
Interfaces and Free Boundaries 20 (2018), 437–481
DOI 10.4171/IFB/408

Two-dimensional steady supersonic exothermically reacting Euler flows
with strong contact discontinuity over a Lipschitz wall
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In this paper, we establish the global existence of supersonic entropy solutions with a strong contact

discontinuity over a Lipschitz wall governed by the two-dimensional steady exothermically reacting

Euler equations, when the total variation of both the initial data and slope of the Lipschitz wall is

sufficiently small. Local and global estimates are developed and a modified Glimm-type functional

is carefully designed. Next the validation of the quasi-one-dimensional approximation in the domain

bounded by the wall and the strong contact discontinuity is rigorous justified by proving that the

difference between the average of weak solution and the solution of quasi-one-dimensional system

can be bounded by the square of the total variation of both the initial data and slope of the Lipschitz

wall.
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1. Introduction

We are concerned with the global existence and the quasi-one-dimensional approximation

of entropy solutions with strong contact discontinuity of two-dimensional steady supersonic

exothermically reacting Euler flows, which are governed by

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

.�u/x C .�v/y D 0;

.�u2 C p/x C .�uv/y D 0;

.�uv/x C .�v2 C p/y D 0;�
.�E C p/u

�
x

C
�
.�E C p/v

�
y

D 0;

.�uZ/x C .�vZ/y D ���.T /Z:

(1.1)

Here .u; v/ is the velocity. p, �, and T stand for the scalar pressure, the density, the temperature,

respectively. Z represents the fraction of unburned gas, where 0 6 Z 6 1. E denotes the specific
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total energy and is given by

E D e C 1

2
.u2 C v2/ C q0Z; (1.2)

where e is the specific internal energy, and q0 > 0 is the specific binding energy of unburned gas.

�.T / is the reaction rate function, which is a C 1 function with respect to T on .0; C1/ and satisfies

that

lim
T !0C

�.T / D 0 and �0.T / > 0:

As an example in [6], we call �.T / has the Arrhenius form which vanishes only at absolute zero

temperature, if

�.T / D T �e�E=RT ;

where � is a positive constant, and E is the action energy. For further information on this equation

and related combustion theories, we refer the reader to [15, 23, 35, 38, 42].

The other thermodynamic variable is the entropy S , which is defined through the thermodynam-

ical relation that:

T dS D de � p

�2
d�:

For the ideal polytropic gas, the constitutive relations are

p D R�T; e D cvT;  D 1 C R

cv

> 1;

where R; cv;  are all positive constants. Then the sonic speed is given by c D
p

p=�.

Obviously, by the thermodynamical relation and the constitutive relations, any two thermody-

namic variables of e, p, T , � and S can be chosen as the independent variables. Here, we choose �

and p as the independent variables, and let

U D .u; v; p; �; Z/>: (1.3)

In this paper, we will study the two-dimensional steady supersonic exothermically reacting Euler

flow with a strong contact discontinuity over a Lipschitz wall, which is small perturbation of the

straight wall (see Fig. 1). Here a strong contact discontinuity is a free interface across which the

flow direction and the pressure are continuous but the jump of the other quantities are not small, and

the contact discontinuity propagates along the flow direction (see also Remark 1.5).

Mathematically, the problem we are concerned with is the following initial-boundary value

problem of system (1.1) in ˝ with the initial condition that

U.0; y/ D U0.y/ D
(

U2.y/; y.0/ < y < 0;

U1.y/; y < y.0/;
(1.4)

and the boundary condition that

.u; v/ � n D 0 on �: (1.5)

Then we can define the global entropy solutions of problem (1.1) and (1.4)-(1.5).

DEFINITION 1.1 (Entropy Solutions) A vector-valued function U.x; y/ D .u; v; p; �; Z/>.x; y/ 2
L1.˝/ is called a global entropy solution of problem (1.1) and (1.4)–(1.5) if
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FIG. 1. Reacting Euler flow over a Lipschitz wall

(i) U is a weak solution of (1.1) in ˝ in the distribution sense and satisfies (1.4)–(1.5) in the trace

sense;

(ii) U satisfies the entropy inequality that

.�uS/x C .�vS/y >
q0��.T /Z

T

in the distribution sense in ˝ .

REMARK 1.2 The entropy inequality in Definition 1.1 follows from Clausius–Duhem inequality in

the time-dependent case, see, for instance, [19].

Before stating the main theorems of this paper, let us assume the following:

(H1) As shown in Fig. 1, there exists a Lipschitz function g.x/ 2 Lip.RCIR/ with that g.0/ D
0; g0.0C/ D 0; and that g0.x/ 2 BV.RCIR/ such that

˝ D
˚
.x; y/ W y < g.x/; x > 0

	
; � D

˚
.x; y/ W y D g.x/; x > 0

	
;

and n.x˙/ D .�g 0.x˙/;1/p
.g 0.x˙//2C1

is the outer normal vectors to � at the points x˙, respectively.

Here and in sequel, Lip.RCIR/ denotes the set of Lipschitz continuous functions, while

BV.RCIR/ denotes the set of functions with bounded variations.

(H2) The upstream flow in fx D 0g consists of two states U2.y/ D .u2; v2; p2; �2; Z2/>.y/ when

y.0/ < y < 0 and U1.y/ D .u1; v1; p1; �1; Z1/>.y/ when y < y.0/, separated by the

interface y D y0 such that

ui > ci > 0; 0 6 Zi 6 1; lim
y!�1

Z1.y/ D 0;

where ci D
p

pi =�i is the sonic speed of state Ui , for i D 1; 2:

(H3) There exists a positive constant T .0/ > 0, such that Ti .y/ > T .0/, for i D 1; 2.

REMARK 1.3 Assumption .H3/ is to make sure that �.T / admits a positive minimum value.

Our first result is to establish the nonlinear stability of strong contact discontinuity in the

supersonic exothermically reacting Euler flows around a background solution, which is given by
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the case that g.x/ D 0. In this case, the problem admits a solution consisting of one straight contact

discontinuity y D y.0/ < 0 and two constant states:

U .0/ D
(

U
.0/
2 D .u

.0/
2 ; 0; p

.0/
2 ; �

.0/
2 ; 0/; y.0/ < y < 0; x > 0;

U
.0/
1 D .u

.0/
1 ; 0; p

.0/
1 ; �

.0/
1 ; 0/; y < y.0/; x > 0;

where p
.0/
2 D p

.0/
1 , u

.0/
i > c

.0/
i > 0; and the sonic speed c

.0/
i D

q
p

.0/
i =�

.0/
i , for i D 1; 2.

More precisely, we proved the following theorem.

Theorem 1.4 Under assumptions .H1/–.H3/, there exist positive constants ı0 and C depending

only on U .0/, such that if

T:V:
˚
g0.�/ W Œ0; C1/

	
< ı0; (1.6)

and

sup
y<y.0/

jU1.y/ � U
.0/
1 j C sup

y.0/<y<0

jU2.y/ � U
.0/
2 j < ı0; (1.7)

T:V:
˚
U1.�/ W .�1; y.0//

	
C T:V:

˚
U2.�/ W .y.0/; 0/

	
< ı0; (1.8)

then the initial-boundary value problem (1.1) and (1.4)–(1.5) admits a global entropy solution

U.x; y/ 2 L1.˝/ such that the following hold:

(i) for every x 2 Œ0; C1/;

T:V:
˚
U.x; �/ W .�1; g.x/�

	
6 Cı0: (1.9)

(ii) The curve fy D �.x/g is a strong contact discontinuity emanating from the point .0; y.0//

with �.x/ < g.x/ for any x > 0, and is Lipschitz such that

j�.x0/ � �.x00/j 6 C jx0 � x00j; (1.10)

for any x0; x00
> 0. Furthermore, it holds that

sup
y<�.x/

jU.x; y/ � U
.0/
1 j 6 Cı0; sup

�.x/<y<g.x/

jU.x; y/ � U
.0/
2 j 6 Cı0: (1.11)

REMARK 1.5 Indeed, the solution U given by Theorem 1.4 has the trace along the both sides of

curve y D �.x/. Let U˙ D .u˙; v˙; p˙; �˙; Z˙/ be the trace of U above or below the curve

y D �.x/ respectively, and nØ D .�0.x/; �1/ is the normal to the curve y D �.x/. Due to the

construction of the solution, we have that

pC D p� and .uC; vC/ � nØ D .u�; v�/ � nØ; UC ¤ U� (1.12)

almost everywhere along the curve y D �.x/. Then as in [19] and [17] such curve y D �.x/ is

called the contact discontinuity here and in sequel (see also [2, 26, 41]). Moreover, compared to the

strengths of the other waves, the strength jUC � U�j is relatively large, so the curve y D �.x/ is

called the strong contact discontinuity.

Our second result is about the quasi-one-dimensional approximation. Physically, quasi-one-

dimensional approach is based on the assumption that the motion of the nonuniform true flow is
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slowly various in some direction. Then by averaging the nonuniform flows over some direction or

cross section, we can reduce the dimension to make the model simpler, see [14, 36, 42] for example.

Therefore, the true nonuniform flow is replaced by a simpler flow, which is easy to be investigate

and useful to study the basic properties of the true flow. In this case, it is possible to reduce the

dimensionality of the problem. We will justify the quasi-one-dimensional approximation for our

problem in this paper.

If the flow is slowly various in the y-direction compared to the x-direction, we can introduce the

quasi-one-dimensional approximation in the domain f.x; y/jx > 0; �.x/ < y < g.x/g as follows.

Neglect the changes of the solutions in y-direction, and let A.x/ be the distance between the wall

and the strong contact discontinuity. Then the motion of the steady exothermically reacting Euler

flows in the domain f.x; y/jx > 0; �.x/ < y < g.x/g can be described by the much simpler

quasi-one-dimensional model:

8
ˆ̂̂
<
ˆ̂̂
:

.�uA.x//x D 0;�
.�u2 C p/A.x/

�
x

D A0.x/p;�
.e C 1

2
u2 C p

�
/�uA.x/

�
x

D q0A.x/��.T /Z;�
�uZA.x/

�
x

D �A.x/��.T /Z:

(1.13)

Let . N�0; Nu0; Np0; NZ0/> be the integral average of the initial data U2.y/ in the interval y.0/ < y < 0,

that is

. N�0; Nu0; Np0; NZ0/> D 1

jy.0/j

Z 0

y.0/

U2.y/dy:

Let NU .x/ D . N�; Nu; Np; NZ/> be the integral average of the solution of system (1.1) with respect to y

between the wall and the strong contact discontinuity, that is,

NU .x/ D 1

A.x/

Z g.x/

�.x/

U.x; y/dy;

and let UA.x/ D .�A; uA; pA; ZA/> the solution of system (1.13) with the initial data UA;0 D
. N�0; Nu0; Np0; NZ0/>. Then our second result related to the quasi-one-dimensional approximation in

the domain f.x; y/jx > 0; �.x/ < y < g.x/g is as follows.

Theorem 1.6 Under assumptions .H1/–.H3/, there exist positive constants ı0 and C depending

only on U .0/, such that if (1.6)–(1.8) hold, then for any x > 0, it holds that

j NU .x/ � UA.x/j 6 Cı2
�;

where

ı� DT:V:
˚
g0.�/ W Œ0; C1/

	
C T:V:

˚
U1.�/ W .�1; y.0//

	

C T:V:
˚
U2.�/ W .y.0/; 0/

	
C sup

y.0/<y<0

jU2.y/ � U
.0/
2 j:

Theorem 1.6 justifies the validation of the quasi-one-dimensional approximation of the

supersonic exothermically reacting Euler flows if ı� is sufficiently small, i.e., this theorem indicates

that the difference between the integral average of the weak solution of (1.1) and the solution of



442 W. XIANG, Y. ZHANG AND Q. ZHAO

(1.13) can be bounded by the square of the total variation of both the initial data and slope of the

Lipschitz wall.

We develop a fractional-step Glimm scheme to construct the approximate solutions to establish

the global existence of the entropy solution of the initial boundary value problem (1.1) and (1.4)–

(1.5). To make it, we have to design a Glimm-type functional based on local estimates obtained in

Section 2. The key estimates are the reflection coefficient in front of the strength of the reflected

5-wave when the weak 1-wave hits the strong contact discontinuity from above governed by the

corresponding homogeneous system (2.3) is strictly less than one, as well as the exponential decay

estimate of the reactant Z in the reacting step. With the Glimm-type functional in hand, we can show

that the total variation of the approximate solutions is uniformly bounded and actually small, and

then by the standard argument developed in [26] to show Theorem 1.4. Another essential estimate

is to trace the approximate strong contact discontinuity in order to establish the nonlinear stability

of strong contact discontinuity in the supersonic exothermically reacting Euler flows under small

perturbation.

We remark that although elegant results had been established for the existence of entropy

solutions of hyperbolic balance laws in [16, 20, 29, 43], system (1.1) concerned in this paper does

not satisfy the hypotheses there. In fact, the exothermic reaction can increase the total variation

of the solutions. For example, the linearized stability analysis, as well as numerical and physical

experiments, have shown that certain steady detonation waves are unstable [1, 21, 24, 32]. However,

if assume that the reaction rate function �.T / never vanishes, then the decay estimate of the reaction

plays a key role in controlling the increasing of the total variation of solutions.

Next, in order to show Theorem 1.6, we need carefully to derive several estimates on error terms

of different type to pass the limit h ! 0 such that we can get the equations that the integral average

of weak solutions with respect to y satisfies. Then the validation of the quasi-one-dimensional

approximation is rigorously justified by applying the decay estimates of the reactant Z of both

system (1.1) and (1.13), and the smallness of the B:V: bounds of solutions.

The importance of the problem of steady supersonic non-reacting Euler flow past a wedge has

been introduced in Courant-Friedrichs’ book [18]. When the flow behind the shock is smooth, the

existence and asymptotic behaviour had been extensively studied by many authors (for instance,

see [11–13, 22, 28, 33, 40]). See also [3, 37] for piecewise smooth shock free solutions. Next,

for the non-piecewise smooth solutions, by developing a modified Glimm scheme or wave-front

tracking scheme, global weak entropy solutions of the potential flow had been constructed in

[44–46] when the wedge is a small perturbation of a straight wedge or a convex one. Later,

global weak entropy solutions with a large shock or vortex sheet had been established for the full

Euler equations in [9, 10]. Recently, global weak entropy solutions with transonic characteristic

discontinuities had been obtained in [5, 30] when the steady supersonic non-reacting Euler

flow past a convex corner surrounded by the static gas. Meanwhile, the quasi-one-dimensional

approximation of isentropic or irrotational gas flow had been established in [14, 25] by applying

the Riemann semigroup via the wave-front tracking scheme (see [2, 7] for more details of the

techniques).

For the exothermically reacting Euler equations, the large-time existence of one-dimensional

time-dependent entropy solutions of the Cauchy problem was established in [6]. Recently, the

global existence of steady weak entropy solutions with a strong shock or strong rarefaction wave is

established in [4, 8]. For further information on the reacting gas dynamic theory, we refer the reader

to [35, 42].



STEADY EXOTHERMICALLY REACTING EULER FLOWS 443

The rest of this paper is organised as follows. In Section 2, several important local estimates

including local interaction estimates and local estimates on the reacting step are established. In

Section 3, we introduce the fractional-step Glimm scheme to construct approximate solutions and

introduce a modified Glimm-type functional to prove the global estimates of the approximated

solutions in the non-reacting step and the reacting step separately. Then we complete the proof

of Theorem 1.4 in Section 3. Finally, section 4 is devoted to the proof of Theorem 1.6.

2. Local estimates of solutions of the steady exothermically reacting Euler equations

In this section, we will establish the local wave interaction estimates for the homogeneous system,

and then the local estimates on the reacting step of the steady exothermically reacting Euler

equations (1.1).

First, system (1.1) can be written in the following form:

W.U /x C H.U /y D G.U /; (2.1)

with U D .u; v; p; �; Z/>, where

W.U / D
�

�u; �u2 C p; �uv; �u
�u2 C v2

2
C p

. � 1/�

�
; �uZ

�>

;

H.U / D
�

�v; �uv; �v2 C p; �v
�u2 C v2

2
C p

. � 1/�

�
; �vZ

�>

; (2.2)

G.U / D
�
0; 0; 0; q0�Z�.T /; ���.T /Z

�>
:

In the case when G.U / is identically zero, (2.1) becomes the homogeneous system

W.U /x C H.U /y D 0: (2.3)

2.1 Elementary wave curves of the homogeneous system of (2.3)

Before deriving the local estimates, we review certain basic properties of the homogeneous system

of (2.3) and the solvability of several typical Riemann problems that appear in the process of the

fractional-step Glimm scheme.

First, we remark that in this paper, M is a universal constant, depending only on the data

and different at each occurrence, O.1/ is a quantity that is bounded by M , and O�.U / is a

neighbourhood with radius M� and center U .

If u > c, the homogeneous system (2.3) has five real eigenvalues in the x-direction, which are

�i D uv C .�1/
iC3

4 c
p

u2 C v2 � c2

u2 � c2
; i D 1; 5; �j D v

u
; j D 2; 3; 4:

The associated linearly independent right eigenvectors are

ri D �i .��i ; 1; �.�iu � v/;
�.�iu � v/

c2
; 0/>; i D 1; 5I (2.4)

r2 D .u; v; 0; 0; 0/>; r3 D .0; 0; 0; �; 0/>; r4 D .0; 0; 0; 0; 1/>; (2.5)
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where �i are chosen so that ri � r�i D 1 since the i -th characteristic fields are genuinely nonlinear

for i D 1; 5. It is easy to see that rj � r�j D 0; j D 2; 3; 4, which means these characteristic fields

are linearly degenerate. By the straightforward calculation, we have the following lemma about the

value of �i .

Lemma 2.1 At the constant state U
.0/

k
D .u

.0/

k
; 0; p

.0/

k
; �

.0/

k
; 0/ with u

.0/

k
> c

.0/

k
> 0; k D 1; 2,

�1

�
U

.0/

k

�
D �5

�
U

.0/

k

�
D 1=

�
rU �i � .��i ; 1; �u�i ; �u�i =c2; 0/j

U DU
.0/

k

�
> 0; i D 1; 5:

It implies that �i .U / > 0 for any U 2 O�.U
.0/

k
/ since �i .U / are continuous for i D 1; 5.

Next, we will consider wave curves for u > c in the phase space, especially in the neighborhood

of U
.0/
1 and U

.0/
2 . At each state Ua D .ua; va; pa; �a; Za/> with ua > ca D

p
pa=�a, there are

five wave curves in the phase space through Ua.

The j -th contact discontinuity wave curve Cj .Ua/ for j D 2; 3; 4, are

Cj .Ua/ W dp D 0; vdu � udv D 0:

More precisely, by solving the following ODE problem

(
dU
d�j

D rj .U /; j D 2; 3; 4;

U j�j D0 D Ua;

we easily have that

C2.Ua/ W U D .uae�2 ; vae�2 ; pa; �a; Za/>; (2.6)

C3.Ua/ W U D .ua; va; pa; �ae�3 ; Za/>; (2.7)

C4.Ua/ W U D .ua; va; pa; �a; Za C �4/>: (2.8)

The i -th rarefaction wave curve Ri .Ua/; i D 1; 5,

Ri .Ua/ W dp D c2d�; du D ��i dv; �.�iu � v/dv D dp; dZ D 0: (2.9)

The i -th shock wave curve Si .Ua/; i D 1; 5,

Si .Ua/ W Œp� D c2
a

O Œ��; Œu� D �si Œv�; �a.si ua � va/Œv� D Œp�; ŒZ� D 0: (2.10)

where Œ�� stands for the jump of a quantity across the shock, the slope of the discontinuity

si D uava C .�1/
iC3

4 Oca

p
u2

a C v2
a � Oc2

a

u2
a � Oc2

a

;

and Oc2
a D c2

a

O
�

�a
; O D C1

2
� .�1/

2
�

�a
.

Following the ideas in [31], in a neighbourhood of U
.0/

k
; k D 1; 2, we can parameterize any

physically admissible wave curves above by

˛i 7! ˚i .˛i I Ua/; (2.11)
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with ˚i 2 C 2, ˚i j˛i D0 D Ua, and
@˚i

@˛i
j˛i D0 D ri .Ua/. For i D 1; 5, the case ˛i > 0 corresponds

to a rarefaction wave, while the case ˛i < 0 corresponds to a shock wave. Moreover, ˚2; ˚3,˚4 can

be given with three independent parameters (�2; �3; ˛4) as

˚2.�2I Ua/ D .uae�2 ; vae�2 ; pa; �a; Za/; (2.12)

˚3.�3I Ua/ D .ua; va; pa; �ae�3 ; Za/; (2.13)

˚4.˛4I Ua/ D .ua; va; pa; �a; Za C ˛4/: (2.14)

In particular, it holds that

U
.0/
2 D

�
u

.0/
2 ; 0; p

.0/
2 ; �

.0/
2 ; 0

�> D
�
u

.0/
1 e�20 ; 0; p

.0/
1 ; �

.0/
1 e�30 ; 0

�>
:

2.2 Local interaction estimates

Let us consider the local wave interaction estimates for the homogeneous system (2.3) first, which

include the weak wave interactions, weak wave reflections on the boundary and the interaction

between the strong contact discontinuity and weak waves.

First, let us consider the Riemann problem only involving weak waves for (2.3):

U jxDx0
D

(
Ub D .ub; vb ; pb; �b; Zb/>; y > y0;

Ua D .ua; va; pa; �a; Za/>; y < y0;
(2.15)

where the constant states Ua and Ub are the below state and above state with respect to the line

y D y0, respectively.

Let Q̊
i ; i D 1; 2; 3; 5 be the vector which only contains the first four components of ˚i , where

˚i are defined in Section 2.1. For the simplicity, we set

Q̊ �
˛5; ˛3; ˛2; ˛1I Va

�
D Q̊

5

�
˛5I Q̊

3

�
˛3I Q̊

2

�
˛2I Q̊

1.˛1I Va/
���

;

with Va D .ua; va; pa; �a/>; and F .�3; �2I Va/ D Q̊
3.�3I Q̊

2.�2I Va// D .uae�2 ; vae�2 ; pa;

�ae�3 /> for any Va 2 O�.V1
.0// with V1

.0/ D .u
.0/
1 ; 0; p

.0/
1 ; �

.0/
1 />.

Following the argument in [31], we easily have the following lemma.

Lemma 2.2 There exist positive constants � and C , such that for any states Ua; Ub 2
O�.U

.0/

k
/; k D 1; 2, the Rieman problem (2.15) admits a unique admissible solution of five

elementary waves. In addition, the state Ub can be represented by

(
Vb D Q̊ .˛5; ˛3; ˛2; ˛1I Va/;

Zb D Za C ˛4;
(2.16)

with Vb D .ub ; vb; pb; �b/>. Furthermore, it holds that jUb � Uaj 6 C
5P

iD1

j˛i j.

Moreover, the Glimm interaction estimates theorem (see [19, 26, 41]) implies the following

local weak wave interaction estimates.
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PROPOSITION 2.3 Suppose that three states Ua; Um, and Ub 2 O�.U
.0/

k
/; k D 1; 2, satisfy that

Vb D Q̊ .5; 3; 2; 1I Va/; Zb D Za C 4;

Vb D Q̊ .ˇ5; ˇ3; ˇ2; ˇ1I Vm/; Zb D Zm C ˇ4;

Vm D Q̊ .˛5; ˛3; ˛2; ˛1I Va/; Zm D Za C ˛4:

(see Fig. 2). Then it holds that

(
i D ˛i C ˇi C O.1/�.˛�; ˇ�/; i D 1; 2; 3; 5;

4 D ˛4 C ˇ4;
(2.17)

where �.˛�; ˇ�/ D j˛5j.jˇ1j C jˇ2j C jˇ3j/ C jˇ1j.j˛2j C j˛3j/ C
P

j D1;5

�j . j̨ ; ǰ / with

�j . j̨ ; ǰ / D
(

0; j̨ > 0 , ǰ > 0;

j j̨ jj ǰ j; otherwise.
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Next, we consider the reflections and interactions of the waves near the boundary. Denote by

fPkg1
kD0

the points f.xk; yk/g1
kD0

in the x-y plane with xk WD kh and yk WD g.kh/. Set

!k;kC1 D arctan
�ykC1 � yk

xkC1 � xk

�
; !k D !k;kC1 � !k�1;k ; !�1;0 D 0;

gk;h.x/ D yk C .x � xk/ tan.!k;kC1/; x 2 Œxk ; xkC1/; (2.18)

˝k;h D
˚
.x; y/ W x 2 Œxk ; xkC1/; y < gk;h.x/

	
; ˝h D

[

k>0

˝k;h;

�k D
˚
.x; y/ W x 2 Œxk ; xkC1/; y D gk;h.x/

	
:

Let nk be the outer normal vector to �k , i.e.,

nk D .�ykC1 C yk ; xkC1 � xk/p
.ykC1 � yk/2 C .xkC1 � xk/2

D
�

� sin.!k;kC1/; cos.!k;kC1/
�
: (2.19)

Now, we consider the Riemann problem for (2.3) with boundary,
8
<̂

:̂

W.U /x C H.U /y D 0; in ˝k;h;

U jfxDkhg D Ua;

.u; v/ � nk D 0 on �k;

(2.20)

where Ua is a constant state (see Fig. 3).

For small angle !k;kC1, we have the following for the solvability of the boundary Riemann

problem (2.20).

Lemma 2.4 There exists � > 0 such that, for Ua 2 O�.U
.0/
2 / and j!k;kC1j < �, there is only

one admissible solution, consisting of a 1-wave with strength 1, that solves the boundary value

problem (2.20). It also holds that

1 D Kb!k;kC1 C O.1/
�
j!k;kC1j2 C jUa � U

.0/
2 j

�
; (2.21)

with the constant Kb > 0.

Proof. Let us consider the function

'k.1; !k;kC1/ D .u; v/ � nk D
�
˚

.1/
1 .1I Ua/; ˚

.2/
1 .1I Ua/

�
�
�

� sin.!k;kC1/; cos.!k;kC1/
�
;

where ˚
.i/
1 .i D 1; 2/ is the i -th component of ˚1 .

Note that 'k.0; 0/j
fUaDU

.0/
2

g
D 0, and

@'k.1; !k;kC1/

@1

ˇ̌
f1D0;!k;kC1D0;UaDU

.0/
2

g
D �1

�
U

.0/
2

�
> 0;

with �1.U
.0/
2 / given by Lemma 2.1. It follows from the implicit function theorem that there exists

� > 0, such that for Ua 2 O�.U
.0/
2 / and j!k;kC1j < �, equation 'k.1; !k;kC1/ D 0 admits a

unique solution 1.!k;kC1/. Moreover, by the Taylor expansion formula, we have

1.!k;kC1/ D 1.0/ C @1

@!k;kC1

ˇ̌
f!k;kC1D0g

!k;kC1 C O.1/j!k;kC1j2:
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Differentiating 'k.1.!k;kC1/; !k;kC1/ D 0 with respect to !k;kC1, and letting !k;kC1 D 0 and

Ua D U
.0/
2 , we have

@1

@!k;kC1

ˇ̌
f!k;kC1D0;UaDU

.0/
2

g
D u

.0/
2

�1

�
U

.0/
2

� > 0:

Thus, we have Kb > 0 for sufficiently small �.

Then, we can obtain the estimates of the weak wave reflection on the boundary.

PROPOSITION 2.5 Suppose that the three constant states Ua; Um and Uk�1 2 O�.U
.0/
2 / satisfy that

(see Fig. 3)

Vm D Q̊ .˛5; ˛3; ˛2I Va/; Zm D Za C ˛4; (2.22)

Uk�1 D ˚1.ˇ1I Um/; .uk�1; vk�1/ � nk�1 D 0: (2.23)

Then, for constant state Uk 2 O�.U
.0/
2 / which satisfies that

Uk D ˚1.1I Ua/; .uk ; vk/ � nk D 0;

it holds that

1 D ˇ1 C Kb0!k C Kb2˛2 C Kb3˛3 C Kb5˛5; (2.24)

where Kb0; Kb2; Kb3; Kb5 are C 2-functions of ˇ1; !k ; ˛2; ˛3; ˛5; !k�1;k and Ua. Furthermore,

Kb0 is bounded, and when ˇ1 D !k D ˛2 D ˛3 D ˛5 D !k�1;k D 0; Ua D U
.0/
2 , it holds that

Kb5 D 1; Kbi D 0; i D 2; 3: (2.25)

Proof. Let us consider the function:

'k;k�1.1; ˇ1; !k; ˛2; ˛3; ˛5/ WD
�
˚

.1/
1 .1I Va/; ˚

.2/
1 .1I Va/

�
� nk

�
�
˚

.1/
1

�
ˇ1I Q̊ .˛5; ˛3; ˛2I Va/

�
; ˚

.2/
1

�
ˇ1I Q̊ .˛5; ˛3; ˛2I Va/

��
� nk�1:

Note that 'k;k�1.0; 0; 0; 0; 0; 0/ D 0 and
@'k;k�1

@1
j
f1D0;UaDU

.0/
2

;!k;kC1D0g
D �1.U

.0/
2 / > 0,

it follows from the implicit function theorem that 1 can be solved as a C 2 function of

ˇ1; !k; ˛2; ˛3; ˛5; !k�1;k , and Va. Next, by the Taylor expansion formula, we have

1 D 1.ˇ1; 0; 0; 0; 0/ C 1.ˇ1; !k; 0; 0; 0/ � 1.ˇ1; 0; 0; 0; 0/ C 1.ˇ1; !k ; ˛2; 0; 0/

� 1.ˇ1; !k ; 0; 0; 0/ C 1.ˇ1; !k ; ˛2; ˛3; 0/ � 1.ˇ1; !k ; ˛2; 0; 0/

C 1.ˇ1; !k; ˛2; ˛3; ˛5/ � 1.ˇ1; !k ; ˛2; ˛3; 0/

D ˇ1 C Kb0!k C Kb2˛2 C Kb3˛3 C Kb5˛5:

Differentiating 'k;k�1.1; ˇ1; !k ; ˛2; ˛3; ˛5/ D 0 with respect to !k ; ˛2; ˛3; ˛5, and letting ˇ1 D
!k D ˛2 D ˛3 D ˛5 D !k�1;k D 0; and letting Ua D U

.0/
2 , we have

@1

@!k

D u
.0/
2

�1

�
U

.0/
2

� ;
@1

@˛i

D
r

.2/
i

�
U

.0/
2

�

�1

�
U

.0/
2

� ; i D 2; 3; 5;

where r
.2/
5 .U

.0/
2 / D �5.U

.0/
2 /; r

.2/
2 .U

.0/
2 / D r

.2/
3 .U

.0/
2 / D 0: Then by Lemma 2.1, we have (2.25).
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Finally, let us consider the wave interaction estimates involving the strong contact discontinuity

for (2.3). First we have the following lemma.

Lemma 2.6 For the constant states V
.0/

1 D .u
.0/
1 ; 0; p

.0/
1 ; �

.0/
1 /> and V

.0/
2 D .u

.0/
2 ; 0; p

.0/
2 ; �

.0/
2 />,

it holds that

(i) det
�
Qr5.V

.0/
2 /; @�3

F .�30; �20I V
.0/

1 /; @�2
F .�30; �20I V

.0/
1 /; rV F .�30; �20I V

.0/
1 / � Qr1.V

.0/
1 /

�

D �1.V
.0/

1 /�5.V
.0/

2 /.�
.0/
1 /2.u

.0/
1 /2e�20C�30

�
�5.V

.0/
2 /e2�20C�30 C �5.V

.0/
1 /

�
> 0: (2.26)

where Qri .i D 1; 5/ is the vector which only contains the first four components of ri .

(ii) For any Va 2 O�.V
.0/

1 / and �j 2 OO�.�j 0/ which satisfies that F .�3; �2I Va/ 2 O�.V
.0/

2 / with

some O� D O�.�/ ! 0 as � ! 0, it holds that

jF .�3; �2I Va/ � F .�30; �20I Va/j 6 C.j�3 � �30j C j�2 � �20j/; (2.27)

for some constant C .

Proof. Since F .�3; �2I Va/ D .uae�2 ; vae�2 ; pa; �ae�3/> for any Va 2 O�.V1
.0//, u

.0/
2 D

u
.0/
1 e�20 , and �

.0/
2 D �

.0/
1 e�30 , direct calculations gives that,

det
�

Qr5

�
V

.0/
2

�
; @�3

F .�30; �20I V
.0/

1 /; @�2
F

�
�30; �20I V

.0/
1

�
; rV F

�
�30; �20I V

.0/
1

�
� Qr1

�
V

.0/
1

��

D �1

�
V

.0/
1

�
�5

�
V

.0/
2

�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

��5

�
V

.0/
2

�
0 u

.0/
1 e�20 ��1

�
V

.0/
1

�
e�20

1 0 0 e�20

�5

�
V

.0/
2

�
�

.0/
2 u

.0/
2 0 0 �1

�
V

.0/
1

�
�

.0/
1 u

.0/
1

�5

�
V

.0/
2

�
�

.0/
2 u

.0/
2 =

�
c

.0/
2

�2
�

.0/
1 e�30 0 �1

�
V

.0/
2

�
�

.0/
1 u

.0/
1 e�30=

�
c

.0/
1

�2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D �1

�
V

.0/
1

�
�5

�
V

.0/
2

�
.�

.0/
1 /2.u

.0/
1 /2e�20C�30 .�5

�
V

.0/
2

�
e2�20C�30 C �5

�
V

.0/
1 /

�
> 0:

Moreover, note that

F .�3; �2I Va/ � F .�30; �20I Va/ D
�
ua.e�2 � e�20/; va.e�2 � e�20/; 0; �a.e�3 � e�30 /

�>
;

then by the Taylor expansion formula, we can obtain (2.27).

We remark that (2.26) is essential to estimate the strengths of reflected weak waves in the wave

interaction of the strong contact discontinuity and weak waves governed by (2.3). Now, we can

establish the solvability of the Riemann problem involving the strong contact discontinuity.

Lemma 2.7 There exists � > 0 such that, for any given constant states Ua 2 O�.U
.0/
1 / and

Ub 2 O�.U
.0/
2 /, the Riemann problem (2.15) admits a unique admissible solution that consists of a

weak 1-wave, a strong contact discontinuity, and a weak 5-wave. In addition, Ub can be represented

by (
Vb D Q̊

5

�
˛5I F

�
�3; �2I Q̊

1.˛1I Va/
��

;

Zb D Za C ˛4;
(2.28)

with Vb D .ub ; vb; pb; �b/>.
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Proof. It is clear from (2.14) that Zb D Za C ˛4.

Next, let us consider the function:

'c.˛5; �3; �2; ˛1; Va; Vb/ D Q̊
5

�
˛5I F

�
�3; �2I Q̊

1.˛1I Va/
��

� Vb :

Obviously, we have 'c.0; �30; �20; 0; V
.0/

1 ; V
.0/

2 / D 0, and

det
�@'c.˛5; �3; �2; ˛1; Va; Vb/

@.˛5; �3; �2; ˛1/

�
j
f˛5D˛1D0;�3D�30;�2D�20;VaDV

.0/
1

;Vb DV
.0/
2

g

D det
�

Qr5

�
V

.0/
2

�
; @�3

F
�
�30; �20I V

.0/
1

�
; @�2

F
�
�30; �20I V

.0/
1

�
; Qr1

�
V

.0/
1

��

D �1.V
.0/

1 /�5

�
V

.0/
2

�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

��5

�
V

.0/
2

�
0 u

.0/
1 e�20 ��1

�
V

.0/
1

�

1 0 0 1

�5

�
V

.0/
2

�
�

.0/
2 u

.0/
2 0 0 �1

�
V

.0/
1

�
�

.0/
1 u

.0/
1

�5

�
V

.0/
2

�
�

.0/
2 u

.0/
2 =

�
c

.0/
2

�2
�

.0/
1 e�30 0 �1

�
V

.0/
2

�
�

.0/
1 u

.0/
1 =

�
c

.0/
1

�2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D �1

�
V

.0/
1

�
�5

�
V

.0/
2

��
�

.0/

1

�2�
u

.0/
1

�2
e�20C�30

�
�5

�
V

.0/
2

�
e�20C�30 C �5

�
V

.0/
1

��
> 0:

Then it follows from the implicit function theorem that there exists � > 0, such that for any given

constant states Ua 2 O�.U
.0/
1 / and Ub 2 O�.U

.0/
2 /, the equation

'c.˛5; �3; �2; ˛1; Va; Vb/ D 0

admits a unique solution ˛5; �3; �2; ˛1.

Now we shall derive the wave interaction estimates between the strong contact discontinuity

and weak waves. There are two cases depending on how the strong contact discontinuity and weak

waves interact. The first case is that, as shown in Fig. 4, the weak waves approach the strong contact

discontinuity from the above. For this case, we have the following lemma.

PROPOSITION 2.8 For any given three constant states Ua 2 O�.U
.0/
1 /, and Um; Ub 2 O�.U

.0/
2 /,

(see Fig. 4), with the assumptions that

Vm D Q̊
5

�
˛5I F

�
�3; �2I Q̊

1.˛1I Va/
��

; Zm D Za C ˛4;

Vb D Q̊ .ˇ5; ˇ3; ˇ2; ˇ1I Vm/; Zb D Zm C ˇ4;

Vb D Q̊
5

�
5I F

�
� 0

3; � 0
2I Q̊

1.1I Va/
��

; Zb D Za C 4;

it holds that 8
ˆ̂̂
<
ˆ̂̂
:

1 D K21ˇ1 C ˛1 C O.1/�0.˛5; ˇ�/;

� 0
i D K2iˇ1 C ˇi C �i C O.1/�0.˛5; ˇ�/; i D 2; 3;

4 D ˛4 C ˇ4;

5 D K25ˇ1 C ˛5 C ˇ5 C O.1/�0.˛5; ˇ�/;

(2.29)

where �0.˛5; ˇ�/ D j˛5j.jˇ1j C jˇ2j C jˇ3j/ C �5.˛5; ˇ5/. Furthermore,
3P

iD1

jK2i j is bounded,

and when ˇ D ˛1 D ˛4 D ˛5 D 0; �2 D �20; �3 D �30, it holds that jK25j < 1.
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FIG. 4. Weak waves approach the strong contact discontinuity from above

REMARK 2.9 The essential feature of homogeneous system (2.3) is that the reflection coefficient

K25 is less than one, which is the stability condition in [17, 39].

Proof. First, it is obvious that 4 D ˛4 C ˇ4:

Then, for any state Vem 2 O�.V
.0/

2 /, we define

Q̊ �
ı5; ı3; ı2; ı1I Vem

�
D Q̊ �

ˇ5; ˇ3; ˇ2; ˇ1I Q̊
5.˛5I Vem/

�
: (2.30)

By applying Proposition 2.3, we have

ıi D ˇi C O.1/�0.˛5; ˇ�/; i D 1; 2; 3;

ı5 D ˛5 C ˇ5 C O.1/�0.˛5; ˇ�/; (2.31)

where �0.˛5; ˇ�/ D j˛5j.jˇ1j C jˇ2j C jˇ3j/ C �5.˛5; ˇ5/.

Let ı� D .ı5; ı3; ı2; ı1/. By (2.30), let us consider the following function:

'd .5;� 0
3; � 0

2; 1; ı�; �3; �2; ˛1/

D Q̊
5

�
5I F

�
� 0

3; � 0
2I Q̊

1.1I Va/
��

� Q̊
�

ˇ5; ˇ3; ˇ2; ˇ1I Q̊
5

�
˛5I F

�
�3; �2I Q̊

1.˛1I Va/
���

D Q̊
5

�
5I F

�
� 0

3; � 0
2I Q̊

1.1I Va/
��

� Q̊
�
ı5; ı3; ı2; ı1I F

�
�3; �2I Q̊

1.˛1I Va/
��

:
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It is clear that 'd .0; �30; �20; 0; 0; �30; �20; 0/ D 0. By (2.26), we have

det

�
@'d .5; � 0

3; � 0
2; 1; ı�; �3; �2; ˛1/

@.5; � 0
3; � 0

2; 1/

�
j
f1D5D0;� 0

3
D�30;� 0

2
D�20;VaDV

.0/
1

g

D det
�

Qr5

�
V

.0/
2

�
; @�3

F
�
�30; �20I V

.0/
1

�
; @�2

F
�
�30; �20I V

.0/
1

�
;

rV F
�
�30; �20I V

.0/
1

�
� Qr1

�
V

.0/
1

��
> 0:

Then it follows from the implicit function theorem that i ; i D 1; 5; and � 0
j ; j D 2; 3; can be solved

as a C 2 function of 5; � 0
3; � 0

2; 1; ı�; �3; �2; ˛1, and Va. Thus, we have

� 0
j D � 0

j .ı5; ı3; ı2; ı1; �3; �2; ˛1/ � � 0
j .ı5; ı3; ı2; 0; �3; �2; ˛1/ C � 0

j .ı5; ı3; ı2; 0; �3; �2; ˛1/

D K2j ı1 C ıj C �j ; j D 2; 3;

Similarly, it holds that

1 D K21ı1 C ˛1; and 5 D K25ı1 C ı5:

Then by (2.31), we can obtain (2.29).

Differentiating the equation 'd D 0 with respect to ı1, and letting ı� D ˛1 D 0; �3 D �30;

�2 D �20; and Ua D U
.0/
1 , we have

@ı1
5 Qr5

�
V

.0/
2

�
C @ı1

� 0
3@�3

F
�
�30; �20I V

.0/
1

�
C @ı1

� 0
2@�2

F
�
�30; �20I V

.0/
1

�

C @ı1
1rV F

�
�30; �20I V

.0/
1

�
� Qr1

�
V

.0/
1

�
D Qr1

�
V

.0/
2

�
:

It is clear that K2i ; i D 1; 2; 3 are bounded. By (2.26) and Lemma 2.1, it holds that

j@ı1
5j

D

ˇ̌
ˇ̌
ˇ̌
det

�
Qr1

�
V

.0/
2

�
; @�3

F
�
�30; �20I V

.0/
1

�
; @�2

F
�
�30; �20I V

.0/
1

�
; rV F

�
�30; �20I V

.0/
1

�
� Qr1

�
V

.0/
1

��

det
�

Qr5

�
V

.0/
2

�
; @�3

F
�
�30; �20I V

.0/
1

�
; @�2

F
�
�30; �20I V

.0/
1

�
; rV F

�
�30; �20I V

.0/
1

�
� Qr1

�
V

.0/
1

��

ˇ̌
ˇ̌
ˇ̌

D

ˇ̌
ˇ̌
ˇ̌

�1

�
V

.0/
1

�
�1

�
V

.0/
2

�
.�

.0/
1 /2

�
u

.0/
1

�2
e�20C�30.�5

�
V

.0/
1

�
� �5

�
V

.0/
2

�
e2�20C�30/

�1

�
V

.0/
1

�
�5

�
V

.0/
2

�
.�

.0/
1 /2

�
u

.0/
1

�2
e�20C�30

�
�5

�
V

.0/
1

�
C �5

�
V

.0/
2

�
e2�20C�30

�

ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ
�5.V

.0/
1 / � �5

�
V

.0/
2

�
e2�20C�30

�5

�
V

.0/
1

�
C �5

�
V

.0/
2

�
e2�20C�30

ˇ̌
ˇ̌
ˇ < 1:

This completes the proof.

The second case is that the weak waves approach the strong contact discontinuity from the below

(Fig. 5). By the symmetry, we can easily obtain the following proposition.
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FIG. 5. Weak waves approach the strong contact discontinuity from below

PROPOSITION 2.10 For any given three constant states Ua; Um 2 O�.U
.0/
1 /, and Ub 2 O�.U

.0/
2 /

with the assumptions that

Vm D Q̊ .˛5; ˛3; ˛2; ˛1I Va/; Zm D Za C ˛4;

Vb D Q̊
5

�
ˇ5I F

�
�3; �2I Q̊

1.ˇ1I Vm/
��

; Zb D Zm C ˇ4;

Vb D Q̊
5

�
5I F

�
� 0

3; � 0
2I Q̊

1.1I Va/
��

; Zb D Za C 4;

it holds that
8
ˆ̂̂
<
ˆ̂̂
:

1 D K11˛5 C ˛1 C ˇ1 C O.1/�00.˛�; ˇ1/;

� 0
i D K1i˛5 C ˛i C �i C O.1/�00.˛�; ˇ1/; i D 2; 3;

4 D ˛4 C ˇ4;

5 D K15˛5 C ˇ5 C O.1/�00.˛�; ˇ1/;

(2.32)

where �00.˛�; ˇ1/ D jˇ1j.j˛5j C j˛3j C j˛2j/ C �1.˛1; ˇ1/.

2.3 Local estimates on the reacting step

Let QU D . Qu; Qv; Qp; Q�; QZ/> be the value of U after the reaction. It means that QU satisfies the equation

W. QU / D W.U / C G.U /h;
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which is precisely of the following form
8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

Q� Qu D �u;

Q� Qu2 C Qp D �u2 C p;

Q� Qu Qv D �uv;

. Q� QE C Qp/ Qu D .�E C p/u C q0��.T /Zh;

Q� Qu QZ D �uZ � ��.T /Zh:

(2.33)

Then we have the following property that indicates the change of the solutions QU with respect to h.

Lemma 2.11 Suppose that 0 6 Z 6 1 and T > T0 for some positive constant T0, then there exists

a constant l > 0, such that for sufficiently small h > 0, it holds that

QT > T > T0 > 0; QV � V D O.1/Zh; 0 6 QZ 6 e�lhZ 6 1;

where QV D . Qu; Qv; Qp; Q�/>, and V D .u; v; p; �/>.

Proof. By .2.33/1 and .2.33/2, we have that

Qu � u D � 1

�u
. Qp � p/: (2.34)

By .2.33/1 and .2.33/3, we have that

Qv D v: (2.35)

By .2.33/1 and .2.33/5, we know that

QZ D
�
1 � �.T /

u
h
�
Z: (2.36)

Moreover, .2.33/1 also means that

Q� � � D � �

u
. Qu � u/ C O.h2/: (2.37)

Note that by the thermodynamical relation, we know that T D �1
R

e D p
R�

. Then by the assumption

u2 > c2 D RT and from all the above identities and .2.33/4, we have that

QT � T D . � 1/.u2 � RT /

R�u.u2 � RT /
q0��.T /Zh C O.h2/ > 0;

which shows that the temperature T does not decrease due to the reaction.

Next, (2.36) also means that 0 6 QZ 6 1: Since �.T / is assumed to be Lipschitz continuous,

nonnegative, and increasing, there exists a constant l > 0, such that QZ 6 e�lhZ; which implies the

decay property of the reactant Z.

Finally, we will consider the change of V D .u; v; p; �/>. It follows from the implicit function

theorem that QV D . Qu; Qv; Qp; Q�/> can be solved as a C 2 function of V and Zh by the first four

equations of (2.33). By the Taylor expansion, one can easily see that there exists a function eV such

that
QV D V C eV.V; Zh/Zh: (2.38)

This completes the proof.
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In sequel, if QV and V satisfy (2.38), and if QZ and Z satisfy (2.36), then we say QU D . QV ; QZ/ is

the value of U D .V; Z/ after the reaction step.

Now, we are going to consider the change of the wave strength after the reaction step. The

analysis is divided into the following three cases.

Case 1. Ua and Ub are connected only by the weak waves.

PROPOSITION 2.12 Let Ua; Ub 2 O�.U
.0/

k
/; k D 1; 2 with

Vb D Q̊ .5; 3; 2; 1I Va/; Zb D Za C 4:

Let QUa D . QVa; QZa/ and QUb D . QVb; QZb/ be the value of Ua and Ub after the reaction step

respectively. Assume that

QVb D Q̊ . Q5; Q3; Q2; Q1I QVa/; QZb D QZa C Q4:

Then it holds that
(

Qi D i C O.1/j�jZah C O.1/j4jh; i D 1; 2; 3; 5;

Q4 D .1 � �.Tb/h=ub/4 C O.1/j�jZah:
(2.39)

where j�j D j1j C j2j C j3j C j5j.
Proof. By (2.36), it is obvious that QZb D .1 � �.Tb/h=ub/Zb; and QZa D .1 � �.Ta/h=ua/Za:

Hence we have Q4 D .1 � �.Tb/h=ub/4 C .�.Ta/=ua � �.Tb/=ub/Zah; which implies .2.39/2.

Next, by (2.38), we need to find the solution Q� as a function of �; Zah; Zbh; and Va such that

Q̊ �
Q�I Va C eV.Va; Zah/Zah

�
D Q̊ .�I Va/ C eV.Vb; Zbh/Zbh;

where Q� D . Q5; Q3; Q2; Q1/, and � D .5; 3; 2; 1/.

First, it follows from the implicit function theorem that Qi ; i D 1; 2; 3; 5 can be solved as a

C 2-function of .�; Zah; Zbh; Va/ uniquely. Then, we have

Qi .
�; Zah; Zbh; Va/ D O.1/jZa � Zbjh C Qi .

�; Zah; Zah; Va/

D O.1/jZa � Zbjh C O.1/j�jZah C Qi .
�; 0; 0; Va/

C Qi .0; Zah; Zah; Va/ � Qi .0; 0; 0; Va/

D i C O.1/j�jZah C O.1/j4jh:

It completes the proof of this proposition.

Case 2. Ua and Uk are connected by a weak 1-wave near the boundary �k .

PROPOSITION 2.13 Let Ua; Uk 2 O�.U
.0/
2 / with

Vk D ˚1.1I Va/; .uk; vk/ � nk D 0:

Let QUa D . QVa; QZa/ and QUk D . QVk; QZk/ be the value of Ua; Uk after the reaction step respectively.

Assume that

QVk D ˚1. Q1I QVa/; . Quk; Qvk/ � nk D 0:

Then, it holds that

Q1 D 1 C O.1/Zah: (2.40)
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Proof. By (2.38), we need to find the solution Q1 as a function of 1; Zah; and Va such that

�
˚

.1/
1

�
Q1I Va C eV.Va; Zah/Zah

�
; ˚

.2/
1

�
Q1I Va C eV.Va; Zah/Zah

��
� nk

D
�
˚

.1/
1 .1I Va/; ˚

.2/
1 .1I Va/

�
� nk:

Obviously, it follows from the implicit function theorem that Q1 can be solved as a C 2-function of

.1; Zah; Va/ uniquely. Moreover, by the Taylor expansion formula, we have that

Q1.1; Zah; Va/ D Q1.1; 0; Va/ C Q1.1; Zah; Va/ � Q1.1; 0; Va/ D 1 C O.1/Zah:

Case 3. Ua and Ub are connected by a weak 1-wave, a strong contact discontinuity, and a weak

5-wave.

PROPOSITION 2.14 Let Ua 2 O�.U
.0/
1 /; Ub 2 O�.U

.0/
2 / with

Vb D Q̊
5

�
5; F

�
�3; �2I Q̊

1.1I Va/
��

; Zb D Za C 4:

Let QUa and QUb be the value of Ua and Ub after the reaction step respectively. Assume that

QVb D Q̊
5

�
Q5; F

�
Q�3; Q�2I Q̊

1. Q1I QVa/
��

; QZb D QZa C Q4:

Then, it holds that 8
<̂

:̂

Qi D i C O.1/Zah C O.1/j4jh; i D 1; 5;

Q�j D �j C O.1/Zah C O.1/j4jh; j D 2; 3;

Q4 D .1 � �.Tb/h=ub/4 C O.1/Zah:

(2.41)

Proof. By (2.36), it is clear that QZb D .1 � �.Tb/h=ub/Zb; and QZa D .1 � �.Ta/h=ua/Za: Hence

we have Q4 D .1 � �.Tb/h=ub/4 C .�.Ta/=ua � �.Tb/=ub/Zah; which implies .2.41/3.

Next, by (2.38), we need to find the solution Qi ; i D 1; 5 and Q�j ; j D 2; 3 as a function of

5; �3; �2; 1; Zah; Zbh and Va such that

Q̊
5

�
Q5; F

�
Q�3; Q�2I Q̊

1. Q1I Va C eV.Va; Zah/Zah/
��

D Q̊
5

�
5; F

�
�3; �2I Q̊

1.1I Va/
��

C eV.Vb; Zbh/Zbh: (2.42)

It follows from the implicit function theorem that Qi ; i D 1; 5 and Q�j ; j D 2; 3 can be solved as a

C 2-function of .5; �3; �2; 1; Zah; Zbh; Va/ uniquely. Moreover, we can obtain

Qi .5; �3; �2; 1; Zah; Zbh; Va/ D O.1/jZa � Zbjh C Qi .5; �3; �2; 1; Zah; Zah; Va/

D O.1/jZa � Zbjh C O.1/Zah C Qi .5; �3; �2; 1; 0; 0; Va/

D i C O.1/Zah C O.1/j4jh:

The proof of .2.41/2 can be derived in the same way. It completes the proof.
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3. Global entropy solutions of the steady exothermically reacting Euler equations

Thanks to the local estimates obtained in Section 2, in this section, we will introduce the fractional-

step Glimm scheme and a Glimm-type functional to construct the approximate solutions for the

initial boundary value problem (2.1) and (1.4)–(1.5), by deriving global estimates on the non-

reacting step and the reacting step. With these in hand, the global existence of entropy solutions

with a strong contact discontinuity is obtained.

3.1 The Glimm fractional-step scheme

As shown in Fig. 6, we use the notations in (2.18)–(2.19), and let h > 0 and s > 0 be the step-length

in the x and y directions respectively.

The construction of the fractional-step scheme for the inhomogeneous system (2.1) is as follows.

By (1.6), the boundary y D g.x/ is a perturbation of the straight wall. It means that for

sufficiently small ı0 > 0, we have

sup
x>0

jg0.x/j < ı0:

Therefore,

m WD sup
k>0

� jykC1 � ykj
h

�
< ı0: (3.1)

Let y.0/ be given by (1.4). Choose s such that y.0/=s D 2N is an even number, and the following

Courant–Friedrichs–Lewy condition holds:

s

h
> max

j D1;5

0
@ sup

U 2O�.U
.0/
1

/[O�.U
.0/
2

/

j�j .U /j

1
A C m:

For any positive integer k and negative integer n, i.e., k > 1 and n 6 �1, define

yk;n D yk C .2n C 1 C �k/s;

❛❛❛❛❛❛❛❛❛❛
✘✘✘✘✘✘✘

❇
❇
❇▼✦✦✦✦✦✦✦✦✦✦

✁
✁✁✕

✁✁ ✁✁ ✁✁ ✁✁ ✁✁

nk−1
nk

Γk−1 Γk

Pk−1

Pk

Pk+1

ωk

Ωk−1,h Ωk,h

FIG. 6. The Glimm fractional-step scheme
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where �k is randomly chosen in .�1; 1/. Define

Pk;n D .kh; yk;n/;

to be the mesh points.

Now we can define the approximate solutions Uh;� in ˝h, where � D .�1; �2; � � � /, inductively

as follows.

First, for initial data U0.y/ and for y 2 .2ns; .2n C 2/s/, let

Uh;0.y/ D 1

2s

Z .2nC2/s

2ns

U0.y/dy:

Second, assume that Uh;� has been constructed in f0 6 x < khg\˝h, then for y 2 .yk C2ns; yk C
2.n C 1/s/, define U 0

k;n
and eU 0

k;n
such that

8
<
:

U 0
k;n

WD Uh.kh�; yk;n/;

W.eU 0
k;n

/ WD W.U 0
k;n

/ C G.U 0
k;n

/h:
(3.2)

Now we are going to define Uh;� in ˝k;h.

The first case is the Riemann problem with the boundary. Let Tk;0 be the diamond with the

vertices that .kh; yk/; .kh; yk � s/; ..k C 1/h; ykC1 � s/, and ..k C 1/h; ykC1/. Then Uh;� D Uk;0

in Tk;0 is the solution of the following Riemann problem:

8
<̂

:̂

W.Uk;0/x C H.Uk;0/y D 0; in Tk;0;

Uk;0jxDkh D eU 0
k;�1

; yk � s < y < yk;

.uk;0; vk;0/ � nk D 0; on �k:

(3.3)

The second case is the Riemann problem without the boundary. For n 6 �1, let Tk;n be the diamond

with the vertices that .kh; yk C .2nC1/s/; .kh; yk C .2n�1/s/; ..k C1/h; ykC1 C .2n�1/s/, and

..k C 1/h; ykC1 C .2n C 1/s/. Then Uh;� D Uk;n in Tk;n is the solution of the following Riemann

problem: 8
ˆ̂̂
<
ˆ̂̂
:

W.Uk;n/x C H.Uk;n/y D 0 in Tk;n;

Uk;njxDkh D

8
<
:

eU 0
k;n

; yk C 2ns < y < yk C .2n C 1/s;

eU 0
k;n�1

; yk C .2n � 1/s < y < yk C 2ns:

(3.4)

Therefore, we constructed an approximate solution Uh;� globally in ˝h provided that we can obtain

a uniform bound of Uh;� , which is the main objective in the remaining part of this section.

3.2 Glimm-type functional

In order to obtain a uniform bound of Uh;� , let us introduce the Glimm-type functional in this

section. Assume that Uh;� has been defined in f0 6 x < khg \ ˝h and the following conditions are

satisfied:
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A1.k � 1/: In each ˝h;i ; 0 6 i 6 k � 1, there is a strong contact discontinuity y D �.i/ with

strength .�
.i/
2 ; �

.i/
3 ; 

.i/
4 / so that �

.i/
j 2 OO�.�j 0/; j D 2; 3; 

.i/
4 2 OO�.0/. y D �.i/ divides

˝h;i into two subregions: ˝
.1/

h;i
and ˝

.2/

h;i
, where ˝

.2/

h;i
is the region bounded by y D �.i/ and

�i .

A2.k � 1/: Uh;� j
˝

.1/

h;i

2 O�.U
.0/
1 /; and Uh;� j

˝
.2/

h;i

2 O�.U
.0/
2 /; 0 6 i 6 k � 1:

A3.k � 1/: f�.i/gk�1
iD0 together forms y D �h;� .x/, which is the strong contact discontinuity in

f0 6 x < khg \ ˝h and emanating from the point .0; y.0//.

Then we shall prove that Uh;� defined in ˝h;k by Section 3.1 satisfies A1.k/; A2.k/ and A3.k/.

From the construction in Section 3.1, there exists a strong contact discontinuity y D �.k/ in a

diamond Tk;n. We extend �h;� to ˝h;k such that �h;� =�.k/ in ˝h;k and define ˝
.1/

h;k
and ˝

.2/

h;k
in the

same way as in A1.k � 1/. So it is sufficient to show that A2.k/ holds such that

Uh;� j
˝

.i/

h;k

2 O�

�
U

.0/
i

�
; i D 1; 2; �

.k/
j 2 OO�.�j 0/; j D 2; 3; 

.k/
4 2 OO�.0/:

To achieve this, as in [26], we introduce the mesh curves to establish the bound on the total variation

of Uh;� .

DEFINITION 3.1 A k-mesh curve J is a piecewise unbounded linear curve lying in the strip

f.k � 1/h 6 x 6 .k C 1/hg and consists of the diamond boundaries of the form Pk;n�1N.�kC1; n/,

Pk;n�1S.�k; n/, S.�k; n/Pk;n, and N.�kC1; n/Pk;n, where

N.�kC1; n/ D
�

PkC1;n �kC1 6 0;

PkC1;n�1 �kC1 > 0;
S.�k; n/ D

�
Pk�1;n�1 �k 6 0;

PkC1;n �k > 0:

DEFINITION 3.2 We call mesh curve I is an immediate successor to mesh curve J , if all but one

mesh points of I are on J and I lies on the right hand side of J .

Then, we define the Glimm-type functional F.J / on J.

DEFINITION 3.3 Let

F.J / D L.J / C KQ.J /;

with

L.J / D Lc.J / C L1.J / C L2.J /;

Lc.J / D C �
1

�
j�J

2 � �20j C j�J
3 � �30j

�
C C �

2 jJ
4 j;

L1.J / D K�
11L1

1.J / C K�
12L1

2.J / C K�
13L1

3.J / C K�
14L1

4.J / C K�
15L1

5.J /;

L2.J / D K�
20L0.J / C L2

1.J / C K�
22L2

2.J / C K�
23L2

3.J / C K�
24L2

4.J / C K�
25L2

5.J /;

Q.J / D
X ˚

j j̨ jjˇi j W both weak waves j̨ and ˇi across J and approach, i; j ¤ 4.
	
;

L0.J / D
X ˚

j!k.Pk/j W Pk 2 �J g; �J D fPk D .kh; yk/ W Pk 2 J C \ @˝h; k > 0
	
;

Li
j .J / D

X ˚
j j̨ j W j̨ across J in region ˝

.i/

h;k�1
[ ˝

.i/

h;k
, i D 1; 2; j D 1; 2; 3; 4; 5:

	
;

where �J
2 ; �J

3 and J
4 stand for the strength of the strong contact discontinuity across J , and J C

denotes the subregion of ˝h such that all the points in J C lie at the right hand side of J .
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The positive constants C �
1 ; C �

2 and K in Definition 3.3 will be defined later. The other constants

are given in the following lemma.

Lemma 3.4 There exist positive constants K�
1i ; i D 1; 2; 3; 4; 5; and K�

2i ; i D 0; 2; 3; 4; 5; such

that

K�
20 > jKb0j; K�

2i > jKbi j; i D 2; 3; 5; K�
24 > C �

2 ; K�
14 > C �

2 ;

K�
11 <

1 � K�
25jK25j

jK21j ; K�
15 > K�

25jK15j C K�
11jK11j;

and K�
1i ; i D 2; 3; are arbitrarily large positive constants.

Proof. By Proposition 2.5 and Proposition 2.8, we know that Kb5 D 1 and jK25j < 1. Hence there

exists a constant K�
25 such that Kb5 < K�

25 < 1=jK25j. Then we can choose a positive constant K�
11

satisfying

0 < K�
11 <

1 � K�
25jK25j

jK21j :

This completes the proof.

3.3 Global estimates of the approximate solutions

In this section, we will show that the functional F.J / is decreasing to establish the global estimates

of the approximate solutions. First let us consider the estimates on the non-reacting step.

PROPOSITION 3.5 Suppose that g.x/ satisfies (3.1), and suppose that I and J are two k-mesh curves

such that J is an immediate successor of I. If

Uhj
I\.˝

.i/

h;k�1
[˝

.i/

h;k
/

2 O�

�
U

.0/
i

�
; i D 1; 2I j�I

j � �j 0j < O�; j D 2; 3I jI
4 j < O�;

for some �; O� > 0, then there exists Q� > 0 such that if F.I / 6 Q�, then it holds that

F.J / 6 F.I /: (3.5)

Proof. Let � be the diamond that is formed by I and J. Then assume that I D I0 [ I 0 and J D
I0 [ J 0 such that @� D I 0 [ J 0. We will show this proposition case by case depending on the

location of �.

Case 1 (Fig. 7): � lies in the interior of ˝h and only weak waves enter �. Without loss of the

generality, we assume that � lies in region (1). Denote Q.�/ D �.˛�; ˇ�/, where �.˛�; ˇ�/ is

defined in (2.17). Then by Proposition 2.3, we have

L1.J / � L1.I / 6 M.K�
11 C K�

12 C K�
13 C K�

15/Q.�/;

Q.J / � Q.I/ 6 .ML.I0/ � 1/Q.�/:

Note that F.I / 6 Q� for sufficiently small Q�, then it holds that

F.J / � F.I / 6
�
M.K�

11 C K�
12 C K�

13 C K�
15/ C K.ML.I0/ � 1/

�
Q.�/

6 �1

2
Q.�/;

provided that K is suitably large.
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FIG. 8. Case 2: Near the boundary

Case 2 (Fig. 8): � touches the approximate boundary @˝h, and �I D �J [ fPkg for certain k.

Using Proposition 2.5, we can obtain

L0.J / � L0.I / D �j!kj;
L2

1.J / � L2
1.I / 6 jKb0jj!k j C

X

iD2;3;5

jKbi jj˛i j;

L2
i .J / � L2

i .I / D �j˛i j; i D 2; 3; 4; 5:

Q.J / � Q.I/ 6 .jKb0jj!k j C
X

iD2;3;5

jKbi jj˛i j/L.I0/:

It implies that

L2.J / � L2.I / 6 .jKb0j � K�
20/j!kj C

X

iD2;3;5

.jKbi j � K�
2i /j˛i j:

Therefore, if F.I / 6 Q� for sufficiently small Q�, then it holds that F.J / 6 F.I / by the choice of

K�
20 and K�

2i in Lemma 3.4.

Case 3.1 (Fig. 9): The diamond � covers �.k�1/ and the weak waves lying in region (2) interact

with �.k�1/ from the above. By applying Proposition 2.8, we have

L1
1.J / � L1

1.I / 6 jK21jjˇ1j C M�0.˛5; ˇ�/;

L2
i .J / � L2

i .I / D �jˇi j; i D 1; 2; 3; 4;

L2
5.J / � L2

5.I / 6 jK25jjˇ1j C M�0.˛5; ˇ�/;

j�J
j � �I

j j 6 jK2i jjˇ1j C j ǰ j C M�0.˛5; ˇ�/; j D 2; 3

jJ
4 � I

4 j D jˇ4j;
Q.J / � Q.I/ 6

�
jK21j C jK25j

�
jˇ1jL.I0/ C

�
ML.I0/ � 1

�
�0.˛5; ˇ�/:
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It implies that

L1.J / C L2.J / � L1.I / � L2.I /

6
�
K�

11jK21j C K�
25jK25j � 1

�
jˇ1j �

X

iD2;3;4

K�
2i jˇi j C M�0.˛5; ˇ�/:

Therefore, if F.I / 6 Q� for sufficiently small Q�, then from the facts that K�
11jK21j C K�

25jK25j < 1

and that K�
24 > C �

2 by Lemma 3.4, it holds that F.J / 6 F.I / by choosing suitably small C �
1 and

suitably large K .

Case 3.2 (Fig. 9): The diamond � covers �.k�1/ and the weak waves lying in region (1) interact

with �.k�1/ from the below. By Proposition 2.10, we can obtain

L1
1.J / � L1

1.I / 6 jK11jj˛5j C M�00.˛�; ˇ1/;

L1
i .J / � L1

i .I / D �j˛i j; i D 2; 3; 4; 5;

L2
5.J / � L2

5.I / 6 jK15jj˛5j C M�00.˛�; ˇ1/;

j�J
j � �I

j j 6 jK1i jj˛5j C j j̨ j C M�00.˛�; ˇ1/; j D 2; 3

jJ
4 � I

4 j D j˛4j;
Q.J / � Q.I/ 6

�
jK11j C jK15j

�
j˛5jL.I0/ C

�
ML.I0/ � 1

�
�00.˛�; ˇ1/:

It implies that

L1.J / C L2.J / � L1.I / � L2.I /

6 .K�
11jK11j C K�

25jK15j � K�
15/j˛5j �

X

iD2;3;4

K�
1i j˛i j C M�00.˛�; ˇ1/:
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FIG. 9. Near the strong contact discontinuity
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So if F.I / 6 Q� for sufficiently small Q�, then from the facts that K�
11jK11j C K�

25jK15j < K�
15 and

K�
14 > C �

2 by Lemma 3.4, it holds that F.J / 6 F.I / by choosing suitably small C �
1 and suitably

large K .

In order to analyze the effect of the exothermic reaction on the functionals L and Q, as in [6],

we introduce a new mesh curve QJ , which, as a curve, is the same as the mesh curve J, but upon

which the states QU are the values of the states U on J after a single reaction step along J .

Let Jk and QJk be the k-mesh curve lying in fkh 6 x 6 .k C 1/hg. By Proposition 3.5, we have

Corollary 3.6 Suppose that g.x/ satisfies (3.1). Let �; O�; Q� be the constants given in Proposition 3.5

such that the induction hypotheses A1.k � 1/-A3.k � 1/ hold. If F. QJk�1/ 6 Q�, then it holds that

F.Jk/ 6 F. QJk�1/: (3.6)

Next, let us consider the estimates on the reacting step.

PROPOSITION 3.7 There exists a positive constant M such that

L. QJk/ 6 L.Jk/ C Me�lkhhkZ0k1

�
L.Jk/ C 1

�
;

Q. QJk/ 6 Q.Jk/ C Me�lkhhkZ0k1

�
L.Jk/ C 1

�2
:

(3.7)

It implies that

F. QJk/ 6 F.Jk/ C Me�lkhhkZ0k1

�
F.Jk/ C 2

�2
: (3.8)

Here k � k1 stands for L1 norm.

Proof. By Lemma 2.11 and by the induction method, we can easily obtain that

kZh;� .khC; �/k1 6 e�lkhkZ0k1: (3.9)

Then we will consider the change of L on the reaction step, which is the first inequality of (3.7).

The analysis is divided into three cases depending on the location of �.

(1) � lies in the interior of ˝h so that only weak waves  go out of � through Jk . Without loss of

the generality, we assume that � lies in region (1). With notations in Proposition 2.12, we use

(2.39) to deduce the following,

L1
i . QJk/ 6 L1

i .Jk/ C Me�lkhhkZ0k1j�j C M j4jh;

L1
4. QJk/ 6 L1

4.Jk/ C Me�lkhhkZ0k1j�j � l j4jh:

Then it holds that L. QJk/ 6 L.Jk/ C Me�lkhhkZ0k1j�j by choosing suitably large K�
14.

(2) � covers a part of @˝h. It follows from (2.40) that L. QJk/ 6 L.Jk/ C Me�lkhhkZ0k1:

(3) � covers the strong contact discontinuity �.k/ so that �.k/ with strength .�
.k/
2 ; �

.k/
3 ; 

.k/
4 / goes

out of � through Jk . By (2.41), we can obtain

L1
1. QJk/ 6 L1

1.Jk/ C Me�lkhhkZ0k1 C M j .k/
4 jh;

L2
5. QJk/ 6 L2

5.Jk/ C Me�lkhhkZ0k1 C M j .k/
4 jh;

j Q� .k/
j � �

.k/
j j 6 Me�lkhhkZ0k1 C M j .k/

4 jh; j D 2; 3;

j Q .k/
4 � 

.k/
4 j 6 Me�lkhhkZ0k1 � l j .k/

4 jh:

Then it holds that L. QJk/ 6 L.Jk/ C Me�lkhhkZ0k1 by choosing suitably large C �
2 .
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Thus, combining these three cases, we proved the first inequality of .3.7/.

The second estimate in (3.7) and the estimate in (3.8) can be derived in the same way. The proof

is complete.

Now in order to obtain the uniform bound of the total variation of Uh;� , we introduce the

following functional:

Fc.Jk/ D F.Jk/ C Kz

1X

j DkC1

e�ljhhkZ0k1;

where constant Kz will be defined later.

Lemma 3.8 There exist positive constants Kz and Q�, such that if Fc. QJk�1/ 6 Q�, then it holds that

Fc. QJk/ 6 Fc. QJk�1/; (3.10)

and

Uhj
˝

.i/

h;k

2 O�.U
.0/
i /; i D 1; 2; j� .k/

j � �j 0j < O�; j D 2; 3; j .k/
4 j < O�:

Proof. From the estimates (3.6) and (3.8), we have

F. QJk/ 6 F. QJk�1/ C Me�lkhhkZ0k1

�
F.Jk/ C 2

�2
:

It implies

Fc. QJk/ � Fc. QJk�1/ D F. QJk/ � F. QJk�1/ � Kze�lkhhkZ0k1

6 .M
�
F.Jk/ C 2

�2 � Kz/e�lkhhkZ0k1:

Note that F.Jk/ < Q�. So we can choose suitably large Kz such that Fc. QJk/ 6 Fc. QJk�1/ and

j� .k/
j � �j 0j < O�, j D 2; 3, and j .k/

4 j < O�.

Next, for any k > 0, define Uh;�.khC; �1/ D lim
y!�1

Uh;�.khC; y/. Then by the fact that

lim
y!�1

Z1.y/ D 0 and from the construction of the approximate solutions, we have that

Uh.khC; �1/ D lim
y!�1

U0.y/:

Then by Lemma 2.2 and (2.27), for sufficiently small Q�, it holds that Uhj
˝

.i/

h;k

2 O�.U
.0/
i /;

i D 1; 2.

Based on Proposition 3.5, Proposition 3.7, and Lemma 3.8, we have the following theorems on

the uniform B.V. bound of the approximate solution Uh;� .

Theorem 3.9 Under assumptions .H1/–.H3/, there exist positive constants ı0 and C depending

only on U .0/, such that if (1.6)–(1.8) hold, then for any � 2
Q1

kD1.�1; 1/ and h, the modified

Glimm scheme defines global approximate solutions Uh;� in ˝h, which satisfy A1.k/–A3.k/ given

in Section 3.2 for k > 0. In addition,

T:V:
˚
Uh;�.kh�; �/ W .�1; yk�

	
6 Cı0; (3.11)

for any k > 0 and

j�h;� .x0/ � �h;�.x00/j 6 C.jx0 � x00j C h/; (3.12)

for any x0; x00
> 0.



STEADY EXOTHERMICALLY REACTING EULER FLOWS 465

Based on Theorem 3.9, now we can show the global existence of entropy solutions of (1.1) as

follows.

Proof of Theorem 1.4. The convergence of the approximate solutions to a global entropy solution

can be carried out in the standard way as the one in [6, 26, 44] by using the structure of the

approximate solutions. By (3.12), �h;� .x/ converges to �.x/ uniformly in any bounded x-interval

such that (1.10) and (1.11) hold. Therefore, we can establish the global existence of entropy

solutions of (1.1), i.e., Theorem 1.4.

4. Error estimate of the quasi-one-dimensional approximation

In this section, we shall study the quasi-one-dimensional approximation of two-dimensional steady

supersonic exothermically reacting Euler flows between the Lipschitz wall g.x/ and strong contact

discontinuity �.x/. To do that, we first solve the quasi-one-dimensional model, and then introduce

several integral identities of the approximate solutions to show that the distance between the wall

and the strong contact discontinuity has positive lower and upper bounds. Then we introduce the

integral average of the approximate solutions with respect to y, and find the equations which the

integral average satisfies as h ! 0. Based on them, the difference between the integral average

of the weak solution and the solution of the quasi-one-dimensional system can be estimated by

analyzing the error terms.

4.1 Quasi-one-dimensional model

In this section, we shall establish the global existence of solution to quasi-one-dimensional model

(1.13).

First system (1.13) with initial data UA;0 D .�A;0; uA;0; pA;0; ZA;0/> can be written equivalently

as

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

�uA.x/ D �A;0uA;0A.0/;

u C A.x/
�A;0uA;0A.0/

p D uA;0 C A.0/
�A;0uA;0A.0/

pA;0 C 1
�A;0uA;0A.0/

R x

0
A0.�/pd�;

p
.�1/�

C 1
2
u2 D pA;0

.�1/�A;0
C 1

2
u2

A;0 C q0

�A;0uA;0A.0/

R x

0
A.�/��.T /Zd�;

Z D ZA;0 � 1
�A;0uA;0A.0/

R x

0 A.�/��.T /Zd�:

(4.1)

Then we have the following lemma.

Lemma 4.1 There exist positive constants ı0; C; C�; and C �, such that if jUA;0 � OU .0/
2 j 6 ı0, with

OU .0/
2 D .�

.0/
2 ; u

.0/
2 ; p

.0/
2 ; 0/> and

R 1

0 jA0.�/jd� 6 ı0, then the system (4.1) admits a unique global

solution UA.x/ satisfying that

max
x>0

ˇ̌
UA.x/ � OU .0/

2

ˇ̌
6 Cı0; ZA;0e�C �x

6 ZA 6 ZA;0e�C�x : (4.2)

Proof. We use the following the iteration scheme to establish a sequence of functions convergent to

a solution. Let �
�

.0/
A ; u

.0/
A ; p

.0/
A

�
D

�
�A;0; uA;0; pA;0

�
;
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and Z
.0/
A is given by the last equation of (4.3) for n D 0. Precisely, we have

Z
.0/
A D ZA;0 exp.� 1

�A;0uA;0A.0/

Z x

0

A.�/�A;0�.TA;0/d�/:

Then for any n > 1, the functions U
.n/

A .x/ D .�
.n/
A ; u

.n/
A ; p

.n/
A ; Z

.n/
A / are determined inductively by

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

�
.n/
A u

.n/
A A.x/ D �A;0uA;0A.0/;

u
.n/
A C A.x/

�A;0uA;0A.0/
p

.n/
A D uA;0 C A.0/

�A;0uA;0A.0/
pA;0 C 1

�A;0uA;0A.0/

R x

0
A0.�/p

.n�1/
A d�;

p
.n/
A

.�1/�
.n/
A

C 1
2
.u

.n/
A /2 D pA;0

.�1/�A;0
C 1

2
u2

A;0 C q0

�A;0uA;0A.0/

R x

0
A.�/�

.n�1/
A �.T

.n�1/
A /Z

.n�1/
A d�;

Z
.n/
A D ZA;0 � 1

�A;0uA;0A.0/

R x

0
A.�/�

.n/
A �.T

.n/
A /Z

.n/
A d�:

(4.3)

First, let us prove inductively that for any n > 0; U
.n/

A .x/ are well defined and that there exist

positive constants ı0 and C , such that the following inequality holds

max
x>0

ˇ̌
U

.n/
A .x/ � OU .0/

2

ˇ̌
6 Cı0: (4.4)

Obviously, it is true for n D 0. Now assume that the estimate (4.4) holds for n D k � 1; k > 1, then

we have

C� 6
1

�A;0uA;0A.0/
A.x/�

.k�1/
A �

�
T

.k�1/
A

�
6 C �;

for some constants C� and C �. The last equation of (4.3) yields that

Z
.k�1/
A D ZA;0 exp.� 1

�A;0uA;0A.0/

Z x

0

A.�/�
.k�1/
A �

�
T

.k�1/
A

�
d�/:

It implies that

ZA;0e�C �x
6 Z

.k�1/
A 6 ZA;0e�C�x : (4.5)

Let H.V
.k/

A ; A.x// D .�
.k/
A u

.k/
A A.x/; u

.k/
A C A.x/

�A;0uA;0A.0/
p

.k/
A ;

p
.k/
A

.�1/�
.k/
A

C 1
2
.u

.k/
A /2/> and V

.k/
A D

.�
.k/
A ; u

.k/
A ; p

.k/
A />, then the first three equations of (4.3) can be written as

H
�
V

.k/
A ; A.x/

�
D H

�
VA;0; A.x/

�
C He

�
V

.k�1/
A ; VA;0; A.x/; A.0/; Z

.k�1/
A

�
: (4.6)

where VA;0 D .�A;0; uA;0; pA;0/>, and the term He can be defined without confusion.

From the fact that
R 1

0
jA0.�/jd� 6 ı0, and the estimate (4.5), we have

jA.0/ � A.x/j 6 ı0;
ˇ̌
ˇ
Z x

0

A0.�/p
.k�1/
A d�

ˇ̌
ˇ 6

Z x

0

jA0.�/jjp.k�1/
A � p

.0/
2 jd� C

Z x

0

jA0.�/jp.0/
2 d�

6 Cı2
0 C p

.0/
2 ı0;
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and

ˇ̌
ˇ
Z x

0

A.�/�
.k�1/
A �.T

.k�1/
A /Z

.k�1/
A d�

ˇ̌
ˇ 6

Z x

0

jA.�/j�.k�1/
A �.T

.k�1/
A /Z

.k�1/
A d�

6 C ��A;0uA;0A.0/ZA;0

Z x

0

e�C��d�

6 C ��A;0uA;0A.0/ı0=C�:

Therefore, He is bounded by O.1/ı0. Then it follows from the implicit function theorem that

max
x>0

jV .k/
A .x/ � VA;0j 6 C 0ı0; by choosing suitably large C 0 and suitably small ı0.

Again, from the last equation of (4.3), we have

Z
.k/
A D ZA;0exp.� 1

�A;0uA;0A.0/

Z x

0

A.�/�
.k/
A �

�
T

.k/
A

�
d�/; (4.7)

which implies ZA;0e�C �x
6 Z

.k/
A 6 ZA;0e�C�x : So we obtain the estimate (4.4) for n D k.

Second, we will show the convergence of the sequence
˚
U

.n/
A .x/

	1

nD0
.

Define

w.n/ D � 1

�A;0uA;0A.0/

Z x

0

A.�/�
.n/
A �

�
T

.n/
A

�
d�:

Then by (4.7), we can obtain

ˇ̌
Z

.n/
A � Z

.n�1/
A

ˇ̌
D

ˇ̌
ˇZA;0

�
w.n/ � w.n�1/

� Z 1

0

exp
�
sw.n/ C .1 � s/w.n�1/

�
ds

ˇ̌
ˇ

6
ZA;0e�C�x

�A;0uA;0A.0/

Z x

0

A.�/
ˇ̌
ˇ�.n/

A �
�
T

.n/
A

�
� �

.n�1/
A �

�
T

.n�1/
A

�ˇ̌
ˇd�

6 O.1/ı0 max
06�6x

�ˇ̌
�

.n/
A � �

.n�1/
A

ˇ̌
C

ˇ̌
T

.n/
A � T

.n�1/
A

ˇ̌�
: (4.8)

Next, by (4.6), it holds that

H
�
V

.n/
A ; A.x/

�
� H

�
V

.n�1/
A ; A.x/

�
D He

�
V

.n�1/
A ; VA;0; A.x/; A.0/; Z

.n�1/
A

�

� He

�
V

.n�2/
A ; VA;0; A.x/; A.0/; Z

.n�2/
A

�
: (4.9)

Noticing the fact that
R 1

0
jA0.�/jd� 6 ı0, and the estimate (4.8), we have

ˇ̌
ˇ̌ 1

�A;0uA;0A.0/

Z x

0

A0.�/
�
p

.n�1/
A � p

.n�2/
A

�
d�

ˇ̌
ˇ̌ 6 O.1/ı0 max

06�6x

ˇ̌
ˇp.n�1/

A � p
.n�2/
A

ˇ̌
ˇ ;
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and
ˇ̌
ˇ̌ q0

�A;0uA;0A.0/

Z x

0

A.�/
�
�

.n�1/
A �

�
T

.n�1/
A

�
Z

.n�1/
A � �

.n�2/
A �

�
T

.n�2/
A

�
Z

.n�2/
A

�
d�

ˇ̌
ˇ̌

6
q0

�A;0uA;0A.0/

Z x

0

A.�/
ˇ̌
�

.n�1/
A �

�
T

.n�1/
A

�
� �

.n�2/
A �

�
T

.n�2/
A

�ˇ̌
Z

.n�1/
A d�

C q0

�A;0uA;0A.0/

Z x

0

A.�/�
.n�2/
A �

�
T

.n�2/
A

�ˇ̌
Z

.n�1/
A � Z

.n�2/
A

ˇ̌
d�

6 O.1/ZA;0

Z x

0

e�C��d� max
06�6x

�ˇ̌
�

.n�1/
A � �

.n�2/
A

ˇ̌
C

ˇ̌
T

.n�1/
A � T

.n�2/
A

ˇ̌�

C O.1/ZA;0

Z x

0

e�C���d� max
06�6x

�ˇ̌
�

.n�1/
A � �

.n�2/
A

ˇ̌
C

ˇ̌
T

.n�1/
A � T

.n�2/
A

ˇ̌�

6 O.1/ı0 max
06�6x

�ˇ̌
�

.n�1/
A � �

.n�2/
A

ˇ̌
C

ˇ̌
T

.n�1/
A � T

.n�2/
A

ˇ̌�
:

Therefore, the right-hand side of (4.9) is bounded by O.1/ı0 max
06�6x

jV .n�1/
A � V

.n�2/
A j. Then it

follows from the implicit function theorem that

max
x>0

ˇ̌
V

.n/
A .x/ � V

.n�1/
A .x/

ˇ̌
6

1

2
max
x>0

ˇ̌
V

.n�1/
A .x/ � V

.n�2/
A .x/

ˇ̌
: (4.10)

by choosing suitably small ı0. Combining (4.8) and (4.10), we know that the limit UA.x/ is an

unique solution of (4.1), which belongs to C.Œ0; 1/;R4/ and satisfies

max
x>0

ˇ̌
UA.x/ � OU .0/

2

ˇ̌
6 Cı0; ZA;0e�C �x

6 ZA 6 ZA;0e�C�x :

4.2 Integral identities of the approximate solutions

Let Uh;� be the solution obtained by Theorem 3.9. Let ˝i;h be the domain with the boundaries

that x D .i � 1/h, x D ih, y D gi�1;h.x/, and y D �.i�1/.x/. Let bi�1 be the slope of y D
gi�1;h.x/. And let s.i�1/ be the slope of y D �.i�1/.x/ emanating from point ..i � 1/h; yi�1;s/,

where yi�1;s D yi�1 C2ni�1s with a negative integer ni�1. By applying the divergence theorem in

domain ˝i;h and using the Rankine–Hugoniot conditions, we have the following integral identities.

yiZ

yi�1;sCs.i�1/h

.�h;� uh;�/.ih�; y/dy �
yi�1Z

yi�1;s

.�h;� uh;�/
�
.i � 1/hC; y

�
dy D 0; (4.11)

yiZ

yi�1;sCs.i�1/h

.�h;� u2
h;� C ph;�/.ih�; y/dy �

yi�1Z

yi�1;s

.�h;�u2
h;� C ph;�/

�
.i � 1/hC; y

�
dy

C
ihZ

.i�1/h

�
� bi�1ph;�.�; y/jyDgi�1;h.�/ C s.i�1/ph;�.�; y/jyD�.i�1/.�/

�
d� D 0; (4.12)
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yiZ

yi�1;sCs.i�1/h

�
�h;�uh;�

� ph;�

. � 1/�h;�

C 1

2
u2

h;� C 1

2
v2

h;�

��
.ih�; y/dy

�
yi�1Z

yi�1;s

�
�h;�uh;�

� ph;�

. � 1/�h;�

C 1

2
u2

h;� C 1

2
v2

h;�

���
.i � 1/hC; y

�
dy D 0; (4.13)

yiZ

yi�1;sCs.i�1/h

.�h;� uh;�Zh;� /.ih�; y/dy �
yi�1Z

yi�1;s

.�h;�uh;� Zh;� /
�
.i � 1/hC; y

�
dy D 0: (4.14)

Therefore, for any x 2 ..k � 1/h; kh/, summing over (4.11)–(4.14) with respect to 1 6 i 6 k � 1

respectively, we have that

Z gk�1;h.x/

�.k�1/.x/

.�h;� uh;� /.x�; y/dy C
k�1X

iD1

E1;i .h; �/ D
Z 0

y.0/

.�h;� uh;�/.0C; y/dy; (4.15)

Z gk�1;h.x/

�.k�1/.x/

.�h;� u2
h;� C ph;�/.x�; y/dy C

k�1X

iD1

E2;i .h; �/ D
Z 0

y.0/

.�h;�u2
h;� C ph;�/.0C; y/dy

C
k�1X

iD1

Z ih

.i�1/h

�
bi�1ph;�.�; y/jyDgi�1.�/ � s.i�1/ph;�.�; y/jyD�.i�1/.�/

�
d�

C
Z x

.k�1/h

�
bk�1ph;� .�; y/jyDgk�1.�/ � s.k�1/ph;�.�; y/jyD�.k�1/.�/

�
d�; (4.16)

Z gk�1;h.x/

�.k�1/.x/

�
�h;� uh;�

� ph;�

. � 1/�h;�

C 1

2
u2

h;� C 1

2
v2

h;�

��
.x�; y/dy C

k�1X

iD1

E3;i .h; �/

D
Z 0

y.0/

�
�h;�uh;�

� ph;�

. � 1/�h;�

C 1

2
u2

h;� C 1

2
v2

h;�

��
.0C; y/dy; (4.17)

Z gk�1;h.x/

�.k�1/.x/

.�h;� uh;� Zh;�/.x�; y/dy C
k�1X

iD1

E4;i .h; �/ D
Z 0

y.0/

.�h;�uh;� Zh;� /.0C; y/dy; (4.18)

where El;i .h; �/.l D 1; 2; 3; 4/ is the l-th component of the error term Ei .h; �/, and

Ei .h; �/ D
yiZ

yi�1;sCs.i�1/h

�
W.Uh;�/

�
.ih�; y/dy �

yiZ

yi;s

�
W.Uh;�/

�
.ihC; y/dy: (4.19)

Now we are going to analyze the error terms Ei .h; �/ across the line x D kh. Note the fact that

W
�
Uh;�.ihC; y/

�
D W

�
Uh;�.ih�; yi;n/

�
C G

�
Uh;�.ih�; yi;n/

�
h: (4.20)
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in the interval yi C 2ns < y < yi C 2.n C 1/s; n 6 �1, and the fact that

k�1X

iD1

yiZ

yi;s

G
�
Uh;�.ih�; yi;n/

�
hdy !

xZ

0

g.�/Z

�.�/

G
�
U.�; y/

�
dyd�;

when h ! 0 by the convergence of the approximate solutions. Let

QEi .h; �/ D
yiZ

yi�1;sCs.i�1/h

W
�
Uh;�.ih�; y/

�
dy �

yiZ

yi;s

W
�
Uh;�i

.ih�; y/
�
dy;

where W.Uh;�i
.ih�; y// D W.Uh;�.ih�; yi;n// in the interval yi C 2ns < y < yi C 2.n C 1/s,

for n 6 �1. Obviously

Ei .h; �/ D QEi .h; �/ �
yiZ

yi;s

G
�
Uh;�.ih�; yi;n/

�
hdy: (4.21)

Therefore, in order to estimate Ei .h; �/, we only need to estimate QEi .h; �/.

To get the more specific expression of QEi .h; �/, let

di D s.i�1/h � .yi � yi�1/

s
:

Obviously, di 2 .�1; 1/, and is independent of �i .

Now we will divide our analysis into two cases based on di .

The first case is that di < 0. In this case, if �i 2 .�1; di C 1/, then we have yi;s D yi C 2ni�1s,

and

QEi .h; �/ D
yiZ

yi C2ni�1s

�
W

�
Uh;�.ih�; y/

�
� W

�
Uh;�i

.ih�; y/
��

dy

C
yi C2ni�1sZ

yi C.2ni�1Cdi /s

W
�
Uh;�.ih�; y/

�
dy: (4.22)

If �i 2 .di C 1; 1/, then we have yi;s D yi C 2.ni�1 � 1/s, and

QEi .h; �/ D
yiZ

yi C2ni�1s

�
W

�
Uh;�.ih�; y/

�
� W

�
Uh;�i

.ih�; y/
��

dy

C
yi C2ni�1sZ

yi C.2ni�1Cdi /s

W
�
Uh;�.ih�; y/

�
dy �

yi C2ni�1sZ

yi C2.ni�1�1/s

W
�
Uh;�i

.ih�; y/
�
dy: (4.23)
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The second case is that di > 0. In this case, if �i 2 .�1; di � 1/, then we have yi;s D yi

C 2.ni�1 C 1/s, and

QEi .h; �/ D
yiZ

yi C2ni�1s

�
W.Uh;�.ih�; y// � W.Uh;�i

.ih�; y//
�
dy

�
yi C.2ni�1Cdi /sZ

yi C2ni�1s

W
�
Uh;�.ih�; y/

�
dy C

yi C2.ni�1C1/sZ

yi C2ni�1s

W
�
Uh;�i

.ihC; y/
�
dy: (4.24)

If �i 2 .di � 1; 1/, then we have yi;s D yi C 2ni�1s, and

QEi .h; �/ D
yiZ

yi C2ni�1s

�
W

�
Uh;�.ih�; y/

�
� W.Uh;�i

.ih�; y//
�
dy

�
yi C.2ni�1Cdi /sZ

yi C2ni�1s

W
�
Uh;�.ih�; y/

�
dy: (4.25)

Let 1B be the characteristic function of set B. Then, combining (4.22)–(4.25) together, we have

QEi .h; �/ D 1.�1;0/.di /

� yiZ

yi C2ni�1s

�
W

�
Uh;�.ih�; y/

�
� W

�
Uh;�i

.ih�; y/
��

dy

C
yi C2ni�1sZ

yi C.2ni�1Cdi /s

W.Uh;�.ih�; y//dy � 1.diC1;1/.�i /

yi C2ni�1sZ

yi C2.ni�1�1/s

W
�
Uh;�i

.ih�; y/
�
dy

�

C 1.0;1/.di /

� yiZ

yi C2ni�1s

�
W

�
Uh;�.ih�; y/

�
� W

�
Uh;�i

.ih�; y/
��

dy

�
yi C.2ni�1Cdi /sZ

yi C2ni�1s

W
�
Uh;�.ih�; y/

�
dy C 1.�1;di�1/.�i /

yi C2.ni�1C1/sZ

yi C2ni�1s

W
�
Uh;�i

.ih�; y/
�
dy

�
:

(4.26)

For the error term QEi .h; �/, we have the following lemma.

Lemma 4.2 For any x > 0, there exist a null set N1 �
Q1

kD1.�1; 1/ and a subsequence fhj g1
j D1,

which tends to 0, such that when hj ! 0, it holds that

k�1X

iD1

QEi .hj ; �/ ! 0; (4.27)

for any � 2
Q1

kD1.�1; 1/nN1.
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Proof. Note that ni�1 is independent of �i , then we have

1

2

1Z

�1

yiZ

yi C2ni�1s

�
W

�
Uh;�.ih�; y/

�
� W

�
Uh;�i

.ih�; y/
��

dyd�i

D 1

2

1Z

�1

�1X

nDni�1

yi C2.nC1/sZ

yi C2ns

�
W

�
Uh;�.ih�; y/

�
� W

�
Uh;�

�
ih�; yi C .2n C 1 C �i /

�
s
��

dyd�i

D
�1X

nDni�1

� yi C2.nC1/sZ

yi C2ns

W
�
Uh;�.ih�; y/

�
dy � s

1Z

�1

W
�
Uh;�.ih�; yi C .2n C 1 C �i /s/

�
d�i

�

D 0:

Next, note that if di < 0, then W.Uh;�.ih�; y// is a constant state independent of �i in the interval

.yi C .2ni�1 C di /s; yi C 2ni�1s/; while if di > 0, then W.Uh;�.ih�; y// is a constant state

independent of �i in the interval .yi C 2ni�1s; yi C .2ni�1 C di /s/. Hence it follows from (4.26)

that
1

2

Z 1

�1

QEi .h; �/d�i D 0:

Therefore, we have

Z ˇ̌
ˇ

k�1X

iD1

QEi .h; �/
ˇ̌
ˇ
2

d� D
Œx=h�X

iD1

Z ˇ̌
ˇ QEi .h; �/

ˇ̌
ˇ
2

d� 6 Cx.
s

h
/2h:

for some constant C > 0. Then, we can show (4.27) by choosing a subsequence fhj g1
j D1 withP1

j D1 hj < 1.

Moreover, by (4.15) and (4.27), we also have the following lemma.

Lemma 4.3 There exist positive constants A1 and A2, such that for any x > 0,

A1 6 g.x/ � �.x/ 6 A2:

4.3 Integral average of the approximate solutions

If � 2 ..i � 1/h; ih/, we define the integral average of the approximate solutions as

NUh.��/ WD 1

gi�1;h.�/ � �.i�1/.�/

Z gi�1;h.�/

�.i�1/.�/

Uh;�.��; y/dy;

and the integral average of the approximate initial data as

NUh;0 WD 1

jy.0/j

Z 0

y.0/

Uh;0.y/dy:
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Now, we will derive the equation satisfied by the integral average of the weak solution. Replacing

the approximate solutions in equations (4.15)–(4.18) by the integral average of the approximate

solutions, (4.15)–(4.18) can be rewritten as

�
gk�1;h.x/ � �.k�1/.x/

�
N�h Nuh C

k�1X

iD1

E1;i .h; �/

D �y.0/ N�h;0 Nuh;0 �
gk�1;h.x/Z

�.k�1/.x/

.�h;� � N�h/.uh;� � Nuh/dy C
0Z

y.0/

.�h;0 � N�h;0/.uh;0 � Nuh;0/dy;

(4.28)

�
gk�1;h.x/ � �.k�1/.x/

�
. N�h Nu2

h C Nph/ C
k�1X

iD1

E2;i .h; �/

D �y.0/. N�h;0 Nu2
h;0 C Nph;0/ C

k�1X

iD1

.bi�1 � s.i�1//

ihZ

.i�1/h

Nphd� C .bk�1 � s.k�1//

xZ

.k�1/h

Nphd�

�
gk�1;h.x/Z

�.k�1/.x/

.�h;�uh;� � �huh/.uh;� � Nuh/dy � Nuh

gk�1;h.x/Z

�.k�1/.x/

.�h;� � N�h/.uh;� � Nuh/dy

C
0Z

y.0/

.�h;0uh;0 � �h;0uh;0/.uh;0 � Nuh;0/dy C Nuh;0

0Z

y.0/

.�h;0 � N�h;0/.uh;0 � Nuh;0/dy

C
k�1X

iD1

ihZ

.i�1/h

�
.bi�1 � s.i�1//.ph;� jyD�.i�1/ � Nph/ C bi�1.ph;� jyDgi�1

� ph;� jyD�.i�1//
�
d�

C
xZ

.k�1/h

�
.bk�1 � s.k�1//.ph;� jyD�.k�1/ � Nph/ C bk�1.ph;� jyDgk�1

� ph;� jyD�.k�1/ /
�
d�;

(4.29)

�
gk�1;h.x/ � �.k�1/.x/

�
N�h Nuh.

 Nph

. � 1/ N�h

C 1

2
Nu2

h/ C
k�1X

iD1

E3;i .h; �/

D �y.0/ N�h;0 Nuh;0.
 Nph;0

. � 1/ N�h;0

C 1

2
Nu2

h;0/ �
Nu2

h

2

gk�1;h.x/Z

�.k�1/.x/

.�h;� � N�h/.uh;� � Nuh/dy

� 1

2
.uh � Nuh/2 C v2

h

gk�1;h.x/Z

�.k�1/.x/

�h;�uh;� dy � 

 � 1

gk�1;h.x/Z

�.k�1/.x/

.ph;� � Nph/.uh;� � Nuh/dy
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� 1

2

gk�1;h.x/Z

�.k�1/.x/

.�h;� uh;� � �huh/.u2
h;� C v2

h;� � u2
h

C v2
h
/dy

C
Nu2

h;0

2

0Z

y.0/

.�h;0 � N�h;0/.uh;0 � Nuh;0/dy

C 1

2
.uh;0 � Nuh;0/2 C v2

h;0

0Z

y.0/

�h;0uh;0dy C 

 � 1

0Z

y.0/

.ph;0 � Nph;0/.uh;0 � Nuh;0/dy

C 1

2

0Z

y.0/

.�h;0uh;0 � �h;0uh;0/.u2
h;0 C v2

h;0 � u2
h;0

C v2
h;0

/dy; (4.30)

and

�
gk�1;h.x/ � �.k�1/.x/

�
. N�h Nuh

NZh/ C
k�1X

iD1

E4;i .h; �/

D �y.0/ N�h;0 Nuh;0
NZh;0

�
gk�1;h.x/Z

�.k�1/.x/

.�h;�uh;� � �huh/.Zh;� � NZh/dy � NZh

gk�1;h.x/Z

�.k�1/.x/

.�h;� � N�h/.uh;� � Nuh/dy

C
0Z

y.0/

.�h;0uh;0 � �h;0uh;0/.Zh;0 � NZh;0/dy C NZh;0

0Z

y.0/

.�h;0 � N�h;0/.uh;0 � Nuh;0/dy: (4.31)

Therefore, in order to derive the equations that the integral average of the solution of (1.1) satisfies,

we need to analyze the error terms at the right hand side of (4.28)–(4.31) as h ! 0 first.

By Theorem 1.4, it holds that the terms like
R g.�/

�.�/
.�� N�/.u� Nu/dy can be bounded by the square

of the total variation of the weak solution, i.e.,

Z g.�/

�.�/

.� � N�/.u � Nu/dy D O.1/ı2
�;

with ı� in Theorem 1.6. Next, from the decay property of the reactant Z, i.e., Lemma 2.11 and
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(3.9), we know that

xZ

0

g.�/Z

�.�/

��.T /Zdyd� �
xZ

0

�
g.�/ � �.�/

�
N��. NT / NZd�

D
xZ

0

g.�/Z

�.�/

�
�
�.T / � �. NT /

�
Zdyd� C

xZ

0

g.�/Z

�.�/

.� � N�/�. NT /.Z � NZ/dyd�

DO.1/ı2
�:

Therefore, we only need to estimate the last two terms in the right hand side of (4.29). To do that,

we will carefully derive several estimates on the approximate strong contact discontinuity. Using

the notations in the proof of Proposition 3.5, we define Qh;�.�/ based on the location of �,

Qh;�.�/ D

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

Q.�/ for Case 1;

j!kj C
P5

iD2 j˛i j for Case 2;
P4

iD1 jˇi j for Case 3.1;
P5

iD2 j˛i j for Case 3.2:

(4.32)

Let �b D [C1
kD1

�k;0, where �k;0 is the diamond centered at Pk . Let Lb
h;�

.�b/ be the summation

of the strengths of the 1-waves leaving �b .

Similarly, let �c D [C1
kD1

�k;nk
, where �k;nk

is the diamond covering the strong contact

discontinuity. Let Lc
h;�

.�c/ be the summation of the strengths of the 5-waves leaving �c . Then,

by (2.29), (2.32), and (3.10), we have

Lemma 4.4 There exists a constant M, independent of Uh;� , � , and h, such that

X

�

Qh;�.�/ 6 M; Lb
h;� .�b/ 6 M; Lc

h;� .�c/ 6 M: (4.33)

where the summation is over all the diamonds �.

Next, let � 2
Q1

kD1.�1; 1/nN be equidistributed, then we will prove the following lemma.

Lemma 4.5 There exists a positive constant C , such that

Z C1

0

T:V:

��v.�; �/
u.�; �/ ; p.�; �/

�ˇ̌
.�.�/;g.�//

�
d� 6 Cı�:

Proof. Since the velocity ratio vh;�=uh;� and the pressure ph;� are invariant across the contact

discontinuity, we only need to estimate the strengths of the weak 1-wave and the weak 5-wave.

As in [27], we denote by dQh;� the measure assigning to Qh;�.�/, and by dLb
h;�

and dLc
h;�

the

measure assigning to Lb
h;�

.�b/ and Lc
h;�

.�c/, respectively.

As shown in Fig. 10, let the line x D X�
k�1

intersect @˝ and y D �.x/ at .X�
k�1

; Y �
k�1

/ and

.X�
k�1

; OY �
k�1

/ respectively.
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❤❤✥✥✭✭
✭✭❵❵❤❤❵❵ ❵❵ ❵❵ ✥✥✥✥

✁✁ ✁✁ ✁✁ ✁✁
✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁ ✁✁

(X∗

k−1, Y
∗

k−1)

(X∗

k−1, Ŷ
∗

k−1) (X ′

k−1, χ
k−1,1(X ′

k−1))

(X ′′

k−1, χ
k−1,5(X ′′

k−1))

!
!
!✠

Γ : y = g(x)

x = X∗

k−1

y = χ(x)

χk−1,1(x)

χk−1,5(x)

FIG. 10. Generalized characteristics in Uh;�

Let y D �k�1;1.x/ be the maximal 1-generalized characteristics in Uh;� emanating from the

point .X�
k�1

; Y �
k�1

/, and let y D �k�1;5.x/ be the minimum 5-generalized characteristics in Uh

emanating from the point .X�
k�1

; OY �
k�1

/. Moreover, let y D �k�1;1.x/ and y D �k�1;5.x/ intersect

y D �.x/ and @˝ at .X 0
k�1

; �k�1;1.X 0
k�1

// and .X 00
k�1

; �k�1;5.X 00
k�1

// respectively for some

X 0
k�1

and X 00
k�1

. Thus, by Lemma 4.3, there exists a constant X� > 0, independent of X�
k�1

,

such that X�
k�1

C X� is greater than X 0
k�1

and X 00
k�1

. Then we get a sequence fX�
k

g1
kD0

by setting

X�
k

D X�
k�1

C X�.

We denote by ˝�
k�1

the domain with the boundaries that x D X�
k�1

, x D X�
k

, @˝h, and

y D �h;� .x/. Let QL1;h.X�/ (or L1;h.X�/) be the summation of all the strength of the weak

1-waves after (or before) the reaction step on the line x D X . Obviously for ih < X 6 .i C 1/h,

QL1;h.X�/ � L1;h.X�/ 6 Me�lihhkZ0k1:

Then by the equations that the approximate solutions satisfy, we can deduce in the same way as the

one in [27, 34] that on the line x D X�
k

, if hj is sufficiently small, then

QL1;hj
.X�

k �/ D O.1/
�
dLb

hj ;�.��
b;k�1/ C dQhj ;� .��

k�1/ C
�
e�lX�

k�1 � e�lX�
k

�
kZ0k1

�
;

where ��
b;k�1

consists of the diamonds covering @˝�
k�1

\ @˝h, ��
k�1

consists of the diamonds in

the interior of ˝�
k�1

, and the bound of O.1/ is independent of Uhj
and hj .

Similarly, let QL5;hj
.X�/ stand for the summation of all the strength of the weak 5-waves on the

line x D X after the reaction step, then on the line x D X�
k

, if hj is sufficiently small, then

QL5;hj
.X�

k �/ D O.1/
�
dLc

hj ;�.��
c;k�1/ C dQhj ;� .��

k�1/ C
�
e�lX�

k�1 � e�lX�
k

�
kZ0k1

�
;

where ��
c;k�1

consists of the diamonds covering the strong contact discontinuity y D �h;� .x/ in

˝�
k�1

.

Next, for x 2 .X�
k�1

; X�
k

/, it follows from the local estimates in Section 2 that

QL1;hj
.x�/ D O.1/

�
QL1;hj

.X�
k�1C/ C dLb

hj ;�.��
b;k�1/ C dQhj ;�.��

k�1/

C
�
e�lX�

k�1 � e�lX�
k

�
kZ0k1

�
;
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and

QL5;hj
.x�/ D O.1/

�
QL5;hj

.X�
k�1C/ C dLc

hj ;�.��
c;k�1/ C dQhj ;� .��

k�1/

C
�
e�lX�

k�1 � e�lX�
k

�
kZ0k1

�
:

Therefore, in domain ˝�
k�1

, we have

X�
kZ

X�
k�1

T:V:

(� vhj
.�; �/

uhj
.�; �/ ; phj

.�; �/
�ˇ̌

.�i�1;gi�1/

)
d�

6 O.1/.X�
k � X�

k�1/ max
x2ŒX�

k�1
;X�

k
�

� QL1;hj
.x�/ C QL5;hj

.x�/
�

6 O.1/X�
�

QL1;hj
.X�

k�1�/ C QL5;hj
.X�

k�1�/ C dLb
hj ;� .��

b;k�1/ C dLc
hj ;� .��

c;k�1/

C dQhj ;� .��
k�1/ C

�
e�lX�

k�1 � e�lX�
k

�
kZ0k1

�
:

Then by (4.33), we complete the proof.

Now, by applying Theorem 1.4 and Lemma 4.2 and passing the limit hj ! 0, we obtain that

the equations satisfied by the integral average of the weak solution of (1.1) are
�
g.x/ � �.x/

�
N� Nu D �y.0/ N�0 Nu0 C O.1/ı2

�; (4.34)

�
g.x/ � �.x/

�
. N� Nu2 C Np/ D �y.0/. N�0 Nu2

0 C Np0/ C
Z x

0

�
g0.�/ � �0.�/

�
Npd� C O.1/ı2

�; (4.35)

�
g.x/ � �.x/

�
N� Nu.

 Np
. � 1/ N� C 1

2
Nu2/

D �y.0/ N�0 Nu0.
 Np0

. � 1/ N�0

C 1

2
Nu2

0/ C q0

Z x

0

�
g.�/ � �.�/

�
N��. NT / NZd� C O.1/ı2

�; (4.36)

and

�
g.x/ � �.x/

�
. N� Nu NZ/ D �y.0/ N�0 Nu0

NZ0 �
Z x

0

�
g.�/ � �.�/

�
N��. NT / NZd� C O.1/ı2

�: (4.37)

4.4 Proof of Theorem 1.6

Finally, we can show Theorem 1.6 now.

Proof. Let A.x/ D g.x/ � �.x/, and let A.0/ D �y.0/, then equations (4.34)–(4.37) become
8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

N� NuA.x/ D N�0 Nu0A.0/ C O.1/ı2
�;

. N� Nu2 C Np/A.x/ D . N�0 Nu2
0 C Np0/A.0/ C

xR
0

A0.�/ Npd� C O.1/ı2
�;

�
 Np

.�1/ N�
C 1

2
Nu2

�
N� NuA.x/ D

�
 Np0

.�1/ N�0
C 1

2
Nu2

0

�
N�0 Nu0A.0/ C q0

R x

0
A.�/ N��. NT / NZd� C O.1/ı2

�;

N� Nu NZA.x/ D N�0 Nu0
NZ0A.0/ �

R x

0
A.�/ N��. NT / NZd� C O.1/ı2

�:

(4.38)
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On the other hand, by Lemma 4.1 and Lemma 4.5, system (4.1) admits a unique solution UA.x/ D
.�A; uA; pA; ZA/> satisfying (4.2).

By the straightforward calculation from the fourth equation of (4.38), we have that

NZ D NZ0 exp.� 1

N�0 Nu0A.0/

Z x

0

A.�/ N��. NT /d�/ C O.1/ı2
�:

Similarly, from the fourth equation of (4.1), we have

ZA D NZ0 exp.� 1

N�0 Nu0A.0/

Z x

0

A.�/�A�.TA/d�/:

Then

j NZ � ZAj 6 O.1/ı0 max
06�6x

.j N� � �Aj C j NT � TAj/ C O.1/ı2
�:

Next, from the first three equations of the two systems (4.1) and (4.38), we have

8
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:

. N� � �A/ NuA.x/ C �A. Nu � uA/A.x/ D O.1/ı2
�;

. N� � �A/ Nu2A.x/ C �A. Nu2 � u2
A/A.x/ C . Np � pA/A.x/ D

R x

0 A0.�/. Np � pA/d� C O.1/ı2
�;


�1

. Np � pA/ NuA.x/ C 
�1

pA. Nu � uA/A.x/ C 1
2
. N� � �A/ Nu3A.x/ C 1

2
�A. Nu3 � u3

A/A.x/

D q0

R x

0
A.�/. N��. NT / NZ � �A�.TA/ZA/d� C O.1/ı2

�:

From Lemma 4.5, we easily have the following fact that

ˇ̌
ˇ
Z x

0

A0.�/. Np � pA/d�
ˇ̌
ˇ 6 O.1/ı� max

06�6x
j Np � pAj;

and from Lemma 4.3 and the estimates on the error terms in Section 4.3, we also have that

ˇ̌
ˇ
Z x

0

A.�/
�

N��. NT / NZ � �A�.TA/ZA

�
d�

ˇ̌
ˇ

6 A.x/
�
�AuAZA � N� Nu NZ

�
C O.1/ı2

�;

6 O.1/ı� max
06�6x

�
j N� � �Aj C j NT � TAj C j Nu � uAj

�
C O.1/ı2

�:

Therefore, it follows from the implicit function theorem that there exists a constant C > 0, such

that

max
x>0

j NU � UAj 6 Cı2
�;

for sufficiently small ı�. This completes the proof.
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