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CMI Université d’Aix-Marseille, 39 rue Frédéric Joliot-Curie,
13453 Marseille cedex 13, France

E-mail: marie.henry@univ-amu.fr

DANIELLE HILHORST
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A family of singular limits of reaction-diffusion systems of activator-inhibitor type in which stable
stationary sharp-interface patterns may form is investigated. For concreteness, the analysis is
performed for the FitzHugh-Nagumo model on a suitably rescaled bounded domain in RN , with
N > 2. It is shown that when the system is sufficiently close to the limit the dynamics starting
from the appropriate smooth initial data breaks down into five distinct stages on well-separated time
scales, each of which can be approximated by a suitable reduced problem. The analysis allows to
follow fully the progressive refinement of spatio-temporal patterns forming in the systems under
consideration and provides a framework for understanding the pattern formation scenarios in a large
class of physical, chemical, and biological systems modeled by the considered class of reaction-
diffusion equations.
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1. Introduction

It is now well established that nonlinear systems of coupled reaction-diffusion equations may be
capable of rich dynamical behaviors that give rise to the emergence of spatio-temporal patterns
[3, 8, 12, 22]. Mathematical studies of patterns are complicated by the fact that even relatively
“simple” systems of reaction-diffusion equations may possess solutions that can be extraordinarily
complex [5, 19, 20, 25, 26]. At the same time, these complex solutions may arise generically in the
situations that mimic physically relevant conditions and hence are important to the physical systems
these equations model [8, 10, 19, 31].
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Perhaps the most well-known class of pattern-forming systems exhibiting complex nonlinear
behaviors are reaction-diffusion systems of activator-inhibitor type [8, 12]:

˛ut D "
2�uC f .u; v/; (1.1)

vt D �v C g.u; v/: (1.2)

Here, u D u.y; t/ 2 R is the activator variable, v D v.y; t/ 2 R is the inhibitor variable, f and
g are the nonlinearities, " and ˛ are positive parameters denoting the ratios of the length and time
scales of the activator and the inhibitor, respectively, y 2 ˝" � RN is the spatial coordinate, and
t is time. Equations (1.1) and (1.2) arise when modeling many applications in physics, chemistry,
and biology, from combustion to autocatalytic chemical reactions and biological tissues undergoing
morphogenesis [7, 8, 21].

The fact that u is the activator implies that there exists a positive feedback for u in (1.1), which
in mathematical terms means that the nonlinearity f obeys the relation [8]

@f .u; v/

@u
> 0 (1.3)

in some range of values of u and v. Similarly, the fact that v is the inhibitor means that there is
no positive feedback for v in (1.2), and that there is a negative feedback in the response of v to
variations of u. Again, for (1.1) and (1.2) this can be expressed as [8]

@g.u; v/

@v
< 0;

@g.u; v/

@u

@f .u; v/

@v
< 0; (1.4)

for all u and v. In particular, if (1.3) holds on an open interval of u for any fixed v, while
@f .u; v/=@u < 0 outside the closure of this interval, then f is a cubic-like function. A canonical
example is the FitzHugh-Nagumo system, a version of which has the following nonlinearities [19]:

f .u; v/ D u � u3 � v; g.u; v/ D u � v � a; (1.5)

where a 2 RC is a fixed parameter. For v 2 .�2
p
3
9
; 2
p
3
9
/, f is bistable in the sense that the

ordinary differential equation ut D f .u; v/ has two stable solutions h�.v/, hC.v/ and one unstable
solution h0.v/, where h�.v/ < h0.v/ < hC.v/ are the three solutions of the algebraic solution
f .u; v/ D 0. This is the kind of nonlinearity, which we will consider in this paper. A rich variety of
patterns in this class of systems has been observed both numerically and analytically [14, 19, 25].

In view of the great complexity of the observed spatio-temporal dynamics, various types of
reductions are usually employed to better understand these nonlinear phenomena. An especially
fruitful approach which has been successfully used to study pattern formation, relies on the strong
separation of spatial scales between the activator and the inhibitor. These studies are also motivated
by the fact that strong time and length scale separation is routinely observed in applications [8]. In
the case of (1.1) and (1.2) the length scale separation is expressed in the smallness of the parameter
" in (1.1) [4, 5, 13–15, 18, 25, 27]. One can get insights into the pattern formation scenarios by
investigating the limit " # 0 under various assumptions on the scaling of other parameters with
" [2, 30]. Nevertheless, the main difficulty in such an approach lies in the fact that the problem
under consideration is intrinsically multiscale. Thus, it is not generally possible to analyze the events
leading to the formation of a particular pattern using a single limit procedure. For reaction-diffusion
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systems of activator-inhibitor type with cubic-like nonlinearity f this point was already recognised
in [14–16, 18, 19, 23, 24].

To our knowledge, the first rigorous attempt to analyze the sequence of pattern formation events
arising at different time scales in " in the class of systems (1.1)-(1.3) was made by Sakamoto [28].
More precisely, Sakamoto considered (1.1) and (1.2) under the assumptions that the domain ˝"
is obtained from a fixed bounded domain ˝ via rescaling by a factor of "1=3, consistent with the
expected length scale of stable stationary sharp interface patterns [11, 14, 17, 18, 23, 24], as well as
assuming that ˛ D O."2=3/. He was able to prove, under suitable assumptions on the nonlinearities,
that the solutions of the initial-value problem for (1.1) and (1.2) with the initial data varying on the
spatial scale of˝" evolve in several stages on well-separated time scales when "� 1. These stages
can be summarized as follows:

1. The distribution of u approaches sharp interfaces on O."2=3/ time scale;
2. The interfaces move with normal velocity being a function of the average value of v, while the

latter solves an ordinary differential equation, on the O.1/ time scale.

Note that in [28] the generation of interface result is proved only under the restrictive assumption
that the initial data of v is a constant. It is also conjectured that after the completion of stage 2 above
the interface will follow a different motion law on a slower O."�2=3/ time scale.

One question that naturally arises following the analysis of [28] is whether the formation and
evolution of the spatio-temporal pattern can, in fact, be characterized across all time scales for a
generic set of initial data, when " is sufficiently small. Perhaps even more importantly, one should
be interested in what are all possible phenomena that can be observed in the limit " # 0 under
different assumptions on the scaling of other quantities in the problem, such as ˛ or the domain
size. It is clear that the case studied in [28] is only one such scenario. What one needs to do is to
systematically explore different scaling regimes to search for distinct reduced problems signifying
qualitatively different pattern formation scenarios in the class of systems, which we consider. This
paper provides a full study (across all time scales) of one family of scalings which leads to the same
pattern formation scenario for "� 1.

We are going to consider systems of reaction-diffusion equations of activator-inhibitor type
under extra assumptions that ˝" D "1=3˝, i.e. that ˝" is obtained by rescaling a fixed bounded
domain ˝ with "1=3, and

˛ D O."p/; p 2 .0; 2
3
/: (1.6)

The first scaling assumption is the same as in [28] and is motivated by the expected scale of stable
interfacial patterns [11, 14, 17, 18, 23, 24]. The second scaling assumption is chosen so that it results
in the same qualitative limit behavior as " # 0 for all systems of activator-inhibitor type. Thus, the
considered limit process generates a universality class of pattern-forming systems governed by (1.1)
and (1.2) [3].

Let us briefly summarize here the conclusions of our analysis about the sequence of
progressively longer evolution stages that will occur starting from the initial data varying on the
scale of the domain ˝" for " � 1 under a number of assumptions (for technical details, see the
following sections):

1. u is frozen, v reaches its spatial average on the O."2=3/ time scale;
2. v is frozen, u forms sharp interfaces on the O."p/ time scale; since p < 2=3 it follows that
"p � "2=3;
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FIG. 1. An illustration of the dynamic stages at different time scales via schematic density plots of the activator variable

3. The interfaces do not move, the spatial average of v evolves by an ordinary differential equation
on the O.1/ time scale, where 1� "p;

4. The interfaces move on theO."p�2=3/ time scale with normal velocity depending on the average
of v which is slaved to the interface; note that "p�2=3 � 1;

5. We also consider the O."p�4=3/ time scale and formally show that interfaces move by nonlocal
mean-curvature, recalling that "p�4=3 � "p�2=3.

This permits to characterize the evolution of patterns from the beginning to the end in the class of
systems (1.1)–(1.3) with "� 1. We illustrate this progression of stages in Fig. 1.

Our paper is organized as follows. In Section 2 we present the main results of this paper. In
Section 3 we prove some preliminary estimates on u" and v", which in particular imply that u"

and v" are bounded. In Section 4 we deduce from the previous estimates that on the time interval
Œ0; �1"

2=3j ln "j�, u" is close to its initial condition u0 and that v" is close to the spatial average of
v0. Following Xinfu Chen [2], we obtain in Section 5 that at the time �"2 WD �2"

pj ln "j, the solution
u" develops an interface � and that v" stays close to the average of v0. In Section 6 we prove that
there exists a time �"3 of order j ln "j such that the interface � already formed does not move on the
interval Œ�"2 ; �

"
2 C �

"
3 �. Moreover, in each region, ˝� and ˝C, of ˝ separated by � we deduce that

v" is approximated by the solution, t 7! Qv3.t/, of an ordinary differential equation. In Section 7,
we prove that on the time interval Œ�"2 C �

"
3 ; �

"
4 �, where �"4 is of order "p�2=3, .u"; v"/ tends to the

solution of a free boundary problem where the motion equation connects the velocity of � to the
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limit Qv4 of v" and that Qv4 is a solution of an algebraic equation. This leads us to consider in Section 8
a larger time interval, and we formally obtain that the interface moves by a nonlocal mean-curvature
flow. Our proofs are based on the comparison principle associated with (1.1) and on a construction
of non classical sub- and supersolutions of (1.1). For that purpose we use traveling wave solutions
of a related one-dimensional parabolic system and a modified distance function to the interface.
Then u" is squeezed between two functions which have the profile of the traveling wave and which
converge to hC in ˝C and h� in ˝�. Thus we deduce the convergence of u" in each subdomain
˝˙. Furthermore, the sub- and supersolutions depend on v" and hence on h˙.v"/ and h0.v"/. This
leads us to smoothly extend the functions h˙.v/, h0.v/ to the whole of R and, as a consequence,
the function f .u; v/ D �.u�hC.v//.u�h�.v//.u�h0.v// to the whole of R2. We then introduce
an extended problem for (1.1)–(1.2) and prove that its unique solution coincides with .u"; v"/.

2. Statement of results

We consider the following system

.P "/

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

"pu"t D "
4=3�u" C f .u"; v"/ in ˝ � .0; T /

v"t D "
�2=3�v" C g.u"; v"/ in ˝ � .0; T /

@u"

@n
D
@v"

@n
D 0 on @˝ � .0; T /

u".x; 0/ D u0.x/; v
".x; 0/ D v0.x/ for x 2 ˝

(2.1)

(2.2)

(2.3)

(2.4)

and we suppose that
.H1/ ˝ � R

N .N > 2/ a smooth (C1) bounded domain,
.H2/ 0 < p < 2=3,
.H3/ f .u; v/ D u.1 � u

2/ � v and g.u; v/ D u � v � a.
As it has been described in the introduction, Problem .P "/ can be obtained from (1.1) and (1.2) by
setting ˛ D "p (cf. (1.6)) and x D "�1=3y, so that y 7! x maps ˝" into ˝. Moreover in what

follows we use the notation
Z
�
˝

h.x; t/dx D
1

j˝j

Z
˝

h.x; t/dx for all functions h.

2.1 First stage: v" becomes close to the spatial average of its initial condition in a time of order
"2=3j ln "j

We first prove the following result about the approximate attainment by the v" variable of its spatial
average in the first stage.

Theorem 2.1 Assume that u0 and v0 are in C 2.˝/ and satisfy the compatibility condition

@u0

@n
D
@v0

@n
D 0: (2.5)

Let .u"; v"/ be the solution of .P "/ then there exist positive constants �1, M1 and "1 > 0 such that
for all " 2 .0; "1�

jv".x; �"1/ �

Z
�
˝

v0.x/dxj 6 M1"
4

3.NC2/ ; for all x 2 ˝ (2.6)
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and
u0.x/ �M1"

2=3�p
j ln "j 6 u".x; �"1/ 6 u0.x/CM1"

2=3�p
j ln "j for all x 2 ˝ (2.7)

where �"1 D �1"
2=3j ln "j.

2.2 Second stage: Generation of interface in a time of order "pj ln "j

We prove in this section a generation of interface result at the time

�"2 D �2"
p
j ln "j where �2 is a positive constant and p 2 .0; 2

3
/ (2.8)

Assuming that ˇ̌̌̌Z
�
˝

v0.x/dx

ˇ̌̌̌
6
2
p
3

9
� �; (2.9)

where � > 0 is small enough such that Lemma B.1 is valid, then we have the following result

Theorem 2.2 Let
L" WD "

p
2 j ln "j C "2=3�pj ln "j C "

4
3.NC2/ (2.10)

then there exist positive constants "2, M2 and �2 such that for all " 2 Œ0; "2/ the solution .u"; v"/ of
Problem .P "/ satisfy that

h�

�Z
�v0

�
�M2L

" 6 u".x; �"2/ 6 hC

�Z
�
˝

v0

�
CM2L

";8x 2 ˝; (2.11)ˇ̌̌̌
u".x; �"2/ � hC

�Z
�
˝

v0

�ˇ̌̌̌
6 M2L

";8x 2 ˝";C; (2.12)ˇ̌̌̌
u".x; �"2/ � h�

�Z
�
˝

v0

�ˇ̌̌̌
6 M2L

";8x 2 ˝";�; (2.13)

where

˝";C
WD

�
x 2 ˝; u0.x/ > h0

�Z
�
˝

v0

�
CM2L

"

�
;

˝";�
WD

�
x 2 ˝; u0.x/ 6 h0

�Z
�
˝

v0

�
�M2L

"

�
:

Moreover there exists a positive constant K > 0 such that

jv".x; �"2/ �

Z
�
˝

v0j 6 KL": (2.14)

2.3 Third stage: time evolution with a fixed interface

The goal of this section is the study of Problem .P "/ on a time interval Œ�"2 ; �
"
3 �, where

�"3 D
cp;N j ln "j

m
(2.15)
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with

0 < cp;N 6
1

6
min

�
p

2
;

4

3.N C 2/
;
2

3
� p

�
; (2.16)

and m > 2 is a constant to be chosen later. Setting

�0 D

�
x 2 ˝; u0.x/ D h0

�Z
�
˝

v0

��
; (2.17)

˝0;C
WD

�
x 2 ˝; u0.x/ > h0

�Z
�
˝

v0

��
and ˝0;�

WD

�
x 2 ˝; u0.x/ < h0

�Z
�
˝

v0

��
;

(2.18)

we assume that �0 is a smooth hypersurface. Moreover we also suppose that u0 and
Z
�
˝

v0 satisfy

.H4/

8̂̂<̂
:̂
u0.x/ � h0

�Z
�
˝

v0

�
> �0 dist.x; �0/ if x 2 ˝0;C

u0.x/ � h0

�Z
�
˝

v0

�
6 ��0dist.x; �0/ if x 2 ˝0;�

where dist.x; �0/ denotes the distance function from x to �0. In this stage we prove that in the
time interval Œ�"2 ; �

"
3 � the interface, already formed in stage 2, does not move and moreover that as

" # 0 v" tends to a function which only depends on t . Lastly, we define the set B

B WD
h
�
2
p
3

9
C
�

2
;
2
p
3

9
�
�

2

i
;

where � is a small constant introduced in (2.9).

Theorem 2.3 Assuming
j˝C.0/j

j˝j
2 .˛�; ˛C/ (2.19)

where ˛˙ are defined by (B.1) then the initial value problem

.E/

8̂<̂
:
. Qv3/t .t/ D �Qv3.t/C hC

�
Qv3.t/

� j˝0;Cj

j˝j
C h�

�
Qv3.t/

��
1 �
j˝0;Cj

j˝j

�
� a

Qv3.0/ D

Z
�
˝

v0.x/ dx

possesses a unique solution t 7! Qv3.t/ defined on Œ0;C1� such that

Qv3.t/ 2 B; (2.20)

for all t 2 Œ0;C1/. Let Qv3;1 WD limt!1 Qv3.t/ then we have

�Qv3;1 C hC. Qv3;1/
j˝0;Cj

j˝j
C h�. Qv3;1/

�
1 �
j˝0;Cj

j˝j

�
� a D 0; (2.21)

and moreover there exists a positive constant C such that

j Qv3.�
"
3/ � Qv3;1j 6 C"

cp;N
m : (2.22)
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Setting

u3.x; t/ D

(
hC
�
Qv3.t/

�
if x 2 ˝0;C [ �0 and t 2 Œ0; �"3 �

h�
�
Qv3.t/

�
if x 2 ˝0;� and t 2 Œ0; �"3 �

and denoting by Qd.x; �0/ the signed distance to �0 such that(
Qd.x; �0/ D dist.x; �0/ if x 2 ˝0;C

Qd.x; �0/ D �dist.x; �0/ if x 2 ˝0;�

we then obtain the convergence theorem

Theorem 2.4 Assuming (2.19) and .H4/ there exist positive constants M3 and "3 > 0 such that
for all " 2 .0; "3� the solution .u"; v"/ of Problem .P "/ satisfies that

ju".x; t C �"2/ � u3.x; t/j 6 M3"
cp;N
2 ; (2.23)

for all x 2 fx 2 ˝; j Qd.x; �0/j > "cp;N g and t 2 Œ0; �"3 �. Moreover we also have

jv".x; t C �"2/ � Qv3.t/j 6 M3"
cp;N
2 ; (2.24)

for all x 2 ˝ and t 2 Œ0; �"3 �.

2.4 Fourth stage: Propagation of interface for large time

The goal of this stage is to study Problem .P "/ for t > �"2C �
"
3 . We first consider the limit problem,

.Q4/

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Vn;4 D

3
p
2
h0. Qv4/ on �4.s/; s 2 .0; QT4/;

hC. Qv4/
j˝C4 j

j˝j
C h�. Qv4/

�
1 �
j˝C4 j

j˝j

�
� Qv4 � a D 0 in .0; QT4/;

�4jjtD0 D �0;

(2.25)

(2.26)

where Qv4 D Qv4.s/, ˝C4 .s/ the interior of �4.s/, ˝�4 .s/ D ˝ n ˝C4 .s/ and Vn;4 is the normal
velocity of �4.s/ in the direction of ˝C4 .s/. We note that Qv4.0/ D Qv3;1 and that the velocity Vn;4
only depends on s and we state that .Q4/ is well posed locally in time.

Theorem 2.5 Assume that (2.19) holds. There exists QT4 > 0 such that the free boundary Problem
.Q4/ has a unique smooth solution . Qv4.s/; �4.s// for s 2 Œ0; QT4�.

Let

u4.x; s/ D

(
hC
�
Qv4.s/

�
if x 2 ˝C4 .s/ [ �4.s/ and s 2 Œ0; QT4�

h�
�
Qv4.s/

�
if x 2 ˝�4 .s/ and s 2 Œ0; QT4�;

we then obtain the following convergence result

Theorem 2.6 Assume that (2.19) and .H4/ hold. There exists a positive constant T4 such that for
all "� > 0 we have ˇ̌

u".x; "p�2=3s C �"2 C �
"
3/ � u4.x; s/

ˇ̌
6 "�; (2.27)
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for all .x; s/ 2 f.x; s/ 2 ˝ � Œ0; T4�; j Qd.x; �4.s//j > "�g and all " small enough. Moreoverˇ̌
v".x; "p�2=3s C �"2 C �

"
3/ � Qv4.s/

ˇ̌
6 "�; (2.28)

for all .x; s/ 2 ˝ � Œ0; T4� and " small enough.

We note that in general the solution of .Q4/may not exist for all s > 0 because of the possibility
of �4 vanishing in finite time. Nevertheless, if the solution of .Q4/ exists globally in time, it must
necessarily reach a steady state as s ! 1. Indeed, if P.˝C4 / is the perimeter of ˝C4 , which in
view of the regularity of �4 coincides with the .N �1/-dimensional Hausdorff measure of �4, from
(2.25) and our sign convention on Vn;4 we obtain

d j˝C4 .s/j

ds
D �

3P
�
˝C4 .s/

�
p
2

h0
�
Qv4.s/

�
: (2.29)

At the same time, (2.26) is equivalent to

j˝C4 j D
aC Qv4 � h�. Qv4/

hC. Qv4/ � hC. Qv4/
j˝j: (2.30)

It is a calculus exercise to show that the right-hand side of (2.30) is a strictly monotone increasing
smooth function of Qv4 2 .�2

p
3=9; 2

p
3=9/ for all a 2 .�1; 1/. Therefore, for any given j˝C4 j 2

.0; j˝j/ and a 2 .�1; 1/ there is at most one value of Qv4 that satisfies (2.30), and this value of Qv4 is
increasing as j˝C4 j increases. In particular, introducing

j˝C4;1j D
aC 1

2
j˝j; (2.31)

it follows that Qv4 > 0 whenever j˝C4 j > j˝
C
4;1j, and vice versa. At the same time, recalling that the

sign of h0. Qv4/ coincides with that of Qv4, from (2.29) we get that j˝C4 .s/j ! j˝
C
4;1j and Qv4.s/! 0

as s ! 1, if the solution of .Q4/ exists for all s > 0. In fact, this convergence is exponential, as
can be easily seen from the linearization of (2.29). Thus, in the limit s ! 1 the interface �4.s/
solving .Q4/ must converge (in Hausdorff sense) to some limiting interface �4;1 enclosing a set
˝C4;1 whose measure satisfies (2.31), while Qv4 vanishes asymptotically. We note that the coupling
between �4.s/ and Qv4.s/ is such that small deviations of j˝4.s/j from 1

2
.1C a/j˝j are restored via

the solution of .Q4/ on the time scale of the Fourth stage. This property should naturally be inherited
by the solutions of .P "/ for small enough ". Therefore, on longer time scales one should expect that
the limiting problem preserves the volume of the zero super-level set of u".�; t / for all t larger than
the Fourth stage time scale. Noting that lim"!0 u

".x; "p�2=3s/ D u4.x; s/ D h˙. Qv4.s//! ˙1 as
s !1 for all x 2 ˝˙4;1, respectively, with ˝�4;1 WD ˝n˝

C
4;1, we should then expect

lim
"!0

Z
�
˝

u".x; t/ dx D a t � "p�2=3: (2.32)

In other words, beyond the Fourth stage the evolution governed by .P "/ should become
asymptotically mass-preserving, which is an interesting feature of the considered problem, since
a priori problem .P "/ does not have such a property.
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2.5 Fifth stage: Propagation with non local mean curvature

In this stage we assume that there exists a solution of the free boundary problem(
Vn D K C C

0.0/ Ow5 �
1
j�5j

� R
�5
K C C 0.0/

R
�5
Ow5

�
for all � 2 .0; T5/;

�5.0/ D �5;0;

where Ow5 satisfies

.Q5/

8̂̂̂̂
<̂
ˆ̂̂:

�� Ow5 D u5 � a in ˝ � .0; T5/;

@ Ow5
@n
D 0 on @˝ � .0; T5/;Z

˝

Ow5dx D 0 for all � 2 .0; T5/;

with

u5.x; t/ D

�
1 if x 2 ˝C5 .�/;
�1 if x 2 ˝�5 .�/;

where Vn,K,˝C5 .�/ and˝�5 .�/ denote respectively the normal velocity in the direction of˝C5 .�/,
the sum of principal curvatures (positive if˝C5 .�/ is convex), the interior and the exterior of �5.�/,

respectively. We remark that .Q5/ only makes sense if
Z
�
˝

u5.s; �/ dx D a 2 .�1; 1/. We formally

show that u".�; "p�4=3s/ solving .P "/ converges to u5.�; �/ as " tends to zero when � 2 .0; T5/
and �5;0 D �4;1, where �4;1 is the asymptotic limit of �4.s/ solving .Q4/ as s ! 1, provided
it exists. Note that the free boundary problem above preserves j˝5.�/j, which in view of (2.31)
satisfies

j˝5.�/j D
1C a

2
j˝j for all � 2 .0; T5/: (2.33)

This is due, as was already mentioned, to the strong restoring effect on j˝5.�/j from the spatial
average of v inherited from the Fourth stage. We also note that the resulting volume-preserving
nonlocal mean curvature flow is a gradient flow. Hence one expects that the interface �5.�/
ultimately reaches a steady state as � !1, if the solution is global in time.

3. Preliminary estimates

Lemma 3.1 Assume that u0 and v0 are in C 2.˝/ and satisfy the homogeneous Neumann boundary
conditions (2.5); then there exists a unique solution of the system .P "/ for all 0 < T 61. Moreover
there exists a positive constant C0 such that for all " > 0

ju".x; t/j C jv".x; t/j 6 C0 for all x 2 ˝ and t > 0: (3.1)

Proof. From standard theory for parabolic systems we deduce the existence of a unique solution
.u"; v"/ of .P "/. Moreover applying the Corollary 14.8 of [29] we obtain the estimate (3.1).

Next we state some estimates, which will be useful in what follows, namely

Lemma 3.2 We set v".t/ WD
Z
�
˝

v".x; t/dx; then there exist positive constants QC0 and �1 such thatˇ̌̌̌
v".t/ �

Z
�
˝

v0.x/dx

ˇ̌̌̌
6 QC0t; for all t > 0; (3.2)
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and

max
x2˝

jv".x; t/ � v".t/j 6 QC0"
4

3.NC2/ ; for all t > �"1 WD �1"
2=3j ln "j: (3.3)

Proof. Integrating (2.2) on ˝ and on Œ0; t � for all t > 0 and using (3.1) we obtain thatˇ̌̌̌ Z t

0

.v"/s.s/ds

ˇ̌̌̌
D jv".t/ � v".0/j 6 C1t;

which coincides with (3.2). Next we prove a preliminary estimate, which will be useful to obtain
(3.3), namely

krv".:; t/k2
L2.˝/

C kv".:; t/ � v".t/k2
L2.˝/

6 C2krv0k
2
L2.˝/

exp
�
�

�

"2=3
t
�
C C2"

4=3: (3.4)

Multiplying (2.2) by �v" and integrating the result on ˝ we obtainZ
˝

rv"rv"t D �"
�2=3

Z
˝

j�v"j2 �

Z
˝

�v"g.u"; v"/;

so that using (3.1)
d

dt
krv"k2

L2.˝/
6 �"�2=3

Z
˝

j�v"j2 C "2=3C3:

This together with the inequality

k�v"k2
L2.˝/

> �krv"k2
L2.˝/

;

gives
d

dt
krv"k2

L2.˝/
6 �"�2=3�krv"k2

L2.˝/
C "2=3C3;

which by Gronwall Lemma implies

krv".:; t/k2
L2.˝/

6 krv".:; 0/k2
L2.˝/

exp
�
�
�

"2=3
t

�
C
C3

�
"4=3:

This together with the Poincaré inequality gives (3.4). We now prove that there exists a constantK0
independent of " such that

jv".x; t/ � v".x0; t /j 6 K0jx � x
0
j; for t > 0; x; x0 2 ˝ (3.5)

jrv".x; t/ � rv".x0; t /j 6 K0jx � x
0
j
3=4; for t > 0; x; x0 2 ˝: (3.6)

Setting s WD t
"2=3

we deduce from (2.2) that v" is the solution of

vs C Av D v C "
2=3g.u; v/ DW G.v; x; s/;

where Av D ��v C v. As it is done in [28], one can check that there exists a constant C˛;p such
that

kA˛v.s/kLp 6 C0kA
˛v.0/kLp C C˛;p;
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with ˛ 2 .0; 1/, p > 1. Further since

D.A˛/ � C 1C�.˝/; for 2˛ �N=p > 1C � and � 2 .0; 1/;

we obtain choosing ˛ D 15
16

and p > 8N that

v".:; t/ 2 C 1C�.˝/ and jv".:; t/jC1C�.˝/ 6 K0; for � D 3=4;

which gives (3.5) and (3.6). Applying (3.4) for all � > �"1 WD �1"
2=3j ln "jwhere �1 D 4

3�
we obtain

that

krv".:; t/k2
L2.˝/

C kv".:; t/ � v".t/k2
L2.˝/

6 C2krv
".:; 0/k2

L2.˝/
exp

�
�
4

3
j ln "j

�
C C2"

4=3;

so that
kv".:; t/ � v".t/k2

L2.˝/
D O."4=3/: (3.7)

Furthermore in view of (3.5)-(3.7), we deduce from Lemma 3.2 of [28] that for all � > �"1 WD

�1"
2=3j ln "j

max
x2˝

ˇ̌
v".x; t/ � v".t/

ˇ̌
6 Ckv".:; t/ � v".t/k

2 Q�
NC2 Q�

L2.˝/
(3.8)

where Q� 2 .0; 1� and C is a positive constant. Thus (3.7) and (3.8) with Q� D 1 imply (3.3), which
concludes the proof of Lemma 3.2.

4. Proof of the first stage: v" becomes close to
Z
�
˝

v0 in a time of order "2=3j ln "j

Proof of Theorem 2.1. By (3.2) with � D �"1 D �1"
2=3j ln "j we obtain thatˇ̌̌̌

v".�"1/ �

Z
�
˝

v0.x/dx

ˇ̌̌̌
6 QC0�1"2=3j ln "j:

This together with (3.3) gives

max
x2˝

ˇ̌̌̌
v".x; �"1/ �

Z
�
˝

v0.x/dx

ˇ̌̌̌
6 C1"

4
3.NC2/ ;

which implies (2.6). Next we prove (2.7). We set U˙.x; t/ WD u0.x/˙ C1
"p
t where C1 is a constant

such that C1 > 2C0 C 2 C .C0 C 1/
3 with C0 defined in lemma 3. Denoting by L" the parabolic

operators associated to .2.1/ one can check that

L".UC; v"/ > 0 and L".U�; v"/ 6 0; (4.1)

on ˝ � Œ0; �"1 � and then deduce from the comparison principle that

U�.x; t/ 6 u".x; t/ 6 UC.x; t/; for all .x; t/ 2 ˝ � Œ0; �"1 �.

Applying this with t D �"1 we obtain (2.7), which completes the proof of Theorem 2.1.
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5. Proof of the second stage: Generation of interface in a time of order "pj ln "j

Proof of Theorem 2.2. Since the details of the computations are given in [2] we only give the main
steps of the proof. First we remark that for all v 2 R such that jvj 6 2

p
3
9
� � where � > 0 is a

positive constant, the algebraic equation f .:; v/ D 0 has three solutions h�.v/ < h0.v/ < hC.v/.
As it is done in [2], we now introduce an approximation of the function f . To begin with let s 7!
�.s/ 2 C1.R/ be a cut-off function satisfying8̂̂̂̂

<̂
ˆ̂̂:
�.s/ D 1; if jsj 6 1;

�.s/ D 0; if jsj > 2;

0 < �.s/ < 1; if 1 < jsj < 2;
�2 < s�0.s/ 6 0; if s 2 R;
j�00.s/j 6 4; if s 2 R;

then we set �0 D �
�
u � h0.v/

"
p
2 j ln "j

�
; �C D �

�
u � hC.v/

"
p
2 j ln "j

�
and �� D �

�
u � h�.v/

"
p
2 j ln "j

�
and

Qf .u; v/ WD �0
u � h0.v/

j ln "j
C �C

hC.v/ � u

j ln "j
C ��

h�.v/ � u

j ln "j
C .1� �0 � �� � �C/f .u; v/: (5.1)

Thus following the proof of estimate (3.8) in [2] one can check that

j Qf .u; v/ � f .u; v/j 6 Cf "
p
2 j ln "j; for all u 2 ŒC0; C0�: (5.2)

We next show that the solution u" can be approximated by the solution of the following ordinary
differential equation

.ODE/

(
!s.�; s; w/ D Qf .!;w/; for all s > 0;

!.�; 0; w/ D �;

where � 2 Œ�C0; C0� and w 2 B . Replacing " by "
p
2 in the proof of Lemma 3.2 in [2], one can

obtain the following properties of !

Lemma 5.1 Assume that � 2 Œ�C0; C0� and w 2 B and let !.�; s; w/ be the solution of .ODE/.
Then ! 2 C 2.R � RC � B/ and

!� .�; s; w/ > 0: (5.3)

There exist positive constants �2 and "0 such that for all " 2 .0; "0� and s > �2, we have

!.�; s; w/ > hC.w/ � 2"
p
2 j ln "j;8� 2 Œh0.w/C 2"

p
2 j ln "j;1/; (5.4)

!.�; s; w/ 6 h�.w/C 2"
p
2 j ln "j;8� 2 .�1; h0.w/ � 2"

p
2 j ln "j�; (5.5)

and
h�.w/ � 2"

p
2 j ln "j 6 !.�; s; w/ 6 hC.w/C 2"

p
2 j ln "j;8� 2 Œ�C0; C0�: (5.6)

Moreover, there exists a positive constant C1 such that for all " 2 .0; "0� and s 2 Œ0; �0j ln "j�, we
have

j!�� j 6 C1
!�

"
p
2

: (5.7)
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We are now in a position to prove the generation interface. Let �"2 D �2"
pj ln "j, where �2 is

defined in Lemma 5.1. Using (3.2) we haveˇ̌̌̌
v".t/ �

Z
�
˝

v0.x/dx

ˇ̌̌̌
6 QC0�2"pj ln "j (5.8)

for all t 2 Œ0; �"2 � and then by (3.3) and the definition of L",(2.10), we obtainˇ̌̌̌
v".x; t/ �

Z
�
˝

v0.x/dx

ˇ̌̌̌
6
ˇ̌̌̌
v".x; t/ � v".t/j C jv".t/ �

Z
�
˝

v0.x/dx

ˇ̌̌̌
6 QC0L"; (5.9)

for all .x; t/ 2 ˝ � Œ�"1 ; �
"
2 �, which coincides with (2.14). Setting

u"2.x; t/ D u
".x; �"1 C t / and v"2.x; t/ D v

".x; �"1 C t /; for all .x; t/ 2 ˝ � Œ0; �"2 � �
"
1 �; (5.10)

and

u˙.x; t/ D !

�
u0 ˙ l

� t

"
p
2

C "2=3�pj ln "j
�
;
t

"p
;

Z
�
˝

v0 � lL
"

�
; for all .x; t/ 2 ˝ � Œ0; �"2 � �

"
1 �;

(5.11)
where l is a constant to be chosen later. We next prove

u�.x; t/ 6 u"2.x; t/ 6 uC.x; t/; for all .x; t/ 2 ˝ � Œ0; �"2 � �
"
1 �: (5.12)

To that purpose, we first compute the derivatives of u�, namely

"pu�t D �l"
p
2 !� C !s D �l"

p
2 !� C Qf

�
!; ;

Z
�
˝

v0 C lL
"

�
; (5.13)

and by (5.7)
j�u�j D j�u0!� C jru0j

2!�� j 6 QA0
!�

"
p
2

; (5.14)

where QA0 is a positive constant. Thus by (5.13), (5.14) and (5.10), (5.9), (5.2), (5.3) we have that

L".u�; v"2/ 6
�
Cf "

p
2 j ln "j C QC0L" � lL"

�
C !�"

p
2

�
� l C QA0

�
;

for all .x; t/ 2 ˝�Œ0; �"2��
"
1 �. ThusL".u�; v"2/ 6 0 for l > QA0CCf C QC0. Similarly, one can check

that L".uC; v"2/ > 0. Further noting that u˙.x; 0/ D !.u0 ˙ l"
2=3�pj ln "j; 0;

Z
�
˝

v0 � lL
"/ D

u0.x/˙ l"
2=3�p we deduce from (2.7) and (5.10) that

u�.x; 0/ 6 u"2.x; 0/ D u
".x; �"1/ 6 uC.x; 0/

for l > M1. By
@u˙

@n
D !�

@u0

@n
D 0 D

@u"

@n

and the comparison principle we obtain (5.12). Let us apply (5.12) at t D �"2 � �
"
1 ; then we deduce

from (5.6), (A.11) and (2.9) that

u".x; �"2/ D u
"
2.x; �

"
2 � �

"
1/ > h�

�Z
�
˝

v0 C lL
"

�
� 2"

p
2 j ln "j > h�

�Z
�
˝

v0

�
� .lK4 C 2/L

":
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Similarly one can check that

u".x; �"2/ D u
"
2.x; �

"
2 � �

"
1/ 6 hC

�Z
�
˝

v0

�
C .lK4 C 2/L

"; (5.15)

so that (2.11) is obtained. Further by (A.11) and (5.4) we have

u".x; �"2/ D u
"
2.x; �

"
2 � �

"
1/ > hC.

Z
�
˝

v0 C lL
"/ � 2"

p
2 j ln "j > h�.

Z
�
˝

v0/ � .lK4 C 2/L
"

provided that

u0 � l

�
�"2 � �

"
1

"
p
2

�
� l"2=3�pj ln "j > h0.

Z
�
˝

v0 C lL
"/C 2"

p
2 j ln "j:

This last condition is satisfied if

u0 > h0.

Z
�
˝

v0/C CL
";

for C > .K4l C l�2 C l C 2/. This together with (5.15) implies (2.12). In the same way, one can
prove (2.13) and this concludes the proof of Theorem 2.2.

6. Proof of the third stage: Time evolution with a fixed interface

Proof of Theorem 2.3. We set

K.˛; v/ WD ˛hC.v/C .1 � ˛/h�.v/ � v � a (6.1)

and K.v/ WD K. j˝
0;Cj

j˝j
; v/, so that the ODE of the Problem .E/ coincides with

. Qv3/t D K. Qv3/:

By the Cauchy theorem .E/ admits a unique solution on a maximal time interval I D Œ0; QT3/. Since
v 7! K.v/ is strictly decreasing and since by (2.19)

K.
2
p
3

9
/ D
p
3

�
j˝0;Cj

j˝j
�
8

9

�
� a < 0 and K.�

2
p
3

9
/ D
p
3

�
j˝0;Cj

j˝j
�
1

9

�
� a > 0

we deduce that there exists a unique ! 2 .�2
p
3
9
; 2
p
3
9
/ such that K.!/ D 0. Moreover we

suppose that � is small enough to ensure that ! 2 .�2
p
3
9
C
�
2
; 2
p
3
9
�
�
2
/.

1. If ! D
Z
�
˝

v0, then Qv3.t/ D
Z
�
˝

v0, for all t 2 Œ0; QT3/ with QT3 D 1. In this case (2.20), (2.21)

and (2.22) are satisfied.
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2. If
Z
�
˝

v0 > ! then since Qv3.t/ and ! are two different solutions of .E/ we have

Qv3.t/ > !; for all t 2 I

and then K. Qv3.t// < K.!/ D 0; for all t 2 I . Thus by the ODE Qv3 is non increasing and we
have

! < Qv3.t/ <

Z
�
˝

v0; for all t 2 I: (6.2)

Further by classical argument, one can prove that QT3 D C1, limt!1 Qv3.t/ D ! and that
limt!1. Qv3/t D 0. Thus

! D Qv3;1 (6.3)

and (2.20), (2.21) are satisfied. We now prove (2.22). Let w.t/ D et . Qv3.t/� !/ then using (6.2)
and the fact that h˙ are non increasing we have

wt D e
t . Qv3 � !/C e

t
�
K. Qv3/ �K.!/

�
D et
j˝0;Cj

j˝j

�
hC. Qv3/ � hC.!/

�
C et

�
1 �
j˝0;Cj

j˝j

��
hC. Qv3/ � hC.!/

�
6 0;

so that w.t/ 6 w.0/ for all t 2 Œ0;1/. This gives

0 6 Qv3.t/ � ! 6 e�t
�Z
�
˝

v0 � !

�
; for all t 2 Œ0;1/:

Thus for t D �"3 D
cp;N j ln "j

m we obtain 0 6 Qv3.�"2C �"3/�! 6 C"
cp;N
m , which in view of (6.3)

coincides with (2.22).
3. One can give similar arguments in the case

Z
�
˝

v0 < ! and conclude the proof of Theorem 2.3.

In what follows we introduce preliminary notations, which will be useful in the sequel. Let Oh˙
and Oh0 be the perturbations of h˙ and h0 defined in Appendix A. Setting

Of .s; v/ WD �
�
s � Oh0.v/

�
.s � OhC.v//.s � Oh�.v// (6.4)

we denote by .˛"; ˇ"/ the solution of the following system

. OP "/

8̂̂̂<̂
ˆ̂:
"p˛"t D "

4=3�˛" C Of .˛"; ˇ"/ in ˝ � .0; T /

ˇ"t D "
�2=3�ˇ" C g.˛"; ˇ"/ in ˝ � .0; T /

@˛"

@n
D
@ˇ"

@n
D 0 on @˝ � .0; T /

(6.5)

(6.6)

(6.7)

with the initial conditions

˛".x; 0/ D u0.x/; ˇ
".x; 0/ D v0.x/; for x 2 ˝: (6.8)

By standard theory for parabolic systems there exists a unique solution .˛"; ˇ"/ of . OP "/ such that

j˛".x; t/j C jˇ".x; t/j 6 OC0; for all x 2 ˝ and t > 0: (6.9)



A MULTIPLE SCALE PATTERN FORMATION CASCADE 313

We now claim that there exists a positive constant QC0 such thatˇ̌
ˇ
"
.t/ � ˇ

"
.0/
ˇ̌

6 QC0t; for all t > 0 (6.10)

and
max
x2˝

ˇ̌
ˇ".x; t/ � ˇ

"
.t/
ˇ̌

6 QC0"
4

3.NC2/ ; for all t > �"1 WD �1"
2=3j ln "j: (6.11)

Since .P "/ and . OP "/ have the same second parabolic equation the proof of (6.10) and (6.11) are
exactly the same as the one of (3.2) and (3.3) respectively. Moreover we denote by .˛"3; ˇ

"
3/ the

solution of system . OP "/ with the initial condition

˛"3.x; 0/ D u
".x; �"2/ and ˇ"3.x; 0/ D v

".x; �"2/; for x 2 ˝: (6.12)

We now consider the interface � "3 defined by the interface motion equation

V "n;3 D "
2=3�p 3

p
2
Oh0.ˇ

"

3/; � "3 jtD0 D �0; (6.13)

where ˇ
"

3 D

Z
˝

ˇ"3.x; t/dx and V "n;3 denotes the normal velocity of � "3 . One can show that

Problem (6.13) possesses a unique classical solution � "3 on a maximal time interval Œ0; Qt"3 �. We
then deduce from (6.13) and the definition of Oh0 that jV "n;3j 6 C"2=3�p , where C is a constant
independent on " and Qt"3 . We now set

� W �0 � R! RN �.s; z/ D s C zn.s/I

there exists ı0 such that

for all 0 < ı 6 ı0, � is a C1 diffeomorphism from �0 � .�ı; ı/ to its range, �0.ı/. (6.14)

This yields setting

l"3.t/ WD "
2=3�p 3

p
2

Z t

0

Oh0
�
ˇ
"

3.r/
�
dr; (6.15)

that jl"3.t/j 6 C"2=3�pt , for all t 2 Œ0; Qt"3 �. Thus the interface � "3 is well defined on Œ0; �"3 �, where

�"3 D
cp;N j ln "j

m . This gives that (6.13) admits a unique classical solution on the time interval Œ0; �"3 �.
Note that for t 2 Œ0; �"3 � �

"
3 divides ˝ into two subdomains ˝";˙

3 .t/, with ˝";˙
3 .0/ D ˝0;˙.

Next we introduce a smooth truncated approximation of the signed distance function to the interface
� "3 ; more precisely let 0 < r0

2
< ı0 we define d "3.x; t/ 2 C

2.˝ � .0; �"3// as

d "3.x; t/ D

8̂̂<̂
:̂

r0 if x 2 ˝";C
3 .t/ and dist

�
x; � "3 .t/

�
> r0

�r0 if x 2 ˝";�
3 .t/ and dist

�
x; � "3 .t/

�
> r0

dist
�
x; � "3 .t/

�
if x 2 ˝";C

3 .t/ and dist
�
x; � "3 .t/

�
6 r0

2

�dist
�
x; � "3 .t/

�
if x 2 ˝";�

3 .t/ and dist
�
x; � "3 .t/

�
6 r0

2
;
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and extend it smoothly for x 2 fr0=2 < dist.x; � "3 .t// < r0g. Moreover we assume that " is small
enough so that

@d "3
@n
D 0 on @˝ � .0; �"3/: (6.16)

Further let .U.z; V; ı/; C.V; ı// be the solution of the following system

.T W /

8̂<̂
:
Uzz.z; V; ı/C C.V; ı/Uz C Of .U.z; V; ı/; V / D ı;8z 2 R;
limz!C1 U.z; V; ı/ D OhC.V; ı/; limz!�1 U.z; V; ı/ D Oh�.V; ı/;

U.0; V / D Oh0.V; ı/:

The basic properties of .U.z; V; ı/; C.V; ı// are recalled in Lemma A.1. We now define for all
x 2 ˝ and t 2 Œ0; �"3 �

U˙3 .x; t/ D U

 
d "3.x; t/˙ S1S

"emt

"2=3
; ˇ
"

3.t/;�S2S
"

!
(6.17)

where
S" WD "3cp;N j ln "j (6.18)

and S1, S2 are positive constants to be determined later. Note that by the definitions of L" and cp;N
(see (2.10) and (2.16)) we have

S" > L" and lim
"#0

S"

"2=3
D1: (6.19)

We next state four lemmas, which will be useful to prove Theorem 2.4.

Lemma 6.1 The functions U˙3 .x; t/ satisfy that

OL
"�
UC3 ; ˇ

"
3

�
WD "p

�
UC3

�
t
� "4=3�UC3 �

Of
�
UC3 ; ˇ

"
3

�
> 0; on ˝ � Œ0; �"3 � (6.20)

OL
"�
U�3 ; ˇ

"
3

�
WD "p

�
U�3

�
t
� "4=3�U�3 �

Of
�
U�3 ; ˇ

"
3

�
6 0; on ˝ � Œ0; �"3 � (6.21)

and
@U˙3
@n
D 0 on @˝ � Œ0; �"3 �:

Proof. It follows from (6.16) that
@U˙3
@n
D 0. Furthermore we have that

OL
"�
UC3 ; ˇ

"

3

�
D I1 C I2 C I3 C S2S

" (6.22)

with

I1 WD "
pU�.ˇ

"

3/t � "
2=3Uz�d

"
3 C Uzz.1 � jrd

"
3 j
2/ (6.23)

I2 WD Uz

�
"p�2=3.d "3/t C

3
p
2
Oh0
�
ˇ
"

3;�S2S
"
�
C "p�2=3emtmS1S

"
�

(6.24)

and
I3 WD � Of

�
U; ˇ"3

�
C Of

�
U; ˇ

"

3

�
; (6.25)
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where the derivatives of U are evaluated at the point
�d "3.x; t/C S1S"emt

"2=3
; ˇ
"

3.t/ � S2S
"
�
. Since

the estimates of I1, I2 and I3 are standard (see [2], [6], [28], [11]) we only give the main steps of
the computations. We have by the definition of d "3 and the property (A.6) of U thatˇ̌̌̌

Uzz.1 � jrd
"
3 j
2/

ˇ̌̌̌
6 C sup

jd"j>
r0
2

ˇ̌̌̌
Uzz.

d "3.x; t/C S1S
"emt

"2=3
; ˇ
"

3.t/ � S2S
"/

ˇ̌̌̌
6 CK1 sup

jd"
3
j>
r0
2

e
�K2j

d"
3
CS1S

"emt

"2=3
j
:

Moreover since �"3 D
cp;N j ln "j

m we have for t 2 Œ0; �"3 �

jd "3 C S1S
"emt j >

r0

2
� S1S

"em�
"
3 D

r0

2
� S1S

""�cp;N for jd "3 j >
r0

2
;

so that ˇ̌̌
Uzz.1 � jrd

"
3 j
2/
ˇ̌̌

6 CK1e
K2

"2=3
Œ�r0=2CS1S

""
�cp;N � 6 C1"

p; (6.26)

where we have used the fact that S""�cp;N tends to 0, as " # 0. Noting that �d "3 is bounded and
also using (A.5), (6.26) and the fact that j.ˇ

"
/� j 6 C (see(6.6) and (6.9)) we deduce from (6.23)

that
I1 > �D1"

p: (6.27)

To estimate I2, we first note that the motion equation (6.13) together with the mean value theorem
and the smoothness of the function d "3 impliesˇ̌̌

.d "3/t C "
2=3�p 3

p
2
Oh0.ˇ

"

3/
ˇ̌̌

6 Djd "3 j; in ˝ � Œ0; �"3 �:

Substituting this into (6.25) and using (A.10) we obtain

I2 > Uz

�
� "p�2=3Djd "3 j �K4S2

3
p
2
S" C "p�2=3memtS1S

"
�
: (6.28)

Moreover we have that

memtS1S
"
�Djd "3 j > �Djd

"
3 C e

mtS1S
"
j C emtS1S

".m �D/:

Substituting this into (6.28) we obtain

I2 > �"pDUz
jd "3 C e

mtS1S
"j

"2=3
C UzS

"
h
�K4S2

3
p
2
C "p�2=3S1.m �D/e

mt
i
:

Noting that the second term is positive for m > D and using (A.6) combinated with the fact that
supz2R jze

�K2zj is bounded we obtain

I2 > �D2"
p; (6.29)
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for " small enough. Next we estimate I3. Using (A.13) and (6.11) with t > �"2 we obtain that

I3 > �c Of
ˇ̌̌
ˇ"3.x; t/ � ˇ

"

3.t/
ˇ̌̌

> �D3"
4

3.NC2/ : (6.30)

Substituting (6.27),(6.29) and (6.30) into (6.22) we deduce that

OL
"�
UC3 ; ˇ

"
3

�
> S2S

"
� "p.D1 CD2/ �D3"

4
3.NC2/ :

Thus for S2 > D1 CD2 CD3 we obtain OL
"
.UC3 ; ˇ

"
3/ > 0, which coincides with (6.20). One can

prove the inequality (6.21) in a similar way.
Next we prove the following inequalities on the initial functions, namely

Lemma 6.2
U�3 .x; 0/ 6 ˛"3.x; 0/ 6 UC3 .x; 0/; for all x 2 ˝: (6.31)

Proof. In view of (6.12) and (3.2) we first note thatˇ̌̌̌
ˇ
"

3.0/ �

Z
�
˝

v0

ˇ̌̌̌
D

ˇ̌̌̌
v".�"2/ �

Z
�
˝

v0

ˇ̌̌̌
6 QC0�2"pj ln "j: (6.32)

Further if d "3.x; 0/ 6 �M2
�0
L" then x 2 ˝0;� and thus by .H4/

u0.x/ � h0

�Z
�
˝

v0

�
6 ��0dist.x; �0/ 6 �M2L

";

so that x 2 ˝";�. Thus we deduce from (6.12), (6.19) and (2.13) that

˛"3.x; 0/ D u
".x; �"2/ 6 h�

�Z
�
˝

v0

�
CM2L

" 6 h�

�Z
�
˝

v0

�
CM2S

": (6.33)

Moreover since U is strictly increasing we have

UC3 .x; 0/ D U
�d "3.x; 0/C S1S"

"2=3
; ˇ
"

3.0/;�S2S
"
�

> Oh�
�
ˇ
"

3.0/;�S2S
"
�

Further since by (6.12) ˇ
"

3.0/ � S2S
" D v".�"2/ � S2S

" we deduce from (6.32) and (2.9) that

ˇ
"

3.0/ � S2S
" 2 .�2

p
3
9
C
�
4
; 2
p
3
9
�
�
4
/ for " small enough, so that by (A.2)

Oh�

�
ˇ
"

3.0/;�S2S
"
�
D h�

�
ˇ
"

3.0/ � S2S
"
�
:

Then by (A.12), (A.10) and (6.32) we obtain

UC3 .x; 0/ > h�

�
ˇ
"

3.0/
�
CK3S2S

" > h�

�Z
�
˝

v0

�
�K4 QC0�2"

p
j ln "j CK3S2S":

Thus for S2 > M2 CK4 QC0�2
K3

and " small enough we obtain by (6.33) that

˛"3.x; 0/ 6 UC3 .x; 0/ for all x 2 ˝ such that d "3.x; 0/ 6 �M2
�0
L": (6.34)
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If d "3.x; 0/ > �M2
�0
L" then choosing S1 > 2

M2
�0

we have by (A.5) and (A.7) successively that

UC3 .x; 0/ > U

�
M2L

"

"2=3�0
; ˇ
"

3.0/;�S2S
"

�
> OhC.ˇ

"

3.0/;�S2S
"/ �K1e

�K2
M2L

"

"2=3�0 :

By (A.12), (A.10) and (6.32) we obtain as previously that

UC3 .x; 0/ > hC

�Z
�
˝

v0

�
C S"K3S2 �K4 QC0�2"

p
j ln "j �K1e

�K2
M2L

"

"2=3�0 ;

and then by (2.11) one has for S2 > M2 CK4 QC0�2 CK1
K3

and " small enough that

˛"3.x; 0/ 6 UC3 .x; 0/ for all x 2 ˝ such that d "3.x; 0/ > �M2
�0
L":

This together with (6.34) implies that ˛"3.x; 0/ 6 UC3 .x; 0/, for all x 2 ˝. Similarly one can show
that ˛"3.x; 0/ > U�3 .x; 0/, for all x 2 ˝. This completes the proof of Lemma 6.2. Next we prove
the following result

Lemma 6.3 There exists a positive constant L1 such thatˇ̌̌
˛"3.x; t/ �

OhC
�
ˇ
"

3.t/
�ˇ̌̌

6 L1"
3cp;N j ln "j if d "3.x; t/ > 2S1"

2cp;N j ln "j (6.35)

and ˇ̌̌
˛"3.x; t/ �

Oh�
�
ˇ
"

3.t/
�ˇ̌̌

6 L1"
3cp;N j ln "j if d "3.x; t/ 6 �2S1"2cp;N j ln "j; (6.36)

for all .x; t/ 2 ˝ � Œ0; �"3 �.

Proof. Applying the comparison principle to the equation (2.1) with the functions U˙3 we deduce
from (6.16), the lemmas 6.1 and 6.2 that

U�3 .x; t/ 6 ˛"3.x; t/ 6 UC3 .x; t/ for all .x; t/ 2 ˝ � Œ0; �"3 �: (6.37)

For d "3.x; t/ > 2S1"
2cp;N j ln "j we have by (6.18) that

d "3.x; t/ � S1e
mtS" > 2S1"

2cp;N j ln "j � S1em�
"
3S" D S1"

2cp;N j ln "j:

This in view of (A.5), (A.7), (A.10) and the fact that lim"#0
"
2cp;N

"2=3
D C1 implies

˛"3.x; t/ > U�3 .x; t/ > U�3 .
S1"

2cp;N j ln "j

"2=3
; ˇ
"

3.t/; S2S
"/

> OhC.ˇ
"

3.t/; S2S
"/ �K1e

�K2
S1"

2cp;N j ln"j

"2=3

> OhC.ˇ
"

3.t// �K4S2S
"
�K1S

" > OhC.ˇ
"

3.t// � L1S
"; (6.38)

for L1 > K4S2 CK1 and " small enough. Moreover we have by (A.10) that

˛"3.x; t/ 6 UC3 .x; t/ 6 OhC.ˇ
"

3.t/;�S2S
"/ 6 OhC

�
ˇ
"

3.t/
�
CK4S2S

" 6 OhC
�
ˇ
"

3.t/
�
C L1S

":

This together with (6.38) implies (6.35). Similarly one can check (6.36).



318 M. HENRY, D. HILHORST AND C. B. MURATOV

Lemma 6.4 There exists L2 > 0 such thatˇ̌
l"3.t/

ˇ̌
6 L2"

2=3�p
j ln "j (6.39)

and ˇ̌
ˇ
"

3.t/ � Qv3.t/
ˇ̌

6 L2"
cp;N j ln "j2; (6.40)

for all t 2 Œ0; �"3 �.

Proof. By (6.15) we have jl"3.t/j 6 "2=3�pC
cp;N j ln "j

m for all t 2 Œ0; �"3 �, which implies (6.39). We
now show (6.40). Indeed, integrating (6.6) on ˝ we first note that

.ˇ
"

3/t .t/ D �ˇ
"

3.t/C
1

j˝j

�Z
˝
";C
3

˛"3.x; t/dx C

Z
˝
";�
3

˛"3.x; t/dx

�
� a

D �ˇ
"

3.t/C
OhC.ˇ

"

3.t//j˝
";C
3 .t/j C Oh�.ˇ

"

3.t//j˝
";�
3 .t/j

j˝j
� a

C
1

j˝j

Z
˝
";C
3

�
˛"3.x; t/ �

OhC.ˇ
"

3.t//

�
dx C

1

j˝j

Z
˝
";�
3

�
˛"3.x; t/ �

Oh�.ˇ
"

3.t//

�
dx

D �ˇ
"
.t/C

OhC.ˇ
"

3.t//j˝
";C
3 .t/j C Oh�.ˇ

"

3.t//j˝
";�
3 .t/j

j˝j
� a

C
1

j˝j

�
J
";C
1 C J

";C
2 C J

";�
3 C J

";�
4

�
(6.41)

where

J
";C
1 WD

Z
fx2˝; d"

3
.x;t/>2S1"

2cp;N j ln "jg

h
˛"3.x; t/ �

OhC
�
ˇ
"

3.t/
�i
dx

J
";C
2 WD

Z
fx2˝; 06d"

3
.x;t/<2S1"

2cp;N j ln "jg

h
˛"3.x; t/ �

OhC
�
ˇ
"

3.t/
�i
dx

J
";�
3 WD

Z
fx2˝; d"

3
.x;t/6�2S1"

2cp;N j ln "jg

h
˛"3.x; t/ �

Oh�
�
ˇ
"

3.t/
�i
dx

J
";�
4 WD

Z
fx2˝; 0>d"

3
.x;t/>�2S1"

2cp;N j ln "jg

h
˛"3.x; t/ �

Oh�
�
ˇ
"

3.t/
�i
dx:

By (6.35) we have that ˇ̌
J
";C
1

ˇ̌
6 L1"

3cp;N j ln "jj˝j: (6.42)

Since OhC.ˇ
"

3/ and ˛"3 are bounded, we obtainˇ̌
J
";C
2

ˇ̌
6 C2S1"

2cp;N j ln "j: (6.43)

Similarly, one can prove that jJ ";�3 j C jJ
";�
4 j 6 QC2S1"

2cp;N j ln "j, which we substitute into (6.41)
to deduce also in view of (6.42), (6.43) that ˇ

"

3 satisfies

.ˇ
"

3/t .t/ D �ˇ
"

3.t/C
OhC
�
ˇ
"

3.t/
�
j˝

";C
3 .t/j C Oh�

�
ˇ
"

3.t/
�
j˝

";�
3 .t/j

j˝j
� aC !1.t/
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where j!1.t/j 6 C"2cp;N j ln "j, for all t 2 Œ0; �"3 �. Thus setting

OK.˛; v/ WD ˛ OhC.v/C .1 � ˛/ Oh�.v/ � v � a (6.44)

we obtain

.ˇ
"

3/t .t/ D
OK

�
j˝

";C
3 .t/j

j˝j
; ˇ
"

3.t/

�
C !1.t/: (6.45)

Since Qv3 2 .�2
p
3
9
C
�
2
; 2
p
3
9
�
�
2
/ we have in view of Theorem 2.3

. Qv3/t D OK

�
j˝0;Cj

j˝j
; Qv3

�
:

Thus also using (6.45) we deduce for all t 2 Œ0; �"3 � that

ˇ̌
. Qv3 � ˇ

"

3/.t/
ˇ̌
D

ˇ̌̌̌ Z t

0

OK

�
j˝0;Cj

j˝j
; Qv3.s/

�
� OK

�
j˝

";C
3 .s/j

j˝j
; ˇ
"

3.s/

�
ds C

�
Qv3.0/ � ˇ

"

3.0/
�ˇ̌̌̌

6
Z t

0

�
j Qv3.s/ � ˇ

"

3.s/j C I.s/C II.s/

�
ds C C"2cp;N j ln "j�"3 C j Qv3.0/ � ˇ

"

3.0/j; (6.46)

where

I.s/ D

ˇ̌̌̌
OhC. Qv3/j˝

0;Cj C Oh�. Qv3/j˝
0;�j

j˝j
�

OhC.ˇ
"

3/j˝
0;Cj C Oh�.ˇ

"

3/j˝
0;�j

j˝j

ˇ̌̌̌
;

II.s/ D

ˇ̌̌̌
OhC.ˇ

"

3/j˝
0;Cj C Oh�.ˇ

"

3/j˝
0;�j

j˝j
�

OhC.ˇ
"

3/j˝
";C
3 j C

Oh�.ˇ
"

3/j˝
";�
3 j

j˝j

ˇ̌̌̌
:

By (A.9) we have that
I.s/ 6 K4

ˇ̌
Qv3.s/ � ˇ

"

3.s/
ˇ̌
: (6.47)

Moreover since j˝0;�j � j˝
";�
3 j D j˝

";C
3 j � j˝

0;Cj and since Oh˙ are uniformly bounded one gets

II.s/ 6 C.˝/
ˇ̌
j˝0;C

j � j˝
";C
3 j

ˇ̌
: (6.48)

Further by (6.39) one gets
ˇ̌
j˝0;Cj � j˝

";C
3 j

ˇ̌
6 C.�0/"

2=3�pj ln "j, which in view of (6.48) implies

II.s/ 6 C.˝; �0/"
2=3�p

j ln "j:

This with (6.32), (6.46) and (6.47) gives thatˇ̌
. Qv3 � ˇ

"

3/.t/
ˇ̌

6
Z t

0

.1CK4/j Qv3.s/ � ˇ
"

3.s/jds C C.˝; �0/"
2=3�p

j ln "j�"3 C C"
2cp;N j ln "j�"3

C QC0�2"
p
j ln "j

6 .1CK4/

Z t

0

j Qv3.s/ � ˇ
"

3.s/jds C C"
2cp;N j ln "j�"3 ;
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for all t 2 Œ0; �"3 �. Thus by Gronwall’s Lemma we deduceˇ̌
. Qv3 � ˇ

"
/.t/

ˇ̌
6 C"2cp;N j ln "j�"3e

.1CK4/t ;

for all t 2 Œ0; �"3 �. Now recalling that �"3 D
cp;N
m
j ln "j and choosing m > 1CK4 we obtain (6.40),

which ends the proof of Lemma 6.4.

We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. Let M3 WD max. QC0 C L2; L1 C L2K4/, we have by (6.11) and (6.40) thatˇ̌
ˇ"3.x; t/ � Qv3.t/

ˇ̌
6
ˇ̌
ˇ"3.x; t/ � ˇ

"

3.t/
ˇ̌
C
ˇ̌
ˇ
"

3.t/ � Qv3.t/
ˇ̌

6 M3"
cp;N j ln "j2;

for .x; t/ 2 ˝ � Œ0; �"3 �: (6.49)

Further since Qv3 2 .�2
p
3
9
C

�
2
; 2
p
3
9
�
�
2
/ we deduce that

ˇ"3 2
�
�
2
p
3

9
C
�

3
;
2
p
3

9
�
�

3

�
; for all .x; t/ 2 ˝ � Œ0; �"3 � (6.50)

and " small enough. Thus by (A.2) Oh˙.ˇ"3/ D h˙.ˇ
"
3/ and Oh0.ˇ"3/ D h0.ˇ

"
3/, so that both problems

. OP "/ and .P "/ coincides. This gives in view of (6.8) that

˛"3.x; t/ D ˛
".x; tC�"2/ D u

".x; tC�"2/ and ˇ"3.x; t/ D ˇ
".x; tC�"2/ D v

".x; tC�"2/; (6.51)

for all .x; t/ 2 ˝ � Œ0; �"3 �. Then (2.24) follows directly from (6.49) and we also deduce from (6.40)
and (6.51) that ˇ̌

v".x; �"2 C �
"
3/ � Qv3.�

"
3/
ˇ̌

6 L2"
cp;N j ln "j2: (6.52)

Let x 2 ˝ such that j Qd.x; �0/j > "cp;N and let s 2 Œ0; T4�. We first assume that Qd.x; �0/ > "cp;N

then we obtain from (6.39) thatˇ̌
d "3.x; t/

ˇ̌
> r0=2 > 2S1"

2cp;N j ln "j;

or
d "3.x; t/ > dist.x; �0/ � L2"

2=3�p
j ln "j > 2S1"

2cp;N j ln "j;

for " small enough. Thus by Lemma 6.3, (A.11) and (6.40) we deduceˇ̌̌
˛"3.x; t/ � hC

�
Qv3.t/

�ˇ̌̌
6
ˇ̌̌
˛"3.x; t/ � hC

�
ˇ
"

3.t/
�ˇ̌̌
C

ˇ̌̌
hC.ˇ

"

3.t// � hC
�
Qv3.t/

�ˇ̌̌
6
ˇ̌̌
˛"3.x; t/ � hC

�
ˇ
"

3.t/
�ˇ̌̌
CK4

ˇ̌̌
ˇ
"

3.t/ � Qv3.t/
ˇ̌̌

6 L1"
3cp;N j ln "j C L2K4"cp;N j ln "j2 6 M3"

cp;N
2 :

This together with (6.51) gives (2.23) in the case Qd.x; �0/ > "cp;N . Similarly one can prove (2.23)
in the case Qd.x; �0/ 6 �"cp;N , which completes the proof of Theorem 2.4.
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7. Proof of the fourth stage: Propagation of interface for large time

Proof of Theorem 2.5. Let ı0 and � be defined by (6.14), we set for r 2 R

� �0 .r/ WD

�
fs C zn.s/; 0 6 z < rg; if r > 0;
fs C zn.s/; r < z 6 0g; if r < 0;

then by [1] we have, since Vn only depend on s, that

vol
�
� �0 .r/

�
D P.r/; (7.1)

where P is a polynomial function with coefficients which only depend on �0. We now assume that
. Qv4.s/; �4.s// has a unique smooth solution of .Q4/ on a time interval Œ0; QT4� and we set

l.s/ WD

Z s

0

Vn;4.�/d� D
3
p
2

Z s

0

h0
�
Qv4.�/

�
d�; (7.2)

so that �4.s/ D fZ C l.s/n.Z/; Z 2 �0g where n.Z/ is the normal of �0 at Z. Then we have
jl.s/j 6 ı0 on a time interval, which we denote again by Œ0; QT4� and thus by (7.1)

j˝C4 .s/j D j˝
C
4 .0/j C P

�
l.s/

�
: (7.3)

This yields in view of the assumption (2.19) that

j˝C4 .s/j

j˝j
2 .˛�; ˛C/;

for all s in a time interval, still denoted by Œ0; QT4�. Thus by (2.26) and Lemma B.1 below, we obtain

Qv4.s/ D W

�
j˝C4 .s/j

j˝j

�
; for all s 2 Œ0; QT4�;

so that in view of (7.3)

Qv4.s/ D W

�ˇ̌
˝C4 .0/

ˇ̌
C P

�
l.s/

�
j˝j

�
and ls D

3
p
2
h0

�
W

�ˇ̌
˝C4 .0/

ˇ̌
C P

�
l.s/

�
j˝j

��
; (7.4)

for all t 2 Œ0; QT4�.
We now consider the following ODE

.S4/

�
Ys D H.Y /; for s 2 Œ0; QT4�
Y.0/ D 0;

with H.:/ D 3p
2
h0 ıW

�
j˝C4 .0/j C P.:/

j˝j

�
. By the Cauchy–Lipschitz theorem we have that .S4/

admits a unique solution on a maximal time interval .s1; s2/ with s1 < 0 < s2. Thus choosing

QT4 2 .0; s2/ such that jl.ts/j 6 ı0 and
j˝C4 .0/j C P.l.s//

j˝j
2 .˛�; ˛C/ and setting

Qv4.s/ WD W

�ˇ̌
˝C4 .0/

ˇ̌
C P

�
l.s/

�
j˝j

�
and �4.s/ WD fZ C l.s/n.Z/; Z 2 �0g

we conclude that . Qv4; �4/ is the unique solution of .Q4/ on Œ0; QT4�, which ends the proof of
Theorem 2.5.
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The goal of this stage is to study Problem .P "/ on the O."p�2=3/ time scale. This leads us to
introduce the corresponding change of variable, namely

s WD "2=3�p.t � �"2 � �
"
3/: (7.5)

and to deduce from Problem . OP "/ the following system

. OP "4 /

8̂̂̂̂
<̂
ˆ̂̂:
.˛"4/s D "

2=3�˛"4 C
1

"2=3
Of .˛"4; ˇ

"
4/ in ˝ � .0; T /;

.ˇ"4/s D "
p�4=3�ˇ"4 C "

p�2=3g.˛"4; ˇ
"
4/ in ˝ � .0; T /;

@˛"4
@n
D
@ˇ"4
@n
D 0 on @˝ � .0; T /;

(7.6)

(7.7)

(7.8)

with the initial conditions

˛"4.x; 0/ D ˛
".x; �"2 C �

"
3/ D u

".x; �"2 C �
"
3/ for x 2 ˝; (7.9)

ˇ"4.x; 0/ D ˇ
".x; �"2 C �

"
3/ D v

".x; �"2 C �
"
3/ for x 2 ˝: (7.10)

By (A.1) we have for ˇ"4 2 .�
2
p
3
9
C

�
4
; 2
p
3
9
�
�
4
/ that

˛"4.x; s/ D ˛
".x; "p�2=3s C �"2 C �

"
3/ D u

".x; "p�2=3s C �"2 C �
"
3/ (7.11)

ˇ"4.x; s/ D ˇ
".x; "p�2=3s C �"2 C �

"
3/ D v

".x; "p�2=3s C �"2 C �
"
3/: (7.12)

Moreover let � "4 be the interface defined by the motion equation

V "n;4 D
3
p
2
Oh0
�
ˇ
"

4.s/
�
; � "4 jsD0 D �0; (7.13)

where V "n;4 is the velocity of � "4 . One can prove that Problem (7.13) admits a unique classical
solution on a time interval Œ0; Qs"4�, for some positive constant Qs"4. We then deduce from (7.13) and
the construction of Oh0 that jV "n;4j 6 C , where C is a constant independent on " and Qs"4. This yields
setting

l"4.s/ WD
3
p
2

Z s

0

Oh0
�
ˇ
"

4.z/
�
dz; (7.14)

that jl"4.s/j 6 C Qs"4, for all s 2 Œ0; Qs"4�. Thus the interface � "4 is well defined on Œ0; ı0
C
/, where ı0

is defined by (6.14). This gives that (7.13) admits a unique classical solution on the time interval
Œ0; Qs4�, with 0 < Qs4 <

ı0
C

. Further for s 2 Œ0; Qs4�, � "4 divides ˝ into two subdomains, ˝";˙
4 .s/. Let

0 < r0
2
< ı0 we introduce as in the stage 6 a smooth truncated approximation of the signed distance

function to the interface � "4 , namely

d "4.x; s/ D

8̂̂<̂
:̂

r0 if x 2 ˝";C
4 .s/ and dist

�
x; � "4 .s/

�
> r0

�r0 if x 2 ˝";�
4 .s/ and dist

�
x; � "4 .s/

�
> r0

dist
�
x; � "4 .s/

�
if x 2 ˝";C.s/ and dist

�
x; � "4 .s/

�
6 r0

2

�dist
�
x; � "4 .s/

�
if x 2 ˝";�

4 .s/ and dist
�
x; � "4 .s/

�
6 r0

2
;
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and extended smoothly for x 2 fr0=2 < dist.x; � "4 .s// < r0g. Moreover we also assume that

@d "4
@n
D 0 on @˝ � .0; Qs4/: (7.15)

We set
T4 WD min. QT4; Qs4/: (7.16)

and we define for s 2 Œ0; T4�

U˙4 .x; s/ D U

�
d "4.x; s/˙R1R

"e Qms

"2=3
; ˇ
"

4.s/;�R2R
"

�
; (7.17)

where
R" D "

cp;N
3 j ln "j (7.18)

andR1,R2 and Qm are positive constants to be determined later. As in Section 2.3 we now prove that
U˙4 are sub and super-solution of (7.6).

Lemma 7.1 The functions U˙4 .x; s/ satisfy that

OL
"

4.U
C
4 ; ˇ

"
4/ WD .U

C
4 /s � "

2=3�UC4 �
1

"2=3
Of .UC4 ; ˇ

"
4/ > 0; on ˝ � Œ0; T4� (7.19)

OL
"

4.U
�
4 ; ˇ

"
4/ WD .U

�
4 /s � "

2=3�U�4 �
1

"2=3
Of .U�4 ; ˇ

"
4/ 6 0; on ˝ � Œ0; T4� (7.20)

and
@U˙4
@n
D 0 on @˝ � Œ0; T4�:

Proof. It follows from (7.15) that
@U˙4
@n
D 0. Moreover we have

L"4.U
C
4 ; ˇ

"/ D I1 C I2 C I3 CR2
R"

"2=3
(7.21)

with
I1 WD U�.ˇ

"

4/s � Uz�d
"
4 C

1

"2=3
Uzz.1 � jrd

"
4 j
2/ (7.22)

I2 WD
1

"2=3
Uz..d

"
4/s C C

3
p
2
Oh0.ˇ

"

4;�R2R
"/C e Qms QmR1R

"/ (7.23)

and
I3 WD

1

"2=3

�
Of .UC4 ; ˇ

"

4/ �
Of .UC4 ; ˇ

"
4/
�
;

where the derivatives of U are evaluated at the point
�d"
4
.x;s/CR1R

"e Qms

"2=3
; ˇ
"

4.s/;�R2R
"
�
. Since the

computations are similar to those done in Lemma 6.1 we only give the main estimates. We have by
the definition of d "4 and (A.6) that

ˇ̌
Uzz.1 � jrd

"
4 j
2/
ˇ̌

6 CK1 sup
jd"
4
j>
r0
2

e
�K2j

d"
4
CR1R

"e Qms

"2=3
j
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and for all s 2 Œ0; T4� ˇ̌
d "4 CR1e

QmsR"
ˇ̌

>
r0

2
�R1R

"e QmT4 ; for jd "4 j >
r0

2
;

so that, since lim"#0R
" D 0, jUzz.1�jrd "4 j

2/j 6 CK1: Substituting this into (7.22) and also using
the fact that U� , �d "4 and Uz are bounded and that by (7.7), j.ˇ

"

4/t j 6 "p�2=3C we deduce that

I1 > �F 1"p�2=3: (7.24)

To estimate I2 we remark that d "4 satisfiesˇ̌̌
.d "4/s C

3
p
2
Oh0.ˇ

"

4/
ˇ̌̌

6 QDjd "4 j; in ˝ � Œ0; T4�;

which we substitute into (7.23) to obtain in view of (A.4), (A.5), (A.10) that

I2 >
1

"2=3
Uz
�
� QDjd "4 j �K4R2R

"
C Qme QmsR1R

"
�
:

Moreover since

Qme QmsR1R
"
� QDjd "4 j > � QDjd

"
4 C e

QmsR1R
"
j C e QmsR1R

". Qm � QD/;

we deduce as in the proof of (6.29) that

I2 > �F 2; (7.25)

for " small enough. As it is done in the proof of (6.30) we obtain from (A.13) and (6.11) that

I3 > �
c Of

"2=3

ˇ̌
ˇ".x; "p�2=3s C �"2 C �

"
3/ � ˇ

"
."p�2=3t C �"2 C �

"
3/
ˇ̌

> �
F 3

"2=3
"

4
3.NC2/ : (7.26)

Substituting (7.24), (7.25) and (7.26) into (7.21) we deduce

OL
"

4.U
C
4 ; ˇ

"
4/ >

1

"2=3
R2R

"
� F 1"

p�2=3
� F 2 � F 3

1

"2=3
"

4
3.NC2/ ;

for all .x; s/ 2 ˝ � Œ0; T4�. Thus for R2 > F 1 C F 2 C F 3 we obtain OL
"

4.U
C
4 ; ˇ

"
4/ > 0, which

coincides with (7.19). One can prove the inequality (7.20) in a similar way.
Next we state the following estimates on the initial condition, namely

Lemma 7.2
U�4 .x; 0/ 6 ˛"4.x; 0/ 6 UC4 .x; 0/; for all x 2 ˝:

Proof. We first recall that by (6.50) and (6.51)

v".�"2 C �
"
3/ 2

�
�
2
p
3

9
C
�

3
;
2
p
3

9
�
�

3

�
: (7.27)

First case: d "4.x; 0/ 6 �"cp;N . Then by definition of d "4 we have Qd.x; �0/ D �dist.x; �0/ 6
�"cp;N and thus using (7.9) and (2.23)

˛"4.x; 0/ D u
".x; �"2 C �

"
3/ 6 hC. Qv3.�

"
3//CM3"

cp;N =3: (7.28)
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Further by (A.5), (7.10), (7.27) (A.2) and (A.12) we obtain

UC4 .x; 0/ D U
�d "4.x; 0/CR1R"

"2=3
; ˇ
"

4.0/;�R2R
"
�

> Oh�.ˇ
"

4.0/;�R2R
"/ D Oh�.v

".�"2 C �
"
3/;�R2R

"/ D h�.v
".�"2 C �

"
3/ �R2R

"/

> h�.v
".�"2 C �

"
3//CK3R2R

":

This in view of (6.52) and (A.11) gives

UC4 .x; 0/ > h�
�
Qv3.�

"
3/
�
�K4L2"

cp;N j ln "j2 CK3R2R";

which together with (7.28) implies ˛"4.x; 0/ 6 UC4 .x; 0/ for R2 > M3 CK4L2
K3

.

Second case: d "4.x; 0/ > �"cp;N . We note that d "4.x; 0/C R1R
" > R1R

"

2
and then as previously

using (A.7), (A.12), (7.27), (7.10), (2.24) and (A.11) we obtain

UC4 .x; 0/ > U

�
R1R

"

2"2=3
; ˇ
"

4.0/;�R2R
"

�
> OhC

�
ˇ
"

4.0/;�R2R
"
�
�K1e

�K2
R1R

"

2"2=3

> hC
�
Qv3.�

"
3/
�
�K4L2"

cp;N j ln "j2 CK3R2R" �K1R";

for " small enough. Thus for R2 > M3CK4L2CK1
K3

we deduce in view of (2.23) and (7.9) that
˛"4.x; 0/ D u

".x; �"2 C �
"
3/ 6 UC4 .x; 0/ for all x 2 ˝ such that d "4.x; 0/ > �"cp;N .

Finally we have obtained that ˛"4.x; 0/ 6 UC4 .x; 0/ for all x 2 ˝. Similarly, one can check that
˛"4.x; 0/ > U�4 .x; 0/ for all x 2 ˝, which ends the proof of Lemma 7.2.

Next we prove the following result

Lemma 7.3 There exist two positive constants, R3 and R4, such thatˇ̌
˛"4.x; s/ �

OhCequation.ˇ
"

4.s/
�ˇ̌

6 R3R
" if d "4.x; s/ > R4R

" (7.29)

and ˇ̌
˛"4.x; s/ �

Oh�
�
ˇ
"

4.s/
�ˇ̌

6 R3R
" if d "4.x; s/ 6 �R4R"; (7.30)

for all s 2 Œ0; T4�.

Proof. Using the comparison principle we deduce from lemmas 7.1 and 7.2 that

U�4 .x; s/ 6 u"4.x; s/ 6 UC4 .x; s/: (7.31)

For d "4.x; s/ > R4R
", where R4 > R1 CR1e

QmT4 we obtain that

d "4.x; s/ �R1e
QmsR" > R4R

"
�R1"

QmT4R" > R1R
":

This in view of (7.31), (A.7) and (A.10) implies that

˛"4.x; s/ > U�4 .x; s/ > U�
�R1R"
"2=3

; ˇ
"

4.s/; R2R
"
�

> OhC
�
ˇ
"

4.s/; R2R
"
�
�K1e

�
K2R1R

"

"2=3

> OhC
�
ˇ
"

4.s/
�
�K4R2R

"
�K1R

" > hC
�
ˇ
"

4.s/
�
�R3R

"; (7.32)



326 M. HENRY, D. HILHORST AND C. B. MURATOV

for R3 > K4R2 CK1 and " small enough. Moreover we have by (A.12) that

˛"4.x; s/ 6 UC4 .x; s/ 6 OhC
�
ˇ
"

4.s/;�R2R
"
�

6 OhC
�
ˇ
"

4.s/
�
CK4R2R

" 6 OhC
�
ˇ
"

4.s/
�
CR3R

":

This combined with (7.32) implies (7.29). Similarly one can check (7.30).

Lemma 7.4 There exists a function L4 2 C.Œ0; T4�/ such that l"4 tends to L4 uniformly on Œ0; T4�,
as " tends to 0. Moreover

L4.s/ D

Z s

0

lim
"#0

Oh0
�
ˇ
"

4.z/
�
dz for all s 2 Œ0; T4�: (7.33)

Further L4 is differentiable almost everywhere on Œ0; T4� and there exists a positive constant L4
such that

j.L4/s.s/j 6 L4 almost everywhere on Œ0; T4�: (7.34)

Proof. We deduce from (7.14) that l"4 and .l"4/s are bounded uniformly with respect to " on a time
interval Œ0; T4�. Thus there exist a function L4 and a subsequence of ", which we denote again by "
such that l"4 tends to L4 uniformly on Œ0; T4�, as " tends to 0. This together with (7.14) gives (7.33).
Further since Oh0 is smooth and ˇ

"

4 is bounded on Œ0; T4� we have that L4 is a Lipschitz function.
Thus L4 is differentiable almost everywhere on Œ0; T4� and

.L4/s.s/ D lim
"#0

Oh0
�
ˇ
"

4.s/
�
; for almost s 2 Œ0; T4�:

This with the fact that Oh0 is smooth and ˇ
"

4 is bounded implies that .L4/s is bounded for almost
s 2 Œ0; T4�, which coincides with (7.34).

Lemma 7.5
ˇ
"

4 tends uniformly to Qv4 on Œ0; T4�: (7.35)

L4.s/ D
3
p
2

Z s

0

h0
�
Qv4.z/

�
dz; for all s 2 Œ0; T4�: (7.36)

Proof. In what follows we check that ˇ
"

4 satisfies

"2=3�p.ˇ
"

4/s D �ˇ
"

4 C
OhC.ˇ

"

4/
j˝

";C
4 j

j˝j
C Oh�.ˇ

"

4/

�
1 �
j˝

";C
4 j

j˝j

�
� aC !2.s/; (7.37)

ˇ
"

4.0/ D Qv3;1 C !3.s/; (7.38)

where j!2.s/j 6 CR" and !3.s/ 6 C"
cp;N
m , for all s 2 Œ0; T4�. We first prove (7.38). We have

by (7.10) that

ˇ
"

4.0/ D v
"
�
�"2 C �

"
3

�
D Qv31 C

�
� Qv31 C Qv3.�

"
2 C �

"
3/
�
C
�
� Qv3.�

"
2 C �

"
3/C v

".�"2 C �
"
3/
�
:
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Thus (7.38) follows directly from (2.22) and (2.24). Since the proof of (7.37) is very similar to the
proof of (6.45), we omit the details of the computation. Integrating (7.7) on ˝ we obtain

"2=3�p.ˇ
"

4/s.s/ D �ˇ
"

4.s/C
1

j˝j

�Z
˝
";C
4

˛"4.x; s/dx C

Z
˝
";�
4

˛"4.x; s/dx

�
� a

D �ˇ
"

4.s/C
OhC.ˇ

"

4.s//j˝
";C
4 .s/j C Oh�.ˇ

"

4.s//j˝
";�
4 .s/j

j˝j
� a

C
1

j˝j

�
QJ
";C
1 C QJ

";C
2 C QJ

";�
3 C QJ

";�
4

�
; (7.39)

where

QJ
";C
1 WD

Z
fx2˝; d"

4
.x;s/>R4R"g

h
˛"4.x; s/ �

OhC
�
ˇ
"

4.s/
�i
dx

QJ
";C
2 WD

Z
fx2˝; 06d"

4
.x;s/<R4R"g

h
˛"4.x; s/ �

OhC
�
ˇ
"

4.s/
�i
dx

QJ
";�
3 WD

Z
fx2˝; d"

4
.x;s/6�R4R"

h
˛"4.x; s/ �

Oh�
�
ˇ
"

4.s/
�i
dx

QJ
";�
4 WD

Z
fx2˝; 0>d"

4
.x;s/>�R4R"g

h
˛"4.x; s/ �

Oh�
�
ˇ
"

4.s/
�i
dx:

As it is done in the proof of Lemma 6.4, we deduce from Lemma 7.3 and the fact that h˙.ˇ
"

4/ and
˛"4 are bounded that j QJ ";Ci j 6 CR" for i D 1; 2 and j QJ ";�i j 6 CR" for i D 3; 4 which we substitute
into (7.39) to deduce that ˇ

"

4 satisfies (7.37).
Moreover by the motion equation (7.13) we obtain as it is done in the proof of Theorem 2.5 that

j˝
";C
4 .s/j D j˝0;C

j C P
�
l"4.s/

�
;

where P is the polynomial function introduced in (7.1). This together with Lemma 7.4 yields that

j˝
";C
4 j tends to a function � uniformly on Œ0; T4�, (7.40)

which satisfies
�.s/ D j˝0;C

j C P
�
L4.s/

�
; for all s 2 Œ0; T4�: (7.41)

We set
�.˛; v/ WD K.˛; v/C v D hC.v/˛ C h�.v/.1 � ˛/ � a (7.42)

and
O�.˛; v/ WD OhC.v/˛ C Oh�.v/.1 � ˛/ � a: (7.43)

By (2.19), �.0/
j˝j
2 .˛�; ˛C/ thus there exists a time, which we denote again by T4 such that

�.t/
j˝j
2 .˛�; ˛C/, for all t 2 Œ0; T4�. Thus setting �4.s/ D W. �.s/

j˝j
/ we deduce from Lemma B.1

that �4 2 .�2
p
3
9
C �; 2

p
3
9
� �/ and

�
� �

j˝j
; �4

�
.s/ � �4.s/ D 0: (7.44)
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Further by (A.2) we have �. �
j˝j
; �4/ D O�. �

j˝j
; �4/ D �4. Since �4 D W. �

j˝j
/ we obtain from

(7.41), Lemma 7.4 and the smoothness of W that �4 is differentiable almost everywhere on Œ0; T4�
and moreover using (7.34) and (B.3) we also obtain that j.�4/s.s/j 6 �4, for almost s in Œ0; T4�.
This together with (7.44) gives that �4 satisfies a similar ODE to the one satisfied by ˇ

"

4, namely

"2=3�p.�4/s C �4 D O�
� �

j˝j
; �4

�
C !4 (7.45)

where j!4.s/j 6 �4"
2=3�p , for almost s 2 Œ0; T4�. Further since �.0/ D j˝0;Cj

j˝j
we have by (2.21)

and Lemma B.1 that Qv3;1 D W.
�.0/
j˝j
/, so that in view of the definition of �4

�4.0/ D Qv3;1: (7.46)

We now prove that
ˇ
"

4 tends uniformly to �4 on Œ0; T4�: (7.47)

Setting �" D ˇ
"

4 � �4, subtracting (7.45) from (7.37) we obtain

"2=3�p.�"/s C �
".s/ D O�

�
j˝

";C
4 j

j˝j
; ˇ
"

4

�
.s/ � O�

� �

j˝j
; �4

�
.s/C !2.s/ � !4.s/ (7.48)

Furthermore one can check that for all functions I 2 C 1.Œ0; 1� � Œ�C;C �/

I.˛2; z2/ � I.˛1; z1/ D

Z 1

0

@I

@u

�
.1 � u/˛1 C u˛2; .1 � u/z1 C uz2

�
du

D .˛2 � ˛1/

Z 1

0

@I

@˛

�
.1 � u/˛1 C u˛2; .1 � u/z1 C uz2

�
du

C .z2 � z1/

Z 1

0

@I

@z

�
.1 � u/˛1 C u˛2; .1 � u/z1 C uz2

�
du:

Applying this with I D O�, ˛1 D
�
j˝j

, ˛2 D
j˝
";C
4
j

j˝j
, z1 D �4, z2 D ˇ

"

4 and the constant C D OC1 WD

max.2
p
3
9
� �; OC0/ so that .�4; ˇ

"

4/ 2 Œ�
OC1; OC1�

2 we deduce

"2=3�p.�"/s C �
".s/ D

�
j˝";Cj

j˝j
�

�

j˝j

�
	 "1.s/C �

".s/	 "2.s/C !2.s/ � !4.s/; (7.49)

where

	 "1.s/ D

Z 1

0

@ O�

@˛

�
˛.u; s/; z.u; s/

�
du D

Z 1

0

OhC
�
z.u; s/

�
� Oh�

�
z.u; s/

�
du

	 "2.s/ D

Z 1

0

@ O�

@z

�
˛.u; s/; z.u; s/

�
du D

Z 1

0

˛.u; s/ Oh0C
�
z.u; s/

�
C
�
1 � ˛.u; s/

�
Oh0�
�
z.u; s/

�
du

and with

˛.u; s/ D .1 � u/
�.s/

j˝j
C u
j˝

";C
4 .s/j

j˝j
2 Œ0; 1� and z.u; s/ D .1 � u/�4.s/C uˇ

"

4.s/ 2 Œ�
OC1; OC1�;
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for all .u; s/ 2 Œ0; 1� � Œ0; T4�. Since OhC and Oh� are strictly decreasing function on R, there exist a
constant H > 0 such that

Oh0C.v/ 6 �H and Oh0�.v/ 6 �H; for all v 2 Œ� OC1; OC1�

and thus

	 "2.s/ D

Z 1

0

˛.u; s/ Oh0C
�
z.u; s/

�
C
�
1�˛.u; s/

�
Oh0�
�
z.u; s/

�
du 6 �H; for all s 2 Œ0; T4�: (7.50)

Now setting '".s/ WD e"
p�2=3s�".s/ we obtain from (7.49) that '" satisfies

.'"/s D "
p�2=3'"	 "2 C "

p�2=3e"
p�2=3s	 "3 (7.51)

where 	 "3.s/ D
� j˝";C

4
j

j˝j
�

�
j˝j

�
	 "1.s/C !2.s/ � !4.s/. Setting N2.s/ WD

Z s

0

	 "2.�/d� and solving

the ordinary differential equation (7.51) we then have

'".s/ D '".0/e"
p�2=3N2.s/ C "p�2=3e"

p�2=3N2.s/

Z s

0

e�"
p�2=3N2.�/e"

p�2=3�	 "3.�/d�;

so that since �".s/ D e�"
p�2=3s'".s/

�".s/ D �".0/e"
p�2=3.N2.s/�s/ C "p�2=3

Z s

0

e"
p�2=3.N2.s/�N2.�/C��s/	 "3.�/d�:

Further let Q"0 > 0 then by (7.40) we have for all " small enough thatˇ̌
	 "3.s/

ˇ̌
6 Q"0; for all s 2 Œ0; T4�:

Noting that by (7.50) N2 is non-increasing we then deduce thatˇ̌
�".s/

ˇ̌
6
ˇ̌
�".0/

ˇ̌
e"
p�2=3.N2.s/�s/ C Q"0"

p�2=3

Z s

0

e"
p�2=3.��s/d�:

This together with (7.50) impliesˇ̌
�".s/

ˇ̌
6
ˇ̌
�".0/

ˇ̌
e�"

p�2=3s.HC1/
C Q"0 6

ˇ̌
�".0/

ˇ̌
C Q"0;

so that in view of (7.38), (7.46) gives (7.47). Moreover since �4 2 .�2
p
3
9
C�; 2

p
3
9
��/ we deduce

from (7.47) that

ˇ"4 2
�
� 2

p
3

9
C
�

4
; 2

p
3

9
�
�

4

�
: (7.52)

Furthermore letting " # 0 into (7.14) and also using (7.47) we deduce that

L4.s/ D
3
p
2

Z s

0

h0
�
�4.z/

�
dz; for all s 2 Œ0; T4�: (7.53)

Setting
G4.s/ WD

˚
Z C L4.s/n.Z/; Z 2 �0

	
; for all s 2 Œ0; T4�;
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where n.Z/ is the normal of �0 atZ we deduce from (7.41), (7.44) and (7.53) that .G4; �4/ satisfies
Problem .Q4/. Thus by the uniqueness of the solution of Problem .Q4/ we deduce that

G4.s/ D �4.s/ and �4.s/ D Qv4.s/; for all s 2 Œ0; T4�: (7.54)

Finally (7.35) follows directly from (7.47) and (7.54) while (7.36) follows from (7.53) and (7.54),
which concludes the proof of Lemma 7.5.

We are now in a position to prove Theorem 2.6.

Proof of Theorem 2.6. To begin with we note that (7.52), (7.11) and (7.12) imply

˛"4.x; s/ D u
"
�
x; "p�2=3s C �"2 C �

"
3

�
and ˇ"4.x; s/ D v

"
�
x; "p�2=3s C �"2 C �

"
3

�
: (7.55)

for all .x; s/ 2 ˝ � Œ0; T4�.
Let "� 2 .0; �

4
/ then by (7.35) we have

sup
Œ0;T4�

ˇ̌
ˇ
"

4.s/ � Qv4.s/
ˇ̌

6
"�

2
; (7.56)

for all " small enough. Thus (2.28) follows directly from (3.3), (7.56) and (7.55).
We next show (2.27). Let "� > 0 and .x; s/ 2 ˝ � Œ0; T4� such that j Qd.x; �4.s//j > "�. We first

assume that Qd.x; �4.s// > "� then we obtain from Lemma 7.4 and (7.36) that

jd "4.x; t/j > r0=2 or d "4.x; t/ > Qd.x; �4.s// � "�=2 > "�=2;

for " small enough. Thus in both cases we obtain d "4.x; t/ > R4R
"; for " small enough. This yields

using (A.11) and (7.29) thatˇ̌
˛"4.x; s/ � hC

�
Qv4.s/

�ˇ̌
6
ˇ̌
˛"4.x; s/ � hC

�
ˇ
"

4.s/
�ˇ̌
C
ˇ̌
hC
�
ˇ
"

4.s/
�
� hC

�
Qv4.s/

�ˇ̌
6 R3R

"
CK4

ˇ̌
ˇ
"

4.s/ � Qv4.s/
ˇ̌
;

which in view of (7.55) and (7.56) implies (2.27) in the case Qd.x; �4.s// > "�. Similarly one can
check (2.27) in the case Qd.x; �4.s// < �"�, which achieves the proof of Theorem 2.6.

8. Formal derivation of the fifth stage: Propagation with mean curvature

Setting � WD "4=3�pt and w" WD "�2=3v" we obtain from .P "/ the system

.P "5 /

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.u"5/� D �u
"
5 C

1

"4=3
f .u"5; "

2=3w"5/ in ˝ � .0; T5/

"2�p.w"5/� D �w
"
5 C u

"
5 � a � "

2=3w"5 in ˝ � .0; T5/
@u"5
@n
D
@w"5
@n
D 0 on @˝ � .0; T5/

u"5.x; 0/ D u
"
5;0.x/; w

"
5.x; 0/ D w

"
5;0.x/ for x 2 ˝:

(8.1)

(8.2)

(8.3)

(8.4)
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We present in this section a formal derivation of the singular limit of Problem .P "5 / as " # 0. More
precisely we show heuristically how to obtain the motion equation

Vn D K C C
0.0/ Ow5 �

1

j�5j

�Z
�5

K C C 0.0/

Z
�5

Ow5

�
on �5.�/; � 2 .0; T5/ (8.5)

where Ow5 satisfies

.Q5/

8̂̂<̂
:̂

�� Ow5 D u5 � a in ˝ � .0; T5/
@ Ow5
@n
D 0 on @˝ � .0; T5/Z

˝

Ow5dx D 0 for all t 2 .0; T5/;

with

u5.x; �/ D

�
1 if x 2 ˝C5 .�/ [ �5.�/
�1 if x 2 ˝�5 .�/;

and where Vn, K, ˝C5 .�/ and ˝�5 .�/ denote respectively the normal velocity, the the sum
of principal curvatures (positive if ˝C5 .�/ is convex), the interior and the exterior of �5.�/,

respectively. We remark that .Q5/ only makes sense if
Z
�
˝

u5.x; �/ dx D a, for all � 2 .0; T5/. We

define the operator

L5. / D  � �� C
1

"4=3
f . ; "2=3w"5/

and we set w"5.�/ WD
Z
�
˝

w"5.x; �/dx. Then w"5 satisfies the initial value problem8̂̂<̂
:̂
"2�p.w"5/� D

Z
�
˝

u"5 � a � "
2=3w"5 for � 2 .0; T5/

w"5.0/ D

Z
�
˝

w"5.x; 0/dx:

(8.6)

The function Ow"5.x; �/ WD w
"
5.x; �/ �

Z
�
˝

w"5.x; �/dx satisfies8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
"2�p. Ow"5/� D � Ow

"
5 C .u

"
5 �

Z
�
˝

u"5/ � "
2=3
Ow"5 in ˝ � .0; T5/

@ Ow"5
@n
D 0 on @˝ � .0; T5/

Ow"5.x; 0/ D w
"
5.x; 0/ �

Z
�
˝

w"5.x; 0/dx for x 2 ˝:

(8.7)

(8.8)

By definition we have that Z
˝

Ow"5.x; �/dx D 0; for � 2 .0; T5/: (8.9)

Next we make the assumption that for " small enough the function u"5 can be approximated by

U

�
d.x; �/

"2=3
; "2=3w"5.x; �/

�
;
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where d is the signed distance to the interface �5.�/, strictly positive in˝C5 .�/ and strictly negative
in ˝�5 .�/. A classical computation gives that

L5.U / D Uzz
1

"4=3

�
1 � jrd j2

�
C Uz

1

"2=3

�
d� ��d C lim

"#0

C."2=3w"5/

"2=3

�
CO.1/;

where the functions Uzz and Uz are evaluated at the point .d.x; �/
"2=3

; "2=3w"5.x; �//. Denoting by w5
the limit of w"5 as " # 0, we deduce that

d� D �d � C
0.0/w5 on �5.�/: (8.10)

Since �d� D Vn and �d D �K we rewrite (8.10) as

Vn D K C C
0.0/w5 on �5.�/: (8.11)

We write again w5.x; �/ D w5.�/ C Ow5.x; �/, where w5.�/ D
Z
�
˝

w5.x; �/dx and Ow5.x; �/ D

w5.x; �/ � w5.�/. Finally, we formally deduce from .8.6/ thatZ
�
˝

u5 D a:

Indeed, if
Z
�
˝

u"5 > a by a smallO."2=3/ quantity, then on the shortO."4=3�p/ time scale the value

of w"5 would reach an O.1/ positive value, see .8.6/. In turn, by (8.11) this would result in an O.1/
positive contribution to Vn (recall that C 0.0/ D 3p

2
h00.0/ > 0), which would result in returning the

value of
Z
�
˝

u"5 to a on an O."2=3/ time scale. The argument works the same if
Z
�
˝

u"5 < a by a

small O."2=3/ quantity. With this information, from (8.7)–(8.9) we then formally deduce that8̂̂<̂
:̂
�� Ow5 D u5 � a
@ Ow5
@n
D 0Z

˝

Ow5 D 0;

which coincides with Problem .Q5/.
Finally, differentiating the mass constraint with respect to time, we deduce that

0 D
d

d�

�Z
˝

u5

�
D 2

Z
˝
C

5

.u5/� C 2

Z
�5

Vn;

which yields
R
�5
Vn D 0. This together with (8.11) gives

0 D

Z
�5

Vn D

Z
�5

K C C 0.0/

�Z
�5

w5 C

Z
�5

Ow5

�
;

so that C 0.0/w5 D �
Z
�
�5

K � C 0.0/

Z
�
�5

Ow5, which we substitute into (8.11) to conclude that

Vn D K C C
0.0/ Ow5 �

1

j�5j

�Z
�5

K C C 0.0/

Z
�5

Ow5

�
on �5.�/: (8.12)

This completes the formal derivation of the singular limit Problem .8.5/ � .Q5/.
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A. Appendix. Travelling wave solutions

Let jvj < 2
p
3
9

then the equation f .s; v/ D 0 has three zeros such that h�.v/ < h0.v/ < hC.v/.

We define Oh˙.v/ by

Oh˙.v/ D h˙.v/ for v 2 Œ0;
2
p
3

9
�
�

4
/

and
Oh˙.v/ D � Oh�.�v/ for v 2 .�

2
p
3

9
C
�

4
; 0�

with limv!˙1
Oh˙.v/ D ˙

1p
3

, limv!�1
Oh˙.v/ D ˙

2p
3

and smoothly extend in .�1;�2
p
3
9
C

�
4
/ [ .2

p
3
9
C

�
4
;C1/ in such way that Oh˙ are non-increasing functions. Finally we set

Oh0 D �. OhC C Oh�/. Note that

Oh˙.v/ D h˙.v/ and Oh0.v/ D h0.v/ for all v 2
h
�
2
p
3

9
C
�

4
;
2
p
3

9
�
�

4

i
(A.1)

and that Oh�.v/ < Oh0.v/ < OhC.v/. Besides h˙ (respectively Oh˙) are strictly decreasing functions

on .�2
p
3
9
; 2
p
3
9
/ (respectively on R). Moreover we set

Of .s; v/ WD �
�
s � Oh�.v/

��
s � Oh0.v/

��
s � OhC.v/

�
; for all .s; v/ 2 R2:

Further we also introduce Oh�.v; ı/ < Oh0.v; ı/ < OhC.v; ı/ the three solutions of Of .s; v/ D ı. One
can check that this functions are well defined for ı 2 Œ0; ı0/ and ı0 small enough. We also will use
the notations

Oh˙.v; 0/ D Oh˙.v/:

By definition we then have

Oh.v; ı/ D h˙.v C ı/; for all .v; v C ı/ 2
h
�
2
p
3

9
C
�

4
;
2
p
3

9
�
�

4

i
(A.2)

We next recall the properties of h˙ and Oh˙ and of the travelling wave solutions of the equation
ut D uzz C Of .u; v/ � ı.

Lemma A.1 Let .U.z; v; ı/; C.v; ı// be the solution of the problem

.T W /

8̂̂<̂
:̂

Uzz C C.v; ı/Uz C Of .U; v/ D ı

limz!�1 U.z; v; ı/ D Oh�.v; ı/; limz!C1 U.z; v; ı/ D OhC.v; ı/;

U.0; v; ı/ D Oh0.v; ı/:

Then we have that

U.z; v; ı/ D OhC.v; ı/ �
OhC.v; ı/ � Oh�.v; ı/

1C
Oh0.v;ı/� Oh�.v;ı/
OhC.v;ı/� Oh0.v;ı/

e

OhC.v;ı/�
Oh�.v;ı/

p
2

z

; (A.3)

C.v; ı/ D
1
p
2
.2 Oh0.v; ı/ � Oh�.v; ı/ � OhC.v; ı// D

3
p
2
Oh0.v; ı/: (A.4)
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Moreover there exist K, K1, K2 positive constants such that, for all z 2 R and v in a compact
subset of R we have that

K > Uz.z; v; ı/ > 0 and jU� j 6 K (A.5)

jUz.z; v; ı/j C jUzz.z; v; ı/j 6 K1e
�K2jzj; (A.6)

jU.z; v; ı/ � OhC.v; ı/j 6 K1e
�K2z if z > 0; (A.7)

jU.z; v; ı/ � Oh�.v; ı/j 6 K1e
K2z if z 6 0: (A.8)

Further there exist K3 and K4 positive constants such that

j Oh˙.v/ � Oh˙.w/j 6 K4jv � wj; for all .v; w/ 2 R2 (A.9)

j Ohi .v; ı/ � Ohi .v; 0/j 6 K4jıj; for v 2 R and jıj 2 Œ0; ı0/ (A.10)
jhi .v/ � hi .w/j 6 K4jv � wj; (A.11)

for .v; w/ 2 Œ�2
p
3
9
C
�
8
; 2
p
3
9
�
�
8
�2 with i D C;�; 0 and

h˙.v � ı/ > h˙.v/CK3ı; for ı 2 Œ0; ı0/; .v � ı; v/ 2
h
�
2
p
3

9
C
�

8
;
2
p
3

9
�
�

8

i2
: (A.12)

Besides there exists a constant c Of > 0 such thatˇ̌
Of .s; v/ � Of .s; w/

ˇ̌
6 c Of jv � wj; (A.13)

for s 2 Œ� OC0; OC0� and .v; w/ 2 R2.

Proof. We refer to [2, 6] for the proof of (A.3)–(A.12). Since the derivatives of Oh0 and Oh˙ are
bounded on R the estimate (A.13) is obvious.

B. Appendix. The equation K.˛; v/ D 0

We set

˛� WD
a � 2

p
3
9
C � � h�

�
�
2
p
3
9
C �

�
hC

�
�
2
p
3
9
C �

�
� h�

�
�
2
p
3
9
C �

� and ˛C WD
aC 2

p
3
9
� � � h�

�
2
p
3
9
� �

�
hC

�
2
p
3
9
� �

�
� h�

�
2
p
3
9
� �

� ;
(B.1)

then one can check that

lim
�!0

˛� D
a
p
3
C
1

9
and lim

�!0
˛C D

a
p
3
C
8

9
(B.2)

and we next study the equation K.˛; v/ D 0, for ˛ 2 Œ˛�; ˛C� and v 2 Œ�2
p
3
9
C �; 2

p
3
9
� ��.

Lemma B.1 Let � small enough, then there exists a function W 2 C1.Œ˛�; ˛C�; Œ�2
p
3
9
C �;

2
p
3
9
� �/� such that for all ˛ 2 Œ˛�; ˛C� we have(

K.˛; v/ D 0

�2
p
3
9
C � < v < 2

p
3
9
� �

, v D W.˛/;
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where K is defined by (6.1). Moreoverˇ̌̌̌
@W.˛/

@˛

ˇ̌̌̌
6 2
p
3; for all ˛ 2 Œ˛�; ˛C�: (B.3)

Proof. We first remark that ˛ 7! K.˛; v/ is a nondecreasing function on Œ0; 1� for all v 2 Œ�2
p
3
9
C

�; 2
p
3
9
���while v ! K.˛; v/ is a strictly increasing function on Œ�2

p
3
9
; 2
p
3
9
�, for all ˛ 2 Œ0; 1�.

Let � > 0; vC D 2
p
3
9
�� and v� D �2

p
3
9
C� , where � is small enough so that v� < 0 < vC and

let ˛˙ defined as previously then v 7! K.˛; v/ takes its values between K.˛; vC/ and K.˛; v�/.
Moreover since K.˛; vC/ < K.˛C; vC/ D 0 and similarly K.˛; v�/ > K.˛�; v�/ D 0 we claim
that for ˛ 2 Œ˛�; ˛C� the equation K.˛; v/ D 0 has a unique solution v D W.˛/ 2 .v�; vC/.
Since @K

@v
¤ 0 we now deduce from the implicit function Theorem applied to the function .˛; v/ 7!

K.˛; v/ that the function ˛ 7! W.˛/ 2 C1..˛�; ˛C/; .�2
p
3
9
C �; 2

p
3
9
� �// and that

@W

@˛
.˛/ D �

@K
@˛
@K
@v

D �
hC.v/ � h�.v/

˛h0C.v/C .1 � ˛/h
0
�.v/ � 1

> 0:

Thus ˛ 7! W.˛/ is a nondecreasing function on .˛�; ˛C/. Further we have 0 6 hC.v/ � h�.v/ 6
2
p
3 and j @K

@v
j D j˛h0C.v/C .1 � ˛/h

0
�.v/ � 1j > 1, so that (B.3) is satisfied. Finally taking �=2

instead of � in this proof we obtain Lemma B.1.
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