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Schwarz P surfaces and a non local perturbation of the perimeter
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1. Introduction

A diblock copolymer is a complex molecule where chains of two different kinds of monomers, say
A and B, are grafted together. Diblock copolymer melts are large collections of diblock copolymers.
The experiments show that, above a certain temperature, these melts behave like fluids, that is the
monomers are mixed in a disordered way, while below this critical temperature phase separation is
observed. Some common periodic structures observed in experiments are spheres, cylinders, gyroids
and lamellae (see Figure 1). These patterns can be found by minimising some energy. It looks
reasonable to describe the phenomenon through an energy given by the sum of the perimeter, that
forces the separation surfaces to be minimal, plus some non local term that keeps track of the
long-range interactions between monomers. More explicitly, one can take the functional
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as an energy. Here T 3 is the three dimensional torus, that is the three dimensional unit cube with the
identification of the opposite faces. This can be seen as the container where the diblock copolymer
melt is confined, u is a bounded variation function in T 3 with values in f˙1g. For instance, we

fA

FIG. 1. The most commonly observed periodic structures are spheres, cylinders, gyroids and lamellae
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can assume that u.x/ D 1 if there are only monomers of type A at x; u.x/ D �1 if there are only
monomers of type B at x. In Figure 1, monomers of type A are represented in blue, while monomers
of type B are represented in red (in a printed black-and-white version, blue and red just appear as
different shades of grey, blue being the darker).

R
˝
jruj is its total variation, or equivalently the

perimeter of the set fx 2 ˝ W u.x/ D 1g, G is the Green’s function of �� on T 3,  > 0 is a
parameter depending on the material, that we will assume to be small.

This energy appears as the � -limit as "! 0 of the approximating functional
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introduced by Ohta and Kawasaki (see [2, 6–8]).
In a more geometric way our functional is given by

J .E/ WD PT 3.E/C 

Z
T 3

Z
T 3
G.x; y/

�
uE .x/ �m

��
uE .y/ �m

�
dxdy (1.2)

where
E WD

˚
x 2 ˝ W u.x/ D 1

	
;

so that uE D �E � �˝nE . The first variation of J is given by

J
0

 .E/Œ'� D

Z
˙

�
H˙ .x/C 4vE .x/

�
'.x/d�.x/; (1.3)

while its second variation is given by

J
00

 .E/Œ';  � D

Z
˙

L'.x/ .x/d�.x/; (1.4)

where
L' D ��˙' � jA˙ j

2' C 8

Z
˙

G.� ; y/'.y/d�.y/C 4@�v': (1.5)

Here A˙ is the second fundamental form of the surface ˙ , jA˙ j2 WD k21 C k
2
2 is the same of the

squared principal curvatures and '; are in the space

W WD

�
w 2 H 1.˙/ W

Z
˙

w.x/�i .x/d�.x/ D 0; 1 6 i 6 3

�
; (1.6)

˙ WD @E and
vE .x/ WD

Z
T 3
G.x; y/.uE .y/ �m/dy (1.7)

is the unique solution to the problem(
��vE D uE �m in T 3R
T 3
vEdx D 0:

(1.8)

For an explicit computation of the first and the second variation, see for instance [9]. It is known
that J is translation invariant, that is J .EC �/ D J .E/, for any � 2 T 3 (see [2], [9]), thus, once
we find a critical point of it, any translation in T 3 is still critical.
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There are several results in the literature about critical points of this functional. For instance,
an interesting problem is to understand whether all global minimisers are periodic, like the patterns
described above (spheres, cylinders, gyroids and lamellae, see Figure 1). This is known to be true in
dimension one (see [24]), but the problem is still open in higher dimension. We refer to [1, 33] for
further results. Some other authors, such as Ren and Wei [28–32], constructed explicit examples of
stable periodic local minimisers, that is with positive second variation. Moreover, Acerbi Fusco and
Morini [2] showed that any stable critical point is actually a local minimiser with respect to small
L1 perturbations.

Other related results were proved, by variational techniques, by Cristoferi (see [12],
Theorem 4.18), who constructed a family of isolated local minimizers of J with respect to periodic
perturbations, close to any given smooth periodic strictly stable constant mean curvature surface.
However, our techniques are very different, since they rely on a Lyapunov–Schmidt reduction.

Here we add a small linear perturbation that corresponds to an external force f applied to the
system, that can be taken to be C 0;1.R3/, periodic and satisfying the symmetries of the Schwarz P
surface, that is (

f .x C ei / D f .x/; 8x 2 R3; i D 1; 2; 3;
f .x/ D f .Tjx/; j D 1; 2; 3;

(1.9)

where feig16i63 is the standard basis of R3 and Tj are the reflections defined by

T1.x1; x2; x3/ D .�x1; x2; x3/ T2.x1; x2; x3/ D .x1;�x2; x3/ (1.10)
T3.x1; x2; x3/ D .x1; x2;�x3/:

The energy becomes

I .E/ WD J .E/C 

Z
T 3
f .x/uE .x/dx: (1.11)

The additional linear term breaks the translation invariance. We will construct at least four critical
points Fj of I , 1 6 j 6 4, for  small enough, that are close to suitable translations of the Schwarz
P surface ˙ (see figure 2), under the volume constraint

L3.Fj / D L3.E/; (1.12)

where E is the interior of ˙ and L3 is the Lebesgue measure in R3.
The critical points of this energy represent the equilibria of a physical system under the action of

an external force, represented by f . Our main result, that is Theorem 1.2, shows that if, for instance,
our model is referred to the behaviour of two fluids, the effect of the force is not so relevant as
regards the pattern created by these fluids, which is reasonable since this force is multiplied by a
small factor  .

REMARK 1.1 The Schwartz P surface can be seen as a periodic surface in R3, with triple period 1.
Moreover, it divides the unit cube into two components, an interior and an exterior. In the sequel, E
will denote the interior part.

We will use a technique based on a finite dimensional Lyapunov–Schmidt reduction (see [4],
Chapter 2:2), and on the Lusternik–Schnirelman theory (see [3], Chapter 9) for the multiplicity.

We point out that there exists a global parametrisation of ˙

� W Y ! ˙; (1.13)
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FIG. 2. Schwarz P surface

defined on an open set Y � R2 (see [15], section 3). The variables in Y will be denoted by .y1; y2/.
For 0 < ˛ < 1 and for any integer k > 0, we introduce the Hölder spaces

C k;˛s .˙/ WD
˚
w 2 C k;˛.˙/ W w.x/ D w.Tjx/; 1 6 j 6 3

	
; (1.14)

where the Tj ’s are defined above (1.10). Here it is understood that we have put the origin in the
centre of the cube (see Figure 2), in such a way that these spaces consist of functions that respect the
symmetries of˙ , that is the symmetries with respect to the coordinate planes fxj D 0g, 1 6 j 6 3.
We endow these spaces with the norm

jjwjjCk;˛.˙/ D
X
jˇ j6k

jj@ˇ .w ı Y /jjL1.˙/ C sup
jˇ jDk

sup
x;y2Y;x¤y

j@ˇ .w ı Y /.x/ � @ˇ .w ı Y /.y/j
d.x; y/˛

;

(1.15)
where d is the geodesics distance on ˙ , ˇ D .ˇ1; ˇ2/ 2 N2 is a multi-index, jˇj WD ˇ1 C ˇ2 and
@ˇ WD @jˇj

@
ˇ1
y1 @

ˇ2
y2

. We point out that we are allowed to define these norms, due to the regularity of ˙ ,

which is actually analytic. For a proof of this fact, see for instance [17], Chapter 11, Theorem 11.8,
or [11], Corollary 6.9.

Main Theorem 1.2 Let I be defined as in (1.11) and �.x/ be the outward-pointing unit normal
to the Schwarz P surface ˙ . Then there exists 0 > 0 such that, for any 0 <  < 0, there exist
�j 2 T

3, 1 6 j 6 4, and w;j 2 C
2;˛
s .˙/, with

jjw;j jjC2;˛.˙/ 6 c; (1.16)

such that the sets Fj defined as the interior of

�j WD
˚
x C �j C �.x/w;j .x/ W x 2 ˙

	
(1.17)

are critical points of I under the volume constraint

L3.Fj / D L3.E/: (1.18)



SCHWARZ P SURFACES AND A NON LOCAL PERTURBATION OF THE PERIMETER 341

A crucial tool in the proof is non degeneracy up to translations of the Jacobi operator of the
Schwarz P surface. In [27], Ross showed that the Schwarz P surface is a critical point of the area
and it is volume preserving stable, that is the second variation of the area is non-negative on any
normal variation with zero average. More precisely, setting I0 WD PT 3 and jA˙ j2 WD k21 C k

2
2 ,

where A˙ is the second fundamental form of ˙ and k1, k2 are the principal curvatures, we have

I
00

0 .E/Œ'; '� D

Z
˙

jr˙'j
2
� jA˙ j

2'2d� > 0 (1.19)

for any ' 2 H 1.˙/ satisfying Z
˙

'd� D 0; (1.20)

(see Theorem 1 of [27]). Let �.x/ denote the exterior unit normal to ˙ at x. Since I0 is translation
invariant, then �i .x/ WD .�.x/; ei / are Jacobi fields of ˙ , that is they satisfy

��˙�i � jA˙ j
2�i D 0 in ˙; (1.21)

(see [2], [9]). Moreover, Grosse-Brauckmann and Wohlgemuth showed in ( [20]) that ˙ is non
degenerate up to translations, that is there are no other nontrivial Jacobi fields. In other words

Ker
�
I

00

0 .E/
�
D spanf�ig16i63: (1.22)

REMARK 1.3 Let us observe that the �i ’s are linearly independent. In fact, if not, there would exist
a constant vector b D .b1; b2; b3/ ¤ 0 such that 0 D .b; �.x// for any x 2 ˙ , but this contradicts
the geometry of ˙ .

We note that the �i ’s have zero average, sinceZ
˙

�i .x/d�.x/ D

Z
T 3

divei D 0: (1.23)

In addition, we decompose H 1.˙/ into the orthogonal sum

H 1.˙/ D spanf�ig16i63 ˚W; (1.24)

(see (1.6) for the definition of W ), and we define

W 0
WD

�
w 2 W W

Z
˙

w.x/d�.x/ D 0

�
: (1.25)

The above discussion can be rephrased by saying thatZ
˙

jr˙wj
2
� jA˙ j

2w2d� > cjjwjj2
H1.˙/

for any w 2 W 0: (1.26)

2. The proof of Theorem 1.2: Lyapunov–Schmidt reduction

We need to find at least four sets F of the form (1.16), (1.17) and a Lagrange multiplier � 2 R such
that

H@F .y/C 4vF .y/C f .y/ D � 8y 2 @F; (2.1)
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whereH@F WD k1;@F Ck2;@F is the mean curvature of @F , that is the sum of the principal curvatures
ki;@F of @F , or equivalently

I
0

 .F / D �: (2.2)

Exploiting the variational nature of the problem and the fact that˙ has zero mean curvature, namely
H˙ D 0, equation (2.1) is equivalent to

� D 4vE .x/C Lw.x/CQ.w/.x/C f .y/; 8x 2 ˙; (2.3)

where y D x C � C w.x/�.x/. Here we have set

Q.w/.x/ WD H@F .y/C 4
�
vF .y/ � vE .x/

�
� Lw.x/: (2.4)

and
Lw D ��˙w � jA˙ j

2w C  QLw; (2.5)

where
QLw D 8

Z
˙

G.� ; �/w.�/d�.�/C 4@�vEw: (2.6)

We can see that (2.3) is equivalent to

��˙w � jA˙ j
2w D �C F .; �; w/; (2.7)

where the nonlinear functional F is given by

F .; �; w/.x/ WD �4vE .x/ �  QLw.x/ �Q.w/.x/ � f .y/; 8x 2 ˙: (2.8)

The unknowns are the function w, � 2 T 3 and � 2 R. We note that, since f satisfies (1.9), if
w 2 C

2;˛
s .˙/, then F .; �; w/.x/ 2 C 0;˛s .˙/.

2.1 The volume constraint

Now we will consider the relation between the volume of F andw. In order to do so, we observe that
the parametrisation � of ˙ defined in (1.13) induces a change of coordinates on a neighbourhood
of ˙ given by

X.y1; y2; z/ WD exp�.y1;y2/
�
z�.y1; y2/

�
; (2.9)

where, with an abuse of notation, �.y1; y2/ is the outward-pointing unit normal to ˙ at �.y1; y2/
and exp�.y1;y2/ is the exponential map of T 3 at �.y1; y2/. The volume of F is given by

L3.F / D L3.E/C

Z
Y

dy
Z w.y/

0

detJX.y; z/dz;

where JX is the Jacobian of X . We expand

detJX.y; z/ D detJX.y; 0/CO.z/;

thus we get

L3.F / D L3.E/C

Z
Y

detJX.y; 0/w.y/dyC
Z
Y

B.y; w.y//dy:
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where B is quadratic in w, that is it satisfiesˇ̌
B
�
y; w1.y/

�
� B

�
y; w2.y/

�ˇ̌
6 c

�
jjw1jjC2;˛.˙/ C jjw2jjC2;˛.˙/

�
jjw1 � w2jjC2;˛.˙/;

8w1; w2 2 C
2;˛.˙/: (2.10)

Since detJX.y; 0/ D .�.y/; @y1� � @y2�/ ¤ 0 for any y2 Y ,

L3.F / D L3.E/C

Z
˙

w.x/d�.x/C

Z
˙

QQ
�
x;w.x/

�
d�.x/; (2.11)

where
QQ.x;w/ D

1

detJX.x/
B
�
x;w.x/

�
(2.12)

satisfies (2.10). Therefore the volume constraint is equivalent to an equation of the formZ
˙

w.x/dx D �

Z
˙

QQ
�
x;w.x/

�
d�.x/: (2.13)

2.2 The auxiliary equation

The aim is to solve (2.7) under the volume constraint (2.13). However, since, by (1.22) and (1.26),
the Jacobi operator ��˙ � jA˙ j2 is non-degenerate up to translations, we can actually solve the
system (

��˙w � jA˙ j
2w D �C PF .; �; w/ in ˙R

˙
wd� D �

R
˙
QQ
�
x;w.x/

�
d�.x/;

(2.14)

where P W L2.˙/! X is the projection onto the space

X WD

�
' 2 L2.˙/ W

Z
˙

'.x/�i .x/d�.x/ D 0; 1 6 i 6 3

�
: (2.15)

This will be done by a fixed point argument in the following Lemma, proved in Section 3.

Lemma 2.1 For any � 2 T 3 and for any  sufficiently small, there exists a unique solution
.w;� ; �;�/ 2 C

2;˛
s .˙/ � R to problem (2.14) satisfying

jjw;� jjC2;˛.˙/ C j�;� j 6 C; (2.16)Z
˙

w.x/�i .x/d�.x/ D 0; 1 6 i 6 3; (2.17)

for some constant C > 0. Moreover, the solution is Lipschitz continuous with respect to the
parameter � , that is

jjw;�1 � w;�2 jjC2;˛.˙/ C j�;�1 � �;�1 j 6 C j�1 � �2j; 8�1; �2 2 T
3: (2.18)

REMARK 2.2 If we take f � 0, in order to get the right correction w, we just solve (2.14) for
� D 0, due to the translation invariance of J . We do not need the Lyapunov–Schmidt reduction.
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2.3 The bifurcation equation

In order to conclude the proof of Theorem 1.2, we have to find at least four points � 2 T 3 such that
.Id � P /F .; �; w;�/.x/ D 0, or equivalentlyZ

˙

F .; �; w;�/.x/�i .x/d�.x/ D 0; (2.19)

for i D 1; 2; 3.
Since @˙ D ;, an integration by parts yieldsZ

˙

.��˙w;� � jA˙ j
2w;�/.x/�i .x/d�.x/ D 0;

for i D 1; 2; 3, thus by (2.14) we can see that w solves

P.4vE C Lw CQ.w/C f .y/ � �/ D 0; (2.20)

or equivalently, for any  > 0 small enough and � 2 T 3, there exist coefficients Ai;;� 2 R such
that

4vE C Lw CQ.w/C f .y/ � � D

3X
iD1

Ai;;��i : (2.21)

Since, by construction,

F .; �; w;�/ D �
�
4vE C Lw CQ.w/C f .y/

�
��˙w;� � jA˙ j

2w;�

D �
�
4vE C Lw CQ.w/C f .y/

�
C �C PF

�
; �; w;�

�
D �

3X
iD1

Ai;;��i C PF .; �; w;�/;

and (2.21) holds, we can see that (2.19) is equivalent to

Ai;;� D 0 for i D 1; 2; 3: (2.22)

Lemma 2.3 Equation (2.22) is satisfied if � is a critical point of the function ˚ W T 3 ! R defined
by

˚ .�/ WD I .F /; (2.23)

where F is the interior of

� WD
˚
x C � C w;�.x/�.x/ W x 2 ˙

	
:

The proof of Lemma 2.3 will be carried out in Section 4. In order to find critical points on the
torus T 3 of ˚ , we will use the Lusternik–Schnirelmann theory and the compactness of the Torus.
To make it clear, let us give some definitions and recall a Theorem proved in [3]. We say that a
subset A of a topological set M is contractible if it is homotopic to a point, that is if there exist a
point p 2 M and a function H 2 C 0.Œ0; 1� �A;M/ such that H.0; u/ D u and H.1; u/ D p, for
any u 2 A.
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DEFINITION 2.4 ( [3], Definition 9:2) The category of A in M , denoted cat.A;M/, is the least
integer k such that A � A1 [ � � � [ Ak , with Ai closed and contractible. Moreover, we set
cat.;;M/ WD 0 and cat.A;M/ D C1 if there are no integers with the above property. We
will write cat.M/ for cat.M;M/.

Sometimes, the category is also referred to as Lusternik–Schnirelmann category. Moreover, we
set

catk.M/ WD sup
˚
cat.A;M/ W A �M; A compact

	
:

Theorem 2.5 ( [3], Theorem 9:10) Let M be a Banach space or manifold and ˚ WM ! R a C 1;1

functional. If ˚ is bounded from below on M and the Palais-Smale condition is satisfied, then ˚
has at least catk.M/ critical points on M .

The statement by Ambrosetti and Malchiodi in [3] is actually more general, however Theorem
2.5 is enough for our purposes. Therefore it is possible to see that ˚ actually admits at least 4
critical points, due to Theorem 2.5 applied to I , with M D T 3, which has category 4. In general,
the k-dimensional Torus T k has category kC1 (see [3], example 9:4, (iii)). The compactness of the
torus T 3 is crucial, since it guarantees that I is bounded from below on M and the Palais-Smale
condition is satisfied.

3. Solving the auxiliary equation

The aim of this section is to prove Lemma 2.1. First, in Section 3.1, we will treat the corresponding
linear problem, then, in Section 3.2, we will solve problem (2.14) by a fixed point argument.

3.1 The linear problem

Lemma 3.1 Let a 2 R and ' 2 C 0;˛s .˙/ be such thatZ
˙

'�id� D 0 for i D 1; 2; 3: (3.1)

Then there exists a unique solution .w; �/ D 	.'; a/ 2 C 2;˛s .˙/ � R to the problem8̂<̂
:
��˙w � jA˙ j

2w D �C ' in ˙R
˙
w�id� D 0 for 1 6 i 6 3;R

˙
wd� D a:

(3.2)

Moreover, we have the estimate

jjwjjC2;˛.˙/ C j�j 6 c.jj'jjC0;˛.˙/ C jaj/: (3.3)

REMARK 3.2 Since the �i ’s are linearly independent (see Remark 1.3), then the matrix

Lki WD

Z
˙

�k�id� (3.4)
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is invertible. Indeed, we can show that if < Lc; c >D 0, then c D 0. By definition of L,

hLc; ci D

3X
i;jD1

�Z
˙

�i .x/�j .x/d�.x/

�
cicj D 0:

This is equivalent to Z
˙

hc; �.x/i2d�.x/ D 0;

hence hc; �.x/i � 0, that yields that c D 0, by the geometry of ˙ .

Proof. Step (i): Existence and uniqueness. First we look for a weak solution w 2 W . We write any
w 2 W as

w D w0 C
1

j˙ j

Z
˙

wd�;

with w0 2 W 0. The linear problem can be rephrased as follows(
��˙w0 � jA˙ j

2w0 D �C ' C jA˙ j
2 a
j˙ j

in ˙R
˙
w0 D 0:

(3.5)

We note that the right-hand side of (3.5) is orthogonal to �i , for i D 1; 2; 3, due to the fact thatZ
˙

jA˙ j
2 a

j˙ j
�i .x/d� D

Z
˙

�
�˙�i C jA˙ j

2�i

�
.x/

a

j˙ j
d� D 0; (3.6)

since @˙ D ;, and Z
˙

�i .x/d�.x/ D

Z
E

div.e1/dx D 0: (3.7)

In addition, the norm defined by

jjwjj WD

� Z
˙

�
jr˙wj

2
� jA˙ j

2w2
�
d�

�1=2
(3.8)

is equivalent to the H 1.˙/-norm on W 0, thus the functional

G.w/ D

Z
˙

jr˙wj
2
� jA˙ j

2w2d� �

Z
˙

�
' C jA˙ j

2 a

j˙ j

�
wd�

is bounded from below by

G.w/ > cjjwjj2
H1.˙/

� jj'jjL2.˙/jjwjjH1.˙/; (3.9)

on W 0, hence it is coercive on it. Moreover, this functional is also weakly lower semi-continuous
and strictly convex on W 0, therefore any minimising sequence wk 2 W 0 weakly converges, up to
subsequence, to the unique minimiser w0 2 W 0, which satisfies the Euler–Lagrange equationZ

˙

�
.r˙w0;r˙v/ � jA˙ j

2w0v
�
d�

D �

Z
˙

vd� C

3X
iD1

ˇi

Z
˙

�ivd� C

Z
˙

'vd� C

Z
˙

jA˙ j
2 a

j˙ j
vd�; (3.10)
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for any v 2 H 1.˙/, for some Lagrange multipliers �; ˇi 2 R. Since ' 2 C 0;˛.˙/, then w0 2
C 2;˛.˙/, hence w0 satisfies

��˙w0 � jA˙ j
2w0 D �C

3X
iD1

ˇi�i C ' C jA˙ j
2 a

j˙ j
in ˙;

in the classical sense. Moreover, w0 respects the symmetries of the Schwarz P surface, that is
w0.x/ D w0.Tjx/, 1 6 j 6 3, where the Tj are defined above (1.10), because of the symmetries
of the Laplace–Beltrami operator and uniqueness. Taking �j as a test function in (3.10), using (3.7),
(3.1), (3.6) and integrating by parts, we get

3X
iD1

ˇi

Z
˙

�i�jd� D 0;

therefore by Remark 3.2, ˇi D 0.

Step (ii): Regularity estimates. Multiplying (3.5) by w0, integrating by parts, using (1.26) and
Hölder’s inequality, we can see that

cjjw0jj
2
H1.˙/

6
Z
˙

jr˙w0j
2
� jA˙ j

2w20d� D

Z
˙

'w0d� C
a

j˙ j

Z
˙

jA˙ j
2w0d�

6 jjw0jjL2.˙/
�
jj'jjL2.˙/ C Qcjaj

�
6 jjw0jjH1.˙/

�
jj'jjL2.˙/ C Qcjaj

�
:

Since jjwjj2
H1.˙/

D jjw0jj
2
H1.˙/

C a2, then

jjwjjH1.˙/ 6 c
�
jj'jjL2.˙/ C jaj

�
:

In order to estimate �, we integrate (3.2) and we get

�j˙ j C

Z
˙

'd� D �

Z
˙

jA˙ j
2wd�;

thus
j�j 6 c

�
jj'jjL2.˙/ C jjwjjL2.˙/

�
:

To sum up, we have the estimate

j�j C jjwjjH1.˙/ 6 c
�
jj'jjL2.˙/ C jaj

�
; (3.11)

In order to get the estimate with respect to the norms we are interested in, we point out that, by the
Sobolev embeddings

jjwjjL1.Bı.x// 6 cjjwjjW 2;2.Bı.x//
6 c

�
jjwjjL2.B2ı.x// C jj' C �jjL2.B2ı.x// C jaj

�
6 c

�
jj'jjL2.˙/ C jaj

�
;

for any ı > 0 small but fixed and x 2 ˙ (here, Bı.x/ is the geodesic ball of radius ı centred at x in
˙ ). In particular,

jjwjjL1.˙/ 6 c
�
jj'jjL1.˙/ C jaj

�
:

By the Schauder regularity estimates, we conclude that,

jjwjjC2;˛.˙/ 6 c
�
jjwjjL1.˙/ C jj' C �jjC0;˛.˙/

�
6 c

�
jj'jjC0;˛.˙/ C jaj

�
;

(see [16], Chapter 6, Theorem 6:30). Since the same is true for j�j, the proof is over.
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3.2 The proof of Lemma 2.1: A fixed point argument

Now we are ready to show existence, uniqueness and Lipschitz continuity with respect to � of the
solution .w;� ; �;�/ to (2.14).

Step (i): Existence and uniqueness. We solve our problem by a fixed point argument. In fact the
map

T .w; �/ D 	

�
PF .; �; w/;�

Z
˙

QQ.w/

�
is a contraction on the product B ��, where � D .�C;C/ and

B WD
˚
w 2 W \ C 2;˛s .˙/ W jjwjjC2;˛.˙/ < C

	
; (3.12)

provided C is large enough. In fact

jjF .; �; w/jjC0;˛.˙/ 6 
�
4jjvE jjC2;˛.˙/ C jjf jjC0;˛.˙/

�
C c jjwjjC2;˛.˙/

6 
�
4jjvE jjC2;˛.˙/ C jjf jjC0;˛.˙/

�
C cC2 < C

provided C > 2.4jjvE jjC2;˛.˙/ C jjf jjC0;˛.˙// and  is small enough. Similarly, we can see that
F .; �; w/ is Lipschitz continuous in w with Lipschitz constant of order  .

In addition, the second component fulfillsˇ̌̌̌ Z
˙

QQ.w/

ˇ̌̌̌
6 cjjwjj2

C2;˛.˙/
6 cC 22 < C

if  is small enough, and the same is true for the Lipschitz constant.

Lipschitz continuity with respect to �. In order to prove (2.18), we point out that, if we set wi WD
w;�i and yi WD x C �i C wi .x/�.x/, for i D 1; 2,

jjf .y1/ � f .y2/jjC0;˛.˙/ 6 c
�
j�1 � �2j C jjw1 � w2jjC2;˛.˙/

�
and

jj QLw1 � QLw2jjC0;˛.˙/ 6 cjjw1 � w2jjC2;˛.˙/;

where QL is defined in (2.6), and

jjQ.w1/ �Q.w2/jjC0;˛.˙/ 6 c
�
jjw1jjC2;˛.˙/ C jjw2jjC2;˛.˙/

�
jjw1 � w2jjC2;˛.˙/

6 cC jjw1 � w2jjC2;˛.˙/:

Similarly, we can show thatˇ̌̌̌ Z
˙

�
QQ.w1/ � QQ.w2/

�
d�

ˇ̌̌̌
6 c jjw1 � w2jjC2;˛.˙/;

thus, applying 	 ,

j�1 � �2j C jjw1 � w2jjC2;˛.˙/ 6 c
�
jjw1 � w2jjC2;˛.˙/ C j�1 � �2j

�
:

In conclusion, for  small enough,

j�1 � �2j C
1

2
jjw1 � w2jjC2;˛.˙/ 6 c j�1 � �2j:
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4. Solving the bifurcation equation

The parametrisation � W Y ! ˙ of˙ introduced in (2.9) induces a parametrisation ˇ W Y ! � WD

@F given by
ˇ.y1; y2/ WD �.y1; y2/C � C w;�.y1; y2/�.y1; y2/: (4.1)

The volume element can be expressed in terms of � in this way

jˇy1 � ˇy2 j D j�y1 � �y2 j C L
1
�w;� CQ

1
�w;� ; (4.2)

where L1
�

depends linearly on w;� and on its gradient and Q1
�

is quadratic in the same quantities.
More precisely, they satisfy the estimates8<:jL1�wj 6 cjjwjjC2;˛.˙/

jQ1
�
.w/j 6 cjjwjj2

C2;˛.˙/
:

(4.3)

Using the Taylor expansion of the function 1
1Cs

, we can show that the outward-pointing unit normal
to � is

�� D
ˇy1 � ˇy2

jˇy1 � ˇy2 j
D

�y1 � �y2

j�y1 � �y2 j
C QL1�w;� C

QQ1
�w;� D � C

QL1�w;� C
QQ1
;�w� ; (4.4)

with QL1
�

and QQ1
�

satisfying (4.3).
Now we point out that, if � is a critical point of ˚ , then

@�i˚ .�/ D 0: (4.5)

We will rephrase this fact in a more convenient way, that will be more suitable for the forthcoming
computations. We define the one-parameter family of diffeomorphisms

yt W Y ! R3

by
yt .y1; y2/ WD �.y1; y2/C � C tei C w;�Ctei .y1; y2/�.y1; y2/; (4.6)

for i D 1; 2; 3; �t WD yt .Y / is the image of yt . By construction, �t is actually a submanifold of T 3

and �0 D � . In terms of �t , condition (4.5) is equivalent to

d

dt
I .�t /jtD0 D 0: (4.7)

By a result of Fall and Mahmoudi (see [13]),

0 D
d

dt
I .�t /jtD0 D

Z
�

.H� C 4vF C f /.�; �� /d�� C
1

j@� j

Z
@�

.�; ��@� /ds; (4.8)

where

� D
d

dt
yt .x/jtD0 D ei C @�iw;��: (4.9)
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and ��
@�

is the unit normal to @� in � . The boundary term vanishes since, by periodicity, @� D ;.
Using the parametrisation ˇ of � and expansions (4.4) and (4.2), the latter relation becomesZ

Y

�
.H� C 4vF C f /

�
ˇ.y1; y2/

��
ei C @�iw;��; � C

QL1�w;� C
QQ1
�w;�

�
�
j�x � �y j C L

1
�w;� CQ

1
�w;�

��
dy1dy2 D 0:

By the auxiliary equation, we know that

.H� C 4vF C f /
�
ˇ.y1; y2/

�
D

3X
kD1

Ak;;��k.y1; y2/C �; (4.10)

thus

3X
kD1

Ak;;�

�Z
˙

�k�id� C bki

�
C �

Z
�

.�; �� /d�� D 0; for i D 1; 2; 3; (4.11)

with bki D O./. Moreover, once again by [13], we know that

d

dt
L3.Ft / D

Z
�

.�; �F /d�� ;

hence, by the volume constraint, Z
�

.�; �F /d�� D 0;

thus we get
3X
kD1

Ak;;�

�Z
˙

�k�id� C bki

�
D 0; for i D 1; 2; 3: (4.12)

Since the matrix Lki is invertible (see Remark 3.2) and the coefficients bki are small, the matrix
Lki C bki is invertible too, therefore Ak;;� D 0 for k D 1; 2; 3.
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