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Governing equations of motion for a viscous incompressible material surface are derived from the

balance laws of continuum mechanics. The surface is treated as a time-dependent smooth orientable

manifold of codimension one in an ambient Euclidian space. We use elementary tangential calculus

to derive the governing equations in terms of exterior differential operators in Cartesian coordinates.

The resulting equations can be seen as the Navier-Stokes equations posed on an evolving manifold.

We consider a splitting of the surface Navier-Stokes system into coupled equations for the tangential

and normal motions of the material surface. We then restrict ourselves to the case of a geometrically

stationary manifold of codimension one embedded in R
n. For this case, we present new well-

posedness results for the simplified surface fluid model consisting of the surface Stokes equations.

Finally, we propose and analyze several alternative variational formulations for this surface Stokes

problem, including constrained and penalized formulations, which are convenient for Galerkin

discretization methods.
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1. Introduction

Fluid equations on manifolds appear in the literature on mathematical modelling of emulsions,

foams and biological membranes, e.g., [8, 26, 31, 36]; they are also studied as a mathematical

problem of its own interest, e.g., [2, 3, 13, 24, 37, 38]. In certain applications, such as the dynamics

of liquid membranes [4], one is interested in formulations of fluid equations on evolving (time-

dependent) surfaces. Such equations are considered in several places in the literature. The authors

of [4] formulate a continuum model of fluid membranes embedded in a bulk fluid, which includes
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governing equations for a two-dimensional viscous fluid moving on a curved, time-evolving surface.

The derivation of a surface strain tensor in that paper uses techniques and notions from differential

geometry (k-forms). A similar model was derived from balance laws for mass and momentum

and associated constitutive equations in [29]. The derivation and the resulting model uses intrinsic

variables on a surface. Equations for surface fluids in the context of two-phase flow are derived

or used in [5, 7, 26, 30]. In those papers the surface fluid dynamics is strongly coupled through

a no-slip condition with the bulk fluid dynamics. An energetic variational approach was recently

used in [21] to derive the dynamical system for the motion of an incompressible viscous fluid on an

evolving surface.

Computational methods and numerical analysis of these methods for fluid equations on surfaces

is a relatively new field of research. Exploring the line of research starting from the seminal paper

[35], it is noted in [4] and [26] that

the equations of motion are formulated intrinsically in a two-dimensional manifold with

time-varying metric and make extensive use of the covariant derivative and calculations

in local coordinates, which involve the coefficients of the Riemannian connection and

its derivatives. The complexity of the equations may explain why they are often written

but never solved for arbitrary surfaces.

Recent research addressing the numerical solution of fluid equations on surfaces includes [5, 26,

28–32].

We discuss the two main contributions of this paper. The first one is related to modeling.

Based on fundamental surface continuum mechanical principles treated in [18, 25] we derive fluid

equations on an evolving surface from the conservation laws of mass and momentum for a viscous

material surface embedded in an ambient continuum medium. We assume that the bulk medium

interacts with the fluidic membrane through the area forces. To derive the governing equations, we

use only elementary tangential differential calculus on a manifold. As a result, the surface PDEs that

we derive are formulated in terms of differential operators in the Cartesian coordinates. In particular,

we avoid the use of local coordinates. Using tangential differential operators makes the formulation

more convenient for numerical purposes and facilitates the application of a level set method or

other implicit surface representation techniques (no local coordinates or parametrization involved)

to describe the surface evolution. The resulting equations can be seen as the Navier-Stokes equations

for a viscous incompressible 2D surface fluid posed on an evolving manifold embedded in R
3. The

same equations have been derived and studied in the recent paper [21]. In that paper, however, the

derivation is based on global energy principles instead of local conservation laws. For gaining some

further insight in this rather complex surface Navier-Stokes model, we consider a splitting of the

system into coupled equations for the tangential and normal motions of the material surface. The

resulting equation for tangential motions agrees with one derived in [21], but differs from the one

found in [4]. We comment on how the surface Navier-Stokes equations that we consider are related

to other formulations of surface fluid equations found in the literature (Remarks 3.1 and Section 3.2).

The second main contribution of this paper is a derivation of well-posedness results for a

strongly simplified case. We restrict ourselves to a geometrically stationary closed smooth manifold

of codimension one, embedded in R
n. For this case, we present new well-posedness results for the

surface Stokes equations. Key ingredients in the analysis are a surface Korn’s inequality and an inf-

sup result for the Stokes bilinear form that couples surface pressure and surface velocity. We propose

and analyze several different variational formulations of the surface Stokes problem, including

constrained and penalized formulations, which are convenient for Galerkin discretization methods.
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The remainder of this paper is organized as follows. Section 2 collects necessary preliminaries

and auxiliary results. In Section 3 we derive the governing equations for the motion of a viscous

material surface, the surface Navier-Stokes system. We also consider a directional splitting of the

system and discuss alternative formulations of the surface fluid equations. In Section 4 we prove

a fundamental surface Korn’s inequality and well-posedness of a variational formulation of the

surface Stokes problem. In Sections 5 and 6 we introduce alternative weak formulations of the

surface Stokes problem, which we believe are more convenient for Galerkin discretization methods

such as surface finite element methods.

2. Preliminaries

This section recalls some basics of tangential calculus for evolving manifolds of codimension one.

Several helpful auxiliary results are also proved in this section. Consider � .t/ � R
n, n > 3, a

.n � 1/-dimensional closed, smooth, simply connected evolving manifold for t > 0. We are mainly

interested in n D 3, but most of the analysis applies for general n. In the modeling part, Section 3, we

only consider n D 3. Concerning the smoothness conditions for � .t/ we note that it will sufficient

to assume that for any given t > 0 the surface � .t/ has C 3 smoothness. In the remainder we always

assume that this holds. For k 2 0; 1; 2; the spaces C k.� / are defined in the usual way via charts.

The fact that the manifold is embedded in R
n plays a key role in the derivation and formulation

of the PDEs. For example, for a C 3 manifold, a normal extension of f 2 C k.� /, k 2 0; 1; 2;

is a C k-smooth function in a R
n-neighborhood of � and the surface differential operators can be

formulated in terms of differential operators in Euclidean space R
n, with respect to the standard

basis in R
n.

The outward pointing normal vector on � D � .t/ is denoted by n D n.x; t/, and P D P.x; t/ D
I � nnT is the normal projector on the tangential space at x 2 � .t/. First we consider � D � .t/

for some fixed t and introduce spatial differential operators. For f W R
n ! R

m, we denote by

rf .x/ 2 L.Rn;Rm/ the Frechet derivative at x 2 R
n, where L.Rn;Rm/ is the vector space of

linear transformations from R
n to R

m. We often skip the argument x in the notation below. The

partial derivative is denoted by @i f D .rf /ei 2 R
m, i D 1; : : : ; n. Hence .rf /z D

Pn
j D1 @j f zj

for z 2 R
n. Note that for a scalar function f , i.e., m D 1, rf is a row vector. In the setting of

this paper it is convenient to use this less standard row (instead of column) representation for the

gradient (e.g., the formula r� f D .rf /P holds for the tangential gradient, cf. (2.1)). The vector

rT f WD .rf /T denotes the column gradient vector.

The tangential derivative (along � ) is defined as .rf /Pz D
Pn

j D1 @j f .Pz/j for z 2 R
n. For

m D 1, i.e., f W Rn ! R the corresponding i -th (tangential) partial derivative is denoted by ri :

ri f D

n
X

j D1

@j f .Pei /j and r� f WD
�

r1f; : : : ; rnf
�

D .rf /P: (2.1)

We also need such covariant partial derivatives for m D n and m D n � n. For m D n the i -th

covariant partial derivative of v W Rn ! R
n is defined as

ri v D

n
X

j D1

P@j v.Pei /j and r� v WD
�

r1v : : : rnv
�

D P.rv/P: (2.2)

We shall use the notation rT
� f WD .r� f /T , rT

� v WD .r� v/T for the transposed vector and

matrix, and similarly for r� replaced by r. For m D n � n the i -th covariant partial derivative of



356 TH. JANKUHN, M. A. OLSHANSKII AND A. REUSKEN

A W Rn ! R
n�n is defined as

ri A D

n
X

j D1

P@j AP.Pei /j and r� A WD
�

r1A : : : rnA
�

: (2.3)

Note that from nT P D Pn D 0 we get P.@j P/P D �P.@j nnT C n@j nT /P D 0, hence ri P D 0,

i D 1; : : : ; n, i.e., r� P D 0. The covariant partial derivatives of f , v, or A depend only on the

values of these fields on � . For scalar functions f; g and vector functions u; v W � ! R
n we have

the following product rules:

r� .fg/ D gr� f C f r� g (2.4)

r� .u � v/ D vT r� u C uT r� v; if Pu D u; Pv D v; (2.5)

r� .f u/ D f r� u C Pur� f: (2.6)

Besides these covariant derivatives we also need tangential divergence operators for v W � ! R
n

and A W � ! R
n�n. These are defined as follows:

div� v WD tr.r� v/ D tr
�

P.rv/P
�

D tr
�

P.rv/
�

D tr
�

.rv/P
�

; (2.7)

div� A WD
�

div� .eT
1 A/; : : : ; div� .eT

n A/
�T

: (2.8)

These tangential differential operators will be used in the modeling of conservation laws in

Section 3. In particular, the differential operator P div�

�

r� v C rT
� v

�

, which is the tangential

analogon of the div.rv C rT v/ operator in Euclidean space, plays a key role. We derive some

properties of this differential operator.

We first relate P div� .r� v/ to a Laplacian. For this we introduce the space of smooth tangential

vector fields C k
T .� /n WD f v 2 C k.� /n j Pv D v g, with scalar product .u; v/0 D

R

�
u � v ds, and

the space of smooth tangential tensor fields C k
T .� /n�n WD f A 2 C k.� /n�n j PAP D A g, with

scalar product .A; B/0 WD
R

�
tr.ABT / ds. From the partial integration identity (see, e.g., (14.17)

in [17]),

Z

�

v � .P div� A/ ds D

Z

�

v � div� A ds

D �

Z

�

tr.AT r� v/ ds; v 2 C 1
T .� /n; A 2 C 1

T .� /n�n;

it follows that for L W C 1
T .� /n�n ! C 0

T .� /n given by L.A/ D P div� .A/ we have

.L.A/; v/0 D �.A; r� v/0 for all v 2 C 1
T .� /n; A 2 C 1

T .� /n�n:

Hence, �L is the adjoint of r� , i.e., L D �r�
� . Thus we have

P div� .r� v/ D L.r� v/ D �r�
� r� v DW �� v: (2.9)

This vector Laplacian �� is the so-called Bochner Laplacian [33]. It can be extended to a self-

adjoint operator on a suitable space of vector fields on � .

The mapping v ! P div� rT
� v requires more calculations. Note that in Euclidean space we

have div .rT v/i D div .eT
i rT v/ D div .@i v/ D @i .div v/. Hence, for divergence free functions
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v we have div rT v D 0. For the corresponding surface differential operator we do not have a

simple commutation relation, and the analysis becomes more complicated. In [4, 26] this mapping

is analyzed with intrinsic tools of differential geometry. It is, however, not clear how the divergence

operators used in those papers, which are defined via differential forms, are related to the tangential

divergence operator div� introduced above, which is defined in Euclidean space R
n. Lemma 2.1

below shows a useful representation for P div� rT
� v. The proof of the lemma is given in the

Appendix and it only uses elementary tangential calculus. For a vector field v on � .t/ we shall

use throughout the paper the notion vT D Pv for the tangential part and vN D v � n for the normal

coordinate, so that

v D vT C vN n on � .t/:

Lemma 2.1 Let H D r� n 2 R
n be the Weingarten mapping (second fundamental form) on � .t/

and � WD tr.H/ the (doubled) mean curvature. The following holds:

P div� rT
� v D rT

� div� v C
�

tr.H/H � H2
�

v; 8 v 2 C 2
T .� /n; (2.10)

n � div� rT
� v D n � div� .r� v/ D �tr.Hr� v/

D �tr.Hr� vT / � vN tr.H2/; 8 v 2 C 2.� /n; (2.11)

P div� .H/ D rT
� �: (2.12)

If n D 3, then (2.10) simplifies to

P div� rT
� v D rT

� div� v C Kv; 8 v 2 C 2
T .� /3; (2.13)

where K is the Gauss curvature, i.e., the product of the two principal curvatures.

We now introduce some notations related to the evolution of � .t/ in time. Let S be the n-

dimensional manifold defined by the evolution of � ,

S WD
[

t>0

� .t/ � ftgI

the (space–time) manifold S is embedded in R
nC1. For the rest of the paper, we assume that S is

C 2 smooth (and we continue to assume that � .t/ is C 3 smooth for any fixed t > 0). We assume

a flow field u W R
n ! R

n such that V� D u � n on S, where V� denotes the normal velocity of

� . For a smooth f W R
n ! R we consider the material derivative Pf (the derivative along material

trajectories in the velocity field u).

Pf D
@f

@t
C

n
X

iD1

@f

@xi

ui D
@f

@t
C .rf / u:

The material derivative Pf is a tangential derivative for S, and hence it depends only on the surface

values of f on � .t/. For a vector field v, we define Pv componentwise, i.e., Pv D @v
@t

C .rv/u. In

Lemma 2.2 we derive some useful identities for the material derivative of the normal vector field

and normal projector on � .

Lemma 2.2 The following identities hold on � .t/:

Pn D HuT � rT
� uN D �P.rT u/ n; (2.14)

PP D P.rT u/.I � P/ C .I � P/.ru/P: (2.15)
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Proof. Let d.x; t/ be the signed distance function to � .t/ defined in a neighborhood Ut of � .t/.

Define the normal extension of n and H to Ut by nT D rd , H D r2d (note that the latter identity

shows that H is symmetric), and consider the closest point projection p.x; t/ D x � d.x; t/n.x; t/,

x 2 Ut . We then have
@d

@t
.x; t/ D �uN

�

p.x; t/; t 0
�

; x 2 Ut :

Using the chain rule we get

r
�

uN

�

p.x; t/; t
��

D r� uN

�

p.x; t/; t
��

I � d.x; t/H
�

x 2 Ut :

Take x 2 � .t/, using d.x; t/ D 0, p.x; t/ D x and rd D nT , we obtain

@nT

@t
D

@

@t
rd D r

@d

@t
D �r� uN ; on � .t/: (2.16)

Using this and Hn D 0 we get

Pn D
@n

@t
C .rn/u D �rT

� uN C HuT ;

which is the first identity in (2.14). From uT � n D 0 we get nT ruT D �uT
T rn and combined with

the symmetry of H we get

HuT D �.rT uT /n: (2.17)

Furthermore, we note that r.uN n/ D nruN C uN rn, hence nT r.uN n/ D ruN . Using this, the

result in (2.17) and PH D H we get

�rT
� uN C HuT D �P

�

rT uN C .rT uT /n
�

D �P
�

rT .uN n/n C .rT uT /n
�

D �P.rT u/n;

which is the second identity in (2.14). The result in (2.15) immediately follows from PP D �PnnT �
n PnT and the second identity in (2.14).

From (2.14) we see that the vector field Pn is always tangential to � .t/.

3. Modeling of material surface flows

In this section, we assume � .t/ is a material surface (fluidic membrane) embedded in R
3 as defined

in [18, 25], with density distribution �.x; t/. By u.x; t/, x 2 � .t/, we denote the smooth velocity

field of the density flow on � , i.e., u.x; t/ is the velocity of the material point x 2 � .t/. The

geometrical evolution of the surface is defined by the normal velocity uN , for u.x; t/ D uT CuN n.

For all t 2 Œ0; T �, we assume � .t/ � R
3 to be smooth, closed and embedded in an ambient

continuum medium, which exerts external (area) forces on the material surface.

Let .t/ � � .t/ be a material subdomain. For a smooth f W S ! R, we shall make use of the

transport formula (also known as a Leibniz rule; see, e.g., [12] Theorem 5.1),

d

dt

Z

.t/

f ds D

Z

.t/

. Pf C f div� u/ ds: (3.1)
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For a smooth tangential field uT W S ! R
n we need the surface Stokes formula (see, e.g. [17],

section 14.1), Z

.t/

div� uT ds D

Z

@.t/

uT � � d`I (3.2)

here � D �.x; t/ denotes the normal to @.t/ that is tangential to � .t/.

Inextensibility. We assume that the surface material is inextensible, i.e., d
dt

R

.t/
1 ds D 0 must

hold. The Leibniz rule yields
R

.t/
div� u ds D 0. Since .t/ can be taken arbitrary, we get

div� u D 0 on � .t/: (3.3)

We recall the notation � D tr.H/ D div� n for the (doubled) mean curvature. Equation (3.3) can be

rewritten as

div� uT D �uN � on � .t/: (3.4)

Mass conservation. From d
dt

R

.t/
�.x; t/ ds D 0, (3.1) and (3.3) we obtain P� D 0. In particular,

if �jtD0 D const, then � D const for all t > 0.

Momentum conservation. The conservation of linear momentum for .t/ reads:

d

dt

Z

.t/

�u ds D

Z

@.t/

f� d` C

Z

.t/

b ds; (3.5)

where f� are the contact forces on @.t/, b D b.x; t/ are the area forces on .t/, which include

both tangential and normal forces, for example, normal stresses induced by an ambient medium and

elastic bending forces.

Surface diffusion. For the modeling of the contact forces we use results from [18, 25]. In [18],

Theorems 5.1 and 5.2, the “Cauchy-relation” f� D T�, with a symmetric tangential stress tensor

T is derived. We denote this surface stress tensor by � � , which has the properties � � D � T
� and

� � D P� � P. In [18] the following (infinitesimal) surface rate-of-strain tensor is derived:

Es.u/ WD
1

2
P.ru C rT u/P D

1

2
.r� u C rT

� u/: (3.6)

One needs a constitutive law which relates � � to this surface strain tensor. We consider a

“Newtonian surface fluid”, i.e., a constitutive law of the form

� � D ��P C C.r� u/;

with a scalar function � , surface pressure, and a linear mapping C . Assuming isotropy and requiring

an independence of the frame of reference leads to the so-called Boussinesq–Scriven surface stress

tensor, which can be found at several places in the literature, e.g., [1, 7, 18, 35] :

� � D ��P C .� � �/. div� u/P C 2�Es.u/;

with an interface dilatational viscosity � and interface shear viscosity � > 0. We assume � and �

constant. Due to inextensibility the dilatational term vanishes, and we get

� � D ��P C 2�Es.u/: (3.7)
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Using the Stokes formula (3.2) applied row-wise to � � and the relation div� .�P/ D rT
� � � ��n;

we obtain the following linear momentum balance for .t/:

d

dt

Z

.t/

�u ds D

Z

.t/

.�rT
� � C 2� div� .Es.u// C b C ��n/ ds:

For the left hand-side of this equation, the Leibniz rule (3.1) gives

d

dt

Z

.t/

�u ds D

Z

.t/

. P�u C � Pu C �u div� u/ ds:

The inextensibility and mass conservation yield the simplification P�uC� PuC�u div� u D � Pu: Hence,

we finally obtain the surface Navier-Stokes equations for inextensible viscous material surfaces:

(

� Pu D �rT
� � C 2� div� .Es.u// C b C ��n;

div� u D 0:
(3.8)

Together with the equations P� D 0 and V� D u � n, where V� is the normal velocity of � , and

suitable initial conditions this forms a closed system of six equations for six unknowns u, p, �, and

V� .

Clearly, the area forces b coming from the adjacent inner and outer media are critical for the

dynamics of the material surface. For the example of an ideal bulk fluid, one may assume normal

stresses due to the pressure drop between inner and outer phases, b D n.pint � pext /, where

pint �pext may depend on the surface configuration, e.g., its interior volume. In an equilibrium with

u D 0 this simplifies to the balance of the internal pressure and surface tension forces according

to Laplace’s law. Such a balance will be more complex if there is only a shape equilibrium, i.e.,

uN D 0, but uT ¤ 0, cf. (3.17) below. The area forces b may also include forces depending on

the shape of the surface, such as those due to an elastic bending energy (Willmore energy), cf. for

example, [6, 9, 20]. These forces depend on geometric invariants and material parameters. Therefore

b may (implicitly) depend on u.

Using a completely different approach the model (3.8) is also derived in [21] and it is also

found in [7] (in this reference � is treated as a constant parameter related to surface tension). Some

variants of (3.8) are used in [5, 22, 26], cf. the further discussion in Section 3.2 below. In [5, 22]

the interface viscous fluid flow is coupled with outer bulk fluids, and for the velocity of the material

surface u DW u� one introduces the condition u� D .ubulk/j� , which means that both the normal

and tangential components of surface and bulk velocities coincide. The condition for the tangential

component corresponds to a “no-slip” condition at the interface. The condition u� D .ubulk/j� ,

allows to eliminate u� (using a momentum balance in a small bulk volume element that contains

the interface) and to deal with the surface forces (both viscous and b) through a localized force

term in the bulk Navier-Stokes equation. The surface pressure � remains and is used to satisfy the

inextensibility condition div� u D 0. In [26] a special case of (3.8), namely that of a stationary

surface is considered, cf. (3.16) below.

In certain cases, for example, when the inertia of the surface material dominates over the viscous

forces in the bulk, it may be more appropriate to relax the no-slip condition u� D .ubulk/j� and

assume the coupling with the ambient medium only through the area forces b. In such a situation

the surface flow can not be “eliminated” and the system (3.8) becomes an important part of the

surface–bulk fluid dynamics model. In Section 3.1 below we take a closer look at the normal and
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tangential dynamics defined by (3.8). As far as we know, in the literature the surface Navier-Stokes

equations (3.8) on evolving surfaces, without coupling to bulk fluids, have only been considered in

the recent paper [21]. Results of numerical simulations of such a model for a stationary surface,

uN D 0, are presented in [26]. This special case uN D 0 will be further addressed in Section 3.1.

3.1 Directional splitting of the surface Navier-Stokes equations

Given the force term b, the system (3.8) determines u D uN nCuT (and thus the evolution of � .t/),

and there is a strong coupling between uN and uT . There is, however, a clear distinction between

the normal direction and the tangential direction (see, e.g., the difference in the viscous forces in

normal and tangential direction in (2.10) and (2.11)). In particular, the geometric evolution of � .t/

is completely determined by uN (which may depend on uT ). Therefore, it is of interest to split the

equation (3.8) for u into two coupled equations for uN and uT . We project the momentum equation

(3.8) onto the tangential space and normal space, respectively.

First, we compute with the help of identities (2.14)–(2.15)

P Pu D P.Pu/ � PPu D PuT � PPu D PuT C . Pn � uT /n C uN Pn: (3.9)

Note that the last two terms on the right hand-side are orthogonal, since n � Pn D 0. Applying P to

both sides of (3.9) and using P2 D P and P Pn D Pn, we also get

P Pu D @�
� uT C uN Pn; (3.10)

where @�
� uT WD P PuT can be interpreted as the covariant material derivative. We also have

n � Pu D PuN � Pn � u D PuN � Pn � uT :

We thus get the following directional splitting of the equations in (3.8):
8

<̂

:̂

� PuT D �rT
� � C 2�P div� Es.u/ C bT � �

�

. Pn � uT /n C uN Pn
�

;

� PuN D 2�n � div� Es.u/ C �� C bN C � Pn � uT ;

div� uT D �uN �:

(3.11)

The material derivative of the tangential vector field on the left-hand side of the first equation in

(3.11), in general, is not tangential to � .t/. Its normal component is balanced by the term �. Pn�uT /n.

One can also write this equation only in tangential terms employing the identity (3.10) instead of

(3.9). This results in the tangential momentum equation

�@�
� uT D �rT

� � C 2�P div� Es.u/ C bT � �uN Pn: (3.12)

These equations can be further rewritten using

Es.u/ D Es.uT / C uN H: (3.13)

From this, the definition of the Bochner Laplacian and the relations in Lemma 2.1 we get

P div� Es.u/ D P div� Es.uT / C P div� .uN H/

D
1

2
P div� .r� uT / C

1

2
P div�

�

rT
� uT

�

C uN P div� .H/ C HrT
� uN

D
1

2
�� uT C

1

2
KuT C

1

2
rT

� div� uT C uN rT
� � C HrT

� uN :
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We would like to have a representation of P div� Es.u/ that does not include derivatives of H or its

invariants. To this end, we note that div� uT D �uN � implies

rT
� div� uT C uN rT

� � D �rT
� .uN �/ C uN rT

� � D ��rT
� uN :

Combining this we get

2�P div� Es.u/ D �
�

�� uT C KuT � rT
� . div� uT / � 2.�P � H/rT

� uN

�

: (3.14)

Note that �P � H has the same eigenvalues and eigenvectors as H, which follows from the relation

�P � H D KH�, cf. (A.6). Thus, using (2.15), (3.12), and (3.14) we can rewrite (3.11) as

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�@�
� uT D �rT

� � C �
�

�� uT C KuT � rT
� . div� uT / � 2.�P � H/rT

� uN

�

C bT � �uN Pn

� PuN D �2�
�

tr.Hr� uT / C uN tr.H2/
�

C �� C bN C � Pn � uT

div� uT D �uN �:

(3.15)

It is interesting to note that the first equation in (3.15) is of (quasi-)parabolic type, while the equation

for the evolution of the normal velocity involves only first order derivatives. Furthermore, Pn can be

expressed in terms of uT and uN ,

Pn D HuT � rT
� uN :

Hence the derivatives in the terms �uN Pn and � Pn � uT on the right-hand side of (3.11) and (3.15) are

only tangential ones (no @
@t

involved). From this we conclude that given u.�; t/ for t < t� (which

determines � .t/, t < t�) the second equation in (3.15) determines the dynamics of uN .�; t/ at

t D t�, hence of the surface � .t�/, and the first equation (3.15) determines the dynamics of uT .�; t/

at t D t�.

REMARK 3.1 We already noted that (3.8) or (3.15) together with P� D 0 and the equation for the

surface evolution, V� D u � n, form a closed system. This is different to the situation in [21], where

the evolution of � .t/ is given a priori, resulting in an overdetermined system (for the total velocity

u), which is then projected to obtain a closed system for the tangential velocity uT , cf. the discussion

in Section 1 of [21]. In our setting an a priori known evolution of the surface would imply that uN

is given. In this case, the first and the third equations in (3.11) or (3.15) define a closed system for

uT and � . We note, however, that the continuum mechanics corresponding to such a closed system

is less clear to us, since the fundamental momentum balance (3.5) used to derive the equations does

not assume any a priori constraint on uN .

The model (3.8), or equivalently the one in (3.15), differs from the fluid model on evolving

surfaces derived in [4]. In the latter a tangential momentum equation (eq. (3) in [4]) is introduced,

which is similar to, but different from, the first equation in (3.11). The model in [4] is based on a

“conservation of linear momentum tangentially to the surface”, which is not precisely specified.1

Our model is derived based on a conservation of total momentum (i.e., for u, not for uT ) as in

(3.5). The “tangential” equation (1.2) in the paper [21] is the same as the one obtained by applying

the projection P to the first equation in (3.8). Above it is shown that this projected equation equals

(3.12) and also the first equations in (3.11), (3.15).

1 [Footnote added in the proofs] The controversy was recently addressed in Reuther, S. & Voigt, A., Erratum: The

interplay of curvature and vortices in flow on curved surfaces. Multiscale Modeling & Simulation 16 (2018), 1448–1453.
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We next discuss two special cases.

Firstly, assume that the system evolves to an equilibrium with � .t/ stationary, i.e., uN D 0.

Then the equations in (3.11) reduce to the following surface incompressible Navier-Stokes equations

for the tangential velocity uT on a stationary surface � :

8

<

:

�

�
@uT

@t
C .uT � r� /uT

�

D �rT
� � C 2�P div� Es.uT / C bT

div� uT D 0:

(3.16)

For the derivation of the first equation in (3.16) we used the tangential momentum equation (3.12),

uN D 0, and

@�
� uT D P

�
@uT

@t
C .ruT /u

�

D P

�
@uT

@t
C .ruT /uT

�

D
@uT

@t
C .r� uT /uT DW

@uT

@t
C .uT � r� /uT ;

where for the third identity we used @P
@t

D 0 on geometrically steady surfaces and .r� uT /uT D
P.ruT /PuT D P.ruT /uT by (2.2). The second equation in (3.11), or (3.15), reduces to

bN D 2�tr.Hr� uT / � �� � �uT � HuT ; (3.17)

which describes the reaction force bN of the surface flow uT . If there is no surface flow, i.e., uT D 0,

this reaction force is the usual surface tension ��, with a surface tension coefficient � .

Again, if the stationary surface � is a priori given as a domain where the equations are posed,

then (3.16) (with a suitable initial condition) forms a complete system. Equation (3.17) applies to a

material surface and can be seen as a necessary condition for the area normal force bN to sustain

the geometrical equilibrium of the surface.

In the second case, � .0/ is taken equal to the plane z D 0 in R
3. This is not a closed surface, but

the derivation above also applies to connected surfaces without boundary, which may be unbounded.

We consider bN D 0, uN .0/ D 1. Only easily checks that independent of uT the second equation

in (3.11) is satisfied for uN .�; t/ D 1, Pn D 0, H D 0 for all t > 0. Hence, the evolving surface is

given by the plane � .t/ D f .x; y; z/ D .x; y; t/ g. The first and the third equations in (3.11) reduce

to the standard planar Navier-Stokes equations for uT .

3.2 Other formulations of the surface Navier-Stokes equations

Incompressible Navier-Stokes equations on stationary manifolds are well-known in the literature,

e.g., [10, 13, 24, 37, 38]. Only very few papers treat incompressible Navier-Stokes equations on

evolving surfaces, cf. [4, 21]. Comparing the model (3.8) for the general case of an evolving

surface (or its equivalent reformulations treated above) or the model (3.16) for the case of a

stationary surface to the models treated in the literature we observe the following. As noted above

(Remark 3.1), the general model (3.8) is the same as the one derived in [21], but differs from the

one given in [4]. Differences with other models presented in the literature can result from a different

treatment of surface diffusion or of surface pressure. Below we briefly address these two modeling

topics.
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Surface diffusion. Our modeling of diffusion is based on the constitutive law (3.7), leading to the

second order term div� .Es.u// in (3.8), or P div� .Es.uT // for the stationary case in (3.16). Certain

other Navier-Stokes equations in the literature are formally obtained by substituting Cartesian

differential operators by their geometric counterparts [10, 38] rather than from first mechanical

principles. This leads to formulations of surface Navier-Stokes equations which are not necessarily

equivalent, due to a difference in the diffusion terms. The diagram below and identities (3.18)

illustrate some “correspondences” between Cartesian and surface operators, where for the surface

velocities we assume uN D 0, i.e., u D uT ,

R
n�1 W �div.ru C rT u/

div uD0
D ��u D .rotT rot � rdiv/u

o o o

Manifold W �P div� .2Es.u//
„ ƒ‚ …

div� uD0

¤ ��� u
„ ƒ‚ …

¤ ��H
� u

„ ƒ‚ …

surface Bochner Hodge

diffusion Laplacian Laplacian

Moreover, for a surface in R
3 we have, cf. (2.9), (2.13) and the Weitzenböck identity [33], the

following equalities for u such that div� u D 0:

�P div� .2Es.u// D ��� u � Ku D ��H
� u � 2Ku: (3.18)

Using this we see that the Navier-Stokes system (3.16) coincides with the Navier-Stokes equations

(on a stationary surface) considered in [24, 37] (see [37] section 6). Formulations of the surface

momentum equations employing the identity

�P div� .2Es.u// D ��H
� u � 2Ku;

with the Hodge–de Rham Laplacian ��H
� can be convenient for rewriting the problem in surface

stream-function – vorticity variables, see, e.g., [26]. However, such a formulation is less convenient

for the analysis of well-posedness, since the Gauss curvature K in general does not have a fixed

sign. Moreover, in a numerical approximation of (3.16) one would have to approximate the Gauss

curvature K based on a “discrete” (e.g., piecewise planar) surface approximation, which is known

to be a delicate numerical issue.

Surface pressure. We discuss the derivation of the pressure terms rT
� � and ��n in (3.8). In

most other papers on surface Navier-Stokes equations a pressure term of the form rT
� � appears.

In many papers, e.g., [3, 13, 38], the term ��n does not appear. We comment on this. The term

��n is part of the tension force generated by the fluidic surface and is due to the material nature

of the surface itself. The constitutive law (3.7) and the momentum conservation yield the term

div� .�P/ D rT
� � � ��n, which contains both tangential (rT

� �) and normal (��n) forces.

While the present paper introduces surface pressure via the surface stress tensor � � , as is

common in continuum mechanics, one can use a Hodge type decomposition to introduce � as a

Lagrange multiplier corresponding to the divergence constraint, see, e.g., [13]. Also in this setting

one obtains the term ��n if one considers general (not necessarily tangential) vector fields on the

surface. This can be seen as follows. The following result can be proved (see, Lemma 2.7 in [21])

for a smooth surface � : For u 2 L2.� /3

Z

�

u � � ds D 0 8� 2 C 1
0 .� /3; div� � D 0 iff u D rT

� � � ��n;
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for a � 2 H 1.� /. For closed surfaces C 1
0 .� /3 can be replaced by C 1.� /3. Hence, the L2-

orthogonal complement to the space of smooth solenoidal vector functions on � leads to pressure

terms exactly the same as in (3.8).

If on the other hand, one only considers tangential vector fields (which is natural for stationary

surfaces) the derivation of the above result in [21] also yields the following, which is a surface

variant of a well-known Helmholtz type result (cf. Theorem 2.9 in [15]): For u 2 L2.� /3 such that

u D uT holds, we have
Z

�

uT � �T ds D 0 8� 2 C 1
0 .� /3; div� �T D 0 iff uT D rT

� �;

for a � 2 H 1.� /. Hence, if the pressure is considered as a Lagrange multiplier (for the divergence

free constraint) the term ��n occurs if nontangential velocity fields are present (as in the case of

evolving surfaces).

3.3 Surface Stokes problem

The mathematical analysis of well-posedness of a problem as in (3.11) (or (3.8)) is a largely open

question. In this paper, we study the well-posedness of a relatively simple special case, namely a

Stokes problem on a stationary surface. We assume that uN D 0 (stationary surface) and assume

that the viscous surface forces dominate and thus it is reasonable to skip the nonlinear uT � r� uT

term in the material derivative. Furthermore, we first restrict to the equilibrium flow problem, i.e.,
@uT

@t
D 0. We thus obtain the stationary surface Stokes problem

�2�P div� .Es.uT // C rT
� � D bT ;

div� uT D 0:
(3.19)

One readily observes that all constant pressure fields and tangentially rigid surface fluid motions,

i.e., motions satisfying Es.vT / D 0, are in the kernel of the differential operator on the left-hand

side of the equation. Integration by parts, immediately implies the necessary consistency condition

for the right-hand side of (3.19),

Z

�

bT vT ds D 0 for all vT s.t. Es.vT / D 0: (3.20)

In the following sections we analyze different weak formulations of this Stokes problem.

The subspace of all tangential vector fields vT on � satisfying Es.vT / D 0 plays an important

role in the analysis of the surface Stokes problem. In the literature, such fields are known as Killing

vector fields, see, e.g., [34]. For a smooth two-dimensional Riemannian manifold, Killing vector

fields form a Lie algebra, which dimension is at most 3. For a compact smooth surface � embedded

in R
3 the dimension of the algebra is 3 iff � is isometric to a sphere.

4. A well-posed variational surface Stokes equation

Assume that � is a closed sufficiently smooth manifold. We introduce the space V WD H 1.� /n,

with norm

kuk2
1 WD

Z

�

ku.s/k2
2 C krue.s/k2

2 ds; (4.1)
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where k � k2 denotes the vector and matrix 2-norm. Here ue denotes the constant extension along

normals of u W � ! R
n. We have rue D r.uıp/ D rueP, where p is the closest point projection

onto � , hence only tangential derivatives are included in this H 1-norm. We define the spaces

VT WD
˚

u 2 V j u � n D 0
	

; E WD
˚

u 2 VT j Es.u/ D 0
	

: (4.2)

Note that E is a closed subspace of VT and dim.E/ 6 3. We use an orthogonal decomposition

VT D V 0
T ˚ E with the Hilbert space V 0

T D E?k�k1 (hence V 0
T � VT =E). We also need the factor

space L2
0.� / WD f p 2 L2.� / j

R

�
p dx D 0 g � L2.� /=R. We introduce the bilinear forms

a.u; v/ WD 2�

Z

�

Es.u/ W Es.v/ ds D 2�

Z

�

tr
�

Es.u/Es.v/
�

ds; u; v 2 V; (4.3)

b.u; p/ WD �

Z

�

p div� u ds; u 2 V; p 2 L2.� /: (4.4)

We take f 2 V 0, such that f .vT / D 0 for all vT 2 E , and consider the following variational Stokes

problem: determine .uT ; p/ 2 V 0
T � L2

0.� / such that

a.uT ; vT / C b.vT ; p/ D f .vT / for all vT 2 VT ;

b.uT ; q/ D 0 for all q 2 L2.� /:
(4.5)

This weak formulation is consistent to the strong one in (3.19) for f .vT / D .bT ; vT /0. Note that

Es.vT / D 0 implies tr.r� vT / D 0 and thus div� vT D 0, hence, b.vT ; p/ D 0 for all vT 2 E .

From this it follows that the first equation in (4.5) is always satisfied for all vT 2 E , hence it is

not relevant whether we use VT or V 0
T as space of test functions. For the analysis of well-posedness

a surface Korn’s inequality is a crucial ingredient. Although there are results in the literature on

Korn’s type equalities on surfaces, e.g. [11, 23], these are related to surface models of thin shells,

such as Koiter’s model, which contain derivatives in the direction of the normal displacement. In the

literature we did not find a result of the type given in (4.6) below, and therefore we include a proof.

Lemma 4.1 Assume � is C 2 smooth and compact. There exists cK > 0 such that

kEs.u/kL2.� / > cKkuk1 for all u 2 V 0
T : (4.6)

Proof. Let u D uT 2 V 0
T be given. Throughout this proof, the extension ue is also denoted by u.

Since rue D ru includes only tangential derivatives we introduce the notation

rP u WD .ru/P D rue

for the tangential derivative. Furthermore, the symmetric part of the tangential derivative tensor is

denoted by es.u/ WD 1
2
.rP u C rT

P u/. Below we derive the following inequality:

kukL2.� / C kes.u/kL2.� / > ckuk1 for all u 2 VT : (4.7)

Recall (2.17), Hu D �.rT u/n. Using this and P D I � nnT we get rT
� u D PrT uP D PrT u �

P.rT u/nnT D rT
P u C HunT , and thus we get the identity

Es.u/ D es.u/ C
1

2
.H unT C nuT H/:
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Since the surface is C 2-smooth this equality implies kes.u/kL2.� / 6 kEs.u/kL2.� / C ckukL2.� /,

and combining this with (4.7) yields

kukL2.� / C kEs.u/kL2.� / > ckuk1 for all u 2 VT ; (4.8)

with some c > 0. We now apply the Petree–Tartar Lemma, e.g., Lemma A.38 in [14] to Es 2
L.V 0

T ; L2.� /3�3/, which is injective, and the compact embedding id W V 0
T ! L2.� /3. Application

of this lemma yields the desired result.

It remains to proof the inequality (4.7). We use a local parametrization of � and a standard

Korn’s inequality in Euclidean space.

Let ! � R
n�1 be a bounded open connected domain and ˚ W ! ! � a local

parametrization of � ; f�1; : : : ; �n�1g denotes the Cartesian basis in R
n�1. Partial derivatives of

˚.�/ D ˚.�1; : : : ; �n�1/ are denoted by a˛.�/ WD @˚.�/
@�˛

2 R
n, ˛ D 1; : : : ; n � 1. Below we often

skip the argument � 2 !. Greek indices always range from 1 to n � 1, and roman indices from 1

to n. We furthermore define an WD n. The dual basis (or contravariant basis) is given by aˇ such

that Paˇ D aˇ and aˇ � a˛ D 0 for ˛ ¤ ˇ and aˇ � aˇ D 1. Furthermore an WD an. Note that

Pa˛ D a˛; Pa˛ D a˛, Pan D Pan D 0. A given vector function u W � ! R
n is pulled back to !

as follows:

Eu D .Eu1; : : : ; Eun�1/ W ! ! R
n�1; Eu˛ WD .u ı ˚/ � a˛:

Note that u ı ˚ D Eu˛a˛ (Einstein summation convention). We also use the standard notation

Eu˛;ˇ WD @Eu˛

@�ˇ
. Note that .a� � a˛/;ˇ D 0 and thus a� � a˛;ˇ D �a�

;ˇ
� a˛ holds. Using this we get

Eu˛;ˇ D a˛ � r.u ı ˚/�ˇ C .u ı ˚/ � a˛;ˇ D a˛ � .ru ı ˚/aˇ C .Eu�a�/ � a˛;ˇ

D a˛ � .rP u ı ˚/aˇ C Eu�.a� � a˛;ˇ / D a˛ � .rP u ı ˚/aˇ � Eu�a�
;ˇ � a˛:

Now note that for � 2 ! and x WD ˚.�/ we have

rP .a� ı ˚�1.x//aˇ .�/ D r.a� ı ˚�1.x//aˇ .�/ D ra�.�/r˚�1.x/aˇ .�/

D ra�.�/ Œr˚.�/��1 aˇ .�/ D ra�.�/�ˇ D
@a�.�/

@�ˇ

D a�
;ˇ .�/:

Using this in the relation above we obtain

Eu˛;ˇ .�/ D a˛.�/ �
�

rP u.x/ � Eu�.�/rP .a� ı ˚�1/.x/
�

aˇ .�/; � 2 !; x D ˚.�/: (4.9)

The symmetric part of the Jacobian in R
n�1 is denoted by E.Eu/˛ˇ D 1

2

�

Eu˛;ˇ C Euˇ;˛

�

. Thus we get

(we skip the arguments again):

E.Eu/˛ˇ D a˛ �
�

es.u/ � Eu�es.a� ı ˚�1/
�

aˇ : (4.10)

From this we get, using the C 2 smoothness of the manifold:

kE.Eu/.�/k2 6 c.kes.u/.x/k2 C kEu.�/k2/ 6 c.kes.u/.x/k2 C ku.x/k2/; (4.11)

for � 2 !; x D ˚.�/. Now we derive a bound for krP u.x/k2 in terms of krEu.�/k2. Let ei be the

standard basis in R
n. Note that ei D .ei � al/al . Using this, .rP u/n D 0 and (4.9) we get (we skip
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the arguments � and x):

ej � rP uei D .ei � al/.ej � am/amrP u al

D .ei � aˇ /.ej � a˛/a˛ � rP u aˇ C .ei � aˇ /.ej � n/n � rP u aˇ

D .ei � aˇ /.ej � a˛/
�

Eua;ˇ C Eu�a˛ � rP .a� ı ˚�1/aˇ

�

C .ei � aˇ /.ej � n/n � rP u aˇ :

Note that

n � rP u aˇ D n � .ru/Paˇ D n � .ru/aˇ D .ru/T n � aˇ D �Hu � aˇ D �u � Haˇ :

Using this in the relation above and using the smoothness of � then yields

krP u.x/k2 6 c
�

krEu.�/k2 C kEu.�/k2 C ku.x/k2/ 6 c
�

krEu.�/k2 C kEu.�/k2/; (4.12)

for � 2 !, x D ˚.�/. For ! � R
n�1 we have the Korn inequality

Z

!

.kE.Eu/k2
2 C kEuk2

2/ d� > cK

Z

!

krEuk2
2 d�; (4.13)

with cK D cK.!/ > 0. Since � is compact, there is a finite number of maps ˚i W !i ! ˚i .!i / �
� , i D 1; : : : ; N , which form a parametrization of � . Using the results in (4.12), (4.13) and (4.11)

we then get

kuk2
1 D

Z

�

krP u.x/k2
2 C ku.x/k2

2 dx 6 N max
16i6N

Z

˚i .!i /

krP u.x/k2
2 C ku.x/k2

2 dx

6 c

Z

!i

.krEu.�/k2
2 C kEu.�/k2

2/
ˇ
ˇ det

�

r˚i .�/
�ˇ
ˇ d�

6 c

Z

!i

kE.Eu/.�/k2
2 C kEu.�/k2

2

ˇ
ˇ det

�

r˚i .�/
�ˇ
ˇ d�

6 c

Z

˚i .!i /

kes.u/.x/k2
2 C ku.x/k2

2 dx 6 c

Z

�

kes.u/.x/k2
2 C ku.x/k2

2 dx;

from which the inequality in (4.7) easily follows.

Korn’s inequality implies ellipticity of the bilinear form a.�; �/ on V 0
T . In the next lemma we treat

the second main ingredient needed for well-posedness of the Stokes saddle point problem, namely

an inf-sup property of b.�; �/.

Lemma 4.2 Assume � is C 2 smooth and closed. The following inf-sup estimate holds:

inf
p2L2

0
.� /

sup
vT 2V 0

T

b.vT ; p/

kvT k1kpkL2

> c > 0: (4.14)

Proof. Take p 2 L2
0.� /. Let � 2 H 1.� / \ L2

0.� / be the solution of

�� � D p on �:
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For � we have the regularity estimate k�kH 2.� / 6 ckpkL2 , with a constant c independent of p

(see, e.g., Theorem 3.3 in [12]). Take vT WD �rT
� � 2 VT , and the orthogonal decomposition

vT D v0
T C Qv, with v0

T 2 V 0
T , Qv 2 E . We have kv0

T k1 6 kvT k1 6 ck�kH 2.� / 6 ckpkL2 .

Furthermore, Es.Qv/ D 0 implies div� Qv D 0 and thus b.v0
T ; p/ D b.vT ; p/. Using this we get

b.v0
T ; p/

kv0
T k1

D
b.vT ; p/

kv0
T k1

D

R

�
�� � p ds

kv0
T k1

D
kpk2

L2

kv0
T k1

> ckpkL2 ; (4.15)

which completes the proof.

Theorem 4.3 Assume � is C 2 smooth and closed. The weak formulation (4.5) is well-posed.

Proof. Note that kEs.u/kL2 6 kruekL2 and k div� ukL2 6 nkr� ukL2 D nkruekL2 hold. From

this it follows that the bilinear forms a.�; �/ and b.�; �/ are continuous on VT � VT and VT � L2
0.� /,

respectively. Ellipticity of a.�; �/ follows from Lemma 4.1 and the inf-sup property of b.�; �/ is

derived in Lemma 4.2.

5. A well-posed variational Stokes problem with Lagrange multiplier

In the formulation (4.5) the velocity uT is tangential to the surface. For Galerkin discretization

methods, such as a finite element method, this may be less convenient, cf. Remark 6.2. In this section

we consider a variational formulation in a space, which does not contain the constraint n � u D 0.

The latter is treated using a Lagrange multiplier.

We recall the notation u D uT C uN n for u 2 V and we define the following Hilbert space:

V� WD
˚

u 2 L2.� /n W uT 2 VT ; uN 2 L2.� /
	

; with kuk2
V�

WD kuT k2
1 C kuN k2

L2.� /
:

Note that V� � VT ˚ L2.� / and E � VT � V� is a closed subspace of V�. Thus the space

V 0
� WD E?V� � V 0

T ˚ L2.� / is a Hilbert space. We introduce the bilinear form

Qb
�

v; fp; �g
�

D �

Z

�

div� vT p ds C

Z

�

�vN ds D b.vT ; p/ C .�; vN /L2.� /:

on V� �
�

L2
0.� / � L2.� /

�

. Based on the identity (3.13) we introduce (with an abuse of notation,

cf. (4.3)) the bilinear form

a.u; v/ WD 2�

Z

�

tr
�

.Es.uT / C uN H/.Es.vT / C vN H/
�

ds; u; v 2 V�: (5.1)

In this bilinear form we need H 1.� / smoothness of the tangential component uT and only L2.� /

smoothness of the normal component uN . If the latter component has also H 1.� / smoothness, then

from (3.13) we get

a.u; v/ D 2�

Z

�

tr
�

Es.u/Es.v/
�

ds; for u; v 2 V: (5.2)

The bilinear form a.�; �/ is continuous:

a.u; v/ 6 ckukV�
kvkV�

8 u; v 2 V�:
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For f 2 V 0
� such that f .vT / D 0 for all vT 2 E , we consider the modified Stokes weak formulation:

Determine .u; fp; �g/ 2 V 0
� �

�

L2
0.� / � L2.� /

�

such that

a.u; v/ C Qb
�

v; fp; �g
�

D f .v/ for all v 2 V 0
� ;

Qb
�

u; fq; �g
�

D 0 for all fq; �g 2 L2
0.� / � L2.� /:

(5.3)

This is a consistent weak formulation of the surface Stokes problem (3.19), cf. Remark 5.2 below.

In that remark we also explain that the test space V 0
� in the first equation in (5.3) can be replaced by

V�.

Theorem 5.1 The Problem (5.3) is well-posed. Furthermore, its unique solution satisfies u � n D 0.

Proof. The bilinear forms a.�; �/ and Qb.�; f�; �g/ are continuous on V� � V� and V� �
�

L2
0.� / � L2.� /

�

, respectively. It is not clear whether a.�; �/ is elliptic on V 0
� . For well-posedness,

however, it is sufficient to have ellipticity of this bilinear form on the kernel of Qb.�; f�; �g/:

K WD f u 2 V 0
� j Qb.u; fp; �g/ D 0 for all fp; �g 2 L2

0.� / � L2.� / g:

Note that

K � K0 WD f u 2 V 0
� j Qb

�

u; f0; �g
�

D 0 for all � 2 L2.� / g D f u 2 V 0
� j uN D 0 g:

Using Lemma 4.1 it follows that

a.u; u/ D a.uT ; uT / > 2�c2
KkuT k2

1 D 2�c2
Kkuk2

V�
for all u 2 K0; (5.4)

and thus we have ellipticity of a.�; �/ on the kernel of Qb.�; f�; �g/. It remains to check the inf-sup

condition for Qb.�; f�; �g/. Take fp; �g 2 L2
0.� / � L2.� /. Take v0

T 2 V 0
T such that

b.v0
T ; p/ D kpk2

L2 Qckv0
T k1 6 kpkL2

holds, with Qc > 0, cf. Lemma 4.2. Take v WD v0
T C �n 2 V 0

� , hence kvk2
V�

D kv0
T k2

1 C k�k2
L2.� /

.

We get:

Qb
�

v; fp; �g
�

D b.v0
T ; p/ C k�k2

L2 D kpk2
L2 C k�k2

L2

> minf1; Qcg
�

kpk2
L2 C k�k2

L2

� 1
2 kvkV�

:

Hence, the required inf-sup property holds, from which the well-posedness result follows. If in the

second equation in (5.3) we take q D 0 and � 2 L2.� / arbitrary, it follows that for the solution u

we have uN D 0, i.e., u � n D 0 holds.

REMARK 5.2 If in the first equation in (5.3) we take vN D 0, vT 2 E , it follows from Es.vT / D 0,
Qb.v; fp; �g/ D b.vT ; p/ D 0, f .v/ D f .vT / D 0 that the first equation in (5.3) is satisfied for all

vT 2 E , hence the test space V 0
� can be replaced by V� (which is convenient in a Galerkin method).

For the unique solution u we have uN D 0, and taking vN D 0, � D 0 it follows that if

f .v/ D f .vT / then .uT ; p/ coincides with the unique solution of (4.5). In this sense, the problem

(5.3) for .u; fp; �g/ 2 V 0
� �

�

L2
0.� / � L2.� /

�

is a consistent generalization of the problem (4.5)

for .uT ; p/ 2 V 0
T �L2

0.� /. Due to the fact that the latter problem is consistent to the original strong

formulation, this also holds for the generalized weak formulation (5.3).
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6. Well-posed augmented variational formulations

Another way to relax the tangential constraint in the test and trial spaces is to augment the weak

formulation (4.5) with a normal term such that the augmented bilinear form defines an inner product

in V�. The augmentation can be done for the bilinear form a.�; �/ used in (4.5) as well as for the one

used in (5.3). Given an augmentation parameter � > 0, we define

a� .u; v/ WD 2�

Z

�

Es.uT / W Es.vT / ds C �

Z

�

uN vN ds

D a.uT ; vT / C �.uN ; vN /L2.� /;

Oa� .u; v/ WD 2�

Z

�

Es.u/ W Es.v/ ds C �

Z

�

uN vN ds

D a.u; v/ C �.uN ; vN /L2.� /;

(6.1)

for u; v 2 V�. We consider, for � > 0, the following two problems: determine .u; p/ 2 V 0
� � L2

0.� /

such that (

a� .u; v/ C b.vT ; p/ D f .vT /;

b.uT ; q/ D 0;
(6.2a)

(

Oa� .u; v/ C b.vT ; p/ D f .vT /;

b.uT ; q/ D 0;
(6.2b)

for all v 2 V�, q 2 L2.� /. Well-posedness of these formulations is given in the following theorem.

Theorem 6.1 The Problem (6.2a) is well-posed. The Problem (6.2b) is well-posed for sufficiently

large � > 0. In (6.2b) we take � > 0 sufficiently large such that this problem is well-posed. The

unique solution u of (6.2a) satisfies u � n D 0 and uT coincides with the unique solution of (4.5).

For the tangential part OuT of Ou, the unique solution of (6.2b), the following estimate holds

kOuT � uT k1 6 C �� 1
2 kf kV 0 ; (6.3)

where C depends only on � .

Proof. Note that due to Korn’s inequality on V 0
T (Lemma 4.1) we have

a� .u; u/ > 2�c2
KkuT k2

1 C �kuN k2
L2 > minf2�c2

K ; �gkuk2
V�

:

Hence for any � > 0, a� .u; v/ defines a scalar product on V 0
� . We already discussed in Section 5

that the bilinear form Oa� .u; v/ is well-defined on V� due to the identity (3.13). If � is sufficiently

large, for example, � > 2�kHk2
L1.� /

, then with the help of triangle and Korn’s inequalities we get

Oa� .u; u/ D 2�kEs.uT / C uN Hk2
L2 C �kuN k2

L2 > �kEs.uT /k2
L2 � 2�kuN Hk2

L2 C �kuN k2
L2

> �c2
KkuT k2

1 C .� � 2�kHk2
L1.� //kuN k2

L2 > ckuk2
V�

; c > 0:

Hence, Oa� .u; v/ defines a scalar product on V 0
� . The inf-sup property for b.�; �/ on V 0

� � L2
0.� /

immediately follows from the one on V 0
T � L2

0.� /, i.e., (4.14):

sup
v2V 0

�

b.vT ; p/

kvkV�

>

V 0
T

�V 0
�

sup
vT 2V 0

T

b.vT ; p/

kvT kV�

D sup
vT 2V 0

T

b.vT ; p/

kvT k1

> ckpkL2 ;



372 TH. JANKUHN, M. A. OLSHANSKII AND A. REUSKEN

for any p 2 L2
0.� /, with c > 0 independent of p. The coercivity and continuity of a-forms together

with continuity and inf-sup property of the b-form imply the well-posedness of both problems. It

easy to check that u D uT , with uT the solution of (4.5), solves the augmented problem in (6.2a).

Denote by Ou; Op the solution of (6.2b). By testing the weak formulation with v D Ou, q D p, and

applying Korn’s inequality we obtain the estimate for the normal part of Ou,

k OuN kL2.� / 6 C�� 1
2 kf kV 0 :

For arbitrary vT 2 VT we have thanks to (3.13), (4.5) and (6.2b),

a� . OuT � uT ; vT / D �2�

Z

�

OuN H W Es.vT /ds C b.vT ; p � Op/

6 C k OuN kL2.� /kvT k1 C b.vT ; p � Op/ 6 C�� 1
2 kf kV 0kvT k1 C b.vT ; p � Op/:

Taking vT D OuT � uT the pressure term vanishes and using Korn’s inequality for the left-hand side

leads to (6.3).

The well-posedness statements in the theorem above still hold if f .vT / is replaced by f .v/,

with f 2 V 0
�. We close this section with a few remarks.

REMARK 6.2 We briefly address properties of the different variational formulations (4.5), (5.3) and

(6.2) that we consider relevant for discretization by Galerkin methods such as fitted or unfitted finite

element methods for PDEs posed on surfaces [12, 27]. In such finite element methods one usually

approximates a smooth surface � by a triangulated Lipschitz surface �h. The normal vector field nh

to such a surface is no longer continuous. Enforcing strongly the tangential condition u � nh D 0 for

the numerical solution can be inconvenient if standard H 1.� /3-conforming finite elements are used.

Formulations (5.3) and (6.2) allow to enforce the tangential condition weakly and occur to us more

suitable for numerical purposes. In (5.3) one needs a suitable finite element space for the Lagrange

multiplier �. This is avoided in (6.2), but that formulation requires a suitable value for the penalty

parameter � . Note that the formulations in (5.3) and (6.2a) are consistent with (4.5), in particular

the solution u 2 V 0
� has the property u � n D 0. The problem in (6.2b) is not consistent. However,

compared to (6.2a) the formulation in (6.2b) has the attractive property that one has to approximate

r� u D PruP instead of r� uT D PruT P D Pr.Pu/P. Hence, in (6.2b) differentiation of P is

avoided. A finite element discretization for a vector surface Laplace problem (instead of Stokes)

based on an augmented formulation very similar to the one in (6.2b) has been studied in the recent

paper [19]. A finite element discretization for a vector surface Laplace problem based on the saddle

point formulation (5.3) has been studied in the recent preprint [16]. Finally note that b.u; p/ D
�

R

�
p div� uT ds D �

R

�
p div� .Pu/ ds, used in both (5.3) and (6.2), requires a differentiation of

P. If in the finite element method we have p D ph 2 H 1.� / we can use b.u; p/ D
R

�
uT r� p ds

and thus avoid this differentiation.

REMARK 6.3 The formal extension of the weak formulations in (4.5), (5.3) and (6.2) to the Navier-

Stokes equations (3.16) on stationary surfaces is straightforward, but not studied in this paper.

7. Conclusions and outlook

Based on surface mass and momentum conservation laws we derived the surface Navier-Stokes

equations (3.8) and the corresponding tangential and normal equations. Similar equations can be
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found in several other papers in the literature. The equations that we obtain agree with those derived

in [21] by a completely different approach. All differential operators used are defined in terms

of first (partial) derivatives in the outer Euclidean space R
3. Relations to formulations presented

in the setting of differential geometry (e.g., Bochner and Hodge-de Rham Laplacians) are briefly

addressed. Well-posedness results of several variational formulations of a Stokes problem on a

stationary surface are presented. For this a surface Korn’s inequality and an inf-sup property for

the Stokes bilinear form b.�; �/ are derived.

In the recent report [16] we present results of numerical experiments for a finite element method

applied to a saddle point formulation of a surface vector-Laplace problem, similar to (5.3). In

forthcoming work, this method will be extended to surface (Navier-)Stokes equations. Furthermore,

we plan to develop error analyses for these finite element discretization methods. Clearly, there are

many other related topics that can be addressed in future research. For example, an extension of

the well-posedness analysis presented in this paper to the case of a Stokes problem on an evolving

surface, the extension from Stokes to an Oseen or Navier-Stokes equation on a stationary (or even

evolving) surface, or an analysis of a coupled surface-bulk flow problem. Related to the latter we

note that first results on well-posedness of such a coupled problem have recently been presented in

[22]. Furthermore, a further study and validation of such surface Navier-Stokes equations (coupled

with bulk fluids) based on numerical simulations is an open research field.

A. Appendix

We give an elementary proof of the results given in Lemma 2.1. For this it is very convenient to

introduce a tensor notation and the Einstein summation convention for the differential operators ri

(covariant partial derivative) and div� (surface divergence). For a scalar function f we have, cf.

(2.1):

ri f D @kfPki D Pik@kf:

(scalar entries of the matrix P are denoted Pij ). For the vector function u W R
n ! R

n we have,

cf. (2.2):

riuj WD .ri u/j D .r� u/j i D Pjl @kul Pki D Pik@kul Plj ;

and for matrix valued functions we get, cf. (2.3):

ri Asl WD .ri A/sl D Psm@kAmnPnl Pki D Pik@kAmnPmsPnl :

For the divergence operators we have the representations:

div� u D .r� u/i i D Pik@kul Pli D Plk@kul

. div� A/i D div� .eT
i A/ D Plk@kAi l :

Below, functions u 2 C 2.� /n are always extended to a neighborhood of � by taking constant

values along the normal n.

Lemma A.1 The following identities hold:

.P div� rT
� u/i D rk.r� u/ki DW rkri uk (A.1)

ri . div� u/ D ri .r� u/kk DW ri rkuk : (A.2)
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Proof. We use the representations introduced above and thus get

.P div� rT
� u/i D Pis div� .rT

� u/s D PisPlk@k.r� u/ls : (A.3)

Furthermore,

rk.r� u/ki D Pkr@r .r� u/lsPsi Plk D PisPlr@r .r� u/ls ;

and comparing this with (A.3) proves the result in (A.1). Note that using Plknk D Pmsnm D 0

(where nj denotes the j -th component of the normal vector n) we get

.r� u/km@rPmk D �Pms@sul Plk

�

.@rnm/nk C nm.@rnk/
�

D 0:

Using this we get

ri .r� u/kk D Pir@r .r� u/nmPmkPnk D Pir@r .r� u/nmPmn D Pir@r

�

.r� u/nmPmn

�

D Pir@r .Pmk@kul PlnPmn/ D Pir@r .Pmk@kulPlm/

D Pir@r .Plk@kul/ D Pir@r . div� u/ D ri . div� u/; (A.4)

and thus the identity (A.2) holds.

We now derive a result for the commutator rkri uk � ri rkuk .

Lemma A.2 Let H D r� n be the Weingarten mapping. Then for u 2 C 2.� /n with Pu D u the

identity

rkri uk � ri rkuk D
�

.tr.H/H � H2/u
�

i
; i D 1; : : : ; n;

holds.

Proof. By definition we have

rkri uk D Pkr @r .r� u/nmPmi Pnk D @r.Pms@sul Pln/Pmi Pnr :

We use the product rule, Hrl D @rnl , @rPms D �@r .nmns/ D �Hrmns � Hrsnm, Pmi nm D 0,

and thus obtain

rkriuk D
�

@rPms@sulPln C Pms@r@sul Pln C Pms@sul @rPln

�

Pmi Pnr

D �Hrmns@sul PlrPmi C PisPlr@s@rul � Hrnnl @sul PisPnr :

We also have, cf. (A.4),

rirkuk D Pir@r.Plk@kul / D Pir@rPlk@kul C PirPlk@r@kul

D �Pir .Hrl nk C Hrknl /@kul C PirPlk@r@kul :

Hence, for the difference we get

rkri uk �ri rkuk D Hrl nk@kul Pir �Hrmns@sulPlrPmi CHrknl @kulPir �Hrnnl @sul PisPnr :

Using Pu D u we get

Hrmns@sul PlrPmi D Hrmns@s.Plrul /Pmi � Hrmnsul @sPlrPmi

D Hmrns@sur Pim � Hrmns@sPlrPmi ul :
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Furthermore, using Hn D 0, we get

Hrmns@sPlrPmi ul D �Hrmns.Hslnr C Hsrnl /Pmi ul D 0:

Combining these results we get

rkri uk � ri rkuk D Hrknl@kul Pir � Hrnnl @sulPisPnr :

Using nT u D 0 (in a neighborhood of � ) we get @k.nl ul/ D 0 and in combination with HP D
PH D H we get

Hrknl @kul Pir D �Hrk@knl Pirul D �HrkHkl Pirul

D �HikHklul D �.H 2/i lul D �.H2u/i :

Finally note that

Hrnnl @sul PisPnr D �Hrn@snl PisPnrul D �HrnHslPisPnrul

D �HrrHi lul D �tr.H/.Hu/i :

Combining these results completes the proof.

By combining the results of Lemma A.1 and Lemma A.2 we have proved the result (2.10). Let

A be an n � n matrix with PA D AP D A, hence An D AT n D 0. We then have

n � div� A D ni . div� A/i D ni Plk@kAi l D Plk@k.ni Ai l/ � Plk@kni Ai l

D �PlkHki Ai l D �Hli Ai l D �.HA/l l D �tr.HA/;

and combining this with tr.HA/ D tr.AT H/ D tr.HAT / one obtains the result in (2.11). The result

in (2.12) follows from (we use Hn D 0, nT H D 0):

.P div� .H//i D Pij Plk@kHjl D Pij Plk@k@j nl D Pij Plk@j @knl D Pij Plk@j Hkl

D Pij @j .PlkHkl / � Pij .@j Plk/Hkl

D Pij @j Hl l C Pij

�

.@j nl /nk C .@j nk/nl

�

Hkl D Pij @j � D .r� �/i :

Lemma A.3 For n D 3 the identity

tr.H/H � H2 D KP;

with K the Gauss curvature, holds.

Proof. We apply the Cayley–Hamilton theorem to the linear mapping PHP D H W range.P/ !
range.P/. Note that dim.range.P// D 2. This yields

H2 � tr.H/H C det.H/P D 0; (A.5)

and using det.H/ D K we obtain the desired result.

The result in (2.13) follows from (2.10) and Lemma A.3. As a corollary of (A.5) we obtain for

n D 3 the identity

�P � H D KH�; (A.6)

where H� is the generalized inverse of H. Note that KH� has the same eigenvalues and eigenvectors

as H, but the eigenpairs are not the same.
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