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In this article, we study shape optimization problems involving the geometry of surfaces (normal
vector, principal curvatures). Given " > 0 and a fixed non-empty large bounded open hold-all
B � Rn, n > 2, we consider a specific class O".B/ of open sets ˝ � B satisfying a uniform
"-ball condition. First, we recall that this geometrical property ˝ 2 O".B/ can be equivalently
characterized in terms of C 1;1-regularity of the boundary @˝ ¤ ;, and thus also in terms of
positive reach and oriented distance function. Then, the main contribution of this paper is to prove
the existence of a C 1;1-regular minimizer among ˝ 2 O".B/ for a general range of geometric
functionals and constraints defined on the boundary @˝, involving the first- and second-order
properties of surfaces, such as problems of the form:

inf
˝2O".B/

Z
@˝

�
j0
�
x;n .x/

�
C j1

�
x;n .x/ ;H .x/

�
C j2

�
x;n .x/ ;K .x/

��
dA .x/ ;

where n,H ,K respectively denote the unit outward normal vector, the scalar mean curvature and the
Gaussian curvature. We only assume continuity of j0; j1; j2 with respect to the set of variables and
convexity of j1; j2 with respect to the last variable, but no growth condition on j1; j2 are imposed
here regarding the last variable. Finally, we give various applications in the modelling of red blood
cells such as the Canham–Helfrich energy and the Willmore functional.
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1. Introduction

Many physical phenomena are governed by their surrounding geometry and are often modelled by
energy minimization principles. Some problems like soap films involve the first-order properties of
surfaces (normal vector, first fundamental form), while others such as the equilibrium shapes of red
blood cells also concern the second-order ones (principal curvatures, second fundamental form).

In this article, we are interested in the existence of solutions to such shape optimization problems
through the determination of a suitable class of admissible shapes. Indeed, a relevant framework of
study is often provided by geometric measure theory [55], but the minimizer is usually less regular
than expected, and it is hard to understand (and prove) in which sense singularities occur or not.

Using the viewpoint of shape optimization, the aim of this paper is to consider a more reasonable
class of surfaces, in which there always exists an enough regular minimizer for general functionals
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FIG. 1. Example of an open set e̋ � B satisfying the "-ball condition whereas ˝ � B does not. Indeed, there is no
circle passing through the points x1 and x2 (respectively x3 and x4) whose inner domains are included in ˝ (respectively
in Bn˝).

and constraints involving the first- and second-order geometric properties of surfaces. Inspired by
the uniform cone property of Chenais [8], we define the uniform ball condition as follows.

DEFINITION 1.1 Let " > 0 andB � Rn be open, n > 2. We say that an open set˝ � B with a non-
empty boundary @˝ WD ˝n˝ satisfies the "-ball condition and we write˝ 2 O".B/ if for any point
x 2 @˝, there exists a unit vector dx of Rn such that B".x � "dx/ � ˝ and B".xC "dx/ � Bn˝,
where Br .z/ WD fy 2 Rn; ky � zk < rg denotes the open ball of Rn centred at z and of radius r .

REMARK 1.2 The "-ball condition, illustrated in Figure 1, only makes sense for sets having a non-
empty boundary. Hence, we will always assume @˝ ¤ ; in the sequel, or equivalently˝ … f;;Rng.
Note also that Definition 2.1 imposes ˝ to be the subset of a fixed set B . However, since we only
require B to be open, one can take B D Rn and consider the class O".Rn/ of open sets˝ … f;;Rng
satisfying the "-ball condition. This is what we have done for example in Theorems 2.5–2.7.

The uniform ball condition was already considered by Poincaré [50]. As illustrated in Figure 1,
it avoids the formation of singularities such as corners, cracks, or self-intersections. In fact, it has
been known to characterize the C 1;1-regularity of hypersurfaces for a long time by oral tradition.
Consequently, it can also be linked to other well-known equivalent concepts, such as the notion
of positive reach introduced by Federer in [30], and the local C 1;1-regularity of oriented distance
functions introduced by Delfour and Zolésio in [20].

In [24, Chapter 7 Theorems 7.2–7.3 and 8.1–8.4], one can already find most of the material
about these three last properties. However, as far as the uniform ball condition is here concerned,
we believe it would be useful to unify the exposition and notation to the expense of a lengthy article.
Hence, for completeness, three equivalent characterizations of Definition 1.1 are given in Section 2
with further references, namely Theorems 2.5–2.7 (but proofs are postponed to the Appendix).

Equipped with this class of admissible shapes, we can now state our main general existence
result. For simplicity and to avoid here the introduction of too many hypothesis and notation, the
result is stated in the three-dimensional Euclidean space R3 but of course, it can be generalized to
Rn for any n > 2. We refer to Theorem 4.26 in Section 4.5 for its most general form.
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MAIN THEOREM 1.3 Let " > 0 andB � R3 be a non-empty bounded open set, large enough so that
O".B/ ¤ ;. We consider .C;eC/ 2 R�R, five continuous maps j0, f0, g0, g1, g2 W R3 � S2 ! R,
and four maps j1, j2, f1, f2 W R3 � S2 �R! R being continuous and convex in their last variable.
Then, the following problem has at least one solution (see Remark 1.4):

inf
Z
@˝

�
j0
�
x;n .x/

�
C j1

�
x;n .x/ ;H .x/

�
C j2

�
x;n .x/ ;K .x/

��
dA .x/ ;

where the infimum is taken among˝ 2 O".B/ satisfying a finite number of constraints of the form:8̂̂<̂
:̂
Z
@˝

�
f0
�
x;n .x/

�
C f1

�
x;n .x/ ;H .x/

�
C f2

�
x;n .x/ ;K .x/

��
dA .x/ 6 CZ

@˝

�
g0
�
x;n .x/

�
CH .x/ g1

�
x;n .x/

�
CK .x/ g2

�
x;n .x/

��
dA .x/ D eC :

REMARK 1.4 We denote by A.�/ (respectively V.�/) the area (resp. the volume) i.e. the two(resp.
three)-dimensional Hausdorff measure, and the integration on a surface is done with respect to A.
The Gauss map n W x 7! n.x/ 2 S2 always refers to the unit outer normal field of the surface, while
H D �1 C �2 is the scalar mean curvature and K D �1�2 is the Gaussian curvature. Note that the
Gauss map is Lipschitz continuous since any˝ 2 O".B/ has a C 1;1-boundary (cf. Theorem 2.6 and
Section 4.1). In particular, from Rademacher’s Theorem, it is differentiable almost everywhere so
in this context, any notion of curvatures is well defined almost everywhere and essentially bounded.

We mention that the particular case j0 > 0, j1 D j2 D 0 without constraints is studied in [36].
The proof of Theorem 1.3 only relies on basic tools of analysis and does not use geometric measure
theory. Following the usual direct method from Calculus of Variations, we establish:

(i) in Proposition 3.2 that the class O".B/ is sequentially compact for some various modes of
convergence (for the Hausdorff distance of the complements in B , of the adherences, of the
boundaries, for the L1.B/-norm of the characteristic functions, for the W 1;1.B/-norm of the
oriented distance functions, and in the sense of compact sets, cf. Definition 3.1), allowing the
extraction of a minimizing subsequence that converges to a candidate for being a minimizer;

(ii) in Section 4 that the functionals and inequality constraints considered in Theorem 1.3 are
lower semi-continuous with respect to the convergence in the sense of compact sets provided
the boundaries also converge for the Haudorff distance, while the equality constraints are really
continuous, explaining why we only assume .ji ; fi /iD1;2 to be convex in their last variable
to get lower semi-continuity (but note that no growth condition is imposed here) whereas the
integrands containing .gi /iD1;2 have to be linear in H and K to get continuity.

Point (i) is a consequence of the fact that the "-ball condition implies the uniform cone property
(Theorem 2.6 (i)), for which we have the compactness result of Chenais [8], later refined by Delfour
and Zolésio [20] [24, Chapter 7 Theorem 13.1]. Point (ii) is much harder to obtain. Our method is
based on localization and the study of convergence for graphs of regular functions (Theorem 3.3).
In Section 3, we show we can locally parametrize simultaneously by C 1;1-graphs in a fixed local
frame the boundaries of a converging sequence in O".B/ (cf. Figure 2). Moreover, the local graphs
converge strongly in C 1;1�ı , ı 2�0; 1�, and weakly-star in W 2;1. This allows to study and get (ii).

The author is aware of the important work of Delfour and Zolésio related to the distance function
[21] [24, Chapter 6] and oriented distance function [20] [24, Chapter 7] with numerous applications
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in shape differential calculus [24, Chapter 9]. We refer to Section 3.1 for further references and an
overview of the general background related to these concepts. Since the viewpoint of local graphs
and oriented distance functions b˝ are equivalent [24, Chapter 7 Theorem 8.2 (ii)], Theorem 3.3
and the continuity results of Section 4 can also be expressed and proved in terms of b˝ .

However, we decide to consider here the graph approach for several reasons. First, the oriented
distance functions do not remove the difficulty overcome by Theorem 3.3 i.e. the existence of a
fixed set to properly study continuity. Indeed, let us assume the convergence of some .@˝i /i2N to
@˝ for the Hausdorff distance. We can find a common tubular neighbourhood Vr .@˝/, r > 0, in
which occurs the convergence of the associated oriented distance functions .b˝i /i2N to b˝ strongly
in C 1;1�ı for any ı 2�0; 1� and weakly-star in W 2;1. Nevertheless, the continuity of a functional
! 7!

R
@!
j remains unclear because even if

R
@˝i

j D limh!0
1
2h

R
Vh.@˝i /

j ı .Id � b˝irb˝i /

as in [15], the exchange of limits i ! C1 and h ! 0 requires some work, that we believe as
technical as what we have done to get Theorem 3.3. If this issue is overcome, then the continuity
results of Section 4 also follow from the various convergences of .b˝i /i2N to b˝ and the fact that
rb˝i is an extension of the unit outward normal field to @˝i , Hess.b˝i / of the second fundamental
form, etc.

Moreover, the article aims to give general existence results for shape optimization problems
involving a large range of geometric functionals and constraints. It is thus intended to a broad
audience and the viewpoint of graph seems a rather usual approach, compared to further equivalent
sophisticated tools that would certainly lighten the proofs. In addition, we only deal here with C 1;1-
regularity and do not necessarily need very sharp tools for studying cracks or the fine geometric
properties of shapes. Furthermore, this paper also intends to settle the framework for another future
work that will soon be published [11] and study more complex problems of the form:

inf
˝2O".B/

Z
@˝

j
�
x;n˝ .x/ ;H˝ .x/ ;K˝ .x/ ; u˝ .x/ ;ru˝ .x/

�
dA .x/ ;

where u˝ is the solution of some second-order elliptic boundary-value problems posed on the inner
domain enclosed by the shape @˝. In this direction, the convergence results of Theorem 3.3 are
very useful to study the convergence of .u˝i ıXi /i2N, where Xi is a local parametrization of @˝i .

Finally, to our knowledge, the existence results presented here are new. Indeed, the functionals
we consider are defined on the boundary of a domain, a case which is not covered by the usual
existence theory in shape optimization. Moreover, we are able to extend and generalize the results
given in [36] by using a similar framework [35]. If the compactness issue is quite straightforward,
the continuity of quite general functionals defined on the boundary is not. In particular, we show
in Section 4 how to use Theorem 3.3 in order to study the continuity and lower-semi-continuity
properties for a wide range of geometric functionals. Although the statements of Sections 4.1–4.3
are rather expected consequences of Theorem 3.3 under the construction of a suitable partition of
unity, the ones of Section 4.4 are not, especially the L1-weak-star convergence of the Gaussian
curvature. In particular, in Section 4.4, we emphasize the fact that we manage to obtain the non-
trivial continuity of non-linear functionals (such as the genus) by applying the Div-Curl Lemma
to this geometric setting. To our knowledge, such a method is new. We now present three physical
applications of Theorem 1.3 (further general examples in Rn are also detailed in Section 4.5).
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1.1 First application: minimizing the Canham–Helfrich energy with area and volume constraints

In biology, when a sufficiently large amount of phospholipids is inserted in aqueous media, they
immediately gather in pairs to form bilayers called vesicles. Devoid of nucleus among mammals,
red blood cells are typical examples of vesicles on which is fixed a network of proteins playing the
role of a skeleton inside the membrane [59]. In the 70s, Canham [7] then Helfrich [37] suggested
a simple model to characterize vesicles. Imposing the area of the bilayer and the volume of fluid it
contains, their shape is a minimizer for the following free-bending energy (see Remark 1.4):

E D
kb

2

Z
membrane

.H �H0/
2 dAC kG

Z
membrane

KdA; (1.1)

where H0 2 R (called the spontaneous curvature) measures the asymmetry between the two layers,
and where kb > 0, kG < 0 are two other physical constants. Note that if kG > 0, for any kb;H0 2
R, the Canham–Helfrich energy (1.1) with prescribed area A0 and volume V0 is not bounded from
below. Indeed, in that case, from the Gauss–Bonnet Theorem, the second term tends to �1 as the
genus g ! C1, while the first term remains bounded by 4jkbj.12� C 1

4
H 2
0A0/ (to see this last

point, combine [41, Remark 1.7 (iii) (1.5)], [52, Theorem 1.1], and [56, Inequality (0.2)]).
The two-dimensional case of (1.1) is considered by Bellettini, Dal Maso, and Paolini in [3].

Some of their results is recovered by Delladio [25] in the framework of special generalized Gauss
graphs from the theory of currents. Then, Choksi and Veneroni [9] solve the axisymmetric situation
of (1.1) in R3 assuming �2kb < kG < 0. In the general case, this hypothesis gives a fundamental
coercivity property [9, Lemma 2.1] and the integrand of (1.1) is standard in the sense of [40,
Definition 4.1.2]. Hence, we get a minimizer for (1.1) in the class of rectifiable integer oriented 2-
varifold in R3 withL2-bounded generalized 2nd fundamental form [40, Theorem 5.3.2] [47, Section
2] [4, Appendix]. These compactness and lower semi-continuity properties were already noticed
in [4, Section 9.3].

However, the regularity of minimizers remains an open problem and experiments show that
singular behaviours can occur to vesicles such as the budding effect [53, 54]. This cannot happen to
red blood cells because their skeleton prevents the membrane from bending too much locally [59,
Section 2.1]. To take this aspect into account, the uniform ball condition of Definition 1.1 is also
motivated by the modelization of the equilibrium shapes of red blood cells. We even have a clue for
its physical value [59, Section 2.1.5]. Our result states as follows.

Theorem 1.5 Let H0; kG 2 R and "; kb; A0; V0 > 0 such that A30 > 36�V 20 . Then, the following
problem has at least one solution (see Remark 1.4):

inf
˝2O".R3/
A.@˝/DA0
V.˝/DV0

kb

2

Z
@˝

.H �H0/
2dAC kG

Z
@˝

KdA:

REMARK 1.6 The hypothesis A30 > 36�V 20 is rather natural. Indeed, any compact surface has to
satisfy the isoperimetric inequality and equality only occurs for spheres. Hence, we have to assume
A30 > 36�V

2
0 otherwise the set of constraints in O".R3/ is either empty or reduced to a ball of area

A0 and volume V0. Moreover, note that we only consider here the class O".R3/ and not O".B/ with
B bounded as it is the case for Theorem 1.3. Indeed, a uniform bound on the diameter is implicitly
given by the functional and the area constraint [56, Lemma 1.1]. Finally, the result of Theorem 1.5
also holds true if H0 is a continuous function of the position and the normal vector.
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1.2 Second application: minimizing the Canham–Helfrich energy with genus, area, and volume
prescribed

The Gauss–Bonnet Theorem [30, Theorem 5.19] is valid for sets of positive reach (cf. Definition 2.1)
thus we get from Theorem 2.5 that

R
˙
KdA D 4�.1� g/ for any compact connected C 1;1-surface

˙ (without boundary embedded in R3) of genus g 2 N. Hence, instead of minimizing (1.1), people
usually fix the topology and search for a minimizer of the following energy (see Remark 1.4):

H.˙/ D

Z
˙

.H �H0/
2 dA; (1.2)

with prescribed area and enclosed volume. The critical points of (1.2) are studied by Nagasawa and
Yi in [49]. Like (1.1), such a functional depends on the surface but also on its orientation. However,
in the case H0 ¤ 0, energy (1.2) is not even lower semi-continuous with respect to the varifold
convergence [4, Section 9.3]: the counterexample is due to Große-Brauckmann [34]. In this case,
we cannot directly use the tools of geometric measure theory but we can prove the following result.

Theorem 1.7 Let H0 2 R, g 2 N, and "; A0; V0 > 0 such that A30 > 36�V 20 . Then, the following
problem has at least one solution (see Remark 1.4 and Remark 1.6):

inf
˝2O".R3/

genus.@˝/Dg
A.@˝/DA0
V.˝/DV0

Z
@˝

.H �H0/
2dA;

where genus.@˝/ D g has to be understood as @˝ is a compact connected C 1;1-surface of genus g.

1.3 Third application: Minimizing the Willmore functional for various given constraints

The particular case H0 D 0 in (1.2) is known as the Willmore functional (see Remark 1.4):

W.˙/ D
1

4

Z
˙

H 2dA: (1.3)

It has been widely studied by geometers. Without constraint, Willmore [60, Theorem 7.2.2] proved
that spheres are the only global minimizers of (1.3). The existence was established by Simon [56]
for genus-one surfaces, Bauer and Kuwert [2] for higher genus. Recently, Marques and Neves [45]
solved the so-called Willmore conjecture: conformal transformations of the stereographic projection
of the Clifford torus are the only global minimizers of (1.3) among smooth genus-one surfaces.

A main ingredient is the conformal invariance of (1.3), from which we can in particular deduce
that minimizing (1.3) with prescribed isoperimetric ratio is equivalent to impose the area and the
enclosed volume. In this direction, Schygulla [52] established the existence of a minimizer for
(1.3) among analytic surfaces of zero genus and given isoperimetric ratio. For higher genus, Keller,
Mondino, and Riviere [41] recently obtained similar results, using the point of view of immersions
developed by Riviere [51] to characterize precisely the critical points of (1.3).

An existence result related to (1.3) is the particular case H0 D 0 of Theorem 1.7. Again, the
difficulty with these kind of functionals is not to obtain a minimizer (compactness and lower semi-
continuity in the class of varifolds for example) but to show that it is regular in the usual sense (i.e.
a smooth surface). We now give a last application of Theorem 1.3 which comes from the modelling
of vesicles. It is known as the bilayer-couple model [53, Section 2.5.3] and it states as follows.
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Theorem 1.8 Let M0 2 R and "; A0; V0 > 0 such that A30 > 36�V
2
0 . Then, the following problem

has at least one solution (see Remark 1.4 and Remark 1.6):

inf
˝2O".R3/

genus.@˝/Dg
A.@˝/DA0; V.˝/DV0R

@˝ HdADM0

1

4

Z
@˝

H 2dA:

To conclude the introduction, we recall how the paper is organized. In Section 2, three equivalent
characterizations of the uniform ball condition are stated, namely Theorem 2.5 in terms of positive
reach, Theorem 2.6 in terms of C 1;1-hypersurface, and Theorem 2.7 in terms of C 1;1-regular
oriented distance function. Proofs are postponed to the Appendix. Following the classical method
from the Calculus of Variations, in Section 3.1, we first obtain the compactness of the class O".B/
for various modes of convergence. This essentially follows from the fact that the "-ball condition
implies a uniform cone property, for which we already have some good compactness results.

Then, in the remaining part of Section 3, we prove the key ingredient of Theorem 1.3 i.e. we
manage to parametrize in a fixed local frame simultaneously all the graphs associated with the
boundaries of a converging sequence in O".B/. We prove the W 2;1-weak-star and the C 1;1�ı -
strong convergence of these local graphs for any ı 2�0; 1�. Finally, in Section 4, we show how to
use this local result on a suitable partition of unity to get the global continuity for a general range of
geometric functionals. We conclude by giving some existence results in Section 4.5. In particular,
we prove Theorem 1.3, its generalization to Rn, and detail many applications such as Theorem 1.5
and Theorems 1.7–1.8, mainly coming from the modelling of vesicles and red blood cells.

2. Three characterizations of the uniform ball property

In this section, we recall three characterizations of the "-ball condition, namely Theorems 2.5–
2.7. First, it is equivalent to Federer’s notion of positive reach [30]. Then, it is equivalent to a
uniform C 1;1-regularity of hypersurfaces. Finally, it is equivalent to the local C 1;1-regularity of
oriented distance functions introduced by Zolésio and Delfour [24, Chapter 7]. All this is known but
for completeness and readability, the proofs are postponed to the Appendix, since we did not find
references where these characterizations were gathered in the form given in Theorems 2.5–2.7.

Indeed, two equivalent characterizations in terms of positive reach, local graph, and oriented
distance function can be found in [24, Chapter 7 Theorems 7.2-7.3 and 8.1-8.4], but they are not
linked to the uniform ball condition studied in this paper. Moreover, many parts of Theorems 2.5–2.6
can be found in the literature as remarks [39, below Theorem 1.4] [46, (1.10)] [30, Remark 4.20],
sometimes with proofs [31, Section 2.1] [35, Theorem 2.2] [42, �4 Theorem 1] [43, Proposition
1.4], or as consequences of results [32, Theorem 1.2] [1, Theorem 1.1 (1.2)]. Finally, we mention
that the proofs of Theorems 2.5–2.6 were already given in [10] and are reproduced here for
completeness.

Before stating the theorems, we recall some definitions and notation, used hereafter in the paper.
Let n > 2 be an integer henceforth set. The space Rn whose points are marked x D .x1; : : : ; xn/ is
naturally provided with its usual Euclidean structure, hx j yi D

Pn
kD1 xkyk and kxk D

p
hx j xi,

but also with a direct orthonormal frame whose choice will be specified later. Inside this frame,
every point x of Rn will be written into the form .x0; xn/ such that x0 D .x1; : : : ; xn�1/ 2 Rn�1. In
particular, the symbols 0 and 00 respectively refer to the zero vector of Rn and Rn�1.
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First, some of the notation introduced in [30, Section 4] by Federer are recalled. For every
non-empty subset A of Rn, the following map is well defined and 1-Lipschitz continuous:

d.�; A/ W Rn �! Œ0;C1Œ

x 7�! d.x; A/ D inf
a2A
kx � ak:

Furthermore, we set Unp.A/ WD fx 2 Rn j 9Ša 2 A; kx� ak D d.x; A/g. This is the set of points
in Rn having a unique projection on A, i.e., the domain on which this map is well defined:

pA W x 2 Unp.A/ 7�! pA.x/ 2 A;

where pA.x/ is the unique point of A such that kpA.x/ � xk D d.x; A/. We can also notice that
A � Unp.A/ thus in particular Unp.A/ ¤ ;. We can now express what is a set of positive reach.

DEFINITION 2.1 Consider any non-empty subset A of Rn. First, we set for any point a 2 A:

Reach.A; a/ D sup
˚
r > 0; Br .a/ � Unp.A/

	
;

with the convention sup; D 0. Then, we define the reach of A as Reach.A/ D infa2A Reach.A; a/.
Finally, we say that A has a positive reach if we have Reach.A/ > 0.

Definition 2.1 is the one given by Federer [30, Definition 4.1]. Note that ifA is a non-empty open
subset of Rn, then Unp.A/ D A so Reach.x; A/ D d.x; @A/ for any x 2 A and thus Reach.A/ D 0
[30, Remark 4.2]. Hence, the notion of reach is of little interest for open sets. This is reason why
some authors often assume that A is closed in Definition 2.1, or equivalently, define Reach.A; a/
for any a 2 A as in [24, Chapter 6 Definition 6.1]. Similarly, in order to ensure that any point of Rn
has at least one projection on A [24, Chapter 6 Theorem 2.1 (ii)], some people often assume that A
is closed, or equivalently, define the projection pA as a map from Unp.A/ into A. In our case, we
will always consider the reach of the boundary @˝, the closure ˝, or the complement Rnn˝ of an
open set ˝ … f;;Rng so Definition 2.1 and the one of pA do not lead to any ambiguity here.

Then, we also recall the definition of a C 1;1-hypersurface in terms of local graph. Note that
from the Jordan-Brouwer Separation Theorem, any compact topological hypersurface of Rn has a
well-defined inner domain, and in particular a well-defined enclosed volume. If instead of being
compact, it is connected and closed as a subset of Rn, then it remains the boundary of an open
set [48, Theorem 4.16] [27, Section 8.15], which is not unique and possibly unbounded in this case.

DEFINITION 2.2 Consider any non-empty subset S of Rn. We say that S is a C 1;1-hypersurface
if there exists an open subset ˝ of Rn such that @˝ D S, and such that for any point x0 2 @˝,
there exists a direct orthonormal frame centred at x0 such that in this local frame, there exists a map
' W Dr .00/ !� � a; aŒ continuously differentiable with a > 0, such that ' and its gradient r' are
L-Lipschitz continuous with L > 0, satisfying '.00/ D 0, r'.00/ D 00, and also:(

@˝ \ .Dr .00/�� � a; aŒ/ D
˚�

x0; '.x0/
�
; x0 2 Dr .00/

	
˝ \ .Dr .00/�� � a; aŒ/ D

˚
.x0; xn/; x0 2 Dr .00/ and � a < xn < '.x0/

	
;

with Dr .00/ D fx0 2 Rn�1; kx0k < rg the open ball of Rn�1 of radius r > 0 centred at the origin.

Finally, we recall the definition of the uniform cone property introduced by Chenais in [8], and
from which the "-ball condition is inspired. We also refer to [38, Definition 2.4.1].
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DEFINITION 2.3 Let ˛ 2�0; �
2
Œ and ˝ � Rn be open with a non-empty boundary. We say that ˝

satisfies the ˛-cone condition if for any x 2 @˝, there exists a unit vector ¸x of Rn such that:

8y 2 B˛.x/ \˝; C˛.y; ¸x/ � ˝;

where C˛.y; ¸x/ D fz 2 B˛.y/; kz � yk cos˛ < hz � y j ¸xig refers to the open cone of vertex y,
direction ¸x, and (half-)aperture ˛.

At last, we give the definition of the oriented distance function introduced by Delfour and
Zolésio in [20], which provides a useful level-set description of a set.

DEFINITION 2.4 Let A � Rn have a non-empty boundary. Then, the oriented distance function
bA W Rn 7! R is defined as bA .x/ WD d.x; A/ � d.x;RnnA/ for any x 2 Rn. In particular, we have:

8x 2 Rn; bA .x/ D

8̂<̂
:
d .x; @A/ if x 2 RnnA
0 if x 2 @A:
�d .x; @A/ if x 2 Int.A/

We are now in position to state three characterizations of the "-ball condition. In Theorems 2.5–
2.7, V.�/ refers to the n-dimensional Lebesgue measure and the proofs are given in the Appendix.

Theorem 2.5 (A characterization in terms of positive reach) Consider any open subset ˝ of Rn
with a non-empty boundary. Then, the following implications are true:

(i) if there exists " > 0 such that ˝ 2 O".Rn/ as in Definition 1.1, then @˝ has a positive reach
in the sense of Definition 2.1 with Reach.@˝/ > " and we have V.@˝/ D 0;

(ii) if @˝ has a positive reach and V.@˝/ D 0, then˝ 2 O".Rn/ for any " 2�0;Reach.@˝/Œ, and
moreover, if @˝ has a finite positive reach, then˝ also satisfies the Reach.@˝/-ball condition.

In particular, if V.@˝/ D 0, then we have the following characterization:

Reach .@˝/ D sup
˚
" > 0; ˝ 2 O".Rn/

	
;

with the convention sup; D 0. Moreover, this supremum becomes a maximum if it is not zero and
finite. Finally, we get Reach.@˝/ D C1 if and only if @˝ is an affine hyperplane of Rn.

Theorem 2.6 (A characterization in terms of C 1;1-regularity) Let˝ be any open subset of Rn with
a non-empty boundary. If there exists " > 0 such that ˝ 2 O".Rn/, then its boundary @˝ is a
C 1;1-hypersurface of Rn in the sense of Definition 2.2, where a D ", the constants L, r depend only
on ", and where r' is valued in D 32

31
.00/. Moreover, we have the following properties:

(i) ˝ satisfies the f �1."/-cone property as in Definition 2.3 with
f W ˛ 2�0; �

2
Œ 7! 2˛

cos˛ 2�0;C1Œ;
(ii) the dx of Definition 1.1 is the unit outer normal vector to the hypersurface at the point x;

(iii) the Gauss map d W x 2 @˝ 7! dx 2 Sn�1 is well defined and 1
"

-Lipschitz continuous.

Conversely, if S is a non-empty compact C 1;1-hypersurface of Rn in the sense of Definition 2.2, then
there exists " > 0 such that its inner domain˝ 2 O".Rn/. In particular, it has a positive reach with
Reach.S/ D max f" > 0; ˝ 2 O".Rn/g and we have V.S/ D 0.



220 J. DALPHIN

Theorem 2.7 (A characterization in terms of oriented distance function) Let ˝ be any open subset
of Rn with a non-empty boundary. If there exists " > 0 such that ˝ 2 O".Rn/ as in Definition 1.1,
then the oriented distance function b˝ introduced in Definition 2.4 is continuously differentiable
on the open tubular neighbourhood V".@˝/ WD fx 2 Rn; d.x; @˝/ < "g. Moreover, we have
V.@˝/ D 0 and for any r 2�0; "Œ, the map rb˝ W Vr .@˝/ ! Sn�1 is 2

"�r
-Lipschitz continuous,

having a unique 2
"�r

-Lipschitz continuous extension to Vr .@˝/. Conversely, if there exists " > 0

such that b˝ 2 C 1;1.B".x// and V.B".x/ \ @˝/ D 0 for any x 2 @˝, then we have ˝ 2 O".Rn/.

REMARK In Theorem 2.6, one can notice that a, L, and r only depend on " for any point of
the hypersurface. This uniform dependence of the C 1;1-regularity characterizes the class O".Rn/.
Indeed, the converse part of Theorem 2.6 also holds true if instead of being compact, the non-empty
C 1;1-hypersurface S satisfies: 9" > 0;8x0 2 S;min. 1

L
; r
3
; a
3
/ > ". In this case, we still have

˝ 2 O".Rn/ where ˝ is the open set of Definition 2.2 such that @˝ D S.

REMARK 2.8 From Point (iii) of Theorem 2.6, the Gauss map d is 1
"

-Lipschitz continuous. Hence,
it is differentiable almost everywhere and its differential D�d W x 2 @˝ 7! Dxd 2 L.Tx@˝/

is an L1-map satisfying kD�dkL1.@˝/ 6 1
"

[38, Section 5.2.2]. In particular, the principal
curvatures (see Section 4.1 for definitions and (4.19) for details) satisfy k�lkL1.@˝/ 6 1

"
for any

l 2 f1; : : : ; n � 1g.

3. Parametrization of a converging sequence from O".B/

In this section, we are interested in establishing some good compactness results. First, we recall the
definitions of some various modes of convergence used thereafter.

DEFINITION 3.1 The Hausdorff distance dH .X; Y / between two compact sets X; Y � Rn is
defined as max.supx2X d.x; Y /; supy2Y d.y; X//. We say that a sequence of compacts sets .Ki /i2N
converges to a compact set K for the Hausdorff distance if dH .Ki ; K/ ! 0 as i ! C1. Let
B � Rn be non-empty bounded open. A sequence of open sets .˝i /i2N � B converges to an open
set ˝ � B:

(i) in the Hausdorff sense if .Bn˝i /i2N converges to Bn˝ for the Hausdorff distance;
(ii) in the sense of compact sets if for any compact setsK and L such thatK � ˝ and L � Bn˝,

there exists I 2 N such that for any integer i > I , we have K � ˝i and L � Bn˝i ;
(iii) in the sense of characteristic functions if we have

R
B
j1˝i .x/ � 1˝.x/jdx ! 0, where 1X is

the characteristic function of X , valued one for the points of X , otherwise zero.

In Section 3.1, we recall some well-known compactness results about the uniform cone property.
From Point (i) of Theorem 2.6, every set satisfying the "-ball condition also satisfies the f �1."/-
cone property. Hence, we only have to check that O".B/ is closed under the convergence in the
Hausdorff sense (cf. Definition 3.1 (i)) to get the following compactness result.

Proposition 3.2 Let " > 0 and B � Rn be a bounded open set, large enough to ensure that
O".B/ ¤ ;. If .˝i /i2N is a sequence of elements from O".B/, then there exists ˝ 2 O".B/ such
that a subsequence .˝i 0/i2N converges to ˝ in the following senses (see Definition 3.1):

� .˝i 0/i2N converges to ˝ in the Hausdorff sense;
� .@˝i 0/i2N converges to @˝ for the Hausdorff distance;
� .˝i 0/i2N converges to ˝ for the Hausdorff distance;
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� .Bn˝i 0/i2N converges to Bn˝ in the Hausdorff sense;
� .˝i 0/i2N converges to ˝ in the sense of compact sets;
� .˝i 0/i2N converges to ˝ in the sense of characteristic functions.

Moreover, considering the associated oriented distance functions introduced in Definition 2.4, we
also have that .b˝i0 /i2N strongly converges to b˝ in W 1;p.B;R/ for any p 2 Œ1;C1Œ.

In Section 3.1, Proposition 3.2 is proved and for sake of completeness, further explanations and
references are given with respect to this general compactness pattern. Then, in the remaining part of
Section 3, we consider a sequence .˝i /i2N of elements from O".B/ converging to˝ 2 O".B/ in the
sense of compact sets (cf. Definition 3.1 (ii)). We prove that for any i sufficiently large, the boundary
@˝i can be locally parametrized by a C 1;1-graph in a local frame associated with @˝. The key point
here is that the local frame is fixed and does not depend in i . Moreover, we get the C 1;1�ı -strong
for any ı 2�0; 1� and the W 2;1-weak-star convergence of a subsequence of these local graphs. The
entire sequence converges under the additional assumption limi!C1 dH .@˝i ; @˝/ D 0. In this
case, the limit graph is precisely the one associated with @˝. These results are illustrated in Figure
2 and will be fundamentally used in Section 4 to study the continuity of functionals.

MAIN THEOREM 3.3 Let .˝i /i2N � O".B/ converge to ˝ 2 O".B/ as in Definition 3.1 (ii).
Then, for any point x0 2 @˝, there exists a direct orthonormal frame centred at x0, and also I 2 N
depending only on x0, ", ˝, and .˝i /i2N, such that inside this frame, for any integer i > I , there
exists a continuously differentiable map 'i W DQr .00/ !� � "; "Œ, whose gradient r'i is valued in
D 32
29
.00/, where r'i and 'i are L-Lipschitz continuous with L > 0 and Qr > 0 depending only on

", and such that:(
@˝i \ .DQr .00/\� � "; "Œ/D

˚�
x0; 'i .x0/

�
; x0 2 DQr .00/

	
˝i \ .DQr .00/\� � "; "Œ/D

˚
.x0; xn/; x0 2 DQr .00/ and � " < xn < 'i .x0/

	
:

Moreover, any of the .'i /i>I has a unique C 1;1-extension to the closure DQr .00/ and there exists
' 2 W 2;1 .DQr .00// \ C 1.DQr .00// such that a subsequence .'i 0/i>I satisfies:(

'i 0 ! ' strongly in C 1;1�ı.DQr .00// for any ı 2�0; 1�;
'i 0 * ' weakly star in W 2;1

�
DQr .00/

�
:

(3.1)

If in addition, we assume that .@˝i /i2N converges to @˝ for the Hausdorff distance, then the map '
is precisely the one of Definition 2.2 associated with the point x0 of @˝ and furthermore, the whole
sequence .'i /i>I converge to ' in (3.1).

The proof of Theorem 3.3 is organized in the spirit of Sections A.1.2 and A.2.1–A.2.2.
First, some geometric inequalities are given in Section 3.2. Then, the boundary @˝i is locally
parametrized by a certain graph in Section 3.3. Finally, in Section 3.4, we obtain the C 1;1-regularity
of this graph. We conclude Section 3 by proving Theorem 3.3 i.e. that (3.1) holds true for the graphs.

3.1 Compactness of the class O".B/

In this section, we recall the general background concerning the compactness results given by a
uniform regularity. First, we consider the well-known case of the uniform cone property.
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FIG. 2. Illustration of Theorem 3.3 stating that there exists a fixed common local frame in which a converging sequence of
elements in O".B/ can be simultaneously parametrized by C1;1-graphs

Theorem 3.4 Let ˛ 2�0; �
2
Œ and B be a bounded open subset of Rn. We set O˛.B/ as the class of

non-empty open sets ˝ � B that satisfy the ˛-cone property of Definition 2.3. We assume that B
is large enough to have O˛.B/ ¤ ;. If .˝i /i2N is a sequence of elements from O˛.B/, then there
exists ˝ 2 O˛.B/ such that a subsequence .˝i 0/i2N converges to ˝ as in Proposition 3.2.

Proof. First, for a proof of the convergence in the sense of characteristic functions, we refer to the
original paper of Chenais [8, Theorem III.1]. Another proof is given in [24, Chapter 5 Theorem 6.11]
but assume that the boundary @B is uniformly Lipschitz. Then, we refer to [38, Theorem 2.4.10] for
further details concerning the proof of Theorem 3.4 that is not considering the convergence of the
oriented distance functions. Finally, a complete proof of Theorem 3.4 can be found in Section [24,
Chapter 7 Section 13 Theorem 13.1 and Corollary 2].

Working with a family of open sets ˝ contained a bounded open hold-all B � Rn makes the
boundaries compact and such a class becomes sequentially compact in the Hausdorff sense (cf.
Definition 3.1 (i) and for a proof see e.g. [24, Chapter 6 Theorem 2.4 (ii)] or [38, Theorem 2.2.23]).
As shown by Chenais in [8], adding a uniform Lipschitz condition on the local graph yields to a
compactness result in terms of characteristic functions. In [58], Tiba obtain in a similar result by
assuming only a uniform condition on the modulus of continuity of the local graph functions. In
doing so, he generalized what Chenais did to domains with cusps.

However, there is a stronger and neater version which gives the convergence of the oriented
distance functions b˝ in W 1;p.B/ for any p 2 Œ1;C1Œ. It was originally given in the first
2001 edition of the book of Delfour and Zolésio [24, Chapter 7 Section 13] in terms of a
uniform fat segment condition that generalizes the uniform cone and cusp properties. In [22, 23],
Delfour and Zolésio gave the equivalence between this condition and the one considered by
Tiba [24, Chapter 7 Theorem 13.2]. Most compactness theorems (uniform cone property of
Chenais [8], density perimeter and capacity condition of Bucur and Zolésio [5, 6], sets of
bounded curvatures [24, Chapter 7, Section 11], and the graph version of the uniform cusp
property of Tiba [58]) are not only true for the C 0-convergence of distance functions, or the Lp-
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convergence of characteristic functions, but also for the finerW 1;p-convergence of oriented distance
functions.

Moreover, this latter directly implies [24, Chapter 7 Theorem 4.1 (iv)-(v)] the other
convergences, i.e., of the distance functions d˝ , dRnn˝ , and d@˝ in C 0.B/ and inW 1;p.B/ for any
p 2 Œ1;1Œ, and of the characteristics functions 1˝ , 1Rnn˝ , and 1@˝ inLp.B/ for any p 2 Œ1;C1Œ.
Since we have dH .A;B/ D kdA � dBkC0.B/ for any A;B � B (see, e.g., [38, Proposition 2.2.25]
or [24, Chapter 6, Section 2.2]), this general pattern is exactly what we have stated in Proposition 3.2
for the uniform ball condition, which requires a uniform local Lipschitz condition on the local graph
function and its gradient at each point of the boundary (cf. Theorem 2.6).

The oriented distance function of Definition 2.4 was initially introduced by Delfour and Zolésio
in [20]. They were able to sharpen the local characterization of C k-regular sets, k > 2, given by
Gilbarg and Trudinger [33], and extended it to sets of class C 1;1. Therefore, for a set of class C 1;1

or with better regularity, the oriented distance function has the same regularity in the neighbourhood
of each point of its boundary, and this is equivalent to a local graph representation with the same
smoothness [24, Chapter 7 Theorem 8.2]. The sets of class C 1;1 have been extensively studied
through the oriented distance functions b˝ [15, 18, 19], and especially in the context of thin and
asymptotics shells [12–14, 16, 17, 22]. In particular, the restriction of rb˝ to @˝ is the unitary
exterior normal vector to ˝, Hess.b˝/ is the natural extension to Rn of the second fundamental
form associated with @˝, .Hess.b˝//2 the third fundamental form, and so on. They exists almost
everywhere with respect to the .n � 1/-dimensional Hausdorff measure (see e.g. [17]). Under this
point of view, the intrisic theory of Sobolev space on such C 1;1-hypersurfaces can be found in [15].

However, this article consider the more geometrical approach of the uniform ball condition in
the context of shape optimization. Of course, the two concepts are equivalent as we have shown in
Theorem 2.7, and both can be used to study these kind of problems. The reasons of this choice were
already explained in Section 1, from below Theorem 1.3 until Section 1.1.

We are now in position to prove Proposition 3.2, mentioning that a proof can also be found
in [35, Theorem 2.8]. More precisely, Guo and Yang prove that O".B/ is sequentially compact for
the convergence in the Hausdorff sense (cf. Definition 3.1 (i)). Hence, combining this result with
Theorem 3.4, we get that Proposition 3.2 holds true. The proof is short, see [35] for details.

Proof of Proposition 3.2. Since O".B/ � Of �1."/.B/ (Point (i) of Theorem 2.6), Theorem 3.4
holds true and we only have to check˝ 2 O".B/. Consider x 2 @˝. From [38, Proposition 2.2.14],
there exists a sequence of points xi 2 @˝i converging to x. Then, we can apply the "-ball condition
on each point xi so there exists a sequence of unit vector dxi of Rn such that:

8i 2 N; B".xi � "dxi / � ˝i and B".xi C "dxi / � Bn˝i :

Since kdxi k D 1, there exists a unit vector dx of Rn such that, up to a subsequence, .dxi /i2N
converges to dx. Finally, the inclusion is stable under the Hausdorff convergence [38, (2.16)] and
we get the "-ball condition of Definition 1.1 by letting i !C1 in the above inclusions.

3.2 Some global and local geometric inequalities

In the remaining part of Section 3, consider a sequence .˝i /i2N � O".B/ converging to˝ 2 O".B/
in the sense of compact sets (cf. Definition 3.1 (ii)). We also make the following hypothesis, which
are only used throughout Section 3.2–3.4 to prove Theorem 3.3.
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ASSUMPTION 3.5 Let x0 2 @˝ henceforth set. From the "-ball condition, a unit vector dx0 is
associated with the point x0 (which is unique from Proposition A.4). Moreover, we have:

B".x0 � "dx0/ � ˝ and B".x0 C "dx0/ � Bn˝:

Then, we consider � 2�0; "Œ. Since we assume that .˝i /i2N converges to ˝ as in Definition 3.1 (ii),
there exists I 2 N depending on .˝i /i2N, ˝, x0, " and �, such that for any integer i > I , we have:

B"��.x0 � "dx0/ � ˝i and B"��.x0 C "dx0/ � Bn˝i : (3.2)

Finally, we consider any integer i > I .

Proposition 3.6 We assume that (3.2) holds true. Then, for any point xi 2 @˝i , we have

kdxi � dx0k
2 6

1

"2
kxi � x0k2 C

.2"/2 � .2" � �/2

"2
: (3.3)

Proof. With (3.2) and the "-ball condition at xi 2 @˝i , we get B"��.x0 ˙ "dx0/\B".xi � "dxi / D

;. We deduce kxi�x0�".dxiCdx0/k > 2"��. Squaring these two inequalities and summing them,
we obtain the required one: kxi�x0k2C4"2�.2"��/2 > 2"2�2"2hdxi j dx0i D "

2kdxi�dx0k
2.

Proposition 3.7 Under Assumption 3.5, for any xi 2 @˝i , we have the following global inequality:

jhxi � x0 j dx0ij <
1

2"
kxi � x0k2 C

"2 � ." � �/2

2"
: (3.4)

Moreover, if we introduce the vector .xi � x0/0 D .xi � x0/ � hxi � x0 j dx0idx0 and if we assume
that k.xi � x0/0k < " � � and jhxi � x0 j dx0ij < ", then we have the following local inequality:

1

2"
kxi � x0k2 C

"2 � ." � �/2

2"
< " �

p
." � �/2 � k.xi � x0/0k2: (3.5)

Proof. From (3.2), any point xi 2 @˝i cannot belong to the sets B"��.x0 ˙ "dx0/. Hence, we have:
kxi � x0 � "dx0k > " � �. Squaring these two inequalities, we get the first required relation (3.4):
kxi � x0k2 C "2 � ."� �/2 > 2"jhxi � x0 j dx0ij. Then, by introducing the vector .xi � x0/0 of the
statement, the previous inequality now takes the following form:

jhxi � x0 j dx0ij
2
� 2"jhxi � x0 j dx0ij C k.xi � x0/0k2 C "2 � ." � �/2 > 0:

We assume its left member is a second-order polynomial whose reduced discriminant is positive:
�0 WD ."��/2�k.xi �x0/0k2 > 0. Hence, the unknown satisfies either jhxi �x0 j dx0ij < "�

p
�0

or jhxi � x0 j dx0ij > "C
p
�0. We assume jhxi � x0 j dx0ij < " and the last case cannot hold true.

Squaring the remaining inequality, we get: jhxi�x0 j dx0ij
2Ck.xi�x0/0k2 < "2C."��/2�2"

p
�0,

which is the second required relation (3.5) since its left member is equal to kxi � x0k2.

Corollary 3.8 Considering the assumptions and notation of Propositions 3.6 and 3.7, we have:

kxi � x0k < 2�C 2k.xi � x0/0k; (3.6)

"kdxi � dx0k < 2
p
2"�C

p
2k.xi � x0/0k: (3.7)
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Proof. Consider any xi 2 @˝i . We set .xi � x0/0 D .xi � x0/ � hxi � x0 j dx0idx0 . We assume
k.xi � x0/0k < " � � and jhxi � x0 j dx0ij < ". The local estimation (3.5) of Proposition 3.7 gives:

kxi � x0k2 < "2 C ." � �/2 � 2"
p
." � �/2 � k.xi � x0/0k2

D

�
"2 C ." � �/2

�2
� 4"2." � �/2 C 4"2k.xi � x0/0k2

"2 C ." � �/2 C 2"
p
." � �/2 � k.xi � x0/0k2

<
h"2 � ." � �/2

"

i2
C 4k.xi � x0/0k2 < 4�2 C 4k.xi � x0/0k2:

Hence, we get: kxi � x0k < 2�C 2k.xi � x0/0k. Then, using (3.3), we also have:

"kdxi � dx0k 6
p
4"2 � .2" � �/2 C kxi � x0k2:

Combining the above inequality with (3.5), we obtain:

"kdxi � dx0k <

q
4"� � �2 C "2 C ." � �/2 � 2"

p
." � �/2 � k.xi � x0/0k2

D

s
2"

4"�C k.xi � x0/0k2

"C �C
p
." � �/2 � k.xi � x0/0k2

< 2
p
2"�C

p
2k.xi � x0/0k:

Consequently, the required inequalities (3.6)–(3.7) are established so Corollary 3.8 holds true.

3.3 A local parametrization of the boundary @˝i

Henceforth, we consider a basis Bx0 of the hyperplane d?x0 such that .x0;Bx0 ;dx0/ is a direct
orthonormal frame. The position of any point is now determined in this local frame associated
with x0. More precisely, for any point x 2 Rn, we set x0 D .x1; : : : ; xn�1/ such that x D .x0; xn/.
In particular, the symbols 0 and 00 respectively refer to the zero vector of Rn and Rn�1. Moreover,
since x0 is identified with 0 in this new frame, Relations (3.2) of Assumption 3.5 take new forms:

B"��.00;�"/ � ˝i and B"��.00; "/ � Bn˝i : (3.8)

We introduce two functions defined on D"��.00/ D fx0 2 Rn�1; kx0k < " � �g. The first one
determine around x0 the position of the boundary @˝i thanks to some exterior points, the other one
with interior points. Then, we show these two maps coincide even if it means reducing �.

Proposition 3.9 Under Assumption 3.5, the two following maps '˙i are well defined:�
'Ci W x0 2 D"��.00/ 7�! sup

˚
xn 2 Œ�"; "�; .x0; xn/ 2 ˝i

	
2 � � "; "Œ

'�i W x0 2 D"��.00/ 7�! inf
˚
xn 2 Œ�"; "�; .x0; xn/ 2 Bn˝i

	
2 � � "; "Œ;

Moreover, for any x0 2 D"��.00/, introducing the points x˙i D .x
0; '˙i .x

0//, we have x˙i 2 @˝i and
also the following inequalities:

j'˙i .x
0/j <

1

2"
kx˙i � x0k2 C

"2 � ." � �/2

2"
< " �

p
." � �/2 � kx0k2: (3.9)
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Proof. Let x0 2 D"��.00/ and g W t 2 Œ�"; "� 7! .x0; t /. Since �" 2 g�1.˝i / � Œ�"; "�, we can set
'Ci .x

0/ D supg�1.˝i /. The map g is continuous so g�1.˝i / is open and 'Ci .x
0/ ¤ " thus we get

'Ci .x
0/ … g�1.˝i / i.e. xCi 2 ˝in˝i . Similarly, the map '�i is well defined and x�i 2 @˝i . Finally,

we use (3.4) and (3.5) on the points x0 and xi D x˙i in order to obtain (3.9).

Lemma 3.10 We make Assumption 3.5 and assume � < "
3

. We set r D 1
2

p
4." � �/2 � ."C �/2

and x0 2 Dr .00/. Assume there exists xn 2� � "; "Œ such that xi WD .x0; xn/ belongs to @˝i . We also
consider Qxn 2 R satisfying the inequality j Qxnj < "�

p
." � �/2 � kx0k2. Introducing Qxi D .x0; Qxn/,

then we have: . Qxn < xn H) Qxi 2 ˝i / and
�
Qxn > xn H) Qxi 2 Bn˝i

�
.

Proof. We assume � < "
3

so we can set r D 1
2

p
4." � �/2 � ."C �/2. Consider any x0 2 Dr .00/

and also .xn; Qxn/ 2� � "; "Œ2 such that xi WD .x0; xn/ 2 @˝i and Qxi WD .x0; Qxn/ … B"��.00;˙"/. We
need to show that if Qxn ? xn, then Qxi 2 B".xi ˙ "dxi /. The "-ball condition on ˝i will give the
result. Since xi � Qxi D .xn � Qxn/dx0 , if we assume Qxn > xn, then we have:

kQxi � xi � "dxi k
2
� "2 D . Qxn � xn/

2
� 2". Qxn � xn/hdx0 j dxi i

D j Qxn � xnj
�
j Qxn � xnj C "kdxi � dx0k

2
� 2"

�
6 j Qxn � xnj

�
j Qxnj C jxnj C

kxi � x0k2 C .2"/2 � .2" � �/2

"
� 2"

�
;

where the last inequality comes from Proposition 3.6 (3.3) applied to xi 2 @˝i . Finally, we use the
inequality involving Qxn and the ones (3.4)-(3.5) of Proposition 3.7 applied to xi 2 @˝i to obtain:

kQxi � xi � "dxi k
2
� "2 < 4jxn � Qxnj

�
"C �

2
�

p
." � �/2 � kx0k2

�
„ ƒ‚ …

6

�
"C�
2 �

p
."��/2�r2

�
D 0

:

Hence, if Qxn > xn, then we get Qxi 2 B".xi C "dxi / � Bn˝i . Similarly, one can prove that if
Qxn < xn, then we have Qxi 2 B".xi � "dxi / � ˝i .

Proposition 3.11 Let �, r be as in Lemma 3.10. Then, the two functions '˙i of Proposition 3.9
coincide on Dr .00/. The map 'i refers to their common restrictions and it satisfies:(

@˝i \ .Dr .00/\� � "; "Œ/ D
˚
.x0; 'i .x0//; x0 2 Dr .00/

	
˝i \ .Dr .00/\� � "; "Œ/ D

˚
.x0; xn/; x0 2 Dr .00/ and � " < xn < 'i .x0/

	
:

Proof. First, we assume by contradiction that there exists x0 2 Dr .00/ such that '�i .x
0/ ¤ 'Ci .x

0/.
The hypothesis of Lemma 3.10 are satisfied for the points xi WD .x0; 'Ci .x

0// and Qxi WD .x0; '�i .x
0//

by using (3.9). Hence, either .'�i .x
0/ < 'Ci .x

0/) Qxi 2 ˝i / or .'�i .x
0/ > 'Ci .x

0/) Qxi 2 Bn˝i /

whereas Qxi 2 @˝i . We deduce that '�i .x
0/ D 'Ci .x

0/ for any x0 2 Dr .00/. Then, we consider
x0 2 Dr .00/ and xn 2� � "; "Œ. We set xi D .x0; 'i .x0// and Qxi D .x0; xn/. Proposition 3.9 ensures
that if xn D 'i .x0/, then xi 2 @˝i . Moreover, if �" < xn 6 �" C

p
." � �/2 � kx0k2, then

Qxi 2 B"��.00;�"/ � ˝i and if �"C
p
." � �/2 � kx0k2 < xn < '.x0/, then apply Lemma 3.10 to

get Qxi 2 ˝i . Consequently, we have proved: 8x0 2 Dr .00/; � " < xn < 'i .x0/ H) .x0; xn/ 2 ˝i .
To conclude, similar arguments hold true when " > xn > 'i .x0/ and imply .x0; xn/ 2 Bn˝i .
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3.4 The C 1;1-regularity of the local graph 'i

We previously showed that the boundary @˝i is locally described by the graph of a well-defined
map 'i W Dr .00/!� � "; "Œ. Now we prove its C 1;1-regularity even if it means reducing � and r .

Lemma 3.12 The following map is well defined, smooth, surjective and increasing:

f� W �0;
�

2
Œ �!�2

p
2"�;C1Œ

˛ 7�!
3˛ C 2

p
2"�

cos˛
:

In particular, it is an homeomorphism and its inverse f �1� satisfies the following inequality:

8" > 0; 8� 2
i
0;
"

8

h
; f �1� ."/ <

"

3
: (3.10)

Proof. The proof is basic calculus.

Proposition 3.13 In Assumption 3.5, let � < "
8

and consider ˛ 2�0; f �1� ."/�, where f �1� has been
introduced in Lemma 3.12. Then, we have:

8xi 2 B˛.x0/ \˝i ; C˛.xi ;�dx0/ � ˝i ;

where C˛.xi ;�dx0/ is defined in Definition 2.3.

Proof. Since we have � < "
3

, we can set r D 1
2

p
4." � �/2 � ."C �/2 and Cr;" D Dr .00/���"; "Œ.

Moreover, we assume � < "
8

, i.e., 2
p
2"� < " so f �1� ."/ is well defined. Choose ˛ 2�0; f �1� ."/�

then consider xi D .x0; xn/ 2 B˛.x0/ \ ˝i and yi D .y0; yn/ 2 C˛.xi ;�dx0/. The proof of the
assertion yi 2 ˝i is divided into the three following steps.

1. Check xi 2 Cr;" so as to introduce the point Qxi D .x0; 'i .x0// of @˝i satisfying xn 6 'i .x0/.
2. Consider Qyi D .y0; yn C 'i .x0/ � xn/ and prove Qyi 2 C˛.Qxi ;�dx0/ � B".Qxi � "dQxi / � ˝i .
3. Show .Qyi ; yi / 2 Cr;" �Cr;" in order to deduce ynC 'i .x0/� xn < 'i .y0/ and conclude yi 2 ˝i .

First, from (3.10), we have: max.kx0k; jxnj/ 6 kxi � x0k < ˛ 6 f �1� ."/ < "
3

. Since � < "
8

,

we get r > 1
2
Œ4.7"

8
/2 � .9"

8
/2�

1
2 > "

2
thus xi 2 ˝i \ Cr;". Hence, from Proposition 3.11, it comes

xn 6 'i .x0/. We set Qxi D .x0; 'i .x0// 2 @˝i\Cr;". Then, we proveC˛.Qxi ;�dx0/ � B".Qxi�"dQxi / so
consider any y 2 C˛.Qxi ;�dx0/. Combining the Cauchy–Schwartz inequality and y 2 C˛.Qxi ;�dx0/,
we get:

ky � Qxi C "dQxi k
2
� "2 6 ky � Qxik2 C 2"ky � QxikkdQxi � dx0k � 2"ky � Qxik cos˛

< 2ky � Qxik
�˛
2
C 2

p
2"�C

p
2kx0k � " cos˛

�
< 2˛ cos˛

�
f�.˛/ � "

�
6 0;

where we used (3.7) on Qxi 2 @˝i \ Cr;" and kx0k 6 kxi � x0k < ˛. Hence, y 2 B".Qxi � "dQxi / so
C˛.Qxi ;�dx0/ � B".Qxi � "dQxi / � ˝i , using the "-ball condition. Moreover, since Qyi � Qxi D yi � xi



228 J. DALPHIN

and yi 2 C˛.xi ;�dx0/, we get Qyi 2 C˛.Qxi ;�dx0/, which ends the proof of Qyi 2 ˝i . Finally, we
check that .yi ; Qyi / 2 Cr;" � Cr;". We have successively:8̂̂̂<̂
ˆ̂:
ky0k 6 ky0 � x0k C kx0k <

p
˛2 � ˛2 cos2 ˛ C ˛ D ˛

cos˛

�
1
2

sin 2˛ C cos˛
�
<

f�.˛/

2
6 "

2
< r

jynj 6 jyn � xnj C jxnj 6 kyi � xik C kxi � x0k < 2˛ < f .˛/ 6 "

j Qynj D jyn C 'i .x0/ � xnj 6 kyi � xik C " �
p
." � �/2 � kx0k2 < ˛ C �.2"��/Ckx0k2

"C
p
."��/2�kx0k2

:

Here, we used Relation (3.9), the fact that yi 2 C˛.xi ;�dx0/ and xi 2 B˛.x0/. Hence, we obtain:
j Qynj < 2˛ C 2� < 2f �1� ."/ C 2 "

8
6 2"

3
C

"
4
< ". To conclude, apply Proposition 3.11 to Qyi 2

˝i \ Cr;" in order to get yn C 'i .x0/ � xn < '.y0/. Since we firstly proved xn 6 'i .x0/, we have
yn < 'i .y0/. Applying Proposition 3.11 to yi 2 Cr;", we get yi 2 ˝i as required.

Lemma 3.14 The following map is well defined, smooth, surjective and increasing:

g W �0;
�

8
Œ �!�0;C1Œ

� 7�!
32�

cos2.4�/
:

In particular, it is an homeomorphism and its inverse g�1 satisfies the following relations:

8" > 0; g�1."/ <
"

32
and g�1."/ <

1

4
f �1
g�1."/

."/; (3.11)

where f �1� is defined in Lemma 3.12.

Proof. We only prove the inequality g�1."/ < 1
4
f �1
g�1."/

."/. The remaining part is basic calculus.
Consider any " > 0. There exists a unique � 2�0; �

8
Œ such that g.�/ D " or equivalently � D g�1."/.

Hence, we have 4� 2�0; �
2
Œ so we can compute, using the first inequality � < "

32
:

f�.4�/ D
2
p
2�"

cos.4�/

 
3

r
2�

"
C 1

!
<
2
p
2�"

cos.4�/

 
3

r
2

32
C 1

!
<
4
p
2"�

cos.4�/
D
p
g.�/" D ":

As f� is an increasing homeomorphism, so does f �1� and the inequality follows: 4� < f �1� ."/.

Corollary 3.15 In Assumption 3.5, we set � D g�1."/, then consider ˛ D f �1� ."/ and Qr D 1
4
˛��.

The restriction to DQr .00/ of the map 'i defined in Proposition 3.11 is 1
tan˛ -Lipschitz continuous.

Proof. Let � D g�1."/ and using (3.11), we have � < "
32

so we can set r D

1
2

p
4." � �/2 � ."C �/2 and ˛ D f �1� ."/, but we also have Qr WD 1

4
˛ � � > 0. We consider

any .x0C; x
0
�/ 2 DQr .00/ �DQr .00/. Using (3.10)-(3.11), we get Qr < 1

4
f �1� ."/ < "

12
< 1

2
Œ4.31"

32
/2 �

.33"
32
/2�

1
2 < r . From Proposition 3.11, we can define x˙i WD .x0

˙
; 'i .x0˙// 2 @˝i . Then, we show

that x˙i 2 @˝i\B˛.x0/\B˛.x
�

i /. Relation (3.6) ensures that kx˙i �x0k < 2kx0˙kC2� 6 2 QrC2� <

˛ and the triangle inequality gives kxCi �x�i k 6 kxCi �x0kCkx0�x�i k < 4 QrC4� D ˛. Finally, we
apply Proposition 3.13 to x˙i 2 @˝i\B˛.x0/, which cannot belong to the coneC˛.x�i ;�dx0/ � ˝i .
Hence, we obtain:

jhxCi � x�i j dx0ij 6 cos˛kxCi � x�i k D cos˛
q
kx0C � x0�k2 C jhx

C

i � x�i j dx0ij
2:
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Re-arranging the above inequality, we deduce that the map 'i isL-Lipschitz continuous withL > 0
depending only on " as required: j'i .x0C/ � 'i .x

0
�/j D jhx

C

i � x�i j dx0ij 6
1

tan˛kx
0
C � x0�k.

Proposition 3.16 We set Qr D 1
4
f �1
g�1."/

."/ � g�1."/, where f and g are defined in Lemmas 3.12
and 3.14. Then, the restriction to DQr .00/ of the map 'i defined in Proposition 3.11 is differentiable:

8a0 2 DQr .00/; r'i .a0/ D
�1

hdai j dx0i
d0ai where ai WD .a0; 'i .a0//:

Moreover, r'i W DQr .00/ ! Rn�1 is L-Lipschitz continuous with L > 0 depending only on ", and
the map is also uniformly bounded. More precisely, we have kr'i .a0/k < 32

29
for any a0 2 DQr .00/.

Proof. Let � D g�1."/ and using (3.11), we have � < "
32

so we can set r D

1
2

p
4." � �/2 � ."C �/2 and ˛ D f �1� ."/, but we also have Qr WD 1

4
˛� � > 0. Let a0 2 DQr .00/ and

x0 2 DQr�ka0k.a0/. Hence, .a0; x0/ 2 DQr .00/ � DQr .00/. Using (3.10)-(3.11), Qr < 1
4
f �1� ."/ < "

12
<

1
2
Œ4.31"

32
/2�.33"

32
/2�

1
2 < r . From Proposition 3.11, we can define x˙i WD .x

0
˙
; 'i .x0˙// 2 @˝i . Then,

we apply (A2) to ˝i thus:

jhxi � ai j dai ij 6
1

2"

�
kx0 � a0k2 C j'i .x0/ � 'i .a0/j2

�
6
1

2"

�
1C

1

tan2 ˛

�
„ ƒ‚ …

WDC."/>0

kx0 � a0k2;

where we also used the Lipschitz continuity of 'i on DQr .00/ established in Corollary 3.15. We note
that dai D .d

0
ai ; .dai /n/ where .dai /n D hdai j dx0i. Hence, the above inequality takes the form:

j
�
'i .x0/ � 'i .a0/

�
.dai /n C hd

0
ai j x

0
� a0ij 6 C."/kx0 � a0k2:

This last inequality is a first-order Taylor expansion of 'i if it can be divided by a uniform positive
constant smaller than .dai /n. Let us justify this last assertion. From (3.3) and (3.5), we deduce:

.dai /n D 1 �
1

2
kdai � dx0k

2 > 1 �
1

2"2
kai � x0k2 �

4"� � �2

2"2
>
1

"

p
." � �/2 � ka0k2 �

�

"
:

Then, inequality (3.11) gives �
"
< 1

32
and from (3.10), it comes ka0k < Qr < ˛

4
< "

12
. Consequently,

we get .dai /n > Œ.
31
32
/2 � . 1

12
/2�

1
2 �

1
32
> 29

32
and from the foregoing, we obtain:

8x0 2 DQr�ka0k.a0/; 'i .x0/ � 'i .a0/C
� d0ai
.dai /n

j x0 � a0
�

6
32C."/

29
kx0 � a0k2:

Therefore, 'i is differentiable at any point a0 2 DQr .00/ with r'i .a0/ D �d0ai =.dai /n. Moreover, the
fact that .dai /n >

29
32

and kd0ai k 6 kdai k D 1 also ensures that kr'i .a0/k < 32
29

for any a0 2 DQr .00/,
i.e., the map r'i is uniformly bounded. Finally, we show that r'i W DQr .00/ ! Rn�1 is Lipschitz
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continuous. Let .x0; a0/ 2 DQr .00/ �DQr .00/. We have:

kr'i .x0/ � r'i .a0/k 6 j
1

.dxi /n
�

1

.dai /n
jkd
0

xi k C
1

.dai /n
kd
0

ai � d
0

xi k

6
32

29

�
32

29
j.dai /n � .dxi /nj C kdai � dxi k

�
6
32

29"

�
1C

32

29

�
kxi � aik 6

32

29"

�
1C

32

29

�r
1C

1

tan2 ˛
kx0 � a0k:

We used the fact that .dai /n >
29
32

, the Lipschitz continuity of 'i proved in Corollary 3.15 and the
one of the map xi 2 @˝i 7! dxi coming from Proposition A.4 applied to˝i 2 O".B/. To conclude,
r'i is an L-Lipschitz continuous map, where L > 0 depends only on ".

Proof of Theorem 3.3. Set K WD DQr .00/ where Qr WD 1
4
f �1
g�1."/

."/ � g�1."/ is positive from (3.11).
Using Propositions 3.11, 3.16 and Corollary 3.15, we have proved that each ˝i is parametrized
by a local graph 'i W DQr .00/ !� � "; "Œ as stated in Theorem 3.3. Hence, it remains to prove the
convergence of these graphs. First, any of the .'i /i>I is Lipschitz thus uniformly continuous on
DQr .00/ so it has a unique Lipschitz continuous extension to K. In addition, the sequence .'i /i>I
is uniformly bounded and equi-Lipschitz continuous. Applying the Arzelà-Ascoli Theorem, it is
uniformly converging, up to a subsequence, to a Lipschitz continuous function Q' W K ! Œ�"; "�.
Similarly, using Corollary 3.15, the sequence .r'i /i>I is uniformly bounded and equi-L-Lipschitz
continuous so up to a subsequence, it is uniformly converging on K to a Lipschitz continuous map,
which has to be r Q' (use the convergence in the sense of distributions and [30, Lemma 4.7]). Then,
let ı 2�0; 1� and we have:

sup
.x;y/2K�K

x¤y

kr .'i � '/ .x/ � r .'i � '/ .y/ k
kx � yk1�ı

6
�
LC kr'kC0;1.K/

�1�ı
kr'i � r'k

ı
C0.K/

;

from which we deduce that up to a subsequence, .'i /i>I converges to ' in C 1;1�ı.K/ for any ı 2
�0; 1�. Moreover, using [38, Section 5.2.2], each coefficient of the Hessian matrix of 'i is uniformly
bounded in L1.K/ so up to a subsequence again [38, Lemma 2.2.27], each of them weakly-star
converges inL1.K/ to the ones of Q'. Finally, we assume that limi!C1 dH .@˝i ; @˝/ D 0. Even if
it means reducing Qr again, we can also assume that Qr < r , where r > 0 is the one of Theorem 2.6.
Consequently, K � Dr .00/ and we can consider the local map ' W K !� � "; "Œ associated with
@˝. We now show that ' � Q' on K. Let x0 2 K. We set x D .x0; Q'.x0// and xi D .x0; 'i .x0//.
There exists y 2 @˝ such that d.xi ; @˝/ D kxi � yk. We thus have:

d.x; @˝/ 6 kx � yk 6 kx � xik C kxi � yk D j'i .x0/ � Q'.x0/j C d.xi; @˝/

6 k'i � Q'kC0.K/ C dH .@˝i ; @˝/:

As i !C1, we obtain x 2 @˝. In particular, from the "-ball condition, we deduce that j Q'.x0/j ¤ "
otherwise x 2 B".00; "/ � Bn˝ or x 2 B".00;�"/ � ˝ which is not the case. Therefore, since
K � Dr .00/, we get x 2 @˝ \ .Dr .00/�� � "; "Œ/ and Theorem 2.6 yields to x D .x0; '.x0// i.e.
'.x0/ D Q'.x0/ for any x0 2 K. To conclude, we also have proved that ' is the unique limit of any
converging subsequence of .'i /i>I . Hence, the whole sequence .'i /i>I is converging to '.
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4. Continuity of some geometric functionals in the class O".B/

In this section, we prove that the convergence properties and the uniform C 1;1-regularity of the
class O".B/ ensure the continuity of a wide range of geometric functionals. More precisely, with a
suitable partition of unity, we show how to use the local convergence results of Theorem 3.3 in order
to get the global continuity of many functionals of the form J W ˝ 2 O".B/ 7!

R
@˝
j˝.x/dA.x/.

First, we study the case of integrands depending only on the position and the normal vector i.e.
for any j˝ W x 2 @˝ 7! j Œx;n.x/�, where j W B � Sn�1 ! R is a continuous map. In Section 4.2,
we explain how to build a partition of unity and the continuity of J will directly follow from the
C 1-strong convergence of the local graphs given in Theorem 3.3.

Then, we aim to use theL1-weak star convergence of the Hessian-matrix coefficients associated
with the local graphs. We thus consider integrands whose expressions in the local basis are linear
in these coefficients. It is the case for the scalar mean curvature H and in Section 4.3, we obtain
the continuity of J for any j˝ W x 2 @˝ 7! H.x/j Œx;n.x/�, where j W B � Sn�1 ! R is
continuous. Moreover, using classical arguments, we can relax the continuity results into lower
semi-continuity ones by assuming only convexity with respect to H of integrands j˝ W x 2 @˝ 7!
j Œx;n.x/;H.x/�. In this case, note that we only have lower semi-continuity and not continuity
(which requires the linearity of j in H ). Note also that no growth condition on j is imposed
here regarding the last variable. In particular, we are able to obtain the lower semi-continuity of
˝ 2 O".B/ 7!

R
@˝
jH jdA, which is excluded from many statements of geometric measure theory

(cf. Remark 4.12).
Furthermore, we only need to assume the continuity of j with respect to the set of variables

in order to ensure that the functional J is well defined. Indeed, from Theorem 2.6, the Gauss map
n W x 2 @˝ 7! n.x/ 2 Sn�1 is 1

"
-Lipschitz continuous. Rademacher’s Theorem [29, Section

3.1.2] ensures it is differentiable almost everywhere and its differential D�n W x 2 @˝ 7! Dxn 2
L.Tx@˝/ is an L1-map satisfying kD�nkL1.@˝/ 6 1

"
. We deduce that the map x 2 @˝ 7!

.x;n.x/;H.x// is valued in the compact set B � Sn�1 � Œ�n�1
"
; n�1
"
�. In particular, the continuity

of j and the compactness of @˝ ensure the existence of
R
@˝
j Œx;n.x/;H.x/�dA.x/ < C1, i.e.,

J W O".B/ ! R is well defined. These kind of arguments also work for any functional considered
in Section 4.

Finally, we wonder if we can have the L1-weak star convergence of some non-linear functions
of the Hessian-matrix coefficients associated with the local graphs. Considering the Gauss-Codazzi–
Mainardi equations (4.14)–(4.15), we detail how to apply a version of the Div-Curl Lemma [57] to
this geometrical setting. In Section 4.4, we obtain the L1-weak star convergence of the Gaussian
curvature K, and more generally of (4.8) i.e. of the elementary symmetric polynomials H .l/ of the
principal curvatures. As before, we deduce continuity for integrands that are linear in K, H .l/, and
only lower semi-continuity for integrands that are convex in K, H .l/, l D 1 : : : n � 1.

Note that for C 1;1-hypersurfaces, .H .l//06l6n�1 corresponds to the curvature measures defined
more generally for sets of positive reach. Consequently, we have strengthened the results of Federer
[30, Theorem 5.9] in the particular context of the "-ball condition: the .H .l//06l6n�1 are not only
converging in the sense of Radon measures but also L1-weakly star (cf. Remark 4.4). Throughout
this section, we make the following hypothesis, that were exactly the one assumed in Theorem 3.3.

ASSUMPTION 4.1 Let " > 0 and B � Rn be an open bounded set, large enough to ensure that
O".B/ ¤ ;. We assume .˝i /i2N is a sequence of elements from O".B/ converging to ˝ 2 O".B/
in the sense of compacts sets (cf. Definition 3.1 (ii)) and limi!C1 dH .@˝i ; @˝/ D 0.
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DEFINITION 4.2 Let f , .fi /i2N W E ! F be continuous maps between two metric spaces. We say
that .fi /i2N diagonally converges to f if kfi .ti / � f .t/kF ! 0 for any .ti /i2N converging to t
in E.

REMARK The uniform convergence implies the diagonal convergence implying the pointwise
convergence. Conversely, any sequence of equi-continuous maps converging pointwise is diagonally
convergent. If in addition, it is uniformly bounded, then we get the uniform convergence.

Section 4 is organized as follows. In Section 4.1, we recall some notions related to the geometry
of C 1;1-hypersurfaces. In Section 4.2, we study the continuity of functionals depending on the
position and the normal vector. In Section 4.3, we consider the dependence in the mean curvature.
In Section 4.4, we treat the case of the Gaussian curvature in R3 and we prove its Rn-version,
namely Theorem 4.3 stated hereafter. We conclude by giving some existence results in Section 4.5.
We prove Theorem 1.3, its generalization to Rn, and detail many applications like Theorem 1.5 and
Theorems 1.7–1.8, mainly coming from the modelling of vesicles and red blood cells.

Theorem 4.3 Let "; B;˝, .˝i /i2N be as in Assumption 4.1. We consider some continuous maps
j l ; j li W R

n � Sn�1 ! R such that each sequence .j li /i2N is uniformly bounded on B � Sn�1 and
diagonally converges to j l for any l 2 f0; : : : ; n� 1g. Then, the following functional is continuous:

J .@˝i /

WD

n�1X
lD0

Z
@˝i

h X
16n1<:::<nl6n�1

�@˝in1
.x/ : : : �@˝inl

.x/
i
j li

h
x;n@˝i .x/

i
dA .x/ �!

i!C1
J.@˝/;

where �1; : : : �n�1 are the principal curvatures, n the unit outer normal field to the hypersurface,
and where the integration is done with respect to the .n� 1/-dimensional Hausdorff measure A.�/.

REMARK 4.4 In the specific case of compact C 1;1-hypersurfaces, note that the above theorem is
stronger than Federer’s one on sets of positive reach [30, Theorem 5.9]. Indeed, in Theorem 4.3,
taking j li .x;n.x// D j l .x/ yields to the convergence of the curvature measures associated with
@˝i to the ones of @˝ in the sense of Radon measures.

4.1 On the geometry of hypersurfaces with C 1;1-regularity

Let us consider a non-empty compact C 1;1-hypersurface S � Rn. Merely speaking, for any point
x0 2 S, there exists rx0 > 0, ax0 > 0, and a unit vector dx0 such that in the cylinder defined by:

Crx0 ;ax0
.x0/ D

˚
x 2 Rn; jhx� x0 j dx0ij < ax0 and k.x� x0/� hx� x0 j dx0idx0k < rx0

	
; (4.1)

the hypersurface S is the graph of a C 1;1-map. Introducing the orthogonal projection on the affine
hyperplane x0 C d?x0 :

˘x0 W R
n
�! x0 C d?x0

x 7�! x � hx � x0 j dx0idx0 ;
(4.2)

and considering the set Drx0
.x0/ D ˘x0.Crx0 ;ax0

.x0//, this means that there exists a continuously
differentiable map 'x0 W x0 2 Drx0

.x0/ 7! 'x0.x0/ 2��ax0 ; ax0 Œ such that its gradient r'x0 and 'x0
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are Lx0 -Lipschitz continuous maps, and such that:

S \ Crx0 ;ax0
.x0/ D fx0 C 'x0.x

0/dx0 ; x0 2 Drx0
.x0/g:

Hence, we can introduce the local parametrization:

Xx0 W Drx0
.x0/ �! S \ Crx0 ;ax0

.x0/

x0 7�! x0 C 'x0.x
0/dx0

and S is a C 1;1-hypersurface in the sense of [48, Definition 2.2]. Indeed,Xx0 is an homeomorphism,
its inverse map is the restriction of ˘x0 to Crx0 ;ax0

.x0/, and Xx0 is an immersion of class C 1;1.

DEFINITION 4.5 Let n > 2. We say that a non-empty subset S of Rn is a C 1;1-hypersurface in the
sense of [48, Definition 2.2] if for any point x 2 S, there exists an open set Ux � Rn�1, an open
neighbourhood Vx of x in Rn, and a C 1;1-map Xx W Ux ! Vx\S, which is an homeomorphism and
such that its differential DyXx W Rn�1 ! Rn is injective for any y 2 Ux.

We usually drop the dependence in x0 to lighten notation, and consider a direct orthonormal
frame .x0;Bx0 ;dx0/ where Bx0 is a basis of d?x0 . In this local frame, x0 is identified with 0 2 Rn,
the affine hyperplane x0Cd?x0 with Rn�1 and x0CRdx0 with R. The cylinder Crx0 ;ax0

.x0/ becomes
Dr .00/���a; aŒ, 'x0 is the C 1;1-map ' W Dr .00/!��a; aŒ, projection˘x0 isX�1 W .x0; xn/ 7! x0,
and parametrization Xx0 is the C 1;1-map X W x0 2 Dr .00/ 7! .x0; '.x0// 2 S \ .Dr .00/�� � a; aŒ/.
In this setting, S is a C 1;1-hypersurface in the sense of Definition 2.2.

Since x0 2 Dr .00/ 7! Dx0X is injective, the vectors @1X , : : :, @n�1X are linearly independent.
For any x 2 S \ .Dr .00/�� � a; aŒ/, we define the tangent hyperplane TxS by DX�1.x/X.Rn�1/.
It is an .n � 1/-dimensional vector space so .@1X , : : :, @n�1X/ forms a basis of TxS. However,
this basis is not necessarily orthonormal. Consequently, the first fundamental form of S at x is
defined as the restriction of the usual scalar product in Rn to the tangent hyperplane TxS, i.e. as
I.x/ W .v;w/ 2 TxS � TxS 7! hv j wi. In the basis .@1X; : : : ; @n�1X/, it is represented by a
positive-definite symmetric matrix usually referred to as .gij /16i;j6n�1 and its inverse denoted by
.gij /16i;j6n�1 is also explicitly given in this case:

gij D
˝
@iX j @jX

˛
D ıij C @i'@j'; (4.3)

gij D ıij �
@i'@j'

1C kr'k2
: (4.4)

As a function of x0, note that each coefficient of these two matrices is Lipschitz continuous so
it is a W 1;1-map [29, Section 4.2.3], and from Rademacher’s Theorem [29, Section 3.1.2], its
differential exists almost everywhere. Moreover, any v 2 TxS can be decomposed in the basis
.@1X; : : : ; @n�1X/. Denoting by Vi the component of @iX and vi D hv j @iXi, we have:

v D
n�1X
iD1

Vi@iX H) vj D

nX
iD1

Vigij H) Vi D

n�1X
jD1

gij vj H) v D
n�1X
iD1

0@n�1X
jD1

gij vj

1A @iX:
(4.5)

In particular, we deduce I.v;w/ D
Pn�1
i;jD1 g

ij viwj . Then, the orthogonal of the tangent hyperplane
is one dimensional. Hence, there exists a unique unit vector n orthogonal to the .n�1/ vectors @1X ,
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: : :, @n�1X and pointing outwards the inner domain of S i.e. det.@1X , : : :, @n�1X;n/ > 0. It is called
the unit outer normal vector to the hypersurface and we have its explicit expression:

8x0 2 Dr .00/; n ıX.x0/ D
1p

1C kr'.x0/k2

�
�r'.x0/

1

�
: (4.6)

It is a Lipschitz continuous map, like the coefficients of the first fundamental form. In particular, it
is differentiable almost everywhere and introducing the Gauss map n W x 2 S 7! n.x/ 2 Sn�1, we
can compute its differential almost everywhere called the Weingarten map:

Dxn W TxS D DX�1.x/X.R2/ �! Tn.x/Sn�1 D DX�1.x/.n ıX/.R2/
v D DX�1.x/X.w/ 7�! Dxn.v/ D DX�1.x/.n ıX/.w/:

(4.7)

Note that Tn.x/Sn�1 D DX�1.x/.n ı X/.R2/ because n ı X is a Lipschitz parametrization of Sn�1.
Since Tn.x/Sn�1 � n.x/? can be identified with TxS, the map Dxn is an endomorphism of TxS.
Moreover, one can prove it is self-adjoint so it can be diagonalized to obtain n � 1 eigenvalues
denoted by �1.x/, : : :, �n�1.x/ and called the principal curvatures. Recall that the eigenvalues of an
endomorphism do not depend on the chosen basis and thus are really properties of the operator. This
assertion also holds true for the coefficients of the characteristic polynomial associated withDxn so
we can introduce them:

8l 2 f0; : : : ; n � 1g; H .l/.x/ D
X

16n1<:::<nl6n�1

�n1 .x/ : : : �nl .x/ : (4.8)

In particular, H .0/ D 1, H .1/ D H is called the scalar mean curvature, and H .n�1/ D K refers to
the Gaussian curvature:

H.x/ D �1.x/C : : :C �n�1.x/ and K.x/ D �1.x/�2.x/ : : : �n�1.x/: (4.9)

Moreover, introducing the symmetric matrix .bij /16i;j6n�1 defined by:

bij D �hDn.@iX/ j @jXi D �
˝
@i .n ıX/ j @jX

˛
D

Hess 'p
1C kr'k2

D
˝
n ıX j @ijX

˛
; (4.10)

we get from (4.5) that the Weingarten map Dn is represented in the local basis .@1X; : : : ; @n�1X/
by the following symmetric matrix:

.hij /16i;j6n�1 D

 
�

n�1X
kD1

gikbkj

!
D

 
�

n�1X
kD1

�
ıik �

@i'@j'

1C kr'k2

�
@kj'p

1C kr'k2

!
: (4.11)

Finally, we introduce the symmetric bilinear form whose representation in the local basis is .bij /. It
is called the second fundamental form of the hypersurface and it is defined by:

II.x/ W Tx.S/ � Tx.S/! R

.v;w/ 7! h�Dxn.v/jwi D
n�1X

i;j;k;lD1

gij vjg
klwlbil D

n�1X
i;j;kD1

gij vj vkhki : (4.12)
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We can also decompose @ijX in the basis .@1X; : : : ; @n�1X;n/ and its coefficients in the tangent
space are the Christoffel symbols:

@ijX D

n�1X
kD1

� kij @kX C bijn:

Note that the Christoffel symbols are symmetric with respect to the lower indices: � kij D �
k
ji . They

can be expressed only in terms of coefficients of the first fundamental form:

� kij D
1

2

n�1X
lD1

gkl
�
@jgli C @iglj � @lgij

�
: (4.13)

Like the first fundamental form, it is an intrinsic notion, which in particular do not depend on the
orientation chosen for the hypersurface, while the Gauss map, the Weingarten map, and the second
fundamental form does. Note that in local coordinates, the coefficients of the first fundamental
form and the Gauss map are Lipschitz continuous functions, i.e., n ı X; gij ; gij 2 W 1;1.Dr .00//.
Hence, the Christoffel symbols, the Weingarten map and the coefficients of the second fundamental
form exist almost everywhere and � kij ; bij ; hij 2 L

1.Dr .00//. Furthermore, one can prove that a
C 1;1-hypersurface satisfies the so-called Gauss and Codazzi–Mainardi equations in distributional
sense:

@l�
k
ij � @j�

k
il C

n�1X
mD1

�
� mij �

k
ml � �

m
il �

k
mj

�
D

n�1X
mD1

gkm
�
bij bml � bilbmj

�
(4.14)

@kbij � @j bik D

n�1X
lD1

�
� likblj � �

l
ij blk

�
: (4.15)

In fact, the converse statement also holds in R3: these equations characterize uniquely a surface and
it is referred as the Fundamental Theorem of Surface Theory, valid with C 1;1-regularity [44]. Given
a simply-connected open subset! � R2, a symmetric positive-definite .2�2/-matrix .gij /16i;j62 2

W 1;1.!/ and a symmetric matrix .bij /16i;j62 2 L
1.!/ satisfying (4.14) and (4.15) in the sense

of distributions, then there exists an injective C 1;1-immersion X W ! ! R3, unique up to proper
isometries of R3, such that the surface S WD X.!/ has .gij / and .bij / as coefficients of the first
and second fundamental forms. To conclude, we recall that A.�/ (respectively V.�/) refers to the
n � 1(resp. n)-dimensional Hausdorff measure. The integration is always be done with respect to
A and we have .dA ı X/.x0/ D

p
det.gij /dx0 D

p
1C kr'.x0/k2dx0. We refer to [26, 48] for a

more detailed exposition on all the notions quickly introduced here.

4.2 Geometric functionals involving the position and the normal vector

Proposition 4.6 Consider Assumption 4.1. Then, for any continuous map j W Rn � Sn�1 ! R:

lim
i!C1

Z
@˝i

j Œx;n .x/� dA .x/ D
Z
@˝

j Œx;n .x/� dA .x/ :

In particular, the area and the volume are continuous: A.@˝i / �! A.@˝/ and V.˝i / �! V.˝/.
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REMARK Note that the above result states the convergence of .@˝i /i2N to @˝ in the sense of
oriented varifolds [4, Appendix B] [55]. Similar results were obtained in [36]. Moreover, the
continuity of volume and the lower semi-continuity of area are already implied by the convergence
of characteristic functions (cf. Definition 3.1 (iii) and Proposition 3.2) [38, Proposition 2.3.6].

Proof. Consider Assumption 4.1. Hence, from Theorem 3.3, the boundaries .@˝i /i2N are locally
parametrized by graphs of C 1;1-maps 'i that converge strongly in C 1 and weakly-star in W 2;1

to the map ' associated with @˝. We now detail the procedure which allows to pass from this
local result to the global one thanks to a suitable partition of unity. For any x 2 @˝, we introduce
the cylinder CQr;".x/ defined by (4.1) and we assume that Qr > 0 is the one given in Theorem 3.3.
In particular, it only depends on ". Since @˝ is compact, there exists a finite number K > 1 of
points written x1; : : : ; xK , such that @˝ �

SK
kD1 C Qr

2 ;
"
2
.xk/. We set ı D min. Qr

2
; "
2
/ > 0. From the

triangle inequality, the tubular neighbourhood Vı.@˝/ D fy 2 Rn; d.y; @˝/ < ıg has its closure
embedded in

SK
kD1 CQr;".xk/. Then, we can introduce a partition of unity on this set. There exists

K non-negative C1-maps �k with compact support in CQr;".xk/ and such that
PK
kD1 �

k.x/ D 1 for
any point x 2 Vı.@˝/. Now, we can apply Theorem 3.3 to theK points xk . There existsK integers
Ik 2 N and some maps 'ki W DQr .xk/ 7!� � "; "Œ, with i > Ik and K > k > 1, such that:(

@˝i \ CQr;".xk/D
˚
.x0; 'ki .x

0//; x0 2 DQr .xk/
	

˝i \ CQr;".xk/D
˚
.x0; xn/; x0 2 DQr .xk/ and � " < xn < '

k
i .x
0/
	
:

Moreover, the K sequences of functions .'ki /i>Ik and .r'ki /i>Ik converge uniformly on DQr .xk/
respectively to the maps 'k and r'k associated with @˝ at each point xk . From the Hausdorff
convergence of the boundaries given in Assumption 4.1, there also exists I0 2 N such that for
any integer i > I0, we have @˝i 2 Vı.@˝/. Hence, we set I D max06k6K Ik , which thus only
depends on .˝i /i2N, ˝ and ". Then, we deduce that for any integer i > I , we have:

J .@˝i /

WD

Z
@˝i

j Œx;n .x/� dA.x/ D
Z
@˝i\Vı.@˝/

j Œx;n .x/� dA.x/

D

Z
@˝i

 
KX
kD1

�k .x/

!
j Œx;n .x/� dA.x/ D

KX
kD1

Z
@˝i\Cr;".xk/

�k .x/ j Œx;n .x/� dA.x/

D

KX
kD1

Z
DQr .xk/

�k
�

x0
'ki .x

0/

�
j

264� x0
'ki .x

0/

�
;

0B@ �r'k
i
.x0/q

1Ckr'k
i
.x0/k2

1q
1Ckr'k

i
.x0/k2

1CA
375q1C kr'ki .x0/ k2dx0:

The last equality comes from [48, Proposition 5.13] and Relation (4.6). The uniform convergence of
the K sequences .'ki /i>I and .r'ki /i>I on the compact set DQr .xk/ combined with the continuity
of j and .�k/16k6K allows one to let i ! 1 in the above expression. Observing that the limit
expression obtained is equal to J.@˝/, we proved that the functional J is continuous. Finally, for
the area, take j � 1 and for the volume, applying the Divergence Theorem, take j Œx;n.x/� D
1
n
hx j n.x/i.
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Proposition 4.7 Consider Assumption 4.1 and some continuous maps j; ji W Rn � Sn�1 ! R
such that .ji /i2N is uniformly bounded on B � Sn�1 and diagonally converges to j in the sense of
Definition 4.2. Then, we have:

lim
i!C1

Z
@˝i

ji Œx;n .x/� dA .x/ D
Z
@˝

j Œx;n .x/� dA .x/ :

Proof. The proof is identical to the one of Proposition 4.6. Using the same partition of unity and
the same notation, we get that

R
@˝i

ji Œx;n.x/�dA.x/ is equal to:

KX
kD1

Z
DQr .xk/

�k
�

x0
'ki .x

0/

�
ji

264� x0
'ki .x

0/

�
;

0B@ �r'k
i
.x0/q

1Ckr'k
i
.x0/k2

1q
1Ckr'k

i
.x0/k2

1CA
375q1C kr'ki .x0/ k2dx0:

Then, instead of using the uniform convergence of each integrand on a compact set as it is the case
in Proposition 4.6, we apply instead Lebesgue’s Dominated Convergence Theorem. Indeed, the
diagonal convergence ensures the pointwise convergence of each integrand, which are also, using
the other hypothesis, uniformly bounded. Hence, we can let i !C1 in the above expression.

DEFINITION 4.8 Let S;Si be some non-empty compact C 1-hypersurfaces of Rn such that .Si /i2N
converges to S for the Hausdorff distance: dH .Si ;S/ �!i!C1 0. On each hypersurface Si , we also
consider a continuous vector field Vi W x 2 Si 7! Vi .x/ 2 TxSi . We say that .Vi /i2N is diagonally
converging to a vector field on S denoted by V W x 2 S 7! V.x/ 2 TxS if for any point x 2 S and
for any sequence of points xi 2 Si that converges to x, we have kVi .xi / � V.x/k �!i!C1 0.

REMARK In Definition 4.8, .Vi .xi //i2N is assumed to converge to V.x/ as a sequence of points in
Rn, although Vi .xi / and V.x/ belong to different linear spaces TxiSi and TxS.

Corollary 4.9 Let "; B;˝; .˝i /i2N be as in Assumption 4.1 and consider some continuous vector
fields Vi on @˝i converging to a continuous vector field V on @˝ as in Definition 4.8. We also
assume that .Vi /i2N is uniformly bounded. If j W Rn � Sn�1 � Rn ! R is a continuous map, then:

lim
i!C1

Z
@˝i

j Œx;n .x/ ;Vi .x/� dA.x/ D
Z
@˝

j Œx;n .x/ ;V .x/� dA.x/:

Of course, this continuity result can be extended to a finite number of vector fields.

Proof. We only have to check that the maps ji W .x;u/ 2 @˝i � Sn�1 ! j Œx;u;Vi .x/� can be
extended to Rn � Sn�1 such that their extension satisfy the hypothesis of Proposition 4.7. This is
a standard procedure [38, Section 5.4.1]. Using the partition of unity given in Proposition 4.6 and
introducing the C 1;1-diffeomorphisms 	ki W .x

0; xn/ 2 Cr;".xk/ 7! .x0; 'ki .x
0/ � xn/, we can set:

8.x;u/ 2 Rn�Sn�1; ji .x;u/ D
KX
kD1

�k.x/j Œ.	ki /
�1
ı˘xk ı	

k
i .x/;u;Vi ı .	

k
i /
�1
ı˘xk ı	

k
i .x/�:

We recall that ˘xk is defined by (4.2). Finally, .ji /i2N diagonally converges to the extension of
.x;u/ 7! j Œx;u;V.x/�, since .Vi /i2N is diagonally converging to V . Moreover, .˝i /i2N � B , the
Gauss map is always valued in Sn�1, and .Vi /i2N is uniformly bounded. Hence, .x;n@˝i .x/;Vi .x//
is valued in a compact set. Since j is continuous on this compact set, it is bounded and .ji /i2N is
thus uniformly bounded on B � Sn�1. Finally, we can apply Proposition 4.7 to let i !C1.
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4.3 Some linear functionals involving the second fundamental form

From Theorem 3.3, we only have the L1-weak-star convergence of the coefficients associated with
the Hessian of the local maps 'ki so we consider here the case of functionals whose expressions
in the parametrization are linear in @pq'ki . This is the case for the scalar mean curvature and the
second fundamental form of two vector fields.

Proposition 4.10 Consider Assumption 4.1 and a continuous map j W Rn � Sn�1 ! R. Then, the
functional ˝ 2 O".B/ 7!

R
@˝
H.x/j Œx;n.x/�dA.x/ is continuous:

lim
i!C1

Z
@˝i

H .x/ j Œx;n .x/� dA .x/ D
Z
@˝

H .x/ j Œx;n .x/� dA .x/ :

Proof. The proof is identical to the one of Proposition 4.6. Using the same notation and the same
partition of unity, we have to check that in the parametrization Xki W x0 2 DQr .xk/ 7! .x0; 'ki .x

0//,
the scalar mean curvature L1-weakly-star converges. It is the trace (4.9) of the Weingarten map
defined by (4.7) so relation (4.11) gives:

.H ıXki / D �

n�1X
p;qD1

gpqbqp D �

n�1X
p;qD1

 
ıpq �

@p'
k
i @q'

k
i

1C kr'ki k
2

!0B@ @pq'
k
iq

1C kr'ki k
2

1CA : (4.16)

Using Theorem 3.3, the K sequences .H ı Xki /i2N weakly-star converge in L1.DQr .xk//
respectively to H ı Xk . The remaining part of each integrand below uniformly converges to the
one of @˝ so we can let i !C1 inside:

KX
kD1

Z
DQr .xk/

.H ıXki /.x
0/.�k ıXki /.x

0/j ŒXki .x
0/; .n ıXki /.x

0/�.dA ıXki /.x
0/;

to get the limit asserted in Proposition 4.10.

Corollary 4.11 Consider Assumption 4.1 and a continuous map j W Rn � Sn�1 � R! R which is
convex in its last variable. Then, we have:Z

@˝

j Œx;n .x/ ;H .x/� dA .x/ 6 lim inf
i!C1

Z
@˝i

j Œx;n .x/ ;H .x/� dA .x/ :

REMARK 4.12 In particular, this result implies that the Helfrich (1.2) and the Willmore functional
(1.3) are lower semi-continuous, and so does the p-th power norm of the mean curvature

R
jH jpdA,

p > 1. Note that we are able to treat the critical case p D 1, while it is often excluded from many
statements of geometric measure theory [25, Example 4.1] [47, Definition 2.2] [40, Definition 4.1.2].
We emphasize the fact that we have here lower semi-continuity and not continuity.

Proof. The arguments are standard [57, �2 Theorem 4]. We only sketch the proof. First, assume that
j is the maximum of finitely many affine functions according to its last variable:

8t 2 R; j.x;n.x/; t/ D max
06l6L

jl Œx;n.x/� t C Qjl Œx;n.x/� : (4.17)
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For simplicity, let us assume that j only depends on the position. Using a partition of unity as in
Proposition 4.6, we introduce the local parametrizations Xk W x0 2 DQr .xk/ 7! .x0; 'k.x0// and we
make a partition of the setDQr .xk/ into L disjoints sets. We define recursively for any l 2 f1; : : : Lg:

Dk
l D fx

0
2 DQr .xk/n

l[
QlD1

Dk
Ql
; j
h
Xk.x0/; .H ıXk/.x0/

i
D jl

h
Xk.x0/

i
H
h
Xk.x0/

i
C Qjl

h
Xk.x0/

i
g:

Then, applying Proposition 4.10, we have successively:Z
@˝

j Œx;H.x/�dA.x/ D
KX
kD1

Z
DQr .xk/

.�k ıXk/j ŒXk ; .H ıXk/�.dA ıXk/

D

KX
kD1

LX
lD1

Z
Dk
l

.�k ıXk/
�
jl ŒX

k �H ŒXk �C Qjl ŒX
k �
�
.dA ıXk/

D

KX
kD1

LX
lD1

lim
i!C1

Z
Dk
l

.�k ıXki /
�
jl ŒX

k
i �H ŒX

k
i �C

Qjl ŒX
k
i �
�
.dA ıXki /

6
KX
kD1

LX
lD1

lim inf
i!C1

Z
Dk
l

.�k ıXki /j ŒX
k
i ; .H ıX

k
i /�.dA ıX

k
i /

6 lim inf
i!C1

Z
@˝i

j Œx;H.x/�dA.x/:

The result holds true for maps j that are maximum of finitely many planes. In general, we write
j D limL!C1 jL where jL is defined by (4.17) and apply the Monotone Convergence Theorem.

Proposition 4.13 Consider Assumption 4.1 and some continuous maps j; ji W Rn � Sn�1 ! R
such that .ji /i2N is uniformly bounded on B � Sn�1 and diagonally converges to j in the sense of
Definition 4.2. Then, we have:

lim
i!C1

Z
@˝i

H .x/ ji Œx;n .x/� dA .x/ D
Z
@˝

H .x/ j Œx;n .x/� dA .x/ :

REMARK 4.14 As in Corollary 4.9, we can consider here that ji is a continuous map of the position,
the normal vector, and a finite number of uniformly bounded vector fields diagonally converging in
the sense of Definition 4.8.

Proof. The proof is identical to the one of Proposition 4.10. Writing the functional in terms of
local parametrizations, it remains to check that we can let i ! C1 in each integral. From (4.16),
.H ı Xki /i2N weakly-star converges in L1.DQr .00// to H ı Xk , while the remaining part of the
integrand is strongly converging inL1.DQr .00//, since the hypothesis allows one to apply Lebesgue’s
Dominated Convergence Theorem. Hence, Proposition 4.13 holds true.
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Proposition 4.15 Consider Assumption 4.1 and some uniformly bounded continuous vector fields
Vi and Wi on @˝i that are diagonally converging to continuous vector fields V and W on @˝ in
the sense of Definition 4.8. Let j; ji W Rn � Sn�1 ! R be continuous maps such that .ji /i2N is
uniformly bounded on B � Sn�1 and diagonally converges to j as in Definition 4.2. Then, we have:

lim
i!C1

Z
@˝i

II ŒVi .x/ ;Wi .x/� ji Œx;n .x/� dA .x/ D
Z
@˝

II ŒV .x/ ;W .x/� j Œx;n .x/� dA .x/ :

REMARK 4.16 Note that if ji D j for any i 2 N, then the above assertion states that a functional
which is linear in the second fundamental form is continuous. Hence, adapting the arguments of
Corollary 4.11, any functional whose integrand is a continuous map of the position, the normal
vector, and the second fundamental form, convex in its last variable, is lower semi-continuous.

Proof. We write the integral in terms of local parametrizations and check that we can let i !C1.
In the local basis .@1Xki ; : : : ; @n�1X

k
i /, using (4.12), the second fundamental form takes the form:�

II ıXki
� �

Vi ıXki ;Wi ıX
k
i

�
D

n�1X
p;q;r;sD1

D
Vi ıXki j @pX

k
i

E
gpqbqrg

rs
D
Wi ıX

k
i j @sX

k
i

E
:

Hence, each integrand is the product of gpqbqrgrs with a remaining term. Using the assumptions,
the convergence results of Theorem 3.3, and Lebesgue’s Dominated Convergence Theorem, we get
that gpqbqrgrs weakly-star converges inL1, while the remaining termL1-strongly converges.

4.4 Some non-linear functionals involving the second fundamental form

All the previous continuity results were obtained by expressing the integrals in the parametrizations
associated with a suitable partition of unity, and by observing that each integrand is the product of
bpq converging L1-weakly-star with a remaining term converging L1-strongly. We are wondering
here if a non-linear function such as the determinant of the .bpq/ can alsoL1-weakly-star converge.
Note that the convergence is in L1 and not in W 1;p so we cannot use e.g. [28, Section 8.2.4.b].

However, the coefficients of the first and second fundamental forms are not random. They
characterize the hypersurfaces through the Gauss-Codazzi–Mainardi equations (4.14) and (4.15).
Hence, using the differential structure of these equations, we want to obtain the L1-weak-star
convergence of non-linear functions of the bpq . This is done by considering a generalization of the
Div-Curl Lemma due to Tartar. We refer to [57, Section 6] for details and it states as follows.

Proposition 4.17 (Tartar [57, Section 6, Corollary 13]) Let n > 3 and U � Rn�1 be open and
bounded with smooth boundary. We consider a sequence of maps .ui /i2N weakly-star converging
to u in L1.U;RM /, M > 1, and a continuous functional F W RM ! R such that .F.ui //i2N is
weakly-star converging in L1.U;R/. Let us suppose we are given P first-order constant coefficient
differential operators Apv WD

Pn�1
qD1

PM
mD1 a

p
mq@qvm such that the sequences .Apui /i2N lies in

a compact subset of H�1.U /. We also assume that .ui /i2N is almost everywhere valued in K for
some given compact set K � RM . We introduce the following wave cone:

� D

(
� 2 RM j 9� 2 Rn�1nf00g;8p 2 f1; : : : P g;

n�1X
qD1

MX
mD1

apmq�m�q D 0

)
:

If F is a quadratic form and F D 0 on �, then the weak-star limit of .F.ui //i2N is F.u/.
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We now treat the case of R3 to get familiar with the notation and observe how Proposition 4.17
can be used here to obtain the L1-weak-star convergence of the Gaussian curvatureK D �1�2. Let
n D 3, U D DQr .xk/, and ui W x0 7! .bpq/ 2 R22 defined by (4.10) with Xki W x0 7! .x0; 'ki .x

0// 2

@˝i . First, we show that the assumptions of Proposition 4.17 are satisfied. From Theorem 3.3,
.ui /i2N L

1.U /-weakly-star converges to u and it is uniformly bounded so it is valued in a compact
set. Moreover, in the case n D 3, there are only two Codazzi–Mainardi equations (4.15):8<: @1b12 � @2b11 D

�
� 111b12 � �

1
12b11

�
C
�
� 211b22 � �

2
12b21

�
@1b22 � @2b21 D

�
� 121b12 � �

1
22b11

�
C
�
� 221b22 � �

2
22b21

�
:

Hence, the two differential operatorsA1ui WD @1b12�@2b11 andA2ui WD @1b22�@2b21 are valued
and uniformly bounded inL1.U /, which is compactly embedded inH�1.U / (Rellich–Kondrachov
Embedding Theorem), so we deduce that up to a subsequence, .A1ui /i2N and .A2ui /i2N lies in a
compact subset of H�1.U /. Let us now have a look at the wave cone:

� D

(�
�11 �12
�21 �22

�
2 R22 j 9

�
�1
�2

�
¤

�
0

0

�
;

�1�12 � �2�11 D 0 and �1�22 � �2�21 D 0

)
:

REMARK 4.18 The wave cone � is the set of .2 � 2/-matrices with zero determinant.

Consequently, if we want to apply Proposition 4.17 on a quadratic form in the bpq , we get from
Remark 4.18 that the determinant is one possibility. Indeed, if we set F.ui / D det.ui /, then F is
quadratic and F.�/ D 0 for any � 2 �. Since .F.ui //i2N is uniformly bounded in L1.U /, up to a
subsequence, it is converging and applying Proposition 4.17, the limit is F.u/. This also proves that
F.u/ is the unique limit of any converging subsequence. Hence, the whole sequence is converging
to F.u/ and we are now in position to prove the following result.

Proposition 4.19 Consider Assumption 4.1 and some continuous maps j; ji W R3 � S2 ! R such
that .ji /i2N is uniformly bounded on B � S2 and diagonally converges to j as in Definition 4.2.
Then, we have (note that Remarks 4.14 and 4.16 also hold true here):

lim
i!C1

Z
@˝i

K .x/ ji Œx;n .x/� dA .x/ D
Z
@˝

K .x/ j Œx;n .x/� dA .x/ :

In particular, the genus is continuous: genus.@˝i / �!i!C1 genus.@˝/.

Proof. As in the proof of Proposition 4.6, we can express the functional in the parametrizations
associated with the partition of unity. Then, we have to check we can let i !C1 in each integral.
Note that K is the determinant (4.9) of the Weingarten map (4.7) so we get from (4.11):

K ıXki D det.h/ D det.�g�1b/ D �
det.bpq/
det.grs/

:

From the foregoing and the uniform convergence of .grs/, we get that the sequences .K ı Xki /i2N
converge L1-weakly-star respectively to K ı Xk , whereas the remaining term in the integrand
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is L1-strongly converging using the hypothesis and Lebesgue’s Dominated Convergence Theorem.
Hence, we can let i !C1 and Proposition 4.19 holds true. Finally, concerning the genus, we apply
the Gauss–Bonnet Theorem

R
@˝i

KdA D 4�.1 � gi / �!i!C1

R
@˝
KdA D 4�.1 � g/.

We now establish the equivalent of Proposition 4.19 in Rn. First, instead of working with the
coefficients .bpq/ of the second fundamental form (4.10), we prefer to work with the ones .hpq/
representing the Weingarten map. We set n > 3, U D DQr .xk/, and ui W x0 2 U 7! .hpq/ 2 R.n�1/2

defined by (4.11) in the local parametrizations Xki W x0 2 U 7! .x0; 'ki .x
0// 2 @˝i introduced in

the proof of Proposition 4.6. Then, we check that the hypothesis of Proposition 4.17 are satisfied.
From Theorem 3.3, .ui /i2N weakly-star converges to u in L1.U / and it is uniformly bounded so it
is valued in a compact set. Using the Codazzi–Mainardi equations (4.15), the differential operators:

@q0hpq � @qhpq0 D

n�1X
mD1

�
.@q0g

pm/bmq � .@qg
pm/bmq0

�
C

n�1X
mD1

gpm
�
@q0bmq � @qbmq0

�
;

are valued and uniformly bounded in L1.U /, which is compactly embedded in H�1.U / (Rellich-
Kondrachov Embedding Theorem), so up to a subsequence, they lies in a compact set of H�1.U /.
Finally, we introduce the wave cone of Proposition 4.17:

� D
n
� 2 R.n�1/2 j 9� ¤ 0.n�1/�1;8.p; q;m/ 2 f1; : : : ; n � 1g3; �m�pq � �q�pm D 0

o
:

DEFINITION 4.20 A pth-order minor of a square .n � 1/2-matrix M is the determinant of any
.p�p/-matrixMŒI; J � formed by the coefficients ofM corresponding to rows with index in I and
columns with index in J , where I; J � f1; : : : ; n � 1g have p elements, i.e., ]I D ]J D p.

REMARK 4.21 The wave cone � is the set of square .n � 1/2-matrices of rank zero or one. In
particular, any minor of order two is zero for such matrices.

Consequently, Remark 4.21 combined with Proposition 4.17 tells us that continuous functionals
are given by the ones whose expressions in the local parametrizations (cf. proof of Proposition 4.6)
are linear in terms of the form hpqhp0q0 � hpq0hp0q . However, such terms depend on the partition
of unity and on the parametrizations i.e. on the chosen basis .@1Xki ; : : : ; @n�1X

k
i / whereas the

integrand of the functional cannot. We now give three applications for which it is the case.

Proposition 4.22 Consider Assumption 4.1 and some continuous maps j; ji W Rn � Sn�1 ! R
so that .ji /i2N is uniformly bounded on B � Sn�1 and diagonally converges to j in the sense of
Definition 4.2. Then, introducing H .2/ D

P
16p<q6n�1 �p�q defined in (4.8), we have:

lim
i!C1

Z
@˝i

H .2/ .x/ ji Œx;n .x/� dA .x/ D
Z
@˝

H .2/ .x/ j Œx;n .x/� dA .x/ :

Note that Remarks 4.14 and 4.16 also hold true here.

Proof. First, using the notation of Definition 4.20, note that the characteristic polynomial of .hpq/,
which is the matrix (4.11) representing the Weingarten map (4.7) in the basis .@1Xki ; : : : @n�1X

k
i /,

can be expressed as:

P.t/ D det .h � tIn�1/ D .�1/ntn C
n�1X
mD1

.�1/n�m
� X
]IDm

det.hŒI; I �/
�
tn�m;
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but we can also represent the Weingarten map in the basis associated with the principal curvatures:

P.t/ D

n�1Y
mD1

��
�m ıX

k
i

�
� t

�
D

n�1X
mD0

.�1/n�m
�
H .m/

ıXki
�
tn�m:

Since each coefficients of the characteristic polynomial do not depend on the chosen basis, we get:

8m 2 f0; : : : ; n � 1g; H .m/
ıXki D

X
]IDm

det
�
hŒI; I �

�
: (4.18)

If we set F.�/ D
P
]ID2 det.�ŒI; I �/, then F is quadratic and from Remark 4.21 we get F.�/ D 0

for any � 2 �. Since .F.ui //i2N is uniformly bounded in L1.U /, up to a subsequence, it
is converging and applying Proposition 4.17, the limit is F.u/, unique limit of any converging
subsequence so the whole sequence is converging to F.u/. Using (4.18), we get that the sequences
.H .2/ ı Xki /i2N converge L1-weakly-star respectively to H .2/ ı Xk , whereas the remaining
term in the integrand is L1-strongly converging using the hypothesis and Lebesgue’s Dominated
Convergence Theorem. Hence, we can let i !C1 and the functional is continuous.

Corollary 4.23 Considering Assumption 4.1, a continuous map j W Rn � Sn�1 �R! R convex in
its last variable, and the Frobenius L2-norm kDxnk2 D

p
trace.Dxn ıDxnT / D .

Pn�1
mD1 �

2
m/

1
2 of

the Weingarten map (4.7), we have:Z
@˝

j
�
x;n .x/ ; kDxnk22

�
dA .x/ 6 lim inf

i!C1

Z
@˝i

j
�
x;n .x/ ; kDxnk22

�
dA .x/ :

The pth-power of the 2nd-fundamental-form L2-norm
R
kIIkp2dA, p > 2 is lower semi-continuous.

Proof. First, assume that j is linear in its last argument. Note that the Frobenius norm k:k2 does not
depend on the chosen basis so we can consider the one associated with the principal curvatures, and
we get kDnk22 D

Pn�1
mD1 �

2
m D .

Pn�1
mD1 �m/

2 �
P
p¤q �p�q D H 2 � 2H .2/. Hence, there exists a

continuous map Qj W Rn � Sn�1 ! R such that
R
@˝i

j Œx;n.x/; kDxnk22�dA.x/ is equal to:Z
@˝i

H 2 .x/ Qj Œx;n .x/� dA .x/ � 2
Z
@˝i

H .2/ .x/ Qj Œx;n .x/� dA .x/ :

In the left term, the integrand is convex in H so Corollary 4.11 furnishes its lower semi-continuity.
Concerning the right one, apply Proposition 4.22 to get its continuity. Therefore, the functional is
lower semi-continuous if j is linear in its last variable. Then, we can apply the standard procedure
[57, �2 Theorem 4] described in Corollary 4.11 to get the same result in the general case. Finally,
kII.x/k22 D kDxnk22 and if p > 2, t 7! t

p
2 is convex thus

R
kIIkp2dA is lower semi-continuous.

Proposition 4.24 Consider Assumption 4.1, some continuous maps j; ji W Rn � Sn�1 ! R such
that .ji /i2N is uniformly bounded on B � Sn�1 and diagonally converges to j as in Definition 4.2,
and some vector fields Vi and Wi on @˝i uniformly bounded and diagonally converging to vector
fields V and W on @˝ in the sense of Definition 4.8. Then, the following functional is continuous
(note that Remarks 4.14 and 4.16 also hold true here):

J .@˝i / WD

Z
@˝i

hDxn ŒVi .x/� jDxn ŒWi .x/� �H .x/Wi .x/i ji Œx;n .x/� dA.x/ �!
i!C1

J .@˝/ :
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Proof. Again, the idea is to check that the expression of the functional in the parametrization is
linear in a term of the form bpqbp0q0 � bpq0bp0q0 . First, the linear term can be expressed as:

n�1X
p;p0;p”D1

n�1X
q;q0;q”D1

D
Vi ıXki j @qX

k
i

E
gpqgp

0q0
�
bq0pbp”p0 � bq0p0bpp”

�
gp”q”

D
Wi ıX

k
i j @q”X

k
i

E
Note that until now, in Section 4, we never used the fact that .gpq/, .gpq/, .bpq/ or .hpq/ are
symmetric matrices. Here, let us invert the two indices bpp” D bp”p in the above expression. Then,
bq0pbp”p0 � bq0p0bp”p is L1-weakly-star converging. Indeed, as we did for .hpq/, we can use the
Codazzi–Mainardi equations (4.15) and Remark 4.21 to apply Proposition 4.17 on .bpq/. Finally,
the hypothesis and the convergence results of Theorem 3.3 gives the L1-strong convergence of the
remaining term so we can let i !C1 in each integral and the functional is continuous.

Note also that, in Section 4.4, we only used the Codazzi–Mainardi equations (4.15). We want
here to use the Gauss equations (4.14) because from the foregoing, its right member is L1-weakly-
star converging. For this purpose, we need to introduce some concepts of Riemannian geometry
which are beyond the scope of the article. Hence, we refer to [60] for precise definitions. Merely
speaking, the Riemann curvature tensor R of a Riemannian manifold measures the extend to which
the first fundamental form is not locally isometric to an Euclidean space, i.e. the non-commutativity
of the covariant derivative. In the basis .@1X; : : : ; @n�1X/, we have [60, Section 2.6]:

Rkjli D

n�1X
mD1

gkmRmjli D @l�
k
ij � @j�

k
il C

n�1X
mD1

�
� mij �

k
ml � �

m
il �

k
mj

�
;

where the Christoffels symbols � kij were defined in (4.13). Hence, the Gauss equations (4.14) state
that in the local parametrization, the Riemann curvature tensor is given by:

Rkjli D

n�1X
mD1

gkm
�
bij bml � bilbmj

�
;

which is thus L1-weakly-star converging, and so does the Ricci curvature tensor [60, Section 3.3]
Ricij D

Pn�1
kD1R

k
ikj

and the scalar curvature R D
Pn�1
i;jD1 g

ijRij . Hence, we get the following
result.

Proposition 4.25 Consider Assumption 4.1, some continuous maps j; ji W Rn � Sn�1 ! R such
that .ji /i2N is uniformly bounded on B � Sn�1 and diagonally converges to j as in Definition 4.2,
and some vector fields Ti ;Ui ;Vi ;Wi on @˝i uniformly bounded and diagonally converging to
vector fields T;U;V;W on @˝ in the sense of Definition 4.8. Then, the three following functionals
are continuous (note that Remarks 4.14 and 4.16 also hold true here):8̂̂<̂
:̂

J .@˝i / WD
R
@˝i
hRx ŒTi .x/ ;Ui .x/�Vi .x/ jWi .x/i ji Œx;n .x/� dA .x/ �!

i!C1
J .@˝/

J 0 .@˝i / WD
R
@˝i

Ricx ŒVi .x/ ;Wi .x/� ji Œx;n .x/� dA .x/ �!
i!C1

J 0 .@˝/

J 00 .@˝i / WD
R
@˝i

R .x/ ji Œx;n .x/� dA .x/ �!
i!C1

J ” .@˝/ :

Proof. The proof is same than the previous ones. Write the functional in the local parametrizations,
and observe that it is a finite sum of integrals whose integrand is the product of a L1-weakly-star
converging term, while the other one is converging L1-strongly so we can let i !C1.
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Note that in the case n D 3, the scalar curvature R is twice the Gaussian curvature K D �1�2.
Hence, the continuity of the last functional above is the generalization of Proposition 4.19 to Rn,
n > 3, which was the task of the subsection. We conclude by proving Theorem 4.3.

Proof of Theorem 4.3. Using Proposition 4.17 and (4.15), we showed how to get the L1-weakly-
star convergence of any hŒpp0; qq0� WD hpqhp0q0 � hpq0hp0q from the one of .hpq/ defined in
(4.11). Now, we want to apply Proposition 4.17 to .hŒpp0; qq0�/. For this purpose, we need to find
differential operators which are valued and uniformly bounded in L1. Using (4.15), this is the case
for:

@q hpq hp0q
@q0 hpq0 hp0q0

@q00 hpq” hp0q00
D @qhŒpp

0; q0q00� � @q0hŒpp
0; qq00�C @q00hŒpp

0; qq0�

D
�
@qhpq0 � @q0hpq

�
hp0q00 C

�
@q0hp0q � @qhp0q0

�
hpq00

C
�
@qhp0q00 � @q00hp0q

�
hpq0 C

�
@q00hp0q0 � @q0hp0q00

�
hpq

C
�
@q00hpq � @qhpq00

�
hp0q0 C

�
@q0hp0q00 � @q”hpq0

�
hp0q :

Then, the wave cone associated with these differential operators is thus given by:

� D

(
� 2 R.n�1/4 j 9� ¤ 0.n�1/�1;8.p; p0; q; q0; q00/ 2 f0; : : : ; n � 1g;

�q �pq �p0q
�q0 �pq0 �p0q0

�q00 �pq” �p0q00
D 0

)
:

As in Remark 4.18, one can check that the wave cone is given by all .n � 1/2-matrices for which
any minor of order three are zero in the sense of Definition 4.20. Finally, combining (4.18) and
Proposition 4.17, we get that functionals linear in H .3/ are continuous. This procedure can be done
recursively similarly to H .l/ for any l > 3 so Theorem 4.3 holds true.

4.5 Existence of a minimizer for various geometric functionals

We are now in position to establish general existence results in the class O".B/. More precisely, we
can minimize any functional (and constraints) built from those given before in Section 4. Indeed,
considering a minimizing sequence in O".B/, there exists a converging subsequence as stated in
Proposition 3.2 and Assumption 4.1 holds true. Then, applying the appropriate continuity results,
we can pass to the limit in the functional and the constraints to get the existence of a minimizer.

In this section, we first give a proof of Theorem 1.3 and state/prove its generalization to Rn.
Then, we establish the existence for a very general model of vesicles. In particular, we prove that
Theorems 1.5, 1.7, and 1.8 hold true. We refer to Sections 1.1, 1.2, and 1.3 of the introduction for a
detailed exposition on these three models. Finally, we present two more applications that show how
to use other continuity results to get the existence of a minimizer in the class O".B/.

Proof of Theorem 1.3. Consider any minimizing sequence .˝i /i2N of O".B/. Proposition 3.2
ensures that up to a subsequence, .˝i /i2N is converging to an open set ˝ 2 O".B/ as stated in
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Assumption 4.1. We can thus combine Propositions 4.6, 4.10, and 4.19 to let i !C1 in:Z
@˝i

g0 Œx;n .x/� dA .x/C
Z
@˝i

H .x/ g1 Œx;n .x/� dA .x/C
Z
@˝i

K .x/ g2 Œx;n .x/� dA .x/ D eC :
Then, apply Proposition 4.6, Corollary 4.11 and Remark 4.16 on Proposition 4.19, to obtain the
lower semi-continuity of the functional and that the inequality constraints remain true as i !C1.
Therefore, ˝ is a minimizer of the functional satisfying the constraints in the class O".B/.

MAIN THEOREM 4.26 Let " > 0 and B � Rn be a bounded open set, large enough to contain
an open ball of radius 3". Consider .C;eC/ 2 R � R, some continuous maps j0; f0; g0; gl W Rn �
Sn�1 ! R, and some maps jl ; fl W Rn � Sn�1 � R! R which are continuous and convex in their
last variable for any l 2 f1; : : : ; n � 1g. Then, the following problem has at least one solution (for
the notation, we refer to Section 4.1):

inf
Z
@˝

j0 Œx;n .x/� dA .x/C
n�1X
lD1

Z
@˝

jl

h
x;n .x/ ;H .l/ .x/

i
dA .x/ ;

where the infimum is taken among˝ 2 O".B/ satisfying a finite number of constraints of the form:8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z
@˝

f0 Œx;n .x/� dA .x/C
n�1X
lD1

Z
@˝

fl

h
x;n .x/ ;H .l/ .x/

i
dA .x/ 6 C

Z
@˝

g0 Œx;n .x/� dA .x/C
n�1X
lD1

Z
@˝

H .l/ .x/ gl Œx;n .x/� dA .x/ D eC :
Proof. Consider a minimizing sequence .˝i /i2N of O".B/. Proposition 3.2 ensures that up to a
subsequence, .˝i /i2N is converging to an open set˝ 2 O".B/ as stated in Assumption 4.1. We can
thus apply Theorem 4.3 to let i !C1 in the following equality:Z

@˝i

g0 Œx;n .x/� dA .x/C
n�1X
lD1

Z
@˝i

H .l/ .x/ gl Œx;n .x/� dA .x/ D eC :
Then, we can use again Theorem 4.3 for any l0 2 f1; : : : ; n�1g by setting jl0 D gl0 and jl D 0 for
any l ¤ l0 to obtain the continuity of any

R
H .l0/.�/gl0 Œ�;n.�/� and Remark 4.16 gives the lower

semi-continuity of any
R
fl0 Œ�;n.�/;H

.l0/.�/� and
R
jl0 Œ�;n.�/;H

.l0/.�/�. Hence, the functional is
lower-semi-continuous and the inequality constraint remains true as i ! C1. Therefore, ˝ is a
minimizer of the functional satisfying the constraints.

Proposition 4.27 Let H0;M0; kG ; km 2 R and "; kb; A0; V0 > 0 such that A30 > 36�V 20 . Then,
the following problem modelling the equilibrium shapes of vesicles [53, Section 2.5] has at least
one solution (see Remark 1.4):

inf
˝2O".R3/
A.@˝/DA0
V.˝/DV0

kb

2

Z
@˝

.H �H0/
2dAC kG

Z
@˝

KdAC km

�Z
@˝

HdA �M0

�2
:
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Proof. Let us consider a minimizing sequence .˝i /i2N � O".R3/ of the functional satisfying the
area and volume constraints. First, we need to find an open ball B such that .˝i /i2N � O".B/.
This can be done if we can bound the diameter thanks to the functional and the area constraint.
The first step is to control the Willmore energy (1.3). Introducing the functional of the statement
J W ˝ 2 O".B/ 7!

kb
2

R
@˝
.H �H0/

2dAC kG
R
@˝
KdAC km.

R
@˝
HdA �M0/

2, we have:

kb

4

Z
@˝

H 2dA D
kb

4

Z
@˝

.H �H0 CH0/
2dA 6

kb

2

Z
@˝

.H �H0/
2dAC

kbH
2
0

2
A.@˝/

6 J.@˝/C
kbH

2
0

2
A.@˝/C jkG j

Z
@˝

KdA C jkmj

�Z
@˝

HdA �M0

�2
6 J.@˝/C

kbH
2
0

2
A.@˝/C jkG j

Z
@˝

jKjdAC 2jkmj

�Z
@˝

HdA

�2
C 2jkmjM

2
0 :

The second step is to use point (iii) in Theorem 2.6 and Remark 2.8. Considering a point x 2 @˝ in
which the Gauss map n is differentiable, and a unit eigenvector el associated with the eigenvalue �l
of the Weingarten map Dxn, we have:

j�l .x/j D k�l .x/elk D kDxn.el /k 6 kDxnkL.Tx@˝/kelk 6
1

"
; (4.19)

from which we deduce that max16l6n�1 k�lkL1.@˝/ 6 1
"

. Hence, we obtain:

kb

4

Z
@˝

H 2dA 6 J.@˝/C
kbH

2
0

2
A.@˝/C

jkG j

"2
A.@˝/C

8jkmj

"2
A .@˝/2 C 2jkmjM

2
0 :

The final step is to apply [56, Lemma 1.1] to get four positive constants C0; C1; C2; C3 such that:

diam.˝/ 6 C0J.@˝/A.@˝/C C1A.@˝/C C2A.@˝/
2
C C3A.@˝/

3:

Hence, we can bound uniformly the diameter of the ˝i and there exists a ball B � Rn sufficiently
large such that .˝i /i2N � O".B/. From Proposition 3.2, up to a subsequence, it is converging to an
˝ 2 O".B/ as stated in Assumption 4.1. Then, we can apply:

� Cor. 4.11 with j.x; y; z/ D kb
2
.z �H0/

2 to get the lower semi-continuity of kb
2

R
.H �H0/

2;
� Prop. 4.19 with ji � 1 to obtain the continuity of �G

R
K;

� Prop. 4.10 with j � 1 to have the continuity of
R
HdA thus the one of km.

R
HdA �M0/

2.

The functional is lower semi-continuous and from Proposition 4.6 with j � 1 and j.x; y/ D
hx j yi, the area and volume constraints are also continuous so let i ! C1 and ˝ is a minimizer.

Proof of Theorem 1.5. It is the particular case km D 0 in Proposition 4.27. This can be also deduced
from Theorem 1.3, it suffices to follow the method described in the next proof.

Proof of Theorem 1.7. First, as in the proof of Proposition 4.27 , one can show that minimizing in
O".Rn/ or in O".B/ is equivalent here. Then, apply Theorem 1.3 by setting j0 D j2 � 0 and
j1.x; y; z/ D .z �H0/

2 which is continuous and convex in z. The area and volume constraints can
be expressed as in Proposition 4.6 by setting g1 D g2 � 0 and successively g0 � 1, g0.x; y/ D
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hx j yi. Using the Gauss–Bonnet Theorem, the genus constraint is written as
R
KdA D 4�.1 �

g/ WD K0. Hence, Theorem 1.3 gives the existence of a minimizer satisfying the three constraints.
Finally, we can apply [38, Proposition 2.2.17] to ensure that the compact minimizer is connected
since it is the case for any minimizing sequence of compact sets. Hence, using again the Gauss–
Bonnet Theorem, the minimizer has the right genus so Theorem 1.7 holds true.

Proof of Theorem 1.8. The proof is identical to the previous one. We just need to set H0 D 0 and
add a fourth equality constraint of the form g0 D g2 � 0, g1 � 1.

Proposition 4.28 Let " > 0 and B � R4 be a bounded open set, large enough to contain an open
ball of radius 3". Consider two bounded continuous vector fields of R4 denoted by V;W W R4 ! R4
and a continuous map j W R4 � S3 � R, which is convex in its last variable. Then, the following
problem has at least one solution (for the notation, see Section 4.1 and above Proposition 4.25):

inf
Z
@˝

j
�
x;n .x/ ; Ricx

�
V .x/ ^ n .x/ ;W .x/ � hW .x/ j n .x/in .x/

��
dA .x/ ;

where the infimum is taken among all ˝ 2 O".B/ satisfying the following constraint:Z
@˝

R .x/ hV .x/ j n .x/i dA .x/ D
Z
@˝

H .2/ .x/ hW .x/ j n .x/i dA .x/ :

Proof. Consider a minimizing sequence .˝i /i2N � O".B/ of the functional satisfying the
constraint. From Proposition 3.2, up to a subsequence, it is converging to a set ˝ 2 O".B/. We
define Vi WD V ^ n@˝i and Wi WD W � hW j n@˝i in@˝i which are two continuous vector fields
on @˝i , uniformly bounded since V and W are. We now check the diagonal convergence. Choose
any sequence of points xi 2 @˝i converging to x 2 @˝. Using the partition of unity introduced
in Proposition 4.6, we get that x 2 @˝ \ CQr;".xk/ for some k 2 f1; : : : Kg. Hence, there exists
x0 2 DQr .xk/ such that x D .x0; 'k.x0//. Since .xi /i2N is converging to x, for i sufficiently large, we
can write xi D .x0i ; '

k
i .x
0
i // with x0i 2 DQr .xk/. Hence, x0i ! x0 and 'ki .x

0
i / ! 'k.x0/, but we also

have from the triangle inequality:

kr'ki .x
0
i / � r'

k.x0/k 6 kr'ki � r'
k
kC0.DQr .xk//

C kr'k.x0i / � r'
k.x0/k:

From (3.1) and the continuity of r'k , we can let i ! C1 and the diagonal convergence of
.r'ki /i2N to r'k holds true. Then, using (4.6), n@˝i is also diagonally converging to n@˝ , and
so does Vi and Wi . If j is linear in its last variable, we can apply Proposition 4.25 to obtain the
continuity of the functional, otherwise we can use Remark 4.16 on the previous case to get the
lower semi-continuity of the functional. Finally, apply Theorem 4.3 with j li � 0 if l ¤ 2 and
j 2i D hV j ni to have the continuity of the left member of the constraint. The continuity of the right
one comes from Proposition 4.25 on J ” with ji D hW j ni. Hence, we can let i ! C1 in the
constraint..

Proposition 4.29 Let "; A0; V0 > 0 be such that A30 > 36�V
2
0 , and let B � R3 be a bounded open

set, large enough to contain an open ball of radius 3". We consider a bounded vector field in R3
denoted by V W R3 ! R3 and a continuous map j W R3 � R2 � R! R which is convex in its last
variable. Then, the following problem has at least one solution:

inf
˝2O".B/
A.@˝/DA0
V.˝/DV0

Z
@˝

j Œx;n .x/ ; �v .x/� dA .x/ ;
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where �v is the normal curvature at x i.e. the curvature at x of the curve formed by the intersection
of the surface @˝ with the plane spanned by n.x/ and the vector v WD V.x/ � hV.x/ j n.x/in.x/.

Proof. First, [48, Proposition 3.26, Remark 3.27] gives �v D �1jhvje1ij2 C �2jhvje2ij2 D II.v; v/.
Then, as in the previous proof, we can show that v@˝i is diagonally converging to v@˝ . Finally, if
j is linear in its last variable, we can apply Proposition 4.15 to get its continuity, otherwise use
Remark 4.16 to get its lower semi-continuity. The area and volume constraints are continuous from
Proposition 4.6. Hence, from Proposition 3.2, a minimizing sequence has a converging subsequence
to a certain ˝ and from the foregoing we can let i !C1 in the functional and constraints.

A. The proofs of Theorems 2.5–2.7

A.1 The sets of positive reach and the uniform ball condition

Throughout this section, ˝ refers to any non-empty open subset of Rn different from Rn. Hence,
its boundary @˝ is not empty and Reach.@˝/ is well defined (cf. Remark 1.2). First, we establish
some properties that were mentioned in Federer’s paper [30] and we show Theorem 2.5 holds true.

A.1.1 Positive reach implies uniform ball condition. The point of view adopted here is slightly
different from the usual one [30, Theorem 4.8]. Indeed, in order to get the "-ball condition at a
given point x 2 @˝, we need to exhibit points outside the boundary whose projections are precisely
x, whereas people usually assume that they exist [24, Chapter 6 Theorem 6.2 (ii) and Chapter 7
Theorem 7.2 (ii)] or only consider the projection of points outside the boundary [24, Chapter 6
Theorems 6.2 (iii) and Chapter 7 Theorem 7.2 (iii)]. However, in order to do so, we have to prevent
the open sets to have a thick boundary i.e. having a non-empty interior and thus a non-zero Lebesgue
measure [24, Chapter 5 Example 6.2].

Lemma A.1 For any x 2 @˝, we have: Reach.@˝; x/ D min
�
Reach.˝; x/;Reach.Rnn˝; x/

�
.

Proof. We only sketch the proof. Observe d.x; @˝/ D max.d.x; ˝/; d.x;Rnn˝// for any x 2 Rn
to get Unp.@˝/ D Unp.˝/\Unp.Rnn˝/ and the equality of Lemma A.1 follows from definitions.

Proposition A.2 (Federer [30, Theorem 4.8 (6)]) Let A ¤ ; be closed in Rn, x 2 A, and v 2 Rn.
If the set ft > 0; xC tv 2 Unp.A/ and pA.xC tv/ D xg is not empty and bounded from above, then
its supremum � is well defined and xC �v cannot belong to the interior of Unp.A/.

Proof. We refer to [30] for a proof using Peano’s Existence Theorem on differential equations.

Corollary A.3 If V.@˝/ D 0, then for any point x 2 @˝ satisfying Reach.@˝; x/ > 0, there exists
two different points y 2 Unp.˝/nfxg and Qy 2 Unp.Rnn˝/nfxg such that p˝.y/ D pRnn˝.Qy/ D x.

Proof. Consider x 2 @˝ satisfying Reach.@˝; x/ > 0. From Lemma A.1, there exists r > 0 such
that Br .x/ � Unp.˝/. Let .xi /i2N be a sequence of elements in B r

2
.x/n˝ converging to x. Such a

sequence exists otherwise B r
2
.x/ � ˝ and Reach.x;Rnn˝/ > 0 would imply V.@˝/ > 0. We set:

8i 2 N; 8t 2 R; zi .t/ D p˝.xi /C t
xi � p˝.xi /
kxi � p˝.xi /k

and ti D
r

2
C d.xi ; ˝/;
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which is well defined as xi 2 Unp.˝/. First, zi .t/ 2 B r
2
.xi / � Br .x/ � Unp.˝/ for any t 2 Œ0; ti �.

Then, using Federer’s result recalled in Proposition A.2, one can prove by contradiction that:

8t 2 Œ0; ti �; p˝.zi .t// D p˝.xi /:

Finally, the sequence yi WD zi .ti / satisfies kyi � xik D r
2

and also p˝.yi / D p˝.xi /. Moreover,
since it is bounded, .yi /i2N is converging, up to a subsequence, to a point denoted y 2 Br .x/ �
Unp.˝/. Using the continuity of p˝ [30, Theorem 4.8 (4)], we get y 2 Unp.˝/nfxg and p˝.y/ D
p˝.x/ D x. To conclude, similar arguments work by replacing ˝ with Rnn˝ so Corollary A.3
holds true.

Proof of Point (ii) in Theorem 2.5. The hypothesis @˝ ¤ ; ensures that its reach is well defined.
Assume Reach.@˝/ > 0 and V.@˝/ D 0. We choose " 2�0;Reach.@˝/Œ and let x 2 @˝. From
Corollary A.3, there exists y 2 Unp.˝/nfxg such that p˝.y/ D x so we can set dx D

x�y
kx�yk .

From Lemma A.1, we get xC Œ0; "�dx � Unp.˝/. Then, we use Proposition A.2 again to prove by
contradiction that p˝.xC tdx/ D x for any t 2 Œ0; "�. In particular, we have kz � .xC "dx/k > "

for any point z 2 ˝nfxg from which we deduce that:

˝ � fxg [
�
RnnB".xC "dx/

�
” B".xC "dx/nfxg � Rnn˝:

Similarly, there exists a unit vector ¸x of Rn such that we get B".xC "¸x/nfxg � ˝. Since we have
B".xC "¸x/ \ B".xC "dx/ D fxg, we obtain dx D �¸x. To conclude, if Reach.@˝/ < C1, then
observe that BReach.@˝/.x ˙ Reach.@˝/dx/ D

S
0<"<Reach.@˝/ B".x˙ "dx/nfxg in order to check

that ˝ also satisfies the Reach.@˝/-ball condition.

A.1.2 Uniform ball condition implies positive reach.

Proposition A.4 Assume that there exists " > 0 such that ˝ 2 O".Rn/. Then, we have:

8.x; y/ 2 @˝ � @˝; kdx � dyk 6
1

"
kx � yk: (A1)

In particular, if x D y, then dx D dy which ensures the unit vector dx of Definition 1.1 is unique. In
other words, the map d W x 2 @˝ 7! dx 2 Sn�1 is well defined and 1

"
-Lipschitz continuous.

Proof. Let " > 0 and ˝ 2 O".Rn/. Since @˝ ¤ ;, we can consider .x; y/ 2 @˝ � @˝. First, from
the "-ball condition on x and y, we have B".x˙ "dx/ \ B".y� "dy/ D ;, from which we deduce
kx � y˙ ".dx C dy/k > 2". Then, squaring these two inequalities and summing them, one obtains
the result (A1) of the statement: kx � yk2 > 2"2 � 2"2hdx j dyi D "

2kdx � dyk
2.

Proof of Point (i) in Theorem 2.5. Let " > 0 and assume that ˝ satisfies the "-ball condition. Since
@˝ ¤ ; we can choose any x 2 @˝ and let us prove B".x/ � Unp.@˝/. We first assume that
y 2 B".x/ \˝. Since @˝ is closed, there exists z 2 @˝ such that d.y; @˝/ D kz � yk. Moreover,
we obtain from the "-ball condition and y 2 ˝:�

B".zC "dz/ � Rnn˝ and Bd.y;@˝/.y/ � ˝
�
H) B".zC "dz/ \ Bd.y;@˝/.y/ D ;:

Therefore, we deduce that y D z� d.y; @˝/dz. Then, we show that such a z is unique. Considering
another projection Qz of y on @˝, we get from the foregoing: y D z�d.y; @˝/dz D Qz�d.y; @˝/dQz.
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Using (A1), we have:

kdz � dQzk 6
1

"
kz � Qzk D

d.y; @˝/
"

kdz � dQzk:

Since d.y; @˝/ 6 kx� yk < ", the above inequality can only hold true if kdz � dQzk D 0 i.e. z D Qz.
Hence, we obtainB".x/\˝ � Unp.@˝/ and similarly, one can proveB".x/\.Rnn˝/ � Unp.@˝/.
Since @˝ � Unp.@˝/, we finally get B".x/ � Unp.@˝/. We thus have Reach.@˝; x/ > " for
every x 2 @˝ i.e. Reach.@˝/ > " as required. To conclude the proof of Theorem 2.5, we can
simply get V.@˝/ D 0 from Theorem 2.6 proved in Section A.2. Indeed, @˝ can be written as a
countable union of Lipschitz graphs which have zero Lebesgue measure [29, combine Sections 2.2
and 2.4.1].

Proposition A.5 Assume that there exists " > 0 such that ˝ 2 O".Rn/. Then, we have:

8.a; x/ 2 @˝ � @˝; j hx � a j dai j 6
1

2"
kx � ak2: (A2)

Moreover, introducing the vector .x � a/0 D .x � a/ � hx � a j daida, if we assume k.x � a/0k < "
and jhx � a j daij < ", then the following local inequality holds true:

1

2"
kx � ak2 6 " �

p
"2 � k.x � a/0k2: (A3)

Proof. Let " > 0 and ˝ 2 O".Rn/. Since @˝ ¤ ;, we can consider .a; x/ 2 @˝ � @˝. Observe
that the point x cannot belong neither to B".a� "da/ � ˝ nor to B".aC "da/ � Rnn˝. Hence, we
have kx � a� "dak > ". Squaring these two inequalities, we obtain that (A2) holds true:

kx � ak2 > 2"j hx � a j dai j” j hx � a j dai j
2
� 2"j hx � a j dai j C k.x � a/0k2 > 0:

It is a second-order polynomial inequality and we assume that its reduced discriminant is positive:
�0 D "2 � k.x � a/0k2 > 0. Hence, the unknown cannot be located between the two roots: either
j hx � a j dai j 6 " �

p
�0 or j hx � a j dai j > " C

p
�0. We assume j hx � a j dai j < " and the

last case cannot hold true. Squaring the remaining relation, we get the local inequality (A3) of the
statement: kx � ak2 D j hx � a j dai j

2 C k.x � a/0k2 6 2"2 � 2"
p
"2 � k.x � a/0k2.

A.2 The uniform ball condition and the compact C 1;1-hypersurfaces

In this section, Theorem 2.6 is proved. First, we show @˝ can be considered locally as the graph of
a function whose C 1;1-regularity is then established. Finally, we prove that the converse statement
holds true in the compact case. Hence, it is the optimal regularity we can expect from the uniform
ball property. The proofs in Sections A.1.2 and A.2.1–A.2.2 inspire those of Sections 3.2–3.4.

A.2.1 A local parametrization of the boundary @˝. We now set " > 0 and assume that the open
set ˝ satisfies the "-ball condition. Since ˝ … f;;Rng, @˝ is not empty so we consider any point
x0 2 @˝ and its unique vector dx0 from Proposition A.4. We choose a basis Bx0 of the hyperplane
d?x0 so that .x0;Bx0 ;dx0/ is a direct orthonormal frame. Inside this frame, any point x 2 Rn is of
the form .x0; xn/ such that x0 D .x1; : : : ; xn�1/ 2 Rn�1. The zero vector 0 of Rn is now identified
with x0 so we have B".00;�"/ � ˝ and B".00; "/ � Rnn˝.
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Proposition A.6 The following maps '˙ are well defined on D".00/ D fx0 2 Rn�1; kx0k < "g:8<: 'C W x0 2 D".00/ 7�! supfxn 2 Œ�"; "�; .x0; xn/ 2 ˝g 2 � � "; "Œ;

'� W x0 2 D".00/ 7�! inffxn 2 Œ�"; "�; .x0; xn/ 2 Rnn˝g 2 � � "; "Œ:

Moreover, for any x0 2 D".00/, introducing the points x˙ D .x0; '˙.x0//, we have x˙ 2 @˝ and:

j'˙.x0/j 6
1

2"
kx˙ � x0k2 6 " �

p
"2 � kx0k2: (A4)

Proof. Let x0 2 D".00/ and g W t 2 Œ�"; "� 7! .x0; t /. Since �" 2 g�1.˝/ � Œ�"; "�, we can set
'C.x0/ D supg�1.˝/. The map g is continuous so g�1.˝/ is open and 'C.x0/ ¤ " thus we get
'.x0/ … g�1.˝/ i.e. xC 2 ˝n˝. Similarly, the map '� is well defined and x� 2 @˝. Finally, we
use (A2) and (A3) on the points x0 and x D x˙ in order to obtain (A4).

Lemma A.7 Let r D
p
3
2
" and x0 2 Dr .00/. We assume that there exists xn 2�� "; "Œ such that x D

.x0; xn/ 2 @˝ and Qxn 2 R such that j Qxnj 6 " �
p
"2 � kx0k2. Then, we introduce Qx D .x0; Qxn/ and

the following implications hold true: . Qxn < xn H) Qx 2 ˝/ and . Qxn > xn H) Qx 2 Rnn˝/.

Proof. Let x0 2 Dr .00/. Since Qx � x D . Qxn � xn/dx0 , if we assume Qxn > xn, then we have:

kQx � x � "dxk
2
� "2 D j Qxn � xnj

�
j Qxn � xnj C "kdx � dx0k

2
� 2"

�
6 j Qxn � xnj

�
j Qxnj C jxnj C

1

"
kx � x0k2 � 2"

�
6 j Qxn � xnj

�
2" � 4

p
"2 � kx0k2

�
< j Qxn � xnj.2" � 4

p

"2 � r2/ D 0:

Indeed, we used (A1) with x 2 @˝ and y D x0, (A2) and (A3) applied to x 2 @˝ and a D x0, and
also the hypothesis made on Qxn. Hence, we proved that if Qxn > xn, then Qx 2 B".xC "dx/ � Rnn˝.
Similarly, one can prove that if Qxn < xn, then we have Qx 2 B".x � "dx/ � ˝.

Proposition A.8 Set r D
p
3
2
". Then, the two maps '˙ of Proposition A.6 coincide on Dr .00/. We

denote by ' their common restriction. Moreover, we have '.00/ D 0 and also:(
@˝ \ .Dr .00/�� � "; "Œ/D

˚
.x0; '.x0//; x0 2 Dr .00/

	
˝ \ .Dr .00/�� � "; "Œ/D

˚
.x0; xn/; x0 2 Dr .00/ and � " < xn < '.x0/

	
:

Proof. Assume by contradiction that there exists x0 2 Dr .00/ such that '�.x0/ ¤ 'C.x0/. We set
x D .x0; 'C.x0// and Qx D .x0; '�.x0//. By using (A4), the hypothesis of Lemma A.7 are satisfied
for x and Qx. Hence, either .'�.x0/ < 'C.x0/ ) Qx 2 ˝/ or .'�.x0/ > 'C.x0/ ) Qx 2 Rnn˝/
whereas Qx 2 @˝. We deduce '�.x0/ D 'C.x0/ for any x0 2 Dr .00/. Now consider x0 2 Dr .00/
and xn 2� � "; "Œ. We set x D .x0; '.x0// and Qx D .x0; xn/. If xn D '.x0/, then Proposition A.6
ensures that x 2 @˝. Moreover, if �" < xn < �"C

p
"2 � kx0k2, then Qx 2 B".00;�"/ � ˝, and if

�"C
p
"2 � kx0k2 6 xn < '.x0/, then apply Lemma A.7 to get Qx 2 ˝. Consequently, we proved

.�" < xn < '.x0/ H) .x0; xn/ 2 ˝/ for any x0 2 Dr .00/. Similar arguments hold true when
" > xn > '.x0/ and imply .x0; xn/ 2 Rnn˝. To conclude, note that x0 D 0 D .00; '.00//.
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A.2.2 The C 1;1-regularity of the local graph.

Lemma A.9 The map f W ˛ 2�0; �
2
Œ7! 2˛

cos˛ 2�0;C1Œ is well defined, continuous, surjective and
increasing. In particular, it is an homeomorphism and its inverse f �1 satisfies:

8" > 0; f �1."/ <
"

2
: (A5)

Proof. The proof is basic calculus.

Proposition A.10 (Point (i) of Theorem 2.6) Consider any ˛ 2�0; f �1."/� where f is defined in
Lemma A.9. Then, we have C˛.x;�dx0/ � ˝ for any x 2 B˛.x0/ \ ˝. In particular, the set ˝
satisfies the f �1."/-cone property in the sense of Definition 2.3.

Proof. We set r D
p
3
2
" and Cr;" D Dr .00/�� � "; "Œ. We choose any ˛ 2�0; f �1."/� then consider

x D .x0; xn/ 2 B˛.x0/ \˝ and y D .y0; yn/ 2 C˛.x;�dx0/. The proof of the assertion y 2 ˝ is
divided into three steps:

� check that x 2 Cr;" so as to introduce the point Qx D .x0; '.x0// of @˝ satisfying xn 6 '.x0/;
� consider Qy D .y0; yn C '.x0/ � xn/ and prove that Qy 2 C˛.Qx;�dx0/ � B".Qx � "dQx/ � ˝;
� show that .Qy; y/ 2 Cr;" � Cr;" in order to deduce yn C '.x0/ � xn < '.y0/ and conclude y 2 ˝.

First, from (A5), we have: max.kx0k; jxnj/ 6 kx � x0k < ˛ 6 f �1."/ < "
2

. Hence, we get
x 2 ˝\Cr;" and applying Proposition A.8, it comes xn 6 '.x0/. We set Qx D .x0; '.x0// 2 @˝\Cr;".
Note that Qx 2 B˛p2.x0/ because Relation (A4) applied to Qx D .x0; '.x0// gives:

kQx � x0k2 6 2"2 � 2"
p
"2 � kx0k2 D

4"2kx0k2

2"2 C 2"
p
"2 � kx0k2

6 2kx0k2 6 2kx � x0k2 < 2˛2:

Then, we prove C˛.Qx;�dx0/ � B".Qx � "dQx/ so consider any point z 2 C˛.Qx;�dx0/. Using the
Cauchy–Schwartz inequality, (A1) applied to Qx 2 @˝ and y D x0, the fact that z 2 C˛.Qx;�dx0/,
and the foregoing observation Qx 2 B˛p2.x0/, we have successively:

kz � QxC "dQxk2 � "2 6 kz � Qxk2 C 2"kz � QxkkdQx � dx0k C 2"
˝
z � Qx j dx0

˛
< kz � Qxk2 C 2kz � QxkkQx � x0k � 2"kz � Qxk cos˛

< kz � Qxk
h
.1C 2

p
2/˛ � 2" cos˛

i
< 2kz � Qxk cos˛ .f .˛/ � "/ 6 0:

Hence, we get z 2 B".Qx � "dQx/, i.e., C˛.Qx;�dx0/ � B".Qx � "dQx/ � ˝ using the "-ball condition.
Moreover, since Qy � Qx D y � x and y 2 C˛.x;�dx0/, we obtain Qy 2 C˛.Qx;�dx0/ and thus Qy 2 ˝.
Finally, we show that .y; Qy/ 2 Cr;" � Cr;". We have successively:8̂̂̂<̂
ˆ̂:
ky0k 6 ky0 � x0k C kx0k <

p
˛2 � ˛2 cos2 ˛ C ˛ D ˛

cos˛

� sin2˛
2
C cos˛

�
6 3f .˛/

4
6 3"

4
< r

jynj 6 jyn � xnj C jxnj 6 ky � xk C kx � x0k < 2˛ < f .˛/ 6 "

jyn C '.x0/ � xnj 6 ky � xk C " �
p
"2 � kx0k2 < ˛ C kx0k2

"C
p
"2�kx0k2

6 ˛ C ˛2

"
< 3

2
˛ 6 ":

We used (A4)–(A5), the fact that y 2 C˛.x;�dx0/, and x 2 B˛.x0/. To conclude, Proposition A.8
applied to Qy 2 ˝ \ Cr;" yields to yn C '.x0/� xn < '.y0/. Since we firstly proved xn 6 '.x0/, we
deduce that yn < '.y0/. Applying Proposition A.8 to y 2 Cr;", we get y 2 ˝ as required.
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Corollary A.11 The map ' restricted to Dp2
4 f
�1."/

.00/ is 1
tanŒf �1."/�

-Lipschitz continuous.

Proof. We set ˛ D f �1."/, r D
p
3
2
", and Qr D

p
2
4
f �1."/. We choose .x0C; x

0
�/ 2 DQr .00/�DQr .00/.

From (A5), we get Qr < r so we can consider x˙ D .x0˙; '.x
0
˙
// and Proposition A.6 gives:

kx˙ � x0k2 6 2"2 � 2"

q
"2 � kx0

˙
k2 D

4"2kx0
˙
k2

2"2 C 2"
p
"2 � kx0

˙
k2

6 2kx0˙k
2 < 2 Qr2 < ˛2:

Hence, we get x˙ 2 B˛.x0/\@˝. We also have: kxC�x�k 6 kxC�x0kCkx0�x�k < 2 Qr
p
2 D ˛.

Finally, applying Proposition A.10, the points x˙ cannot belong to the cones C˛.x�;�dx0/ � ˝

thus we get: jhxC � x� j dx0ij 6 cos˛kxC � x�k D cos˛
q
kx0C � x0�k2 C jhxC � x� j dx0ij

2.
Consequently, one can re-arrange these terms in order to obtain the expected result of the statement:
j'.x0C/ � '.x

0
�/j D jhxC � x� j dx0ij 6

1
tan˛kx

0
C � x0�k.

Proposition A.12 Set Qr D
p
2
4
f �1."/. The map ' of Proposition A.8 restricted to DQr .00/ is

differentiable and its gradient r' W DQr .00/ ! Rn�1 is L-Lipschitz continuous where L > 0

depends only on ". Moreover, we have r'.00/ D 00 and also:

8a0 2 DQr .00/; r'.a0/ D
�1

hda j dx0i
d0a; where a D .a0; '.a0//:

Furthermore, the gradient map r' W DQr .00/! Rn�1 is bounded and valued in the set D 32
31
.00/.

Proof. Let a0 2 DQr .00/ and x0 2 DQr�ka0k.a0/. Consequently, we have .a0; x0/ 2 DQr .00/ � DQr .00/
and from (A5), we get Qr <

p
3
2
". Hence, using Proposition A.8, we can introduce x WD .x0; '.x0//

and a WD .a0; '.a0//. Applying (A2) to .a; x/ 2 @˝ � @˝ and using the Lipschitz continuity of '
on DQr .00/ proved in Corollary A.11, we deduce that:

ˇ̌ �
'.x0/ � '.a0/

�
dan C hd0a j x

0
� a0i

ˇ̌
6
1

2"
kx � ak2 6

1

2"

�
1C

1

tan2Œf �1."/�

�
„ ƒ‚ …

WDC."/>0

kx0 � a0k2;

where we set da D .d0a;dan/ with dan D hda j dx0i. It represents a first-order Taylor expansion of
the map ' if we can divide the above inequality by a uniform positive constant smaller than dan.
Let us justify this assertion. Apply (A1) to x D a and y D x0, then use (A4) to get:

dan D 1�
1

2
kda�dx0k

2 > 1�
1

2"2
ka�x0k2 > 1�

" �
p
"2 � ka0k2

"
D 1�

ka0k2

"."C
p
"2 � ka0k2/

:

Hence, using (A5), we obtain dan > 1 � Qr
2

"2
> 31

32
> 0. Therefore, ' is a differentiable map at any

point a0 2 DQr .00/ and its gradient is the one given in the statement:

8x0 2 DQr�ka0k.a0/; '.x0/ � '.a0/C
�

d0a
dan
j x0 � a0

�
6
32

31
C."/kx0 � a0k2:
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Moreover, for any .a0; x0/ 2 DQr .00/ �DQr .00/, we have successively:

kr'.x0/ � r'.a0/k 6 1
dan
�

1
dxn
kd0xk C

1
dan
kd0a � d0xk 6

32

31

�
1C

32

31

�
kda � dxk

6
32

31"

�
1C

32

31

�
kx � ak 6

32

31"

�
1C

32

31

�s
1C

1

tan2Œf �1."/�
kx0 � a0k:

We applied (A1) to x and y D a, then used the Lipschitz continuity of ' proved in Corollary A.11.
Hence, r' W a0 2 DQr .00/ 7! r'.a0/ is L-Lipschitz continuous with L > 0 depending only on ".
To conclude, from the foregoing, we deduce kr'.x0/k D j.dan/

�1j kd0ak < 32
31
kdak D

32
31

for any
x0 2 DQr .00/ and the map r' W DQr .00/! Rn�1 is thus well valued in D 32

31
.00/.

Corollary A.13 (Points (ii) and (iii) of Theorem 2.6) The unit vector dx0 of Definition 1.1 is the
outer normal vector to @˝ at the point x0. In particular, the 1

"
-Lipschitz continuous map d W x 7! dx

of Proposition A.4 is the Gauss map associated with the C 1;1-hypersurface @˝.

Proof. Consider the map ' W DQr .00/!��"; "ŒwhoseC 1;1-regularity comes from Proposition A.12.
We define the C 1;1-map X W DQr .00/ ! @˝ by X.x0/ D .x0; '.x0// then we consider x0 2 DQr .00/.
We denote by .ek/16k6n�1 the first vectors of our local basis. The tangent plane of @˝ at X.x0/ is
spanned by the vectors @kX.x0/ D ekC .00; @k'.x0//. Since any normal vector u D .u1; : : : ; un/ to
this hyperplane is orthogonal to this .n � 1/ vectors, we have: hu j @kX.x0/i D 0, uk D

un
dxn

dxk .
Hence, we obtain u D un

dxn
dx so u is collinear to dx. Now, if we impose that u points outwards ˝

and if we assume kuk D 1, then we get u D dx.

A.2.3 The compact case: When C 1;1-regularity implies the uniform ball condition.

Proof of Theorem 2.6. Combining Proposition A.10 and Corollary A.13, it remains to prove the
converse part of Theorem 2.6. Consider any non-empty compact C 1;1-hypersurface S of Rn and its
associated inner domain ˝. Choose any x0 2 @˝ and its local frame as in Definition 2.2. First, we
have for any .x0; y0/ 2 Dr .00/ �Dr .00/:

j'.y0/ � '.x0/ � hr'.x0/ j y0 � x0ij 6
Z 1

0

kr'
�
x0 C t .y0 � x0/

�
� r'.x0/kky0 � x0kdt

6
L

2
ky0 � x0k2:

Then, we set "0 D min. 1
L
; r
3
; a
3
/ and consider any x 2 B"0.x0/ \ @˝. Since "0 6 min.r; a/, there

exists x0 2 Dr .00/ such that x D .x0; '.x0//. We introduce the notation dxn D .1C kr'.x0/k2/� 12
and d0x D �dxnr'.x0/ so that dx WD .d0x;dxn/ is a unit vector. Now, let us show that ˝ satisfy the
"0-ball condition at the point x so choose any y 2 B"0.x C "0dx/ � B2"0.x/ � B3"0.x0/. Since
3"0 6 min.r; a/, there exists y0 2 Dr .00/ and yn 2� � a; aŒ such that y D .y0; yn/. Moreover, we
have y 2 Rnn˝ iff yn > '.y0/. Observing that ky� x� "0dxk < "0,

1
2"0
ky� xk2 < hy� x j dxi,



256 J. DALPHIN

we obtain successively:

yn � '.y0/ D
1

dxn

h
dxn.yn � '.x0//C hd0x j y

0
� x0i � hd0x j y

0
� x0i C dxn

�
'.x0/ � '.y0/

� i
D

1

dxn
hy � x j dxi � '.y0/C '.x0/C hr'.x0/ j y0 � x0i

>
ky � xk2

2"0dxn
�
L

2
ky0 � x0k2 >

1

2
ky0 � x0k2

�
1

"0
� L

�
> 0:

Consequently, we get y … ˝ and we proved B"0.x C "0dx/ � Rnn˝. Similarly, we can obtain
B"0.x � "0dx/ � ˝. Hence, for any x0 2 @˝, there exists "0 > 0 such that ˝ \ B"0.x0/ satisfies
the "0-ball condition. Finally, as @˝ is compact, it is included in a finite reunion of such balls
B"0.x0/. Define " > 0 as the minimum of this finite number of "0 and ˝ will satisfy the "-ball
property.

A.3 The uniform ball property and the oriented distance functions

Proof of Theorem 2.7. Let ˝ � Rn be open with @˝ ¤ ;. First, from [20, Theorem 5.1 (i)], the
oriented distance function b˝ W Rn ! R is 1-Lipschitz continuous. Using Rademacher’s Theorem
[29, Section 3.1.2], b˝ is differentiable almost everywhere with krb˝kL1.Rn/ 6 1. Then, we
assume that there exists " > 0 such that ˝ 2 O".Rn/. Let x 2 @˝. Following the arguments used
in the proof of the point (i) of Theorem 2.5 (cf. Section A.1.2), we get for any y 2 B".x/, that there
exists a unique projection p@˝.y/ on @˝ satisfying:

8y 2 B".x/; p@˝.y/ D y � b˝.y/dp@˝ .y/; (A6)

where dp@˝ .y/ is the unique vector of Proposition A.4. Consequently, combining Proposition A.4
with [20, Theorem 5.1 (i)] and d.y; @˝/ 6 kx � yk < ", we deduce from (A6):

8.y; Qy/ 2 B".x/ � B".x/; kp@˝.y/ � p@˝.Qy/k 6
2"

" � d.y; @˝/
ky � Qyk: (A7)

Hence, p@˝.yi /! p@˝.y/ for any yi ! y 2 B".x/ and p@˝ 2 C 0.B".x//. As B".x/ � Unp.@˝/,
we apply [20, Theorem 5.1 (iv)]. We get b2˝ 2 C

1.B".x// and [20, Theorem 5.1 (ii))] ensures that
rb˝ W B".x/n@˝ ! B1.0/ is a well-defined map. From (A6) and [20, Theorem 5.1 (iii))], we
obtain rb˝.y/ D dp@˝ .y/ for any y 2 B".x/n@˝. Since V.@˝/ D 0 from Theorem 2.5 (i), we have
rb˝ D dıp@˝ almost everywhere onB".x/. From (A7) and Proposition A.4, dıp@˝ is continuous
on B".x/ so [30, Lemma 4.7] yields rb˝ D dıp@˝ everywhere on B".x/ and b˝ 2 C 1.B".x// for
any x 2 @˝ i.e. b˝ 2 C 1.V".@˝//. Finally, if y 2 Br .x/ for some r 2�0; "Œ, we deduce from (A7)
the 2"

"�r
-Lipschitz continuity of p@˝ W Br .x/! @˝. By Proposition A.4, the map rb˝ W Br .x/!

Sn�1 is 2
"�r

-Lipschitz continuous. In particular, rb˝ is bounded and uniformly continuous: it has
a unique Lipschitz continuous extension to Br .x/. Moreover, the Lipschitz constant 2

"�r
does not

depend on x 2 @˝ thus b˝ 2 C 1;1.Vr .@˝// for any r 2�0; "Œ. Conversely, if there now exists " > 0
such that b˝ 2 C 1;1.B".x// and V.B".x/ \ @˝/ D 0 for any x 2 @˝, then we apply [24, Chapter
7 Theorem 8.3 (ii)] to obtain B".x/ � Unp.@˝/ i.e. Reach.x; @˝/ > " for any x 2 @˝, from
which we deduce Reach.@˝/ > ". We can now use Theorem 2.5 (i). For this purpose, we check
that V.@˝/ 6

P
x2@˝\Qn V.B".x/\ @˝/ D 0 and we get˝ 2 O".Rn/, concluding the proof.
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Berlin (2005). Zbl1098.49001 MR2512810
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