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In this article, we consider and analyse a variant of a functional originally introduced in [9, 27] to
approximate the (geometric) planar Steiner problem. This functional depends on a small parameter
¢ > 0 and resembles the (scalar) Ginzburg-Landau functional from phase transitions. In a first part,
we prove existence and regularity of minimizers for this functional. Then we provide a detailed
analysis of their behavior as ¢ — 0, showing in particular that sublevel sets Hausdorff converge to
optimal Steiner sets. Applications to the average distance problem and optimal compliance are also
discussed.
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1. Introduction

In its simplest version, the original (planar) Steiner problem consists in finding, for a given collection
of points ag,...,an € R2 a compact connected set K C R2 containing all the ag;’s and having
minimal length, see, e.g., [24]. From the geometric analysis point of view, the Steiner problem
can be seen as the one dimensional version of the (unoriented) Plateau problem, which consists in
finding an (unoriented) surface of least area spanning a given boundary. Solutions to the Steiner
problem exist and are usually not unique. However, every solution consists of a finite tree made
of straight segments joining by number of three with 120° angles. This rigid structure allows one
to reduce the Steiner problem to a discrete problem, but finding an exact solution is known to be
computationally very hard: it belongs to the original list of NP-complete problems proposed by
Karp [25]. And, obviously, the discrete approach is unadapted if one considers a perturbed version
of the problem as it may arise in some models from continuum mechanics. These facts motivate the
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development of specific analytic/geometric tools, and more precisely of approximation procedures
that can be numerically implemented.

Concerning minimal boundaries (boundaries of least area), the typical oriented Plateau problem,
such approximations are well known by now, the most common ones being the so-called phase
field approximations. They usually rely on the minimization of an energy functional based on the
van der Waals-Cahn-Hilliard theory for phase transitions (see, e.g., [23, 32, 33]), explaining the
terminology. Applications of phase field methods to unoriented problems are more recent. The
first one might be the Ambrosio-Tortorelli method [3, 4] used to approximate the Mumford-Shah
functional from image segmentation [34]. Nowadays, the Mumford-Shah functional receives a lot
of interest from the materials science community, and the Ambrosio-Tortorelli approximation is, for
instance, heavily used to simulate crack propagation in elastic solids [10, 11]. We may refer to the
monograph [12] for a detailed exposition on approximation methods for free discontinuity problems
and their applications.

For a long time, no phase field methods (for unoriented Plateau type problems) were designed
to include topological constraints such as connectedness. Only recently such a method has been
suggested, first in [27], and then in [9], to approximate the planar Steiner problem and/or related
minimization problems involving the length of connected sets. In [20] the same approach has
been successfully implemented (theoretically and numerically) to approximate the Willmore energy
of connected curves or surfaces. At the time of completion of this paper, two alternative (but
complementary) methods to solve the Steiner problem appeared as preprints [8, 17]. The approach
in [8] relies on the recent reformulation of the classical Steiner problem in terms of rectifiable
I-currents with coefficients in a suitable normed group [29]. The I'-convergence result of [17]
resembles in a sense the one in [36] for the branched transport problem. In both papers [8, 17], the
method seems to be restricted to the classical Steiner problem (i.e., with finitely many source points
to connect), which is not the case here.

The main objective of this article is to complement the analysis initiated in [9, 27] in the
following way. Although the I'-convergence result of [9, 27] proves that “some approximate
minimization problems” indeed approximate the Steiner problem (or variants), existence of
minimizers for the underlying functionals cannot be proved (at least easily), nor qualitative
properties of “almost” minimizers. This is essentially due to the analytical complexity in the
construction of those functionals. Here we introduce a tiny variant of [9, 27] with great benefits.
In few words, we are able to prove for a modified functional existence and regularity of minimizers,
as well as a more precise description of their behavior in the singular limit. Before going further, let
us describe our results in detail.

Consider a bounded and convex open set 20 € R2. Given a nonnegative Borel measurable
function w : 29 — [0, 00), we define the (generalized) geodesic distance between two points
a,b € Q2 relative to the conformal metric w to be

I':a~b

D(w;a,b) := inf / wdR! €0, +o0],
r

where I" : a ~» b means that I is a rectifiable curve in £2¢ of finite length connecting a and b (i.e.,
I a Lipschitz image of [0, 1] contained in £2¢ running from a to b).

We fix a positive finite measure y supported on £, a base point ag € £, and a bounded
smooth open set 2 C R? such that 2y C £2. For a given set of parameters ¢, 1,8, € (0, 1), we
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consider the functional F/* : H1(£2) N L®(£2) — [0, +-00) defined by
1 1
Fl(u) = e/ [Vul?>dx + —/ (u—1)%dx + —/ D(8 + u*; a0, x) du,
2 de Jo Ae J 2o

where, in the D-term, §; + u? denotes the precise representative of the Sobolev function §, +
u? € WhH(£2) N L°°(£2). In this way, the value of D(8; + u?;ao. x) only depends on ag, x,
and the equivalence class of §, + u?. Moreover, the function x — D(8; + u?;ao. x) turns out to
be (8 + |lu|| %OO(Q))-Lipschitz continuous (see Remark 2.1), so that F/* is well defined (or more
precisely, its last term).

We are interested in the minimization problem

1min Fl(u). (1.1)
uel+HL(2)NL®(2)

Our first main result deals with existence and regularity of solutions.

Theorem 1.1 Problem (1.1) admits at least one solution. In addition, any solution u, belongs to
WP (82) for every p < oo (in particular, us € C%%(R2) for every a € (0,1)), and 0 < u < 1.

Let us mention that the regularity above is essentially sharp in the sense that u, is in general not
Lipschitz continuous globally in £2 (see Remarks 2.12 & 2.17). In the case where spt u is finite, we
shall see that u, is in fact C% away from finitely many C 1*-curves connecting aq to spt i (given
by minimizing geodesics for the distance D(8; + u?)).

We now describe the asymptotic behavior of minimizers of F/* as & — 0. For this issue, we
shall assume (for simplicity) that the two parameters A, and §, satisfy the following relation:

AE—EO and §, = Asﬂ for some B € (1,2). (1.2)
e—

Provided that ¥!(spty) < oo, our second main result shows that sublevel sets of minimizers
converge to a solution of the generalized Steiner problem (see [35])

min {9{1 (K) : K € R? compact and connected, K D {ao} U spt,u} . (1.3)

Note that for u = va=o 84; and some distinct points a; € 20, problem (1.3) coincides with the
classical Steiner problem described previously.

Theorem 1.2 Assume that spt i is not reduced to {ao} and that ®' (spt 1) < oo. Assume also that
(1.2) holds. Let €y | 0 and {ug}reny S 1+ H(} (£2) be such that

F'(uy) = min F!" foreachk € N.
o 1+H (@)

There exist a (not relabeled) subsequence and a compact connected set K. C Q0 such that
{ur <t} - K in the Hausdorff sense for every t € (0, 1). In addition, K« solves the Steiner
problem (1.3) relative to {ao} U spt i, and the following holds:

(i) F&(ug) > RU(Ky): .
(ii) D(8e, + uZ:ao. x) — dist(x, Ky) uniformly on 2o;
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(iii) ux — 1in C2.(2 \ Ky).

loc

In proving this theorem, we make use of the main result in [9, 27] that we now briefly present.
The original functional introduced in [9, 27] is (essentially) F& : 1 + Hg (£2) N C%(2) — [0, 00)
given by

_ 8/|Vu|2dx+i/(l—u)zdx—ki D(u;a9,x)du if0<u<l,
Fl(u) = 2 4e o re J2o
400 otherwise .
" 1.4)

As explained [9, Section 5.4], the possible lack of lower semicontinuity of F% prevents one to prove
existence of minimizers (at least easily — and existence is still unknown'). The main result of [9, 27]
is of I'-convergence nature, and shows the two following facts: (/) if a sequence {v.} satisfies
Fé’“(vg) = O(1), then x — D(v,;ap, x) (sub-)converges uniformly as & — 0 to some function d,
{d, = 0} is a compact connected set containing {ao} Uspt i, and ®! ({d« = 0}) < liminf, Fé’“(vg);
(2) for every compact connected set K containing {ao} U spt i, there exists a sequence {w,} of
functions of finite Fg -energy satisfying lim sup, F§'(w) < ®'(K). In particular, if the sequence
{ve} is “almost” minimizing in the sense that F'% (v;) —inf F4 = o(1), then the set {d, = 0} solves
the Steiner problem (1.3), and F(ve) > ®!({ds = 0}).

In conclusion, the main contribution of Theorem 1.2 is the Hausdorff convergence of the
sublevel sets {u; < ¢}, the convergence estimate away from the limiting Steiner set, and the
identification of the limiting function d.. Compare to F%, this is made possible by introducing the
additional parameter 8, and replacing u by u? in the D-term. The parameter §,, already suggested
in [9], can be seen as an elliptic regularisation term. In turn, the term u? is the key new ingredient
which allows to get a linear elliptic equation for u, (at least if sptu is finite). A large part of
the arguments used to prove both Theorem 1.1 and Theorem 1.2 rests on this equation and rather
classical linear estimates. As in [9], the convexity of §2¢ is used to recover the Steiner problem in the
whole plane (see the discussion at the beginning of Section 4), and the introduction of the “safety
zone” 22\ £2¢ (not present in [9]) is just a convenient way to avoid boundary effects, and has no
other importance. Finally, we impose relation (1.2) between A, and &, for the following reason: on
one hand the condition §; = 0(A.) is necessary to derive the Steiner problem in the limit; on the
other hand the condition Ag = 0(8,) allows us to use [9] in a straightforward way, even if it is
probably unnecessary.

We close this introduction mentioning a possible continuation of our work: the minimization
of a discretized version of F/* based on finite ®!-elements for instance. A special attention should
be devoted on how to handle the D-term in such discrete framework. Using the material of this
paper, one should be able to determine explicit estimates on the grid size in terms of ¢ to ensure the
convergence of discrete minimizers to Steiner sets, in the spirit of Theorem 1.2.

This paper is organized as follows. In Section 2, we consider the case where u has a finite
support. We start establishing a priori estimates leading to existence and (as a byproduct) regularity
of minimizers (see Corollary 2.14). The case of a general measure u is treated in Section 3
through an approximation argument using finitely supported measures. In Subsection 3.2, we apply
our existence theory for F/' to prove existence of minimizers for functionals introduced in [9]

! We learned from Dorin Bucur that the recent preprint [7] contains results solving some lower semicontinuity issues in
a similar direction.
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(and accordingly modified here) to approximate the average distance and compliance problems.
Theorem 1.2 is finally proved in Section 4.

Notation. We denote by B(x, r) aball of radius r centered at a point x. In case x = 0, we simply
write B, instead of B(0, r). For a (possibly vector valued) measure p on §2, we denote by |u| its
total variation measure, and by || u|| its total mass (i.e., ||| := ||(§2)). The support of w is written
spt ;u. Card(A) stands for the cardinal of a set A. Finally, V and V2 denote the gradient and Hessian
operators respectively.

2. Existence and regularity for measures with finite support

Throughout this section, we assume that the measure p has finite support, i.e.,

N
="y Bida, 2.1)

i=1

f_or some distinct points aj,...,ay € 2, and coefficients Bi > 0. We fix a base point ap €
£2¢ (possibly equal to one of the a;’s), and to the resulting collection of points, we associate the
following space of Lipschitz curves

Plao. 1) i={¥ = )y i € Plavan)),
where we have set
P(a,b) = {)/ e Lip([0, 1];220) : y(0) = a and y(1) = b} .
We endow Z(ayp, jt) with the topology of uniform convergence. In this way, &?(ao, i) appears to

be a subset of the complete metric space [C°([0, 1]; £20)]. For ¥ € P(ay. i), we write

N
) =y(0.1) and I'(¥):=[](0.1]).

i=1

For a given Y € P(ao, ), we consider the functional EX (-, 7) : H'(£2) — [0, +00] defined by

N
1 1

E*(u, = Vul*d —/ —1)2d — i/

v Fyime [ uldxs oo [ 1axs Y08 |

i=1 (i

(s +u?)dr', (2.2
)

where each term [ F(y_)(&g +u?)dR! is understood as the integration of the precise representative
1

of 8¢ 4+ u? with respect to the measure ®!' L I"(y;), see Section 2.1 below.
By the very definition of F{*, the functional E2 relates to F* through the formula
Fru)= inf Efu.y) VYueHY(2)NL®R). (2.3)
¥ €2(ao.n)

As we shall see, this identity is the key ingredient to investigate existence and regularity of
minimizers of F/*. In the same spirit, we also consider the functional GY : P (ag, ) — [0, +00)
defined by
GH¥):= inf EMu,Y), (2.4)
uel+HJ ()

and prove existence of minimizers.
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2.1 The precise representative of a Lebesgue function

The object of this subsection is to summarize some basic facts concerning the precise representative
of a function, and their implications for the generalized geodesic distance. In doing so, we consider

an open set U € R”. Forv € LIIOC(U ), the value of the precise representative of v at x € U is

defined by
. lim][ v(y)dy if the limit exists ,
v (x) i= 140 B
0 otherwise .

The pointwise defined function v* only depends on the equivalence class of v, and v* = v a.e. in
U. In turn, we say that v has an approximate limit at x if there exists # € R such that

lim lv(y) —t|dy =0. (2.5)
r{0 B(x,r)

The set Sy, of points where this property fails is called the approximate discontinuity set. It is a £"-
negligible Borel set, and for x € U the value ¢ determined by (2.5) is equal to v*(x). In addition,
the Borel function v* : £ \ S, — R is approximately continuous at every point x € U \ Sy (see,
e.g., [2, Section 3.6] and [21, Section 1.7.2]).

We shall make use of the following elementary properties:

(i) if vy < vy ae.in U, then vy (x) < v5(x) forevery x € U \ (Sy, U Sy,);
(i) if f : R — R is a Lipschitz function and w := f o v, then Sy, € Sy and w*(x) = f(v*(x))
forevery x € £2\ Sy.

Finally, by standard results on BV -functions (see [2, Section 3.7]), we have R”_I(Sv) =0
whenever v € Wl’l(U).

loc

Convention. In what follows, we may write v instead of v* if it is clear from the context.

REMARK 2.1 For a nonnegative v € Wl’l(U) NL*>®(U),onehas 0 < v*(x) < ||v||reo(w) at every

loc

point x € U \ Sy, as a consequence of (i) above. If n = 2, then ®'(S,) = 0, and hence
0 [ vdh' < Polmay®! (1)
for every rectifiable curve I' C U C R2. Asa consequence, if U is assumed to be convex, one has
0 < D(v;a,b) := in;ib/r vd®! < lvllLoe@yla — b Ya,b € U,

where the infimum is taken over all rectifiable curves I" € U running from a to b. It is then
customary to prove that the function x — D(v; a, x) is ||v||reo(y)-Lipschitz continuous.

REMARK 2.2 In R” with n = 3, the distance type function D(v; -, -) relative to a Sobolev function
v can be defined provided that v € Wlic’,p(U) with p > n — 1 (to ensure that ¥!(S,) = 0, see,
e.g., [21]). This is the main reason why we restrict ourselves to the two dimensional setting.
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2.2 The minimization problem with prescribed curves
In this subsection, we investigate the minimization problem

min  EFu, ) (2.6)
uel+H} (2)

for a prescribed set of curves Y satisfying a mild regularity constraint: we shall assume that it
belongs to
Palag, pn) = {7 € P(ag, ) : Al(I'(yi)) < A for each i},

for a given constant A > 2, where we have set

UK N B(x,r))

Al(I()::sup{ .r>0,xEK} for a closed set K € R? .

r

In this context, we establish existence and uniqueness of the solution, as well as regularity estimates.
The introduction of this regularity constraint is motivated by the following lemma, consequence of
a classical result due to N. G. Meyers & W.P. Ziemer [31]. In its statement, and according to our
convention, an integral over a curve of a Sobolev function is understood as the integral of its precise
representative.

Lemma 2.3 If ¥ € P a(ao, i), then the functional

N
Bu[V]: (u,v) e HY(2)x H'(2) — Z,B,-/ uvd®!

i=1 I'(yi)
defines a symmetric, nonnegative, and continuous bilinear form on H'(82) satisfying
—>
|B.I[7]| < Cellplla,
for some constant Cg depending only on 2.

Proof. Step I. Fora giveni € {1,..., N}, we consider the finite measure on R? defined by p; :=
KIL I'(y;). Let x € R? and r > 0 such that I'(y;) N B(x,r) # @. Choose a point z € I'(y;) N
B(x,r), and notice that I"(y;) N B(x,r) € I'(y;) N B(z,2r). Then,
wi(B(x,r)) < wi(B(z.2r)) < 2rAl(I (yi)),
which shows that
i (B(x,r))
r

sup r>0, xeR?Y <24,

Since W11 (R?)-functions are approximately continuous ¥ !-a.e. in R?, we can apply [37, Theorem
5.12.4] (see also [31, Theorem 4.7]) to infer that w € L!(u;) for every w € W11 (R?) (or more
precisely, w* € L(u;)), with the estimate”

/ |w|d X! :/ |w]| du; sCA/ [Vw|dx, 2.7
I'(yi) R2 R2

for some universal constant C > 0.

2 This estimate is implicitly written in the statement of [37, Theorem 5.12.4] or [31, Theorem 4.7]. The announced
inequality is however explicit in their proof.
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Step 2. Letu € HY(2) — u € H'(R?) be a continuous linear extension operator (whose
existence is ensured by the smoothness of £2). Note that for u,v € H!(£2), we have uiv €
WLL(R?). Since Y ; fi = w(2) = ||u|., it follows from Step 1 that uv € L'(u;) for each
i €{l,..., N} (or more precisely, (itv)* € L'(u;)), and

[BuF 00| < Cllula [ VG ax
< CllpllAllel g2y V] g2y < CallllAllullgr@)llvliz ) -
which completes the proof. o

Given ¥ € P 4(ao, j), we now rewrite for u € H'(£2),

R | 1 8 &
B ) = [ VuPdx o+ o [ @17 dx 5Bl + 5 Y ARG,

i=1

By the previous lemma, Eé’“(u,7) < oo for every u € HY82), and EF(-, ) is lower
semicontinuous with respect to the weak convergence in H!(£2). Owing to the strict convexity
of the functional EX(-,¥), we conclude to the following

Theorem 2.4 Given ¥ € P 4(ag, j1), problem (2.6) admits a unique solution Uy

For 7) € Za(ao, 1), we shall refer to U as the potential of 7 It satisfies the Euler—Lagrange
equation

2 _ € p |
—e duy = (I—ugp)— A_EBM[}’ (5. in H(2), 28)
up =1 on 052 .

Our next objective is to obtain some regularity estimates on Uz with explicit dependence on the
parameters. We start with an elementary lemma.

Lemma 2.5 Let ¥ € P 4(ao, 1). The potential U3 satisfies 0 < Uy < 1 a.e. in $2, and Uy €
C®(2\ L))

Proof. Let us first prove that 0 < u— < 1 a.e. in §2. To this purpose, we consider the Lipschitz
function f(¢) := max(min(z, 1),0), and the competitor v := f o u. Itis a classical fact that

v e l+ H}(£2), and |Vv| < |Vu| ae. in £2. Since uz7 belongs to W11(£2), we also have

fo uz? € WH1(£2). Noticing that v2 < f o uz? a.e. in §2, we derive that
WH*(x) < (fo uz?)*(x) = f((uz?)*(x)) < (u27)*(x) forevery x € 2\ (S,2US,2 ).
b4

Consequently, (v?)* < (u27)* ¥ l-ae.in £, so that BM[7](U, v) < BM[7](u7>, u?)

From this discussion, we easily infer that EX (v, ) < Eﬁ(u?,7) with strict inequality
if {v # u?} has a non vanishing Lebesgue measure. Hence the conclusion follows from the
minimality of U3
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Now we observe that u5 € H'(£2) N L*(£2) satisfies
1
2 = (1 — y— : / ve
—e*Auy = 4(1 uz) in7'(2\rwy)).

From this enttion, the boundary condition in (2.8), and the smoothness of 92, we conclude that
Uy € C °°(.Q \ F(7)) by means of the standard elliptic regularity theory for bounded weak

solutions (see, e.g., [22]). O
Lemma 2.6 Let ¥ € P 4(ao. j1). At every xo € 2 \ I'(¥) satisfying dist(xo, I'(¥)) = 12¢, we
have
3 dist(xo, I'(¥))
01— u?(xo) < exp (—T .
Proof. Set R := %dist(xo, F(7)) > 9¢. We consider the function v := 1 — Uy which satisfies

0 < v <1 and solves
—482Av+v =0 inB(xo,R)N K,

v=0 on B(xo, R) N 052
Now we introduce the function
) |x — xo|?> — R?
wlx) =exp| —————— ) .
P 8eR

As in [6, Lemma 2], our choice of R implies that w satisfies

—482Aw +® =0 in B(xo, R) N 2,
w=1 on dB(x¢, R) N 2,
w=0 on B(xg, R) N 0L2.
Then we infer from the maximum principle that v < w in B(xg, R) N £2. Evaluating this inequality
at xo leads to the announced inequality. O
We now provide some pointwise estimates for the first and second derivatives of Uy

Lemma 2.7 Let ¥ € P4(ao, ). At every xo € 2 \ I'(¥) satisfying dist(xo, I'(¥)) = 13¢, we
have

C dist(xo, I'(¥
g « A28 ).
e 32¢

and

C di r
iv2u7(x0)| < %exp (_ ISt(-x07 ()’))) ,
£

32e

for some constant Cy, depending only on §2 and 1, := min {dist(z, 20):z€ 3.Q} > 0.

Proof. Step 1 (Interior estimates). We assume in this step that B(xo, &) C 2. Define for x € By,
the function w, 1= 1 — u?(xo + &x). Then, w, solves

1
—Awe = ng in B; . 2.9)
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By Lemma 2.6, we have for every x € By,

: - . —
0 < we(x) < exp (_3d1st(xo +£x,F()’))> < Cexp (_M) .

32e 32e

Then we infer from (2.9) and [22, Theorem 3.9] that

3dist(xo, I'(¥))
[Vwe(x)] < C [lwellLoo(a,) < C exp (—# Vx € By (2.10)
By linearity of the equation, the gradient vector Vw, satisfies —A(Vw,) = 1/4Vw, in B;.

Applying again [22, Theorem 3.9] to each component of Vw, in the smaller ball By,,, we deduce
from (2.10) that

3dist(xg, I v
|V2U)Q(X)| < C”Vwe”LOO(B]/z) <C exp (—%) Vx e Bl/4 .

Noticing that |Vwe(0)| = | Vu(xo)| and |VZw,(0)| = £2|V?u(xo)|, the conclusion follows.

Step 2 (Boundary estimates). Let £2; C £2 be a smooth and convex open set such that 2o C £2;
and min{dist(z, 382 U 382¢) : z € 3821} = n,/4. Consider the smooth open set U := 2 \ £2;, and
the function v : U — R givenby v := 1 — u- . Then v satisfies —Av = (1/4>)vinU,andv = 0
on 9£2. On the other hand, Lemma 2.6 and Step 1 imply that

1 oo () + Mo
2 [vlizeo@y + Ivllcriag,) < Cnyexp (_@) )
From [22, Theorem 8.33] we deduce that

1 Mo
8_2||U||C‘(U) < Gy, exp (_TSg) :

Setting Vy,, := {x € £2 : dist(x, d§2) < no/5}, [22, Theorem 4.12] now implies

Mo
[Vllc2v) < Cao exp (~ 130 -

This last estimate leads to the conclusion since dist(xo, I'(¥)) = 1o/4 for every xo € Vy, . O

Lemma 2.8 Let Y € P4(ao., |1). At every xo € 2 \ I'(¥) satisfying dist(xo, I'(¥)) < 13¢, we

have
Cay

Vu-(x { —
[V (o) dist(xo, I'(7))
and

C'IO
dis?(xo, ['(¥))

for some constant Cy, depending only on $2 and 1 (given in Lemma 2.7).

|V2u=(xo)| <
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Proof. By Lemma 2.7, we can assume that ¢ < 1,/26. Then dist(xo, d§2) > 5,/2, and setting
R := dist(xo, I'(¥)) < 13¢, we have B(xo, R) C 2.

Since —Au7 = 1/(4e>)(1 — u7) in B(xg,R) and 0 < u < 1, we deduce from [6,
Lemma A.1] that for x € B(xo, R/2),

11 —u=llrooBxo,R) U= llLoo(B(x0,R)) C
2 7 0, 7 0
[Vus ()" < C ( 2 M p— e llzoe (Bxo.RY < 53 -

for some universal constant C. Now, the gradient vector field Vu7 satisfies the equation
1 .
—A(Vu7) = —4—82Vu7 in B(xg, R),

and ||VM7>||L00(B(XO’R/2)) < CR™'. Applying again [6, Lemma A.1] in B(xo, R/2) to each
component of Vu7 leads to

C

1 1
2 2 2
Vs o)l < € (35 + 7 ) 193 ot mran < -

and the proof is complete. o
Lemma 2.9 Let 7) € P(ao, b). For every p > 0, there exists a finite covering of[‘(?) by closed
balls {Bj(x;, p)}jes with x; € I'(¥') such that

Card(J) < max { min {5%!(I"(%))p ™", 25diam(I"(3))?p 2}, 1} .
In particular,

£2<{x e R? - dist(x, ['(7)) < p}) < max {20n9£1(r(7))p, 47tp2}.

Proof. If p = diam(I"(¥)), then we can cover I'(¥) with the single ball B(ag, p), and the
announced estimates become trivial. Hence we can assume that p < diam(I” (¥)). By compactness
of I'(¥), we can cover I"() with a finite collection of closed balls {B(xj,p/S)}j€7 such that

x; er (7) By the Sr-covering theorem (see for instance [30]), we can find a subset J C 7 such
that B(x;, p/5) N B(x;,p/5) = @ifi # j withi, j € J, and

r) c|JBw,.n.
jeJ
In particular,
U B.0/5 < {x e R? : dist(x, I'(¥)) < p} < |JB.20).
jeJ jeJ

so that
%pz Card(J) < £2<{x € R? i dist(x, I'(¥)) < p}) < 4mp® Card(J) .
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From the first inequality, we easily deduce that Card(J) < 25diam(I"())%p 2.
Next we claim that for each j € J,

®Y(C(P) N B(xj,p/5) = p/5. (2.11)

Note that this estimate leads to the announced result since

®(r() = D> % (r'(¥) N B(x;.p/5) = Card(J)p/5.
jeJ

To prove (2.11), we argue as follows. Since p < diam(]"(?)), there exists a point y; € 1"(7)) \
B(xj, p/5). On the other hand, the set I'(¥) is arcwise connected since y; (0) = aqo for each

i €{l,...,N}. Hence, we can find a continuous path £ : [0, 1] — I'() such that £(0) = xj and
£(1) = y;. Set

ty = sup {t :t €[0,1] and £(s) € B(x;, p/5) for every s € [0, t]} .
By continuity of £, we have £(tx) € 0B(xj, p/5). Consequently,
R (F(F) N B(xy.p/9) = K (€(0. 1)) = [E(t) — LO)] = p/5,
which completes the proof. O

We are now ready to prove the following higher integrability estimate, with explicit control with
respect to the parameters. Here, the main point is the uniformity of the estimate with respect to
w/ el

Proposition 2.10 If Y € P (ao, j1), then uy € WP (82) for every 2 < p < oo, and

1V2 ooy
. 1 1/p (|loge|tt1/P
< CP"IO max {mm {RI(F(?)),m},€|IOg8|} (8171/17
Allpll[loge|'/
A’&‘gl*l/l’ ’

for some constant Cp y, depending only on p, §2, and 9, (given in Lemma 2.7).

Proof. Step I. Replacing A; by A¢/| | and w by p/||n]l, we may assume that ||| = 1. Without
loss of generality, we can also assume that ¢|loge| < 5,/256. Let us fix some point xo € £2¢ and
0 < p < no/4. Let T, € Z'(R?) be the distribution defined by

N
T, = i
(Tp. 0) §ﬁ /F(m

where 9, (x) := p((x — x0)/p) and ¢ € C°(R).
By Lemma 2.5 and (2.7), for every ¢ € C2°(B>) we have

el < X8

i=1 I'(yi)

U 9o dr' = B;LW](“;’, @p) -

lppl d B! < CA/

|V(pp|dx=CAp/ |Vo|dx.
B(x0,2p) B(0,2)
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Then we infer from Holder’s inequality that
(Tp. 9| < CApIIVQlLas,) VYo € CF(B2). ¥1<q<2.
Therefore T, € W ~17(B,) with
I Tollw—1.»(B,) < CAp

forevery 2 < p < oo.
Step 2. We need to distinguish the two cases p = 3 and 2 < p < 3.

Case 1. First assume that 3 < p < oco. By our choice of p, we have B(xo,2p) € £2. As a
consequence of Step 1, there exists a vector field f € L?(By; R?) such that div f = T}, in 2'(B,)
and satisfying

Co M N Tollw=1.08y) < If o Byim2) < Coll Tpllw—1.0(By)

(see, e.g., [1, Sections 3.7 to 3.14]). By classical elliptic theory (see, e.g., [22, Theorem 9.15 and
Lemma 9.17], there exists a (unique) solution § € W22 (By; R?) N Wol’p(Bz; R?) of

—Af = f inB,,
£=0 on 0By ,

satisfying the estimate

1&lw2.r(By:r2) < Coll fllLr(Byr2) < CpAp,

thanks to Step 1.
Now we define v, := divé € WP (B,) which satisfies

—Av, =T, in%'(By), 2.12)

together with the estimate
”UP”WIJ’(Bz) < CpAp (2]3)

Notice that, by the Sobolev embedding Theorem, v, € L*°(B>) and
vollLoe(By) < Cpllvpllwr.r(s,) < Cplp. (2.14)

Case 2. For2 < p < 3, we consider the function v, as defined in Case 1 for p = 3.
To summarize this step, we have thus constructed for an arbitrary exponant p € [2,00), a
function v, € WP (By) N L*(By) solving (2.12) and satisfying estimates (2.13) and (2.14).

Step 3. Let us now fix an arbitrary exponant 2 < p < oo. We define for x € Bj, the rescaled
function u,(x) := u?(xo + px). Notice that

p2
—Aup = E(l —Up) —

1
T, in2'(By).
&

&
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Indeed, for ¢ € C°(B,) we have

/ Vu,,~Vq0dx:/ Vuy - Vopdx
B> B(x0,2p)

1 1 s
= — 1—u> dx — —B U=,
3 Jp, 2p)( )0 e [V 1. 0p)

1
=25 [ a-uwar =m0,

Consider the function w, 1= u, + A%;avp € H'(B,) N L*®(B,) which (therefore) satisfies
02
—Aw, = 4—82(1 —u,) inB;.

By [22, Corollary 8.36], w, € cl O‘(Bz) for some o > 0, and

loc

IVw,lleo(syy < C ([[AwpllLoe(s,) + lwpllzoos,))

2
P 1
<C (—2 1T —upllLoo(By) + lUpllLoe(By) + _”Up”LOO(Bz))
£ Ag€

2 A
<G (p +1+—p)
AgE

in view of (2.14) and the fact that 0 < u, < 1. Going back to u, = w, — %‘gsv,,, we deduce that
u, € WH-?(By) with the estimate

IVopllzr (s o Ap
VupliLr s,y < IVwpllLeo(s,) + 37(') ColZ5+1+ (2.15)
€ ),88

Scaling back we finally obtain

p+2 1 AP 2
p P ) (2.16)

p
VU 12 Bxo.0n < CP( o2 T P2 + APep

Step 4. Applying Lemma 2.9, we can cover I'(¥) by finitely many balls {B(x;,p/2)}jes with
Xj € I'(y)and
pCard(J) < C max { min{®"(I"(¥)),p"'}. p} .
Then,
Voo = {x € 2 :dist(x, I'(¥)) < p/2} € | J B(xj.p)
jeJ
and we deduce from (2.16) that

/ |Vu5|? dx < Z/ |Vul|? dx

Vp jeJ (x/sp)

p+1 1 AP
,02 + -3 + p P :
&g<p pP Asgp

< Cp max {min {%1(1“(7)), p_l}, p} (
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In particular,

IVusliLew, 2

) B 1/p p1+1/p 1 A,ol/l’
< Cp max {min{%' (I (7). ™'}, 0} ( e v R

Observe that, using the gradient estimate in Lemma 2.7, the choice p = 64¢|log | yields \Vu;>| <
Cyo in 2\ Vaag)10g¢|- Plugging this value of p in (2.17), we deduce that

||Vu7 ”LP(VSZsHogSI)

_ 1 1/p (|loge|'T1/P
<G max{mln {?{’,1(1"(7)), ] 10g8|}’£| 10g8|} (81_71/1’
Alloge|'/?
Aeel=l/p )’
and the conclusion follows. O

Proposition 2.11 If Y € P (ag, j1), then Uy € CO%%(R) forevery 0 < a < 1, and

(1 + AllpllA;")
g ’

5l cow (@) < Camo

for some constant Cy 5, depending only on «, §2, and 9 (given in Lemma 2.7).

Proof. Note that it is enough to prove the announced estimate when ¢ is small; thus we can assume
that 13e < 5,/4. Recall that, upon replacing A, by A,/ ||| and p by /|||, we can also assume
that ||| = 1. Then we fix some distinct points x, y € §2, and we set xo := (x + y)/2.

If |x — y| = ¢, then we have

uzy () —ug Ol _ 2

’

|x — y[* T

since 0 < Uy < 1.
Now we assume that |x — y| < e. If dist(xo, 0§2) < 34/2, then dist(z, ry)) > no/4 for
every z € B(xo,¢), and the conclusion follows from Lemma 2.7. If dist(xo, 02) > n,/2, then

B(xo, &) € £2. Going back to estimate (2.15) in the previous proof, we deduce that for p = ¢ and
p=2/(1-w),
A
||Vu8||Lp(B]) <Cyll+—).
Ae

By the Sobolev embedding Theorem, the former estimate yields [[ue[|co.e(g(0,1)) < Ca(l + A/A¢).
Scaling back, we conclude that

[u5(x) —uz ()| <C (1+ A1
|x_y|a ~ o ga ’

and the proof is complete. o
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REMARK 2.12 The regularity estimates in Proposition 2.10 and Proposition 2.11 are optimal in the
sense that Vu7 & L°°(£2) in general. To illustrate this fact, let us consider the simple case where

N =1,a9 = 0,a; = 7 for some 7 € S!, and F(7) = S := [0, 7] (the straight line segment).
From the Euler-Lagrange equation (2.8) and the continuity of u-, we have

_ 1 ,31 1 . U
—Au7 = 4—82(1 —u?) — k_geu?% LS in2'(£2).

By linearity and standard elliptic regularity, it is elementary to see that Uy has at most the regularity
of the solution of the Poisson equation

—Av, = —uzR'LS in Z'(R%),

which is given by the convolution of the measure —u7?€1 L S with the fundamental solution of the
Laplacian, i.e.,

1 1!
vx(x) 1= E/Slogﬂx — yl)u?(y)d%; = E/o log(|x —tt|)u7(tr) dt.

Differentiating this formula, we obtain

1 (x—t
Vs (x) = —/ uu—>(1fr) dt foreveryx e R\ S.
27 Jo |x—tz|2 Y

In particular,

1 1
T - Vuk(st) = oy log (s/(l — S))u7(s‘[) -7 /0

T

1 u7(sr) — u7(tt)

dt fors > 1.
s —1

In view of Proposition 2.11, we have for every « € (0, 1),
1
|Vui(st)| = —|log(s — D|u—(st) — Cy fors > 1,
2 Y

where C,, is a constant independent of s. Therefore [Vv«| cannot be essentially bounded near the
point T whenever u7(t) 2 0. Similarly, | V| is not bounded near 0 whenever u?(O) # 0. These
last conditions are ensured for 8; << 1. Indeed, using Proposition 2.11, one may easily check that
Uy = 1 uniformly in £2 as 1 — 0 (with ¢ fixed).

2.3 Existence and regularity of minimizing pairs

In this subsection, we move on the existence problem for minimizing pairs of the functional EJ.
Regularity of minimizers will essentially follow from our considerations about the problem with
prescribed curves. In all our statements, we shall use the upper Alhfors threshold

3
Aei=24 = (2.18)

Our main results are the following.
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Theorem 2.13 Assume that [ is of the form (2.1). The functional EY admits at least one minimizing
pair (ug, ¥ ) in (1 + HJ (£2)) x P(ao, ). In addition, for any such minimizer, ¥« belongs to
Pa,(ao, 1), and ug is the potential of Ve

A byproduct of this theorem is the following existence and regularity result for our original
functional F/* in case of a measure y with finite support.

Corollary 2.14 Assume that ju is of the form (2.1). The functional F}* admits at least one minimizer
ug in 1+ HJ (22) N L®(2). In addition, any such minimizer belongs to WP (§2) for every p < 0o
(in particular, uy € C%%(2) for every a € (0, 1)). Moreover, there exists 7)8 € P(aop, 1) such
that (ug, ¥ &) is a minimizing pair of EX in (1 + Hj (£2)) x P(ag, ).

In the same way, we have an analogous result concerning the auxiliary functional G defined in
(2.4).

Corollary 2.15 Assume that ju is of the form (2.1). The functional G admits at least one minimizer
Ve = Vi.....vy) € Pao. ). In addition, any such minimizer belongs to & ,(ao, |), and
(u7g’78) is a minimizing pair of EY in (1 + HO1 (£2)) x P(ag, ).

REMARK 2.16 Concerning the regularity of I'(¥:), we can invoke the results of [19] and the
Holder continuity of u, to show that each I'(yf) is in fact a C Le curve for every a € (0,1/2)
in a neighborhood of every point in £2 \ {ao,...,an} (assuming eventually that d§2¢ is smooth).
One could use this further information to get improved (partial) regularity on u,, but we do not
pursue this issue here. We also believe that the curves admit a tangent line at the a;’s, and that the
C % regularity holds true up to each ;. This latter fact does not derive directly from the statements
of [19], but can certainly be proved using the material developed there.

REMARK 2.17 In all the statements above, we believe the regularity of u, to be optimal in the sense
that u, is not Lipschitz continuous. More precisely, Lipschitz continuity should fail near the @;’s. In
view of Remarks 2.12 & 2.16, the question boils down to determine whether or not u.(a;) vanishes
or not. Up to some trivial situations, we believe that u.(a;) # 0, and that |Vu,| actually behaves
like | log(]x — a;|)| in the neighborhood of a@; (as in Remark 2.16).

Theorem 2.13, Corollary 2.14, and Corollary 2.15 follow from the regularity estimates obtained
in the previous subsection together with a set of lemmas of independent interest. Our first
fundamental step is a replacement procedure allowing to show the upper Alhfors regularity of the
curves.

Lemma 2.18 Ler u € 1 + H}(2) N L®(R) be such that ||ul|pc@) < 1, and let ¥ =
y1,....vN) € P(ao, ). If for some ip € {1,...,N}, some x € I'(yi,), and some r > 0,

R (T (vio) N B(x.1)) = Agr (2.19)

where Ag is defined in (2.18), then there exists 7ﬁ = (V1,5 Vip—1> )/li, Vio+1s---»YN) €
P(ap, 1) such that

IBior



86 M. BONNIVARD, A. LEMENANT AND V. MILLOT

Proof. Assume that (2.19) holds. We shall suitably modify I"(y;,) in B(x,r) to produce the
competitor 7,1. We proceed as follows. We first define

in -—

__Jsup {t € [0,1] : yiy(s) & B(x,r) forall s € [O,I)} ifag & B(x,r),
0 otherwise ,

and

. inf{t € [0,1] : iy (s) & B(x,r) forall s € (t, 1]} ifa;, & B(x,r),
R ' otherwise .

Then we set a := y;, (tin) and b := y;, (tou). We finally define

Vip(t) ift €0, ] U [tow, 1],
V,i(t) =19 -t fout — 1

a ift € [t tou] -

Tout — tin Tout — tin
Since 50 is convex, we have
I(yE) € (I (vig) \ B(x.r)) U [a.b] € 0.
Now we estimate

Biy

28;
/ (8 +u)dRr! < —ﬂ’°(1+88)r,
Ae I“(yl%)ﬂB(x,r) Ag

and

. 00 1
i—/ @G +u?)dr' = %lem) N B(x,r) = %(H%e)r-
s JI(ig)NBx,r) ¢ °

Since (F(yiﬁo) \ B(x, r)) C (I'(yip) \ B(x, r)) we conclude that

IBior
Ae

i 2Bi
EFu, V) — EFu, V) = %(3 +285)r — _f O(1 + 8)r =
& &

and the proof is complete. o

The following crucial lemma provides the existence of a minimizer 7,1 in P4 (ao, 1)
associated to some fixed smooth function u.

Lemma 2.19 Letru € 1 + HO1 (£2) N CY(Q) be such that 0 < u < 1. There exists 7);; =
(yf, e, ylﬁv) € P (ao, ) satisfying

EFu,Vy) < EFUY) VY € Plao,p), (2.20)

and such that each yl.” [0, 1] = ¢ is injective if a; # ag, and constant if a; = ay.
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Proof. If a; = agp, we choose yiu to be the constant map equal to a;. Then, for each a; # ag, we
consider the minimization problem

1
min /0(88+u2(y(t)))|y’(t)|dt.

P(ap,a;)

#

By [14, Theorem 5.22] this problem admits a solution y;" satisfying

(8e + (PO O] =i ae.in(0,1),
i

for some constant ; > 0. We claim that y; is injective. Indeed, if )/l.# (t1) = yiﬁ (t) for some t; < to,

then we can consider the competitor 7? € H(ap,ai) defined by

yi@)  fort € [0,n1],
N #
Vi(@):= v/ (t1) fort ety 1],
yin) fort € [n,1].

Comparing energies, we have
1 1
/0 (e +w> G IFD ()] di — /0 (8 + 1> F OGOl dt = =hi (12 = 12) < 0.

which contradicts the minimality of yﬁ.

Now we set 7)” = ()/f, cees yﬁ,), and we claim that (2.20) holds. Clearly, it is enough to show
that foreachi € {1,..., N},

/ (e +u?)dn' < / S +u?)dRr'  Vye P(ag.ai). (2.21)
F(yf) I'(y)

Obviously, this inequality holds if a; = ag since the left hand side vanishes. Hence we may
assume that a; # ao. Let us then consider an arbitrary y € Z(ag. a;). Since X1 (I'(y)) < oo, [5,
Theorem 4.4.7] tells us that there exists an injective curve Y € Z(ag, a;) such that I'(y) € I'(y).
Now we infer from the area formula (see, e.g., [2, Theorem 2.71]) and the minimality of yl.'i that

1
/ (Be+ u?)d X' = / (5 + 20O ()] di
rop 0

1
S / (8e +u>G@)) V' )] dt = / _Ge+u?)dr' < / G +u*)dr',
0 r'(y) ')

so that (2.21) is proved, and hence (2.20).
To conclude, we notice that 7# € P4, (ao, t) as a direct consequence of inequality (2.20) and

Lemma 2.18. Indeed, if it would not be the case, Lemma 2.18 would provide ¥ € %(aq, jt) such
that EX(u, ¥) < El(u, V'), in contradiction with (2.20). O

The next lemma will allow us to replace an arbitrary pair (u, 7)) by aregular one, with controlled
energy.
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Lemma 2.20 Foreveryo > 0,u € 1+ HQ (), and Y € P(ao, p), there existus € 1+ HE(2)N
CclY(R2) and?o € Py (ao, ) such that 0 < ugs < 1 and

Eﬁ(“dv?a) < Eﬁ(u,?) +o.
Proof. We first claim that there exists % € 1 + H} (£2) N C°($2) such that 0 <% < 1 and
EVGLY) < Elw. V) +o.

Without loss of generality, we may assume that E2.° (u,7) < 0. Moreover, by the truncation
argument in the proof of Lemma 2.5, we can reduce the question to the case 0 < u < 1. Then
write u = 1 — v with v € H{(£2). Since C°(£2) is dense in H, (£2), we can find a sequence
(Vn)nen € CX°(£2) such that v, — v strongly in Hj (£2) as n — oc. Since 0 < v < 1, we may
even assume that 0 < v, < 1. By [13, Theorem 4.1.2] we can find a (not relabeled) subsequence
such that v, — v quasi-everywhere in §2 (i.e., v, — v in the pointwise sense away from a set
of vanishing H !-capacity). Since a set of vanishing H !-capacity is ¥ !-null (see for instance [37,
Theorem 2.6.16]), we deduce that v, — v ®'-a.e.on I’ (7) Then, by the dominated convergence,
we have foreachi € {1,..., N},

/ (8e + (1 —vp)?)dR' — (8 + (1 —v)*)d®'.
I'(vi) I'(vi)
Setting u,, := 1 — vy, we conclude that for n large enough, EX (u,, 7)) < EX(u, V) + o, and the
claim is proved.
Finally, we apply Lemma 2.19 to find 73 € P4, (ap, ) such that

Ef(un, V) < El(un, V) S ELW V) 40,
and the announced result is proved for u, := u, and 70 = 7#. o

Proof of Theorem 2.13. Step 1 (existence). Let {(un, ¥ n)lnen be a minimizing sequence for E,
over (1 + HJ (£2)) x P(ap, 1), i.e.,

lim EX(un, ¥n) = inf EX.
n—o0 (1+HY (2))x P (a.11)

By Lemma 2.20, there is no loss of generality assuming that (u,, ¥ ») € C'(£2) x Pa,(ag, ) and
0 < u, < 1. In addition, by Lemma 2.19 we can even assume that, setting V= 2N o N
all y{"’s are injective curves for a; # ao, and constant for @; = ao. Then we consider the sequence
{(u7n,7)n)}neN, where Uy, is the potential of 7),,, i.e., the minimizer of Eé‘(-,?n) over 1 +
H, (£2). Obviously, {(u?n , ¥ ) nen is still a minimizing sequence by minimality of Uy .

By Proposition 2.11,

||M7>n lco.e(2) < Cung(€) Ya € (0,1),

for some constant Cy,y,(¢) independent of n. By the Arzela—Ascoli Theorem, we can extract a
(not relabeled) subsequence such that Uy > U uniformly in £2 and weakly in H!(£2) for some

function u, € 1 + Hy (22) N C%*(£2) for every a € (0, 1).
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On the other hand, the energy being invariant under reparametrization, we can assume that each
vl is a constant speed parametrization of its image I"(y}'). In particular, each y/ is a w\yr wh)-
Lipschitz curve. Since
A
RGN < B (g, V) < CGe)
&
we infer that each sequence {y/}nen is equi-Lipschitz. Therefore, we can extract a further
subsequence such that, for each i € {1,..., N}, y — y/ uniformly on [0, 1] and weakly* in
W 1>°(0, 1) for some v € P(ao,a;). Then we set Ve = 5, YR) € Plao. p).
Let us now fix an arbitrary « € (0, 8./2). By the uniform convergence of Uy, towards u,, we
have u? < u27 + « in 2 for n large enough. From the injectivity of each y/" (for a; # ao) and the

n
area formula, we derive that for a; # a¢ and n large,

/ (8 +uZ, )d%lz/ (8e —k +uZ)d®’
romM Yo rom

1
= /0 (8 — k +uz (V! )1 (D) dr . (2.22)

Since ;! = y{ weakly* in W1:2°((0, 1)), the lower semicontinuity result in [28, Theorem 3.8] tells
us that

1

1
lim inf /0 (8 —k +uZ(FEN) I (1)l dt = /0 (8 —k +uZ(YEN)E) (O dt . (2.23)

n—>00

By the area formula again,

£

ry)

1
/ (86 —K 4+ u?(yf(t)))|(yf)’(t)| dt = / (6 —k + u?) dn'. (2.24)
0
Gathering (2.22), (2.23), (2.24), and letting « — 0, we deduce that

liminf/ (88+u2_>)d3r€1>/ (e +uZ)d®'  Vie{l,...,N}.
ron Yo

n—o0 (%)

(Note that for a; = ay, this inequality is trivial since ;" is the constant map equal to ag.) Since the
diffuse part of the energy is clearly lower semicontinuous with respect to weak H !-convergence,
we conclude that

Eé‘(ua,76) < lim Eé’“(u,,,?,l),
n—o00
and thus (1, ¥ ) is a minimizer of EX.

Step 2 (regularity). Now we consider an arbitrary minimizer (1., Y ;) of EX in (1 + H{(£2)) x
P(ayp, ). Arguing as in the proof of Lemma 2.5, we obtain 0 < u, < 1 by minimality of u,
for E(-, 7 ¢). In turn, the minimality of y , for EX(u,,-) implies that 7, € Pa,(ao, 1) by
Lemma 2.18. Now Theorem 2.4 shows that u is the potential of ) ;. O
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Proof of Corollary 2.14. Existence of a minimizer of F/* in 1 + HO1 (£2) N L°°(£2) is ensured by
Theorem 2.13 since inf F}* = min EX by (2.3). Let us now consider an arbitrary minimizer u, of
F!in 1 + Hy(£2) N L>(£2). We first claim that 0 < u, < 1 ae. in £. Indeed, setting v :=
max(min(ue, 1),0) € 1+ HJ (£2), we can argue as in the proof of Lemma 2.5 to show E%' (v, 7)<
E!(ug, ) forevery ¥ € P(ag, ). Hence F*(v) < F/*(u,) by (2.3), the inequality being strict
whenever {v # u.} has a non vanishing Lebesgue measure. The minimality of u, then implies that
vV = Ug a.e.in $2.
Next, by definition of F/*, there exists a sequence {¥ » }nen € 2 (ao, 1) such that

EMue, ¥ n) < FPMug) + 2771 Vn e N.

On the other hand, we can argue as in the proof of Lemma 2.20 to find, for each n € N, a function
un € (14+ H(£2)) N C'(2) such that 0 < u, < 1in £2, |lup — Uell i) <27, and

Eﬁ(”nv?n) < Eg(“8v7n) +27"7 < Fs“(”s) +27".

Applying Lemma 2.19 to each u,, we find (injective or constant) curves 7)”,,, € Py, (ap, p) of
constant speed such that

EMun, Y gn) < EF(un. ¥ n) < Fl(ug) +27".
Now we consider the potential U, of 7,1’,1. Then,
El(ug, Vin) < E(un. Vin) < Flue) +27". (2.25)

Setting wy, 1= u, — ug,, € HO1 (£2), we infer from the equation (2.8) satisfied by Uy, that

1
27> Elun F o)~ Bz, Fan) = [ VunPdx - [ u,Pax
o 7] 4e I
1
+ A_Bu«[?#,n](wn» Wy) .
&

Consequently, [[wy || g1y < C:27"/2, 5o that ||lus — Uz, lm12) < C:27"/2. On the other hand,
the sequence {u7ﬁ n} remains bounded in W17 (£2) for each p < oo by Proposition 2.10. Since
U, = Ue in H'(£2), we conclude that u, € W1P(2) for each p < oo. In particular, u; €
C%%(£2) forevery a € (0, 1), and Uz, = Ue uniformly in £2.

To conclude, we proceed as in the proof of Theorem 2.13, Step 1: for a (not relabeled)

subsequence, 7)”,,, X ¥ & weakly* in W1%°(0, 1) for some ¥, € Z(aq, jt), and

liminf Ef (ug, V) = EL (e, Vo) = FL(us).

In view of (2.25), we have F{*(ug) = EX(us, ¥ +), which shows that (s, 7 ) is a minimizer of
Ef in (14 Hj(£2)) x P(ag, p). O
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Proof of Corollary 2.15. Existence of a minimizer of G is ensured by Theorem 2.13 since
inf G = min EJ'. Let us now consider an arbitrary minimizer 7)8 in #(ao, ). We first claim
that ¥, = Vi.-- vy) € P24.(ao, ). Assume by contradiction that it does not belongs to
P4.(ao, ). Then we can find ip € {1,..., N}, xo € F(yfo), and r > 0 such that

%I(F(yl%) N B(xg,r)) = Agr.
By the very definition of G{*, we can find % € 1 4+ H (£2) such that

IBior
24

ELG,Ve) < GE(Ve) +

Arguing as in the proof of Lemma 2.5, we may assume that 0 <u < 1. Then, by Lemma 2.18 there
L=
exists y 4 € P(ao, ) such that

IBior — Bior —
< GH* _ "o "
As \Gs yé‘) 2A8 <Ge()’8)7

GV y) <EF@L Yy <EFWLVe) —

which contradicts the minimality of 78.

Since 7)8 € P4, (ao, v), we conclude that G“(78) = Eé’“(u7g,7)s), so that (u7€,7)8) is
minimizing EX in (1 + H}(2)) x P(ao, ). In particular, Y . € P4, (ao, jt) by Theorem 2.13,
and the proof is complete. o

3. The case of a general finite measure
3.1  Existence and regularity for a general finite measure

We consider in this subsection an arbitrary (non negative) finite measure u supported in £2, and
we fix a base point ap € §2¢9. We are interested in existence and regularity of solutions of the
minimization problem

1min Fl(u). 3.1
uel+HL(2)NL®(£2)

To pursue those issues, we rely on the results of the previous section. For this, we will need the
following elementary lemma.
Lemma 3.1 Let u be a finite non negative measure supported on 2. Then there exists a sequence
of measures {uy }xen with finite support in ¢ such that i i,u and sptuy — sptu in the
Hausdorff sense.
Proof. For k € N, we denote by € be the standard family of dyadic semi-cubes in R2 of size 27,
i.e.,

G = {Q =27Fz 4 27%((0.1) x[0.1)) : z € ZZ}.

Then we define ¢ ={0 €% :0nN 0 # 0}, and for each Q € %, we choose a point
ag € 0N 2. We set
e =Yy (@ N20)8ag -

0esy,
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By construction, s has finite support, |||l = |||, and sptux S 20 N Th-k+2(spt ) where
T,—k+2(spt i) denotes the tubular neighborhood of radius 27K*+1 of spt u. Similarly, sptu <
$5—r+2(spt ux ), and we infer that spt ;i — spt  in the Hausdorff sense.

We now claim that px N W as measures on §2¢. To prove this claim, let us fix an arbitrary
function ¢ € C°(£20). Then we can find a (non decreasing) modulus of continuity @ : [0, 00) —
[0, 00) satisfying w(t) — 0 as ¢ | 0 such that

sup Jo(x) —(¥)| < w(@).

[x—y|<t

Now we estimate

/ pdug — / pdp

which completes the proof. o

<y /  etao) — o) du < [l 0@ — 0,
QGCKIQ 0N k—o0

Theorem 3.2 The minimization problem (3.1) admits at least one solution.

Proof. We consider the sequence of discrete measures {(tg }xen provided by Lemma 3.1. For each
k € N, we consider a solution u; of the minimization problem

min  F/*(u),
uel+HJ (2)

for some base point alg € ¢ satisfying alg — ag. Defining A, by (2.18), by Corollary 2.13
and Theorem 2.12, there exists ¥ € Pa,(ao, i) such that (uk,7k) is a minimizing pair of
E* in (1 + HJ(2)) x P(ao, k). In particular, ug is the potential associated to 7 . Since
lliex |l is bounded, by Proposition 2.11 the sequence {uz}xen is bounded in C%%(£2) for every
a € (0,1),and 0 < ug < 1. Moreover (¢ being fixed), choosing a (k-independent) C !-function to
test the minimality of uy, we infer that F£** (u;) < C for some constant C independent of k. As a
consequence, {Uj }ren is bounded in H 1 (£2). Therefore, we can find a (not relabeled) subsequence
such that uy — u, in C%%*(82) for every a € (0,1) and up — u, weakly in H'!(£2). Then,
uy € 1+ HJ(£2) and

k—o0

1 1
liminfs/ [Vug|? dx + —/ (1 —ug)?dx ze/ [V |? dx + —/ (1—us)?dx. (3.2)
2 de J@ o) de J@

We now claim that the sequence of continuous functions dg : x +— D(d; + ui; alg , X) converges
uniformly on £2 to d« : x + D(8; + u2;ap, x). Since [Jug|Lo(2) < 1, each function dy is
(1 4 &¢)-Lipschitz continuous. Hence the sequence {dy }x ey is uniformly equicontinuous, and it is
enough to prove that di converges pointwise to d.. Let us then fix an arbitrary point x € 2. For
y € P(ap, x), we have

di (x) < DS, + uliao, x) + (14 8)|af —aol < / s +u)dR' + (14 8)]ak —aol
()
and we obtain by dominated convergence,

limsupdg(x) < / (8 +u2)dn'.
@)

k—o0
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Taking the infimum over y shows that lim sup; di (x) < d.(x). On the other hand, if o € (0, 1), we
can find y; € @(ag, x) such that

/ (B +up)dR' < dp(x) +o.
I (yk)

In particular, ¥ (I (yx)) < 87 (dg(x) +0) < C. Since ux — u, uniformly, we have ui >u2—o

whenever k is large enough. For such k’s, we estimate

di (x) = / Ge +ud)dR' — (1+ %' (I'(n)))o
I'(yk)
= DS +u?iah,x) — Co = du(x) — (1 + 8,)|a§ —aol — Co.

Letting k 1 oo and then o | 0, we deduce that lim inf dg (x) = d.(x), whence dg (x) — d.(x).
Now, as a consequence of this uniform convergence, we have

/_ D(88+u,2c;a§,x)d,uk — /_ D(Se +u2;a9,x)du. 3.3)
20 20

Gathering (3.2) and (3.3) leads to

I}Criiolgf FPe(ug) = FFf(ux) .
To conclude, we consider an arbitrary ¢ € 1 4 HO1 (£2) N L®°(£2). Since
D@ + 9?5 a0, x) =D + 975 a5, X)| < @G + 91|70 ()l — a0l = 0,

we have fD(Ss + (pz;a’(f,x) duy — fD(Ss + (pz;ao,x) dp, and thus Fl*% (p) — Fs“(‘/’)- By
minimality of uz, we conclude that

Fl(us) < liminf FM% (ug) < limsup FA% (ug) < lim FFf* (@) = FF(p).
k—o0 k—>00 k—o00

Consequently, uy is minimizing F/*, and (choosing ¢ = u4) F*(uy) — FL (ux). For later use,
we also observe that the lim inf in (3.2) now becomes a limit (in view of (3.3)), and the inequality
turns into an equality, i.e.,

1 1
lim 8/ |Vuk|2dx+—/(l—uk)2dx=£/ |Vu*|2dx+—/(l—u*)2dx.
k—oo Jo 4e Jo Q 4e Jo

From this identity, it classically follows that uy — u, strongly in H!(£2). o

Note that the previous proof establishes the existence of a minimizer of F{/* which turns out to
be in W12(£2). Our next theorem shows that, in fact, any minimizer shares the same regularity.

Theorem 3.3 Any solution of the minimization problem (3.1) belongs to W 1P (§2) for every p < oo
(and in particular to C%%(2) for every a € (0, 1)).
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Proof. Consider u a solution of (3.1). First we claim that 0 < u, < 1 a.e. in £2. Indeed, if this
is not the case, then we consider the competitor ¥ := max(min(u«, 1), 0). Arguing as in the proof
of Lemma 2.5, we have D(8; + (i1)%; ag, x) < D(8¢ 4+ u2:ay, x) for every x € £2. Then, as in the
proof of Corollary 2.14, it leads to F/*(i1) < FZ*(u«), in contradiction with the minimality of ..

Now the strategy consists in introducing the modified functionals /155 cHY ()N L®(2) -
[0, 00) defined by

~ 1
Flu) = Ff(u) + 1 /g lu —us|?dx.

Since u4 is minimizing FY', it is also the unigue minimizer of ﬁf‘g’“ over 1 + HO1 (£2) N L*>(£2).
Then we consider the sequence of discrete measures {k }ken provided by Lemma 3.1, and the
corresponding functionals F4* : H(£2) N L*°(2) — [0, 00) given by

~ 1
FU(u) := FM (u) + Z/g [u —uy|?dx,

with base point alg € spt x. We aim to address the minimization problems

min FI(u) . (3.4)
uel+H} (2)NL>(R)

We shall prove existence and regularity of minimizers for (3.4) following the main lines of Section
2. More precisely, we will prove that the W -?-norm of a constructed minimizer 1y of F % remains
bounded for every p < oo independently of k (and thus also the C %%-norm for every a € (0, 1)).
Assuming that this is indeed the case, we can run the proof of Theorem 3.2 noticing the additional

term ||u — ux ||i2 @ is continuous with respect to weak H !-convergence. In other words, we can

extract from the resulting sequence {1y }xcn, a subsequence converging strongly in H'(£2) (and in
C%%) to a limiting function ug € 1 + H(}(£2) N L*°(£2) minimizing T:f‘g’“ Since ux is the unique
minimizer of f’; over 1 + HJ (£2) N L>®(£2), we have ug = ux and ux — uy. Finally, since
{uy }xen remains bounded in W -2 (£2), it shows that u, € W12 (£2) for every p < oo.

Now comes the analysis of problem (3.4):

Step 1: Minimization with prescribed curves. We write

Nk

we = Bou .

i=0

with ,BIk > 0.For y € 3”(6115, k), we consider the functional Elx 7)) HY(£2) — [0, +c0]
defined by

~ 1
— —
BLHGF) = B F) + g [ um
where E!* (u,¥) is given by (2.2). Then,

Fl () = inf  EMu,¥Y) VYue HY(2)NL®R). (3.5)

Ve (ak.ur)
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Let us now fix ¥ € P4 (ao, i) for some A = 2. By Lemma 2.3, the minimization problem

min  E4u, )
uel+HJ (2)

admits a unique solution 74\7 solving

R 1 — € —~ £ ~ . _
—82Au7 = Z(l —uy)+ Z(u* —uy) - A—EBM[?](M7,-) in H71(2),
v =1 on 052 .

In addition, since 0 < u, < 1, the truncation argument in the proof of Lemma 2.5 shows that
0< ﬁ? < 1l a.e. in £2. As a consequence, |Ux — ﬁ7| < 1 a.e. in £2. By elliptic regularity, we then

infer that il € Co¥(2\ I'(¥)) forevery a € (0, 1).

loc
Considering the function v := 1 — ’ﬁ?, we notice that

—42A04+0<e mR\T'(7),
0<v<1 in 2.

Then a straightforward modification of Lemma 2.6 shows that

3dist(xo, I'(¥
0<1 —ﬁ—)(xo) < €+ exp _M
Y 32¢

at every xo € 2\ I'(¥) satisfying dist(xo, I'(¥)) = 12¢. As in Lemma 2.7, this leads to the
gradient estimate

(3.6)

iVM7(XO)| < Gy, (1 + _ exp (_mt(ng(y))))

atevery xo € 2\ I'(¥) satisfying dist(xo, I'(¥)) = 13¢ (with 1, given by Lemma 2.7).
Since ||ux — ﬁ?”Lm(Q) < 1, we can reproduce the proof of Proposition 2.10 with minor
modifications to prove that ﬁ? € WP (£2) for every 2 < p < oo together with the estimate

loge A
|log |+ ||Mk||)’

VUS| Lr (Ve iogep) < Cpmo ( —
&

where Vayg|iope| = {x € 2 : dist(x, I'(¥)) < 32¢| loge|}. On the other hand, (3.6) yields the
estimate |Vﬁ7>| < Cy, on 2\ Vaog)i0g¢- Therefore,

[logel | Al
Ae€

||V'L77>||Lp(g) < Cp,pp ( ) for2 < p <oo.

Since || ik || is bounded, we have thus proved that ||ﬁ7 lw1.»(s2) is bounded independently of k for
each p < oo.
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Step 2: Existence of minimizing pairs. Define A, as in (2.18) and use A = A, above. Then we
notice that Lemma 2.18, Lemma 2.19, and Lemma 2.20 hold with EX* in place of ElM* Hence we
can follow the proof of Theorem 2.13 to find ¥ € P, (alg, Wk ) such that the pair (ﬁ?k Yk s

minimizing E* over (1 + HJ(£2)) x P(ak, wi).

Step 3: Conclusion. Set uy = ﬁ?k. Since up € L*°(£2), we infer from (3.5) that Flk (ug) =

E’fk (uk. ¥ k), and thus 1y is minimizing fé“‘ over 1 + H}(£2) N L>(£2). Finally, it follows from
Step 1 that [|ug ||y 1.»(g) is bounded independently of k for every p < oo. O

REMARK 3.4 The proof of Theorem 3.3 (together with the results in Section 2.2) shows that any
minimizer u, of F)* over 1 + H((£2) N L™ (£2) satisfies the following estimates

lloge| + [|l|8; 1A
&

VuellLr @) < Cpoag ( ) Vpe[2,00),

and
1+ (|l A"
8(1

||ug||co,a(g) < Ca,ﬂo Ya € (0, 1) y

for some constants Cp 5, and Cy y, depending only on p, «, and 5, (given in Lemma 2.7). Even
if those estimates are not optimal with respect to ¢ (but nearly as p — 0o or @ — 1), they only
depends on the total mass of w, and not on the internal structure of p.

In view of the uniform estimates above, one can reproduce (verbatim) the proof of Theorem 3.2
to show the following stability result.

Proposition 3.5 Let {1 }ren be a sequence of finite measures supported on Q¢, and {alg}keN C

Q0. Assume that g A W as measures and alg — ag. If uy is a minimizer of FI'* with base point
alg over 1 + HJ (£2) N L™®(82), then the sequence {uy }ren admits a (not relabeled) subsequence
converging strongly in H'(82) and in C%%(2) for every a € (0, 1) to a minimizer u of F{* with

base point ag over 1 + Hj (£2) N L°°($2). In addition, F'%(ug) — FF(uy).

3.2 Application to the average distance and optimal compliance problems

In this section, we briefly review and complement two applications suggested in [9]: the average
distance problem and the optimal compliance problem. Concerning the average distance problem,
we refer to [15, 26] and the references therein. For the optimal compliance problem with
connectedness constraint (and its relation with the average distance problem), we refer to [16, 18].

(1) The average distance problem. ~ Given a nonnegative density f* € L1(£2), it consists in finding
a connected compact set Ky C £2¢ minimizing the functional

AVD(K) := / dist(x, K) f(x) dx + R (K)

20

among all connected compact subsets K of 2.
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(2) The optimal compliance problem. Given a nonnegative f € L?(820), it consists in finding a
connected compact set Ky C £2¢ minimizing the functional

OPC(K) := %/ﬂ fug dx + R'(K)

among all connected and compact subsets K of 2 of positive ¥ !-measure, where ux € H'(£2¢)
denotes the unique solution of the minimization problem

1
min{—/ |Vu|2a’x—/ fua’x:ueHl(.Qo),u:OonK}.
2 Ja, 20

Reformulating problems (1) and (2). The starting point in [9] is a suitable reformulation of the
average distance and optimal compliance problems by a duality argument. To describe in detail
these reformulations, we first need to introduced the functional spaces involved. We fix a base point
ap € 0. Setting .#(2), respectively .7 (2¢; R?), the space of (finite) R-valued, respectively
R2-valued, measures on R? supported on £2¢, we consider the following families of (generalized)
vector fields

Veva(20) := {v e M(R20;R?) :divv € #(2¢) and divv(2y) = O} ,
and
Vope(820) = {v € L2(20:R?) : div(yg,v) € 4 (20) and div(ya,v)(2o) = o} .
For such a vector field v, we associate the (finite) nonnegative measure

[divo + xo, f] if v € ¥4a(£20),

Ho) = {Idiv()(rzov) T xeo S| ifv € Yope($20) .

We define the pointed functionals Fuq : 20 X #(20;R?) — [0,00] and Fppe : 20 X
L?(£20; R?) — [0, 00] by

ol + lldiv vl + 7 ({ao} U spt u(v)) if v € %ya($20),

ﬁ dldop, V) = .
ava( ) +o00 otherwise ,

and

1 ) . .
5 v|*dx + ||divv|| + 7 ({ao} U spt w(v)) if v € Yopc(£20),
yOPC(a()v U) = 2 /‘QO | | ” v ” ({ 0} p M( )) P ( 0)

+00 otherwise,

where ||v|| and ||div v| denote the total mass of v and div v, and
y({ao} u spt,u(v)) = inf{?ﬁl(l() : K C £2¢ compact connected, K D {ao} U sptu(v)}

(the infimum being infinite if the class of competitors is empty).
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Following [9, proof of Proposition 5.6], the variational problems

miﬂ( min ﬁavd(v,ao)) and miﬂ( min fopc(v,ao))
apefo %vd(QO) ap€fRg %pc(QO)

admit at least one solution (ag, v,fvd) and (ag, voﬂpc), respectively. According to [9, Section 5.1], their
resolution is equivalent to problems (1) and (2), respectively”. As our purpose is not focused on this
equivalent formulation, we only indicate the following implication: if k!

avi
connected subsets of £2 satisfying

w(KE) = 7 ({ahy Usptu(vfp)) and %'(KE) = 7({af} Usptu(l)). 3.7

4 and Kgpc are compact

then,
AVD(K}

Vi

o) =min AVD and OPC(K! )= min OPC. (3.8)

opc

In other words, K fvd and Kgpc solve problem (1) and problem (2) respectively.

The phase field approximation. The phase field approximation introduced in [9] to solve problem
(1) or (2) consists in replacing the term Y({ao} u sptu(')) in Fava(-, ap) or Fope(:,ap) by the
functional Fé‘ O defined in (1.4). As explained in the introduction (see also [9, Section 5.4]), the
possible lack of lower semicontinuity of Fé‘ © prevents one to obtain existence of minimizers for
the resulting phase field functionals.

Here we follow the approach of [9] using the functional F/* ©) instead of F? O More precisely,
we consider the functionals .Z¢, : 20 x #(20:R?) x (1 + H}(2) N L®(£2)) — [0, o] and
FE. 20 % L2(20:R?) x (1 4+ HJ(2) N L™®(£2)) — [0, oc] given by

opc

di FI® if v € Ywa(£20)
Faa(@o, v, u) = lvll +fldivol + £ if v ,ad( ) (3.9)
+00 otherwise ,
and

1 2
- v dx + ||divo| + FAFD @) ifv e %,.(20),

o e = 5 [, IF ax + vl + P9 @0
+o00o otherwise ,

where ay is the base point in F ® Asa consequence of Theorem 3.2 and Proposition 3.5, we have
the following existence result of minimizers. Their convergence as ¢ — 0 towards minimizers of
Favd OF Fope (essentially proved in [9]) shall be discussed for completeness in Subsection 4.2.

Theorem 3.6 The functionals 74 and Fg,. admit at least one minimizer.

Proof. First notice that, for a € £2¢, the competitor (a, 0, 1) has a finite energy, so that the infimum
of 77 4 and Fg are finite. Let us now consider an arbitrary minimizing sequence {(alg, Vi, Uk) b eeN

Fgﬂv(”k)

for # 7,4 or Zg,.. By Theorem 3.2, we can find for each k € N a minimizer uy of with base

point alg over 1 + H( (£2) N L°(82). Then, FEM(vk)(uk) < FSM(vk)(LTk), so that {(alg, Vi, Uk ) b eeN
is also a minimizing sequence.

3 1In the original formulation of [9], one requires ap € spt i (v) in the definition .Fyq(ag, v) or Fope(@0,v). A quick
inspection of [9, Section 5.1] reveals that this condition can be dropped when considering Y({ao} U sptu(v)) instead of
S (spt 1 (v)).
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Case 1: Minimizing Ff,,. Since supy ﬁjvd(ag,vk,uk) < 00, we can find a (not relabeled)
* *
subsequence such that vy — v, and div vy — div v, as measures for some v, € Y44 (note that

the divergence free condition is closed under those weak* convergences), and alg — aj for
—_— *k

some af € £2¢. Since p(vg) — pu(ve), we infer from Proposition 3.5 that (up to a further

subsequence) u; — u, strongly in H'!(£2) to some minimizer u, of FZ/* ©e) \ith base point ag

over 1 + H}(£2) N L*>(£2), and FPO® ) — FFY9(y,). Since the total variation is lower
semicontinuous with respect to the weak* convergence of measures, we can now deduce that

& & : & k : &
Fralag, ve,ug) < kll)n;o Froalag, vi,ug) = inf F.

and (a§, ve, Ue) is a minimizer of 75, ;.

are

Case 2: Minimizing .#g,.. We argue as in Case 1, replacing the weak™ convergence of the vi’s by

the weak convergence in L?(£2p). O

. e . v
then u, is a minimizer of F} (ve)

REMARK 3.7 If (af, ve, u,) is a minimizer of .%¢ ; or ﬂospc, with
base point a§ over 1 + H (£2) N L*°(82). Therefore, u, € W'7(£2) forevery p < oo (in particular,
uy € C%%(2) for every o € (0, 1)). We did not investigate the regularity of the vector field v, and

this question remains essentially open.

4. Asymptotic of minimizers
4.1 Towards the Steiner problem

The objective of this section is to prove Theorem 1.2. We start with elementary comments about the
Steiner problem (1.3). Setting

S (ao} Usptu) := inf{’rﬂl(K) : K € R? compact connected, K 2 {ao} U sptu} ,

one has .7 ({ao} U spti) < oo if and only if ®!(sptu) < oc. In addition, if we denote by g
the orthogonal projection on the convex set £2¢, then ¥!(o(K)) < ®'(K) for any admissible
competitor K C R?, with equality if and only if K in contained in £2¢. Obviously 7o (K) is still an
admissible competitor, and we infer that any solution of the Steiner problem (1.3) is contained £2.
Hence,

" ({ap}Uspt ) = min {RI(K) : K C £2¢ compact connected, K D {ao}Usptu} <oo, (4.1)

and existence easily follows from Blaschke and Golab theorems (see, e.g., [5, 35]).
The proof of Theorem 1.2 departs from the results in [9]. The first ingredient is the following
lower estimate taken from [9, Lemma 3.1].

Lemma 4.1 ([9]) Let {vg}ken € 1 + HJ (£2) N CO(R2) satisfying 0 < vg < 1, and

1 1
sup (sk/ |Vvk|2 dx + — / a- vk)2 dx + — D(vg; ag, x) du) < 00, 4.2)
keN 7} der Jo a Ja,
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for some sequence o — 0 of positive numbers. Assume that the sequence x — D(vg;ag, x)
converges uniformly on 2¢ to some function d« : §29 — [0,00). Then, Ky« := {dx = 0} isa
compact connected subset of §2¢ containing {ag} U spt u, and

1
KI(Ky) shminf(ek/ |Vog|? dx + —/(1—vk)2dx) ) 4.3)
k—o00 Q der Jo

The second ingredient is an explicit construction of a “recovery sequence” showing the
sharpness of the previous lemma. The construction is provided by [9, Lemma 2.8] (see also [3])
that we (slightly) reformulate as

Lemma 4.2 ([9]) Let K C Q¢ be a compact connected set containing {ao} U spt u and such that
R (K) < oo. There exists a sequence {@i}reny € H'($2) N CO(82) satisfying ox = 1 on K, and

1
lim sup (ek/ |Vor|? dx + —/ o |2 dx) <KRY(K). (4.4)
2 der Jo

k—o0

REMARK 4.3 As we shall see below, Lemmas 4.1 & 4.2 imply that assumption ¥ (spt ) < oo is
necessary and sufficient to ensure that the minimum value of F{* over 1 4+ HO1 (£2) remains bounded
ase | 0.

Proof of Theorem 1.2. Step 1. As discussed above, our assumption ®!(sptp) < oo implies
Z({ap} U spti) < oo. Now, given an arbitrary connected compact set K C £, containing
{ao}Uspt i and such that ¥!(K) < oo, we consider the sequence {¢y }xery provided by Lemma 4.2,
and we set vg ;= 1 — g € 1 + H}(£2) N C%(2). We claim that

L D+ w00 die <, K Kl “5)
0

Indeed, since K is connected and H’,I(K ) < 00, [5, Theorem 4.4.7] yields the existence for every
x € sptu of acurve yx € P(ap, x) such that I'(yx) € K. Since v = 0 on K, we deduce that

DS, + v,%;ao,x) < / (8 + v,%)d?ﬂl = 85k?€1(1’(yx)) < 85k?ﬂ1(K) Vx €sptu.
I'(yx)
Integrating this inequality with respect to  leads to (4.5). Since d;, /A¢, — 0, we infer from (4.4)
and (4.5) that lim supy Fa‘z (vk) < ®(K). On the other hand, Falz (ur) < Falz (vg) by minimality
of uy, and we deduce that lim supy, Fg’,ﬁ (ux) < RY(K). From the arbitrariness of K and (4.1), we
conclude that
limsup F; (ug) < 7 ({ao} Usptp) < oo. (4.6)

k—o00

Step 2. Since 0 < uy < 1, the sequence x — D(5;, + ui;ao,x) is a sequence of (1 + &g, )-
Lipschitz functions on £y, all vanishing at the point aq. By the Arzela—Ascoli Theorem, we can
find a (not relabeled) subsequence such that x — D(§, + u,zc; ap, x) converges uniformly on £2¢ to
some function dy : £2¢ — [0, 00).

Let us now set o = /\sk/(2\/g). Since 8, = )kfk with 8 € (1,2), we have oy — O.
Noticing that 2/8s, ux < 8¢, + ug, we have 2/86, D(uk;ao, x) < D(8e, + uz:ao. x) for every
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X € Eo. In view of (4.6), we conclude that
2 1 2 1
ek | |Vugl?dx+— | (1 —up)’dx+— D(ug;ao, x)dp < Ff (ux) <C,  (4.7)
Q der Jo o Ja,

for some constant C independent of k. By Lemma 4.1, the compact set K. := {d. = 0} is
connected and contains {ao} U spt ;. Gathering (4.3), (4.6), and (4.7) yields

KI(Ky) < I}Criicngs‘z(uk) < limsup FY (uk) < 7 ({ao} Uspt ).

k—o00
Therefore, ®' (Kx) = .7 ({ao} Uspt i) (i.e., K« solves the Steiner problem relative to {ao} Uspt 1),
and Fglz, (ur) — R(Ky).

Step 3. For aradius r € (0,7,/2) (where 5 is given in Lemma 2.7), we denote by V- the open
tubular neighborhood of K of radius r. Since K« C §2¢, we have V., C V, C £2. We claim that
for every r € (0, 5/2) there exists ko(r) € N such that for every k = ko(r),

1 _
—e3 Auy = Z(1 —ug) in2(R2\V,p). (4.8)

To establish (4.8), we first invoke the continuity of d, to find 7, > 0 such that {d« < 37} C V; /.
Since x — D(8;, + ui; ao, x) converges uniformly to d., we can find k; (r) € N such that

{x €20 : DS +u2iap. x) < 21,} C{dy <35} CVia Vk=ki(r). (4.9)

On the other hand, since x — D(§s, + u,zc; agp, x) converges uniformly to 0 on K, 2 spt i, we can
find k»(r) € N such that

sptiu C {x € 20 : D8, +uziao, x) < rr} Yk = ks (r). (4.10)
Set ko(r) := max(kq1(r), k2(r)), and let us prove that for k = ko (r),

forall x € spty and all k € (0, 7,), there exists yX € & (ao, x) satisfying

rG9 € Vi and |
iy«

(8e, + u,%)d?ﬂl < D(8, +u,2c;ao,x) + k. (4.11)
vX)

Obviously, for x € sptu and « € (0, 7)) given, we can find y§ € F(ay, x) satisfying the second
condition, and it suffices to check that I'(yy) S V;/». Fix y € I'(yy), and consider 6, € [0, 1]
such that y¥(6y) = y. Setting 7, (t) := y£(t6,), we have ¥, € P(ap,y) and I'(y,) € I'(y¥).
Consequently,

D@5, + u,zc;ao,y) < / (8 + u,%)d?ﬂl
F(Vy)

< / (Bep +u)dR' <D, +uiiao,x) + 7 <21,
(%)
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by (4.10). In view of (4.9), we have y € V,/». Hence I'(yy) € V;/2, and (4.11) is proved.
From now on, we assume that k = kgo(r). Fix an arbitrary ¢ € (2 \Vr/z), t € R\ {0}, and
set wg 1= ug + tg. Since wx = uy in V; 5, we infer from (4.11) that for every x € spt pu,

D(8s, + wi;ao, x) < / (8e, +wp) d!
ryyx)

:/ (88k+ui)d?{’,1 sD(88k+ui;ao,x)+/c Vi € (0,7).
(%)
Letting « | 0 leads to D(8,, + w,%; aop, x) < DG, + ui; ao, x) for every x € spt u. Therefore,

/_ DS, + w,%;ao,x) du < /_ DS, + ui;ao,x) du. (4.12)
20 20

By minimality of u; we have Fgllf, (wg) — Fg’z (ur) = 0, and inserting (4.12) in this inequality leads
to

t 12
2t£k/ VukV<pdx+—/(1—uk)(pdx+12£k/ |V<p|2dx+—2/ lp|?dx = 0.
Q 2er Jo o &2 Jo

Dividing this inequality by ¢, and letting ¢ |, 0 and ¢ 1 O yields

1
2gk/ VukV<pdx+—/(l—uk)<pdx:O,
fo) 2er Jo

and (4.8) is proved.

Step 4. Letus fix r € (0,7,/2). From (4.8) and standard elliptic regularity, we infer that uy €
C>°(82\ V,/2) whenever k = ko(r). Then, arguing as in Lemma 2.6, we derive from (4.8) that for
k = ko(r),

osl—uk(x)sexp(—c,/gk) Vx e 2\ Vars, (4.13)

for some constant C, > 0 independent of . Inserting estimate (4.13) in (4.8), we deduce as in
Lemma 2.7 that for k = ko (r),

ek |Vitx| + e |V2ui| < Crpyexp (= Clfex) in 2\ V.,
for some constants C,,, and C; > 0 independent of e¢. Hence uy — 1 in C2(2\ V).
Step 5. Letus fix t € (0,1), and show that {u;y < t} — K, in the Hausdorff sense. To this
purpose, we fix a radius r > 0. From Step 4 above, we first deduce that {u; < ¢} C V, whenever k

is large enough. Before going further, notice that {u; < ¢} # @ for k large. Indeed, if {ux <t} =0
for infinitely many k’s, then

/_ D5 + ui;ao,x) du = 1? /_ |x —ag|dpn for infinitely many k’s .
20

20
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Since spt  is not reduced to {ao}, the right hand side does not vanish, while the left goes to 0 as
k — oo by (4.6), a contradiction.

We now denote by er the open tubular neighborhood of {u; < ¢} of radius r. We aim to show
that K, C W,k for k sufficiently large. Assume by contradiction that for some subsequence {k;},

we have K, & W,kj . Then we can find a sequence {x;} C K such that x; & erj forevery j € N.
Extracting a subsequence if necessary, we can assume that x; — x4 for some point xx € Ki.
Since {ux, <t} C £2, by Blaschke’s theorem we can also assume that {uy, < ¢} — S; in the
Hausdorff sense for some compact set S;. Then dist(x«, S;) = r, and we can ﬁnd jo(r) € N such
that B(x«,7/2) N {uk, <t} =0 for j = jo(r). We now distinguish two cases.

Case 1. If x« # ag, set T := 1/2min(r, |xx« — ag|). Then for every y € H(ag, x«) we can find
ty € (0, 1) such that y(t,) € dB(x«, t) and y([t,, 1]) € B(x«, ). Consequently, for j > jo(r) we
have

[ o, 4 ) = 20 (i 1D) = P ¥y € Plan ).
()

In particular D(8;, + uij;ao,x*) > 127 for j = jo(r). Letting j — oo yields dx(x4) = 127
which contradicts the fact x, € Ky := {d« = 0}.

Case 2. Assume that x. = ap. Then the same argument as in Case 1 (applied to x € spt  instead
of x,) shows that if j = jo(r), then

/2
D(Sskj + u,zcj;ao,x) > 5 min(r, |x —ag|) Vx esptu.

Since spt u is not reduced to {a¢} by assumption, we have for j = jo(7),

/2
/ D(&gk + uk 1dg, x)du = /7 min(r, |x —ag|)du > 0.
20 20

Once again, the left hand side of this inequality goes to 0 as j — oo by (4.6), which provides the
desired contradiction.

Step 6. To complete the proof of Theorem 1.2, it only remains to show that d.«(x) = dist(x, K«).
Since K« := {d« = 0}, we only have to show this identity for x ¢ K,. First, since d« is a 1-
Lipschitz function (as pointwise limite of (14, )-Lipschitz functions), we obviously have d (x) <
dist(x, K+). Now fix a point x € £2¢ \ K4, an arbitrary 7 € (O, dist(x, K*)), and an arbitrary
t € (0,1). We infer from Step 5 that u,zc > t2 in B(x, ) for k large enough. Then, arguing as in
Step 5, Case 1, we obtain D(,, + ui; ag,x) = t?t for k large enough. Letting k — oo yields
d. (x) = t27. From the arbitrariness of 7 and ¢, we conclude that d«(x) = dist(x, K4). O

REMARK 4.4 In the spirit of Proposition 3.5, one can study the asymptotic behavior of minimizers

of F}** over 1 + H (£2), for some sequence of measures pig X nase— 0,and eventually varying
base points ag — ao. In this general setting, it is necessary to assume that sup¢q 1) Fle(ug) < oo,
where u, denotes a minimizer of F/*® over 1 + H, 1(.Q) Since [9, Lemma 3.1] actually allows
for such e-dependence in the a priori estlmate (4.2), Steps 1 & 2 in the previous proof carry over.
Hence, up to a subsequence, x > D(8; + u? ;ag, x) converges uniformly on 20 as & — 0 to some
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1-Lipschitz function d, the compact set K, := {d« = 0} is connected and {ao} U sptiu C Kx.
Then, K solves the Steiner problem relative to {a¢} U spt i1, and F¢ (ug) — ®1(Ky).
If we assume that
spt e — spt i in the Hausdorff sense , (4.14)

then (all) the other conclusions of Theorem 1.2 remain. The argument follows essentially the same
lines as above. Note that (4.14) includes the case where . is a discrete approximation of w as in
Lemma 3.1.

On the other hand, if one drops condition (4.14), then Hausdorff convergence of sublevel sets
of minimizers can fail (their Hausdorff limit can be different from any Steiner set relative to {ao} U
spt ). To illustrate this fact, let us consider the following example. Let ag,a;,as € 2, be three
distinct points such that a; € (ao.a2), and set p, = 84y + 8a; + k84, with k € [0, 1]. For
each k > 0, the segment [ag, az] is the unique solution of the Steiner problem (1.3) relative to f4,
while [ag, a1] is the unique solution relative to po. Obviously, = o as k | O, but sptu, =
{ao,a1,a2} # sptio = {ap,a:}. Now, consider two sequences «; | 0 and &, | 0, and for each
(j,n) € N2, a minimizer u;, € 1+ HJ(£2) of F;,LIK" (with base point ag). By Theorem 1.2,
{un,; <1/2} — [ao, az] in the Hausdorff sense as n — oo for every j € N. Consequently, we can
find a subsequence {n; } such that {un;,; < 1/2} — [ao, a2] in the Hausdorff sense as j — oo.

4.2 Towards the average distance and optimal compliance problems

In this last subsection, we discuss the asymptotic behavior as ¢ — 0 of the functionals 7%,
and ﬁjpc defined in (3.9) and (3.10), and of their minimizers. For this purpose, it is more

convenient to consider the reduced functionals . S R0 x M (29;R?) — [0, 00] and G ope -
20 x L*(£20;R?) — [0, 00] given by

FEalap,v) = min Faalao, v,u),
uel+HJ (2)NL>2(2)
and
F ope(@o,v) 1= min Fopel@o, v, ) .
uel+H} (2)NL>®(2)

By Theorem 3.3, for every (ag,v) € $2¢ x .#(20:R?), respectively every (ap,v) € £2¢ X
L?(£20; R?), there exists u, = ug(ao,v) € 1 + Hy (£2) N L*°(2) such that
;@iivd(ao, v) = ZL4(ag, v, ug) or ?ivd(ao, V) = Fope(@o, v, ue) .
Assuming that (1.2) holds, Theorem 1.2 and Remark 4.3 then imply that G ¢4 and G ope converge
pointwise as ¢ — 0 to Fayq and Fpc, respectively.
Beyond this pointwise convergence, one can reproduce the proof of [9, Theorem 5.7] (using
assumption (1.2) as in Step 2 of the proof of Theorem 1.2) to show that .#?¢ , actually I"-converges

avd
to Fua (for the weak*-topology), and %% . I'-converges to Fo,c (for the weak-topology). In

opc
addition, if {(af.v¢)}s>0 is a recovery sequence of a configuration (ao,v) of finite energy,
and F¢, (af,ve) = FEqa(af, ve,ue) or Fi(af,ve) = FE.(af, ve, ue), then FrPO9 ) —

S ({ao} U sptiu(v)) as ¢ — 0, and the sequence x +— D(§, + u2;a§, x) converges uniformly
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on 2 to some function dy. The set Ky := {ds = 0} is connected, {ao} U sptu(v) € Ky, and
KU(Ky) = S ({ao} U spt u(v)), see Remark 4.4.
The same consideration applies in case (dag, Ve, Us) is @ minimizer of either 77, or Z5 .

By I'-convergence, (ag, ve) (sub)-converges as ¢ — 0 to a minimizer (ag, vﬁ) of Fava OF Fopes

respectively. Consequently, Ky = Kfvd or Ky = Kgpc as in (3.7)—(3.8), i.e., K« solves the average
distance problem or the optimal compliance problem, respectively. To conclude, one may wonder
wether or not the sublevel sets {u, < ¢t} Hausdorff converge to K., as in Theorem 1.2. In view of
Remark 4.4, this question remains quite unclear (and thus open), and it certainly requires a specific
analysis taking full advantage of the minimality of the pair (v, us).
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