
Interfaces and Free Boundaries 20 (2018), 107–128
DOI 10.4171/IFB/398

The Verigin problem with and without phase transition

JAN PRÜSS
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Isothermal compressible two-phase flows with and without phase transition are modeled, employing

Darcy’s and/or Forchheimer’s law for the velocity field. It is shown that the resulting systems are

thermodynamically consistent in the sense that the available energy is a strict Lyapunov functional.

In both cases, the equilibria are identified and their thermodynamical stability is investigated by

means of a variational approach. It is shown that the problems are well-posed in an Lp-setting and

generate local semiflows in the proper state manifolds. It is further shown that a non-degenerate

equilibrium is dynamically stable in the natural state manifold if and only if it is thermodynamically

stable. Finally, it is shown that a solution which does not develop singularities exists globally and

converges to an equilibrium in the state manifold.
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1. Introduction

The Verigin problem concerns compressible two-phase potential flows driven by surface tension.

It is the compressible analogue to the Muskat problem in which the phases are incompressible. In

contrast to the Muskat problem, there is only scarce work on the Verigin problem. We only know

of the papers [1–3, 7–10], which address local existence in some special cases, mostly excluding

surface tension, which is physically questionable. None of these papers deals with thermodynamical

consistency, equilibria, stability questions, and large time behaviour of solutions. Also, there are no

results at all on the Verigin problem with phase transition.

It is the aim of this paper to close these gaps. We shall develop a fairly complete dynamical

theory for the Verigin problem with and without phase transition. This includes local well-

posedness, thermodynamical consistency, identification of the equilibria, discussion of their

stability, the local semiflows on the proper state manifolds, as well as convergence to equilibrium

of solutions which do not develop singularities in a sense to be specified. To a large extent we will

follow the strategy and employ the tools of the monograph Prüss and Simonett [5].
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FIG. 1. A typical geometry

In Section 2 we derive the model for the Verigin problem with and without phase transition,

following the arguments of [5, Chapter 1]. In Sections 3 and 5 we discuss the thermodynamical

properties of the model and analyze the stability of equilibria, obtaining novel results not contained

in [5]. In Section 4 we derive the linearization of the Verigin problem and analyze the main symbol

of the linearized problem. Here we can take advantage of the results in Sections 6.6 and 6.7

of [5] which deal with solvability of the linearized Stefan and Verigin problem, respectively. Well-

posedness of the (nonlinear) Verigin problem in Section 4 is new. Lastly, in Section 6 we discuss

the global behavior of solutions, following the strategy laid out in [5, Section 11.4].

To fix some notation, in this paper ˝ � Rn denotes a bounded domain with outer boundary

@˝ 2 C 2, % the density, u the velocity, and � the pressure field. The domain ˝ consists of two

parts, ˝1 is the so-called disperse phase and ˝2 is the continuous phase, � D @˝1 � ˝ denotes

the interface. In particular, we assume no boundary contact. The outer normal of˝1 will be denoted

by �� , the corresponding normal velocity of � by V� , and the normal jump of a quantity v across

� by JvK WD v2 � v1. A typical initial geometry is depicted in Figure 1.

The free energies in the phases will be given functions  .%/ which may depend on the phase.

The relation between pressure and density in each phase is given by Maxwell’s law, which reads

�.%/ D %2 0.%/; % > 0: (1.1)

We assume that this function is strictly increasing, hence we may invert it to obtain the so-called

equation of state % D %.�/.

The converse statement is also true. Given an equation of state % D %.�/ with % strictly

increasing, inverting this relation we find � D �.%/ and  .%/ can then be found from  0.%/ D

�.%/=%2, up to a constant. However, in this paper we consider the free energies to be given.

As an example, we consider an ideal gas, where the equation of state reads �.%/ D c%, with

some constant c > 0. Then we obtain

 .%/ D c log.%/C d;

where d D  .1/ denotes another constant. Another common equation of state reads �.%/ D c%r ,
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with constants c > 0, r > 0, r ¤ 1. In this case we have

 .%/ D
c

r � 1
%r�1 C d:

2. Modeling

In the sequel we briefly explain the model; cf. the monograph Prüss and Simonett [5], Chapter 1,

for more details.

2.1 Balance of mass

We assume that there is no surface mass. Then balance of mass becomes

@t%C div .%u/ D 0 in ˝ n � .t/;

J%.u � �� � V� /K D 0 on � .t/:
(2.1)

At the outer boundary @˝ we assume u � � D 0.

These equations imply in particular conservation of total mass

d

dt
M.t/ D 0; M.t/ D

Z

˝

%.t; x/ dx D M.0/ DW M
0:

We define the interfacial mass flux (phase flux for short) by means of

j� WD %.u � �� � V� /; which means

s
1

%

{
j� D Ju � �� K:

Note that j� is well-defined by (2.1). We consider two cases.

(i) No phase transition means j� � 0. Then

V� WD u � �� and Ju � �� K D 0; (2.2)

i.e., the interface is advected with the flow.

(ii) Phase transition means j� 6� 0. Then

V� D u � �� � j� =%;

which implies

J%KV� D J%u � �� K and J1=%Kj� D Ju � �� K: (2.3)

Due to the additional variable j� , in this case one more equation on the interface will be

needed.

There are two more cases.

(a) The incompressible case: Muskat problems

Here the density % > 0 is assumed to be constant in each phase.

(b) The compressible case: Verigin problems

Here the density % D %.�/ > 0 depends on the pressure and satisfies %0.�/ > 0 for all relevant

� 2 R.

In this paper we concentrate on the Verigin problems. The Muskat problems reduce to nonlocal

geometric evolution equations which are studied in the monograph Prüss and Simonett [5],

Chapter 12; see also Prüss and Simonett [6] and the references given there.
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2.2 Modeling the velocity

The velocity u is modeled as a potential flow, following Darcy’s law. This means

u D �kr�; (2.4)

where k D k.�/ > 0 is called permeability. Note that the function k depends on the phase. A

variant of this is Forchheimer’s law which reads

g.juj/u D �lr�; (2.5)

where l D l.�/ > 0, and g > 0 is such that the function s 7! sg.s/ is strictly increasing. Solving

this equation for u leads to

u D �k.�; jr�j2/r�; (2.6)

with k.�; s/ > 0 and k.�; s/C 2s@2k.�; s/ > 0; for all � 2 R and s > 0.

Conservation of mass then yields the quasilinear diffusion equation

%0.�/@t� � div.%.�/k.�; jr�j2/r�/ D 0 in ˝ n � .t/; (2.7)

and the boundary condition u � � D 0 becomes the Neumann condition @�� D 0 on the outer

boundary @˝ .

On the interface, the driving force will be surface tension, which means

J�K D �H� ; (2.8)

where H� denotes the mean curvature of the interface, and � > 0 the (constant) coefficient of

surface tension.

Next we have to distinguish the cases (i) and (ii).

(i) Here there is no phase transition which means j� D 0, hence we obtain by (2.2)

0 D Ju � �� K D �Jk.�; jr�j2/@��K on �;

and

V� D u � �� D �k.�; jr�j2/@�� on �:

In this case the mass is preserved, even in each component of the phases!

(ii) If phase transition is present, then we obtain by (2.3)

J%.�/KV� D J%.�/u � �� K D �J%.�/k.�; jr�j2/@��K on �:

Due to additional variable j� , we have to add another condition on the boundary, which will

be the (reduced) Gibbs–Thomson law

J .%/ C % 0.%/K D 0 on �:

In this case only the total mass is conserved. Note that here the free energy  .%/ shows up

explicitly, in contrast to the case without phase transition.

Summarizing, we have the following two problems:
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2.3 The Verigin problem without phase transition

The resulting problem becomes

%0.�/@t� � div.%.�/k.�; jr�j2/r�/ D 0 in ˝ n � .t/;

@�� D 0 on @˝;

J�K D �H� on � .t/;

Jk.�; jr�j2/@��K D 0 on � .t/;

V� C k.�; jr�j2/@�� D 0 on � .t/;

� .0/ D �0; �.0/ D �0 in ˝:

(2.9)

In the sequel, we assume

% 2 C 2.RC/; %.p/; %0.p/ > 0 for all p 2 R;

and

k 2 C 2.R � RC/; k.p; s/; k.p; s/C 2s@2k.p; s/ > 0 for all p 2 R; s > 0:

2.4 The Verigin problem with phase transition

This problem reads as follows.

%0.�/@t� � div.%.�/k.�; jr�j2/r�/ D 0 in ˝ n � .t/;

@�� D 0 on @˝;

J�K D �H� on � .t/;

J .%/C % 0.%/K D 0 on � .t/;

J%.�/KV� C J%.�/k.�; jr�j2/@��K D 0 on � .t/;

� .0/ D �0; �.0/ D �0 in ˝:

(2.10)

It should be observed that, besides the previous assumptions on k and %, this problem will only be

well-posed if J%K ¤ 0, in contrast to the case without phase transition.

3. Thermodynamical properties of the models

In this section some physical properties of the models are discussed. We first introduce the available

energy Ea.

3.1 The available energy and equilibria

The available energy Ea is given by

Ea D Ea.�; � / D

Z

˝

% dx C �mes.� /I

it is the sum of free and surface energy. A short computation yields

d

dt
Ea.t/ D �

Z

˝

k.�; jr�j2/jr�j2 dx 6 0;
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hence Ea is a Lyapunov functional for both Verigin problems. Note that in case (ii) there is no

energy dissipation on the interface, due to the Gibbs–Thomson relation.

To see that Ea is even a strict Lyapunov functional, suppose d
dt

Ea.t/ D 0 at some time t . As

k > 0 this implies r� D 0, hence � is constant in the components of the phases, and moreover with

%0 > 0 this yields @t� D 0 as well as V� D 0 in case (i), and also in case (ii) if J%K ¤ 0. Thus we

are at an equilibrium, which proves that the available energy is even a strict Lyapunov functional.

Via the interface condition J�K D �H� this further shows that H� is constant on the

components of the interface. Therefore, the (non-degenerate) equilibria are constant pressures in the

components of the phases, and � is a disjoint union of finitely many disjoint spheres �j D SRj
.xj /,

say j D 1; : : : ; m, such that

J�K D �
.n � 1/�

Rj

on �j ; j D 1; : : : ; m:

The set of non-degenerate equilibria is denoted by E in the sequel.

Now we have to distinguish the cases.

(i) Without phase transition

In this case there are no further restrictions, hence the manifold of equilibria has dimension

dim E D m.n C 1/ C 1. Prescribing the masses of the components of the phases, this yields

.mC1/ conditions, reducing the degrees of freedom tomn. We emphasize that in this case the

radii Rj > 0 of the spheres are arbitrary and the continuous phase ˝2 need not be connected.

(ii) With phase transition

Here we have the additional interface condition J .%/C % 0.%/K D 0. As the functions

'.%/ WD  .%/C % 0.%/ satisfy ' 0.%/ D � 0.%/=% > 0; (3.1)

this shows that %2 uniquely determines %1 and vice versa, hence the same is valid for �i .

Therefore, the densities and pressures are constant even throughout the phases, and so the

spheres all have the same radius. Consequently, ˝2 is connected, and the dimension of E in

this case is dim E D mnC 1; conservation of mass reduces it by one.

3.2 The variational approach: first variation

Consider the functional Ea.�; � /, i.e., the available energy, with constraints

(i) Without phase transition

Mij .%; � / D

Z

˝ij

%dx D Mij .0/ DW M
0
ij :

This encodes conservation of mass of the components˝ij of the phases˝i , for i D 1; 2.

(ii) With phase transition

M.%; � / D

Z

˝

%dx D M.0/ DW M
0;

which means conservation of total mass.
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The method of Lagrange multipliers at a critical point e� WD .��; ��/ with these constraints yields

E
0
a.e�/C

X

ij

�ij M
0
ij .e�/ D 0; resp. E

0
a.e�/C �M

0.e�/ D 0;

for some constants�ij ; � 2 R. A short computation implies with %� D %.��/ that '.%�/ is constant

in each component of the phases, hence %� is as well, as ' is strictly increasing, and then also ��

has this property, as % is strictly increasing, by assumption. Furthermore, we obtain in both cases

J�K D �H��
. In addition, in case (ii) we also get J'.%�/K D 0.

Consequently, in both cases the critical points of the available energy functional with the proper

constraints are the equilibria of the system.

3.3 The variational approach: Second variation

Next we look at the second variation of the functional

C WD Ea C
X

ij

�ij Mij ; resp. C WD Ea C �M:

Another computation yields with %0
� D %0.��/ the following identity.

.S/ hC00.e�/.v; h/j.v; h/i D

Z

˝

%0
�

%�

jvj2 dx C �

Z

˙

A˙h Nh d˙: (3.2)

Here A˙ D �H 0
� means the curvature operator on the equilibrium hypersurface ˙ D ��. For a

critical point e� of Ea with the given constraints to be a minimum, it is necessary that this form is

nonnegative on the kernel of the derivative of the constraints at e�.

In case (ii) we have

.v; h/ 2 N.M0.e�// ,

Z

˝

%0
�v dx D J%�K

Z

˙

h d˙:

This further implies that the equilibrium interface �� is connected, and that the stability condition

.SCii/ �� WD
.n� 1/�

J%.��/K2R2
�j��j

Z

˝

%0.��/%.��/ dx 6 1

holds true. Note that this number is dimensionless. In fact, if �� DW ˙ is not connected and has,

say, m > 1 components ˙k , set v D 0 and h D hk constant on ˙k with
P

k hk D 0. Then

.v; h/ 2 N.M0.e�// and

hC00.e�/.v; h/j.v; h/i D �
�.n � 1/j˙ j

mR2
�

X

k

h2
k < 0; for h ¤ 0;

hence C00.e�/ is not positive semi-definite on N.M0.e�//. On the other hand, if �� is connected, set

v D %�w with w constant on ˝ , and h constant on ��. In this case .v; h/ 2 N.M0.e�// if

� Z

˝

%0
�%� dx

�

w D J%�Kj��jh;
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and

hC00.e�/.v; h/j.v; h/i D
�

Z

˝

%0
�%� dx

�

w2 �
�.n � 1/j��j

R2
�

h2;

is nonnegative if and only if the stability condition (SCii) is valid.

Summarizing, we have

Theorem 3.1 The Verigin problem with phase transition has the following properties.

(1) The total mass is preserved along smooth solutions.

(2) The available energy is a strict Lyapunov functional.

(3) The non-degenerate equilibria consist of constant pressures in the phases and the interface ��

is a finite disjoint union of spheres of common radius R� > 0, and˝2 is connected.

(4) The equilibria are precisely the critical points of the available energy functional with prescribed

total mass.

(5) Onset of Ostwald ripening: if the available energy functional with prescribed mass has a local

minimum at e� D .��; ��/ then �� is connected, and the stability condition .SCii/ holds.

(6) If either �� is disconnected or �� > 1, then e� is a saddle point of Ea with constraint M D M0.

In particular, the Verigin problem with phase transition is thermodynamically consistent, and an

equilibrium is thermodynamically stable if and only if �� is connected and the stability condition

(SCii) holds.

The case (i) without phase transition is more involved. Take any component˝ij of˝i , i D 1; 2

and j D 1; : : : ; m. Then we obtain

.v; h/ 2 N
�

M
0
ij .e�/

�

,

Z

˝ij

%0
�v dx C .�1/iC1

Z

@˝ij

%�h d˙ D 0:

Decomposing

v D v0 C
X

ij

vij�˝ij
;

Z

˝ij

v0 dx D 0; for all i; j;

and

h D h0 C

m
X

kD1

hk�˙k
;

Z

˙k

h0 d˙ D 0; k D 1; : : : ; m;

where vij ; hk are constants, and observing

Z

˝

.%0
�=%�/jv0j2 dx > 0; .A˙h0jh0/˙ > 0;

we see that the form hC00.v; h/j.v; h/i is nonnegative on \ij N.M0
ij .e�// if and only if the stability

condition

.SCi/ C� is positive semi-definite on R
m

is valid. Here the real symmetric matrix C� is defined via its entries

c�
kl D

X

ij

%ij .��/

%0
ij .��/j˝ij j

ık
ij ı

l
ij �

�.n � 1/

R2
k
j˙k j

ıkl ;
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with ık
ij D 1 , ˙k � @˝ij ; ı

k
ij D 0 otherwise: In fact, by the constraints

�

%0
ij .��/=%ij .��/

�

j˝ij jvij D .�1/i
X

k

j˙k jhkı
k
ij ;

hence, with .v0; h0/ D .0; 0/ we have
˝

C 00.e�/.v; h/j.v; h/
˛

D
X

ij

�

%0
ij .��/=%ij .��/

�

j˝ij jjvij j2 � �.n � 1/
X

k

j˙kjjhkj2=R2
k

D
X

k;l

c�
kl j˙kjhkj˙l jhl D .C�

Qhj Qh/

with Qhk D j˙kjhk .

Summarizing, in case (i) we have the following result.

Theorem 3.2 The Verigin problem without phase transition has the following properties.

(1) The masses of the components of the phases are preserved along smooth solutions.

(2) The available energy is a strict Lyapunov functional.

(3) The non-degenerate equilibria consist of constant pressures in the components of the phases

and the interface �� is a finite disjoint union of spheres of arbitrary radii.

(4) The equilibria are precisely the critical points of the available energy functional with prescribed

total masses of the components of the phases.

(5) If the available energy functional with prescribed masses has a local minimum at e� D .��; ��/

then .SCi/ holds.

(6) If .SCi/ does not hold, then e� is a saddle point of Ea with the constraints Mij D M0
ij .

In particular, the Verigin problem without phase transition is thermodynamically consistent, and an

equilibrium is thermodynamically stable if and only if the stability condition (SCi) holds.

4. Local well-posedness of the Verigin problems

To prove local well-posedness we investigate the principal part of the linearization of problem (2.9)

and (2.10), respectively. Here we follow the same steps as in [5, Section 1.3.2]: we choose a smooth

reference manifold˙ � ˝ which is close to �0 and represents the moving surface � .t/ as a graph

in normal direction of ˙ , parameterized by a height function h.t; �/, that is, we write

� .t/ D
˚

p C h.t; p/�˙ .p/ W p 2 ˙; t > 0
	

;

at least for small jhj1. This yields a diffeomorphism from˙ onto � .t/ which will then be extended

to all of N̋ by means of the Hanzawa-transform

�h.t; x/ D x C �.d˙ .x/=a/h
�

t;˘˙ .x/
�

�˙

�

˘˙ .x/
�

DW x C �h.t; x/:

Here � denotes a suitable cut-off function. More precisely, � 2 D.R/, 0 6 � 6 1, �.r/ D 1

for jr j < 1=3, and �.r/ D 0 for jr j > 2=3. With the help of this transformation, the equations

in (2.9) and (2.10) can be expressed with respect to the variables .v; h/, where v stands for the

transformed pressure, and h denotes the hight function introduced above. Once the transformed

system is obtained, one can derive the linearization at an initial value .v0; h0/. In order to keep

this manuscript at a reasonable length, we refrain from giving details, and instead refer to the

monograph [5] where the technical steps are explained.
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4.1 The principal linearization

(a) In the bulk˝ n˙ :

%0
0.x/@tv � %0.x/div.a.x/rv/ D %0

0.x/fv;

where a.x/ D k0.x/IC2k1.x/rv0 ˝rv0, with the abbreviations %0.x/ D %.v0.x//, %
0
0.x/ D

%0.v0.x//, k0.x/ D k.v0.x/; jrv0.x/j
2/, k1.x/ D @2k.v0.x/; jrv0.x/j

2/.

(b) On the interface˙ :

JvK � ��˙h D gh;

and in the case without phase transition

�J�.x/ � a.x/rvK D gv;

@thC �.x/ � a.x/rv D fh:

If phase transition is present, we have instead

Jv=%0.x/K D gv;

J%0.x/K@thC J%0.x/�.x/ � a.x/rvK D fh:

(c) On the outer boundary @˝: @�v D 0:

(d) Initial conditions: h.0/ D h0; v.0/ D v0:

4.2 The principal symbols

In the interior, the problem is clearly parabolic, due to the assumptions

%.p/; %0.p/; k.p; s/; k.p; s/C 2s@2k.p; s/ > 0; p 2 R; s > 0:

So we only have to look at the interface˙ . Freezing coefficients, flattening the interface and solving

the bulk problems, this yields the following boundary symbols, where � denotes the covariable of

time, and � that of the tangential space directions. We set

ni .�; �/ D
�

.%0
i�=%i C ai .�; �//ai .�; �/ � a.�; �/2

�1=2
i D 1; 2:

This is the symbol of a parabolic Dirichlet-to-Neumann operator. From Prüss and Simonett [5],

Sections 6.6 and 6.7, we obtain the boundary symbols of the linearized Verigin problems.

(i) Without phase transition

In this case the boundary symbol becomes

s.�; �/ D �C
n1.�; �/n2.�; �/

n1.�; �/C n2.�; �/
� j�j2:

For this case we refer to Prüss and Simonett [5], Section 6.7.1.

(ii) With phase transition

By a similar computation as in Prüss and Simonett [5], Section 6.6.3, we have for the boundary

symbol

s.�; �/ D J%K2�C
�

%2
1n1.�; �/C %2

2n2.�; �/
�

� j�j2:
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Observe that both symbols are equivalent to the boundary symbol of the standard Stefan

problem with surface tension, namely they are equivalent to the symbol

s0.�; �/ D �C j�j2.�C j�j2/1=2:

Therefore, the analytical setting, maximalLp-regularity, and also the local existence proof are

the same as for the Stefan problem with surface tension!

So the spaces for .v; h/ are

v 2 H 1
p;�.J ILp.˝// \ Lp;�

�

J IH 2
p .˝ n˙/

�

;

h 2 W 3=2�1=2p
p;�

�

J ILp.˙/
�

\W 1�1=2p
p;�

�

J IH 2
p .˙/

�

\ Lp;�

�

J IW 4�1=p
p .˙/

�

:

Here � 2 .1=p; 1� indicates a time weight, cf. Prüss-Simonett [5].

4.3 Local well-posedness

We rewrite the Hanzawa-transformed problem as

Lz D N.z/;

where z D .v; h/ collects the system variables.

Define the space of solutions E.a/ on the time interval J D Œ0; a� by means of

v 2 H 1
p .J ILp.˝IR// \ Lp.J IH 2

p .˝ n˙ IR/ DW Ev.a/;

h 2 W 3=2�1=2p
p .J ILp.˙// \W 1�1=2p

p .J IHp.˙// \ Lp.J IW 4�1=p
p .˙// DW Eh.a/;

E.a/ WD f.v; h/ 2 Ev.a/ � Eh.a/ W .v; h/ satsify the compatibility conditionsg:

From maximal regularity we obtain that L W E.a/ ! F.a/ is an isomorphism, and N W E.a/ !

F.a/ is of class C 1, provided p > n C 2. We skip here the precise description of the data space

F.a/ WD LE.a/. Note that the embeddings

Ev.a/ ,! C
�

J IW 2�2=p
p .˝ n˙/

�

,! C
�

J IBUC 1C˛.˝ n˙/
�nC1

;

Eh.a/ ,! C 1
�

J IW 2�3=p
p .˙/

�

\ C
�

J IW 4�3=p
p .˙/

�

,! C 1
�

J IC 1C˛.˙/
�

\ C
�

J IC 3C˛�1=p.˙/
�

;

with ˛ D 1 � .nC 2/=p > 0 are valid. The nonlinearityN contains

� lower order terms which can be made small by smallness of a > 0;

� highest order terms carry r˙h which are small by smallness of h0.

Therefore, we may apply the contraction mapping principle to obtain local well-posedness of

the transformed problem for initial data .v0; h0/ 2 W
2�2=p

p .˝ n ˙/ � W
4�3=p

p .˙/, satisfying

appropriate compatibility conditions. We refer to the monograph Prüss and Simonett [5], Chapter 9,

for more details.

5. Stability of equilibria

For stability of the equilibria we have to study the spectrum of the the linearization of the problems.

We observe that these spectra only consist of a sequence of eigenvalues of finite multiplicity

converging to infinity, due to compact embeddings, as ˝ is bounded.
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5.1 The eigenvalue problem at an equilibrium

For the case without phase transition: in the bulk ˝ n˙ , ˙ WD ��,:

%0
��v � %�k��v D 0: (5.1)

On the interface˙ WD ��:
JvK C �A˙h D 0;

Jk�@�vK D 0;

�hC k�@�v D 0:

(5.2)

On the outer boundary @˝: @�v D 0:

Here %� D %.��/, %
0
� D %0.��/, k� D k.��; 0/, and A˙ D �.n � 1/=R2

� � �˙ is the

linearization of the curvature. If phase transition is present, the interface conditions have to be

replaced by

JvK C �A˙h D 0;

Jv=%�K D 0;

J%�K�hC J%�k�@�vK D 0:

(5.3)

In both cases, taking the L2-inner product of (5.1) with v=%� leads to

�

�Z

˝

%0
�

%�

jvj2 dx C �

Z

˙

A˙h Nh d˙

�

C

Z

˝

k�jrvj2 dx D 0;

for any eigenvalue � 2 C and eigenvector .v; h/. Therefore, all eigenvalues are real, and there are

no positive eigenvalues if and only if
Z

˝

%0
�

%�

jvj2 dx C �

Z

˙

A˙h Nh d˙ > 0;

for all relevant .v; h/ ¤ 0. Take any component ˝ij of ˝i , and integrate (5.1) over ˝ij . Then we

obtain in the first case for � ¤ 0
Z

˝ij

%0
�v dx C .�1/iC1

Z

@˝ij

%�h d˙ D 0:

This resembles the constraints in case (i) found in Section 2.3. Integrating (5.1) over ˝ , in the

second case we find
Z

˝

%0
�v dx D J%�K

Z

˙

h d˙;

in accordance with the variational approach in case (ii).

Hence, we may conclude that there are no nontrivial eigenvalues with negative real parts,

provided the equilibrium is thermodynamically stable, in the sense that C� is positive semi-definite

in the first case, and �� is connected and �� 6 1 in the second case.

It is not difficult to show that the kernel of the linearization L equals the tangent space of E at

an equilibrium e� 2 E . Moreover, we can prove that 0 is a semi-simple eigenvalue of L, if and only

if detC� ¤ 0 in the first case, and �� ¤ 1 in the second case.

Assuming the latter, we can also show that in case (i) the number of negative eigenvalues of L

equals the number of negative eigenvalues ofC�, and that in case (ii) we havem positive eigenvalues

if �� > 1, otherwise m � 1.

These assertions will be proved in the following sections.
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5.2 The kernel of the linearization

For the case (ii) with phase transition we introduce the linearization operator L2 in X0 D Lp.˝/�

W
2�2=p

p .˙/ by means of

L2.v; h/ D
�

�
%�k�

%0
�

�v;
J%�k�@�vK

J%�K
�

; .v; h/ 2 D.L/;

where, with X1 D H 2
p .˝ n˙/ �W

2�2=p
p .˙/, the domain of L2 is given by

D.L2/ D
˚

.v; h/ 2 X1 W @�v D 0 on @˝; Jv=%�K D 0; JvK C �A˙h D 0 on ˙
	

:

This operator is the negative generator of a compact analytic C0-semigroup inX0, see Section 4 and

Chapter 6 in Prüss and Simonett [5]. Therefore, its spectrum consists only of discrete eigenvalues

of finite algebraic multiplicity, clustering at infinity.

(a) To compute the kernel N.L2/, suppose L2.v; h/ D 0. Multiplying the equation for v with

%0
�v=%�, employing the boundary and interface conditions, we obtain

0 D �

Z

˝

k��vv dx D

Z

˝

k�jrvj2 dx C

Z

˙

Jk�@�vvKd˙

D

Z

˝

k�jrvj2 dx C

Z

˙

J%�k�@�vKv=%� d˙ D

Z

˝

k�jrvj2 dx:

This implies that v is constant in the components of the phases, and by the interface condition

Jv=%�K D 0 we get v D ˛0%�, for some constant ˛0. Employing the interface condition JvK C

�A˙h D 0 this yields

h D ˛0� C

m
X

kD1

n
X

iD1

˛ikY
k
i ; � D

J%�KR2
�

�.n � 1/
;

for some constants ˛ik , where Y k
i denote the spherical harmonics of degree one for the

components˙k of ˙ . Therefore, the kernel of L2 has dimension .nmC 1/, and N.L2/ equals

the tangent space Te�
E at the equilibrium e�.

(b) Next we show that the eigenvalue 0 is semi-simple for L2. So let us assume that L2
2.w; k/ D

.0; 0/. Then

L2.w; k/ D ˛0.%�; �/C
X

ik

˛ik.0; Y
k
i /;

for some constants ˛0; ˛ik . Integrating the equation for w over˝ with weight %0
�, this yields

˛0.%
0
�j%�/˝ D �

Z

˝

%�k��wdx D

Z

˙

J%�k�@�wK d˙

D J%�K
Z

˙

.˛0� C
X

ik

˛ikY
k
i / d˙ D J%�K˛0�j˙ j;

hence ˛0 ¤ 0 is possible if and only if in the stability condition (SCii) equality holds, i.e.,

�� D 1. Assuming on the contrary that this is not the case, we obtain ˛0 D 0, and then by the
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equation for k we have
X

ik

˛ikY
k
i D 0;

which implies ˛ik D 0 as the functions Y k
i are linearly independent. This shows .w; h/ 2

N.L/, i.e., 0 is a semi-simple eigenvalue of L2 if and only if �� ¤ 1. Otherwise, the algebraic

multiplicity raises by 1.

Next we consider the case (i) without phase transition. Here we have

L1.v; h/ D

�

�
%�k�

%0
�

�v; k�@�v

�

; .v; h/ 2 D.L1/;

with domain

D.L1/ D f.v; h/ 2 X1 W @�v D 0 on @˝; Jk�@�vK D 0; JvK C �A˙h D 0 on˙g:

This operator is also the negative generator of a compact analyticC0-semigroup inX0. Therefore, its

spectrum consists only of discrete eigenvalues of finite algebraic multiplicity, clustering at infinity.

(a) To compute the kernel N.L1/, suppose L1.v; h/ D 0. Multiplying the equation for v with

%0
�v=%�, employing the boundary and interface conditions, we obtain

0 D �

Z

˝

k��v dx D

Z

˝

k�jrvj2 dx C

Z

˙

Jk�@�vvKd˙ D

Z

˝

k�jrvj2 dx:

This implies that v D vij is constant in the components ˝ij of the phases. Employing the

interface condition JvK C �A˙ D 0 this yields

X

ij

.�1/iık
ij vij C �A˙h D 0 on ˙k; 1 6 k 6 m;

which implies

h D

m
X

kD1

hk�˙k
C

X

ik

˛ikY
k
i ; hk D

R2
k

�.n � 1/

X

ij

.�1/iık
ijvij :

Thus the dimension of the kernel N.L1/ equals .mn C m C 1/, and the tangent space Te�
E

equals N.L1/.

(b) Next we show that eigenvalue the 0 is semi-simple forL1. Let us assume thatL2
1.w; k/ D .0; 0/.

Then

L1.w; k/ D .
X

ij

.vij�ij ;
X

k

hk�˙k
/C

X

lk

˛lk.0; Y
k
l /;

for some constants vij ; ˛lk , and hk as defined above, and �ij WD �˝ij
. Integrating the equation
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for w over˝ij this yields

j˝ij jvij D �
�

%ij .��/=%
0
ij .��/

�

Z

˝ij

k��w dx D
�

%ij .��/=%
0
ij .��/

�

.�1/i
Z

@˝ij

k�@�w dx

D
�

%ij .��/=%
0
ij .��/

�

.�1/i

"

X

l

hl

Z

@˝ij

�˙k
d˙ C

X

lk

˛lk

Z

@˝ij

Y k
l d˙

#

D
�

%ij .��/=%
0
ij .��/

�

.�1/i
X

l

ıl
ij j˙l jhl :

Dividing by j˝ij j and summing over i; j , we obtain

�.n � 1/

R2
k

hk D
X

ij

.�1/iık
ij vij D

X

l

X

ij

%ij .��/

%0
ij .��/j˝ij j

ık
ij ı

l
ij j˙l jhl :

This implies that the vector Qh with components Qhk D j˙kjhk is an eigenvector of C�. So if

detC� ¤ 0 this yields hk D for all k; hence v is constant all over ˝ , and so integrating once

more the equation for w with weight %0
�=%� we obtain also v D 0. This shows that 0 is a semi-

simple eigenvalue of L1 if and only if C� is invertible; otherwise the algebraic multiplicity of 0

raises by dim N.C�/.

5.3 Normal stability and normal hyperbolicity.

We begin with case (ii) where phase transition is present, following the ideas in our monograph [5],

Chapter 10.

(a) Consider the elliptic problem

%0
��v � %�k��v D 0 in ˝ n˙;

@�v D 0 on @˝;

Jv=%�K D 0 on ˙;

�J%�k�@�vK D g on ˙:

(5.4)

Given g 2 H
1=2
2 .˙/, by elliptic theory, this problem has a unique solution v 2 H 2

p .˝ n ˙/,

for each � > 0. We then set

J%�KT�g WD JvK D J%�v=%�K D J%�Kv=%�:

This simplifies the eigenvalue problem considerably. In fact, � > 0 is an eigenvalue of the

linearization L2 at equilibrium e� if and only if 0 is an eigenvalue of

B� D J%K2�T� C �A˙ :

Next, multiplying (5.4) with v=%� and integrating by parts we obtain the important identity

�

Z

˝

.%0
�=%�/jvj2 dx C

Z

˝

k�jrvj2 dx D .T�gjg/˙ :



122 J. PRÜSS AND G. SIMONETT

Hence T� is positive semi-definite on L2.˙/. In a similar way one can show that T� is

selfadjoint, and it is compact in L2.˙/, as T� 2 B.H
1=2
2 .˙/IH

3=2
2 .˙/. Therefore, B�

is selfadjoint with compact resolvent, hence its spectrum consists only of semi-simple real

eigenvalues.

(b) We need to compute the limit of �T� as � ! 0. For this purpose we introduce first the bulk

operator A2 in L2.˝/ by means of

A2v D �
%�k�

%0
�

�v; v 2 D.A2/;

with domain

D.A2/ D
˚

v 2 H 2
2 .˝ n˙/ W @�v D 0 on @˝; Jv=%�K D 0; J%�k�@�vK D 0 on ˙

	

:

This operator is selfadjoint and positive semi-definite w.r.t. the inner product

hv1jv2i WD

Z

˝

v1v2%
0
� dx=%�;

and by compact embedding has compact resolvent. We decompose the solution v of (5.4) as

v D v0 Cv2, where v0 solves (5.4), with g D h, for a fixed �0 > 0. Then v2 solves the problem

�v2 C Av2 D .�0 � �/v0; hence v2 D .�0 � �/.�CA2/
�1v0:

LetP0 denote the orthogonal projection onto N.A2/. Then it is well-known that �.�CA2/
�1 !

P0 as � ! 0: Therefore, we obtain

�v D �v0 C .�0 � �/�.�C A2/
�1v0 ! �0P0v0;

as � ! 0. It is easy to see that the kernel of A2 is one-dimensional and spanned by the function

%�, which is constant in the phases. This implies that the projection P0 is given by P0 D

%� ˝ %�=.%
0
�j%�/˝ : Hence

.%0
�j%�/˝�0P0v0 D %�h�0v0j%�i D %�

Z

˝

�0%
0
�v0 dx

D %�

Z

˝

%�k��v0 dx D �%�

Z

˙

J%�k�@�v0Kd˙ D %�

Z

˙

h d˙;

i.e., we have

P0�0v0 D
�

%�=.%
0
�j%�/˝

�

Z

˙

h d˙:

Taking the jump of P0�0v0 across˙ this finally yields

B0h D
�

J%�K2=.%0
�j%�/˝

�

Z

˙

h d˙ C �A˙h:

Decomposing h D h0 C
P

k hk�˙k
with constants hk such that

R

˙k
h0 D 0 for all k, and

observing that A˙ is positive semi-definite on functions with mean zero over each component

˙k of ˙ , we may assume h0 D 0 in the sequel. If
P

k hk D 0, then

B0h D �
�.n � 1/j˙ j

mR2
�

h DW ��0h;
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which shows that ��0 is an .m� 1/-fold eigenvalue of B0. Finally consider h constant over˙ .

Then

B0h D
h

�

J%�K2j˙ j=.%0
�j%�/˝

�

�
�.n � 1/

R2
�

i

h D �1h:

This yields another eigenvalue�1 of B0 which is negative if the stability condition (SCii) does

not hold.

(c) Next we show that for large � the operator B� is positive definite in L2.˙/. Let ak be an

orthonormal basis of N.A˙ / ˚ N..n � 1/=R2
� C A˙ / and let P D

P

k ak ˝ ak denote

the corresponding orthogonal projection in L2.˙/. Then with Q D I � P , A˙ is positive

definite on R.Q/ D N.P /. Now we assume the contrary, i.e., there exist sequences �n ! 1,

hn 2 L2.˙/ with jhnj˙ D 1, such that .B�n
hnjhn/˙ 6 1=n, for all n 2 N: Then

J%�K2�n.T�n
hnjhn/˙ 6 .B�n

hnjhn/ � �.A˙PhnjPhn/˙ 6 C

is bounded, hence the corresponding solutions vn of (5.4) satisfy

�njvnj2 C
p

�njrvnj 6 C:

Therefore, �nvn * w weakly in L2.˝/ along a subsequence, which will be denoted again by

�nvn. Taking a test function � 2 D.˝ n˙/, this yields

.%0
��nvnj�/˝ D .%�k��vnj�/˝ D .%�k�vnj��/˝ ! 0;

as n ! 1, hencew D 0. Next we extend the functions ak from˙ to functions ak 2 0H
1
2 .˝/.

Then

.hnjak/˙ D �

Z

˙

J%�k�@�vnKak d˙

D

Z

˝

div.%�k�rvnak/ dx

D

Z

˝

%0
��nvnak dx C

Z

˝

%�k�rvn � rak dx ! 0;

as n ! 1, for each k, which shows Phn ! 0. But as A˙ is positive definite on N.P /, this

also yieldsQhn ! 0 in L2.˙/, a contradiction to jhnj˙ D 1.

(d) We have shown that in case ˙ consists ofm components,B0 has .m � 1/ negative eigenvalues

if the stability condition (SCii) holds and m negative eigenvalues otherwise, and B� has no

negative eigenvalues for large �. As � runs from zero to infinity these negative eigenvalues have

to cross the imaginary axis through 0, this way inducing an equal number of positive eigenvalues

of L2. This proves the statements in case (ii).

Next we deal with case (i) without phase transition. The arguments are similar, and it is enough

to carry out steps (a) and (b). The remaining steps will be the same as in case (ii), so we may skip

them.

(a) Consider the elliptic problem

%0
��v � %�k��v D 0 in ˝ n˙;

@�v D 0 on @˝;

Jk�@�vK D 0 on ˙;

�k�@�v D g on ˙:

(5.5)
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Given g 2 H
1=2
2 .˙/, by elliptic theory this problem has a unique solution v, for each � > 0.

Here we set T�g WD JvK. Then � > 0 is an eigenvalue of the linearization at equilibrium e� if

and only if 0 is an eigenvalue of

B� D �T� C �A˙ :

Next, multiplying (5.5) with v=%� and integrating by parts we obtain the identity

�

Z

˝

.%0
�=%�/jvj2 dx C

Z

˝

k�jrvj2 dx D .T�gjg/˙ :

Hence T� is positive semi-definite on L2.˙/. In a similar way one can show that T� is

selfadjoint, and it is compact in L2.˙/, as T� 2 B.H
1=2
2 .˙/IH

3=2
2 .˙/. Therefore, B�

is selfadjoint with compact resolvent, hence its spectrum consists only of semi-simple real

eigenvalues.

(b) We proceed in a similar way as in case (ii). Here the operator A1 in L2.˝/ is defined by

A1v D �
%�k�

%0
�

�v; v 2 D.A/;

with domain

D.A1/ D fv 2 H 2
2 .˝ n˙/ W @�v D 0 on @˝; Jk�@�vK D 0; k�@�v D 0 on ˙g:

This operator is selfadjoint and positive semi-definite w.r.t. the inner product

hv1jv2i WD

Z

˝

v1v2%
0
� dx=%�;

and by compact embedding has compact resolvent. To compute the projection P0, note that the

kernel of A1 is spanned by the characteristic functions �ij WD �˝ij
of the components of the

phases, as any v 2 N.A1/ is constant on each component of ˝ n˙ . This yields with %ij D %�

on˝ij and similarly for %0
ij ,

P0 D
X

ij

�

%ij =%
0
ij j˝ij j

�

�ij ˝ �ij :

Next we compute P0�0v0 as follows.

P0�0v0 D
X

ij

�

%ij =%
0
ij j˝ij j

�

�ij

Z

˝ij

�0%
0
�v0=%� dx

D
X

ij

�

%ij =%
0
ij j˝ij j

�

�ij

Z

˝ij

k��v0 dx

D
X

ij

�

%ij =%
0
ij j˝ij j

�

�ij .�1/
iC1

Z

@˝ij

k�@�v0d.@˝ij /

D
X

ij

�

%ij =%
0
ij j˝ij j

�

�ij .�1/
i

Z

@˝ij

hd.@˝ij /;
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hence

P0�0v0 D
X

ij

�

%ij =%
0
ij j˝ij j

�

�ij .�1/
i
X

l

ıl
ij

Z

˙l

h d˙;

where ık
ij D 1 if ˙k � @˝ij and ık

ij D 0 otherwise. To compute the jump we note that

J�ij K D .�1/i if ık
ij D 1 and is 0 otherwise. This yields

JP0�0v0K D
X

kl

X

ij

�

%ij =%
0
ij j˝ij j

�

�˙l
ık

ij ı
l
ij

Z

˙k

h d˙;

and so decomposing as before h D h0 C
P

k hk�˙k
, we derive the representation

.B0hjh/˙ D �.A˙h0jh0/˙ C
X

kl

c�
kl j˙kjhkj˙l jhl ;

where the coefficients c�
kl

of the matrixC� have been introduced in Section 3. As a consequence

we see that the number of negative eigenvalues ofL1 equals the number of negative eigenvalues

of C�.

5.4 Nonlinear stability of equilibria

Let E be the set of (non-degenerate) equilibria, and fix some equilibrium e� D .��; ��/ 2 E .

Employing the findings from the previous section, we have

� e� is normally stable if C� is positive definite, resp. �� < 1 and �� is connected.

� e� is normally hyperbolic if C� is indefinite, resp. �� > 1 or �� is disconnected.

Therefore, the Generalized Principle of Linearized Stability due to Prüss, Simonett, Zacher [4]

yields our main result on stability of equilibria.

Theorem 5.1 Let e� 2 E be a non-degenerate equilibrium such that detC� ¤ 0, resp. �� ¤ 1.

Then

(i) If e� is normally stable, it is nonlinearly stable, and any solution starting near e� is global

and converges to another equilibrium e1 2 E at an exponential rate.

(ii) If e� is normally hyperbolic, then e� is nonlinearly unstable. Any solution starting in a

neighborhood of e� and staying near e� exists globally and converges to an equilibrium

e1 2 E at an exponential rate.

Proof. The proof parallels that for the Stefan problem with surface tension given in Prüss and

Simonett [5], Chapter 11.

6. Global behaviour

In this last section we want to describe the global behaviour of the Verigin problem with and without

phase transition.
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6.1 The local semiflows

Here we introduce the semiflows induced by the solutions of the problems. Recall that the closed

C 2-hypersurfaces contained in ˝ form a C 2-manifold, denoted by MH
2. Charts are obtained via

parametrization over a fixed hypersurface, and the tangent spaces consist of the normal vector fields.

As an ambient space for the state-manifold SM of the Verigin problems we consider the product

space X0 WD Lp.˝/� MH
2. The compatibility conditions are given by

@�� D 0 on @˝;

J�K D �H� on �;

Jk.�; jr�j2/@��K D 0 on �;

k.�; jr�j2/@�� 2 W 2�6=p
p .� / on �;

(6.1)

in the first case, while in the second case the last two conditions are to be replaced by

J .%/C % 0.%/K D 0; J%.�/k.�; jr�j2/@��K 2 W 2�6=p
p .� /; (6.2)

and in this case we additionally require J%K ¤ 0.

We define the state manifolds SM of the problems as follows

SM WD
˚

.�; � / 2 X0 W � 2 W 2�2=p
p .˝ n � /; � 2 W 4�3=p

p ;

the compatibility conditions are satisfied
	

: (6.3)

The charts for these manifolds are obtained by the charts induced by those for MH
2, followed

by a Hanzawa transformation. Observe that the compatibility conditions as well as regularity are

preserved by the solutions.

Applying the local existence result and re-parameterizing repeatedly, we obtain the local

semiflows on SM.

Theorem 6.1 Let p > nC 2 and J%0K ¤ 0 for the second case.

Then the two-phase Verigin problems generate local semiflows on their respective state manifolds

SM. Each solution .�; � / exists on a maximal time interval Œ0; tC/.

6.2 Global existence and asymptotic behaviour

There are a number of obstructions to global existence of the solutions:

– Regularity: the norms of either �.t/ or � .t/ may become unbounded;

– Geometry: the topology of the interface may change; or the interface may touch the boundary of

˝; or a part of the interface may shrink to a point in case (ii);

– Well-posedness: jJ%.t; x/Kj may come close to zero in case (ii).

We say that a solution .�; � / satisfies the uniform ball condition, if there is a radius r > 0 such that

for each t 2 Œ0; tC/ and at every point p 2 � .t/ we have

NB.p ˙ r�� .t/.p/; r/ � ˝; NB.p ˙ r�� .t/.p/; r/ \ � .t/ D fpg:

Combining the above results, we obtain the following theorem on the asymptotic behavior of

solutions.
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Theorem 6.2 Let p > nC 2. Suppose that .�; � / is a solution of one of the Verigin problems, and

assume the following on its maximal interval of existence Œ0; tC/:

(˛) j�.t/j
W

2�2=p
p

C j� .t/j
W

4�3=p
p

6 M ;

(ˇ) .�; � / satisfies the uniform ball condition;

( ) c 6 J%.t/K in case (ii), for some constant c > 0.

Then tC D 1, i.e., the solution exists globally, its limit set !.�; � / � E is nonempty, and the

solution converges in SM to an equilibrium, provided either

– !.�; � / contains a stable equilibrium e1;

– .�; � / stays eventually near some e1 2 !.�; � /.

The converse is also true: if a global solution converges, then (˛),(ˇ),( ) are valid.

Proof. It can be shown that the closed C 2-hypersurfaces contained in ˝ which bound a region

˝1 �� ˝ form a C 2-manifold, denoted by MH
2.˝/, see for instance [5, Chapter 2]. It is also

known that each � 2 MH
2.˝/ admits a tubular neighborhood

Ua WD
˚

x 2 R
n W dist.x; � / < a

	

of width a D a.� / > 0 such that the signed distance function

d� W Ua ! R; jd� .x/j WD dist.x; � /;

is well-defined and d� 2 C 2.Ua;R/, see for instance [5, Section 2.3]. Here, by convention,

d� .x/ < 0 iff x 2 ˝1 \ Ua. We can then define a level function '� by means of

'� .x/ WD

(

d� .x/�.3d� .x/=a/C sgn
�

d� .x/
��

1 � �.3d� .x/=a/
�

; x 2 Ua;

�˝ex
.x/ � �˝in

.x/; x … Ua;

where ˝ex and ˝in denote the exterior and interior component of Rn n Ua, respectively, and � is a

smooth cut-off function with �.s/ D 1 if jsj < 1 and �.s/ D 0 if jsj > 2. The level function '� is

then of class C 2, '� .x/ D d� .x/ for x 2 Ua=3, and '� .x/ D 0 iff x 2 � .

Let MH
2.˝; r/ denote the subset of MH

2.˝/ consisting of all � 2 MH
2.˝/ such that

� � ˝ satisfies the ball condition with fixed radius r > 0. This implies in particular that

dist.�; @˝/ > 2r and all principal curvatures of � 2 MH
2.˝; r/ are bounded by 1=r .

Furthermore, the level functions '� are well-defined for � 2 MH
2.˝; r/ and form a bounded

subset of C 2. N̋ / and the map

˚ W MH
2.˝; r/ ! C 2. N̋ /; ˚.� / D '� ;

is a homeomorphism of the metric space MH
2.˝; r/ onto ˚.MH

2.˝; r// � C 2. N̋ /,

see [5, Section 2.4.2].

Let s � .n � 1/=p > 2. For � 2 MH
2.˝; r/ we define � 2 W s

p .˝; r/ if '� 2 W s
p .˝/.

In this case the local charts for � can be chosen of class W s
p as well. A subset A � W s

p .˝; r/

is said to be (relatively) compact, if ˚.A/ � W s
p .˝/ is (relatively) compact. Finally, we define

distW s
p
.�1; �2/ WD j'�1

� '�2
jW s

p .˝/ for �1; �2 2 MH
2.˝; r/.
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Suppose that the assumptions .˛/�./ are valid. Then � .Œ0; tC// � W
4�3=p

p .˝; r/ is bounded,

hence relatively compact inW
4�3=p�"

p .˝; r/. Thus � .Œ0; tC// can be covered by finitely many balls

with centers˙k such that

dist
W

4�3=p�"
p

�

� .t/; j̇

�

6 ı for some j D j.t/, t 2 Œ0; tC/:

Let Jk D ft 2 Œ0; t�/ W j.t/ D kg. Using for each k a Hanzawa-transformation�k , we see that the

pull backs f�.t; �/ ı �k W t 2 Jkg are bounded in W
2�2=p

p .˝ n ˙k/, hence relatively compact in

W
2�2=p�"

p .˝ n ˙k/. By well-posedness, we obtain solutions .�1; � 1/ with initial configurations

.�.t/; � .t// in the state manifold SM on a common time interval, say .0; a�, and by uniqueness

we have
�

�1.a/; � 1.a/
�

D
�

�.t C a/; � .t C a/
�

:

Continuous dependence implies then relative compactness of

˚�

�.�/; � .�/
�

W 0 6 t < tC
	

in SMI in particular tC D 1 and the orbit .�; � /.RC/ � SM is relatively compact. The available

energy is a strict Lyapunov functional, hence the limit set !.�; � / of a solution is contained in the

set E of equilibria. By compactness, !.�; � / � SM is non-empty, hence the solution comes close

to E . Finally, we may apply the convergence result Theorem 5.1 to complete the sufficiency part of

the proof. Necessity follows by a compactness argument.
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