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Super-linear propagation for a general, local cane toads model
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We investigate a general, local version of the cane toads equation, models the spread of a population
structured by unbounded motility. We use the thin-front limit approach of Evans and Souganidis in
[Indiana Univ. Math. J., 1989] to obtain a characterization of the propagation in terms of both the
linearized equation and a geometric front equation. In particular, we reduce the task of understanding
the precise location of the front for a large class of equations to analyzing a much smaller class
of Hamilton–Jacobi equations. We are then able to give an explicit formula for the front location
in physical space. One advantage of our approach is that we do not use the explicit trajectories
along which the population spreads, which was a basis of previous work. Our result allows for large
oscillations in the motility.
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1. Introduction and main results

The cane toads equation models the spread of a population where the motility of the individuals is
not constant. Its name comes from the cane toads in Australia whose invasion has been the subject of
intense biological interest in recent years; see for example Phillips et. al. [28] and Shine et. al. [29].
This phenomenon has been observed more widely, for example, the expansion of bush crickets
in Great Britain, see Thomas et. al. [30]. The mathematical model presented here has its roots in
the work of Arnold, Desvillettes, and Prevost [2], Champagnat and Méléard [13], and Benichou
et. al. [5].
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The equation that we study is a general, local version of the cane toads equation. In what follows
t represents time, x physical space, and � the genetic trait of motility. The equation is(

ut D D.�/uxx C u�� C u.1 � u/ in R � RC � RC;
u� .x; 0; t/ D 0 in R � RC;

(1)

where RC WD .0;1/; with the diffusion coefficient D W RC ! RC, a continuous function
satisfying:

ASSUMPTION 1.1 Let D
�
.�/ WD D.�=�/=D.1=�/. There exists D W RC ! RC such that, locally

uniformly in RC, lim�!0D
�
.�/ D D.�/, and lim�!1D.�/ D lim�!1D.�/ D1.

In fact, the convergence in Assumption 1.1 implies immediately that D.�/ D �p for some
p > 0. Indeed, D is Borel measurable, as it is the limit of Borel measurable functions, and it is
multiplicative because, for any �1; �2 2 RC,

D.�1�2/ D lim
�!0

D.�1�2=�/

D.1=�/
D lim
�!0

D.�1=�/

D.1=�/

D.�1�2=�/

D.�1=�/
D D.�1/D.�2/:

It is well-known that these two properties imply that D is a homogeneous polynomial.
The case most often considered is, up to translation in � ,D.�/ D �C� for some � > 0, whence

D.�/ D � , see [6, 8, 11]. A non-trivial example is

D.�/ D �
�
1C log.� C 1/C sin.�/

�
; (2)

which, despite having arbitrarily large oscillations, nevertheless satisfies D.�/ D � .
The biological motivation for studying the equation (1) in greater generality is one of modelling:

in the present work, we see various propagation rates depending on the asymptotics of D and this
may be used to fit the model to the phenomenon being studied. Indeed, even for data arising from the
cane toads invasion in Australia there is some uncertainty over the propagation rate (see [32, Table
1]). Further, there is no reason that the O.t3=2/ propagation, which is associated to the choice
D.�/ D � C � , should hold for all species with increasing motility. Hence, it is important to have
general models that can be tailored to each species.

We are interested in the long time, large space and motility limit. Fix a small parameter � 2
.0; 1/. Thinking of the time scale as ��1, the scaled function

u�.x; �; t/ D u

 
x
p
D.1=�/

�
;
�

�
;
t

�

!
satisfies (

u�t D �D
�
.�/u�xx C �u

�
��
C

1
�
u�.1 � u�/ in R � RC � RC;

u�
�
.x; 0; t/ D 0 on R � RC;

(3)

which we supplement with the initial condition

u�.x; �; 0/ D u0.x; �/ with 0 6 u0 6 1; (4)

where u0 satisfies the following assumption:



SUPER-LINEAR PROPAGATION FOR A GENERAL, LOCAL CANE TOADS MODEL 485

x

�

xr

�

G0

x

�

xr

�

G0

FIG. 1. Two representative examples ofG0

ASSUMPTION 1.2 The initial data u0 is continuous and supported on G0, a C 3, open, non-empty,
convex subset of R� Œ0;1/ such that G0\ .RC� Œ0;1// is bounded; that is, there exist � > 0 and
xr 2 R such that G0 � .�1; xr / � Œ0; �/:

The assumption that 0 6 u0 6 1 yields, by the maximum principle, 0 6 u� 6 1. We note that the
restrictions that u0 is continuous and that u0 6 1 are made for simplicity. Indeed, we use continuity
only to guarantee that minQ u0 > 0 for any compact set Q � G0 and the necessary modifications
to handle the case when u0 66 1 may be found in [17, Lemma 1.2 and (2.5)]. In addition, we note
that our approach could be generalized to higher spatial dimensions with no added difficulty, only
additional notation. For simplicity, we present here only the one-dimensional model.

To study the behavior of u� as � tends to zero, following Evans and Souganidis [17], we make
the transformation v� D �� logu� . This is referred to as the Hopf–Cole transform and is standard
in the literature (see also [4, 26] for applications to reaction-diffusion problems, [20] and references
therein for early applications to large deviations and other problems, and [14, 22] for the original
introduction of the transformation by Cole and Hopf). Since 0 < u� < 1 in R � RC � RC, then
0 < v� < C1 in R � RC � RC. Also, v� satisfies(

v�t � �D
�
.�/v�xx � �v

�
��
CD

�
.�/jv�xj

2 C jv�
�
j2 C 1 � e�v

�=� D 0 in R � RC � RC

v�
�
.x; 0; t/ D 0 on R � RC;

(5)
with initial conditions v�.x; �; 0/ D v�0.x; �/, where

v�0 D

(
�� logu0 in G0;

1 in G
c

0:
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From the above, we see that, formally, (5) converges, when v > 0, to vt CDjvxj2Cjv� j2C 1 D 0:
Indeed, the following lemma shows this to be the case.

Proposition 1.3 Suppose that Assumption 1.1 and Assumption 1.2 hold. Then, as � tends to 0 and
locally uniformly in R � Œ0;1/ � RC; the v�’s converge to I , which is the unique solution of8̂<̂

:
min

˚
It CD.�/jIxj

2 C jI� j
2 C 1; I

	
D 0 in R � RC � RC;

max
˚
� I� ;min

˚
It C jI� j

2 C 1; I
	 	

> 0 on R � f0g � RC;
min

˚
� I� ;min

˚
It C jI� j

2 C 1; I
	 	

6 0 on R � f0g � RC;
(6)

and

I.x; �; 0/ D

(
1 in G

c

0;

0 in G0:
(7)

We point out that D.0/jIxj2 does not appear in the boundary conditions because D.0/ D 0.
The limit passage in Proposition 1.3 is handled using the half-relaxed limits. As such, the first

and most difficult step is obtaining a priori estimates on v� that hold uniformly in �. A naı̈ve
approach following [17] will fail due to the competing effects of the degeneracy at � D 0 and
the unboundedness at � D1 of D.

Recalling that u� D e�v
�=� , from Proposition 1.3, one might expect that u� converges to one on

the zero set of I and zero on the set where I is positive. This is verified by the following theorem.

Theorem 1.4 Suppose that Assumption 1.1 and Assumption 1.2 hold, and let I be the unique
solution to (6) and (7). Then

lim
�!0

u� D

(
0 uniformly on compact subsets of fI > 0g;

1 uniformly on compact subsets of IntfI D 0g:

Theorem 1.4 may be proved in more generality. Following the arguments of [17, Section 4], it
is clear that we may replace u.1 � u/ with f .u/ for any f 2 C 2 such that f .x/ > 0 if x 2 .0; 1/,
f .x/ < 0 if x … Œ0; 1�, and f 0.0/ D supu2Œ0;1� f .u/=u: Then, in (6), each “1” is replaced by f 0.0/.

Unfortunately, I is difficult to compute analytically due to the fact that it is the viscosity solution
of a variational inequality. In order to characterize the sets fI > 0g and IntfI D 0g more explicitly,
we consider the geometric front equation8̂̂<̂

:̂
wt C 2

q
D.�/jwxj2 C jw� j2 D 0 in R � RC � RC;

max
˚
� w� ; wt C 2jw� j

	
> 0 on R � f0g � RC;

min
˚
� w� ; wt C 2jw� j

	
6 0 on R � f0g � RC;

(8)

with

w.x; �; 0/ D

(
1 on G

c

0;

0 on G0:
(9)

It turns out (see Section 4.2) that the zero level sets of w and I are comparable. Indeed, we have:
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Proposition 1.5 Suppose that Assumption 1.1 and Assumption 1.2 hold. Then, there is a unique
solution to (8) and (9) and

lim
�!0

u� D

(
0 uniformly on compact subsets of Intfw D 1g;
1 uniformly on compact subsets of Intfw D 0g:

It also follows from our analysis that we may compare I with the solution to the Hamilton–
Jacobi equation coming from the linearized cane toads equation, that is, the equation with
u.1 � u/ replaced by u. The solutions to this equation are more easily computable analytically
(see Appendix B). Proposition 1.5 is a key tool in establishing this. Further, it provides a Huygen’s
principle for the cane toads front; that is, our front moves normal to itself with velocity depending
only on the normal vector and its position in � .

Consider Ax;�;G0;t D f
 2 H
1..0; t/IR � RC/ W 
.0/ D .x; �/; 
.t/ 2 G0g and the action

J.x; �; t/ WD min
Ax;�;G0;t

ˆ t

0

"
P
1.s/

2

4D
�

2.s/

� C P
2.s/2
4
� 1

#
ds: (10)

When D is not degenerate, it is well-known that J satisfies a Hamilton–Jacobi equation similar
to (6) in R � RC � RC, see (30). In Appendix A, we show that this can be extended to our setting
by showing that the trajectories in (10) remain bounded away from � D 0. This follows from
elementary, if fairly complicated, arguments in which we alter any trajectory that approaches the
boundary R � f0g to obtain a new trajectory that is “more optimal.” Also, due to the degeneracy in
D, J satisfies Neumann boundary conditions (see Section 4.1).

Proposition 1.6 Suppose that Assumption 1.1 and Assumption 1.2 hold. Then

lim
�!0

u� D

(
0 uniformly on compact subsets of fJ > 0g;

1 uniformly on compact subsets of fJ < 0g:

We prove Proposition 1.5 and Proposition 1.6 simultaneously by showing that Intfw D 1g D

fJ > 0g D fI > 0g and Intfw D 0g D fJ < 0g D IntfI D 0g and applying Theorem 1.4. Some
of these inclusion follow by the maximum principle applied as in [26]. To obtain the last inclusion
Intfw D 1g � fJ > 0g, we use a characterization of w in terms of trajectories that is analogous
to (10). This last step differs from [26], where the homogeneity of the equation considered there
admits a more direct argument.

We point out that Proposition 1.6 shows that the solutions are pulled. In other words, the
propagation speed depends only on the linearized equation at the highest order. We also remark
that there are examples where this is not the case; see [26] for a discussion of this phenomena and
for the construction of some counter-examples.

In fact, due to the connection between u, I , and J given by Theorem 1.4 and Proposition 1.6,
the front location in physical space (see Figure 2) for the problem (1) when � D 1 can be obtained
through the level set fJ D 0g. Since D has the simplified form D.�/ D �p for some p > 0, this
level set can be explicitly computed analytically. We discuss, in Appendix B, how to compute and
prove these asymptotics. Indeed, in Appendix B, we see that, for t � 1,

Front location in x at time t �

 
8

2C p

�
�
1
2
C

1
p

�p=2
21�p=2�p=4�

�
1C 1

p

�p=2
!
t
p
D.t/: (11)
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Front location
x

�

u � 1

u � 0

FIG. 2. A zoomed out cartoon of a typical solution to (1) with t � 1. The gray region is where u � 1, the white region is
where u � 0 and the black boundary is where u transitions from 1 to 0. The “front location” is the furthest right point in x
where u transitions between 1 and 0.

In particular we see that, while the order of the front location is determined by D, the coefficient in
front depends only on the limiting problem (6).

Returning to the example (2) and the solution to (1) with this choice ofD, we see thatD.�/ D � .
Hence, p D 1 in (11) and we recover the front location � .4=3/t3=2

p
log.t/.

The approach that we follow here is based on the work of Freidlin [18, 19], [17], Barles,
Evans, and Souganidis [4], and [26]. In the cane toads equation introduced by Benichou et. al. [5]
u.1 � u/ is replaced by the non-local term u.1 �

´
ud�/ and D.�/ D � . In that setting and with

the additional assumption that the trait � takes values between two fixed positive constants Œ� ; ��,
Bouin and Calvez [7] proved the existence of traveling waves, Turanova [31] showed that the speed
of the traveling wave governs the spread of the population in the Cauchy problem, and Bouin,
Henderson, and Ryzhik [10] established a Bramson-type logarithmic delay between the speed of
the slowest traveling wave and the location of the front for any initially “localized” solution to the
Cauchy problem. When the trait space is unbounded, as in this work, Bouin et. al. [8] predicted
that the location of the front is of order .4=3/t3=2. This was then verified in the local model by
Berestycki, Mouhot, and Raoul [6] and by Bouin, Henderson, and Ryzhik [11] using probabilistic
and analytic techniques, respectively. It was also shown in [6] that in a windowed non-local model
the propagation speed is the same, while [11] obtained weak bounds of order t3=2 for the full non-
local model. A model with a trade-off term, that is, a penalization for large of traits, has been
proposed and studied by Bouin, Chan, Henderson, and Kim [9]. In the present article, we investigate
only the local model as the non-local model exhibits quite different behavior, see [12]. We also
mention related works on finite domains by Perthame and Souganidis [27] and Lam and Lou [24].

Outline of the paper. We begin by proving Theorem 1.4 in Section 2 assuming Proposition 1.3.
In Section 3, we prove Proposition 1.3 using the half-relaxed limits along with uniqueness of
the limiting Hamilton–Jacobi equations. New ingredients in this step are the a priori estimates,
which are more difficult to obtain since the Hamiltonian is degenerate at � D 0 and unbounded at
� D C1, and the boundary conditions, since boundaries did not appear in earlier thin-front limit
works. In Section 4, we prove Proposition 1.5 and Proposition 1.6, that is, the propagation of u is
characterized by the solution to the geometric front equation, w, and the solution to the linearized
problem, J . Again, the boundary conditions provide the main difficulties in this section. We include
brief comments in Appendix A describing why we may import the representation formulas for w
and J from the boundary-less setting. We conclude the paper with a discussion and computation of
the front location in Appendix B.
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Notion of solution. Throughout this work, we employ the concept of viscosity solutions, along
with the vocabulary accompanying it. The interested reader should consult one of the many
references, for example, the “User’s Guide” of Crandall, Ishii, and Lions [15].

2. The proof of Theorem 1.4

The proof hinges on the locally uniform convergence of v� to I guaranteed by Proposition 1.3.
We show how to conclude Theorem 1.4 assuming this proposition, which is proved in Section 3.
Our proof follows the general outline of [17], with the relevant modifications made to handle the
technical issues arising from the boundary.

Proof of Theorem 1.4. We first consider the set fI > 0g. Fix any point .x0; �0; t0/ such that
I.x0; �0; t0/ > 0 with t0 > 0. Since v� converges to I locally uniformly as � tends to zero
by Proposition 1.3, v�.x; �; t/ > ı for some ı; r > 0 and any .x; �; t/ 2 Br .x0; �0; t0/ when
� is sufficiently small. It follows that u�.x; �; t/ 6 exp f�ı=�g for all � sufficiently small and all
.x; �; t/ 2 Br .x0; �0; t0/. Hence u� converges to zero uniformly on Br .x0; �0; t0/ as � tends to zero.

Now we consider the set IntfI D 0g. Fix .x0; �0; t0/ 2 IntfI D 0g. There are two cases to
investigate depending on whether �0 is positive or zero. First assume that �0 > 0. Define a test
function  .x; �; t/ D jt � t0j2C jx � x0j2C j� � �0j2; and note that, since I � 0 near .x0; �0; t0/,
I �  has a strict local maximum at .x0; �0; t0/ on a small enough ball centered at .x0; �0; t0/. It
follows that v� �  has a maximum at some point .x�; ��; t�/ such that .x�; ��; t�/ converges to
.x0; �0; t0/ as � tends to zero.

Because �0 > 0, we may restrict to � sufficiently small so that �� > 0. Then, using (5), we find,
at .x�; ��; t�/,  t � �D

�
 xx � � �� CD

�
j xj

2C j � j
2 6 u� � 1: An explicit computation, using

only the form of  and the fact that .x�; ��; t�/ converges to .x0; �0; t0/ as � tends to zero, shows
that the left hand side tends to zero as � tends to zero. We infer that 1 6 lim inf�!0 u�.x�; ��; t�/.
On the other hand, recall that .x�; ��; t�/ is the location of a minimum of u� expf =�g. Hence we
have that

lim inf
�!0

u�.x0; �0; t0/ > lim inf
�!0

u�.x�; ��; t�/ exp
˚
��1

�
jt� � t0j

2
C jx� � x0j

2
C j�� � �0j

2
� 	

> 1:

Initially, u0 6 1 in R�Œ0;1/. The maximum principle implies that u� 6 1 in R�Œ0;1/�Œ0;1/ for
all �. It follows that 1 > lim sup�!0 u

�.x0; �0; t0/. As a consequence, lim sup�!0 u
�.x0; �0; t0/ D

lim inf�!0 u�.x0; �0; t0/ D 1, which implies that u�.x0; �0; t0/ converges to 1 as � tends to zero.
This concludes the proof in the case that �0 D 0.

If �0 D 0, define  �.x; �; t/ WD jt � t0j2 C jx � x0j2 C j� � �2j2; and let .x�; ��; t�/ be a
maximum of v� �  � . Since  � and v� converge to  and I , respectively, as � tends to zero and
I �  has a strict local maximum at .x0; �0; t0/, it follows that .x�; ��; t�/ converges to .x0; 0; t0/
as � tends to zero.

We claim that �� > 0 for all � > 0, and we proceed by contradiction. Suppose that �� D 0 for
any � > 0. Because v� � has a local maximum at .x�; 0; t�/, v�� .x�; 0; t�/ 6  �

�
.x�; 0; t�/: By (5),

the left hand side is 0. The right hand side is, by construction, �2�2. This is a contradiction.
It follows that �� > 0 for all � > 0. Then (5) yields, at .x�; ��; t�/,

 �t � �D
�
.�/ �xx � � 

�
�� CD

�
.�/j �xj

2
C j �� j

2 6 u� � 1:

As above, an explicit computation shows that the left hand side tends to zero as � tends to zero.
Hence, lim infu�.x�; ��; t�/ > 1.
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By construction, .x�; ��; t�/ is the location of a local minimum of u� expf �=�g. Thus,

lim infu�.x0; 0; t0/ > lim infu�.x�; ��; t�/ exp
�
jt� � t0j

2 C jx� � x0j
2 C j�� � �

2j2

�
� �

�
> 1:

From the conclusion of the previous case, when �0 > 0, recall that u� 6 1, which immediately
yields lim sup�!0 u

�.x0; �0; t0/ 6 1. Arguing as above, we conclude that u�.x0; 0; t0/ converges to
1 as � tends to zero. This concludes the proof.

3. The limit of the sequence .v�/�>0 – the proof of Proposition 1.3

We proceed in three steps. In the first, we obtain uniform bounds on v� on compact subsets of
.G0 � ft D 0g/[ .R� Œ0;1/�RC/. In the second, we take the half-relaxed limits of the sequence
.v�/�>0 to obtain v� and v�, and we show that they are respectively super- and sub-solutions of (6).
Finally in the last step, we use comparison to show that v� D v� D I and conclude that v�

converges locally uniformly to I .

3.1 An upper bound for v�

By the maximum principle, 0 6 u� 6 1 and so v� > 0. In order to take the half-relaxed limits, we
need an upper bound on v� that is uniform in �.

Lemma 3.1 Suppose that Assumption 1.1 and Assumption 1.2 hold. Fix any compact subset Q of
.G0 � ft D 0g/[

�
R � Œ0;1/ � RC

�
: There exists C D C.Q/ > 0 such that, if .x; �; t/ 2 Q, then

v�.x; �; t/ 6 C: Further, if Q � G0 � Œ0;1/, then there exists a constant C 0 D C 0.Q/ such that,
if .x; �; t/ 2 Q, then

v�.x; �; t/ 6 � C 0: (12)

Proof. We begin by noticing that, when � > 0, we may ignore the boundary f� D 0g: Indeed,
using the Neumann boundary condition, we may extend u� , and thus v� , evenly to R � R � RC.
The parabolic regularity theory yields that v� satisfies (5) on R � R � RC with D

�
.�/ replaced by

D
�
.j� j/; for more details see [31]. For the remainder of this proof, we abuse notation by letting u�

and v� refer to their even extensions.
Next, we set some notation. For any R > 0 and .x0; �0/ 2 R � R, let

QR.x0; �0/ WD .x0 �R; x0 CR/ � .�0 �R; �0 CR/:

In the sequel, we use QR to refer to QR.0; 0/.
We proceed in two steps. First, for any T;R > 0 and .x0; �0/ such that j�0j > R=2 and

QR.x0; �0/ � G0, we build a barrier on QR.x0; �0/ � Œ0; T � that yields an upper bound on v�

in Q3R=4.x0; �0/ � Œ0; T � that is uniform in �. Since G0 is open, it is easy to see that

G0 D
[

R2.0;1/

[
j�0j>R=2;

QR.x0;�0/�G0

Q3R=4.x0; �0/:

Thus, the bound we have is enough to conclude an upper bound on v� that is independent of � on
any compact subset of G0 � Œ0; T �. The second step extends this by building a barrier on sets of the
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form .QL.x0; �0/ nQR=2.x0; �0// � ŒT
�1; T �1 C T �, where R, x0, and �0 are as in the first step,

T > 1, and L > R. This crucially uses the bound obtained in the first step to control the portion
of the parabolic boundary @QR=2 � .T �1; T �1 C T /. This provides an upper bound on v� that is
independent of � on compact subsets of R � R � RC, which finishes the proof.

Our proof follows the ideas of [17] with a few key modifications, which we mention as they
arise. The added complication that occurs in our proof is due to the interplay of the degeneracy
of D

�
at � D 0 and its growth at � D 1. We point out that a crucial observation that saves our

computations is restricting to cubes QR.x0; �0/ where j�0j > R=2, see Step Two below.

# Step one: Since the equation is translation invariant in x, we may assume that x0 D 0, without
loss of generality. We may also assume, without loss of generality, that �0 > 0, which, in turn,
implies that �0 > R=2. For notational ease, we translate the equation in � . That is, we define
�.x; �; t/ D v�.x; � C �0; t / and D

�

0.�/ D D
�
.� C �0/. It follows that,

�t � �D
�

0�xx � ���� CD
�
j�xj

2
C j�� j

2
C 1 � e��=� D 0 in R � R � RC: (13)

An upper bound on � in QR implies the desired bound on v� in QR.0; �0/.
We proceed by building a barrier. Consider, for ˛, ˇ, and � that are positive constants to be

determined, the auxiliary function

 .x; �; t/ WD ˛t C ˇ C
�

R2 � x2
C

�

R2 � �2
in QR � RC:

We point out that  differs from the barrier used in [17], and this difference simplifies many
computations because it separates the variables.

Straightforward calculations yield

 t � �D
�

0 xx � � �� CD
�

0j xj
2
C j � j

2
C 1 � e� =�

> ˛ � ��

 
D
�

0

�
2

.R2 � x2/2
C

8x2

.R2 � x2/3

�
C

�
2

.R2 � �2/2
C

8�2

.R2 � �2/3

�!
C 4�2

�
D
�

0

x2

.R2 � x2/4
C

�2

.R2 � �2/4

�
D ˛ C

2�D
�

0

.R2 � x2/3

�
2�x2

R2 � x2
� �.R2 C 3x2/

�
C

2�

.R2 � �2/3

�
2��2

R2 � �2
� �.R2 C 3�2/

�
:

(14)

We define

� WD 6�R2; ˇ WD max
QR

�.x; �; 0/ D max
QR.0;�0/

v�0.x; �/; and ˛ WD

20�� max
j� 0j6R

.1CD
�

0.�
0//

R4
:

(15)

Consider the second term in the last line of (14). When jxj 2 ŒR=2;R�, we have

2�x2

R2 � x2
��
�
R2 C 3x2

�
>

2�.R=2/2

R2 � .R=2/2
� �

�
R2 C 3R2

�
D
2�

3
� 4�R2 D 0;
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where the last equality follows from the definition of � (15). When jxj 2 Œ0; R=2�, we have

2�D
�

0

.R2 � x2/3

�
2�x2

R2 � x2
� �.R2 C 3x2/

�
>

2� max
j� 0j6R

D
�

0

.R2 � .R=2/2/3
.0 � 2�R2/ > �

˛

2
:

We see that, for all .x; �/ 2 QR,

˛

2
C

2�D
�

0

.R2 � x2/3

�
2�x2

R2 � x2
� �.R2 C 3x2/

�
> 0:

A similar argument shows that, for all .x; �/ 2 QR,

˛

2
C

2�

.R2 � �2/3

�
2��2

R2 � �2
� �.R2 C 3�2/

�
> 0:

These two inequalities, applied to (14), show that

 t � �D
�

0 xx �  �� CD
�

0j xj
2
C j � j

2
C 1 � e� =� > 0 in QR � RCI

that is,  is a super-solution of (13) in QR � RC.
Next, the choice of ˇ ensures that, on QR,  .�; �; 0/ > ˇ > v�0: Further, the strong maximum

principle implies that u� > 0 on R � R � RC, which implies that v� , and thus �, is finite in
R � R � RC. Because  D C1 on @QR � RC,  > � on @QR � RC. The maximum principle
implies that 0 6 � 6  on QR � RC. In particular, there exists some CR > 0, which depends only
on �0, R, D, and u0, such that, on Q3R=4 � Œ0;1/,

v� 6  6 CR.1C t /: (16)

We now establish (12). Since QR.0; �0/ � G0 D fu0 > 0g, then

ˇ D max
.x;�/2QR.0;�0/

v�0 6 � log

 
1

min.x;�/2QR.0;�0/ u0.x; �/

!
:

We recall that min.x;�/2QR.0;�0/ u0 > 0 due to the continuity of u0. Also, it follows from their
definitions that ˛; � 6 C�, for some constant C depending only onD, R, and �0. We conclude that,
for any .x0; �0/ and R; T > 0 such that QR.x0; �0/ � G0 and j�0j > R=2, there exists a constant
C that depends only on u0, R, D, .x0; �0/, and T such that � 6 C� in Q3R=4.x0; �0/ � Œ0; T �:
Given a compact subset Q � G0 � Œ0;1/, it can be covered by finitely many sets of the form
Q3R=4.x0; �0/ � Œ0; T � where QR.x0; �0/ � G0 and j�0j > R=2. Hence, we conclude that, for any
such Q, there exists C D C.Q/ such that � 6 C� on Q; that is, (12) holds.

# Step two: Let R and �0 be as above and fix L > R and T > 1. Define �.x; �; t/ D v�.x; � C

�0; t CT
�1/. Then, � satisfies (13). In view of the bound (16), a bound on � inQL nQR=2� Œ0; T �,

yields a bound on v� on QL.0; �0/ � ŒT �1; T �1 C T �. To obtain such a bound, we build a barrier.
Before beginning, we note that, in [17], the authors are able to construct a barrier on their analogue
of QR=2

c
�RC directly. This approach will not work in our setting since D

�

0 is unbounded. This is
the reason that we strict to cubic annuli in physical and trait space.
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Define

ˇ WD max
@QR=2�Œ0;T �

� D max
@QR=2.0;�0/�Œ 1T ;

1
T CT �

v� and � WD
2

R2

4�TL4.1C max
j� 0j6L

D
�

0.�
0//C L8

min
�
1; min
j� 0j6R=2

D
�

0.�
0/

� :

(17)
Since �0 > R=2, it follows that the denominator of � is bounded below by a positive constant
independent of �. Also, ˇ is bounded above depending only on u0, �0,R, and T , due to (16). Define

�

�
x; �; t C

1

T

�
WD ˇ C

�

t.L2 � x2/
C

�

t.L2 � �2/
in QL nQR=2 � Œ0; T �:

Note that the restriction �0 > R=2 has the consequence that when D
�

0 � 0, j�� j � O.1/. This is
the key observation in constructing � that allows us to side-step any complications stemming from
the degeneracy D

�

0.��0/ D D
�
.0/ D 0.

Also, note that this barrier is different from the one constructed in [17]. Indeed, since we are
restricted to a compact set in physical and trait space, it is crucial that � be larger than � on the
boundary @QL. Hence, we may not use the quadratically growing barrier from [17].

We show that � is super-solution of (13). A straightforward computation yields

�t��D
�

0�xx � ���� CD
�

0j�xj
2
C j�� j

2
C 1 � e��=�

> �
�

t2.L2 � x2/
�

�

t2.L2 � �2/
� ��D

�

0

�
2

t.L2 � x2/2
C

8x2

t .L2 � x2/3

�
� ��

�
2

t.L4 � �4/2
C

8�2

t .L2 � x2/3

�
CD

�

0

4�2x2

t2.L2 � x2/4
C

4�2�2

t2.L2 � �2/4

D
2�

t2

"
1

.L2 � x2/4

�
2�x2D

�

0 � �D
�

0t .L
2
C 3x2/.L2 � x2/ �

.L2 � x2/4

2

�
C

1

.L2 � �2/4

�
2��2 � �t.L2 C 3�2/.L2 � x2/ �

.L2 � �2/4

2

�#
:

(18)

Since .x; �/ 2 QL nQR=2, we consider three cases: (1) jxj > R=2 > j� j; (2) j� j > R=2 > jxj;
and (3) jxj; j� j > R=2.

Case one: If jxj > R=2 > j� j, notice that

1

.L2 � x2/4

�
2�x2D

�

0 � �D
�

0t .L
2
C 3x2/.L2 � x2/ �

.L2 � x2/4

2

�
>

1

.L2 � x2/4

�
�R2

2
min
j� 0j6R=2

D
�

0.�
0/ � 4�TL4 max

j� 0j6L
D
�

0.�
0/ �

L8

2

�
>

1

.L2 � x2/4

�
4�TL4 C

L8

2

�
>

1

.L2 � .R=2/2/4

�
4�TL4 C

L8

2

�
;

(19)
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where we used the definition of � (17) in the second-to-last inequality. On the other hand,

1

.L2 � �2/4

�
2��2 � �t.L2 C 3�2/.L2 � �2/ �

.L2 � �2/4

2

�
>

�1

.L2 � .R=2/2/4

�
4�TL4 C

L8

2

�
:

Summing these two inequalities and recalling (18) yields

�t � �D
�

0�xx � ���� CD
�

0j�xj
2
C j�� j

2
C 1 � e��=� > 0

when jxj > R=2 and j� j 6 R=2.

Case two: If j� j > R=2 > jxj, the argument is handled in exactly the same way, so we omit it and
conclude again that

�t � �D
�

0�xx � ���� CD
�

0j�xj
2
C j�� j

2
C 1 � e��=� > 0

when jxj 6 R=2 and j� j > R=2.

Case three: If jxj; j� j > R=2, then, following the argument in (19) in case one, we see that
2�x2 � �t.L2 C 3x2/.L2 � x2/ > 0. Hence,

1

.L2 � x2/4

�
2�x2D

�

0 � �D
�

0t .L
2
C 3x2/.L2 � x2/ �

.L2 � x2/4

2

�
> �

1

2
:

Also, arguing similarly as in (19) and using the definition of � (17), we find

1

.L2 � �2/4

�
2��2 � �t.L2 C 3�2/.L2 � �2/ �

.L2 � �2/4

2

�
>

1

.L2 � �2/4

�
�R2

2
� 4�TL4 �

L8

2

�
>

1

.L2 � �2/4

�
4�TL4 C

L8

2

�
>
1

2
:

Summing these two inequalities and recalling (18) implies that

�t � �D
�

0�xx � ���� CD
�

0j�xj
2
C j�� j

2
C 1 � e��=� > 0

when jxj; j� j > R=2.
The combination of all three cases above implies that � is a super-solution of (13) in .QL n

QR=2/� .0; T /. By the definition of ˇ (17), it follows that � > � on @QR=2� Œ0; T �. Also, since � is
finite onQL�Œ0; T � (see the discussion at the end of Step One) and � D C1 on .QLnQR=2/�ft D

0g and on @QL � Œ0; T �, then � > � on .QL nQR=2/� ft D 0g and on @QL � Œ0; T �. It follows that
� > � on the parabolic boundary of .QL nQR=2/ � .0; T /. The maximum principle then implies
that � 6 � in .QL nQR=2/ � .0; T /. Given the definition of � and the preliminary bound on v� on
Q3R=4 (16), it follows that there exists a constant C that depends only on u0, �0, D, L, R, and T
such that

v� 6 C in QL=2.0; �0/ �
�
2

T
;
2

T
C T

�
:

Since L and T are arbitrary, this concludes the proof.
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3.2 The half-relaxed limits

We next recall the definition of the classical half-relaxed limits v� and v�:

v�.x; �; t/ D lim sup
.y;�;s/!.x;�;t/;

�!0

v�.y; �; s/ and v�.x; �; t/ D lim inf
.y;�;s/!.x;�;t/;

�!0

v�.y; �; s/: (20)

The existence of these limits is guaranteed by Lemma 3.1 along with the fact that, as discussed in
Section 1, v� > 0. We point out that v� is lower semi-continuous while v� is upper semi-continuous.

Equations for v� and v�. Our first step is to prove that v� and v� satisfy the limits that the theory
of viscosity solutions suggest. The issues here are the boundary behavior and verifying the initial
conditions.

Lemma 3.2 The relaxed lower limit v� satisfies in the viscosity sense(
min

˚
.v�/t CD.�/j.v�/xj

2 C j.v�/� j
2 C 1; v�

	
> 0 in R � RC � RC;

max
˚
� .v�/� ;min

˚
.v�/t C j.v�/� j

2 C 1; v�
	 	

> 0 on R � f0g � RC;
(21)

and

v�.�; �; 0/ D

(
0 in G0;

1 in G
c

0:
(22)

Proof. We verify (21) first. Assume that, for some test function , v�� has a strict local minimum
at .x0; �0; t0/ 2 R � Œ0;1/ � RC. We may then choose �k converging to 0 and .yk ; �k ; sk/
converging to .x0; �0; t0/ as k tends to infinity such that .yk ; �k ; sk/ is a local minimum of v�k � 
in R � Œ0;1/ � Œ0;1/ and v�.x0; t0; �0/ D limk!1 v

�k .yk ; �k ; sk/:

If .x0; �0; t0/ 2 R�RC�RC, then, for sufficiently large k, .yk ; �k ; sk/ 2 R�RC�RC. Since
v� solves (5), at .yk ; �k ; sk/, we have, at .yk ; �k ; sk/,

0 6  t � �kD
�k
 xx � �k �� CD

�k
j xj

2
C j � j

2
C 1 � e� =�k

6  t �Dj xj
2
C j � j

2
C 1C o.1/:

Here and in the sequel, we use o.1/ to mean a quantity that tends to zero in the limit. Taking the limit
as k tends to infinity and using the smoothness of  yields, at .x0; �0; t0/, 0 6  tCD 

2
xC 

2
�
C1:

As discussed above, v� > 0 on R�RC �RC. From this and the inequality above, we conclude that

min
˚
.v�/t CD.�/j.v�/xj

2
C j.v�/� j

2
C 1; v�

	
> 0 in R � RC � RC;

which finishes the proof in this case.
Assume next that .x0; �0; t0/ 2 R � f0g � RC. If �k > 0 for infinitely many k, the fact that v�k

solves (5) yields, at .yk ; �k ; sk/,

0 6  t � �kD
�k
 xx � �k �� CD

�k
 2x C  

2
� C 1 � e

���k =�k

6  t CD
�k
 2x C  

2
� C 1C o.1/:

Letting k tend to infinity, we find, at .x0; 0; t0/, 0 6  t C D 2x C  2
�
C 1: If �k D 0

for all k sufficiently large, then, since v�k satisfies Neumann boundary conditions, we have
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0 6 � � .yk ; 0; sk/. Letting k tend to infinity, we find 0 6 � � .x0; 0; t0/. In either case, we have
verified that

max
n
� .v�/� ;min

˚
.v�/t C j.v�/� j

2
C 1; v�

	o
> 0 on R � f0g � RC:

Finally we need to consider the initial condition (22). Fix � > 0 and any smooth function
� 2 C1.R � Œ0;1/I Œ0; 1�/ such that �jG0 � 0 and �jR�RCnG0

> 0. Then8<:max
n
.v�/t CDj.v�/xj

2 C j.v�/� j
2 C 1; v� � ��

o
> 0 in R � Œ0;1/ � f0g;

max
n
� .v�/� ; .v�/t C j.v�/� j

2 C 1; v� � ��
o

> 0 in R � f0g � f0g:
(23)

Indeed, if .x0; �0/ 2 G0, (23) holds since v� > 0 and � � 0 on G0. If .x0; �0/ 2 R � RC n G0
and v�.0; x0; �0/ < ��.x0; �0/ then, since v� is finite at .x0; �0/, we argue exactly as in the second
paragraph of this proof to obtain .v�/t CDj.v�/xj2 C j.v�/� j2 C 1 > 0. We proceed similarly if
�0 D 0 using the arguments of the third paragraph of this proof. Hence, we obtain (23).

It follows immediately from (12) of Lemma 3.1 and the definition of lim inf that v� D 0 on
f0g �G0. If .x0; �0/ 2 R � RC nG0, then we assume, by contradiction, that v�.x0; �0; 0/ <1.

Choose � sufficiently large so that v�.x0; �0; 0/ < ��.x0; �0; 0/. Let

�ı D 1C
1

ı
C
8
�
1CD.�0/

�
v�.x0; �0; 0/

ı
: (24)

Notice that �ı tends to infinity as ı tends to zero. Define the test function  ı.x; �; t/ WD �ı�1.jx�
x0j

2 C j� � �0j
2/ � �ı t: Since v� is lower semi-continuous, v� �  ı attains a minimum at some

.xı ; �ı ; tı/ 2 R � Œ0;1/ � Œ0;1/. Further, v�.x0; �0; 0/ < C1 and  ı.x; �; t/ tends to infinity
locally uniformly away from .x0; �0; 0/. Thus, .xı ; �ı ; tı/ converges to .x0; �0; 0/ as ı tends to zero.
As .xı ; �ı ; tı/ is a minimum of v� �  ı , we see that

v�.xı ; �ı ; tı/C �ı tı C
jxı � x0j

2 C j�ı � �0j
2

ı
6 v�.x0; �0; 0/: (25)

We now collect four properties that hold when ı is small and rely the fact that .xı ; �ı ; tı/ converges
to .x0; �0; 0/ as ı tends to zero. Firstly, by (25), if tı > 0 for any ı then v�.x0; �0; 0/ > 0 and, thus,
v�.xı ; �ı ; tı/ > 0 if ı is sufficiently small due to the the lower semi-continuity of v�. Secondly, (25),
the lower semi-continuity of v�, and the fact that v�.x0; �0; 0/ < ��.x0; �0; 0/, imply that if ı is
sufficiently small, 0 < v�.xı ; �ı ; tı/ < ��.xı ; �ı ; tı/. Thirdly, the continuity of D implies that
D.�ı/ 6 2D.�0/ for all ı sufficiently small. Fourthly and finally, since �0 > 0, then �ı > 0 if ı is
sufficiently small. Fix ı0 > 0 such that, if ı 2 .0; ı0/ then all four properties above hold.

Suppose that tı > 0 for some ı 2 .0; ı0/. Using that v� satisfies (21) for tı > 0 and
v�.xı ; �ı ; tı/ > 0, we have

0 6  t .xı ; �ı ; tı/CD.�ı/ x.xı ; �ı ; tı/
2
C  � .xı ; �ı ; tı/

2
C 1

6 ��ı C
4
�
2D.�0/C 1

��
jxı � x0j

2 C j�ı � �0j
2
�

ı2
C 1:

(26)

Above we used that D.�ı/ 6 2D.�0/. Using now (25) in (26), we find

0 6 ��ı C
4
�
2D.�0/C 1

�
v�.x0; �0; 0/

ı
C 1: (27)
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In view of the definition of �ı (24), the right hand side is negative. This yields a contradiction.
If tı D 0 for all ı 2 .0; ı0/, the proof is the same as above, with (23) playing the role of (21).

Indeed, as observed above, we have that v�.xı ; �ı ; tı/ < ��.xı ; �ı ; tı/. Using this and that v�
satisfies (23), we find, at .xı ; �ı ; tı/,  t CDj xj2 C j � j2 C 1 > 0: Using the definition of  and
the choice of �ı , we obtain the same contradiction as in (27).

Having reached a contradiction in both cases, we conclude that v�.x0; �0; 0/ D C1.

We now obtain the equation for v�. The argument is slightly more complicated since v� > 0

and, hence, for the first equation must consider the cases where v� is zero or positive.

Lemma 3.3 The upper relaxed half limit v� is a viscosity solution to8<:min
˚
.v�/t CDj.v

�/xj
2 C j.v�/� j

2 C 1; v�
	

6 0 in R � RC � RC;

min
n
� .v�/� ;min

˚
.v�/t C j.v

�/� j
2 C 1; v�

	o
6 0; on R � f0g � RC;

(28)

and

v�.�; �; 0/ D

(
0 in G0;

1 in G
c

0:
(29)

Proof. The proof of Lemma 3.3 is similar to that of Lemma 3.2, thus we omit some details and
provide only a sketch of the proof.

We first verify (28). Assume that, for some test function  , v�� has a strict local maximum at
.x0; �0; t0/ 2 R� Œ0;1/�RC. We may then choose �k converging to 0 and .yk ; �k ; sk/ converging
to .x0; �0; t0/ as k tends to infinity such that .yk ; �k ; sk/ is a local maximum of v�k �  and

v�.x0; t0; �0/ D lim
k!1

v�k .yk ; �k ; sk/:

To check (28), we need only consider the set fv� > 0g since (28) is satisfied whenever v� D 0.
If t0 > 0 and �0 > 0, then for sufficiently large k, tk ; �k > 0 and, at .yk ; �k ; sk/,

0 >  t � �kD
�k
 xx � �k �� CD

�k
j xj

2
C j � j

2
C 1 � e�v

�k =�k :

Since v�k .yk ; �k ; sk/ converges to v�.x0; �0; t0/ > 0 as k tends to1, the last term tends to zero as
k tends to infinity. In addition, the regularity of  implies that, after taking the limit k to infinity, at
.x0; �0; t0/, 0 >  t CDj xj

2 C j � j
2 C 1: If �0 D 0 we argue similarly as in Lemma 3.2.

We now consider the case t0 D 0. Fix any point .x0; �0/ 2 G0. Using (12), we have that v�

converges to zero uniformly on any compact subset of G0 � Œ0;1/. Hence v�.x0; �0; 0/ D 0.
On the other hand, fix any point .x0; �0/ 2 G

c

0, and notice that v�.x0; �0; 0/ D
�� log.u0.x0; �0; 0// D �� log.0/ D C1. It then follows immediately from the definition of
lim sup that v�.x0; �0; 0/ D1. This concludes the proof.

3.3 The equality of v� and v�

As noted above, by construction, v� 6 v�. In addition, v� and v� are a super- and a sub-solution to
the same equation with the same initial conditions except on the small set @G0. In this section, we
show that v� D v�.
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Existence and uniqueness of I . We outline the argument developed in Crandall, Lions and
Souganidis [16] that yields that there exists a unique solution to (6) with initial condition (7).

For any open, convex, C 3 set U , let CU WD f� 2 C 0.R � Œ0;1// W �jU � 0g and denote
by S.t/� the solution to (6) with the initial data � 2 CU . The existence and uniqueness of S.t/�
are well-understood; see, [15]. In addition, arguments as in Section 3.1 give bounds on S.t/� in
R� Œ0;1/�RC. Let I.x; �; t/ WD sup�2CG0

S.t/�: Following [16], we observe that I is the unique
maximal solution of (6). We note that, due to the Neumann boundary conditions, this does not follow
directly from [16]. The extension is, however, straightforward.

The equality of v� and v�.

Proof of Proposition 1.3. First, we show that v� > I . To this end, fix any � 2 CG0 . Observe that
v�.�; �; 0/ > � on R � Œ0;1/. The standard comparison principle, along with Lemma 3.2, yields
v� > S.t/� on R � Œ0;1/ � RC. Since this is true for all �, we find I D sup�2CG0

S.t/� 6 v�:

Next, we show that v� 6 I . Fix ı > 0 and define Gı WD f.x; �/ 2 G0 W dist..x; �/; Gc0/ > ıg:

Let Iı D sup�2CGı
S.t/�. Fix any � > 0. By Lemma 3.1, we have that v�.�; �; �/ is finite on

R � Œ0;1/ and is zero on G0. Hence, there exists � 2 CGı such that v�.�; �; �/ 6 �. From the
comparison principle, it follows that, for all .x; �; t/ 2 R � Œ0;1/ � Œ0;1/,

v�.x; �; t C �/ 6
�
S.t/�

�
.x; �/ 6 sup

� 02CGı

�
S.t/�0

�
.x; �/ D Iı.x; �; t/:

Taking � to zero, we obtain v� 6 Iı on R� Œ0;1/�RC. Further, it is easy to see1 that, there exists
�ı , which tends to zero as ı does and depends only on G0 and ı, such that Iı.�; �; �ı/ 2 CG0 . We
conclude that

v�.x; �; t C �ı/ 6 Iı.x; �; t C �ı/ 6 I.x; �; t/

for all .x; �; t/ 2 R � Œ0;1/ � RC. Taking ı to zero, we conclude that v� 6 I , as desired.
Hence we have that v� 6 v� 6 I 6 v�, which implies that all three functions must be equal. In

particular, we have that v� converges locally uniformly to I , finishing the proof.

4. The relationship between I , J , and w – Propositions 1.5 and 1.6

We now characterize the location of the front in a more tractable manner; that is we prove
Propositions 1.5 and 1.6. We do not follow the approach of [18, 19], in which the author shows
directly that I D maxfJ; 0g by developing a theory for and checking a condition on the minimizing
paths of J . As this condition is difficult to verify, we, instead, opt for a PDE proof based on the
work in [26] using w in an intermediate step. We note that, since the Hamiltonian associated to (6),
H.x; �; px ; p� / WD D.�/jpxj

2 C jp� j
2 C 1, is not homogeneous, that is, it depends on � , the

arguments from [26] do not directly apply. We outline our proof below, and make note of the
differences with [26].

In order to prove Propositions 1.5 and 1.6, we show equivalence of the various level and super-
level sets involved and then we apply Theorem 1.4. The inclusion fJ > 0g � fI > 0g � fw D 1g

1 This is intuitively clear and can be observed in many ways. In the current manuscript, the quickest is, perhaps, using the
inclusion fIı > 0g � fwı D 1g seen in Section 4.3, where wı satisfies (8) with G0 replaced by Gı . A straightforward
computation using (31) yields �ı such that wı.�; �; �ı/jG0 � 0, from which the claim follows.
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follows from the maximum principle, as in [26]. To close this chain of inclusions, we require fw D
1g � fJ > 0g. This is accomplished in [26] via the Hopf–Lax formula; however, this only applies
when the Hamiltonian is independent of .x; �; t/ and so is not useful here. We get around this by
using the fact that w is given as the solution to a variational problem similar to the one defining J .
We can then compare these two functions directly.

In order to follow this outline, we first show the following two key facts: that J is a sub-solution
of (6) and that w can be represented by a variational problem.

4.1 The equation for J

We first show that J solves(
Jt CD.�/jJxj

2 C jJ� j
2 C 1 D 0 in R � RC � RC;

minf�J� ; Jt C jJ� j2 C 1g 6 0 on R � f0g � RC;
(30)

from which it follows that J is a sub-solution of (6). The main difficulty is verifying the boundary
condition. We note that J actually satisfies the Neumann boundary condition in � , but this is not
necessary for our purposes so we do not show it.

Proof of (30). In Appendix A, we discuss how the classical arguments may be easily adapted to
show that J solves (30) on R�RC�RC. The main point is that optimal trajectories in the definition
of J exist and remain bounded away from the set R�f0g, see Appendix A. As such, one may show
that the dynamic programming principle is verified and argue as usual.

Next, we show that min
˚
�J� ; Jt C jJ� j

2 C 1
	

6 0 on R � f0g � RC. For any test function
', assume that J � ' has a strict maximum at .x0; 0; t0/ 2 R � f0g � RC in a ball2 Br .x0; 0; t0/.
Without loss of generality, assume that .J � �/.x0; 0; t0/ D 0 and r < t0. If �'� .x0; 0; t0/ 6 0

then we are finished. Hence, we may assume that '� .x0; 0; t0/ < 0.
Fix any smooth function  W Œ0;1/ ! R such that  .0/ D 0,  .1/ D �1, and  .2/ D 0,

which is strictly increasing on Œ0; 1=2�[ Œ1;1/ and strictly decreasing on Œ1=2; 1�. For any �; ı > 0,
let

'ı;�.x; �; t/ WD '.x; �; t/C � .�=ı/:

If ı > .2r/�1, observe that 'ı;�.x; �; t/ > '.x; �; t/ > J.x; �; t/ for all .x; �; t/ 2 Br .x0; 0; t0/,
with equality only at .x0; 0; t0/. Define

ı� WD inf
˚
ı > 0 W if ı0 > ı then 'ı0;� > J on Br .x0; 0; t0/ n f.x0; 0; t0/g

	
:

Then there exists .x�; ��; t�/ 2 Br .x0; 0; t0/nf.x0; 0; t0/g such that 'ı� ;�.x�; ��; t�/ D J.x�; ��; t�/.
First, we claim that ��=ı� 2 Œ1=2; 1�. Since � > J on Br .x0; 0; t0/ n f.x0; 0; t0g and  .�/ > 0

for � 2 .0; 1=2/ [ Œ2;1/ it cannot be that ��=ı� 2 .0; 1=2/ [ Œ2;1/. We now show that
��=ı� … .1; 2/. We argue by contradiction, supposing that ��=ı� 2 .1; 2/. Let �r WD ��=ı� . By
the construction of  there exists �l < �r such that  .�l / D  .�r /. Let ı WD ı��r=�l . Notice that

2 Here, we define a ball as follows: for any .x; �; t/ 2 R � Œ0;1/ � Œ0;1/, let BR.x; �; t/ WD f.y; �; s/ 2
R� Œ0;1/� Œ0;1/ W jx � yj2C j� � �j2C jt � sj2 < R2g. In particular, we include only those points in the ambient
space R� Œ0;1/� Œ0;1/.
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ı > ı� , which implies that 'ı;� > J in Br .x0; 0; t0/ n f.x0; 0; t0/g by the definition of ı� . Notice
also that ��=ı D �l , which implies that  .��=ı/ D  .�l / D  .�r / D  .��=ı�/. Thus, we find

J.x�; ��; t�/ < 'ı;�.x�; ��; t�/ D '.x�; ��; t�/C � .��=ı/

D '.x�; ��; t�/C � .��=ı�/ D  ı� ;�.x�; ��; t�/ D J.x�; ��; t�/;

which is a contradiction. Hence, ��=ı� 2 Œ1=2; 1�, and, in particular,  � .��=ı�/ 6 0.
Second we claim that .x�; ��; t�/ converges to .x0; 0; t0/ as � tends to zero. Fix any sequence �k

tending to zero as k tends to zero and extract a convergent sub-sequence, which we denote the same
way, such that that ı�k converges to some ı0 2 Œ0; .2r/�1� and .x�k ; ��k ; t�k / converges to some
.x00; �

0
0; t
0
0/ 2 Br .x0; 0; t0/ as k tends to infinity. By continuity, we observe that

J.x00; �
0
0; t
0
0/ D lim

k!1
J.x�k ; ��k ; t�k / D lim

k!1
'ı�k ;�k .x�k ; ��k ; t�k / D '.x

0
0; �
0
0; t
0
0/:

It follows that .x00; �
0
0; t
0
0/ D .x0; 0; t0/ because J � ' is negative in Br .x0; 0; t0/ n f.x0; 0; t0/g.

Since every sequence has a sub-sequence such that .x�k ; ��k ; t�k / converges to .x0; 0; t0/ as k tends
to infinity, we conclude that .x�; ��; t�/ converges to .x0; 0; t0/ as � tends to 0.

We now verify (30) on R�f0g�RC. Fix � sufficiently small such that .x�; ��; t�/ 2 Br .x0; 0; t0/.
Notice that �� > ı�=2 > 0, t� > t0 � r > 0, which implies that .x�; ��; t�/ 2 R � RC � RC. Also,
notice that .x�; ��; t�/ is the location of a local maximum of J � 'ı� ;� . Hence, recalling that J
solves (30) in R � RC � RC, at .x�; ��; t�/,

0 > .'ı� ;�/t CDj.'ı� ;�/xj
2
C j.'ı� ;�/� j

2
C 1 D 't CDj'xj

2
C

ˇ̌̌
'� C

�

ı
 �

ˇ̌̌2
C 1:

Because .x�; ��; t�/ converges to .x0; 0; t0/ as � tends to zero, D.0/ D 0, and ' is smooth, we have

't .x0; 0; t0/C j'� .x0; 0; t0/j
2
C
2�

ı�
'� .x�; ��; t�/ � .��=ı�/C

�2

ı2�
j � .��=ı�/j

2
C 1 6 o.1/:

Recall that '� .x0; 0; t0/ < 0 by assumption. Hence, '� .x�; ��; t�/ < 0 for � sufficiently small.
Using this and the fact that that  � .��=ı�/ 6 0, we take � to zero to find that,

't .x0; 0; t0/C j'� .x0; 0; t0/j
2
C 1 6 0:

This concludes the proof.

4.2 A representation formula for w

Recall thatw satisfies (8) and (9). Following work of Lions [25], we define, for any .x; �/ 2 R�RC

and p D .px ; p� / 2 R2, N.x; �; p/ WD 1
2

q
p2x=D.�/C p

2
�
: Then let

d
�
.x; �/; .y; �/

�
WD inf

Ax;�;f.y;�/g;1

ˆ 1

0

N.
; P
/ds:

Without the boundary, it follows from [25, Section 3.4] that

w.x; �; t/ D inf
n
w.y; �; 0/ W d

�
.x; �/; .y; �/

�
6 t

o
D

(
0; if d

�
.x; �/; G0

�
6 t;

1; otherwise.
(31)

The modifications in our setting are straightforward, with the main difficulties handled similarly as
in our treatment of J . As such, we omit it.
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4.3 The proofs of Proposition 1.5 and Proposition 1.6

Proof of Proposition 1.5 and Proposition 1.6. First, we claim that fI > 0g � fw D 1g. To begin,
we note that w is a super-solution of (6) because

2

q
D.�/p2x C p

2
�

6 D.�/p2x C p
2
� C 1:

Following [26], we let I WD tanh.I / and observe that I and w satisfy the same initial data. The
maximum principle implies that I 6 w, which, in turn, gives fI > 0g � fw > 0g D fw D 1g.
Since tanh is increasing, we have that fI > 0g D fI > 0g, and thus fI > 0g � fw D 1g.

We note that J is a sub-solution of (6) satisfying the same initial conditions as I . It follows that
J 6 I . This implies that fJ > 0g � fI > 0g.

Now we show that fw D 1g � fJ > 0g. We remark that it is known that this inclusion is not
true in general for propagation problems, see the appendix of [26]. Fix .x; �; t/ 2 R�RC�RC such
that w.x; �; t/ D 1. It follows that d..x; �/; G0/ > t . Suppose that, for the sake of contradiction,
J.x; �; t/ 6 0. Let 
 2 Ax;�;G0;1 be any minimizing trajectory in the formula for J . Using the
Cauchy-Schwarz inequality and the fact that J.x; �; t/ 6 0, we find

p
t >

p
J.x; �; t/C t D

�ˆ t

0

�
P
21

4D.
2/
C
P
22
4

�
ds

�1=2
>
�ˆ t

0

N.
; P
/ds

�
=

�ˆ t

0

ds

�1=2
:

It follows that
´ t
0
N.
; P
/ds 6 t . Define the re-scaled trajectory Q
 W Œ0; 1� ! R � RC by Q
.s/ D


.st/. Then Q
 2 Ax;�;G0;1. Using the definition of d and then changing variables¸ yields

d..x; �/; G0/ 6
ˆ 1

0

N. Q
; PQ
/ds D

ˆ t

0

N.
; P
/ds 6 t:

By hypothesis, d..x; �/; G0/ > t , which is in contradiction to the inequality above. It follows that
J.x; �; t/ > 0, and, thus, that fw > 0g � fJ > 0g.

Combining all inclusions above, we have that fJ > 0g D fI > 0g D fw D 1g. From
Theorem 1.4, this yields the convergence of u� to 0 in fw D 1g and fJ > 0g in Proposition 1.5 and
Proposition 1.6, respectively.

Taking the complements of these sets and recalling that I > 0, we see that fJ 6 0g D fI D

0g D fw D 0g. In view of Theorem 1.4, we have that u� converges to 1 on Intfw D 0g and
IntfJ 6 0g. This completes the proof of Proposition 1.5.

To complete the proof of Proposition 1.6, we must show that fJ < 0g D IntfJ 6 0g. To this end,
notice that fJ < 0g is open, due to the continuity of J . This implies that fJ < 0g � IntfJ 6 0g.
On the other hand, fix any .x; �; t/ 2 IntfJ 6 0g and suppose for the sake of contradiction that
J.x; �; t/ D 0. There exists r > 0 such that Br .x; �; t/ � IntfJ 6 0g. It follows that J has
a maximum at .x; �; t/ in Br .x; �; t/, which implies, by using the constant function 0 as a test
function, that 0CD � 02C 02C 1 6 0: This is a contradiction. Hence, J.x; �; t/ < 0 and we obtain
IntfJ 6 0g � fJ < 0g. We conclude that fJ < 0g D IntfJ 6 0g. The proof of Proposition 1.6 is
now complete.
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Appendices

A. Brief comments about J and w as a solutions of (30), (8)

Due to the degeneracy of (30) at � D 0 and the loss of coercivity of the quadratic form in the
equation as � tends to1, (30) falls outside the classical theory of Hamilton–Jacobi equations. In
view of this, we include here some remarks that are meant to convince the reader that J and w have
the usual properties, that is they satisfy the dynamic programming principle, solve respectively (30)
and (8) in R�RC �RC, and their extremal paths are given by the Euler-Lagrange equations. Since
the arguments are similar, in the remainder of the appendix we only discuss J . The main observation
that we establish here is that extremal paths are bounded away from1 and 0.

Lemma A.1 Suppose that Assumption 1.1 and Assumption 1.2 hold, and fix .x; �; t/ 2 R � RC �
RC. Let 
 2 H 1..0; t/IR � RC/ be a trajectory such that

ˆ t

0

�
P
1.s/

2

4D.
2.s//
C
P
2.s/

2

4
� 1

�
ds 6 J.x; �; t/C t

There exists Cx;�;t , depending only on .x; �; t/ and D, such that, for all s 2 Œ0; t �, 
2.s/ 6 Cx;�;t .

Proof. We proceed in two steps. First, by comparing with Q
 , the trajectory that connects .x; �/ and
any point of G0 linearly, we find Cx;�;G0 depending only on x,� , and G0, such that J.x; �; t/C t 6
Cx;�;G0 t

�1.
Secondly, we use obtain a bound on 
2. Indeed, for any s 2 .0; t/, we obtain


2.s/ � � D

ˆ s

0

P
2.r/dr 6 2
p
s

sˆ s

0

P
2.r/2

4
dr 6 2

p
t
p
J.x; �; t/C t 6 2

p
Cx;�;G0 :

This concludes the proof.

It follows that, for any approximately extremal trajectory 
 , 
2 is bounded. As a result,D.
2/ is
bounded from above and the quadratic form in the integrand of J is uniformly coercive. Hence any
approximately extremal trajectory will be bounded in H 1..0; t/IR � RC/. Using compactness we
obtain an extremal trajectory, 
 ; however, we cannot rule out the existence of times s 2 .0; t/ such
that 
2.s/ D 0. We summarize the above observations in the following identity: let Ax;�;G0;t WD

f
 2 H 1..0; t/IR � Œ0;1// W 
.0/ D .x; �/; 
.t/ 2 G0g, then

J.x; �; t/ D min
Ax;�;G0;t

ˆ t

0

�
P
1.s/

2

4D.
2.s//
C
P
2.s/

2

4
� 1

�
ds: (A1)

The difference between (10) and (A1) is that, in the latter, we allow trajectories to hit the boundary
R � f0g. The goal of the next lemma is to rule this out.

Lemma A.2 Suppose that Assumption 1.1 and Assumption 1.2 hold. Fix .x; �; t/ 2 G
c

0 � RC and
let 
 2 H 1..0; t/IR � Œ0;1// be a trajectory such that

J.x; �; t/ D

ˆ t

0

�
P
1.s/

2

4D.
2.s//
C
P
2.s/

2

4
� 1

�
ds:

(i) For any ˛ 2 R, any non-empty maximal connected component of f
2 < ˛g includes either 0
or t as an endpoint. In particular, 
2 cannot have a strict local minimum.
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(ii) There does not exist an non-empty interval Œs; s� � Œ0; t � on which 
 is constant.
(iii) Fix any s0 2 Œ0; t �. Then, for all s 2 .0; s0/, 
2.s/ > minf
2.s0/; �g.

Proof of (i). We proceed by contradiction, assuming that there exists s1; s2 2 .0; t/ with s1 <
s2, 
2.s1/ D 
2.s2/ D ˛, and .s1; s2/ � f
2 < ˛g. We define a new trajectory Q
.s/ D

.s/1Œ0;s1�[Œs2;t� C .
1.s/; ˛/1.s1;s2/. It is clear that Q
 2 Ax;�;G0;t . By the monotonicity of D,
we see that D.
2.s// 6 D. Q
2.s// for all s 2 Œ0; t �. Thus, from (A1)

J.x; �; t/ 6
ˆ t

0

"
PQ
21

4D. Q
2/
C

PQ
22
4
� 1

#
ds

D

ˆ
Œ0;s1�[Œs2;t�

�
P
21

4D.
2/
C
P
22
4

�
ds C

ˆ s2

s1

P
1.s/
2

4D.˛/
ds C t

<

ˆ
Œ0;s1�[Œs2;t�

�
P
21

4D.
2/
C
P
22
4

�
ds C

ˆ s2

s1

�
P
21

4D.˛/
C
P
22
4

�
ds C t D J.x; �; t/:

The strict inequality comes from the fact that 
2.s/ < ˛ for all s 2 .s1; s2/ and 
2.s1/ D 
2.s2/ D
˛. This is a contradiction, concluding the proof of claim (i).

Proof of (ii). We proceed by contradiction. Suppose that 
 is constant on Œs; s� for 0 6 s < s 6 t .
For the ease of notation, assume that s D t , but the general case is handled similarly. Define Q
.s/ D
.
1.ss=t//; 
2.ss=t//: We notice that Q
 2 Ax;�;G0;t . Thus, from (A1),

J.x; �; t/C t 6
ˆ t

0

"
PQ
21

4D. Q
2/
C

PQ
22
4

#
ds D

�s
t

�2 ˆ t

0

"
P
1.ss=t/

2

4D
�

2.ss=t/

� C P
2.ss=t/2
4

#
ds

D
s

t

ˆ s

0

"
P
1.s/

2

4D
�

2.s/

� C P
2.s/2
4

#
ds D

s

t

ˆ t

0

�
P
21

4D.
2/
C
P
22
4

�
ds

D
s

t

�
J.x; �; t/C t

�
:

By assumption, s < t . Hence, J.x; �; t/ C t D 0, which in turn implies that P
 � 0. This is a
contradiction because 
.0/ 2 G

c

0 and 
.t/ 2 G0. This concludes the proof of claim (ii).

Proof of (iii). We proceed by contradiction. Suppose that there exists s0 2 Œ0; t � and s1 2 .0; s0/
such that 
2.s1/ 6 minf
.s0/; �g. We assume that minf
.s0/; �g D 
.s0/, but the argument is
similar in the other case.

We first consider the case when 
2.s0/ > 0. If mins2Œ0;s0� 
2.s/ < 
2.s0/, fix any ˛ 2

.mins2Œ0;s0� 
2.s/; 
2.s0//. Applying part (i), we obtain a contradiction since f
2 < ˛g must have a
connected component contained in .0; s0/ which does not contain 0 as an endpoint.

It follows that 
2.s1/ D 
2.s0/ and that 
2.s/ > 
2.s0/ for all s 2 Œ0; s0�. If
maxŒ0;s1� 
2;maxŒs1;s0� 
2 > 
2.s0/, we can argue exactly as above, with the choice ˛ 2

.
2.s0/;minfmaxŒ0;s1� 
2;maxŒs1;s0� 
2g/, to obtain a contradiction via part (i). Hence, we consider
only the case that 
2.s/ D 
2.s0/ for all s 2 Œs1; s0�, though the case 
2.s/ D 
2.s0/ for all
s 2 Œ0; s1� follows similarly. By part (ii), it must be that fs 2 .s1; s0/ W P
1.s/ ¤ 0g has positive
measure. Fix � > 0 to be determined, let T�.s/ D �..s2 � s1/ � j2s � .s2 C s1/j/, and define
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the trajectory Q
.s/ D 
.s/ C .0; T�.s//1Œs1;s1�.s/. It is clear that Q
 2 Ax;�;G0;t . Using first that
D.�/ D �p and a Taylor expansion and then that 
2 � 
2.s0/ in .s1; s0/, we find, from (A1),

J.x; �; t/C t 6
ˆ t

0

"
PQ
1.s/

2

4D
�
Q
2.s/

� C PQ
2.s/2
4

#
ds

D

ˆ s0

s1

"
P
1.s/

2
�
1 � p
2.s0/

p�1T�.s/CO.�
2/
�

4D
�

2.s0/

� C �2

#
ds

C

ˆ
Œ0;t�nŒs1;s0�

"
P
1.s/

2

4D
�

2.s/

� C P
2.s/2
4

#
ds

D �

ˆ s0

s1

"
P
1.s/

2
�
p
2.s0/

p�1T�.s/
�

4D
�

2.s0/

� CO.�2/

#
ds C J.x; �; t/C t:

Using the explicit form of T� and that fs 2 .0; s1/ W P
1.s/ ¤ 0g has positive measure, the first term
on the last line is negative when � is sufficiently small. The above then simplifies to J.x; �; t/ <
J.x; �; t/, which is a contradiction.

Under the assumption that 
2.s0/ > 0, we have examined all cases and obtained a contradiction
in each one. We conclude that, when 
2.s0/ > 0, the claim holds.

Suppose that 
2.s0/ D 0. By applying part (i) with ˛ tending to zero, we find 
2.s/ D 0 for
all s 2 Is1 , where Is1 is either Œ0; s1� or Œs1; t �. Since D.
2.s// D 0 for all s 2 Is1 , it follows
that P
2.s/ D 0 for all s 2 Is1 , otherwise J would be infinite. Thus, 
 is constant on Is1 , which
contradicts part (ii). This concludes the proof.

Since extremal trajectories remain bounded away from zero, they do not “see” the boundary.
Hence the standard theory of Hamilton–Jacobi equations applies showing that J solves (30) and
has all the expected properties.

B. The precise location of the front

What follows is a somewhat informal discussion of how to compute and prove the precise
asymptotics of the front location in (1) when the initial data has compact support. We first discuss
how to “guess” the asymptotics in terms of an abstract representation formula using the limiting
equation (6). Second, we outline the main modifications to the work in [11] in order to prove this
abstract guess. Finally, we compute an explicit value for this guess from the abstract formula. The
work below is not rigorous, but it is a simple exercise to turn this discussion into a proof.

Connecting the front location with the Hamilton–Jacobi equation. We make precise what we
mean by “front” in this context. For a solution u of (1), we refer to the region where x > 0 and
max� u.x; �; t/ transitions from 1 to 0 as the front, see Figure 2. As we shall see, up to lower order
terms, it is enough to fix any m 2 .0; 1/ and track the level set of u of height m; that is we may
define the front as maxfx W 9� > 0; u.x; �; t/ D mg, cf. [11, Section 1].

We discuss, heuristically, that the front location corresponds to the location of the boundary of
the zero level set of I when G0 D f.0; 0/g. We do this by noting of fJ D 0g D @fI D 0g (see
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Section 4), and using J for all computations. Due to the fact that the assumptionG0 D f.0; 0/g falls
outside the scope of this paper (cf. Assumption 1.2), all discussion in this subsection is not rigorous;
however, we discuss below how to make it rigorous (see the next subsection).

Roughly, to see the connection between the solution u of (1) with the function J of (10) we
proceed as follows. Fix t > 0 and let �t D t�1. For any .x; �; s/ 2 R � RC � Œ0;1/, define

u�t .x; �; s/ D u

 
x
p
D.1=�t /

�t
;
�

�t
;
s

�t

!
and v�t D ��t logu�t :

From Proposition 1.6, we expect that, as t tends to infinity, and thus �t tends to zero,

u
�
xt
p
D.t/; � t; st

�
D u�t .x; �; s/!

(
1; if J.x; �; s/ < 0;
0; if J.x; �; s/ > 0;

(B1)

and that v�t converges to J , where J is given by (10) with the set G0 to be determined. Since
u.�; �; 0/ has compact support, it follows that u�t .�; �; 0/ tends to zero locally uniformly on f.0; 0/gc

and that u�t .0; 0; 0/ is positive. Heuristically, we then expect v�t .�; �; 0/ to converge to 0 on f.0; 0/g
and1 on f.0; 0/gc . This, in view of the convergence of v�t to J , suggests that, in the definition of
J (10), we should take G0 D f.0; 0/g.

Let
xf WD max

˚
x W 9� > 0; J.x; �; 1/ D 0

	
D max

˚
x W min

�
J.x; �; 1/ D 0

	
: (B2)

The second equality above is easy to check by hand. It is also easy to observe that jxj < xf implies
that max� J.x; �; 1/ D 1 and jxj > xf implies that max� J.x; �; 1/ < 0. Returning to (B1) and
setting s D 1, we expect that as t tends to1, if jxj > xf then u.xt

p
D.t/; � t; t/ converges to 0,

while if jxj < xf then u.xt
p
D.t/; � t; t/ converges to 1 for some � . This suggests that the front

location is given by

xf t
p
D.t/C o

�
t
p
D.t/

�
: (B3)

How to make this rigorous. There are two approaches that one may use to make (B3) rigorous.
The first is to develop the theory of “maximal solutions” to accommodate cases such as ours, where
G0 is not a smooth open set, but, instead, a one-point set. The second is to re-use the approach
of [11], in our context. For simplicity, we discuss the second approach now.

A slightly stronger assumption than Assumption 1.1 is that there exists a C 1 function F W RC !
RC and a real number p > 0 such that D.�/=F.�/ converges to 1 and �@� logF converges to p as
� tends to1. This is satisfied by the example (2), with the choice F.�/ D � log.� C 1/. Under this
hypothesis, the strategy from [11], may be repeated with the following minimal adaptation.

We first discuss the proof that the front location is bounded below by (B3). Let xf be as above
and define �f to be a point such that J.xf ; �f ; 1/ D min� J.xf ; �; 1/ D 0. The lower bound
in [11] is obtained by building a sub-solution along moving, growing ellipses. The major difficulty
in adapting this strategy in our context is identifying the correct trajectory for the ellipse to follow.
Let .X;�/ be the optimal trajectory in the definition of J (10) beginning at .X.0/;�.0// D .0; 0/

and ending at .X.1/;�.1// D .xf ; �f /. Instead of using the trajectories in [11, equation (4.9)], we
define, for any large time T > 0, and use the trajectory 
T .t/ D .XT .t/; �T .t// where .XT ; �T /
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satisfy

�T .t/ D T�.t=T /; and XT .t/ D

ˆ t

0

s
F
�
�T .s/

�
�.s=T /p

PX.s=T /ds:

From our assumptions, we see that F.�T / � D.�T / � �pD.T /, so that XT .T / � xf T
p
D.T /.

In the case considered in [11], F.�/ D � and the trajectories above are exactly those used in [11].
Once the trajectories have been determined, one may complete the proof of the lower bound

exactly as in [11] with all further modifications straightforward. The reason for the additional
assumptions on the regularity of F can be seen in the hypotheses of [11, Lemma 4.1]. This yields,
for all m 2 .0; 1/,

lim inf
t!1

max
˚
x 2 R W 9� > 0; u.x; �; t/ > m

	
t
p
D.t/

> xf :

On the other hand, an upper bound may be easily obtained using the Hamilton–Jacobi set-up (see,
for a similar argument, [12]). We note that the explicit upper bound in [11] cannot be used here
since it is a particularity of the case D.�/ D � . We conclude that, for all x > xf .

lim
t!1

sup
x>xt

p
D.t/;�>0

u.x; �; t/ D 0:

In particular, this implies that

lim
t!1

max
˚
x 2 R W 9� > 0; u.x; �; t/ D m

	
t
p
D.t/

D xf :

and we conclude that the front location is given by (B3), as claimed.

Computing xf using (B2) We now compute xf explicitly. We have the Hamiltonian system for
.X;�;P;Q/:

PX D 2PD; P� D 2Q; and PP D 0; PQ D �D
0
P 2; (B4)

with the boundary conditions .X.0/;�.0// D .0; 0/ and .X.1/;�.1// D .xf ; �f /. We see that
P D A=2 for some constant A depending on .xf ; �f /. Next, we differentiate the equation for � to
get that R� D 2 PQ D �A

2

2
D
0
.�/: Multiplying this by P� and integrating, we find

P�.s/2 D P�.0/2 � A2D
�
�.s/

�
: (B5)

Further, from (B4), we see that PX D AD.�/. Hence, we have that

0 D J.xf ; �f ; 1/ D

ˆ 1

0

 
PX2

4D.�/
C
P�2

4
� 1

!
ds

D

ˆ 1

0

 
A2D.�/

4
C
P�.0/2 � A2D.�/

4
� 1

!
ds;

which implies that P�.0/ D 2.
To compute A, we need the following key observation:
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Lemma B.1 Suppose that .X;�/ is the minimizing trajectory given above. Then P�.s/ > 0 for all
s 2 Œ0; 1/ and P�.1/ D 0.

Heuristically this is because any downward motion in� could be used instead to increase X for
the same “cost.” The details of the proof can be seen in [12]. From Lemma B.1 and (B5), we find
P�.s/.4 � A2D.�//�1=2 D 1: Using that D.�/ D �p and integrating, we see that

�.s/ D
1

�
F �1p .2�s/; (B6)

where � D 2�2=pA2=p and Fp.s/ D
´ s
0
.1 � rp/�1=2dr .

Using (B6) along with the condition P�.1/ D 0, we see that 0 D P�.1/2 D 4 �

A2��p.F �1p .2�//p . Re-arranging this and using the formula for �, this yields 1 D F �1p .2�/,
which can be re-written 2� D Fp.1/. To compute Fp.1/, we use the easy-to-establish identities

ˆ 1

0

rp
p
1 � rp

dr D
2

p

ˆ 1

0

p
1 � rp dr; (B7)

and ˆ 1

0

p
1 � rp dr D

1

p

ˆ 1

0

r
1
p�1
p
1 � r dr D

1

p
ˇ

�
1

p
;
3

2

�
; (B8)

where ˇ is the beta function, see [1, Section 6.2]. Using (B7) and (B8) yields

Fp.1/ D

ˆ 1

0

1 � rp C rp
p
1 � rp

dr D
p C 2

p

ˆ 1

0

p
1 � rp dr D

p C 2

p2
ˇ

�
1

p
;
3

2

�
: (B9)

Thus, we have a formula for �, which, in turn, yields a formula for A D 2�p=2.
Having computed A, we are now in a position to conclude. Indeed, PX D AD.�/ D

A
�p

�
F �1p .2�s/

�p
D

4
A

�
F �1p .2�s/

�p
: Using (B7) and (B8), we find

xf D X.1/ D
4

A

ˆ 1

0

F �1p .2�s/pds D
4

AFp.1/

ˆ 1

0

rp
p
1 � rp

dr D
4

AFp.1/

2

p2
ˇ

�
1

p
;
3

2

�
D
8

A

1

p C 2
:

The third equality comes from the change of variables r D F �1p .2�s/.
Plugging in for A, we have

xf D
8

2C p

1

A
D

8

2C p

 
21�p=2

p C 2

p2
ˇ

�
1

p
;
3

2

�!�1
: (B10)

We use the well-known identities ˇ.x; y/ D � .x/� .y/=� .x C y/, � .x C 1/ D x� .x/, and
� .1=2/ D

p
� (see [1, Section 6]), to simplify the expression involving ˇ. Indeed,

p C 2

p2
ˇ

�
1

p
;
3

2

�
D
p C 2

p2

�
�
3
2

�
�
�
1
p

�
�
�
3
2
C

1
p

� D p C 2

2p

�
�
1
2

�
�
�
1C 1

p

�
�
1
2
C

1
p

�
�
�
1
2
C

1
p

� D p� �
�
1C 1

p

�
�
�
1
2
C

1
p

� :
Combining this with (B10), yields the desired expression (11).
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