nv/� 2 L1.�i /), and

ˇ̌
B�Œ�!
 �.u; v/

ˇ̌
6 C k�k�

ˆ

R2

jr. Nu Nv/j dx

6 C k�k�k NukH 1.R2/k NvkH 1.R2/ 6 C˝k�k�kukH 1.˝/kvkH 1.˝/ ;

which completes the proof.

Given
�!

 2 P�.a0; �/, we now rewrite for u 2 H 1.˝/,

E�
" .u; �!


 / D "

ˆ

˝

jruj2 dx C
1

4"

ˆ

˝

.u � 1/2 dx C
1

�"

B�Œ�!
 �.u; u/ C
ı"

�"

NX

iD1

ˇi H
1.� .
i // :

By the previous lemma, E
�
" .u; �!


 / < 1 for every u 2 H 1.˝/, and E
�
" .�; �!


 / is lower

semicontinuous with respect to the weak convergence in H 1.˝/. Owing to the strict convexity

of the functional E
�
" .�; �!


 /, we conclude to the following

Theorem 2.4 Given
�!

 2 P�.a0; �/, problem (2.6) admits a unique solution u�!



.

For
�!

 2 P�.a0; �/, we shall refer to u�!



as the potential of

�!

 . It satisfies the Euler–Lagrange

equation 8
<̂

:̂
�"2�u�!



D

1

4
.1 � u�!



/ �

"

�"

B�Œ�!
 �.u�!



; �/ in H �1.˝/ ;

u�!



D 1 on @˝ :

(2.8)

Our next objective is to obtain some regularity estimates on u�!



with explicit dependence on the

parameters. We start with an elementary lemma.

Lemma 2.5 Let
�!

 2 P�.a0; �/. The potential u�!



satisfies 0 6 u�!



6 1 a.e. in ˝ , and u�!



2

C 1
�
˝ n � .

�!

 /
�
.

Proof. Let us first prove that 0 6 u�!



6 1 a.e. in ˝ . To this purpose, we consider the Lipschitz

function f .t/ WD max.min.t; 1/; 0/, and the competitor v WD f ı u�!



. It is a classical fact that

v 2 1 C H 1
0 .˝/, and jrvj 6 jru�!



j a.e. in ˝ . Since u2

�!



belongs to W 1;1.˝/, we also have

f ı u2
�!



2 W 1;1.˝/. Noticing that v2
6 f ı u2

�!



a.e. in ˝ , we derive that

.v2/�.x/ 6
�
f ı u2

�!



��
.x/ D f

�
.u2

�!



/�.x/
�

6 .u2
�!



/�.x/ for every x 2 ˝ n .Sv2 [ Su2
�!



/ :

Consequently, .v2/�
6 .u2

�!



/�
H

1-a.e. in ˝ , so that B�Œ�!
 �.v; v/ 6 B�Œ�!
 �.u�!



; u�!



/.

From this discussion, we easily infer that E
�
" .v; �!


 / 6 E
�
" .u�!



; �!


 / with strict inequality

if fv 6D u�!



g has a non vanishing Lebesgue measure. Hence the conclusion follows from the

minimality of u�!



.
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Now we observe that u�!



2 H 1.˝/ \ L1.˝/ satisfies

�"2�u�!



D
1

4
.1 � u�!



/ in D

0
�
˝ n � .�!
 /

�
:

From this equation, the boundary condition in (2.8), and the smoothness of @˝ , we conclude that

u�!



2 C 1
�
˝ n � .

�!

 /
�

by means of the standard elliptic regularity theory for bounded weak

solutions (see, e.g., [22]).

Lemma 2.6 Let
�!

 2 P�.a0; �/. At every x0 2 ˝ n � .�!
 / satisfying dist.x0; � .�!
 // > 12", we

have

0 6 1 � u�!



.x0/ 6 exp

 
�

3 dist.x0; � .�!
 //

32"

!
:

Proof. Set R WD 3
4

dist
�
x0; � .

�!

 /
�

> 9". We consider the function v WD 1 � u�!



which satisfies

0 6 v 6 1 and solves (
�4"2�v C v D 0 in B.x0; R/ \ ˝ ;

v D 0 on B.x0; R/ \ @˝ :

Now we introduce the function

!.x/ WD exp

�
jx � x0j2 � R2

8"R

�
:

As in [6, Lemma 2], our choice of R implies that ! satisfies

8
<̂

:̂

�4"2�! C ! > 0 in B.x0; R/ \ ˝ ;

! D 1 on @B.x0; R/ \ ˝ ;

! > 0 on B.x0; R/ \ @˝ :

Then we infer from the maximum principle that v 6 ! in B.x0; R/ \ ˝ . Evaluating this inequality

at x0 leads to the announced inequality.

We now provide some pointwise estimates for the first and second derivatives of u�!



.

Lemma 2.7 Let
�!

 2 P�.a0; �/. At every x0 2 ˝ n � .�!
 / satisfying dist.x0; � .�!
 // > 13", we

have
ˇ̌
ru�!



.x0/

ˇ̌
6

C�0

"
exp

 
�

dist.x0; � .�!
 //

32"

!
;

and
ˇ̌
r2u�!



.x0/

ˇ̌
6

C�0

"2
exp

 
�

dist.x0; � .�!
 //

32"

!
;

for some constant C�0
depending only on ˝ and �0 WD min

˚
dist.z; ˝0/ W z 2 @˝

	
> 0.

Proof. Step 1 (Interior estimates). We assume in this step that B.x0; "/ � ˝ . Define for x 2 B1,

the function w" WD 1 � u�!



.x0 C "x/. Then, w" solves

��w" D
1

4
w" in B1 : (2.9)
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By Lemma 2.6, we have for every x 2 B1,

0 6 w".x/ 6 exp

 
�

3 dist.x0 C "x; � .�!
 //

32"

!
6 C exp

 
�

3 dist.x0; � .�!
 //

32"

!
:

Then we infer from (2.9) and [22, Theorem 3.9] that

jrw".x/j 6 C kw"kL1.B1/ 6 C exp

 
�

3 dist.x0; � .�!
 //

32"

!
8x 2 B1=2 : (2.10)

By linearity of the equation, the gradient vector rw" satisfies ��.rw"/ D 1=4rw" in B1.

Applying again [22, Theorem 3.9] to each component of rw" in the smaller ball B1=2, we deduce

from (2.10) that

jr2w".x/j 6 C krw"kL1.B1=2/ 6 C exp

 
�

3 dist.x0; � .
�!

 //

32"

!
8x 2 B1=4 :

Noticing that jrw".0/j D "jru.x0/j and jr2w".0/j D "2jr2u.x0/j, the conclusion follows.

Step 2 (Boundary estimates). Let ˝1 � ˝ be a smooth and convex open set such that ˝0 � ˝1

and minfdist.z; @˝ [ @˝0/ W z 2 @˝1g > �0=4. Consider the smooth open set U WD ˝ n ˝1, and

the function v W U ! R given by v WD 1 � u�!



. Then v satisfies ��v D .1=4"2/v in U , and v D 0

on @˝ . On the other hand, Lemma 2.6 and Step 1 imply that

1

"2
kvkL1.U / C kvkC 1;1.@˝1/ 6 C�0

exp
�
�

�0

64"

�
:

From [22, Theorem 8.33] we deduce that

1

"2
kvkC 1.U / 6 C�0

exp
�
�

�0

128"

�
:

Setting V�0
WD fx 2 ˝ W dist.x; @˝/ < �0=5g, [22, Theorem 4.12] now implies

kvkC 2.V�0
/ 6 C�0

exp
�
�

�0

128"

�
:

This last estimate leads to the conclusion since dist.x0; � .�!
 // > �0=4 for every x0 2 V�0
.

Lemma 2.8 Let
�!

 2 P�.a0; �/. At every x0 2 ˝ n � .�!
 / satisfying dist.x0; � .�!
 // 6 13", we

have ˇ̌
ru�!



.x0/

ˇ̌
6

C�0

dist.x0; � .�!
 //
;

and ˇ̌
r2u�!



.x0/

ˇ̌
6

C�0

dist2.x0; � .�!
 //
;

for some constant C�0
depending only on ˝ and �0 (given in Lemma 2.7).
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Proof. By Lemma 2.7, we can assume that " < �0=26. Then dist.x0; @˝/ > �0=2, and setting

R WD dist.x0; � .�!
 // 6 13", we have B.x0; R/ � ˝ .

Since ��u�!



D 1=.4"2/.1 � u�!



/ in B.x0; R/ and 0 6 u�!



6 1, we deduce from [6,

Lemma A.1] that for x 2 B.x0; R=2/,

jru�!



.x/j2 6 C

 
k1 � u�!



kL1.B.x0;R//

"2
C

ku�!



kL1.B.x0;R//

.R � jx � x0j/2

!
ku�!



kL1.B.x0;R// 6

C

R2
;

for some universal constant C . Now, the gradient vector field ru�!



satisfies the equation

��.ru�!



/ D �
1

4"2
ru�!



in B.x0; R/ ;

and kru�!



kL1.B.x0;R=2// 6 CR�1. Applying again [6, Lemma A.1] in B.x0; R=2/ to each

component of ru�!



leads to

jr2u�!



.x0/j2 6 C

�
1

"2
C

1

R2

�
kru�!



k2

L1.B.x0;R=2// 6
C

R4
;

and the proof is complete.

Lemma 2.9 Let
�!

 2 P.a0; �/. For every � > 0, there exists a finite covering of � .�!
 / by closed

balls fBj .xj ; �/gj 2J with xj 2 � .�!
 / such that

Card.J / 6 max
n

min
˚
5H

1.� .�!
 //��1; 25diam.� .�!
 //2��2
	
; 1
o

:

In particular,

L
2
�˚

x 2 R
2 W dist.x; � .�!
 // 6 �

	�
6 max

n
20�H

1.� .�!
 //�; 4��2
o

:

Proof. If � > diam.� .�!
 //, then we can cover � .�!
 / with the single ball B.a0; �/, and the

announced estimates become trivial. Hence we can assume that � < diam.� .�!
 //. By compactness

of � .�!
 /, we can cover � .�!
 / with a finite collection of closed balls fB.xj ; �=5/g
j 2eJ such that

xj 2 � .�!
 /. By the 5r-covering theorem (see for instance [30]), we can find a subset J � eJ such

that B.xi ; �=5/ \ B.xj ; �=5/ D ; if i 6D j with i; j 2 J , and

� .�!
 / �
[

j 2J

B.xj ; �/ :

In particular,

[

j 2J

B.xj ; �=5/ �
n
x 2 R

2 W dist.x; � .�!
 // 6 �
o

�
[

j 2J

B.xj ; 2�/ ;

so that
�

25
�2 Card.J / 6 L

2
�˚

x 2 R
2 W dist.x; � .�!
 // 6 �

	�
6 4��2 Card.J / :
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From the first inequality, we easily deduce that Card.J / 6 25diam.� .
�!

 //2��2.

Next we claim that for each j 2 J ,

H
1
�
� .�!
 / \ B.xj ; �=5/

�
> �=5 : (2.11)

Note that this estimate leads to the announced result since

H
1
�
� .�!
 /

�
>

X

j 2J

H
1
�
� .�!
 / \ B.xj ; �=5/

�
> Card.J /�=5 :

To prove (2.11), we argue as follows. Since � < diam.� .�!
 //, there exists a point yj 2 � .�!
 / n

B.xj ; �=5/. On the other hand, the set � .�!
 / is arcwise connected since 
i .0/ D a0 for each

i 2 f1; : : : ; N g. Hence, we can find a continuous path ` W Œ0; 1� ! � .�!
 / such that `.0/ D xj and

`.1/ D yj . Set

t� WD sup
˚
t W t 2 Œ0; 1� and `.s/ 2 B.xj ; �=5/ for every s 2 Œ0; t �

	
:

By continuity of `, we have `.t�/ 2 @B.xj ; �=5/. Consequently,

H
1
�
� .�!
 / \ B.xj ; �=5/

�
> H

1
�
`.Œ0; t�//

�
> j`.t�/ � `.0/j D �=5 ;

which completes the proof.

We are now ready to prove the following higher integrability estimate, with explicit control with

respect to the parameters. Here, the main point is the uniformity of the estimate with respect to

�=k�k.

Proposition 2.10 If
�!

 2 P�.a0; �/, then u�!



2 W 1;p.˝/ for every 2 6 p < 1, and

kru�!



kLp.˝/

6 Cp;�0
max

n
min

˚
H

1.� .�!
 //;
1

"j log "j

	
; "j log "j

o1=p
�

j log "j1C1=p

"1�1=p

C
�k�kj log "j1=p

�""1�1=p

�
;

for some constant Cp;�0
depending only on p, ˝ , and �0 (given in Lemma 2.7).

Proof. Step 1. Replacing �" by �"=k�k and � by �=k�k, we may assume that k�k D 1. Without

loss of generality, we can also assume that "j log "j < �0=256. Let us fix some point x0 2 ˝0 and

0 < � < �0=4. Let T� 2 D 0.R2/ be the distribution defined by

hT�; 'i WD

NX

iD1

ˇi

ˆ

� .
i /

u�!



'� dH
1 D B�Œ�!
 �.u�!



; '�/ ;

where '�.x/ WD '..x � x0/=�/ and ' 2 C 1
c .R2/.

By Lemma 2.5 and (2.7), for every ' 2 C 1
c .B2/ we have

ˇ̌˝
T�; 'i

ˇ̌
6

NX

iD1

ˇi

ˆ

� .
i /

j'�j dH
1

6 C�

ˆ

B.x0;2�/

jr'�j dx D C��

ˆ

B.0;2/

jr'j dx :
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Then we infer from Hölder’s inequality that

ˇ̌˝
T�; 'i

ˇ̌
6 C��kr'kLq.B2/ 8' 2 C 1

c .B2/ ; 8 1 6 q 6 2 :

Therefore T� 2 W �1;p.B2/ with

kT�kW �1;p.B2/ 6 C��

for every 2 6 p < 1.

Step 2. We need to distinguish the two cases p > 3 and 2 6 p < 3.

Case 1. First assume that 3 6 p < 1. By our choice of �, we have B.x0; 2�/ � ˝ . As a

consequence of Step 1, there exists a vector field f 2 Lp.B2IR2/ such that div f D T� in D 0.B2/

and satisfying

C �1
p kT�kW �1;p.B2/ 6 kf kLp.B2IR2/ 6 CpkT�kW �1;p.B2/

(see, e.g., [1, Sections 3.7 to 3.14]). By classical elliptic theory (see, e.g., [22, Theorem 9.15 and

Lemma 9.17], there exists a (unique) solution � 2 W 2;p.B2IR2/ \ W
1;p

0 .B2IR2/ of

(
��� D f in B2 ;

� D 0 on @B2 ;

satisfying the estimate

k�kW 2;p.B2IR2/ 6 Cpkf kLp.B2IR2/ 6 Cp�� ;

thanks to Step 1.

Now we define v� WD div � 2 W 1;p.B2/ which satisfies

��v� D T� in D
0.B2/ ; (2.12)

together with the estimate

kv�kW 1;p.B2/ 6 Cp�� : (2.13)

Notice that, by the Sobolev embedding Theorem, v� 2 L1.B2/ and

kv�kL1.B2/ 6 Cpkv�kW 1;p.B2/ 6 Cp�� : (2.14)

Case 2. For 2 6 p < 3, we consider the function v� as defined in Case 1 for p D 3.

To summarize this step, we have thus constructed for an arbitrary exponant p 2 Œ2; 1/, a

function v� 2 W 1;p.B2/ \ L1.B2/ solving (2.12) and satisfying estimates (2.13) and (2.14).

Step 3. Let us now fix an arbitrary exponant 2 6 p < 1. We define for x 2 B2, the rescaled

function u�.x/ WD u�!



.x0 C �x/. Notice that

��u� D
�2

4"2
.1 � u�/ �

1

�""
T� in D

0.B2/ :
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Indeed, for ' 2 C 1
c .B2/ we have

ˆ

B2

ru� � r' dx D

ˆ

B.x0;2�/

ru�!



� r'� dx

D
1

4"2

ˆ

B.x0;2�/

.1 � u�!



/'� dx �
1

�""
BŒ�!
 �.u�!



; '�/

D
�2

4"2

ˆ

B2

.1 � u�/' dx �
1

�""
hT�; 'i :

Consider the function w� WD u� C 1
�""

v� 2 H 1.B2/ \ L1.B2/ which (therefore) satisfies

��w� D
�2

4"2
.1 � u�/ in B2 :

By [22, Corollary 8.36], w� 2 C
1;˛
loc .B2/ for some ˛ > 0, and

krw�kL1.B1/ 6 C
�
k�w�kL1.B2/ C kw�kL1.B2/

�

6 C

�
�2

"2
k1 � u�kL1.B2/ C ku�kL1.B2/ C

1

�""
kv�kL1.B2/

�

6 Cp

�
�2

"2
C 1 C

��

�""

�
;

in view of (2.14) and the fact that 0 6 u� 6 1. Going back to u� D w� � 1
�""

v�, we deduce that

u� 2 W 1;p.B1/ with the estimate

kru�kLp.B1/ 6 krw�kL1.B1/ C
krv�kLp.B1/

�""
6 Cp

�
�2

"2
C 1 C

��

�""

�
: (2.15)

Scaling back we finally obtain

kru�!



k
p

Lp.B.x0;�//
6 Cp

�
�pC2

"2p
C

1

�p�2
C

�p�2

�
p
" "p

�
: (2.16)

Step 4. Applying Lemma 2.9, we can cover � .�!
 / by finitely many balls fB.xj ; �=2/gj 2J with

xj 2 � .�!
 / and

� Card.J / 6 C max
˚

minfH1.� .�!
 //; ��1g; �
	

:

Then,

V�=2 WD fx 2 ˝ W dist.x; � .�!
 // < �=2g �
[

j 2J

B.xj ; �/ ;

and we deduce from (2.16) that
ˆ

V�=2

jru�!



jp dx 6

X

j 2J

ˆ

B.xj ;�/

jrujp dx

6 Cp max
n
min

˚
H

1.� .�!
 //; ��1
	
; �
o��pC1

"2p
C

1

�p�3
C

�p�

�
p
" "p

�
:
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In particular,

kru�!



kLp.V�=2/

6 Cp max
n
minfH1.� .�!
 //; ��1g; �

o1=p
 

�1C1=p

"2
C

1

�1�3=p
C

��1=p

�""

!
: (2.17)

Observe that, using the gradient estimate in Lemma 2.7, the choice � D 64"j log "j yields
ˇ̌
ru�!




ˇ̌
6

C�0
in ˝ n V32"j log "j. Plugging this value of � in (2.17), we deduce that

kru�!



kLp.V32"j log "j/

6 Cp max
n

min
˚
H

1.� .�!
 //;
1

"j log "j

	
; "j log "j

o1=p
�

j log "j1C1=p

"1�1=p

C
�j log "j1=p

�""1�1=p

�
;

and the conclusion follows.

Proposition 2.11 If
�!

 2 P�.a0; �/, then u�!



2 C 0;˛.˝/ for every 0 < ˛ < 1, and

ku�!



kC 0;˛.˝/ 6 C˛;�0

.1 C �k�k��1
" /

"˛
;

for some constant C˛;�0
depending only on ˛, ˝ , and �0 (given in Lemma 2.7).

Proof. Note that it is enough to prove the announced estimate when " is small; thus we can assume

that 13" < �0=4. Recall that, upon replacing �" by �"=k�k and � by �=k�k, we can also assume

that k�k D 1. Then we fix some distinct points x; y 2 ˝ , and we set x0 WD .x C y/=2.

If jx � yj > ", then we have

ju�!



.x/ � u�!



.y/j

jx � yj˛
6

2

"˛
;

since 0 6 u�!



6 1.

Now we assume that jx � yj < ". If dist.x0; @˝/ 6 �0=2, then dist.z; � .
�!

 // > �0=4 for

every z 2 B.x0; "/, and the conclusion follows from Lemma 2.7. If dist.x0; @˝/ > �0=2, then

B.x0; "/ � ˝ . Going back to estimate (2.15) in the previous proof, we deduce that for � D " and

p D 2=.1 � ˛/,

kru"kLp.B1/ 6 C˛

�
1 C

�

�"

�
:

By the Sobolev embedding Theorem, the former estimate yields ku"kC 0;˛.B.0;1// 6 C˛.1 C�=�"/.

Scaling back, we conclude that

ju�!



.x/ � u�!



.y/j

jx � yj˛
6 C˛

.1 C ���1
" /

"˛
;

and the proof is complete.



84 M. BONNIVARD, A. LEMENANT AND V. MILLOT

REMARK 2.12 The regularity estimates in Proposition 2.10 and Proposition 2.11 are optimal in the

sense that ru�!



62 L1.˝/ in general. To illustrate this fact, let us consider the simple case where

N D 1, a0 D 0, a1 D � for some � 2 S1, and � .�!
 / D S WD Œ0; �� (the straight line segment).

From the Euler–Lagrange equation (2.8) and the continuity of u�!



, we have

��u�!



D
1

4"2
.1 � u�!



/ �

ˇ1

�""
u�!



H

1 S in D
0.˝/ :

By linearity and standard elliptic regularity, it is elementary to see that u�!



has at most the regularity

of the solution of the Poisson equation

��v� D �u�!



H
1 S in D

0.R2/ ;

which is given by the convolution of the measure �u�!



H
1 S with the fundamental solution of the

Laplacian, i.e.,

v�.x/ WD
1

2�

ˆ

S

log.jx � yj/u�!



.y/ dH
1
y D

1

2�

ˆ 1

0

log.jx � t� j/u�!



.t�/ dt :

Differentiating this formula, we obtain

rv�.x/ D
1

2�

ˆ 1

0

.x � t�/

jx � t� j2
u�!



.t�/ dt for every x 2 R

2 n S :

In particular,

� � rv�.s�/ D
1

2�
log

�
s=.1 � s/

�
u�!



.s�/ �

1

2�

ˆ 1

0

u�!



.s�/ � u�!



.t�/

s � t
dt for s > 1 :

In view of Proposition 2.11, we have for every ˛ 2 .0; 1/,

jrv�.s�/j >
1

2�
j log.s � 1/ju�!



.s�/ � C˛ for s > 1 ;

where C˛ is a constant independent of s. Therefore jrv�j cannot be essentially bounded near the

point � whenever u�!



.�/ 6D 0. Similarly, jrv�j is not bounded near 0 whenever u�!



.0/ 6D 0. These

last conditions are ensured for ˇ1 << 1. Indeed, using Proposition 2.11, one may easily check that

u�!



! 1 uniformly in ˝ as ˇ1 ! 0 (with " fixed).

2.3 Existence and regularity of minimizing pairs

In this subsection, we move on the existence problem for minimizing pairs of the functional E
�
" .

Regularity of minimizers will essentially follow from our considerations about the problem with

prescribed curves. In all our statements, we shall use the upper Alhfors threshold

�" WD 2 C
3

ı"

: (2.18)

Our main results are the following.
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Theorem 2.13 Assume that � is of the form (2.1). The functional E
�
" admits at least one minimizing

pair .u"; �!

 "/ in .1 C H 1

0 .˝// � P.a0; �/. In addition, for any such minimizer,
�!

 " belongs to

P�"
.a0; �/, and u" is the potential of

�!

 ".

A byproduct of this theorem is the following existence and regularity result for our original

functional F
�
" in case of a measure � with finite support.

Corollary 2.14 Assume that � is of the form (2.1). The functional F
�
" admits at least one minimizer

u" in 1CH 1
0 .˝/\L1.˝/. In addition, any such minimizer belongs to W 1;p.˝/ for every p < 1

(in particular, u" 2 C 0;˛.˝/ for every ˛ 2 .0; 1/). Moreover, there exists
�!

 " 2 P.a0; �/ such

that .u"; �!

 "/ is a minimizing pair of E

�
" in .1 C H 1

0 .˝// � P.a0; �/.

In the same way, we have an analogous result concerning the auxiliary functional G
�
" defined in

(2.4).

Corollary 2.15 Assume that � is of the form (2.1). The functional G
�
" admits at least one minimizer

�!

 " D .
"

1; : : : ; 
"
N / 2 P.a0; �/. In addition, any such minimizer belongs to P�"

.a0; �/, and

.u�!

 "

; �!

 "/ is a minimizing pair of E

�
" in .1 C H 1

0 .˝// � P.a0; �/.

REMARK 2.16 Concerning the regularity of � .�!
 "/, we can invoke the results of [19] and the

Hölder continuity of u" to show that each � .
"
i / is in fact a C 1;˛ curve for every ˛ 2 .0; 1=2/

in a neighborhood of every point in ˝ n fa0; : : : ; aN g (assuming eventually that @˝0 is smooth).

One could use this further information to get improved (partial) regularity on u", but we do not

pursue this issue here. We also believe that the curves admit a tangent line at the ai ’s, and that the

C 1;˛ regularity holds true up to each ai . This latter fact does not derive directly from the statements

of [19], but can certainly be proved using the material developed there.

REMARK 2.17 In all the statements above, we believe the regularity of u" to be optimal in the sense

that u" is not Lipschitz continuous. More precisely, Lipschitz continuity should fail near the ai ’s. In

view of Remarks 2.12 & 2.16, the question boils down to determine whether or not u".ai / vanishes

or not. Up to some trivial situations, we believe that u".ai / 6D 0, and that jru"j actually behaves

like j log.jx � ai j/j in the neighborhood of ai (as in Remark 2.16).

Theorem 2.13, Corollary 2.14, and Corollary 2.15 follow from the regularity estimates obtained

in the previous subsection together with a set of lemmas of independent interest. Our first

fundamental step is a replacement procedure allowing to show the upper Alhfors regularity of the

curves.

Lemma 2.18 Let u 2 1 C H 1
0 .˝/ \ L1.˝/ be such that kukL1.˝/ 6 1, and let

�!

 D

.
1; : : : ; 
N / 2 P.a0; �/. If for some i0 2 f1; : : : ; N g, some x 2 � .
i0/, and some r > 0,

H
1
�
� .
i0/ \ B.x; r/

�
> �"r ; (2.19)

where �" is defined in (2.18), then there exists
�!

 ] D .
1; : : : ; 
i0�1; 


]
i0

; 
i0C1; : : : ; 
N / 2

P.a0; �/ such that

E�
" .u; �!


 ]/ 6 E�
" .u; �!


 / �
ˇi0r

�"

:
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Proof. Assume that (2.19) holds. We shall suitably modify � .
i0/ in B.x; r/ to produce the

competitor
�!

 ]. We proceed as follows. We first define

tin WD

(
sup

˚
t 2 Œ0; 1� W 
i0.s/ 62 B.x; r/ for all s 2 Œ0; t/

	
if a0 62 B.x; r/ ;

0 otherwise ;

and

tout WD

(
inf
˚
t 2 Œ0; 1� W 
i0.s/ 62 B.x; r/ for all s 2 .t; 1�

	
if ai0 62 B.x; r/ ;

1 otherwise :

Then we set a WD 
i0.tin/ and b WD 
i0.tout/. We finally define



]
i0

.t/ WD

8
<̂

:̂


i0.t/ if t 2 Œ0; tin� [ Œtout; 1� ;

t � tin

tout � tin

b C
tout � t

tout � tin

a if t 2 Œtin; tout� :

Since ˝0 is convex, we have

� .

]
i0

/ �
�
� .
i0/ n B.x; r/

�
[ Œa; b� � ˝0 :

Now we estimate
ˇi0

�"

ˆ

� .

]

i0
/\B.x;r/

.ı" C u2/ dH
1

6
2ˇi0

�"

.1 C ı"/r ;

and

ˇi0

�"

ˆ

� .
i0
/\B.x;r/

.ı" C u2/ dH
1

>
ˇi0ı"

�"

H
1
�
� .
i0/ \ B.x; r/

�
>

ˇi0

�"

.3 C 2ı"/r :

Since
�
� .


]
i0

/ n B.x; r/
�

�
�
� .
i0/ n B.x; r/

�
, we conclude that

E�
" .u; �!


 / � E�
" .u; �!


 ]/ >
ˇi0

�"

.3 C 2ı"/r �
2ˇi0

�"

.1 C ı"/r D
ˇi0r

�"

;

and the proof is complete.

The following crucial lemma provides the existence of a minimizer
�!

 ] in P�"

.a0; �/

associated to some fixed smooth function u.

Lemma 2.19 Let u 2 1 C H 1
0 .˝/ \ C 1.˝/ be such that 0 6 u 6 1. There exists

�!

 ] D

.

]
1; : : : ; 


]
N / 2 P�"

.a0; �/ satisfying

E�
" .u; �!


 ]/ 6 E�
" .u; �!


 / 8�!

 2 P.a0; �/ ; (2.20)

and such that each 

]
i W Œ0; 1� ! ˝0 is injective if ai 6D a0, and constant if ai D a0.
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Proof. If ai D a0, we choose 

]
i to be the constant map equal to ai . Then, for each ai 6D a0, we

consider the minimization problem

min
P.a0;ai /

ˆ 1

0

�
ı" C u2.
.t//

�
j
 0.t/j dt :

By [14, Theorem 5.22] this problem admits a solution 

]
i satisfying

�
ı" C u2.


]
i .t//

�
j.


]
i /0.t/j D hi a.e. in .0; 1/ ;

for some constant hi > 0. We claim that 

]
i is injective. Indeed, if 


]
i .t1/ D 


]
i .t2/ for some t1 < t2,

then we can consider the competitore
]
i 2 P.a0; ai / defined by

e
]
i .t/WD

8
<̂

:̂



]
i .t/ for t 2 Œ0; t1� ;



]
i .t1/ for t 2 Œt1; t2� ;



]
i .t1/ for t 2 Œt2; 1� :

Comparing energies, we have

ˆ 1

0

�
ı" C u2.e
]

i .t//
�
j.e
]

i /
0.t/j dt �

ˆ 1

0

�
ı" C u2.


]
i .t//

�
j.


]
i /0.t/j dt D �hi .t2 � t2/ < 0 ;

which contradicts the minimality of 

]
i .

Now we set
�!

 ] D .


]
1; : : : ; 


]
N /, and we claim that (2.20) holds. Clearly, it is enough to show

that for each i 2 f1; : : : ; N g,

ˆ

� .

]

i
/

.ı" C u2/ dH
1

6

ˆ

� .
/

.ı" C u2/ dH
1 8
 2 P.a0; ai / : (2.21)

Obviously, this inequality holds if ai D a0 since the left hand side vanishes. Hence we may

assume that ai 6D a0. Let us then consider an arbitrary 
 2 P.a0; ai /. Since H
1.� .
// < 1, [5,

Theorem 4.4.7] tells us that there exists an injective curvee
 2 P.a0; ai / such that � .e
/ � � .
/.

Now we infer from the area formula (see, e.g., [2, Theorem 2.71]) and the minimality of 

]
i that

ˆ

� .

]

i
/

.ı" C u2/ dH
1 D

ˆ 1

0

�
ı" C u2.


]
i .t//

�
j.


]
i /0.t/j dt

6

ˆ 1

0

�
ı" C u2.e
.t//

�
je
 0.t/j dt D

ˆ

� .e
/

.ı" C u2/ dH
1

6

ˆ

� .
/

.ı" C u2/ dH
1 ;

so that (2.21) is proved, and hence (2.20).

To conclude, we notice that
�!

 ] 2 P�"

.a0; �/ as a direct consequence of inequality (2.20) and

Lemma 2.18. Indeed, if it would not be the case, Lemma 2.18 would provide
�!

 2 P.a0; �/ such

that E
�
" .u; �!


 / < E
�
" .u; �!


 ]/, in contradiction with (2.20).

The next lemma will allow us to replace an arbitrary pair .u;
�!

 / by a regular one, with controlled

energy.
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Lemma 2.20 For every � > 0, u 2 1CH 1
0 .˝/, and

�!

 2 P.a0; �/, there exist u� 2 1CH 1

0 .˝/\

C 1.˝/ and
�!

 � 2 P�"

.a0; �/ such that 0 6 u� 6 1 and

E�
" .u� ; �!


 � / 6 E�
" .u; �!


 / C � :

Proof. We first claim that there existseu 2 1 C H 1
0 .˝/ \ C 0.˝/ such that 0 6eu 6 1 and

E�
" .eu; �!


 / 6 E�
" .u; �!


 / C � :

Without loss of generality, we may assume that E
�
" .u;

�!

 / < 1. Moreover, by the truncation

argument in the proof of Lemma 2.5, we can reduce the question to the case 0 6 u 6 1. Then

write u D 1 � v with v 2 H 1
0 .˝/. Since C 1

c .˝/ is dense in H 1
0 .˝/, we can find a sequence

.vn/n2N � C 1
c .˝/ such that vn ! v strongly in H 1

0 .˝/ as n ! 1. Since 0 6 v 6 1, we may

even assume that 0 6 vn 6 1. By [13, Theorem 4.1.2] we can find a (not relabeled) subsequence

such that vn ! v quasi-everywhere in ˝ (i.e., vn ! v in the pointwise sense away from a set

of vanishing H 1-capacity). Since a set of vanishing H 1-capacity is H
1-null (see for instance [37,

Theorem 2.6.16]), we deduce that vn ! v H
1-a.e. on � .�!
 /. Then, by the dominated convergence,

we have for each i 2 f1; : : : ; N g,

ˆ

� .
i /

�
ı" C .1 � vn/2

�
dH

1 !

ˆ

� .
i /

�
ı" C .1 � v/2

�
dH

1 :

Setting un WD 1 � vn, we conclude that for n large enough, E
�
" .un; �!


 / 6 E
�
" .u; �!


 / C � , and the

claim is proved.

Finally, we apply Lemma 2.19 to find
�!

 ] 2 P�"

.a0; �/ such that

E�
" .un; �!


 ]/ 6 E�
" .un; �!


 / 6 E�
" .u; �!


 / C � ;

and the announced result is proved for u� WD un and
�!

 � WD �!


 ].

Proof of Theorem 2.13. Step 1 (existence). Let f.un; �!

 n/gn2N be a minimizing sequence for E"

over .1 C H 1
0 .˝// � P.a0; �/, i.e.,

lim
n!1

E�
" .un;

�!

 n/ D inf

.1CH 1
0

.˝//�P.a0;�/

E�
" :

By Lemma 2.20, there is no loss of generality assuming that .un; �!

 n/ 2 C 1.˝/ �P�"

.a0; �/ and

0 6 un 6 1. In addition, by Lemma 2.19 we can even assume that, setting
�!

 n D .
n

1 ; : : : ; 
n
N /,

all 
n
i ’s are injective curves for ai 6D a0, and constant for ai D a0. Then we consider the sequence

f.u�!

 n

; �!

 n/gn2N, where u�!


 n
is the potential of

�!

 n, i.e., the minimizer of E

�
" .�; �!


 n/ over 1 C

H 1
0 .˝/. Obviously, f.u�!


 n
; �!


 n/gn2N is still a minimizing sequence by minimality of u�!

 n

.

By Proposition 2.11,

ku�!

 n

kC 0;˛.˝/ 6 C˛;�0
."/ 8˛ 2 .0; 1/ ;

for some constant C˛;�0
."/ independent of n. By the Arzelà–Ascoli Theorem, we can extract a

(not relabeled) subsequence such that u�!

 n

! u" uniformly in ˝ and weakly in H 1.˝/ for some

function u" 2 1 C H 1
0 .˝/ \ C 0;˛.˝/ for every ˛ 2 .0; 1/.
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On the other hand, the energy being invariant under reparametrization, we can assume that each


n
i is a constant speed parametrization of its image � .
n

i /. In particular, each 
n
i is a H

1.� .
n
i //-

Lipschitz curve. Since

H
1.� .
n

i // 6
�"

ı"

E�
" .u�!


 n
;
�!

 n/ 6 C."/ ;

we infer that each sequence f
n
i gn2N is equi-Lipschitz. Therefore, we can extract a further

subsequence such that, for each i 2 f1; : : : ; N g, 
n
i ! 
"

i uniformly on Œ0; 1� and weakly* in

W 1;1.0; 1/ for some 
"
i 2 P.a0; ai /. Then we set

�!

 " WD .
"

1; : : : ; 
"
N / 2 P.a0; �/.

Let us now fix an arbitrary � 2 .0; ı"=2/. By the uniform convergence of u�!

 n

towards u", we

have u2
" 6 u2

�!

 n

C � in ˝ for n large enough. From the injectivity of each 
n
i (for ai 6D a0) and the

area formula, we derive that for ai 6D a0 and n large,

ˆ

� .
n
i

/

.ı" C u2
�!

 n

/ dH
1

>

ˆ

� .
n
i

/

.ı" � � C u2
" / dH

1

D

ˆ 1

0

�
ı" � � C u2

".
n
i .t//

�
j.
n

i /0.t/j dt : (2.22)

Since 
n
i

�
* 
"

i weakly* in W 1;1..0; 1//, the lower semicontinuity result in [28, Theorem 3.8] tells

us that

lim inf
n!1

ˆ 1

0

�
ı" � � C u2

" .
n
i .t//

�
j.
n

i /0.t/j dt >

ˆ 1

0

�
ı" � � C u2

".
"
i .t//

�
j.
"

i /0.t/j dt : (2.23)

By the area formula again,

ˆ 1

0

�
ı" � � C u2

".
"
i .t//

�
j.
"

i /0.t/j dt >

ˆ

� .
"
i

/

.ı" � � C u2
" / dH

1 : (2.24)

Gathering (2.22), (2.23), (2.24), and letting � ! 0, we deduce that

lim inf
n!1

ˆ

� .
n
i

/

.ı" C u2
�!

 n

/ dH
1

>

ˆ

� .
"
i

/

.ı" C u2
" / dH

1 8i 2 f1; : : : ; N g :

(Note that for ai D a0, this inequality is trivial since 
n
i is the constant map equal to a0.) Since the

diffuse part of the energy is clearly lower semicontinuous with respect to weak H 1-convergence,

we conclude that

E�
" .u"; �!


 "/ 6 lim
n!1

E�
" .un; �!


 n/ ;

and thus .u"; �!

 "/ is a minimizer of E

�
" .

Step 2 (regularity). Now we consider an arbitrary minimizer .u"; �!

 "/ of E

�
" in .1 C H 1

0 .˝// �

P.a0; �/. Arguing as in the proof of Lemma 2.5, we obtain 0 6 u" 6 1 by minimality of u"

for E
�
" .�;

�!

 "/. In turn, the minimality of

�!

 " for E

�
" .u"; �/ implies that

�!

 " 2 P�"

.a0; �/ by

Lemma 2.18. Now Theorem 2.4 shows that u" is the potential of
�!

 ".
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Proof of Corollary 2.14. Existence of a minimizer of F
�
" in 1 C H 1

0 .˝/ \ L1.˝/ is ensured by

Theorem 2.13 since inf F
�
" D min E

�
" by (2.3). Let us now consider an arbitrary minimizer u" of

F
�
" in 1 C H 1

0 .˝/ \ L1.˝/. We first claim that 0 6 u" 6 1 a.e. in ˝ . Indeed, setting v WD

max.min.u"; 1/; 0/ 2 1CH 1
0 .˝/, we can argue as in the proof of Lemma 2.5 to show E

�
" .v;

�!

 / 6

E
�
" .u"; �!


 / for every
�!

 2 P.a0; �/. Hence F

�
" .v/ 6 F

�
" .u"/ by (2.3), the inequality being strict

whenever fv 6D u"g has a non vanishing Lebesgue measure. The minimality of u" then implies that

v D u" a.e. in ˝ .

Next, by definition of F
�
" , there exists a sequence f�!
 ngn2N � P.a0; �/ such that

E�
" .u"; �!


 n/ 6 F �
" .u"/ C 2�n�1 8n 2 N :

On the other hand, we can argue as in the proof of Lemma 2.20 to find, for each n 2 N, a function

un 2 .1 C H 1
0 .˝// \ C 1.˝/ such that 0 6 un 6 1 in ˝ , kun � u"kH 1.˝/ 6 2�n, and

E�
" .un; �!


 n/ 6 E�
" .u";

�!

 n/ C 2�n�1

6 F �
" .u"/ C 2�n :

Applying Lemma 2.19 to each un, we find (injective or constant) curves
�!

 ];n 2 P�"

.a0; �/ of

constant speed such that

E�
" .un;

�!

 ];n/ 6 E�

" .un;
�!

 n/ 6 F �

" .u"/ C 2�n :

Now we consider the potential u�!

 ];n

of
�!

 ];n. Then,

E�
" .u�!


 ];n
; �!


 ];n/ 6 E�
" .un; �!


 ];n/ 6 F �
" .u"/ C 2�n : (2.25)

Setting wn WD un � u�!

 ];n

2 H 1
0 .˝/, we infer from the equation (2.8) satisfied by u�!


 ];n
that

2�n
> E�

" .un; �!

 ];n/ � E�

" .u�!

 ];n

; �!

 ];n/ D "

ˆ

˝

jrwnj2 dx C
1

4"

ˆ

˝

jwnj2 dx

C
1

�"

B�Œ�!
 ];n�.wn; wn/ :

Consequently, kwnkH 1.˝/ 6 C"2
�n=2, so that ku" � u�!


 ];n
kH 1.˝/ 6 C"2

�n=2. On the other hand,

the sequence fu�!

 ];n

g remains bounded in W 1;p.˝/ for each p < 1 by Proposition 2.10. Since

u�!

 ];n

! u" in H 1.˝/, we conclude that u" 2 W 1;p.˝/ for each p < 1. In particular, u" 2

C 0;˛.˝/ for every ˛ 2 .0; 1/, and u�!

 ];n

! u" uniformly in ˝ .

To conclude, we proceed as in the proof of Theorem 2.13, Step 1: for a (not relabeled)

subsequence,
�!

 ];n

�
* �!


 " weakly* in W 1;1.0; 1/ for some
�!

 " 2 P.a0; �/, and

lim inf
n!1

E�
" .u�!


 ];n
; �!


 ];n/ > E�
" .u";

�!

 "/ > F �

" .u"/ :

In view of (2.25), we have F
�
" .u"/ D E

�
" .u";

�!

 "/, which shows that .u";

�!

 "/ is a minimizer of

E
�
" in .1 C H 1

0 .˝// � P.a0; �/.
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Proof of Corollary 2.15. Existence of a minimizer of G
�
" is ensured by Theorem 2.13 since

inf G
�
" D min E

�
" . Let us now consider an arbitrary minimizer

�!

 " in P.a0; �/. We first claim

that
�!

 " D .
"

1; : : : ; 
"
N / 2 P2�"

.a0; �/. Assume by contradiction that it does not belongs to

P2�"
.a0; �/. Then we can find i0 2 f1; : : : ; N g, x0 2 � .
"

i0
/, and r > 0 such that

H
1.� .
"

i0
/ \ B.x0; r// > �"r :

By the very definition of G
�
" , we can findeu 2 1 C H 1

0 .˝/ such that

E�
" .eu; �!


 "/ 6 G�
" .�!
 "/ C

ˇi0r

2�"

:

Arguing as in the proof of Lemma 2.5, we may assume that 0 6eu 6 1. Then, by Lemma 2.18 there

exists
�!

 ] 2 P.a0; �/ such that

G�
" .�!
 ]/ 6 E�

" .eu; �!

 ]/ 6 E�

" .eu; �!

 "/ �

ˇi0r

�"

6 G�
" .�!
 "/ �

ˇi0r

2�"

< G�
" .�!
 "/ ;

which contradicts the minimality of
�!

 ".

Since
�!

 " 2 P2�"

.a0; �/, we conclude that G�.�!
 "/ D E
�
" .u�!


 "
; �!


 "/, so that .u�!

 "

; �!

 "/ is

minimizing E
�
" in .1 C H 1

0 .˝// � P.a0; �/. In particular,
�!

 " 2 P�"

.a0; �/ by Theorem 2.13,

and the proof is complete.

3. The case of a general finite measure

3.1 Existence and regularity for a general finite measure

We consider in this subsection an arbitrary (non negative) finite measure � supported in ˝0, and

we fix a base point a0 2 ˝0. We are interested in existence and regularity of solutions of the

minimization problem

min
u21CH 1

0
.˝/\L1.˝/

F �
" .u/ : (3.1)

To pursue those issues, we rely on the results of the previous section. For this, we will need the

following elementary lemma.

Lemma 3.1 Let � be a finite non negative measure supported on ˝0. Then there exists a sequence

of measures f�kgk2N with finite support in ˝0 such that �k

�
* � and spt �k ! spt � in the

Hausdorff sense.

Proof. For k 2 N, we denote by Ck be the standard family of dyadic semi-cubes in R2 of size 2�k ,

i.e.,

Ck WD
n
Q D 2�kz C 2�k

�
Œ0; 1/ � Œ0; 1/

�
W z 2 Z

2
o

:

Then we define C 0
k

WD
˚
Q 2 Ck W Q \ ˝0 6D ;

	
, and for each Q 2 C 0

k
, we choose a point

aQ 2 Q \ ˝0. We set

�k WD
X

Q2C
0
k

�.Q \ ˝0/ıaQ
:
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By construction, �k has finite support, k�kk D k�k, and spt �k � ˝0 \ T2�kC2 .spt �/ where

T2�kC2 .spt �/ denotes the tubular neighborhood of radius 2�kC1 of spt �. Similarly, spt � �

T2�kC2 .spt �k/, and we infer that spt �k ! spt � in the Hausdorff sense.

We now claim that �k

�
* � as measures on ˝0. To prove this claim, let us fix an arbitrary

function ' 2 C 0.˝0/. Then we can find a (non decreasing) modulus of continuity ! W Œ0; 1/ !

Œ0; 1/ satisfying !.t/ ! 0 as t # 0 such that

sup
jx�yj6t

j'.x/ � '.y/j 6 !.t/ :

Now we estimate
ˇ̌
ˇ̌
ˆ

'd�k �

ˆ

'd�

ˇ̌
ˇ̌ 6

X

Q2C
0
k

ˆ

Q\˝0

ˇ̌
'.aQ/ � '.x/

ˇ̌
d� 6 k�k !.2�kC1/ �!

k!1
0 ;

which completes the proof.

Theorem 3.2 The minimization problem (3.1) admits at least one solution.

Proof. We consider the sequence of discrete measures f�kgk2N provided by Lemma 3.1. For each

k 2 N, we consider a solution uk of the minimization problem

min
u21CH 1

0
.˝/

F �k
" .u/ ;

for some base point ak
0 2 ˝0 satisfying ak

0 ! a0. Defining �" by (2.18), by Corollary 2.13

and Theorem 2.12, there exists
�!

 k 2 P�"

.a0; �k/ such that .uk ; �!

 k/ is a minimizing pair of

E
�k
" in .1 C H 1

0 .˝// � P.a0; �k/. In particular, uk is the potential associated to
�!

 k . Since

k�kk is bounded, by Proposition 2.11 the sequence fukgk2N is bounded in C 0;˛.˝/ for every

˛ 2 .0; 1/, and 0 6 uk 6 1. Moreover (" being fixed), choosing a (k-independent) C 1-function to

test the minimality of uk , we infer that F
�k
" .uk/ 6 C for some constant C independent of k. As a

consequence, fukgk2N is bounded in H 1.˝/. Therefore, we can find a (not relabeled) subsequence

such that uk ! u� in C 0;˛.˝/ for every ˛ 2 .0; 1/ and uk * u� weakly in H 1.˝/. Then,

u� 2 1 C H 1
0 .˝/ and

lim inf
k!1

"

ˆ

˝

jruk j2 dx C
1

4"

ˆ

˝

.1 � uk/2 dx > "

ˆ

˝

jru�j2 dx C
1

4"

ˆ

˝

.1 � u�/2 dx : (3.2)

We now claim that the sequence of continuous functions dk W x 7! D.ı" C u2
k
I ak

0 ; x/ converges

uniformly on ˝ to d� W x 7! D.ı" C u2
�I a0; x/. Since kukkL1.˝/ 6 1, each function dk is

.1 C ı"/-Lipschitz continuous. Hence the sequence fdkgk2N is uniformly equicontinuous, and it is

enough to prove that dk converges pointwise to d�. Let us then fix an arbitrary point x 2 ˝ . For


 2 P.a0; x/, we have

dk.x/ 6 D.ı" C u2
k I a0; x/ C .1 C ı"/ja

k
0 � a0j 6

ˆ

� .
/

.ı" C u2
k/ dH

1 C .1 C ı"/ja
k
0 � a0j ;

and we obtain by dominated convergence,

lim sup
k!1

dk.x/ 6

ˆ

� .
/

.ı" C u2
�/ dH

1 :
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Taking the infimum over 
 shows that lim supk dk.x/ 6 d�.x/. On the other hand, if � 2 .0; 1/, we

can find 
k 2 P.ak
0 ; x/ such that

ˆ

� .
k/

.ı" C u2
k/ dH

1
6 dk.x/ C � :

In particular, H
1.� .
k// 6 ı�1

" .dk.x/C�/ 6 C . Since uk ! u� uniformly, we have u2
k

> u2
� ��

whenever k is large enough. For such k’s, we estimate

dk.x/ >

ˆ

� .
k/

.ı" C u2
�/ dH

1 �
�
1 C H

1.� .
k//
�
�

> D.ı" C u2
�I ak

0 ; x/ � C� > d�.x/ � .1 C ı"/ja
k
0 � a0j � C� :

Letting k " 1 and then � # 0, we deduce that lim infk dk.x/ > d�.x/, whence dk.x/ ! d�.x/.

Now, as a consequence of this uniform convergence, we have

ˆ

˝0

D.ı" C u2
k I ak

0 ; x/ d�k �!

ˆ

˝0

D.ı" C u2
�I a0; x/ d� : (3.3)

Gathering (3.2) and (3.3) leads to

lim inf
k!1

F �k
" .uk/ > F �

" .u�/ :

To conclude, we consider an arbitrary ' 2 1 C H 1
0 .˝/ \ L1.˝/. Since

ˇ̌
D.ı" C '2I a0; x/ � D.ı" C '2I ak

0 ; x/
ˇ̌

6 .ı" C k'k2
L1.˝//ja

k
0 � a0j ! 0 ;

we have
´

D.ı" C '2I ak
0 ; x/ d�k !

´

D.ı" C '2I a0; x/ d�, and thus F
�k
" .'/ ! F

�
" .'/. By

minimality of uk , we conclude that

F �
" .u�/ 6 lim inf

k!1
F �k

" .uk/ 6 lim sup
k!1

F �k
" .uk/ 6 lim

k!1
F �k

" .'/ D F �
" .'/ :

Consequently, u� is minimizing F
�
" , and (choosing ' D u�) F

�k
" .uk/ ! F

�
" .u�/. For later use,

we also observe that the lim inf in (3.2) now becomes a limit (in view of (3.3)), and the inequality

turns into an equality, i.e.,

lim
k!1

"

ˆ

˝

jrukj2 dx C
1

4"

ˆ

˝

.1 � uk/2 dx D "

ˆ

˝

jru�j2 dx C
1

4"

ˆ

˝

.1 � u�/2 dx :

From this identity, it classically follows that uk ! u� strongly in H 1.˝/.

Note that the previous proof establishes the existence of a minimizer of F
�
" which turns out to

be in W 1;p.˝/. Our next theorem shows that, in fact, any minimizer shares the same regularity.

Theorem 3.3 Any solution of the minimization problem (3.1) belongs to W 1;p.˝/ for every p < 1

(and in particular to C 0;˛.˝/ for every ˛ 2 .0; 1/).
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Proof. Consider u� a solution of (3.1). First we claim that 0 6 u� 6 1 a.e. in ˝ . Indeed, if this

is not the case, then we consider the competitor Nu WD max.min.u�; 1/; 0/. Arguing as in the proof

of Lemma 2.5, we have D.ı" C . Nu/2I a0; x/ 6 D.ı" C u2
�I a0; x/ for every x 2 ˝ . Then, as in the

proof of Corollary 2.14, it leads to F
�
" . Nu/ < F

�
" .u�/, in contradiction with the minimality of u�.

Now the strategy consists in introducing the modified functionals bF �
" W H 1.˝/ \ L1.˝/ !

Œ0; 1/ defined by

bF �
" .u/ WD F �

" .u/ C
1

4

ˆ

˝

ju � u�j2 dx :

Since u� is minimizing F
�
" , it is also the unique minimizer of bF �

" over 1 C H 1
0 .˝/ \ L1.˝/.

Then we consider the sequence of discrete measures f�kgk2N provided by Lemma 3.1, and the

corresponding functionals bF �k
" W H 1.˝/ \ L1.˝/ ! Œ0; 1/ given by

bF �k
" .u/ WD F �k

" .u/ C
1

4

ˆ

˝

ju � u�j2 dx ;

with base point ak
0 2 spt �k . We aim to address the minimization problems

min
u21CH 1

0
.˝/\L1.˝/

bF �k
" .u/ : (3.4)

We shall prove existence and regularity of minimizers for (3.4) following the main lines of Section

2. More precisely, we will prove that the W 1;p-norm of a constructed minimizer uk of bF �k
" remains

bounded for every p < 1 independently of k (and thus also the C 0;˛-norm for every ˛ 2 .0; 1/).

Assuming that this is indeed the case, we can run the proof of Theorem 3.2 noticing the additional

term ku � u�k2
L2.˝/

is continuous with respect to weak H 1-convergence. In other words, we can

extract from the resulting sequence fukgk2N, a subsequence converging strongly in H 1.˝/ (and in

C 0;˛) to a limiting function u0 2 1 C H 1
0 .˝/ \ L1.˝/ minimizing bF �

" . Since u� is the unique

minimizer of bF �
" over 1 C H 1

0 .˝/ \ L1.˝/, we have u0 D u� and uk ! u�. Finally, since

fukgk2N remains bounded in W 1;p.˝/, it shows that u� 2 W 1;p.˝/ for every p < 1.

Now comes the analysis of problem (3.4):

Step 1: Minimization with prescribed curves. We write

�k D

NkX

iD0

ˇk
i ıak

i
;

with ˇk
i > 0. For

�!

 2 P.ak

0 ; �k/, we consider the functional bE�k
" .�; �!


 / W H 1.˝/ ! Œ0; C1�

defined by

bE�k
" .u; �!


 / WD E�k
" .u; �!


 / C
1

4

ˆ

˝

ju � u�j2 dx ;

where E
�k
" .u; �!


 / is given by (2.2). Then,

bF �k
" .u/ D inf

�!

 2P.ak

0
;�k/

bE�k
" .u; �!


 / 8u 2 H 1.˝/ \ L1.˝/ : (3.5)
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Let us now fix
�!

 2 P�.a0; �k/ for some � > 2. By Lemma 2.3, the minimization problem

min
u21CH 1

0
.˝/

bE�k
" .u; �!


 /

admits a unique solutionbu�!



solving

8
<̂

:̂
�"2�bu�!



D

1

4
.1 �eu�!



/ C

"

4
.u� �bu�!



/ �

"

�"

B�Œ
�!

 �.bu�!



; �/ in H �1.˝/ ;

bu�!



D 1 on @˝ :

In addition, since 0 6 u� 6 1, the truncation argument in the proof of Lemma 2.5 shows that

0 6bu�!



6 1 a.e. in ˝ . As a consequence, ju� �bu�!



j 6 1 a.e. in ˝ . By elliptic regularity, we then

infer thatbu�!



2 C
1;˛
loc

�
˝ n � .�!
 /

�
for every ˛ 2 .0; 1/.

Considering the functionbv WD 1 �bu�!



, we notice that

(
�4"2�bv Cbv 6 " in ˝ n � .

�!

 / ;

0 6bv 6 1 in ˝ :

Then a straightforward modification of Lemma 2.6 shows that

0 6 1 �bu�!



.x0/ 6 " C exp

 
�

3 dist.x0; � .�!
 //

32"

!

at every x0 2 ˝ n � .�!
 / satisfying dist.x0; � .�!
 // > 12". As in Lemma 2.7, this leads to the

gradient estimate

ˇ̌
rbu�!



.x0/

ˇ̌
6 C�0

 
1 C

1

"
exp

 
�

dist.x0; � .
�!

 //

32"

!!
(3.6)

at every x0 2 ˝ n � .�!
 / satisfying dist.x0; � .�!
 // > 13" (with �0 given by Lemma 2.7).

Since ku� � bu�!



kL1.˝/ 6 1, we can reproduce the proof of Proposition 2.10 with minor

modifications to prove thatbu�!



2 W 1;p.˝/ for every 2 < p < 1 together with the estimate

krbu�!



kLp.V32"j log "j/ 6 Cp;�0

�
j log "j

"
C

�k�kk

�""

�
;

where V32"j log "j WD fx 2 ˝ W dist.x; � .�!
 // < 32"j log "jg. On the other hand, (3.6) yields the

estimate jrbu�!



j 6 C�0
on ˝ n V32"j log "j. Therefore,

krbu�!



kLp.˝/ 6 Cp;�0

�
j log "j

"
C

�k�kk

�""

�
for 2 < p < 1 :

Since k�kk is bounded, we have thus proved that kbu�!



kW 1;p.˝/ is bounded independently of k for

each p < 1.
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Step 2: Existence of minimizing pairs. Define �" as in (2.18) and use � D �" above. Then we

notice that Lemma 2.18, Lemma 2.19, and Lemma 2.20 hold with bE�k
" in place of E

�k
" . Hence we

can follow the proof of Theorem 2.13 to find
�!

 k 2 P�"

.ak
0 ; �k/ such that the pair .bu�!


 k
; �!


 k/ is

minimizing bE�k
" over .1 C H 1

0 .˝// � P.ak
0 ; �k/.

Step 3: Conclusion. Set uk WD bu�!

 k

. Since uk 2 L1.˝/, we infer from (3.5) that bF �k
" .uk/ D

bE�k
" .uk ; �!


 k/, and thus uk is minimizing bF �k
" over 1 C H 1

0 .˝/ \ L1.˝/. Finally, it follows from

Step 1 that kukkW 1;p.˝/ is bounded independently of k for every p < 1.

REMARK 3.4 The proof of Theorem 3.3 (together with the results in Section 2.2) shows that any

minimizer u" of F
�
" over 1 C H 1

0 .˝/ \ L1.˝/ satisfies the following estimates

kru"kLp.˝/ 6 Cp;�0

�
j log "j C k�kı�1

" ��1
"

"

�
8p 2 Œ2; 1/ ;

and

ku"kC 0;˛.˝/ 6 C˛;�0

1 C k�kı�1
" ��1

"

"˛
8˛ 2 .0; 1/ ;

for some constants Cp;�0
and C˛;�0

depending only on p, ˛, and �0 (given in Lemma 2.7). Even

if those estimates are not optimal with respect to " (but nearly as p ! 1 or ˛ ! 1), they only

depends on the total mass of �, and not on the internal structure of �.

In view of the uniform estimates above, one can reproduce (verbatim) the proof of Theorem 3.2

to show the following stability result.

Proposition 3.5 Let f�kgk2N be a sequence of finite measures supported on ˝0, and fak
0 gk2N �

˝0. Assume that �k

�
* � as measures and ak

0 ! a0. If uk is a minimizer of F
�k
" with base point

ak
0 over 1 C H 1

0 .˝/ \ L1.˝/, then the sequence fukgk2N admits a (not relabeled) subsequence

converging strongly in H 1.˝/ and in C 0;˛.˝/ for every ˛ 2 .0; 1/ to a minimizer u� of F
�
" with

base point a0 over 1 C H 1
0 .˝/ \ L1.˝/. In addition, F

�k
" .uk/ ! F

�
" .u�/.

3.2 Application to the average distance and optimal compliance problems

In this section, we briefly review and complement two applications suggested in [9]: the average

distance problem and the optimal compliance problem. Concerning the average distance problem,

we refer to [15, 26] and the references therein. For the optimal compliance problem with

connectedness constraint (and its relation with the average distance problem), we refer to [16, 18].

(1) The average distance problem. Given a nonnegative density f 2 L1.˝0/, it consists in finding

a connected compact set K] � ˝0 minimizing the functional

AVD.K/ WD

ˆ

˝0

dist.x; K/f .x/ dx C H
1.K/

among all connected compact subsets K of ˝0.
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(2) The optimal compliance problem. Given a nonnegative f 2 L2.˝0/, it consists in finding a

connected compact set K] � ˝0 minimizing the functional

OPC.K/ WD
1

2

ˆ

˝0

f uK dx C H
1.K/

among all connected and compact subsets K of ˝0 of positive H
1-measure, where uK 2 H 1.˝0/

denotes the unique solution of the minimization problem

min
n1

2

ˆ

˝0

jruj2 dx �

ˆ

˝0

f u dx W u 2 H 1.˝0/ ; u D 0 on K
o

:

Reformulating problems (1) and (2). The starting point in [9] is a suitable reformulation of the

average distance and optimal compliance problems by a duality argument. To describe in detail

these reformulations, we first need to introduced the functional spaces involved. We fix a base point

a0 2 ˝0. Setting M .˝0/, respectively M .˝0IR2/, the space of (finite) R-valued, respectively

R2-valued, measures on R2 supported on ˝0, we consider the following families of (generalized)

vector fields

Vavd.˝0/ WD
n
v 2 M .˝0IR2/ W div v 2 M .˝0/ and div v.˝0/ D 0

o
;

and

Vopc.˝0/ WD
n
v 2 L2.˝0IR2/ W div.�˝0

v/ 2 M .˝0/ and div.�˝0
v/.˝0/ D 0

o
:

For such a vector field v, we associate the (finite) nonnegative measure

�.v/ WD

(
jdiv v C �˝0

f j if v 2 Vavd.˝0/ ;

jdiv.�˝0
v/ C �˝0

f j if v 2 Vopc.˝0/ :

We define the pointed functionals Favd W ˝0 � M .˝0IR2/ ! Œ0; 1� and Fopc W ˝0 �

L2.˝0IR2/ ! Œ0; 1� by

Favd.a0; v/ WD

(
kvk C kdiv vk C S

�
fa0g [ spt �.v/

�
if v 2 Vavd.˝0/ ;

C1 otherwise ;

and

Fopc.a0; v/ WD

8
<
:

1

2

ˆ

˝0

jvj2 dx C kdiv vk C S
�
fa0g [ spt �.v/

�
if v 2 Vopc.˝0/ ;

C1 otherwise ;

where kvk and kdiv vk denote the total mass of v and div v, and

S
�
fa0g [ spt �.v/

�
WD inf

n
H

1.K/ W K � ˝0 compact connected, K � fa0g [ spt �.v/
o

(the infimum being infinite if the class of competitors is empty).
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Following [9, proof of Proposition 5.6], the variational problems

min
a02˝0

�
min

Vavd.˝0/
Favd.v; a0/

�
and min

a02˝0

�
min

Vopc.˝0/
Fopc.v; a0/

�

admit at least one solution .a
]
0; v

]
avd/ and .a

]
0; v

]
opc/, respectively. According to [9, Section 5.1], their

resolution is equivalent to problems (1) and (2), respectively3. As our purpose is not focused on this

equivalent formulation, we only indicate the following implication: if K
]
avd and K

]
opc are compact

connected subsets of ˝0 satisfying

H
1.K

]
avd/ D S

�
fa

]
0g [ spt �.v

]
avd/

�
and H

1.K]
opc/ D S

�
fa

]
0g [ spt �.v]

opc/
�

; (3.7)

then,

AVD.K
]
avd/ D min AVD and OPC.K]

opc/ D min OPC : (3.8)

In other words, K
]
avd and K

]
opc solve problem (1) and problem (2) respectively.

The phase field approximation. The phase field approximation introduced in [9] to solve problem

(1) or (2) consists in replacing the term S
�
fa0g [ spt �.�/

�
in Favd.�; a0/ or Fopc.�; a0/ by the

functional eF �.�/
" defined in (1.4). As explained in the introduction (see also [9, Section 5.4]), the

possible lack of lower semicontinuity of eF �.�/
" prevents one to obtain existence of minimizers for

the resulting phase field functionals.

Here we follow the approach of [9] using the functional F
�.�/
" instead of eF �.�/

" . More precisely,

we consider the functionals F "
avd W ˝0 � M .˝0IR2/ �

�
1 C H 1

0 .˝/ \ L1.˝/
�

! Œ0; 1� and

F "
opc W ˝0 � L2.˝0IR2/ �

�
1 C H 1

0 .˝/ \ L1.˝/
�

! Œ0; 1� given by

F
"
avd.a0; v; u/ WD

(
kvk C kdiv vk C F

�.v/
" .u/ if v 2 Vavd.˝0/ ;

C1 otherwise ;
(3.9)

and

F
"
opc.a0; v; u/ WD

8
<
:

1

2

ˆ

˝0

jvj2 dx C kdiv vk C F �.v/
" .u/ if v 2 Vopc.˝0/ ;

C1 otherwise ;

(3.10)

where a0 is the base point in F
�.v/
" . As a consequence of Theorem 3.2 and Proposition 3.5, we have

the following existence result of minimizers. Their convergence as " ! 0 towards minimizers of

Favd or Fopc (essentially proved in [9]) shall be discussed for completeness in Subsection 4.2.

Theorem 3.6 The functionals F "
avd and F "

opc admit at least one minimizer.

Proof. First notice that, for a 2 ˝0, the competitor .a; 0; 1/ has a finite energy, so that the infimum

of F "
avd and F "

opc are finite. Let us now consider an arbitrary minimizing sequence f.ak
0 ; vk;euk/gk2N

for F "
avd or F "

opc. By Theorem 3.2, we can find for each k 2 N a minimizer uk of F
�.vk /
" with base

point ak
0 over 1 C H 1

0 .˝/ \ L1.˝/. Then, F
�.vk /
" .uk/ 6 F

�.vk /
" .euk/, so that f.ak

0 ; vk; uk/gk2N

is also a minimizing sequence.

3 In the original formulation of [9], one requires a0 2 spt �.v/ in the definition Favd.a0; v/ or Fopc.a0; v/. A quick

inspection of [9, Section 5.1] reveals that this condition can be dropped when considering S
�
fa0g [ spt �.v/

�
instead of

S
�
spt �.v/

�
.
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Case 1: Minimizing F "
avd. Since supk F "

avd.ak
0 ; vk; uk/ < 1, we can find a (not relabeled)

subsequence such that vk

�
* v" and div vk

�
* div v" as measures for some v" 2 Vavd (note that

the divergence free condition is closed under those weak* convergences), and ak
0 ! a"

0 for

some a"
0 2 ˝0. Since �.vk/

�
* �.v"/, we infer from Proposition 3.5 that (up to a further

subsequence) uk ! u" strongly in H 1.˝/ to some minimizer u" of F
�.v"/
" with base point a"

0

over 1 C H 1
0 .˝/ \ L1.˝/, and F

�.vk/
" .uk/ ! F

�.v"/
" .u"/. Since the total variation is lower

semicontinuous with respect to the weak* convergence of measures, we can now deduce that

F
"
avd.a"

0; v"; u"/ 6 lim
k!1

F
"
avd.ak

0 ; vk ; uk/ D inf F
"
avd ;

and .a"
0; v"; u"/ is a minimizer of F "

avd.

Case 2: Minimizing F "
opc. We argue as in Case 1, replacing the weak* convergence of the vk’s by

the weak convergence in L2.˝0/.

REMARK 3.7 If .a"
0; v"; u"/ is a minimizer of F "

avd or F "
opc, then u" is a minimizer of F

�.v"/
" with

base point a"
0 over 1CH 1

0 .˝/\L1.˝/. Therefore, u" 2 W 1;p.˝/ for every p < 1 (in particular,

u" 2 C 0;˛.˝/ for every ˛ 2 .0; 1/). We did not investigate the regularity of the vector field v", and

this question remains essentially open.

4. Asymptotic of minimizers

4.1 Towards the Steiner problem

The objective of this section is to prove Theorem 1.2. We start with elementary comments about the

Steiner problem (1.3). Setting

S .fa0g [ spt �/ WD inf
n
H

1.K/ W K � R
2 compact connected, K � fa0g [ spt �

o
;

one has S .fa0g [ spt �/ < 1 if and only if H
1.spt �/ < 1. In addition, if we denote by �0

the orthogonal projection on the convex set ˝0, then H
1.�0.K// 6 H

1.K/ for any admissible

competitor K � R2, with equality if and only if K in contained in ˝0. Obviously �0.K/ is still an

admissible competitor, and we infer that any solution of the Steiner problem (1.3) is contained ˝0.

Hence,

S .fa0g[spt �/ D min
n
H

1.K/ W K � ˝0 compact connected, K � fa0g[spt �
o

< 1 ; (4.1)

and existence easily follows from Blaschke and Golab theorems (see, e.g., [5, 35]).

The proof of Theorem 1.2 departs from the results in [9]. The first ingredient is the following

lower estimate taken from [9, Lemma 3.1].

Lemma 4.1 ( [9]) Let fvkgk2N � 1 C H 1
0 .˝/ \ C 0.˝/ satisfying 0 6 vk 6 1, and

sup
k2N

�
"k

ˆ

˝

jrvk j2 dx C
1

4"k

ˆ

˝

.1 � vk/2 dx C
1

˛k

ˆ

˝0

D.vk I a0; x/ d�

�
< 1 ; (4.2)
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for some sequence ˛k ! 0 of positive numbers. Assume that the sequence x 7! D.vk I a0; x/

converges uniformly on ˝0 to some function d� W ˝0 ! Œ0; 1/. Then, K� WD fd� D 0g is a

compact connected subset of ˝0 containing fa0g [ spt �, and

H
1.K�/ 6 lim inf

k!1

�
"k

ˆ

˝

jrvk j2 dx C
1

4"k

ˆ

˝

.1 � vk/2 dx

�
: (4.3)

The second ingredient is an explicit construction of a “recovery sequence” showing the

sharpness of the previous lemma. The construction is provided by [9, Lemma 2.8] (see also [3])

that we (slightly) reformulate as

Lemma 4.2 ( [9]) Let K � ˝0 be a compact connected set containing fa0g [ spt � and such that

H
1.K/ < 1. There exists a sequence f'kgk2N � H 1.˝/ \ C 0

c .˝/ satisfying 'k D 1 on K , and

lim sup
k!1

�
"k

ˆ

˝

jr'kj2 dx C
1

4"k

ˆ

˝

j'kj2 dx

�
6 H

1.K/ : (4.4)

REMARK 4.3 As we shall see below, Lemmas 4.1 & 4.2 imply that assumption H
1.spt �/ < 1 is

necessary and sufficient to ensure that the minimum value of F
�
" over 1CH 1

0 .˝/ remains bounded

as " # 0.

Proof of Theorem 1.2. Step 1. As discussed above, our assumption H
1.spt �/ < 1 implies

S .fa0g [ spt �/ < 1. Now, given an arbitrary connected compact set K � ˝0 containing

fa0g[spt � and such that H
1.K/ < 1, we consider the sequence f'kgk2N provided by Lemma 4.2,

and we set vk WD 1 � 'k 2 1 C H 1
0 .˝/ \ C 0.˝/. We claim that

ˆ

˝0

D.ı"k
C v2

kI a0; x/ d� 6 ı"k
H

1.K/k�k : (4.5)

Indeed, since K is connected and H
1.K/ < 1, [5, Theorem 4.4.7] yields the existence for every

x 2 spt � of a curve 
x 2 P.a0; x/ such that � .
x/ � K . Since vk D 0 on K , we deduce that

D.ı"k
C v2

k I a0; x/ 6

ˆ

� .
x/

.ı"k
C v2

k/ dH
1 D ı"k

H
1.� .
x// 6 ı"k

H
1.K/ 8x 2 spt � :

Integrating this inequality with respect to � leads to (4.5). Since ı"k
=�"k

! 0, we infer from (4.4)

and (4.5) that lim supk F
�
"k

.vk/ 6 H
1.K/. On the other hand, F

�
"k

.uk/ 6 F
�
"k

.vk/ by minimality

of uk , and we deduce that lim supk F
�
"k

.uk/ 6 H
1.K/. From the arbitrariness of K and (4.1), we

conclude that

lim sup
k!1

F �
"k

.uk/ 6 S .fa0g [ spt �/ < 1 : (4.6)

Step 2. Since 0 6 uk 6 1, the sequence x 7! D.ı"k
C u2

k
I a0; x/ is a sequence of .1 C ı"k

/-

Lipschitz functions on ˝0, all vanishing at the point a0. By the Arzelà–Ascoli Theorem, we can

find a (not relabeled) subsequence such that x 7! D.ı" C u2
k
I a0; x/ converges uniformly on ˝0 to

some function d� W ˝0 ! Œ0; 1/.

Let us now set ˛k WD �"k
=.2
p

ı"k
/. Since ı"k

D �
ˇ
"k

with ˇ 2 .1; 2/, we have ˛k ! 0.

Noticing that 2
p

ı"k
uk 6 ı"k

C u2
k

, we have 2
p

ı"k
D.uk I a0; x/ 6 D.ı"k

C u2
k
I a0; x/ for every
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x 2 ˝0. In view of (4.6), we conclude that

"k

ˆ

˝

jrukj2 dx C
1

4"k

ˆ

˝

.1 � uk/2 dx C
1

˛k

ˆ

˝0

D.ukI a0; x/ d� 6 F �
"k

.uk/ 6 C ; (4.7)

for some constant C independent of k. By Lemma 4.1, the compact set K� WD fd� D 0g is

connected and contains fa0g [ spt �. Gathering (4.3), (4.6), and (4.7) yields

H
1.K�/ 6 lim inf

k!1
F �

"k
.uk/ 6 lim sup

k!1

F �
"k

.uk/ 6 S .fa0g [ spt �/ :

Therefore, H
1.K�/ D S .fa0g[spt �/ (i.e., K� solves the Steiner problem relative to fa0g[spt �),

and F
�
"k

.uk/ ! H
1.K�/.

Step 3. For a radius r 2 .0; �0=2/ (where �0 is given in Lemma 2.7), we denote by Vr the open

tubular neighborhood of K� of radius r . Since K� � ˝0, we have V r=2 � V r � ˝ . We claim that

for every r 2 .0; �0=2/ there exists k0.r/ 2 N such that for every k > k0.r/,

�"2
k�uk D

1

4
.1 � uk/ in D

0.˝ n V r=2/ : (4.8)

To establish (4.8), we first invoke the continuity of d� to find �r > 0 such that fd� < 3�rg � Vr=2.

Since x 7! D.ı"k
C u2

k
I a0; x/ converges uniformly to d�, we can find k1.r/ 2 N such that

n
x 2 ˝0 W D.ı"k

C u2
k I a0; x/ 6 2�r

o
� fd� < 3�rg � Vr=2 8k > k1.r/ : (4.9)

On the other hand, since x 7! D.ı"k
C u2

k
I a0; x/ converges uniformly to 0 on K� � spt �, we can

find k2.r/ 2 N such that

spt � �
n
x 2 ˝0 W D.ı"k

C u2
k I a0; x/ 6 �r

o
8k > k2.r/ : (4.10)

Set k0.r/ WD max.k1.r/; k2.r//, and let us prove that for k > k0.r/,

for all x 2 spt � and all � 2 .0; �r/ ; there exists 
�
x 2 P.a0; x/ satisfying

� .
�
x / � Vr=2 and

ˆ

� .
�
x /

.ı"k
C u2

k/ dH
1

6 D.ı"k
C u2

kI a0; x/ C � : (4.11)

Obviously, for x 2 spt � and � 2 .0; �r/ given, we can find 
�
x 2 P.a0; x/ satisfying the second

condition, and it suffices to check that � .
�
x / � Vr=2. Fix y 2 � .
�

x /, and consider �y 2 Œ0; 1�

such that 
�
x .�y/ D y. Setting e
y.t/ WD 
�

x .t�y/, we have e
y 2 P.a0; y/ and � .e
y/ � � .
�
x /.

Consequently,

D.ı"k
C u2

k I a0; y/ 6

ˆ

� .e
y/

.ı"k
C u2

k/ dH
1

6

ˆ

� .
�
x /

.ı"k
C u2

k/ dH
1

6 D.ı"k
C u2

kI a0; x/ C �r 6 2�r ;
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by (4.10). In view of (4.9), we have y 2 Vr=2. Hence � .
�
x / � Vr=2, and (4.11) is proved.

From now on, we assume that k > k0.r/. Fix an arbitrary ' 2 D.˝ n V r=2/, t 2 R n f0g, and

set wk WD uk C t'. Since wk D uk in Vr=2, we infer from (4.11) that for every x 2 spt �,

D.ı"k
C w2

kI a0; x/ 6

ˆ

� .
�
x /

.ı"k
C w2

k/ dH
1

D

ˆ

� .
�
x /

.ı"k
C u2

k/ dH
1

6 D.ı"k
C u2

k I a0; x/ C � 8� 2 .0; �r/ :

Letting � # 0 leads to D.ı"k
C w2

k
I a0; x/ 6 D.ı"k

C u2
k
I a0; x/ for every x 2 spt �. Therefore,

ˆ

˝0

D.ı"k
C w2

k I a0; x/ d� 6

ˆ

˝0

D.ı"k
C u2

k I a0; x/ d� : (4.12)

By minimality of uk we have F
�
"k

.wk/ � F
�
"k

.uk/ > 0, and inserting (4.12) in this inequality leads

to

2t"k

ˆ

˝

rukr' dx C
t

2"k

ˆ

˝

.1 � uk/' dx C t2"k

ˆ

˝

jr'j2 dx C
t2

"2

ˆ

˝

j'j2 dx > 0 :

Dividing this inequality by t , and letting t # 0 and t " 0 yields

2"k

ˆ

˝

rukr' dx C
1

2"k

ˆ

˝

.1 � uk/' dx D 0 ;

and (4.8) is proved.

Step 4. Let us fix r 2 .0; �0=2/. From (4.8) and standard elliptic regularity, we infer that uk 2

C 1.˝ n V r=2/ whenever k > k0.r/. Then, arguing as in Lemma 2.6, we derive from (4.8) that for

k > k0.r/,

0 6 1 � uk.x/ 6 exp
�

� Cr="k

�
8x 2 ˝ n V3r=4 ; (4.13)

for some constant Cr > 0 independent of "k . Inserting estimate (4.13) in (4.8), we deduce as in

Lemma 2.7 that for k > k0.r/,

"kjrukj C "2
kjr2uk j 6 Cr;�0

exp
�

� C 0
r="k

�
in ˝ n Vr ;

for some constants Cr;�0
and C 0

r > 0 independent of "k. Hence uk ! 1 in C 2.˝ n Vr /.

Step 5. Let us fix t 2 .0; 1/, and show that fuk 6 tg ! K� in the Hausdorff sense. To this

purpose, we fix a radius r > 0. From Step 4 above, we first deduce that fuk 6 tg � Vr whenever k

is large enough. Before going further, notice that fuk 6 tg 6D ; for k large. Indeed, if fuk 6 tg D ;

for infinitely many k’s, then

ˆ

˝0

D.ı" C u2
k I a0; x/ d� > t2

ˆ

˝0

jx � a0j d� for infinitely many k’s :
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Since spt � is not reduced to fa0g, the right hand side does not vanish, while the left goes to 0 as

k ! 1 by (4.6), a contradiction.

We now denote by W k
r the open tubular neighborhood of fuk 6 tg of radius r . We aim to show

that K� � W k
r for k sufficiently large. Assume by contradiction that for some subsequence fkj g,

we have K� 6� W
kj

r . Then we can find a sequence fxj g � K� such that xj 62 W
kj

r for every j 2 N.

Extracting a subsequence if necessary, we can assume that xj ! x� for some point x� 2 K�.

Since fukj
6 tg � ˝ , by Blaschke’s theorem we can also assume that fukj

6 tg ! St in the

Hausdorff sense for some compact set St . Then dist.x�; St / > r , and we can find j0.r/ 2 N such

that B.x�; r=2/ \ fukj
6 tg D ; for j > j0.r/. We now distinguish two cases.

Case 1. If x� 6D a0, set � WD 1=2 min.r; jx� � a0j/. Then for every 
 2 P.a0; x�/ we can find

t
 2 .0; 1/ such that 
.t
 / 2 @B.x�; �/ and 
.Œt
 ; 1�/ � B.x�; �/. Consequently, for j > j0.r/ we

have
ˆ

� .
/

.ı"kj
C u2

kj
/ dH

1
> t2

H
1
�

.Œt
 ; 1�/

�
> t2� 8
 2 P.a0; x�/ :

In particular D.ı"kj
C u2

kj
I a0; x�/ > t2� for j > j0.r/. Letting j ! 1 yields d�.x�/ > t2�

which contradicts the fact x� 2 K� WD fd� D 0g.

Case 2. Assume that x� D a0. Then the same argument as in Case 1 (applied to x 2 spt � instead

of x�) shows that if j > j0.r/, then

D.ı"kj
C u2

kj
I a0; x/ >

t2

2
min.r; jx � a0j/ 8x 2 spt � :

Since spt � is not reduced to fa0g by assumption, we have for j > j0.r/,

ˆ

˝0

D.ı"kj
C u2

kj
I a0; x/ d� >

t2

2

ˆ

˝0

min.r; jx � a0j/ d� > 0 :

Once again, the left hand side of this inequality goes to 0 as j ! 1 by (4.6), which provides the

desired contradiction.

Step 6. To complete the proof of Theorem 1.2, it only remains to show that d�.x/ D dist.x; K�/.

Since K� WD fd� D 0g, we only have to show this identity for x 62 K�. First, since d� is a 1-

Lipschitz function (as pointwise limite of .1Cı"k
/-Lipschitz functions), we obviously have d�.x/ 6

dist.x; K�/. Now fix a point x 2 ˝0 n K�, an arbitrary � 2
�
0; dist.x; K�/

�
, and an arbitrary

t 2 .0; 1/. We infer from Step 5 that u2
k

> t2 in B.x; �/ for k large enough. Then, arguing as in

Step 5, Case 1, we obtain D.ı"k
C u2

k
I a0; x/ > t2� for k large enough. Letting k ! 1 yields

d�.x/ > t2� . From the arbitrariness of � and t , we conclude that d�.x/ > dist.x; K�/.

REMARK 4.4 In the spirit of Proposition 3.5, one can study the asymptotic behavior of minimizers

of F
�"
" over 1 C H 1

0 .˝/, for some sequence of measures �"

�
* � as " ! 0, and eventually varying

base points a"
0 ! a0. In this general setting, it is necessary to assume that sup"2.0;1/ F

�"
" .u"/ < 1,

where u" denotes a minimizer of F
�"
" over 1 C H 1

0 .˝/. Since [9, Lemma 3.1] actually allows

for such "-dependence in the a priori estimate (4.2), Steps 1 & 2 in the previous proof carry over.

Hence, up to a subsequence, x 7! D.ı" C u2
" I a"

0; x/ converges uniformly on ˝0 as " ! 0 to some
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1-Lipschitz function d�, the compact set K� WD fd� D 0g is connected and fa0g [ spt � � K�.

Then, K� solves the Steiner problem relative to fa0g [ spt �, and F
�"
" .u"/ ! H

1.K�/.

If we assume that

spt �" ! spt � in the Hausdorff sense ; (4.14)

then (all) the other conclusions of Theorem 1.2 remain. The argument follows essentially the same

lines as above. Note that (4.14) includes the case where �" is a discrete approximation of � as in

Lemma 3.1.

On the other hand, if one drops condition (4.14), then Hausdorff convergence of sublevel sets

of minimizers can fail (their Hausdorff limit can be different from any Steiner set relative to fa0g [

spt �). To illustrate this fact, let us consider the following example. Let a0; a1; a2 2 ˝0 be three

distinct points such that a1 2 .a0; a2/, and set �� WD ıa0
C ıa1

C �ıa2
with � 2 Œ0; 1�. For

each � > 0, the segment Œa0; a2� is the unique solution of the Steiner problem (1.3) relative to �� ,

while Œa0; a1� is the unique solution relative to �0. Obviously, ��

�
* �0 as � # 0, but spt �� D

fa0; a1; a2g 6! spt �0 D fa0; a1g. Now, consider two sequences �j # 0 and "n # 0, and for each

.j; n/ 2 N2, a minimizer uj;n 2 1 C H 1
0 .˝/ of F

��j
"n

(with base point a0). By Theorem 1.2,

fun;j 6 1=2g ! Œa0; a2� in the Hausdorff sense as n ! 1 for every j 2 N. Consequently, we can

find a subsequence fnj g such that funj ;j 6 1=2g ! Œa0; a2� in the Hausdorff sense as j ! 1.

4.2 Towards the average distance and optimal compliance problems

In this last subsection, we discuss the asymptotic behavior as " ! 0 of the functionals F "
avd

and F "
opc defined in (3.9) and (3.10), and of their minimizers. For this purpose, it is more

convenient to consider the reduced functionals eF "
avd W ˝0 � M .˝0IR2/ ! Œ0; 1� and eF "

opc W

˝0 � L2.˝0IR2/ ! Œ0; 1� given by

eF "
avd.a0; v/ WD min

u21CH 1
0

.˝/\L1.˝/

F
"
avd.a0; v; u/ ;

and
eF "

opc.a0; v/ WD min
u21CH 1

0
.˝/\L1.˝/

F
"
opc.a0; v; u/ :

By Theorem 3.3, for every .a0; v/ 2 ˝0 � M .˝0IR2/, respectively every .a0; v/ 2 ˝0 �

L2.˝0IR2/, there exists u" D u".a0; v/ 2 1 C H 1
0 .˝/ \ L1.˝/ such that

eF "
avd.a0; v/ D F

"
avd.a0; v; u"/ or eF "

avd.a0; v/ D F
"
opc.a0; v; u"/ :

Assuming that (1.2) holds, Theorem 1.2 and Remark 4.3 then imply that eF "
avd and eF "

opc converge

pointwise as " ! 0 to Favd and Fopc, respectively.

Beyond this pointwise convergence, one can reproduce the proof of [9, Theorem 5.7] (using

assumption (1.2) as in Step 2 of the proof of Theorem 1.2) to show that eF "
avd actually � -converges

to Favd (for the weak*-topology), and eF "
opc � -converges to Fopc (for the weak-topology). In

addition, if f.a"
0; v"/g">0 is a recovery sequence of a configuration .a0; v/ of finite energy,

and eF "
avd.a"

0; v"/ D F "
avd.a"

0; v"; u"/ or eF "
opc.a

"
0; v"/ D F "

opc.a
"
0; v"; u"/, then F

�.v"/
" .u"/ !

S .fa0g [ spt �.v// as " ! 0, and the sequence x 7! D.ı" C u2
" I a"

0; x/ converges uniformly
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on ˝0 to some function d�. The set K� WD fd� D 0g is connected, fa0g [ spt �.v/ � K�, and

H
1.K�/ D S .fa0g [ spt �.v//, see Remark 4.4.

The same consideration applies in case .a"
0; v"; u"/ is a minimizer of either F "

avd or F "
opc.

By � -convergence, .a"
0; v"/ (sub)-converges as " ! 0 to a minimizer .a

]
0; v]/ of Favd or Fopc,

respectively. Consequently, K� D K
]
avd or K� D K

]
opc as in (3.7)–(3.8), i.e., K� solves the average

distance problem or the optimal compliance problem, respectively. To conclude, one may wonder

wether or not the sublevel sets fu" 6 tg Hausdorff converge to K�, as in Theorem 1.2. In view of

Remark 4.4, this question remains quite unclear (and thus open), and it certainly requires a specific

analysis taking full advantage of the minimality of the pair .v"; u"/.
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Zbl1117.49001 MR2150214

14. Buttazzo, G., Giaquinta, M., & Hildebrandt, S., One-Dimensional Variational Problems, Oxford Lecture

Series in Mathematics and its Applications 15, The Clarendon Press, Oxford University Press, New York

(1998). Zbl0915.49001 MR1694383

http://www.emis.de/MATH-item?1098.46001
http://www.ams.org/mathscinet-getitem?mr=2424078
http://www.emis.de/MATH-item?0957.49001
http://www.ams.org/mathscinet-getitem?mr=1857292
http://www.emis.de/MATH-item?0776.49029
http://www.ams.org/mathscinet-getitem?mr=1164940
http://www.emis.de/MATH-item?0722.49020
http://www.ams.org/mathscinet-getitem?mr=1075076
http://www.emis.de/MATH-item?1080.28001
http://www.ams.org/mathscinet-getitem?mr=2039660
http://www.emis.de/MATH-item?0834.35014
http://www.ams.org/mathscinet-getitem?mr=1261720
http://www.emis.de/MATH-item?1367.49037
http://www.ams.org/mathscinet-getitem?mr=3640624
http://arxiv.org/abs/1610.03839
http://www.emis.de/MATH-item?1319.49075
http://www.ams.org/mathscinet-getitem?mr=3337998
http://www.emis.de/MATH-item?0995.74057
http://www.ams.org/mathscinet-getitem?mr=1745759
http://www.emis.de/MATH-item?1176.74018
http://www.ams.org/mathscinet-getitem?mr=2390547
http://www.emis.de/MATH-item?0909.49001
http://www.ams.org/mathscinet-getitem?mr=1651773
http://www.emis.de/MATH-item?1117.49001
http://www.ams.org/mathscinet-getitem?mr=2150214
http://www.emis.de/MATH-item?0915.49001
http://www.ams.org/mathscinet-getitem?mr=1694383


106 M. BONNIVARD, A. LEMENANT AND V. MILLOT

15. Buttazzo, G., Pratelli, A., Solemini, S., & Stepanov, E., Optimal Urban Networks via Mass

Transportation. Springer Lectures Notes in Mathematics 1961 (2009). Zbl1190.90003 MR2469110

16. Buttazzo, G. & Santambrogio, F., Asymptotical compliance optimization for connected networks. Netw.

Heterog. Media 2 (2007), 761–777. Zbl1223.49017 MR2357768

17. Chambolle, A., Merlet, B., & Ferrari, L., A simple phase-field approximation of the Steiner problem in

dimension two. To appear in Adv. Calc. Var.. Preprint arXiv:1609.00519.

18. Chambolle, A., Lamboley, J., Lemenant, A., & Stepanov, E., Regularity for the optimal compliance

problem with length penalization. SIAM J. Math. Anal. 49, (2017), 1166–1224. Zbl06724200 MR3631387

19. De Pauw, T., Lemenant, A., & Millot, V., On sets minimizing their weighted length in uniformly convex

separable Banach spaces. Adv. Math. 305 (2017), 1268–1319. Zbl1364.49058 MR3570159

20. Dondl, P., Lemenant, A., & Wojtowytsch, S., Phase field models for thin elastic structures with topological

constraint, Arch. Ration. Mech. Anal. 223 (2017), 693–736. Zbl1366.35182 MR3590663

21. Evans, L. C. & Gariepy, R. F., Measure Theory and Fine Properties of Functions. Studies in Advanced

Mathematics, CRC Press, Boca Raton FL (1992). Zbl0804.28001 MR1158660

22. Gilbarg, D. & Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Classics in

Mathematics, Springer-Verlag, Berlin (2001). Zbl1042.35002 MR1814364

23. Gurtin, M. E., On a theory of phase transitions with interfacial energy. Arch. Ration. Mech. Anal. 87

(1984), 187–212. MR0768066

24. Ivanov, A. O. & Tuzhilin, A. A., Minimal Networks. The Steiner Problem and its Generalizations. CRC

Press, Boca Raton FL (1994). Zbl0842.90116 MR1271779

25. Karp, R., Reducibility Among Combinatorial Problems. Complexity of Computer Computations, Plenum

Press, (1972). Zbl0366.68041 MR0378476

26. Lemenant, A., A presentation of the average distance minimizing problem. J. Math. Sci. (N.Y.) 181 (2012),

820–836. Zbl1253.49037 MR2870232

27. Lemenant, A. & Santambrogio, F., A Modica–Mortola approximation for the Steiner problem. C. R. Math.

Acad. Sci. Paris 352 (2014), 451–454. Zbl1292.49043 MR3194255

28. Marcellini, P. & Sbordone, C., Semicontinuity problems in the calculus of variations. Nonlinear Anal. 4

(1980), 241–257. Zbl0537.49002 MR0563807

29. Marchese, A. & Massaccesi, A., The Steiner tree problem revisited through rectifiable G-currents. Adv.

Calc. Var. 9 (2016), 19–39. Zbl1334.49143 MR3441080

30. Mattila, P., Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge

studies in advanced mathematics, Cambridge University Press, Cambridge (1995). Zbl0819.28004

MR1014685

31. Meyers, N. G. & Ziemer, W. P., Integral inequalities of Poincaré and Wirtinger type for BV -functions.

Amer. J. of Math. 99 (1977), 1345–1360. Zbl0416.46025 MR0507433

32. Modica, L., The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational

Mech. Anal. 98 (1987), 123–142. Zbl0616.76004 MR0866718

33. Modica, L. & Mortola, S., Un esempio di � -convergenza. Boll. Un. Mat. Ital. B 14 (1977), 285–299.

Zbl0356.49008 MR0445362

34. Mumford, D. & Shah, J., Optimal approximation by piecewise smooth functions and associated

variational problems. Comm. Pure Appl. Math. 17 (1989), 577–685. MR0997568

35. Paolini, E. & Stepanov, E., Existence and regularity results for the Steiner problem. Calc. Var. Partial

Differential Equations 46 (2013), 837–860. Zbl1260.49084 MR3018174

36. Oudet, E. & Santambrogio, F., A Modica–Mortola approximation for branched transport and applications.

Archive for rational mechanics and analysis 201 (2011), 115–142. Zbl1263.49062 MR2807135

37. Ziemer, W. P., Weakly differentiable functions. Graduate Texts in Mathematics, Springer-Verlag, New

York (1989). Zbl0692.46022

http://www.emis.de/MATH-item?1190.90003
http://www.ams.org/mathscinet-getitem?mr=2469110
http://www.emis.de/MATH-item?1223.49017
http://www.ams.org/mathscinet-getitem?mr=2357768
http://arxiv.org/abs/1609.00519
http://www.emis.de/MATH-item?06724200
http://www.ams.org/mathscinet-getitem?mr=3631387
http://www.emis.de/MATH-item?1364.49058
http://www.ams.org/mathscinet-getitem?mr=3570159
http://www.emis.de/MATH-item?1366.35182
http://www.ams.org/mathscinet-getitem?mr=3590663
http://www.emis.de/MATH-item?0804.28001
http://www.ams.org/mathscinet-getitem?mr=1158660
http://www.emis.de/MATH-item?1042.35002
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=0768066
http://www.emis.de/MATH-item?0842.90116
http://www.ams.org/mathscinet-getitem?mr=1271779
http://www.emis.de/MATH-item?0366.68041
http://www.ams.org/mathscinet-getitem?mr=0378476
http://www.emis.de/MATH-item?1253.49037
http://www.ams.org/mathscinet-getitem?mr=2870232
http://www.emis.de/MATH-item?1292.49043
http://www.ams.org/mathscinet-getitem?mr=3194255
http://www.emis.de/MATH-item?0537.49002
http://www.ams.org/mathscinet-getitem?mr=0563807
http://www.emis.de/MATH-item?1334.49143
http://www.ams.org/mathscinet-getitem?mr=3441080
http://www.emis.de/MATH-item?0819.28004
http://www.ams.org/mathscinet-getitem?mr=1014685
http://www.emis.de/MATH-item?0416.46025
http://www.ams.org/mathscinet-getitem?mr=0507433
http://www.emis.de/MATH-item?0616.76004
http://www.ams.org/mathscinet-getitem?mr=0866718
http://www.emis.de/MATH-item?0356.49008
http://www.ams.org/mathscinet-getitem?mr=0445362
http://www.ams.org/mathscinet-getitem?mr=0997568
http://www.emis.de/MATH-item?1260.49084
http://www.ams.org/mathscinet-getitem?mr=3018174
http://www.emis.de/MATH-item?1263.49062
http://www.ams.org/mathscinet-getitem?mr=2807135
http://www.emis.de/MATH-item?0692.46022

	Introduction
	Existence and regularity for measures with finite support
	The precise representative of a Lebesgue function
	The minimization problem with prescribed curves
	Existence and regularity of minimizing pairs

	The case of a general finite measure
	Existence and regularity for a general finite measure
	Application to the average distance and optimal compliance problems

	Asymptotic of minimizers
	Towards the Steiner problem
	Towards the average distance and optimal compliance problems


