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This article is divided into two parts. In the first part we show that a set E has locally finite s-
perimeter if and only if it can be approximated in an appropriate sense by smooth open sets. In
the second part we prove some elementary properties of local and global s-minimal sets, such as
existence and compactness. We also compare the two notions of minimizer (i.e., local and global),
showing that in bounded open sets with Lipschitz boundary they coincide. Conversely, in general
this is not true in unbounded open sets, where a global s-minimal set may fail to exist (we provide
an example in the case of a cylinder ˝ � R).
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1. Introduction and main results

The aim of this paper consists in better understanding the behavior of the family of sets having
(locally) finite fractional perimeter. In particular, we would like to show that this family is not “too
different” from the family of Caccioppoli sets (which are the sets having locally finite classical
perimeter).

This paper somehow continues the study started in [16]. In particular, we showed there
(following an idea appeared in the seminal paper [20]) that sets having finite fractional perimeter
can have a very rough boundary, which may indeed be a nowhere rectifiable fractal (like the von
Koch snowflake).

This represents a dramatic difference between the fractional and the classical perimeter, since
Caccioppoli sets have a “big” portion of the boundary, the so-called reduced boundary, which is
.n � 1/-rectifiable (by De Giorgi’s structure Theorem).

Still, we prove in this paper that a set has (locally) finite fractional perimeter if and only if it can
be approximated (in an appropriate way) by smooth open sets. To be more precise, we show that a
set E has locally finite s-perimeter if and only if we can find a sequence of smooth open sets which
converge in measure to E, whose boundaries converge to that of E in a uniform sense, and whose
s-perimeters converge to that of E in every bounded open set.

Such a result is well known for Caccioppoli sets (see, e.g., [17]) and indeed this density property
can be used to define the (classical) perimeter functional as the relaxation (with respect to L1
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convergence) of the Hn�1 measure of boundaries of smooth open sets, that is

P.E;˝/ D inf
n

lim inf
k!1

Hn�1.@Eh \˝/
ˇ̌
Eh � Rn open with smoothboundary, s.t. Eh

loc
��! E

o
:

(1.1)
The second part of this paper is concerned with sets minimizing the fractional perimeter. The
boundaries of these minimizers are often referred to as nonlocal minimal surfaces and naturally arise
as limit interfaces of long-range interaction phase transition models. In particular, in regimes where
the long-range interaction is dominant, the nonlocal Allen-Cahn energy functional � -converges
to the fractional perimeter (see [19]) and the minimal interfaces of the corresponding Allen-Cahn
equation approach locally uniformly the nonlocal minimal surfaces (see [18]).

We remark that throughout the paper, given a set A and an open set ˝, we will write A �� ˝
to mean that the closure A of A is compact and A � ˝. In particular, notice that if A �� ˝, then
A must be bounded.

We consider sets which are locally s-minimal in an open set ˝ � Rn, namely sets which
minimize the s-perimeter in every open subset˝ 0 �� ˝, and we prove existence and compactness
results which extend those of [4].

We also compare this definition of local s-minimal set with the definition of s-minimal set
introduced in [4], proving that they coincide when the domain ˝ is a bounded open set with
Lipschitz boundary (see Theorem 1.7).

In particular, the following existence results are proven:

� If ˝ is an open set and E0 is a fixed set, then there exists a set E which is locally s-minimal in
˝ and such that E n˝ D E0 n˝;
� there exist minimizers in the class of subgraphs, namely nonlocal nonparametric minimal surfaces

(see Theorem 1.16 for a precise statement);
� if ˝ is an open set which has finite s-perimeter, then for every fixed set E0 there exists a set E

which is s-minimal in ˝ and such that E n˝ D E0 n˝.

On the other hand, we show that when the domain ˝ is unbounded the nonlocal part of the s-
perimeter can be infinite, thus preventing the existence of competitors having finite s-perimeter in
˝ and hence also of “global” s-minimal sets. In particular, we study this situation in a cylinder
˝1 WD ˝ � R � RnC1, considering as exterior data the subgraph of a (locally) bounded function.

In the next sections we present the precise statements of the main results of this paper. We begin
by recalling the definition of fractional perimeter.

1.1 Sets of (locally) finite s-perimeter

Let s 2 .0; 1/ and let ˝ � Rn be an open set. The s-fractional perimeter of a set E � Rn in ˝ is
defined as

Ps.E;˝/ WD Ls.E \˝;CE \˝/C Ls.E \˝;CE n˝/C Ls.E n˝;CE \˝/;

where

Ls.A;B/ WD

Z
A

Z
B

1

jx � yjnCs
dx dy;

for every couple of disjoint sets A; B � Rn. We simply write Ps.E/ for Ps.E;Rn/.
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We say that a set E � Rn has locally finite s-perimeter in an open set ˝ � Rn if

Ps.E;˝
0/ <1 for every open set ˝ 0 �� ˝: (1.2)

We remark that the family of sets having finite s-perimeter in˝ need not coincide with the family of
sets of locally finite s-perimeter in ˝, not even when ˝ is “nice” (say bounded and with Lipschitz
boundary). To be more precise, since

Ps.E;˝/ D sup
˝0��˝

Ps.E;˝
0/; (1.3)

(see Proposition 2.9 and Remark 2.10), a set which has finite s-perimeter in˝ has also locally finite
s-perimeter. However the converse, in general, is false.

When ˝ is not bounded it is clear that also for sets of locally finite s-perimeter the sup in (1.3)
may be infinite (consider, e.g., ˝ D Rn and E D fxn 6 0g).

Actually, as shown in Remark 2.11, this may happen even when ˝ is bounded and has
Lipschitz boundary. Roughly speaking, this is because the set E might oscillate more and more
as it approaches the boundary @˝.

1.2 Approximation by smooth open sets

We denote by N�.� / the �-neighborhood of a set � � Rn, that is

N�.� / WD
˚
x 2 Rn j d.x; � / < �

	
:

The main approximation result is the following. In particular it shows that open sets with smooth
boundary are dense in the family of sets of locally finite s-perimeter.

Theorem 1.1 Let ˝ � Rn be an open set. A set E � Rn has locally finite s-perimeter in ˝ if and
only if there exists a sequence Eh � Rn of open sets with smooth boundary and "h �! 0C such
that

(i) Eh
loc
��! E; sup

h2N
Ps.Eh; ˝

0/ <1 for every ˝ 0 �� ˝,

(ii) lim
h!1

Ps.Eh; ˝
0/ D Ps.E;˝

0/ for every ˝ 0 �� ˝,

(iii) @Eh � N"h.@E/.

Moreover, if ˝ D Rn and the set E is such that jEj <1 and Ps.E/ <1, then

Eh �! E; lim
h!1

Ps.Eh/ D Ps.E/; (1.4)

and we can require each set Eh to be bounded (instead of asking (iii)).

The scheme of the proof is the following. First of all, in Section 3.1 we prove appropriate
approximation results for the functional

F .u;˝/ D
1

2

Z
R2nn.C˝/2

ju.x/ � u.y/j

jx � yjnCs
dx dy;

which we believe might be interesting on their own.
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Then we exploit the generalized coarea formula

F .u;˝/ D

Z 1
�1

Ps.fu > tg; ˝/ dt;

and Sard’s Theorem to obtain the approximation of the set E by superlevel sets of smooth functions
which approximate �E .

Finally, a diagonal argument guarantees the convergence of the s-perimeters in every open set
˝ 0 �� ˝.

REMARK 1.2 Let ˝ � Rn be a bounded open set with Lipschitz boundary and consider a set E
which has finite s-perimeter in ˝. Notice that if we apply Theorem 1.1, in point .i i/ we do not get
the convergence of the s-perimeters in˝, but only in every˝ 0 �� ˝. On the other hand, if we can
find an open set O such that ˝ �� O and

Ps.E;O/ <1;

then we can apply Theorem 1.1 in O. In particular, since ˝ �� O, by point .i i/ we obtain

lim
h!1

Ps.Eh; ˝/ D Ps.E;˝/: (1.5)

Still, when ˝ is a bounded open set with Lipschitz boundary, we can always obtain the
convergence (1.5) at the cost of weakening a little our request on the uniform convergence of the
boundaries.

Theorem 1.3 Let˝ � Rn be a bounded open set with Lipschitz boundary. A set E � Rn has finite
s-perimeter in ˝ if and only if there exists a sequence fEhg of open sets with smooth boundary and
"h �! 0C such that

(i) Eh
loc
��! E; sup

h2N
Ps.Eh; ˝/ <1,

(ii) lim
h!1

Ps.Eh; ˝/ D Ps.E;˝/,

(iii) @Eh nN"h.@˝/ � N"h.@E/.

Notice that in point (iii) we do not ask the convergence of the boundaries in the whole of Rn
but only in Rn n Nı.@˝/ (for any fixed ı > 0). Since N"h.@˝/ & @˝, roughly speaking, the
convergence holds in Rn “in the limit”.

Moreover, we remark that point (ii) in Theorem 1.3 guarantees the convergence of the s-
perimeters also in every ˝ 0 �� ˝ (see Remark 3.6).

Finally, from the lower semicontinuity of the s-perimeter and Theorem 1.3, we obtain

Corollary 1.4 Let ˝ � Rn be a bounded open set with Lipschitz boundary and let E � Rn. Then

Ps.E;˝/ D inf
˚

lim inf
h!1

Ps.Eh; ˝/
ˇ̌
Eh � Rn open with smooth boundary, s.t. Eh

loc
��! E

	
:

(1.6)

For similar approximation results see also [5] and [6].
It is interesting to observe that in [13] the authors have proved, by exploiting the divergence

Theorem, that if E � Rn is a bounded open set with smooth boundary, then

Ps.E/ D cn;s

Z
@E

Z
@E

2 � j�E .x/ � �E .y/j
2

jx � yjnCs�2
dHn�1

x dHn�1
y ; (1.7)
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where �E denotes the external normal of E and

cn;s WD
1

2s.nC s � 2/
:

Notice that in order to consider the right hand side of (1.7), we need the boundary of the set E to
be at least locally .n � 1/-rectifiable, so that the Hausdorff dimension of @E is n � 1 and E has a
well defined normal vector at Hn�1-a.e. x 2 @E. Therefore, the equality (1.7) cannot hold true for
a generic set E having finite s-perimeter, since, as remarked in the beginning of the Introduction,
such a set could have a nowhere rectifiable boundary.

Nevertheless, as a consequence of the equality (1.7), of the lower semicontinuity of the s-
perimeter and of Theorem 1.1, we obtain the following Corollary, which can be thought of as an
analogue of (1.1) in the fractional setting.

Corollary 1.5 Let E � Rn be such that jEj <1. Then

Ps.E/ D inf

(
lim inf
h!1

cn;s

Z
@Eh

Z
@Eh

2 � j�Eh.x/ � �Eh.y/j
2

jx � yjnCs�2
dHn�1

x dHn�1
y

ˇ̌
Eh � Rn bounded open set with smooth boundary, s.t. Eh

loc
��! E

)
:

1.3 Nonlocal minimal surfaces

First of all we give the definition of (locally) s-minimal sets.

DEFINITION 1.6 Let ˝ � Rn be an open set and let s 2 .0; 1/. We say that a set E � Rn is
s-minimal in ˝ if Ps.E;˝/ <1 and

F n˝ D E n˝ H) Ps.E;˝/ 6 Ps.F;˝/:

We say that a setE � Rn is locally s-minimal in˝ if it is s-minimal in every open subset˝ 0 �� ˝.

When the open set ˝ � Rn is bounded and has Lipschitz boundary, the notions of s-minimal
set and locally s-minimal set coincide.

Theorem 1.7 Let ˝ � Rn be a bounded open set with Lipschitz boundary and let E � Rn. The
following are equivalent

(i) E is s-minimal in ˝;
(ii) Ps.E;˝/ <1 and

Ps.E;˝/ 6 Ps.F;˝/ for every F � Rn s.t. E�F �� ˝I

(iii) E is locally s-minimal in ˝.

We remark that a set as in (ii) is called a local minimizer for Ps.�; ˝/ in [2] and a “nonlocal
area minimizing surface” in ˝ in [8].

REMARK 1.8 The implications (i) H) (ii) H) (iii) actually hold in any open set ˝ � Rn.
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In [4] the authors proved that if ˝ is a bounded open set with Lipschitz boundary, then given
any fixed set E0 � Rn we can find a set E which is s-minimal in˝ and such that E n˝ D E0 n˝.

This is because
Ps.E0 n˝;˝/ 6 Ps.˝/ <1;

so the exterior datum E0 n˝ is itself an admissible competitor with finite s-perimeter in ˝ and we
can use the direct method of the Calculus of Variations to obtain a minimizer.

In Section 2.3 we prove a compactness property which we use in Section 4.3 to prove the
following existence results, which extend that of [4].

Theorem 1.9 Let ˝ � Rn be an open set and let E0 � Rn. Then there exists a set E � Rn s-
minimal in˝, with E n˝ D E0 n˝, if and only if there exists a set F � Rn, with F n˝ D E0 n˝
and such that Ps.F;˝/ <1.

An immediate consequence of this Theorem is the existence of s-minimal sets in open sets
having finite s-perimeter.

Corollary 1.10 Let s 2 .0; 1/ and let ˝ � Rn be an open set such that

Ps.˝/ <1:

Then for every E0 � Rn there exists a set E � Rn s-minimal in ˝, with E n˝ D E0 n˝.

Even if we cannot find a competitor with finite s-perimeter, we can always find a locally s-
minimal set.

Corollary 1.11 Let ˝ � Rn be an open set and let E0 � Rn. Then there exists a set E � Rn
locally s-minimal in ˝, with E n˝ D E0 n˝.

In Section 4.2 we also prove compactness results for (locally) s-minimal sets (by slightly
modifying the proof of Theorem 3.3 of [4], which proved compactness for s-minimal sets in a ball).
Namely, we prove that every limit set of a sequence of (locally) s-minimal sets is itself (locally)
s-minimal.

Theorem 1.12 Let˝ � Rn be a bounded open set with Lipschitz boundary. Let fEkg be a sequence

of s-minimal sets in ˝, with Ek
loc
��! E. Then E is s-minimal in ˝ and

Ps.E;˝/ D lim
k!1

Ps.Ek ; ˝/: (1.8)

Corollary 1.13 Let ˝ � Rn be an open set. Let fEhg be a sequence of sets locally s-minimal in

˝, with Eh
loc
��! E. Then E is locally s-minimal in ˝ and

Ps.E;˝
0/ D lim

h!1
Ps.Eh; ˝

0/; for every ˝ 0 �� ˝: (1.9)

1.3.1 Minimal sets in cylinders. We have seen in Corollary 1.11 that a locally s-minimal set
always exists, no matter what the domain ˝ or the exterior data E0 n˝ are.

On the other hand, by Theorem 1.9 we know that the only requirement needed for the existence
of an s-minimal set is the existence of a competitor with finite s-perimeter.

We show that even in the case of a regular domain, like the cylinder ˝1 WD ˝ � R, with
˝ � Rn bounded with C 1;1 boundary, such a competitor might not exist. Roughly speaking, this
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is a consequence of the unboundedness of the domain ˝1, which forces the nonlocal part of the
s-perimeter to be infinite.

In Section 4.4 we study (locally) s-minimal sets in ˝1, with respect to the exterior data given
by the subgraph of a function v, that is

Sg.v/ D
˚
.x; t/ j t < v.x/

	
:

In particular, we consider sets which are s-minimal in the “truncated” cylinders˝k WD ˝�.�k; k/,
showing that if the function v is locally bounded, then these s-minimal sets cannot “oscillate” too
much. Namely their boundaries are constrained in a cylinder ˝ � .�M;M/ independently on k.

As a consequence, we can find k0 big enough such that a set E is locally s-minimal in ˝1 if
and only if it is s-minimal in ˝k0 (see Lemma 4.3 and Proposition 4.4 for the precise statements).

However, in general a set s-minimal in ˝1 does not exist. As an example we prove that there
cannot exist an s-minimal set having as exterior data the subgraph of a bounded function.

Frst of all, we remark that we can write the fractional perimeter as the sum

Ps.E;˝/ D P
L
s .E;˝/C P

NL
s .E;˝/;

where

PLs .E;˝/ WD Ls.E \˝;CE \˝/ D
1

2
Œ�E �W s;1.˝/;

PNLs .E;˝/ WD Ls.E \˝;CE n˝/C Ls.E n˝;CE \˝/:

We can think of PLs .E;˝/ as the local part of the fractional perimeter, in the sense that if j.E�F /\
˝j D 0, then PLs .F;˝/ D P

L
s .E;˝/.

The main result of Section 4.4 is the following

Theorem 1.14 Let ˝ � Rn be a bounded open set. Let E � RnC1 be such that

˝ � .�1;�k� � E \˝1 � ˝ � .�1; k�; (1.10)

for some k 2 N, and suppose that Ps.E;˝kC1/ <1. Then

PLs .E;˝
1/ <1:

On the other hand, if
fxnC1 6 �kg � E � fxnC1 6 kg; (1.11)

then
PNLs .E;˝1/ D1:

In particular, if˝ has C 1;1 boundary and v 2 L1.Rn/, there cannot exist an s-minimal set in˝1

with exterior data

Sg.v/ n˝1 D
˚
.x; t/ 2 RnC1 j x 2 C˝; t < v.x/

	
:

REMARK 1.15 From Theorem 1.9 we see that if v 2 L1.Rn/, there cannot exist a set E � RnC1
such that E n˝1 D Sg.v/ n˝1 and Ps.E;˝1/ <1.
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As a consequence of the computations developed in the proof of Theorem 1.14, in the end of
Section 4.4 we also show that we cannot define a “naive” fractional nonlocal version of the area
functional as

As.u;˝/ WD Ps
�
Sg.u/;˝1

�
;

since this would be infinite even for very regular functions.
To conclude, we remark that as an immediate consequence of Corollary 1.11 and Theorem 1.1

in [11], we obtain an existence result for the Plateau’s problem in the class of subgraphs.

Theorem 1.16 Let ˝ � Rn be a bounded open set with C 1;1 boundary. For every function v 2
C.Rn/ there exists a function u 2 C.˝/ such that, if

Qu WD �˝uC .1 � �˝/v;

then Sg. Qu/ is locally s-minimal in ˝1.

Notice that, as remarked in [11], the function Qu need not be continuous. Indeed, because of
boundary stickiness effects of s-minimal surfaces (see, e.g., [12]), in general we might have

uj@˝ 6D vj@˝ :

1.4 Notation and assumptions

� Unless otherwise stated, ˝ and ˝ 0 will always denote open sets.
� In Rn we will usually write jEj D Ln.E/ for the n-dimensional Lebesgue measure of a set
E � Rn.
� By Ah

loc
��! A we mean that �Ah �! �A in L1

loc
.Rn/, i.e. for every bounded open set ˝ � Rn

we have j.Ah�A/ \˝j �! 0.
� We write Hd for the d -dimensional Hausdorff measure, for any d > 0.
� We define the dimensional constants

!d WD
�
d
2

�
�
d
2
C 1

� ; d > 0:

In particular, we remark that !k D Lk.B1/ is the volume of the k-dimensional unit ballB1 � Rk
and k !k D Hk�1.Sk�1/ is the surface area of the .k � 1/-dimensional sphere

Sk�1 D @B1 D
˚
x 2 Rk j jxj D 1

	
:

� Since
jE�F j D 0 H) Ps.E;˝/ D Ps.F;˝/;

we can and will implicitly identify sets up to sets of zero measure.
In particular, equality and inclusions of sets will usually be considered in the measure sense, e.g.,
E D F will usually mean jE�F j D 0.
Moreover, whenever needed we will implicitly choose a particular representative for the class of
�E in L1

loc
.Rn/, as in the Remark below.
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REMARK 1.17 Let E � Rn. Up to modifying E on a set of measure zero, we can assume (see, e.g.,
Appendix C of [16]) that E contains the measure theoretic interior

E1 WD
˚
x 2 Rn j 9 r > 0 s.t. jE \ Br .x/j D !nrn

	
� E;

the complementary CE contains its measure theoretic interior

E0 WD
˚
x 2 Rn j 9 r > 0 s.t. jE \ Br .x/j D 0

	
� CE;

and the topological boundary of E coincides with its measure theoretic boundary, @E D @�E,
where

@�E WD Rn n .E0 [E1/ D
˚
x 2 Rn j 0 < jE \ Br .x/j < !nrn for every r > 0

	
:

2. Tools

It is convenient to point out the following easy but useful result.

Proposition 2.1 Let ˝ 0 � ˝ � Rn be open sets and let E � Rn. Then

Ps.E;˝/ D Ps.E;˝
0/C Ls.E \ .˝ n˝

0/;CE n˝ 0/C Ls
�
E n˝;CE \ .˝ n˝ 0/

�
: (2.1)

As a consequence,

(i) if E � ˝, then
Ps.E;˝/ D Ps.E/;

(ii) if E; F � Rn have finite s-perimeter in ˝ and E�F � ˝ 0 � ˝, then

Ps.E;˝/ � Ps.F;˝/ D Ps.E;˝
0/ � Ps.F;˝

0/: (2.2)

REMARK 2.2 In particular, if E has finite s-perimeter in ˝, then it has finite s-perimeter also in
every open set ˝ 0 � ˝.

2.1 Bounded open sets with Lipschitz boundary

Given a set E � Rn, with E 6D ;, the distance function from E is defined as

dE .x/ D d.x;E/ WD inf
y2E
jx � yj; for x 2 Rn:

The signed distance function from @E, negative inside E, is then defined as

NdE .x/ D Nd.x;E/ WD d.x;E/ � d.x;CE/: (2.3)

We also define for every r 2 R the sets

Er WD fx 2 Rn j NdE .x/ < rg:

Notice that if � > 0, then
N�.@˝/ D fj Nd˝ j < �g D ˝� n˝��
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is the �-tubular neighborhood of @˝.
Let ˝ � Rn be a bounded open set with Lipschitz boundary. It is well known (see, e.g.,

Theorem 4.1 of [14]) that also the bounded open sets ˝r have Lipschitz boundary, when r is small
enough, say jr j < r0.

Notice that
@˝r D f Nd˝ D rg:

Moreover the perimeter of ˝r can be bounded uniformly in r 2 .�r0; r0/ (see also Appendix B
of [16] for a more detailed discussion).

Proposition 2.3 Let ˝ � Rn be a bounded open set with Lipschitz boundary. Then there exists
r0 > 0 such that ˝r is a bounded open set with Lipschitz boundary for every r 2 .�r0; r0/ and

sup
jrj<r0

Hn�1
�
f Nd˝ D rg

�
<1: (2.4)

As a consequence, exploiting the embedding BV.Rn/ ,! W s;1.Rn/we obtain a uniform bound
for the (global) s-perimeters of the sets ˝r (see Corollary 1.2 of [16])

Corollary 2.4 Let˝ � Rn be a bounded open set with Lipschitz boundary. Then there exists r0 > 0
such that

sup
jrj<r0

Ps.˝r / <1: (2.5)

2.1.1 Increasing sequences. In particular, Proposition 2.3 shows that if ˝ is a bounded open
set with Lpschitz boundary, then we can approximate it strictly from the inside with a sequence of
bounded open sets˝k WD ˝�1=k �� ˝. Moreover, (2.4) gives a uniform bound on the measure of
the boundaries of the approximating sets.

Now we prove that any open set ˝ 6D ; can be approximated strictly from the inside with a
sequence of bounded open sets with smooth boundaries.

Proposition 2.5 Let ˝ � Rn be a bounded open set. For every " > 0 there exists a bounded open
set O" � Rn with smooth boundary, such that

O" �� ˝ and @O" � N".@˝/: (2.6)

Proof. We show that we can approximate the set ˝�"=2 with a bounded open set O" with smooth
boundary such that @O" � N"=4.@˝�"=2/.

In general O" 6� ˝�"=2. However

O" � N"=4.˝�"=2/ �� ˝ and indeed ˝�3"=4 � O" � ˝�"=4; (2.7)

proving the claim.
Let u WD �˝�"=2 and consider the regularized function

v WD u"=4 D u � �"=4

(see Section 3 for the details about the mollifier �"). Since v 2 C1.Rn/, we know from Sard’s
Theorem that the superlevel set fv > tg is an open set with smooth boundary for a.e. t 2 .0; 1/.
Moreover notice that 0 6 v 6 1, with

supp v � N"=4.supp u/ D N"=4.˝�"=2/ � ˝�"=4;
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and

v.x/ D 1 for every x 2
n
y 2 ˝�"=2

ˇ̌
d.y; @˝�"=2/ >

"

4

o
� ˝

� 34 "
:

This shows that O" WD fv > tg (for any “regular” t ) satisfies .2.7/.

Corollary 2.6 Let ˝ � Rn be an open set. Then there exists a sequence f˝kg of bounded open
sets with smooth boundary such that ˝k % ˝ strictly, i.e.,

˝k �� ˝kC1 �� ˝ and
[
k2N

˝k D ˝: (2.8)

In particular ˝k
loc
��! ˝.

Proof. It is enough to notice that we can approximate˝ strictly from the inside with bounded open
sets Ok � Rn, that is

Ok �� OkC1 �� ˝ and
[
k2N

Ok D ˝:

Then we can exploit Proposition 2.5, and in particular .2.7/, to find bounded open sets ˝k � Rn
with smooth boundary such that

Ok �� ˝k �� OkC1:

Indeed we can take as ˝k a set O" corresponding to OkC1, with " small enough to guarantee
Ok �� O".

As for the sets Ok , if ˝ is bounded we can simply take Ok WD ˝�2�k : If ˝ is not bounded, we
can consider the sets ˝ \ B2k and define

Ok WD
n
x 2 ˝ \ B2k j d

�
x; @.˝ \ B2k /

�
> 2�k

o
:

To conclude, notice that we have �˝k �! �˝ pointwise everywhere in Rn, which implies the
convergence in L1

loc
.Rn/.

2.1.2 Some uniform estimates for �-neighborhoods. The uniform bound .2.4/ on the perimeters
of the sets ˝ı allows us to obtain the following estimates, which will be used in the sequel.

Lemma 2.7 Let ˝ � Rn be a bounded open set with Lipschitz boundary. Let ı 2 .0; r0/. Then

(i) Ls.˝�ı ; ˝ n˝�ı/ 6 C ı1�s;

(ii) Ls.˝;˝ı n˝/ 6 C ı1�s and Ls.˝ n˝�ı ;C˝/ 6 C ı1�s;
(2.9)

where the constant C is

C WD
n!n

s.1 � s/
sup
jrj<r0

Hn�1
�
f Nd˝ D rg

�
:
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Proof. By using the coarea formula for Nd˝ and exploiting .2.4/, we get

Ls.˝�ı ; ˝ n˝�ı/ D

Z 0

�ı

� Z
f Nd˝D�g

� Z
˝�ı

dx

jx � yjnCs

�
dHn�1

y

�
d�

6
Z 0

�ı

� Z
f Nd˝D�g

� Z
CB�Cı.y/

dx

jx � yjnCs

�
dHn�1

y

�
d�

D
n!n

s

Z 0

�ı

Hn�1.f Nd˝ D �g/

.�C ı/s
d�

6 M
n!n

s.1 � s/

Z 0

�ı

d

d�
.�C ı/1�s d� DM

n!n

s.1 � s/
ı1�s :

In the same way we obtain point (ii),

Ls.˝ı n˝;˝/ D

Z ı

0

� Z
f Nd˝D�g

� Z
˝

dx

jx � yjnCs

�
dHn�1

y

�
d�

6
Z ı

0

� Z
f Nd˝D�g

� Z
CB�.y/

dx

jx � yjnCs

�
dHn�1

y

�
d�

D
n!n

s

Z ı

0

Hn�1.f Nd˝ D �g/

�s
d�

6 M
n!n

s.1 � s/

Z ı

0

d

d�
�1�s d� DM

n!n

s.1 � s/
ı1�s;

(the other estimate in point (ii) is analogous).

2.2 (Semi)continuity of the s-perimeter

As shown in Theorem 3.1 of [4], Fatou’s Lemma gives the lower semicontinuity of the
functional Ls .

Proposition 2.8 Suppose

Ak
loc
��! A and Bk

loc
��! B:

Then
Ls.A;B/ 6 lim inf

k!1
Ls.Ak ; Bk/: (2.10)

In particular, if

Ek
loc
��! E and ˝k

loc
��! ˝;

then
Ps.E;˝/ 6 lim inf

k!1
Ps.Ek ; ˝k/: (2.11)

Proof. If the right hand side of (2.10) is infinite, we have nothing to prove, so we can suppose that
it is finite. By definition of the liminf, we can find ki %1 such that

lim
i!1

Ls.Aki ; Bki / D lim inf
k!1

Ls.Ak ; Bk/ DW I:
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Since �Aki ! �A and �Bki ! �B in L1
loc
.Rn/, up to passing to a subsequence we can suppose

that
�Aki

�! �A and �Bki
�! �B a.e. in Rn:

Then, since

Ls.Aki ; Bki / D

Z
Rn

Z
Rn

1

jx � yjnCs
�Aki

.x/�Bki
.y/ dx dy;

Fatou’s Lemma gives
Ls.A;B/ 6 lim inf

i!1
Ls.Aki ; Bki / D I;

proving .2.10/.
The second inequality follows just by summing the contributions defining the fractional

perimeter.

Keeping ˝ fixed we obtain Theorem 3.1 of [4].
On the other hand, if we keep the set E fixed and approximate the open set ˝ with a sequence

of open subsets ˝k � ˝, we get a continuity property.

Proposition 2.9 Let ˝ � Rn be an open set and let f˝kg be any sequence of open sets such that

˝k
loc
��! ˝. Then for every set E � Rn

Ps.E;˝/ 6 lim inf
k!1

Ps.E;˝k/:

Moreover, if ˝k � ˝ for every k, then

Ps.E;˝/ D lim
k!1

Ps.E;˝k/; (2.12)

(whether it is finite or not).

Proof. Since ˝k
loc
��! ˝, Proposition 2.8 gives the first statement. Now notice that if ˝k � ˝,

Proposition 2.1 implies
Ps.E;˝k/ 6 Ps.E;˝/;

and hence
lim sup
k!1

Ps.E;˝k/ 6 Ps.E;˝/;

concluding the proof.

REMARK 2.10 As a consequence, exploiting Corollary 2.6, we get

Ps.E;˝/ D sup
˝0¨˝

Ps.E;˝
0/ D sup

˝0��˝

Ps.E;˝
0/: (2.13)

REMARK 2.11 Consider the set E � R constructed in the proof of Example 2.10 in [10]. That is,
let ˇk > 0 be a decreasing sequence such that

M WD

1X
kD1

ˇk <1 and
1X
kD1

ˇ1�s2k D1; 8 s 2 .0; 1/:
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Then define

�m WD

mX
kD1

ˇk ; Im WD .�m; �mC1/; E WD

1[
jD1

I2j ;

and let ˝ WD .0;M/. As shown in [10],

Ps.E;˝/ D1; 8 s 2 .0; 1/:

On the other hand
P.E;˝ 0/ <1; 8˝ 0 �� ˝;

hence E has locally finite s-perimeter in ˝, for every s 2 .0; 1/.
Indeed, notice that the intervals I2j accumulate near M . Thus, for every " > 0, all but a finite

number of the intervals I2j ’s fall outside of the open set O" WD .";M�"/. ThereforeP.E;O"/ <1
and hence

Ps.E;O"/ <1; 8 s 2 .0; 1/:

Since O" % ˝ as "! 0C, the set E has locally finite s-perimeter in ˝ for every s 2 .0; 1/.

Proposition 2.12 Let ˝ � Rn be an open set and let fEhg be a sequence of sets such that

Eh
loc
��! E and lim

h!1
Ps.Eh; ˝/ D Ps.E;˝/ <1:

Then
lim
h!1

Ps.Eh; ˝
0/ D Ps.E;˝

0/ for every open set ˝ 0 � ˝: (2.14)

Proof. The claim follows from classical properties of limits of sequences.
Indeed, let

ah WD Ps.Eh; ˝
0/;

bh WD Ls
�
Eh \ .˝ n˝

0/;CEh n˝
0
�
C Ls

�
Eh n˝;CEh \ .˝ n˝

0/
�
;

and let a and b be the corresponding terms for E.
Notice that, by Proposition 2.1, we have

Ps.Eh; ˝/ D ah C bh and Ps.E;˝/ D aC b:

From Proposition 2.8 we have

a 6 lim inf
h!1

ah and b 6 lim inf
h!1

bh;

and by hypothesis we know that

lim
h!1

.ah C bh/ D aC b:

Therefore
aC b 6 lim inf

h!1
ah C lim inf

h!1
bh 6 lim inf

h!1
.ah C bh/ D aC b;
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and hence
0 6 lim inf

h!1
bh � b D a � lim inf

h!1
ah 6 0;

so that
a D lim inf

h!1
ah and b D lim inf

h!1
bh:

Then, since
lim sup
h!1

ah C lim inf
h!1

bh 6 lim sup
h!1

.ah C bh/ D aC b;

we obtain
a D lim inf

h!1
ah 6 lim sup

h!1

ah 6 a;

concluding the proof.

2.3 Compactness

Proposition 2.13 (Compactness) Let ˝ � Rn be an open set. If fEhg is a sequence of sets such
that

lim sup
h!1

PLs .Eh; ˝
0/ 6 c.˝ 0/ <1; 8˝ 0 �� ˝; (2.15)

then there exists a subsequence fEhi g and E � Rn such that

Ehi \˝
loc
��! E \˝:

Proof. We want to use a compact Sobolev embedding (Corollary 7.2 of [9]) to construct a limit set
via a diagonal argument.

Thanks to Corollary 2.6 we know that we can find an increasing sequence of bounded open sets
f˝kg with smooth boundary such that

˝k �� ˝kC1 �� ˝ and
[
k2N

˝k D ˝:

Moreover, Hypothesis (2.15) guarantees that

8k 9h.k/ s.t. PLs .Eh; ˝k/ 6 ck <1; 8h > h.k/: (2.16)

Clearly
k�EhkL1.˝k/ 6 j˝kj <1;

and hence, since Œ�Eh �W s;1.˝k/
D 2PLs .Eh; ˝k/, we have

k�EhkW s;1.˝k/
6 c0k ; 8h > h.k/:

Therefore Corollary 7.2 of [9] (notice that each ˝k is an extension domain) guarantees for every
fixed k the existence of a subsequence hi %1 (with h1 > h.k/) such that

Ehi \˝k
i!1
���! Ek
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in measure, for some set Ek � ˝k .
Applying this argument for k D 1 we get a subsequence fh1i g with

Eh1
i
\˝1

i!1
���! E1:

Applying again this argument in ˝2, with fEh1
i
g in place of fEhg, we get a subsequence fh2i g of

fh1i g with

Eh2
i
\˝2

i!1
���! E2:

Notice that, since ˝1 � ˝2, we must have E2 \ ˝1 D E1 in measure (by the uniqueness of the
limit in ˝1). We can also suppose that h21 > h

1
1.

Proceeding inductively in this way we get an increasing subsequence fhk1g such that

Ehi
1
\˝k

i!1
���! Ek ; for every k 2 N;

with EkC1 \˝k D Ek . Therefore if we define E WD
S
k E

k , since
S
k ˝k D ˝, we get

Ehi
1
\˝

loc
��! E;

concluding the proof.

REMARK 2.14 If Eh is s-minimal in ˝k for every h > h.k/, then by minimality we get

PLs .Eh; ˝k/ 6 Ps.Eh; ˝k/ 6 Ps.Eh n˝k ; ˝k/ 6 Ps.˝k/ DW ck <1;

since ˝k is bounded and has Lipschitz boundary. Therefore fEhg satisfies the hypothesis of
Proposition 2.13 and we can find a convergent subsequence.

3. Generalized coarea and approximation by smooth sets

We begin by showing that the s-perimeter satisfies a generalized coarea formula (see also [20] and
Lemma 10 in [2]). In the end of this section we will exploit this formula to prove that a set E of
locally finite s-perimeter can be approximated by smooth sets whose s-perimeter converges to that
of E.

Let ˝ � Rn be an open set. Given a function u W Rn �! R, we define the functional

F .u;˝/ WD
1

2

Z
˝

Z
˝

ju.x/ � u.y/j

jx � yjnCs
dx dy C

Z
˝

Z
C˝

ju.x/ � u.y/j

jx � yjnCs
dx dy; (3.1)

that is, half the “˝-contribution” to the W s;1-seminorm of u.
Notice that

F .�E ; ˝/ D Ps.E;˝/

and, clearly,

F .u;Rn/ D
1

2
Œu�W s;1.Rn/:
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Proposition 3.1 (Coarea) Let ˝ � Rn be an open set and let u W Rn �! R. Then

F .u;˝/ D

Z 1
�1

Ps
�
fu > tg; ˝

�
dt: (3.2)

In particular
1

2
Œu�W s;1.˝/ D

Z 1
�1

PLs
�
fu > tg; ˝

�
dt:

Proof. Notice that for every x; y 2 Rn we have

ju.x/ � u.y/j D

Z 1
�1

j�fu>tg.x/ � �fu>tg.y/j dt: (3.3)

Indeed, the function t 7�! j�fu>tg.x/ � �fu>tg.y/j takes only the values f0; 1g and it is different
from 0 precisely in the interval having u.x/ and u.y/ as extremes. Therefore, if we plug .3.3/ into
.3.1/ and use Fubini’s Theorem, we get

F .u;˝/ D

Z 1
�1

F
�
�fu>tg; ˝

�
dt D

Z 1
�1

Ps
�
fu > tg; ˝

�
dt;

as wanted.

3.1 Approximation results for the functional F

In this section we prove the approximation properties for the functional F which we need for the
proofs of Theorem 1.1 and Theorem 1.3. To this end we consider a (symmetric) smooth function �
such that

� 2 C1c .R
n/; supp � � B1; � > 0; �.�x/ D �.x/;

Z
Rn
� dx D 1;

and we define the mollifier
�".x/ WD

1

"n
�
�x
"

�
;

for every " 2 .0; 1/. Notice that supp �" � B" and
R
Rn �" D 1.

Given u 2 L1
loc
.Rn/, we define the "-regularization of u as the convolution

u".x/ WD .u � �"/.x/ D

Z
Rn
u.x � �/�".�/ d�; for every x 2 Rn:

It is well known that u" 2 C1.Rn/ and

u" �! u in L1loc.R
n/:

Moreover, if u D �E , then

0 6 u" 6 1 and u".x/ D

�
1; if jB".x/ nEj D 0
0; if jB".x/ \Ej D 0

; (3.4)

(see, e.g., Section 12.3 of [17]).
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Lemma 3.2 (i) Let u 2 L1
loc
.Rn/ and let ˝ � Rn be an open set. Then

F .u;˝/ <1 H) lim
"!0C

F .u"; ˝
0/ D F .u;˝ 0/ 8˝ 0 �� ˝: (3.5)

(ii) Let u 2 W s;1.Rn/. Then
lim
"!0

Œu"�W s;1.Rn/ D Œu�W s;1.Rn/:

(iii) Let u 2 W s;1.Rn/. Then there exists fukg � C1c .Rn/ such that

ku � ukkL1.Rn/ �! 0 and lim
k!1

Œuk �W s;1.Rn/ D Œu�W s;1.Rn/:

Moreover, if u D �E , then 0 6 uk 6 1.

Proof. (i) Given O � Rn, let Q.O/ WD R2n n .CO/2, so that

F .u;O/ D
1

2

Z
Q.O/

ju.x/ � u.y/j

jx � yjnCs
dx dy:

Notice that if O � ˝, then Q.O/ � Q.˝/ and hence

F .u;O/ 6 F .u;˝/: (3.6)

Now let ˝ 0 �� ˝ and notice that for " small enough we have

Q.˝ 0 � "�/ � Q.˝/ for every � 2 B1: (3.7)

As a consequence

F .u"; ˝
0/ 6

Z
B1

F .u;˝ 0 � "�/�.�/ d� 6 F .u;˝/: (3.8)

The second inequality follows from .3.7/; .3.6/ and
R
B1
� D 1.

As for the first inequality, we haveZ
Q.˝0/

ju".x/ � u".y/j

jx � yjnCs
dx dy D

Z
Q.˝0/

ˇ̌̌ Z
Rn

�
u.x � �/ � u.y � �/

� 1
"n
�
��
"

�
d�
ˇ̌̌ dx dy

jx � yjnCs

D

Z
Q.˝0/

ˇ̌̌ Z
B1

�
u.x � "�/ � u.y � "�/

�
�.�/ d�

ˇ̌̌ dx dy

jx � yjnCs

6
Z
B1

� Z
Q.˝0/

ju.x � "�/ � u.y � "�/j

jx � yjnCs
dx dy

�
�.�/ d�

D

Z
B1

� Z
Q.˝0�"�/

ju.x/ � u.y/j

jx � yjnCs
dx dy

�
�.�/ d�:

We prove something stronger than the claim, that is

lim
"!0C

F .u" � u;˝
0/ D 0: (3.9)



APPROXIMATION OF SETS OF FINITE FRACTIONAL PERIMETER BY SMOOTH SETS 279

Indeed, notice that
jF .u"; ˝

0/ � F .u;˝ 0/j 6 F .u" � u;˝
0/:

Let  W R2n �! R be defined as

 .x; y/ WD
u.x/ � u.y/

jx � yjnCs
:

Moreover, for every " > 0 and � 2 B1, we consider the left translation by ".�; �/ in R2n, that is

.L"�f /.x; y/ WD f .x � "�; y � "�/;

for every f W R2n �! R.
Since  2 L1.Q.˝//, for every ı > 0 there exists 	 2 C 1c .Q.˝// such that

k � 	kL1.Q.˝// 6
ı

2
:

We have

F .u" � u;˝
0/ D

Z
Q.˝0/

ju".x/ � u".y/ � u.x/C u.y/j

jx � yjnCs
dx dy

6
Z
B1

� Z
Q.˝0/

ju.x � "�/ � u.y � "�/ � u.x/C u.y/j

jx � yjnCs
dx dy

�
�.�/ d�

D

Z
B1

kL"� �  kL1.Q.˝0//�.�/ d�

6
Z
B1

�
kL"� � L"�	kL1.Q.˝0// C kL"�	 � 	kL1.Q.˝0//

C k	 �  kL1.Q.˝0//

�
�.�/ d�:

Notice that

kL"� � L"�	kL1.Q.˝0// D k � 	kL1.Q.˝0�"�// 6 k � 	kL1.Q.˝//

and hence
F .u" � u;˝

0/ 6 ı C

Z
B1

kL"�	 � 	kL1.Q.˝0//�.�/ d�:

For " > 0 small enough we have

supp.L"�	 � 	/ � N1.supp 	/ DW K �� R2n;

and
j	.x � "�; y � "�/ � 	.x; y/j 6 2 max

supp 	
jr	 j ":

Thus Z
B1

kL"�	 � 	kL1.Q.˝0//�.�/ d� 6 2jKj max
supp 	

jr	 j ":



280 L. LOMBARDINI

Passing to the limit as "! 0C then gives

lim sup
"!0C

F .u" � u;˝
0/ 6 ı:

Since ı is arbitrary, we get .3.9/.

(ii) Reasoning as above we obtainZ
Rn

Z
Rn

ju".x/ � u".y/j

jx � yjnCs
dx dy 6

Z
B1

� Z
Rn

Z
Rn

ju.x � "�/ � u.y � "�/j

jx � yjnCs
dx dy

�
�.�/ d�

D

Z
B1

� Z
Rn

Z
Rn

ju.x/ � u.y/j

jx � yjnCs
dx dy

�
�.�/ d�

D Œu�W s;1.Rn/

Z
B1

�.�/ d�;

that is
Œu"�W s;1.Rn/ 6 Œu�W s;1.Rn/: (3.10)

This and Fatou’s Lemma give

Œu�W s;1.Rn/ 6 lim inf
"!0

Œu"�W s;1.Rn/ 6 lim sup
"!0

Œu"�W s;1.Rn/ 6 Œu�W s;1.Rn/;

concluding the proof.

(iii) The proof is a classical cut-off argument. We consider a sequence of cut-off functions  k 2
C1c .Rn/ such that

0 6  k 6 1; supp  k � BkC1 and  k � 1 in Bk :

We can also assume that
sup
k2N
jr kj 6 M0 <1:

It is enough to show that

lim
k!1

ku �  kukL1.Rn/ D 0 and lim
k!1

Œ ku�W s;1.Rn/ D Œu�W s;1.Rn/: (3.11)

Indeed then we can use (ii) to approximate each  ku with a smooth function uk WD .u k/ � �"k ,
for "k small enough to have

k ku � ukkL1.Rn/ < 2
�k and jŒ ku�W s;1.Rn/ � Œuk �W s;1.Rn/j < 2

�k :

Therefore
ku � ukkL1.Rn/ 6 ku �  kukL1.Rn/ C 2�k �! 0

and
jŒu�W s;1.Rn/ � Œuk �W s;1.Rn/j 6 jŒu�W s;1.Rn/ � Œ ku�W s;1.Rn/j C 2

�k
�! 0:

Also notice that
supp uk � N"k .supp  ku/ � BkC2

so that uk 2 C1c .Rn/ for every k. Moreover, from the definition of uk it follows that if u D �E ,
then 0 6 uk 6 1.

For a proof of .3.11/ see, e.g., Lemma 12 in [15].
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Now we show that if ˝ is a bounded open set with Lipschitz boundary and if u D �E , then we
can find smooth functions uh such that

F .uh; ˝/ �! F .u;˝/:

We first need the following two results.

Lemma 3.3 Let˝ � Rn be a bounded open set with Lipschitz boundary. Let u 2 L1.Rn/ be such
that F .u;˝/ <1. For every ı 2 .0; r0/ let

'ı WD 1 � �fj Nd˝ j<ıg:

Then
u'ı

ı!0
���! u in L1.Rn/; (3.12)

and
lim
ı&0C

F .u'ı ; ˝/ D F .u;˝/: (3.13)

Proof. First of all, notice thatZ
Rn
ju'ı � uj dx D

Z
fj Nd˝ j<ıg

juj dx 6 kukL1.Rn/ jfj Nd˝ j < ıgj
ı!0
���! 0:

Now Z
˝

Z
˝

j.u'ı/.x/ � .u'ı/.y/j

jx � yjnCs
dx dy

D

Z
˝�ı

Z
˝�ı

ju.x/ � u.y/j

jx � yjnCs
dx dy C 2

Z
˝�ı

� Z
˝n˝�ı

ju.x/j

jx � yjnCs
dy
�
dx:

Since ˝�ı � ˝, we haveZ
˝�ı

Z
˝�ı

ju.x/ � u.y/j

jx � yjnCs
dx dy 6

Z
˝

Z
˝

ju.x/ � u.y/j

jx � yjnCs
dx dy:

On the other hand, since j˝ n˝�ı j �! 0, we get

ju.x/ � u.y/j

jx � yjnCs
�˝�ı .x/�˝�ı .y/

ı!0
���!

ju.x/ � u.y/j

jx � yjnCs
�˝.x/�˝.y/;

for a.e. .x; y/ 2 Rn � Rn.
Therefore, by Fatou’s Lemma we obtain

Œu�W s;1.˝/ 6 lim inf
ı&0

Œu�W s;1.˝�ı/
6 lim sup

ı&0

Œu�W s;1.˝�ı/
6 Œu�W s;1.˝/: (3.14)

Moreover, by point (i) of .2.9/ we get

2

Z
˝�ı

� Z
˝n˝�ı

ju.x/j

jx � yjnCs
dy
�
dx 6 2kukL1.Rn/Ls.˝�ı ; ˝ n˝�ı/

6 2CkukL1.Rn/ ı
1�s :
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Therefore we find
lim
ı&0

Œu'ı �W s;1.˝/ D Œu�W s;1.˝/: (3.15)

NowZ
˝

Z
C˝

j.u'ı/.x/ � .u'ı/.y/j

jx � yjnCs
dx dy

D

Z
˝�ı

Z
C˝ı

ju.x/ � u.y/j

jx � yjnCs
dx dy C

Z
˝�ı

� Z
˝ın˝

ju.x/j

jx � yjnCs
dy
�
dx

C

Z
˝n˝�ı

� Z
C˝ı

ju.x/j

jx � yjnCs
dy
�
dx:

Since ˝�ı � ˝ and C˝ı � C˝, we haveZ
˝�ı

Z
C˝ı

ju.x/ � u.y/j

jx � yjnCs
dx dy 6

Z
˝

Z
C˝

ju.x/ � u.y/j

jx � yjnCs
dx dy:

Moreover, since both j˝ n˝�ı j �! 0 and jC˝ n C˝ı j �! 0, we have

ju.x/ � u.y/j

jx � yjnCs
�˝�ı .x/�C˝ı .y/

ı!0
���!

ju.x/ � u.y/j

jx � yjnCs
�˝.x/�C˝.y/;

for a.e. .x; y/ 2 Rn � Rn.
Therefore, again by Fatou’s Lemma we obtain

lim
ı&0

Z
˝�ı

Z
C˝ı

ju.x/ � u.y/j

jx � yjnCs
dx dy D

Z
˝

Z
C˝

ju.x/ � u.y/j

jx � yjnCs
dx dy: (3.16)

Furthermore, by point (ii) of (2.9) we getZ
˝�ı

� Z
˝ın˝

ju.x/j

jx � yjnCs
dy
�
dx 6 kukL1.Rn/Ls.˝�ı ; ˝ı n˝/

6 kukL1.Rn/Ls.˝;˝ı n˝/ 6 CkukL1.Rn/ı
1�s

and also Z
˝n˝�ı

� Z
C˝ı

ju.x/j

jx � yjnCs
dy
�
dx 6 CkukL1.Rn/ı

1�s :

Thus

lim
ı&0

Z
˝

Z
C˝

j.u'ı/.x/ � .u'ı/.y/j

jx � yjnCs
dx dy D

Z
˝

Z
C˝

ju.x/ � u.y/j

jx � yjnCs
dx dy; (3.17)

concluding the proof.

Lemma 3.4 Let˝ � Rn be a bounded open set with Lipschitz boundary. Let v 2 L1.Rn/ be such
that F .v;˝/ <1 and

v � 0 in fj Nd˝ j < ı=2g;

for some ı 2 .0; r0/. Thenˇ̌
F .v;˝/ � F .v;˝�ı=2/

ˇ̌
6 CkvkL1.Rn/ı

1�s; (3.18)

where C D C.n; s;˝/ > 0 does not depend on v.
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Proof. Since
v � 0 in

˚
j Nd˝ j < ı=2

	
;

we have

F .v;˝/ D F .v;˝�ı=2/C 2

Z
˝n˝�ı=2

� Z
C˝ı=2

jv.y/j

jx � yjnCs
dy
�
dx:

Now, by point (ii) of (2.9) we haveZ
˝n˝�ı=2

� Z
C˝ı=2

jv.y/j

jx � yjnCs
dy
�

6 kvkL1.Rn/Ls.˝ n˝�ı=2;C˝/

6 2s�1CkvkL1.Rn/ ı
1�s :

Proposition 3.5 Let ˝ � Rn be a bounded open set with Lipschitz boundary. Let u 2 L1.Rn/ be
such that F .u;˝/ <1. Then there exists a sequence fuhg � C1.Rn/ such that

(i) kuhkL1.Rn/ 6 kukL1.Rn/; and 0 6 uh 6 1 if 0 6 u 6 1;

(ii) uh
h!1
����! u in L1loc.R

n/;

(iii) lim
h!1

F .uh; ˝/ D F .u;˝/:

(3.19)

Proof. By Lemma 3.3 we know that for every h 2 N we can find ıh small enough such that

ku � u'ıhkL1.Rn/ < 2
�h and

ˇ̌
F .u;˝/ � F .u'ıh ; ˝/

ˇ̌
< 2�h: (3.20)

We can assume that ıh & 0.
By point (i) of Lemma 3.2 we know that for every h we can find "h small enough such that

k.u'ıh/ � �"h � u'ıhkL1.Bh/ < 2
�h (3.21)

and ˇ̌
F .u'ıh ; ˝�ıh=2/ � F ..u'ıh/ � �"h ; ˝�ıh=2/

ˇ̌
< 2�h: (3.22)

Taking "h small enough, we can also assume that

.u'ıh/ � �"h � 0 in
˚
j Nd˝ j < ıh=2

	
; (3.23)

since the "-convolution enlarges the support at most to an "-neighborhood of the original support.
Let uh WD .u'ıh/ � �"h . Since we are taking the "h-regularization of the function u'ıh , which

is just the product of u with a characteristic function, point (i) of our claim is immediate.
By (3.21) and the first part of (3.20) we get point (ii).
As for point (iii), exploiting (3.23) and Lemma 3.4, we obtainˇ̌
F .u;˝/ � F .uh; ˝/

ˇ̌
6
ˇ̌
F .u;˝/ � F .u'ıh ; ˝/

ˇ̌
C
ˇ̌
F .u'ıh ; ˝/ � F .u'ıh ; ˝�ıh=2/

ˇ̌
C
ˇ̌
F .u'ıh ; ˝�ıh=2/ � F .uh; ˝�ıh=2/

ˇ̌
C
ˇ̌
F .uh; ˝�ıh=2/ � F .uh; ˝/

ˇ̌
6 2�h C 2sCkukL1.Rn/ı

1�s
h C 2�h;

which goes to 0 as h �!1.
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3.2 Proof of Theorem 1.1 and Theorem 1.3

Exploiting Lemma 3.2 and the coarea formula, we can now prove Theorem 1.1.

Proof of Theorem 1.1. The “if part” is trivial. Indeed, just from point .i/ and the lower
semicontinuity of the s-perimeter we get

Ps.E;˝
0/ 6 lim inf

h!1
Ps.Eh; ˝

0/ <1;

for every ˝ 0 �� ˝.
Now suppose that E has locally finite s-perimeter in ˝.
The scheme of the proof is similar to that of the classical case (see, e.g., the proof of

Theorem 13.8 of [17]).
Given a sequence "h & 0C we consider the "h-regularization of u WD �E and define the sets

Eth WD fu"h > tg with t 2 .0; 1/:

Sard’s Theorem guarantees that for a.e. t 2 .0; 1/ the sequence fEt
h
gh is made of open sets with

smooth boundary. We will get our sets Eh by opportunely choosing t .
Since u"h �! �E in L1

loc
.Rn/, it is readily seen that for a.e. t 2 .0; 1/

Eth
loc
��! E;

and hence the lower semicontinuity of the s-perimeter gives

Ps.E;O/ 6 lim inf
h!1

Ps.E
t
h;O/; (3.24)

for every open set O � Rn.
Moreover from .3.4/ we have

f0 < u" < 1g � N".@E/ 8 " > 0;

and hence, since @Et
h
� fu"h D tg, we obtain

@Eth � N"h.@E/; (3.25)

which will give (iii) once we choose our t .
We improve .3.24/ by showing that, if ˝ 0 �� ˝ is a fixed bounded open set, then for a.e.

t 2 .0; 1/ (with the set of exceptional values of t possibly depending on ˝ 0),

Ps.E;˝
0/ D lim inf

h!1
Ps.E

t
h; ˝

0/: (3.26)

By .3.24/ and Fatou’s Lemma, we have

Ps.E;˝
0/ 6

Z 1

0

lim inf
h!1

Ps.E
t
h; ˝

0/ dt 6 lim inf
h!1

Z 1

0

Ps.E
t
h; ˝

0/ dt: (3.27)

Let O be a bounded open set such that ˝ 0 �� O �� ˝. Since E has locally finite s-perimeter in
˝, we have Ps.E;O/ <1. Then, since ˝ 0 �� O, point .i/ of Lemma 3.2 (with O in the place of
˝) implies

lim
h!1

F .u"h ; ˝
0/ D F .�E ; ˝

0/ D Ps.E;˝
0/: (3.28)
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Since 0 6 u"h 6 1, we have Et
h
D Rn if t < 0 and Et

h
D ; if t > 1, and hence rewriting .3.28/

exploiting the coarea formula,

lim
h!1

Z 1

0

Ps.E
t
h; ˝

0/ dt D Ps.E;˝
0/:

This and .3.27/ giveZ 1

0

lim inf
h!1

Ps.E
t
h; ˝

0/ dt D Ps.E;˝
0/ D

Z 1

0

Ps.E;˝
0/ dt;

which implies
Ps.E;˝

0/ D lim inf
h!1

Ps.E
t
h; ˝

0/; for a.e. t 2 .0; 1/; (3.29)

as claimed.
Now let the sets˝k �� ˝ be as in Corollary 2.6. From (3.29) we deduce that for a.e. t 2 .0; 1/

we have
Ps.E;˝k/ D lim inf

h!1
Ps.E

t
h; ˝k/; 8 k 2 N: (3.30)

Therefore, combining all we wrote so far, we find that for a.e. t 2 .0; 1/ the sequence fEt
h
gh is made

of open sets with smooth boundary such that Et
h

loc
��! E and both (3.25) and (3.30) hold true.

To conclude, by a diagonal argument we can find t0 2 .0; 1/ and hi %1 such that, if we define
Ei WD E

t0
hi

, then fEig is a sequence of open sets with smooth boundary such that Ei
loc
��! E, with

@Ei � N"hi
.@E/, and

Ps.E;˝k/ D lim
i!1

Ps.Ei ; ˝k/; 8 k 2 N: (3.31)

Now notice that if ˝ 0 �� ˝, then there exists a k such that ˝ 0 �� ˝k . Therefore by (3.31) and
Proposition 2.12 we get (ii).

This concludes the proof of the first part of the claim.
Now suppose that ˝ D Rn and jEj; Ps.E/ <1.
Since jEj < 1, we know that u" �! �E in L1.Rn/. Therefore we obtain Et

h
�! E for a.e.

t 2 .0; 1/.
Moreover, from point (ii) of Lemma 3.2 we know that

F .u;Rn/ <1 H) lim
"!0

F .u";Rn/ D F .u;Rn/:

We can thus repeat the proof above and obtain

Ps.E/ D lim inf
h!1

Ps.E
t
h/;

for a.e. t 2 .0; 1/. For any fixed “good” t0 2 .0; 1/ this directly implies, with no need of a diagonal
argument, the existence of a subsequence hi %1 such that

Ps.E/ D lim
i!1

Ps.E
t0
hi
/:

We are left to show that in this case we can take the sets Eh to be bounded.
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To this end, it is enough to replace the functions u"k with the functions uk obtained in point (iii)
of Lemma 3.2.

Indeed, since uk has compact support, for each t 2 .0; 1/ the set

Etk WD fuk > tg

is bounded. Since uk �! u in L1.Rn/ we still find

Etk
loc
��! E for a.e. t 2 .0; 1/;

and, since 0 6 uk 6 1 and
lim
k!1

F .uk ;Rn/ D Ps.E/;

we can use again the coarea formula to conclude as above.

Proof of Theorem 1.3. Exploiting the approximating sequence obtained in Proposition 3.5, we can
now prove Theorem 1.3 exactly as above.

As for point (iii), recall that the functions uh of Proposition 3.5 are defined as

uh D .�E'ıh/ � �"h :

Notice that, since we can suppose that "h < ıh=2, we have

uh D �E � �"h ; in Rn nN2ıh.@˝/:

Therefore, for every t 2 .0; 1/ we find

@fuh > tg � N"h.@E/ � N2ıh.@E/; in Rn nN2ıh.@˝/:

This gives point (iii) once we choose an appropriate t , as in the proof of Theorem 1.1.

REMARK 3.6 We remark that by Proposition 2.12 we have also

lim
h!1

Ps.Eh; ˝
0/ D Ps.E;˝

0/; for every ˝ 0 �� ˝:

4. Existence and compactness of s-minimal sets

4.1 Proof of Theorem 1.7

Proof of Theorem 1.7. (i) H) (ii) is obvious.

(ii) H) (iii) Let ˝ 0 �� ˝ and let F � Rn be such that F n˝ 0 D E n˝ 0.
Since E�F � ˝ 0 �� ˝, we have

Ps.E;˝/ 6 Ps.F;˝/:

Then, since F n˝ 0 D E n˝ 0, by Proposition 2.1 we get

Ps.E;˝
0/ 6 Ps.F;˝

0/:
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(iii) H) (i) Let E be locally s-minimal in ˝.
First of all we prove that Ps.E;˝/ <1.
Indeed, since E is locally s-minimal in ˝, in particular it is s-minimal in every ˝r , with

r 2 .�r0; 0/. Thus, by minimality and .2.5/, we get

Ps.E;˝r / 6 Ps.E n˝r ; ˝r / 6 Ps.˝r / 6 M <1;

for every r 2 .�r0; 0/. Therefore by .2.12/ we obtain Ps.E;˝/ 6 M .
Now let F � Rn be such that F n ˝ D E n ˝. Take a sequence frkg � .�r0; 0/ such that

rk % 0, let ˝k WD ˝rk , and define

Fk WD .F \˝k/ [ .E n˝k/:

The local minimality of E gives

Ps.E;˝k/ 6 Ps.Fk ; ˝k/; for every k 2 N;

and by .2.12/ we know that
Ps.E;˝/ D lim

k!1
Ps.E;˝k/: (4.1)

Since Fk D F outside ˝ n˝k , and Fk D E in ˝ n˝k , we obtain

Ps.F;˝k/ � Ps.Fk ; ˝k/ D Ls
�
F \˝k ;CF \ .˝ n˝k/

�
C Ls

�
CF \˝k ; F \ .˝ n˝k/

�
� Ls

�
F \˝k ;CE \ .˝ n˝k/

�
� Ls

�
CF \˝k ; E \ .˝ n˝k/

�
:

Notice that each of the four terms in the right hand side is less or equal than Ls.˝k ; ˝ n˝k/. Thus

ak WD
ˇ̌
Ps.F;˝k/ � Ps.Fk ; ˝k/

ˇ̌
6 4Ls.˝k ; ˝ n˝k/:

Notice that from point .i/ of .2.9/ we have ak �! 0.
Now

Ps.F;˝/C ak > Ps.F;˝k/C ak > Ps.Fk ; ˝k/ > Ps.E;˝k/;

and hence, passing to the limit k !1, we get

Ps.F;˝/ > Ps.E;˝/:

Since F was an arbitrary competitor for E, we see that E is s-minimal in ˝.

4.2 Compactness

Proof of Theorem 1.12. Assume F D E outside ˝ and let

Fk WD .F \˝/ [ .Ek n˝/:

Since Fk D Ek outside ˝ and Ek is s-minimal in ˝, we have

Ps.Fk ; ˝/ > Ps.Ek ; ˝/:
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On the other hand, since Fk D F inside ˝, we haveˇ̌
Ps.Fk ; ˝/ � Ps.F;˝/

ˇ̌
6 Ls.˝; .Fk�F / n˝/ D Ls.˝; .Ek�E/ n˝/ DW bk :

Thus
Ps.F;˝/C bk > Ps.Fk ; ˝/ > Ps.Ek ; ˝/:

If we prove that bk �! 0, then by lower semicontinuty of the fractional perimeter

Ps.F;˝/ > lim sup
k!1

Ps.Ek ; ˝/ > lim inf
k!1

Ps.Ek ; ˝/ > Ps.E;˝/: (4.2)

This shows that E is s-minimal in ˝. Moreover, (1.8) follows from (4.2) by taking F D E.
We are left to show bk �! 0.

Let r0 be as in Proposition 2.3 and let R > r0. In the end we will let R �!1. Define

ak.r/ WD Hn�1
�
.Ek�E/ \ f Nd˝ D rg/

�
for every r 2 Œ0; r0/.

We split bk as the sum

bk D Ls
�
˝; .Ek�E/ \ .˝r0 n˝/

�
C Ls

�
˝; .Ek�E/ \ .˝R n˝r0/

�
C Ls

�
˝; .Ek�E/ n˝R

�
:

Notice that if x 2 ˝ and y 2 .˝R n˝r0/, then jx � yj > r0, and hence

Ls
�
˝; .Ek�E/ \ .˝R n˝r0/

�
D

Z
˝Rn˝r0

�Ek�E .y/ dy

Z
˝

1

jx � yjnCs
dx

6
j˝j

rnCs0

j.Ek�E/ \ .˝R n˝r0/j:

Since Ek
loc
��! E and ˝R n˝r0 is bounded, for every fixed R we find

lim
k!1

Ls
�
˝; .Ek�E/ \ .˝R n˝r0/

�
D 0:

As for the last term, we have

Ls
�
˝; .Ek�E/ n˝R

�
6 Ls.˝;C˝R/ 6

Z
˝

dx

Z
CBR.x/

dy

jx � yjnCs
D
n!n

s Rs
j˝j:

We are left to estimate the first term. By using the coarea formula, we obtain

Ls
�
˝; .Ek�E/ \ .˝r0 n˝/

�
D

Z r0

0

� Z
f Nd˝Drg

�Ek�E .y/
� Z

˝

dx

jx � yjnCs

�
dHn�1

y

�
dr

6
Z r0

0

� Z
f Nd˝Drg

�Ek�E .y/
� Z

CBr .y/

dx

jx � yjnCs

�
dHn�1

y

�
dr

D
n!n

s

Z r0

0

ak.r/

rs
dr:
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Notice that Z r0

0

ak.r/ dr D
ˇ̌
.Ek�E/ \ .˝r0 n˝/

ˇ̌ k!1
����! 0;

so that
ak.r/

k!1
����! 0 for a.e. r 2 Œ0; r0/:

Moreover, exploiting (2.4) we getZ r0

0

ak.r/

rs
dr 6 M

Z r0

0

1

rs
dr D

M

1 � s
r1�s0 ;

and hence, by dominated convergence, we obtain

lim
k!1

Z r0

0

ak.r/

rs
dr D 0:

Therefore
lim sup
k!1

bk 6
n!n

s
j˝jR�s :

Letting R �!1, we obtain bk �! 0, concluding the proof.

Proof of Corollary 1.13. Let the sets ˝k �� ˝ be as in Corollary 2.6. By Theorem 1.12 we see
that E is s-minimal in each ˝k . Moreover .1.8/ gives

Ps.E;˝k/ D lim
h!1

Ps.Eh; ˝k/;

for every k. Now if˝ 0 �� ˝, then˝ 0 � ˝k for some k. ThusE is s-minimal in˝ 0 and we obtain
(1.9) by Proposition 2.12.

4.3 Existence of (locally) s-minimal sets

Proof of Theorem 1.9. The “only if” part is trivial. Now suppose there exists a competitor for E0
with finite s-perimeter in ˝. Then

inf
˚
Ps.E;˝/ jE n˝ D E0 n˝

	
<1

and we can find a minimizing sequence, that is fEhg with Eh n˝ D E0 n˝ and

lim
h!1

Ps.Eh; ˝/ D inf
˚
Ps.E;˝/ jE n˝ D E0 n˝

	
:

Let ˝ 0 �� ˝. Since, for every h 2 N we have

Ps.Eh; ˝
0/ 6 Ps.Eh; ˝/ 6 M <1;

we can use Proposition 2.13 to find a set E 0 � ˝ such that

Eh \˝
loc
��! E 0

(up to subsequence). Since Eh n˝ D E0 n˝ for every h, if we set E WD E 0 [ .E0 n˝/, then

Eh
loc
��! E:

The semicontinuity of the fractional perimeter concludes the proof.
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REMARK 4.1 In particular, if ˝ is a bounded open set with Lipschitz boundary, then (as already
proved in [4]) we can always find an s-minimal set for every s 2 .0; 1/, no matter what the external
data E0 n˝ is. Indeed in this case

Ps.E0 n˝;˝/ 6 Ps.˝/ <1:

Actually, in order to have the existence of s-minimal sets for some fixed s 2 .0; 1/, the open set ˝
need not be bounded nor have a regular boundary. It is enough to have

Ps.˝/ <1:

Then E0 n˝ has finite s-perimeter in ˝ and we can apply Theorem 1.9.

Proof of Corollary 1.11. Let the sets ˝k be as in Corollary 2.6.
From Theorem 1.9 and Remark 4.1 we know that for every k we can find a set Ek which is

s-minimal in ˝k and such that Ek n˝k D E0 n˝k .
Notice that, since the sequence˝k is increasing, the set Eh is s-minimal in˝k for every h > k.
This gives us a sequence fEhg satisfying the hypothesis of Proposition 2.13 (see Remark 2.14),

and hence (up to a subsequence)

Eh \˝
loc
��! F;

for some F � ˝. Since Eh n˝ D E0 n˝ for every h, if we set E WD F [ .E0 n˝/, we obtain

Eh
loc
��! E:

Theorem 1.12 guarantees that E is s-minimal in every ˝k and hence also locally s-minimal in ˝.
Indeed, if ˝ 0 �� ˝, then for some k big enough we have ˝ 0 � ˝k . Now, since E is s-minimal in
˝k , it is s-minimal also in ˝ 0.

4.4 Locally s-minimal sets in cylinders

Given a bounded open set ˝ � Rn, we consider the cylinders

˝k
WD ˝ � .�k; k/; ˝1 WD ˝ � R:

We recall that, given any set E0 � RnC1, by Corollary 1.11 we can find a set E � RnC1 which is
locally s-minimal in ˝1 and such that E n˝1 D E0 n˝1.

REMARK 4.2 Actually, if ˝ has Lipschitz boundary then E is s-minimal in every cylinder O D
˝�.a; b/ of finite height (notice that O is not compactly contained in˝1). Indeed, O is a bounded
open set with Lipschitz boundary and E is locally s-minimal in O. Thus, by Theorem 1.7, E is s-
minimal in O.
As a consequence, E is s-minimal in every bounded open subset ˝ 0 � ˝1.

We are going to consider as exterior data the subgraph

E0 D Sg.v/ WD
˚
.x; t/ 2 RnC1 j t < v.x/

	
;

of a function v W Rn �! R, which is locally bounded, i.e.

Mr WD sup
jxj6r

jv.x/j <1; for every r > 0: (4.3)

The following result is an immediate consequence of (the proof of) Lemma 3.3 of [11].
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Lemma 4.3 Let ˝ � Rn be a bounded open set with C 1;1 boundary and let v W Rn �! R be
locally bounded. There exists a constant M D M.n; s;˝; v/ > 0 such that if E � RnC1 is locally
s-minimal in ˝1, with E n˝1 D Sg.v/ n˝1, then

˝ � .�1;�M� � E \˝1 � ˝ � .�1;M �:

As a consequence
E n

�
˝ � Œ�M;M�

�
D Sg.v/ n

�
˝ � Œ�M;M�

�
: (4.4)

Proof. By Remark 4.2, the set E is s-minimal in ˝1 in the sense considered in [11]. Lemma 3.3
of [11] then guarantees that

E \˝1 � ˝ � .�1;M �:

Moreover, the same argument used in the proof shows also that

CE \˝1 � ˝ � Œ�M;1/;

(up to considering a bigger M ).
Since M > MR0 , where R0 is such that ˝ �� BR0 , we get (4.4), concluding the proof.

Roughly speaking, Lemma 4.3 gives an a priori bound on the variation of @E in the “vertical”
direction. In particular, from (4.4) we see that it is enough to look for a locally s-minimal set among
sets which coincide with Sg.v/ out of ˝ � Œ�M;M�.

As a consequence, we can prove that a set is locally s-minimal in ˝1 if and only if it is s-
minimal in ˝ � Œ�M;M�.

Proposition 4.4 Let ˝ � Rn be a bounded open set with C 1;1 boundary and let v W Rn �! R
be locally bounded. Let M be as in Lemma 4.3 and let k0 be the smallest integer k0 > M . Let
F � RnC1 be s-minimal in ˝k0 , with respect to the exterior data

F n˝k0 D Sg.v/ n˝k0 : (4.5)

Then F is s-minimal in ˝k for every k > k0, hence is locally s-minimal in ˝1.

Proof. Let E � RnC1 be locally s-minimal in ˝1, with respect to the exterior data

E n˝1 D Sg.v/ n˝1:

Recall that by Remark 4.2 the set E is s-minimal in ˝k for every k. In particular

Ps.E;˝
k/ <1 8 k 2 N:

To prove the Proposition, it is enough to show that

Ps.F;˝
k/ D Ps.E;˝

k/; for every k > k0: (4.6)

Indeed, notice that by (4.5) and (4.4) we have

F n˝k0 D Sg.v/ n˝k0 D E n˝k0 ; (4.7)

hence, clearly,
F n˝k

D E n˝k ; 8 k > k0:
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Then, sinceE is s-minimal in˝k , from (4.6) we conclude that also F is s-minimal in˝k , for every
k > k0. In turn, this implies that F is locally s-minimal in ˝1.

Exploiting Proposition 2.1, by (4.7) we obtain that for every k > k0

Ps.F;˝
k/ D Ps.F;˝

k0/C ck ; Ps.E;˝
k/ D Ps.E;˝

k0/C ck ; (4.8)

where

ck D Ls.Sg.v/ \ .˝
k
n˝k0/;CSg.v/ n˝k0/C Ls

�
Sg.v/ n˝k ;CSg.v/ \ .˝k

n˝k0/
�
;

which is finite and does not depend on E nor F . To see that ck is finite, simply notice that

ck 6 Ps.E;˝
k/ <1:

Now, by (4.7) and the minimality of F we have

Ps.F;˝
k0/ 6 Ps.E;˝

k0/:

On the other hand, since also the set E is s-minimal in ˝k0 , again by (4.7) we get

Ps.E;˝
k0/ 6 Ps.F;˝

k0/:

This and .4.8/ give
Ps.F;˝

k/ D Ps.F;˝
k0/C ck D Ps.E;˝

k/;

proving (4.6) and concluding the proof.

It is now natural to wonder whether the set F is actually s-minimal in ˝1. The answer, in
general, is no. Indeed, Theorem 1.14 shows that in general we cannot hope to find an s-minimal set
in ˝1.

Proof of Theorem 1.14. Notice that by (1.10) we have

E \ .˝1 n˝kC1/ D ˝ � .�1;�k � 1/;

CE \ .˝1 n˝kC1/ D ˝ � .k C 1;1/;

and
E \˝kC1

� ˝ � .�k � 1; k/; CE \˝kC1
� ˝ � .�k; k C 1/:

Thus

PLs .E;˝
1/ D PLs .E;˝

kC1/C Ls.E \ .˝
1
n˝kC1/;CE \˝kC1/

C Ls.CE \ .˝
1
n˝kC1/; E \˝kC1/C PLs .E;˝

1
n˝kC1/

6 PLs .E;˝
kC1/C 2Ls

�
˝ � .�1;�k � 1/;˝ � .�k; k C 1/

�
C Ls

�
˝ � .�1;�k � 1/;˝ � .k C 1;1/

�
:

Since d
�
˝ � .�1;�k � 1/;˝ � .�k; k C 1/

�
D 1, we get

Ls
�
˝ � .�1;�k � 1/;˝ � .�k; k C 1/

�
6
Z
˝�.�k;kC1/

� Z
CB1.X/

dY

jX � Y jnC1Cs

�
dX

D
.nC 1/!nC1

s
.2k C 1/j˝j:
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As for the last term, since nC 1 > 2, we have

Ls
�
˝ � .�1;�k � 1/;˝�.k C 1;1/

�
D

Z
˝

Z
˝

� Z �k�1
�1

Z 1
kC1

dt d�

.jx � yj2 C .t � �/2/
nC1Cs
2

�
dx dy

6 j˝j2
Z �k�1
�1

� Z 1
kC1

dt

.t � �/nC1Cs

�
d�

D
j˝j2

nC s

Z �k�1
�1

d�

.k C 1 � �/nCs

D
j˝j2

.nC s/.n � 1C s/

1

.2k C 2/n�1Cs
:

This shows that PLs .E;˝
1/ <1.

Now suppose that E � RnC1 satisfies .1.11/. Then

PNLs .E;˝1/ > 2Ls
�
˝ � .�1;�k/;C˝ � .k;1/

�
:

Since ˝ is bounded, we can take R > 0 big enough such that ˝ �� BR. For every T > T0 WD

maxfk;Rg we have

˝ � .�1;�T / � ˝ � .�1;�k/ and .BT n BR/ � .T;1/ � C˝ � .k;1/:

Thus for every T > T0

Ls
�
˝ � .�1;�k/;C˝ � .k;1/

�
> Ls

�
˝ � .�1;�T /; .BT n BR/ � .T;1/

�
D

Z
˝

dx

Z
BT nBR

dy

Z �T
�1

dt

Z 1
T

d�

.jx � yj2 C .� � t /2/
nC1Cs
2

DW aT :

Notice that for every x 2 ˝; y 2 BT n BR; t 2 .�1;�T / and � 2 .T;1/, we have

jx � yj 6 jxj C jyj 6 RC T 6 2T 6 � � t;

and hence

aT >
1

2
nC1Cs
2

Z
˝

dx

Z
BT nBR

dy

Z �T
�1

dt

Z 1
T

d�

.� � t /nC1Cs

D
j˝j

2
nC1Cs
2 .nC s/.n � 1C s/

jBT n BRj

.2T /n�1Cs
:

Since jBT n BRj � T n as T !1, we get aT �!1. Therefore, since

PNLs .E;˝1/ > 2aT for every T > T0;

we obtain PNLs .E;˝1/ D1.
To conclude, let ˝ be bounded, with C 1;1 boundary, and let v 2 L1.Rn/.
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Suppose that there exists a setE � RnC1 which is s-minimal in˝1 with respect to the exterior
data E n˝1 D Sg.v/ n˝1.

Then, thanks to Lemma 4.3, we can find k big enough such that E satisfies (1.11). Since this
implies Ps.E;˝1/ D1, we reach a contradiction concluding the proof.

Corollary 4.5 In particular

u 2 BVloc.Rn/ \ L1loc.R
n/ H) PLs .Sg.u/;˝

1/ <1; (4.9)

and
u 2 L1.Rn/ H) PNLs .Sg.u/;˝1/ D1; (4.10)

for every bounded open set ˝ � Rn.
Furthermore, if juj 6 M in ˝ and there exists ˙ � Sn�1 with Hn�1.˙/ > 0 such that either

u.r!/ 6 M or u.r!/ > �M for every ! 2 ˙ and r > r0;

then PNLs .Sg.u/;˝1/ D1.

Proof. Both (4.9) and (4.10) are immediate from Theorem 1.14, so we only need to prove the last
claim.

Since ˝ is bounded, we can find R > 0 such that ˝ �� BR.
For every T > T0 WD maxfM;R; r0g define

S.T / WD
˚
x D r! 2 Rn j r 2 .T0; T /; ! 2 ˙

	
:

Notice that S.T / � BT and

jS.T /j D

Z T

T0

� Z
@Br

�S.T / dHn�1
�
dr D

Z T

T0

Hn�1.r˙/ dr

D
Hn�1.˙/

n
.T n � T n0 /:

Suppose that u.r!/ 6 M for every r > r0 and ! 2 ˙ . Then, arguing as in the second part of the
proof of Theorem 1.14, we obtain

PNLs .Sg.u/;˝1/ > Ls.Sg.u/ \˝
1;CSg.u/ n˝1/

> Ls
�
˝ � .�1;�T /;S.T / � .T;1/

�
>

j˝j

2
nC1Cs
2 .nC s/.n � 1C s/

jS.T /j

.2T /n�1Cs
;

for every T > T0. Since
jS.T /j

.2T /n�1Cs
� T 1�s;

which tends to1 as T !1, we get our claim.
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In the classical framework, the area functional of a function u 2 C 0;1.Rn/ is defined as

A.u;˝/ WD

Z
˝

p
1C jruj2 dx D Hn

�˚�
x; u.x/

�
2 RnC1 j x 2 ˝

	�
;

for any bounded open set ˝ � Rn. Exploiting the subgraph of u one then defines the relaxed area
functional of a function u 2 BVloc.Rn/ as

A.u;˝/ WD P
�
Sg.u/;˝1

�
: (4.11)

Notice that when u is Lipschitz the two definitions coincide.
One might then be tempted to define a nonlocal fractional version of the area functional by

replacing the classical perimeter in (4.11) with the s-perimeter, that is

As.u;˝/ WD Ps
�
Sg.u/;˝1

�
:

However Corollary 4.5 shows that this definition is ill-posed even for regular functions u.
On the other hand, it is worth remarking that one could use just the local part of the s-perimeter,

but then the resulting functional

AL
s .u;˝/ WD P

L
s

�
Sg.u/;˝1

�
D
1

2
Œ�Sg.u/�W s;1.˝1/

has a local nature.
Exploiting Theorem 1 of [7], we obtain the following

Lemma 4.6 Let ˝ � Rn be a bounded open set with Lipschitz boundary and let u 2 BV.˝/ \
L1.˝/. Then

lim
s!1�

.1 � s/AL
s .u;˝/ D !nA.u;˝/: (4.12)

Proof. Let k be such that juj 6 k. Then E D Sg.u/ satisfies (1.10) and hence, arguing as in the
beginning of the proof of Theorem 1.14, we get

AL
s .u;˝/ D P

L
s

�
Sg.u/;˝kC1

�
CO.1/;

as s ! 1. Since Sg.u/ has finite perimeter in ˝kC1, which is a bounded open set with Lipschitz
boundary, we conclude using Theorem 1 of [7] (see also, e.g., [16] for the asymptotics as s ! 1 of
the s-perimeter).

Indeed, notice that since juj 6 k, we have

P.Sg.u/;˝kC1/ D P
�
Sg.u/;˝1

�
D A.u;˝/:
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