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In this work we study a minimization problem with two-phases where in each phase region the

problem is ruled by a quasi-linear elliptic operator of p-Laplacian type. The problem in its variational

form is as follows:

min

�

R

˝\fv>0g

�

1
p jrvjp C �

p
C C fCv

�

dx C
R

˝\fv60g

�

1
q jrvjq C �q

� C f�v
�

dx

�

:

Here we minimize among all admissible functions v in an appropriate Sobolev space with a

prescribed boundary datum v D g on @˝. First, we show existence of a minimizer, prove some

properties, and provide an example for non-uniqueness. Moreover, we analyze the limit case where

p and q go to infinity, obtaining a limiting free boundary problem governed by the 1�Laplacian

operator. Consequently, Lipschitz regularity for any limiting solution is obtained. Finally, we

establish some weak geometric properties for solutions.
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1. Introduction

In applied sciences, phase transition problems (or transmission problems) are often models which

involve different media and hence they involve different analytical processes in distinct zones.

Such phenomena appear in several fields as biology, material sciences, physics, etc. Moreover, its

study plays an essential role, for example, for mathematical modeling of composite materials, since

they deal with heterogenous media with distinct diffusive processes (cf. [9] for a reference on this

subject). Finally, electromagnetic or thermodynamic processes with different diffusivity are other

examples of phase transition problems.

Equations related to phase transition problems may involve (in general) different diffusivity

laws. Such a phenomena occurs due to different properties and features of the media. Devices

made of distinct materials, multi-constituent substances and anti-plane shear deformation are some

examples of such processes. Typical mathematical models of phase transition type are driven by a

c
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second order elliptic equations of the form

div.�˝0 jrujp�2ru/ C div..1 � �˝0/jrujq�2ru/ D A�˝0 C B.1 � �˝0/ in ˝; (1.1)

where ˝ 0 b ˝ is a given subregion and A and B are constants. In such modeling, knowing the

local behaviour of the associated solutions and their “transition surface”, namely @˝ 0, as well as

its smoothness and weak geometric properties is a crucial step in the physical-mathematical studies

previously described.

Another interesting (and more mathematical) motivation runs as follows: consider a medium in

equilibrium with two phases with different nonlinear diffusion properties. When the variable under

consideration, T, is negative, we assume that

�p T D 0 .for some 1 < p < 1/:

On the other hand, for positive T, we assume that the process is driven by a different diffusion

operator,

�q T D 0 .for some 1 < q < 1 with q ¤ p/:

Now, we add a prescribed flux balance along the phase transition fT D 0g. Precisely, there exists a

mapping Gp;q W SN � SN ! R such that

Gp;q.TC
� ;T�

� / D c along fT D 0g:

In contrast with (1.1), in the previous physical model, the phase transition is a priori unknown.

Moreover, it depends on the solution itself. Unifying the previous equations involved in the system,

one finishes up with a nonhomogeneous elliptic equation with a measure datum:

�p�fT>0gCq�fT<0g
T D .�p T/�fT>0g C .�q T/�fT<0g D �;

where � is a nonzero measure supported along the “phase transition surface” fT D 0g. Particularly,

� is not absolutely continuous with respect to the Lebesgue measure. Moreover, when fT D 0g is

an .N � 1/-surface (in the measure theoretic sense), then � D cbfT D 0g in the sense of measures.

The main goal of present manuscript is to provide a rigorous mathematical analysis, which

includes existence, regularity and some geometric properties for solutions to the phase transition

problems involving free boundaries with different degenerate diffusion operators in each phase

region, as happens in the previous example. Motivated by the analysis of the asymptotic behaviour

of certain variational problems, we will pay special attention to the analysis under the condition that

the diffusivity degrees of each operator are large enough.

In the early 80’s in [1] and [2] Alt-Caffarelli and Alt-Caffarilli-Friedman studied regularity

issues for minimization problems with free boundaries. In this scenario, the minimizer satisfies a

PDE within an a priori unknown region together with a free boundary condition, and a key question

consists in studying the regularity of such solution, as well as the regularity of the associated free

boundary. Recall that such solutions can be one-signed (one-phase problems) or can change sign

(two-phase problems). For example, a common two-phase free boundary problem is to seek for a

minimizer to the variational integral

Z

˝

�

1

2
jruj2 C �C�fu>0g C ���fu60g

�

dx (ACF)
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among all admissible functions with prescribed boundary datum. A local minimizer u0 fulfils (in

the weak sense) the Dirichlet problem

(

�� u0 D 0 in .fu0 > 0g [ fu0 6 0gı/ \ ˝

u0 D g on @˝;

as well as the following free boundary condition

jruC
0 j2 � jru�

0 j2 D 2.�C � ��/ on .@fu0 > 0g [ @fu0 6 0gı/ \ ˝

understood in an appropriate weak sense.

With these preliminaries in mind let us introduce our two-phase free boundary problem. Let

˝ � RN be a smooth and bounded domain, p; q > N , f˙ 2 Ls.˝/, for s > max
˚

N
p

; N
q

	

, 0 6 �˙

with �C 2 Lp.˝/, �� 2 Lq.˝/, with �
p
C ¤ �q

� (this is used to have a discontinuous flux) and

g 2 W 1;p.˝/ \ W 1;q.˝/ \ L1.˝/, with gC ¤ 0. The purpose of this manuscript is to study the

following minimization problem:

min
v2K

.p;q/
g .˝/

Jp;qŒv� D Jp;qŒu0�; (Min)

for the functional given by

Jp;qŒv� WD
Z

˝\fv>0g

�

1

p
jrvjp C �

p
C.x/ C fC.x/v

�

dx

C
Z

˝\fv<0g

�

1

q
jrvjq C �q

�.x/ C f�.x/v

�

dx (1.2)

and the class of functions

K
.p;q/
g .˝/ WD

n

v 2 W 1;minfp;qg.˝/
ˇ

ˇ vC 2 W 1;p.˝/; v� 2 W 1;q.˝/;

v D g on @˝ in the sense of traces
o

:

In the following we will denote by ˝CŒu� WD fu > 0g\˝ and ˝�Œu� WD fu < 0g\˝ , the positive

and negative phase respectively. Now, notice that any minimizer u0 to (Min) satisfies, in the weak

sense, the following .p; q/-degenerate system

8

ˆ

<

ˆ

:

�p u0 D fC.x/ in ˝CŒu0� \ ˝

�q u0 D f�.x/ in ˝CŒu0� \ ˝

u0.x/ D g.x/ on @˝:

(1.3)

Moreover, we highlight that, due to the fact that we assumed �
p
C ¤ �q

�, the potential that appears

in our functional F0.��; �C/ WD �
p
C.x/�fu0>0g C �q

�.x/�fu060g is discontinuous along the free

boundary points, enforcing the flux balance across the free boundary (in C 1;˛ smooth pieces of the

free boundary that separates the two phases)

Gp;q.uC
� ; u�

� ; �C; ��/ WD p � 1

p
.uC

� .x//p � q � 1

q
.u�

� .x//q � �
p
C.x/ C �q

�.x/ D 0; (FBC)



382 J. V. DA SILVA AND J. D. ROSSI

preventing any possible continuity for the gradient through the free boundary. Here u˙
� are

respectively the normal derivatives in the inward direction to @˝˙Œu�. Notice that such discontinuity

phenomenon along the interface involve several technical difficulties in the treatment of these type

of two-phase problems. Particularly, existence of minimizers (that we prove in Section 3) does not

follow from standard methods from Calculus of Variations. In fact, the main difficulty lies in the

lack of convexity of the functional defined in (1.2).

To gain some insight concerning possible configurations for .p; q/ large, we are interested in

the limiting free boundary problem, namely the asymptotic profile when p; q goes to infinity. More

precisely, given a minimizer up;q to (Min), then, we show that, up to subsequences, there exists a

limit, up;q ! Ou uniformly when p; q ! 1, that fulfils in the viscosity sense

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��1 Ou D 0 in ˝CŒ Ou� [ ˝�Œ Ou� \ .˝ n supp.f˙//ı

jr Ouj D 1 in ˝CŒ Ou� [ ˝�Œ Ou� \ .˝ \ ˝CŒf˙�/

�jr Ouj D �1 in ˝CŒ Ou� [ ˝�Œ Ou� \ .˝ \ ˝�Œf˙�/

��1 Ou T 0 in ˝CŒ Ou� [ ˝�Œ Ou� \ .˝ \ @˝˙Œf˙� n @˝�Œf˙�/

Ou.x/ D g.x/ on @˝:

(1.4)

This system is complemented with a limit free boundary condition, that we deduce only formally,

which depends only on how the quotient q=p behaves. We assume here that

lim
p;q!1

q

p
D Q 2 .0; C1/

and we obtain

max
˚

OuC
� .x/; �Q

� .x/
	

D max
˚

. Ou�
� /Q.x/; �C.x/

	

: (1�FBC)

The main obstacle to obtain this condition rigorously comes from the fact that solutions to (1.3)

are not (in general) regular enough across the free boundary, as well as the limiting free boundary

is not “smooth” enough (in an appropriate measure theoretical sense) in order to pass to the limit

pointwise in (FBC) (cf. [3], [18] and the references therein for regularity issues).

Concerning regularity for minimizers in (Min), the challenging problem is to establish a

universal C 0;˛ regularity estimate, for p; q > 2 (maybe when jp � qj < �). To show this kind

of regularity one would need C 0;˛ estimates for solutions to an equation involving �p.u/u. These

estimates are not available in the literature and look like a very difficult problem. Note that in our

problem the exponent that appears in the operator changes according to the positivity or negativity

of the solution u. To avoid such an issue, we assume that p; q > N (and hence minimizers are

C 0;˛ due to the fact that W 1;r embeds in C 0;˛ when r > N . Notice that as we are interested in

the limiting case, when p; q ! 1, the choice of working under p; q > N is not restrictive for that

purpose.

Let us present a brief overview on minimization problems with free boundaries and their

connections with our work. The minimization problem (Min) is related with jet-flow type of

problems. Recall that the linear .p D q D 2/, homogeneous .f D 0/, one-phase version of this

problem was completely studied in [1], where it is proved that minimizers are Lipschitz continuous,

the expected optimal regularity. On the other hand, the two-phase counterpart of this problem yields

new obstacles and local Lipschitz regularity of minimizers was proven in [2], by using the powerful

Alt-Caffarelli-Friedman’s monotonicity formula. Thereafter, gradient estimates (Lipschitz bounds)
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for two-phase cavitation type problem with bounded non-homogeneity, i.e., p; q D 2 and f 2 L1,

were established in [8] by using an almost monotonicity formula. The general degenerate jet type

problems (p D q ¤ 2) have received a warm attention in the last decade. The homogeneous

one-phase problem (fC D 0 6 g) was fully studied in [11], proving optimal Lipschitz regularity,

non-degeneracy, as well as finiteness of the .N � 1/-Hausdorff measure for the free boundary of

minimizers. Later, a general inhomogeneous two-phase minimization problem was studied in [18],

where several analytic and geometric properties for minimizers and their free boundaries were

established. Particularly, determining whether any minimizer is Lipschitz (provided the source term

is Ls , for s > N ) has became a long-standing challenging problem in the theory of free boundary

problems.

Taking into account the previous facts, our regularity result is surprising, because limits of

minimizers for (Min) (resp. viscosity solutions of (1.4)) are Lipschitz continuous under suitable

assumption on the data, see Theorem 5.2. Summarizing, the limiting problem admits a better

regularity theory for solutions than its “stationary” .p; q/-counterpart.

As mentioned previously, another interesting aspect of our work is its connection with free

transmission/transition problems, i.e., two-phases free boundary problems whose solutions are

required to solve distinct PDEs, driven by distinct diffusion operators LC and L�, within their

positivity and negativity sets respectively. Furthermore, on the phase-transition region (the free

boundary of the model) appears a balance flux relating the corresponding positive and negative

phase like (FBC) (cf. [3] and [7] for excellent surveys on this subject). Finally, we stress that

our analysis is related to the previous article [24], in the which it is studied a minimization

problem under geometric restrictions (like optimal design type problems) with two-phases for the p-

Laplacian as p goes to infinity. We must also quote [18], where the two-phase p-isotropic problem,

i.e., our problem with p D q fixed, was studied.

We end this introduction with a brief description of recent references concerning limits as p !
1 in different p-Laplacian type problems and their connection with some free boundary problems.

Taking account the analysis of the limit of p-variational, one of pioneering works goes back to [6].

Precisely, they establish that for a non-negative function f , the corresponding weak solution for the

p-Laplacian
(

��p up.x/ D f .x/ in ˝

up.x/ D 0 on @˝
(1.5)

converge, up to a subsequence, to a limit u1, which satisfies in the viscosity sense the following

problem
(

��1 u1 D 0 in ˝ \ ff > 0gc

jru1j D 1 in ˝ \ ff > 0g;
(1.6)

where �1 v WD DvT � DvD2v is the nowadays well-known Infinity-Laplacian operator. We also

refer to [21] for a general treatment of this subject and its connection with game theory (“Tug of-war

games”).

One motivation to study this kind of issues comes from the best Lipschitz extension problem of

a datum g 2 W 1;1.@˝/ . In fact, such a extension, which we will denote by Qg, can be obtained as

limit of solutions to (1.5) provided we put f D 0 and up D g on the boundary. Moreover, such a

function is the unique Lipschitz function with best Lipschitz constant Lipg.@˝/ that is also optimal
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in every sub-domain of ˝ in the sense that Qg D g on @˝ and

Lip Qg.˝ 0/ 6 Lipz.˝ 0/ 8 ˝ 0 b ˝ such that Qg D z on @˝ 0: (AMLE)

This is known in the literature as an Absolutely Minimizing Lipschitz Extension, in short AMLE, a

concept introduced by G. Aronsson at the end of sixties and extensively studied by several authors

in the last decades (cf. [4] and [5]). Finally, (1.6) means that the 1-Laplacian operator governs the

Euler–Lagrange equation to such an L1-minimization problem (AMLE) (cf. [15] for more details).

Regarding free boundary problems, the strategy of passing the limit as p ! 1 in p-variational

problems in order to obtain a non-variational limiting configuration (a problem governed by the

Infinity-Laplacian operator or another non-variational limiting operator) has been successful in

many contexts: In dead core type problems [13], Bernoulli type problems [20] , optimal design

problems [22] and [24], obstacle type problems [23], to cite just a few examples (See also [12]

for an optimal design problem and [14] for an obstacle type problem in the nonlocal scenery).

Furthermore, such approach allows us to use several technical features of the corresponding p-

sequential problems to their limiting points, via uniform convergence. Regularity estimates, weak

geometric and measure-theoretic properties are some of the obtained features.

Finally we remark that, concerning limiting minimization problems, our results are new even

for the one-phase homogeneous minimization problem, i.e., f˙ D 0 D �� and g > 0 (compare

with [22] and [24]).

2. Preliminaries

First, let us state precisely the functional framework for our problem.

DEFINITION 2.1 (Weak solution) We say that u 2 W 1;p.˝/ \ W 1;q.˝/ is a weak solution to (1.3)

if u � g 2 W
1;p

0 .˝/ \ W
1;q

0 .˝/ and for every � 2 C 1
0 .˝/ there holds,

Z

˝\fu>0g

�

jrujp�2rur� � fC�
�

dx D 0 and

Z

˝\fu<0g

�

jrujq�2rur� � f��
�

dx D 0

Recall that our limiting solutions will satisfy a fully nonlinear elliptic problem of degenerate

type. For this reason, we introduce the concept of viscosity solution to a PDE problem like
�

F.rh; D2h/ D f .x/ in ˝

h.x/ D g.x/ on @˝:
(2.1)

Notice that F W RN �Sym.N / ! R can be a discontinuous operator (in general such a discontinuity

occurs along the critical point set). For this reason, we must introduce F \ and F\, respectively the

upper and lower semi-continuous envelopes of F given by

F \.z; M / D lim sup
"!0

˚

F.w; N /
ˇ

ˇ jz � wj C jM � N j < "
	

and F\.z; M / D �.�F \/.z; M /:

DEFINITION 2.2 (Viscosity solution) An upper (resp. lower) semi-continuous function u defined in

˝ is a viscosity sub-solution to (2.1) if u 6 g and, whenever x0 2 ˝ , � 2 C 2.˝/ are such that

u � � has a local maximum (resp. minimum) at x0, then

F \
�

r�.x0/; D2�.x0/
�

6 f .x0/
�

resp: F\

�

r�.x0/; D2�.x0/
�

> f .x0/
�

Finally, a continuous function u is a viscosity solution to (2.1) if it is simultaneously a viscosity

super-solution and a viscosity sub-solution.
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DEFINITION 2.3 A function u 2 C.˝/ is said to be a viscosity solution to

max
˚

� �1v.x/; jrv.x/j � h.x/
	

D 0 in ˝

if: whenever x0 2 ˝ and � 2 C 2.˝/ are such that v.x0/ D �.x0/ and v.x/ < �.x/, when x ¤ x0,

then

��1�.x0/ 6 0 or jr�.x0/j � h.x0/ 6 0:

and whenever x0 2 ˝ and � 2 C 2.˝/ are such that v.x0/ D �.x0/ and v.x/ > �.x/, when

x ¤ x0, then

��1�.x0/ > 0 and jr�.x0/j � h.x0/ > 0:

For a complete survey about the theory of viscosity solutions and its machinery we refer to the

classical reference [10]. Moreover, regarding viscosity solutions related to the Infinity-Laplacian

and the p-Laplacian operator we recommend the reference [16].

The following lemma establish a relation between weak and viscosity sub and super-solutions

to (1.3).

Lemma 2.4 A continuous weak sub-solution (resp. super-solution) u 2 W
1;p

loc .fv > 0g/ \
W

1;q
loc .fv < 0g/ to (1.3) is a viscosity sub-solution (resp. super-solution) to

8

ˆ

<

ˆ

:

�
�

jru.x/jp�2�u.x/ C .p � 2/jru.x/jp�4�1u.x/
�

D �fC.x/ in fu > 0g \ ˝

�
�

jru.x/jq�2�u.x/ C .q � 2/jru.x/jq�4�1u.x/
�

D �f�.x/ in fu < 0g \ ˝

u.x/ D g.x/ on @˝:

Proof. First, let us proceed with the case of super-solutions for the equation

�
�

jru.x/jp�2�u.x/ C .p � 2/jru.x/jp�4�1u.x/
�

D �fC.x/ in fu > 0g \ ˝:

Fix x0 2 ˝ and � 2 C 2.˝/ such that � touches u by below, i.e., u.x0/ D �.x0/ and u.x/ > �.x/

for x ¤ x0. Our goal is to show that

�
�

jr�.x0/jp�2��.x0/ C .p � 2/jr�.x0/jp�4�1�.x0/
�

C fC.x0/ > 0:

From now on, we will proceed by contradiction and suppose that the above inequality does not hold.

Then, by continuity there exists 0 < r � 1 (small enough) such that

�
�

jr�.x/jp�2��.x/ C .p � 2/jr�.x/jp�4�1�.x/
�

C fC.x/ < 0;

provided that x 2 Br .x0/. Letting

˚.x/ WD �.x/ C 1

7
m; where m WD inf

@Br .x0/
.u.x/ � �.x//:

we observe that ˚ verifies 	 < u on @Br .x0/, ˚.x0/ > u.x0/ and

��p˚.x/ < �fC.x/: (2.2)
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Notice that extending by zero outside Br .x0/, we may use .˚ � u/C as a test function in (1.3) (first

line). Moreover, since u is a weak super-solution, we obtain

Z

f˚>ug

jrujp�2ru � r.˚ � u/dx > �
Z

f˚>ug

fC.x/.˚ � u/dx: (2.3)

On the other hand, multiplying (2.2) by ˚ � u and integrating by parts we get

Z

f˚>ug

jr˚ jp�2r˚ � r.˚ � u/dx < �
Z

f˚>ug

fC.x/.˚ � u/dx: (2.4)

Next, subtracting (2.3) from (2.4) we obtain

Z

f˚>ug

.jr˚ jp�2r˚ � jrujp�2ru/ � r.˚ � u/dx < 0; (2.5)

Finally, since the left hand side in (2.5) is bounded by below by

2�p

Z

f˚>ug

jr˚ � rujpdx > 0;

we conclude that ˚ 6 u in Br .x0/. However, this contradicts the fact that ˚.x0/ > u.x0/. This

proves that u is a viscosity super-solution. Analogously, one proves that u is a viscosity sub-solution.

Finally, with a similar reasoning one can deal with the equation

�
�

jru.x/jq�2�u.x/ C .q � 2/jru.x/jq�4�1u.x/
�

D �f�.x/ in fu < 0g \ ˝:

3. Existence and bounds for minimizers

In this section we will discuss existence and bounds of minimizers to (Min) (solutions to (1.3)).

Before proving our existence theorem, let us emphasize the lack of convexity for the functional

Jp;qŒ��. For simplicity, at this point, we are going to restrict our analysis to the case where f˙ D 0

and �˙ D 0. Thus, fixed j 2 N n f1g, for k 2 f1; � � � ; j g consider ˝ D .0; j / and

u.x/ D
(

2x � 1 if x 2 Œ0; 1�

1 if x 2 Œ1; j �

and

v.x/ D

8

<

:

2.x � k/ C 1 if x 2
h

k � 1; 2k�1
2

i

�2.x � k/ � 1 if x 2
h

2k�1
2

; k
i

:

Observe that such functions take the same boundary data. An straightforward calculation shows that

1

2

�

Jp;qŒu� C Jp;qŒv�
�

D 2p�1

p
C j2q�1

q

and

Jp;q

hu C v

2

i

D .j � 1/2p

p
C 2q�1

q
:
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Therefore, we can choose constants p > q > 2 such that

Jp;q

hu C v

2

i

>
1

2

�

Jp;qŒu� C Jp;qŒv�
�

provided 2p�q > p
q

j �1
2j �3

. This shows that Jp;qŒ�� is not convex. Finally, a similar argument could be

applied to construct examples where the concavity inequality fails as well.

In order to tackle the previous obstacle (the lack of convexity) we will combine methods from the

Calculus of Variations with theoretical measure estimates to show the existence of local minimizers

(cf. [3], and [18] for a similar strategy).

Theorem 3.1 (Existence of minimizers) Let p; q > N and f 2 Lr .˝/ with max
˚

1
p

C 1
r
; 1

q
C 1

r

	

6
1. Then, there exists at least one minimizer u0 to (Min).

Proof. Before proving our theorem, for convenience we will re-write the functional Jp;qŒ�� as

follows:

Jp;qŒv� D
Z

˝\fv>0g

1

p
jrvjp C

Z

˝\fv60g

1

q
jrvjq C

Z

˝

�

F0.��; �C/Œv� C f v
�

dx

where

F0.��; �C/Œv� WD �
p
C.x/�fv>0g C �q

�.x/�fv60g

and

f .x/ WD fC.x/�fv>0g C f�.x/�fv60g:

Moreover, let us label

J
.p;q/
0 WD inf

v2K
.p;q/
g .˝/

Jp;qŒv�:

First of all, we will show that J
.p;q/
0 has a lower bound in K

.p;q/
g .˝/. In fact, for any v 2

K
.p;q/
g .˝/, it follows according to Poincaré’s inequality that there exist positive constants c1 D

c1.p; N; ˝; kf kLr .˝// and c2 D c2.q; N; ˝; kf kLr .˝// such that

8

<

:

1
p

h

c1

�

kvkp

Lp.fv>0g/
� kgkp

Lp.fv>0g/

�

� krgkp

Lp.fv>0g/

i

6 1
p

krvkp

Lp .fv>0g/

1
q

h

c2

�

kvkq

Lq .fv<0g/
� kgkq

Lq.fv<0g/

�

� krgkq

Lq .fv<0g/

i

6 1
q
krvkq

Lq .fv60g/
:

(3.1)

Moreover, due to Hölder’s inequality, since r > N > max
n

p
p�1

; q
q�1

o

we obtain

ˇ

ˇ

ˇ

ˇ

Z

˝

f v dx

ˇ

ˇ

ˇ

ˇ

6 C.N; p; q; ˝/ max

�

2 max
˚

kf˙kLr .˝/

	

; max
n

kvkp

Lp.˝/
; kvkq

Lq .˝/

o

�

WD M:

(3.2)

Thus, combining (3.1) and (3.2) we have

A WD �C1 � 1
p

h

c1kgkp

Lp.fv>0g/
C krgkp

Lp.fv>0g/

i

6 1
p

krvkp

Lp.fv>0g/
� M

B WD �C2 � 1
q

h

c2kgkq

Lq .fv<0g/
� krgkq

Lq .fv<0g/

i

6 1
q

krvkq

Lq.fv<0g/
� M
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and we conclude that

min fA;Bg 6
1

p
krvkp

Lp.fv>0g/
C 1

q
krvkq

Lq .fv<0g/
� M 6 Jp;qŒv�: (3.3)

Therefore, we have checked that the functional Jp;qŒ�� is bounded below in K
.p;q/
g .˝/.

Now we show existence of minimizers to Jp;qŒ��. Let fuj gj >1 � K
.p;q/
g .˝/ be a minimizing

sequence for (Min). For j � 1 (large enough) we have Jp;qŒuj � 6 J
.p;q/
0 C 1. By performing

similar arguments as the ones that lead to the previous equation (3.3) we obtain for s WD minfp; qg
that

Z

˝

jruj jsdx 6 C
�

kuj kLs.˝/ C J
.p;q/
0 C 1

�

: (3.4)

Now, using Poincaré’s inequality we have

Ckuj kLs.˝/ 6 Ckruj kLs.˝/ C kgkW 1;s.˝/: (3.5)

Moreover, it holds that

Ckruj kLs.˝/ 6 C0 C 1

7
kruj ksLs.˝/: (3.6)

Finally, combining (3.4), (3.5) and (3.6) we get that

Z

˝

jruj jsdx 6 CkgkW 1;s.˝/ C J
.p;q/
0 C 1:

Therefore, invoking one more time Poincaré’s inequality we conclude that fuj gj >1 is a bounded

sequence in K
.p;q/
g .˝/. Thus, by reflexivity, there exists u0 such that, modulo a subsequence,

uj * u0 in W 1;s.˝/

uj ! u0 in Ls.˝/

uj ! u0 a.e. in ˝:

From now on, fix " > 0. By Egoroff’s Theorem there exists an open set V" � ˝ with L
N .˝nV"/ <

", such that uj ! u0 uniformly in V". Next, fixed & > 0, we estimate

Z

V"\fu0>&g

1

p
jru0jpdx 6 lim inf

j !1

Z

V"\fu0>&g

1

p
jruj jpdx 6 lim inf

j !1

Z

V"\fuj >
&
3 g

1

p
jruj jpdx

6 lim inf
j !1

Z

V"\fuj >0g

1

p
jruj jpdx

6 lim inf
j !1

Z

˝\fuj >0g

1

p
jruj jpdx:

Letting & ! 0 in the previous inequality we get that

Z

V"\fu0>0g

1

p
jru0jpdx 6 lim inf

j !1

Z

˝\fuj >0g

1

p
jruj jpdx: (3.7)
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Furthermore, from Lp bounds on ru0 we obtain that

Z

.˝nV"/\fu0>0g

1

p
jru0jpdx D O."/: (3.8)

Finally, combining (3.7), (3.8) and letting " ! 0C we conclude that

Z

˝\fu0>0g

1

p
jru0jpdx 6 lim inf

j !1

Z

˝\fuj >0g

1

p
jruj jpdx: (3.9)

A similar reasoning can be used in order to obtain the complementary estimate, namely

Z

˝\fu060g

1

q
jru0jqdx 6 lim inf

j !1

Z

˝\fuj <0g

1

q
jruj jqdx: (3.10)

Hence, u0 2 K
.p;q/
g .˝/. We notice here that in fact we showed that, when we have a bounded

sequence un 2 K
.p;q/
g .˝/, there is a subsequence and a weak limit u0 that is also in K

.p;q/
g .˝/.

Next, assuming �
p
C.x/ > �q

�.x/, we have

Z

˝

�q
�.x/�fu060gdx D

Z

fu060g

�q
�.x/�fuj >0gdx C

Z

fu060g

�q
�.x/�fuj 60gdx

6
Z

fu060g

�
p
C.x/�fuj >0gdx C

Z

˝

�q
�.x/�fuj 60gdx:

Then,

Z

˝

�q
�.x/�fu060gdx 6 lim inf

j !1

�Z

fu060g

�
p
C.x/�fuj >0gdx C

Z

˝

�q
�.x/�fuj 60gdx

�

Furthermore, since uj ! u0 a.e. in ˝ we obtain

Z

˝

�
p
C.x/�fu0>0gdx D

Z

fu0>0g

lim
j !1

�

�
p
C.x/�fuj >0g

�

dx D lim
j !1

Z

fu0>0g

�
p
C.x/�fuj >0gdx:

In the same way, under the regime �
p
C.x/ 6 �q

�.x/ we obtain the estimates

Z

˝

�
p
C.x/�fu0>0gdx 6 lim inf

j !1

�Z

fu0>0g

�q
�.x/�fuj 60gdx C

Z

˝

�
p
C.x/�fuj >0gdx

�

and
Z

˝

�q
�.x/�fu060gdx D

Z

fu060g

lim
j !1

�

�q
�.x/�fuj 60g

�

dx D lim
j !1

Z

fu060g

�q
�.x/�fuj 60gdx:

Therefore, in any case, we get

Z

˝

F0.�C; ��/Œu0�dx 6 lim inf
j !1

Z

˝

F0.�C; ��/Œuj �dx: (3.11)
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Similarly, we may prove the lower semi-continuity for f , i.e,
Z

˝

f u0dx 6 lim inf
j !1

Z

˝

f uj dx: (3.12)

Finally, combining (3.9), (3.10), (3.11) and (3.12) we conclude that

Jp;qŒu0� 6 lim inf
j !1

Jp;qŒuj � D J
.p;q/
0 :

Therefore, the limiting function u0 is a minimizer to Jp;qŒ�� and this finishes the proof of the theorem.

EXAMPLE 3.2 We must notice that uniqueness of minimizers of the variational problem does not

hold in general. In fact, take ˝ D BR � RN and a constant boundary datum g D ˛ > 0 on @˝ ,

we have for u0 D ˛ on ˝ and p D q

Jp;qŒu0� D �
p
CRN !N ;

where !N is the volume of the unit ball. Now, let us suppose there exists a unique minimizer v of the

functional Jp;qŒ��. Then, such a minimizer is radially symmetric, because the operator p-Laplacian

is invariant under rotations. For this reason, there exists a constant a > 0 such that

v.x/ WD
(

c1jxj
p�N
p�1 C c2 if a 6 jxj 6 R

0 if jxj 6 a;

where c1 and c2 are positive constants satisfying the following relation
8

<

:

c1jRj
p�N
p�1 C c2 D ˛

c1jaj
p�N
p�1 C c2 D 0;

from which we find that

c1 D ˛

jRj
p�N
p�1 � jaj

p�N
p�1

and c2 D �˛jaj
p�N
p�1

jRj
p�N
p�1 � jaj

p�N
p�1

:

Then, a straightforward calculation shows that

Jp;qŒu0� � Jp;qŒv� D aN !N .�p
� � �

p
C/ � N!N ˛p

p

1
�

jRj
p�N
p�1 � jaj

p�N
p�1

�p�1

ˇ

ˇ

ˇ

ˇ

p � N

p � 1

ˇ

ˇ

ˇ

ˇ

p�1

:

Finally, if we select carefully the values �C and ��, we can make this difference vanish obtaining

two different minimizers u0 and v. For complete details of this computation we refer to [19].

Next, we turn our attention to L1�bounds for minimizers.

Theorem 3.3 Let p; q > N and f˙ 2 Lr .˝/ with max
˚

1
p

C 1
r
; 1

q
C 1

r

	

6 1. Then, any minimizer

u0 to (Min) fulfils

kukL1.˝/ 6 C
�

N; p; q; �C; ��; kgkL1.˝/; kf kLr .˝/

�

:
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Proof. First, let j0 WD dsup@˝ g.x/e, i.e., the smallest natural number greater than or equal to

sup
@˝

g.x/. Next, for each j > j0 we consider the truncation uj W ˝ ! R given by

uj .x/ WD
(

j sign
�

u.x/
�

if juj > j

u.x/ if juj 6 j:

Moreover, if we call Aj WD fjuj > j g, then for each j > j0 we have

u.x/ D uj .x/ in ˝ n Aj and uj .x/ D j � sign.u.x// in Aj :

From the fact that u is a minimizer we obtain
Z

Aj \fu>0g

jrujpdx D
Z

˝\fu>0g

jrujp � jruj jpdx

6
Z

Aj \fu>0g

fC.uj � u/dx

(3.13)

Furthermore, notice that
Z

Aj

fC.uj � u/dx D
Z

Aj \fu>0g

fC.j � u/dx C
Z

Aj \fu60g

fC.u � j /dx

6 2

Z

Aj

jfCj.juj � j /dx:

Now, recall that uj and u have the same sign. Consequently, it follows that .juj � j /C 2 W
1;p

0 .˝/.

Thus, using Hölder and Gagliardo–Nirenberg–Sobolev inequalities we obtain
Z

Aj \fu>0g

jfCj.juj � j /Cdx 6 kfCk
L

p
p�1 .Aj \fu>0g/

k.juj � j /CjjLp.Aj \fu>0g/

6 kfCkLp0
.Aj \fu>0g/L

N .Aj /� krukLp.Aj \fu>0g/;

where � WD 1 � 1
p� � 1

p0 and p� is the critical Sobolev exponent. Now, using Young inequality we

get

kfCkLp0
.Aj \fu>0g/L

N .Aj /� krukLp.Aj \fu>0g/ 6 CLN .Aj /
p

p�1
� C 1

2
krukp

Lp.Aj \fu>0g/
:

(3.14)

Therefore, from (3.13) and (3.14) we obtain
Z

Aj \fu>0g

jrujpdx 6 CLN .Aj /
1� p

N
C p.pp0�N /

N.p�1/p0

and (cf. (3.1) and (3.4) changing J
.p;q/
0 by Jp;qŒg�)

kukL1.Aj0
\fu>0g/ 6 L

N .Aj0 \ fu > 0g/kukLp.Aj0
\fu>0g/:

A similar estimate holds for the negative part of u. Finally, boundedness of u will follow from

general mathematical tools come from elliptic PDE theory (cf. [17, Chapter 2, Lemma 5.2]).
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Remark 3.4. As a byproduct of L1 bounds for a minimizer u of the functional Jp;qŒ�� we obtain a

universal control of u in the W 1;p.fu > 0g/ \ W 1;q.fu < 0g/ topology. In fact, we get
Z

˝\fu>0g

jrujpdx 6 Jp;qŒg� �
Z

˝\fu>0g

.�
p
C.x/ C jfCjjuj/dx

6 Jp;qŒg� C C
�

N; p; ˝; kfCkLp0
.˝\fu>0g/

�

6 C]

�

N; p; ˝; kgk; kfCkLp0

�

;

with a similar estimate holding in the negativity set of u. Therefore,

max
˚

kukW 1;p.fu>0g/; kukW 1;q.fu<0g/

	

6 C]

�

N; p; q; ˝; kgk; kfCkLp0 ; kf�kLq0

�

:

We will finish this section by bringing to light the Euler–Lagrange equation related to the

functional Jp;qŒ��, as well as the free boundary condition (the flux balance through the phase

transition) which is satisfied by any minimizer u0 along the free boundary.

Proposition 3.5 Let u0 be a solution to the minimization problem (Min). Then u0 satisfies in the

weak sense
8

ˆ

<

ˆ

:

�p u0 D fC.x/ in fu0 > 0g \ ˝

�q u0 D f�.x/ in fu0 6 0gı \ ˝

u0.x/ D g.x/ on @˝:

(3.15)

A proof for such a result is rather standard. For this reason, we will omit it.

Next, we will focus our attention at the equation satisfied through the free boundary for

minimizers to (Min). For this purpose, consider x0 2 @fu0 > 0g [ @fu0 < 0g a free boundary

point, B a small ball centered at x0, ˚ 2 C 1
0 .Bs.x0/;RN / a vector field and " D o.1/. Thus, we

define the quantities

�C
" .x0/ WD

Z

Bs.x0/\@fu0>"g

�

p � 1

p
jru0.x/jp � �

p
C.x/

�

�1 � ˚dH
N �1

and

��
" .x0/ WD

Z

Bs.x0/\@fu0<�ıg

�

q � 1

q
jru0.x/jq � �q

�.x/

�

�2 � ˚dH
N �1

Proposition 3.6 Let u0 be a minimizer to (Min) with L
N .fu0 D 0g \ ˝/ D 0, x0 2 @fu0 >

0g [ @fu0 < 0g a free boundary point and Bs.x0/ � ˝ . Then, for any ˚ 2 C 1
0 .Bs.x0/;RN /, there

holds

lim
"&0

�C
" .x0/ C lim

ı%0
��

ı .x0/ D 0:

The proof of the previous result follows by Hadamard’s methods, i.e., domain variation

techniques. We will also omit such details of the proof here and refer to [24, Lemma 2.4]. In

particular, we must highlight that the balance flux

p � 1

p
.uC

� /p.x0/ � q � 1

q
.u�

� /q.x0/ D �
p
C.x0/ � �q

�.x0/;

holds in the classical sense along C 1 pieces of the free boundary, where u˙
� are respectively the

normal derivatives in the inward direction to @˝˙Œu�.
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4. Further properties for minimizers

In this section we will show that any minimizer u0 to (Min) grows linearly away from the free

boundary FC
˝ Œup;q� WD @fup;q > 0g \ ˝ (resp. F�

˝ Œup;q� WD @fup;q < 0g \ ˝). An essential tool

we will use is the non-homogeneous Harnack inequality, which we state below for completeness.

Theorem 4.1 (Serrin’s Harnack inequality, see [25] and [26]) Let 0 6 � 2 W 1;p.BR/, satisfying

�p�.x/ D f .x/ in BR

in the weak sense ,with f 2 Ls.BR/and s > N
p

. Then, there exists a constant C D C.N; p; s; R �
r/ > 0 such that

sup
Br

�.x/ 6 C

�

inf
Br

�.x/ C
�

rp� N
s kf kLs.BR/

�
1

p�1

�

:

Theorem 4.2 Let u0 be a minimizer to (Min), with f˙ 2 Lr .˝/,r > N , �C 2 Lp.˝/, �� 2
Lq.˝/, ˝ 0 b ˝ and x0 2 FC

˝0 Œu0� (resp. x0 2 F�
˝0 Œu0�). Then, there exists a constant c˙ > 0

depending only on N , p, q, k�CkLp , k��kLq and kf˙kLr such that

˙u0.x/ > c˙dist.x;F˙
˝ Œu0�/:

Proof. We will prove the estimate just in the positive phase, because the other one can be obtained

in a similar way. Fix x0 2 FC
˝0 Œu0�. Notice that it suffices to show such an estimate for points close

enough to the free boundary, in other words,

0 < dist.x0;FC
˝0 Œu0�/ � �

where � depends on dimension, p; q, and data of the problem and, it will be choosen a posteriori.

Now, define d WD dist.x0;FC
˝0 Œu0�/ and the scaled function

!.x/ WD u.x0 C dx/

d
:

Notice that the thesis of our Theorem is equivalent to establishing that !.0/ > c ( bounded away

from zero) for a universal constant c > 0. It is easy to check that ! is a minimizer to

JdpŒ�� WD
Z

B1

�

1

p
jr�jp C �C.y/p�f�>0g C dfC.y/�

�

dy

where y D x0 C dx. By our construction ! > 0 in B1, as well as

�p !.y/ D dfC.y/ in B1

in the weak sense. Then, by using the Harnack’s inequality (Theorem 4.1) we obtain

!.z/ 6 C.N; p/

�

!.0/ C
�

d
r�N

r kfCkLr .˝/

�
1

p�1

�

;

for any x 2 B 4
5

. Next, we will choose a non-negative, smooth radially symmetric cut-off function

� verifying
8

ˆ

ˆ

<

ˆ

ˆ

:

0 6 � 6 1 in B1

� D 0 in B 1
7

� D 1 in B1 n B 1
2
;
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as well as we define 	 W B1 ! RC as the following test function

˚.x/ WD

8

<

:

min
n

!.x/;C.N; p/
�

!.0/ C d
r�N

r kfCkLr .˝/

�

:�.x/
o

in B1

!.x/ in B1 n B 1
2
:

Now, let us define the following set

� WD
n

z 2 B 1
2

ˇ

ˇ C.N; p/
�

!.0/ C d
r�N

r kfCkLr .˝/

�

:�.z/ < !.z/
o

:

It is easy to verify that B 1
7

� � � B 1
2

. From minimality of ! we obtain

˘ WD
Z

�

�

�
p
C.x0 C dx/.1 � �f˚>0g/ C dfC.x0 C dx/Œ!.x/ � ˚.x/�

�

dx

6
Z

�

.jr˚ jp � jr!jp/dx

6
h

C.N; p/
�

!.0/ C .d
r�N

r kfCkLr .˝//
1

p�1
�

:k�kL1.B1/

ip

6 2pC.N; p/p
h

!.0/p C
�

d
r�N

r kfCkLr .˝/

�
p

p�1

i

:

(4.1)

Now, we turn our attention towards a lower bound control for the LHS of (4.1). Thus, we estimate
Z

�

�
p
C.x0 C dx/.1 � �f˚>0g/dx D

Z

�

�
p
C.x0 C dx/�f˚D0gdx > k�Ckp

Lp.B1=7/
(4.2)

Applying the Harnack inequality (Theorem 4.1) and the fact that � � B 1
2

we have that

0 6 ! � ˚ 6 ! 6 C.N; p/
h

!.0/ C
�

d
r�N

r kfCkLr .˝/

�
1

p�1

i

in �:

Thus, we estimate

˘0 WD �
Z

�

dfC.x0 C dx/Œ!.x/ � ˚.x/�dx

6 dk! � ˚k
L

r
r�1 .�/

kfC.x0 C dx/kLr .�/

6 d
r�N

r C.N; p; r; �/
h

!.0/ C
�

d
r�N

r kfCkLr .˝/

�
1

p�1

i

kfCkLr .˝/

(4.3)

holds. Now, combining (4.1), (4.2) and (4.3) we obtain

2pC.N; p/p
h

!.0/p C
�

d
r�N

r kfCkLr .˝/!.0/
�

i

> k�Ckp

Lp.B1=7/
� C.N; p; r; �/

�

d
r�N

r kfCkLr .˝/

�
p

p�1 : (4.4)

Therefore, choosing appropriately 0 < d 6 �.N; p; �C; kfCkLr .˝// � 1 we conclude

!.0/ > c
�

N; p; �C; kfCkLr .˝/

�

> 0

as desired. This concludes the proof of the theorem.
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Remark 4.3. From the proof of Theorem 4.2, according to (4.4), we have the following estimate

!.0/ >
1

2C.N; p/
:k�CkLp.B1=7/

where C.N; p/ > 0 is the constant from Harnack inequality (Theorem 4.1).

In what follows we are going to iterate the linear growth estimates obtained in the Theorem 4.2

in order to establish a strong non-degeneracy property for minimizers u0 near a free boundary point.

More precisely, we have the following result:

Theorem 4.4 Let u0 be a minimizer to (Min), with f˙ 2 Lr .˝/, r > N , �C 2 Lp.˝/, �� 2
Lq.˝/, ˝ 0 b ˝ and x0 2 fu0 > 0g \ ˝ 0 (resp. x0 2 fu0 6 0g \ ˝ 0). Then, there exist constants

c�
˙ > 0 depending only on N; p; q; k�CkLp , k��kLq and kf˙kLr such that

sup
Br0

.x0/\˝˙

˙u0.x/ > c�
˙r0 for any 0 < r0 6 dist.@˝ 0; @˝/: (4.5)

Proof. First of all, it suffices to show the thesis of the Theorem within the positive phase .˝ 0/CŒu0�

due to continuity for minimizers.

Let us begin by establishing the existence of a �0 D �0.N; p; �C:kfCkLr .˝/; ˝ 0/ > 0 and the

data of the problem, such that if x 2 .˝ 0/CŒu0�, then there holds

sup
Bd.x/

u0.x/ > .1 C �0/u0.x0/; (4.6)

where d.x/ WD dist.x; @.˝ 0/CŒu0�/. In order to check (4.6), we will assume, for sake of

contradiction, that such a �0 does not exist. Then, we can find sequences �j D o.1/ and xj 2
.˝ 0/CŒu0� such that

sup
Bdj.xj /

u0.x/ > .1 C �j /u0.xj /; (4.7)

where dj .xj / WD dist.xj ; @.˝ 0/CŒu0�/ D o.1/ as j ! 1. Now, we define the normalized sequence

vj W B1 ! R given by

vj .y/ WD u0.xj C dj y/

u0.xj /
:

We have that vj .0/ D 1 and, from (4.7) we get

0 6 vj 6 1 C �j in B1:

Moreover, vj satisfies in B1 in the weak sense

�p vj D
d

p
j

u.xj /p�1
fC.xj C dj y/: (4.8)

Hence, taking into account the linear growth from Theorem 4.2 and estimate (4.8), we obtain

�p vj 6 Cdj fC.xj C dj y/:
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By Harnack inequality (Theorem 4.1), we deduce that fvj gj >1 is an equicontinuous sequence in

B1. Thus, we may assume that vj ! v locally uniformly in B1. One more time Harnack inequality

revels that for any x such that jxj 6 r0 < 1, there holds

0 6 1 C �j � vj .x/ 6 C
h

1 C �j � vj .0/ C
�

d
1� N

r

j kfCkLr .˝/
�

1
p�1

i

D C � o.1/:

By letting j ! 1 we conclude that the limiting blow-up profile v is identically 1 in B1.

Now, we will show that such a conclusion yields a contradiction. To this end, let yj 2
@.˝ 0/CŒu0� such that dj D jxj � yj j. Thus, up to a subsequence, there would hold

1 C o.1/ D vj

�

yj � xj

dj

�

D 0

which clearly is an absurd for j large enough.

Therefore, we just need to prove that the estimate (4.6) hold. Such a conclusion will follow by

Caffarelli’s polygonal type of argument. Precisely, we construct a polygonal along which u0 grows

linearly. Starting from x D x0 we find a sequence of points fxkgk>1 such that:

� u0.xk/ > .1 C �0/ku0.x0/;

� dist.xk�1; @.˝ 0/CŒu0�/ D jxk � xk�1j;
� u0.xk/ � u0.xk�1/ > cjxk � xk�1j.
In particular, we get that

u0.xk/ � u0.x0/ > cjxk � x0j:

Since u0.xk/ ! 1 as k ! 1 this process must be finite. Then, there exists a last xk0
2 Br0

.x0/

and for such a point, we have jxk0
� x0j > c.N; p/r0. Finally, we conclude that

sup
Br0

.x0/

u0.x/ > u0.xk0
/ > u0.x0/ C c.p; N /jxk � x0j > c.p; N /r0;

which finishes the proof.

5. The limit problem as p; q ! 1

In this last section we will establish the limit profile as p; q go to infinity for our minimization

problem.

Lemma 5.1 Let up;q be a minimizer to .Min/. Then, there exists C0 D C0.g; ˝; p; q; �˙; f˙/ > 0

such that

max
˚

krup;qkLp.˝/; krup;qkLq.˝/

	

6 C0:

Furthermore, it holds that

lim
p;q!1

C0 D max
n

1; Œg�C 0;1.˝/; Œg�Q
C 0;1.˝/

; Œg�
1
Q

C 0;1.˝/
;

k�CkL1.˝/; k�Ck
1
Q

L1.˝/
; k��kQ

L1.˝/
; k��kL1.˝/

o

:
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Proof. Let 	 be a Lipschitz extension of g among functions in the set

K1 WD fv 2 W 1;1.˝/
ˇ

ˇ v D g on @˝g:

Since ˝ is bounded, 	 competes in the minimization problem (Min). Thus, by using 	 as a test

function in (Min), we obtain

Jp;qŒup;q � 6 Jp;qŒ	 �:

On the other hand,

Jp;qŒ	 � 6 L
N .˝/

�

1

p
Lip.	/p C 1

q
Lip.	/q

�

C k�Ckp

Lp.˝/

C k��kq

Lq.˝/
C kfCkLp0

.˝/k	kLp.˝/ C kfCkLq0
.˝/k	kLq.˝/:

Now, notice that
Z

˝\fup;q>0g

1

p
jrup;qjpdx 6 Jp;qŒ	 � �

Z

˝\fup;q>0g

�

�
p
C.x/ C jfCjjuj

�

dx

6 Jp;qŒ	 �:

Similarly, one obtains
Z

˝\fup;q<0g

1

q
jrup;qjqdx 6 Jp;qŒ	 �:

Now, if q > p, then

�Z

˝

jrup;qjp
�

1
p

6 p

q

pJp;qŒ	 � C q

q

pJp;qŒ	 �LN .˝/
q�p
pq :

On the other hand, if p > q,

�Z

˝

jrup;qjq
�

1
q

6 q

q

qJp;qŒ	 � C p

q

qJp;qŒ	 �LN .˝/
q�p
pq :

Therefore,

max
˚

krup;qkLp.˝/; krup;qkLq.˝/

	

6 C.	; ˝; p; q; �˙; f˙/;

where

C.	; ˝; p; q; �˙; f˙/

D max

�

p

q

pJp;qŒ	 � C q

q

pJp;qŒ	 �LN .˝/
q�p
pq ; q

q

qJp;qŒ	 � C p

q

qJp;qŒ	 �LN .˝/
q�p
pq

�

:

Hence, the sequence up;q is uniformly bounded in W 1;p.˝/ \ W 1;q.˝/, and its weak limit as

p; q ! 1 fulfils

kru1kL1.˝/ 6 max
n

1; LipŒ	 �; LipŒ	 �Q; LipŒ	 �
1
Q ; k�CkL1.˝/;

k�Ck
1
Q

L1.˝/
; k��kQ

L1.˝/
; k��kL1.˝/

o

:
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As an immediate consequence of previous analysis we are able to prove the following theorem:

Theorem 5.2 Let p; q > N and f˙ 2 Lr .˝/ with max
˚

1
p

C 1
r
; 1

q
C 1

r

	

6 1. Then, for all sequence

of solutions up;q to .Min/, there exists a subsequence, denoted by up;q yet, such that up;q ! u1

uniformly in ˝ . Furthermore, u1 2 W
1;1

g .˝/ with

Œu1�C 0;1.˝/ WD sup
x;y2˝

x 6Dy

jw.x/ � w.y/j
jx � yj 6 lim

p;q!1
C.	; ˝; p; q; �˙; f˙/:

Proof. From Lemma 5.1 we have that

max
˚

krup;qkLp.˝/; krup;qkLq.˝/

	

6 C0:

Next, fix m, and take p; q > m. We have,

�Z

˝

jrup;qjm
�1=m

6 j˝j 1
m

� 1
p krup;qkLp.˝/ 6 j˝j 1

m
� 1

p C0:

Hence, there exists a weak limit in W 1;m.˝/ that we will denote by u1. This weak limit has to

verify
�Z

˝

jru1jm
�1=m

6 j˝j 1
m lim

p;q!1
C0:

As the above inequality holds for every m, we get that u1 2 W 1;1.˝/ and moreover, taking the

limit m ! 1,

jru1j 6 lim
p;q!1

C0; a.e. x 2 ˝:

Therefore, we have

Œu1�C 0;1.˝/ WD sup
x;y2˝

x 6Dy

jw.x/ � w.y/j
jx � yj 6 lim

p;q!1
C.	; ˝; p; q; �˙; f˙/:

We will comment throughout this section how the source term f affects the limit, it is through

its support and sign.

Before starting let us define the following space

Z WD
�

w 2 C 0;1.˝/
ˇ

ˇ w D g in @˝ and Œw�C 0;1.˝/ WD sup
x;y2˝

x 6Dy

jw.x/ � w.y/j
jx � yj 6 1

�

:

Under such a definition the following theorem holds (see [6] for similar result in isotropic case).

Theorem 5.3 Let f˙ 2 Lr .˝/ with

max

�

1

p
C 1

r
;

1

q
C 1

r

�

6 1;
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g 2 W 1;p.˝/ \ W 1;q.˝/ with Œg�C 0;1.˝/ 6 1, k�˙kL1.˝/ < 1 and up;q the corresponding

minimizer to (Min). Then, u1 obtained as a uniform limit of a subsequence of fup;qg, fulfils the

maximization problem

max
v2Z

�Z

fv>0g\˝

fCvdx C
Z

fv<0g\˝

f�vdx

�

D
Z

fu1>0g\˝

fCu1dx C
Z

fu1<0g\˝

f�u1dx:

(5.1)

Remark 5.4. Under the same conditions of Theorem 5.3 but with �C � 1 and k��kL1.˝/ < 1 we

get

max
v2Z

�Z

fv>0g\˝

fCvdx C
Z

fv<0g\˝

f�vdx C L
N .fv > 0g/

�

D
Z

fu1>0g\˝

fCu1dx C
Z

fu1<0g\˝

f�u1dx C L
N .fu1 > 0g/ (5.2)

as the variational limit problem.

Finally, when �C > 1 the corresponding term in the functional diverges (recall that .�C/p

appears) and therefore we don’t have a limit variational problem in this case.

Theorem 5.5 Let f˙ 2 C 0.˝/ and g 2 W 1;p.˝/ \ W 1;q.˝/ such that Œg�C 0;1.˝/ 6 1. Then,

u1 2 Z obtained as uniform limit of a subsequence fup;qgp;q>0, fulfils in the viscosity sense

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��1 u1 D 0 in
�

fu1 > 0g [ fu1 < 0g
�

\ .˝ n supp f˙/ı

jru1j D 1 in
�

fu1 > 0g [ fu1 < 0g
�

\
�

˝ \ ff˙ > 0g
�

�jru1j D �1 in
�

fu1 > 0g [ fu1 < 0g
�

\
�

˝ \ ff˙ < 0g
�

��1 u1 > 0 in
�

fu1 > 0g [ fu1 < 0g
�

\
�

˝ \ @ff˙ > 0g n @ff˙ < 0g
�

��1 u1 6 0 in
�

fu1 > 0g [ fu1 < 0g
�

\
�

˝ \ @ff˙ < 0g n @ff˙ > 0g
�

u1.x/ D g.x/ on @˝:

(5.3)

Proof. First, from the uniform convergence, it holds that u1 D g on @˝ . Next, we will prove that

the limit function u1 is an 1�harmonic function outside of support of source term, i.e.,

��1u1.x/ D 0 in
�

fu1 > 0g [ fu1 < 0g
�

\ .˝ n supp f˙/ı:

To this end, let x0 2 .fu1 > 0g[fu1 < 0g/\.˝ nsuppf /ı and � 2 C 2.˝/ such that u1 �� has

a strict local maximum (resp. strict local minimum) at x0. Since, up to subsequence, up:q ! u1

local uniformly, there exists a sequence xp;q ! x0 such that up;q � � has a local maximum (resp.

local minimum) at xp;q . Moreover, if up;q is a weak solution (consequently a viscosity solution

according to Lemma 2.4) to (1.3) we obtain

�
�

jr�.xp;q/jp�2��.xp;q/ C .p � 2/jr�.xp;q/jp�4�1�.xp;q/
�

6 �f˙.xp;q/ .resp. > �f˙.xp;q//:

Now, if jr�.x0/j ¤ 0 we may divide both sides of the above inequality by .p � 2/jr�.xp;q/jp�4

(which is different from zero for p (resp. q) large enough). Thus, we obtain that

��1�.xp;q/ 6
jr�.xp;q/j2��.xp;q/

p � 2
� f˙.xp;q/

.p � 2/jr�.xp;q/jp�4
.resp. > � � � /;
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where the RHS tends to zero as p ! 1 (resp. q ! 1), because f˙.xp;q/ ! 0. Therefore,

��1�.x0/ 6 0 .resp. > 0/;

and since such an inequality is immediately satisfied if jr�.x0/j D 0 we conclude that u1 is a

viscosity sub-solution (resp. super-solution) to the desired equation.

Observe that the previous reasoning also proves that u1 fulfils

��1 u1 > 0 in
�

fu1 > 0g [ fu1 < 0g
�

\
�

˝ \ @ff˙ > 0g n @ff˙ < 0g
�

and

��1 u1 6 0 in
�

fu1 > 0g [ fu1 < 0g
�

\
�

˝ \ @ff˙ < 0g n @ff˙ > 0g
�

in the viscosity sense.

Next, we will prove that u1 is a viscosity solution to

max
˚

� �1u1.x/; �jru1.x/j C 1
	

D 0 in
�

fu1 > 0g [ fu1 < 0g
�

\
�

˝ \ ff˙ > 0g
�

:

First let us prove that u1 is a viscosity super-solution. Fix x0 2 .fu1 > 0g [ fu1 < 0g/ \ .˝ \
ff˙ > 0g/ and let � 2 C 2.˝/ be a test function such that u1.x0/ D �.x0/ and the inequality

u1.x/ > �.x/ holds for all x ¤ x0. We want to show that

��1�.x0/ > 0 or � jr�.x0/j C 1 > 0:

Notice that if jr�.x0/j D 0 there is nothing to prove. Hence, as a matter of fact, we may assume

that

�jr�.x0/j C 1 < 0: (5.4)

As in the previous case, there exists a sequence xp;q ! x0 such that up;q � � has a local minimum

at xp;q . Since up;q is a weak super-solution (consequently a viscosity super-solution according to

Lemma 2.4) to (1.3) we get

�
�

jr�.xp;q/jp�2��.xp;q/ C .p � 2/jr�.xp;q/jp�4�1�.xp;q/
�

> �f˙.xp;q/:

Now, dividing both sides by .p � 2/jr�.xp;q/jp�4 (which is different from zero for p (resp. q)

large enough due to (5.4)) we get

��1�.xp;q/ > �jr�.xp;q/j2��.xp;q/

p � 2
�
 

p�4
p

f˙.xp;q/

jr�.xp;q/j

!p�4

:

Passing the limit as p; q ! 1 in the above inequality we conclude that

��1�.x0/ > 0:

That proves that u1 is a viscosity super-solution.

Now, we will analyze the other case. To this end, fix x0 2 .fu1 > 0g[fu1 < 0g/\.˝\ff˙ >

0g/ and a test function � 2 C 2.˝/ such that u1.x0/ D �.x0/ and the inequality u1.x/ < �.x/

holds for x ¤ x0. We want to prove that

��1�.x0/ 6 0 and � jr�.x0/j � 1 6 0: (5.5)
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Again, as before, there exists a sequence xp;q ! x0 such that up;q � � has a local maximum at xp;q

and since up;q is a weak sub-solution (resp. viscosity sub-solution) to (1.3), we have that

�jr�.xp;q/j2��.xp:q/

p � 2
� �1�.xp;q/ 6 �

 

p�4
p

f˙.xp;q/

jr�.xp;q/j

!p�4

6 0:

Thus, we obtain ��1�.x0/ 6 0 letting p; q ! 1. If �jr�.x0/j � 1 > 0, as p; q ! 1, then the

right hand side goes to �1, which clearly yields a contradiction. Therefore (5.5) holds.

The last part of the proof consists in proving that u1 is a viscosity solution to

max
˚

� �1u1.x/; �jru1.x/j C 1
	

D 0 in
�

fu1 > 0g [ fu1 < 0g
�

\
�

˝ \ ff˙ < 0g
�

:

The argument holds like the previous case and for this reason we will omit it here.

Remark 5.6. It is worth to highlight that combining the information from Lemma 5.1 and

Theorem 5.2 we are able to infer that when f˙ D 0 the positive and the negative parts of the

solutions to the limit problem are, in fact, an AMLE for its boundary data under the limit free

boundary condition (1�FBC). This is due to the fact that they are 1�harmonic functions.

The limiting free boundary condition

In this short part we will deduce (formally) the so-called limiting free boundary condition coming

from (FBC). Precisely, by supposing that solutions and their corresponding free boundaries are

appropriated regular we can proceeding as following: Recall the .p; q/�flux balance (FBC), that is,

Gp;q.uC
� ; u�

� ; �C; ��/ D p � 1

p
.uC

� /p.x/ � q � 1

q
.u�

� /q.x/ � �
p
C.x/ C �q

�.x/ D 0:

Now, we rewrite this as follows:

�

p � 1

p
.uC

� /p.x/ C
�

�
q
p
�
�p

.x/

�
1
p

D
�

q � 1

q

�

.u�
� /

q
p
�p

.x/ C �
p
C.x/

�
1
p

:

Hence, using the well-know fact that

.Ap C Bp/
1
p ! max fA;Bg ; as p ! 1;

we obtain as formal limit of the previous identity,

max
n

uC
� .x/; �Q

� .x/
o

D max
n

.u�
� /Q.x/; �C.x/

o

: (5.6)

Remark that this limit procedure in the free boundary condition is only formal since we do not have

enough regularity of the normal derivatives u˙
� (note that they depend on p; q) and the associated

free boundaries (in order to have that (FBC) holds pointwise and that the free boundaries converge

uniformly (together with its normal vectors) as p; q ! 1).

Let us point out that in the 1-D case (see the next example) the limit verifies the limit free

boundary condition (5.6) pointwise in all cases.
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Examples

Finally, let us present some examples in which we are able to compute the limit as p; q ! 1.

EXAMPLE 5.7 Let us analyze the 1-D minimization problem: Given an interval .0; L/, let �˙ > 0

be two positive constants, ˛; ˇ be positive numbers and impose the boundary conditions uJ.0/ D ˛

and uJ.L/ D �ˇ (that is, we take g.0/ D ˛, g.L/ D �ˇ). Finally, we take f˙ � 0.

The functional to be minimized is given by

Jp:qŒv� D
Z

fv>0g

�

1

p
jv0jp C �

p
C

�

dx C
Z

fv<0g

�

1

q
jv0jq C �q

�

�

dx

First of all, we will deal with the case in which there is a zero-phase region. In other words, there

are points

0 < xC
p < x�

q < L

such that

uJ.x/ D 0 8 x 2 .xC
p ; x�

q /:

Thus, the energy is minimized by a function of following form

uJ.x/ WD

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

� ˛

xC
p

.x � xC
p / if x 2 .0; xC

p /

0 if x 2 .xC
p ; x�

q /

� ˇ

L � x�
q

.x � x�
q / if x 2 .x�

q ; L/:

Moreover, the minimum of the energy is given by

Jp:qŒuJ� D 1

p
˛p.xC

p /1�p C 1

q
ˇq.L � x�

q /1�q C �
p
CxC

p C �q
�.L � x�

q /:

Notice that Jp:q achieves a minimum at uJ, thus by minimizing the previous sentence with respect

to xC
p and x�

q we obtain

xC
p D p

s

p � 1

p

˛

�C

and L � x�
q D q

s

q � 1

q

ˇ

��

:

Recall that we have assumed that 0 < xC
p < x�

q < L. Thus, in this case, we conclude that a solution

with a zero-phase exists if and only if

p

s

p � 1

p

˛

�C

C q

s

q � 1

q

ˇ

��

< L:

Moreover, the limits as p; q ! 1 of xC
p and L � x�

q are the following

xC
1 D ˛

�C

and L � x�
1 D ˇ

��

;
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and hence the limiting profile is given by

uJ1 .x/ WD

8

ˆ

<

ˆ

:

��C.x � xC
1/ if x 2 .0; xC

1/

0 if x 2 .xC
1; x�

1/

���.x � x�
1/ if x 2 .x�

1; L/:

Next, we will assume that there is no zero-phase region, in other words, xC
p D x�

q D xj . Hence,

such a point must verify the condition

p � 1

p

ˇ

ˇ

ˇ

ˇ

˛

xj

ˇ

ˇ

ˇ

ˇ

p

� q � 1

q

ˇ

ˇ

ˇ

ˇ

ˇ

L � xj

ˇ

ˇ

ˇ

ˇ

q

D �
p
C � �q

�: (5.7)

Now, for such a fixed point we have that uJ is given by

uJ.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

˛

�

1 � 1

xj

x

�

if x 2 .0; xj /

ˇ

�

1

L � xl

.L � x/ � 1

�

if x 2 .xj ; L/

Since .xj /j 2N is a bounded sequence we have, up to a subsequence, xj ! x1. Now, we divide the

analysis of (5.7) in two cases (note that we assumed that �
p
C ¤ �q

�).

� If �
p
C > �q

� we have

p � 1

p

ˇ

ˇ

ˇ

ˇ

˛

xj

ˇ

ˇ

ˇ

ˇ

p �

1 � p.q � 1/

q.p � 1/

ˇ

ˇ

ˇ

xj

˛

ˇ

ˇ

ˇ

p
ˇ

ˇ

ˇ

ˇ

ˇ

L � xj

ˇ

ˇ

ˇ

ˇ

q�

D �
p
C � �q

� D �
p
C

2

41 �

0

@

�
q
p
�

�C

1

A

p3

5 ;

which yield in the limit as p; q ! 1
˛

x1

D �C;

provided

x1

˛

ˇ

ˇ

ˇ

ˇ

ˇ

L � x1

ˇ

ˇ

ˇ

ˇ

Q

< 1:

This holds if and only if
˛

�C

C ˇ

Q
p

�C

< L:

Therefore, in this case uJ1 (the uniform limit of the up;q) is uniquely determined and is given by

uJ1 .x/ WD

8

<

:

˛
�

1 � 1
x1

x
�

if x 2 .0; x1/

ˇ
h

1
L�x1

.L � x/ � 1
i

if x 2 .x1; L/:
(5.8)

Furthermore, in the case
ˇ

Q
p

�C

C ˛

�C

> L
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we obtain from the previous analysis that uJ1 is a Lipschitz function with boundary values ˛

and �ˇ and Lipschitz constant less or equal to ˇ
Q
p

�C

C ˛
�C

. Therefore, the only possibility is

the strait line given by

uJ1 .x/ D ˛ �
�

˛ C ˇ

L

�

x: (5.9)

Finally, note that in this case we have lost the free boundary condition since the limit does not

depends on �˙.

� If �
p
C < �q

� then re-writing (5.7) as

q � 1

q

ˇ

ˇ

ˇ

ˇ

ˇ

L � xj

ˇ

ˇ

ˇ

ˇ

q �

1 � .p � 1/q

p.q � 1/

ˇ

ˇ

ˇ

ˇ

L � xj

ˇ

ˇ

ˇ

ˇ

ˇ

q ˇ
ˇ

ˇ

ˇ

˛

xj

ˇ

ˇ

ˇ

ˇ

p�

D �q
� � �

p
C D �q

�

2

41 �

0

@

�
p
q

C

��

1

A

q3

5 ;

we obtain in the limit as p; q ! 1
ˇ

L � x1

D ��

provided

˛

x1

ˇ

ˇ

ˇ

ˇ

L � x1

ˇ

ˇ

ˇ

ˇ

ˇ

Q

< 1:

This holds if and only if

˛

�Q
�

C ˇ

��

< L:

One more time we obtain the limit profile (5.8). Similarly to the previous case, if ˛

�Q
�

C ˇ
��

> L

we obtain the limit characterization (5.9).

EXAMPLE 5.8 If f� D 0 > fC in ˝ and g � 0 in @˝ , then the unique (positive) maximizer to

(5.1) is given by

u1.x/ WD dist.x; @˝/:

In effect, we have that

jdist.x; @˝/ � dist.y; @˝/j 6 jx � yj;

in other words, u1 2 Z. Finally, since u1 fulfils (5.1), it is suffices to show that w.x/ 6 dist.x; @˝/

for any w 2 Z. In fact, since w 2 Z we have that

jw.x/j
jx � yj 6 1 8 y 2 @˝:

Therefore,

jw.x/j 6 inf
y2@˝

jx � yj D dist.x; @˝/:

Furthermore, we must to observe that u1 is, in fact, a viscosity solution of the limit problem (1.4).

In effect, given x 2 ˝ we have

jru1j D 1 a.e in ˝:
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Finally, u1 is a supersolution for 1�Laplacian, we conclude that

max
˚

� �1u1.x/; jru1.x/j � 1
	

D 0 in ˝

in the viscosity sense.

Similarly, if f� > 0 D fC in ˝ and g � 0 in @˝ , then the unique maximizer to (5.1) is given

by u1.x/ D dist.x; @˝/; x 2 ˝

and it satisfies in the viscosity sense

max
˚

� �1u1.x/; � jru1.x/j C 1
	

D 0 in ˝:
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