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Asymptotic stability of local Helfrich minimizers
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We show that local minimizers of the Canham–Helfrich energy are asymptotically stable with
respect to a model for relaxational fluid vesicle dynamics that we already studied in previous papers
([13, 14]). The proof is based on a Łojasiewicz–Simon inequality.
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Introduction

In [13, 14] we started the analysis of a basic model of fluid vesicle dynamics. In this model we
describe the evolution of biological vesicles by considering a homogeneous, Newtonian surface
fluid ([2, 23]) subject to suitable elastic stresses that is immersed in a homogeneous, Newtonian
bulk fluid. For a detailed introduction to the physics and mathematics of fluid vesicles we refer the
reader to [13, 14] and the references therein. There we showed that for most applications one can
safely neglect inertial forces and, hence, restrict the model to purely relaxational dynamics. In this
case the model takes the form

divS D 0 in ˝ n �t ;
divu D 0 in ˝ n �t ;

Div f T C ŒŒS���t D �Div eT on �t ;
Divu D 0 on �t ;

u D 0 on @˝;
�t jtD0 D �0:

(1)

Here, ˝ is a smooth bounded domain in R3 containing a closed moving vesicle �t , �t is the outer
unit normal on �t , and u is the velocity of the bulk fluid in ˝ n �t and the velocity of the vesicle
on �t ; this velocity field is assumed to be continuous across �t . Furthermore, S D 2�bDu � �I

is the Newtonian bulk stress tensor with the constant dynamic viscosity �b of the bulk fluid, the
symmetric part Du of the gradient of u, and the bulk pressure � , ŒŒS�� is the jump of the bulk stress
tensor across the membrane (subtracting the outer limit from the inner limit), Div is the surface
divergence (see below), and T D f T C eT is the surface stress tensor which is composed of a fluid
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part f T and an elastic part eT . In coordinates we have f T i˛ D
f QT

ˇ
˛ @

i
ˇ

with (see [2, 13, 14, 23])

f QT ˇ˛ D �q ı
ˇ
˛ C 2� .Du/

ˇ
˛ D �q ı

ˇ
˛ C �g

ˇ .v˛I C v I˛ � 2w k˛ /

and
hT i˛ D �

�
.H � C0/

2=2 @i˛ � .H � C0/ k
ˇ
˛ @

i
ˇ � .H � C0/;˛�

i
t

�
:

Here, q is the surface pressure acting as a Lagrange multiplier with respect to the constraint Divu D
0, � is the constant dynamic viscosity of the surface fluid, Du is the surface rate-of-strain tensor,
k, H , and K are the second fundamental form, twice the mean curvature, and the Gauss curvature
of �t , respectively, � is the bending rigidity, C0 is the spontaneous curvature, @˛ denotes the ˛-
th coordinate vector field, and the semicolon denotes covariant differentiation while the comma
indicates usual partial differentiation. Furthermore, on �t we decomposed the function u D v C

w �t into its tangential and its normal part. Throughout the paper, Latin indices refer to Cartesian
coordinates in R3 while Greek indices refer to arbitrary coordinates on �t . In particular, we note that
the surface stress tensors are instances of hybrid tensor fields ([2, 23]) taking a tangential direction
and returning a force density that is, in general, not tangential. The surface divergences for the
non-tangential vector field u and the hybrid tensor field T can be written as

Divu D g˛ˇ h@˛u; @ˇ ie;

.DivT /i D g˛ˇT i˛Iˇ ;

where g denotes the Riemannian metric on �t induced by the Euclidean metric e in R3, and
the semicolon denotes the corresponding covariant differentiation of the covectors .T i˛/˛D1;2 (for
fixed i ). We showed in [14] that

Divu D divg v � wH;

Div f T D� gradg q � q H�t C �
�
�gv C gradg.wH/CKv � 2 divg.w k/

�
C 2�

�
hr

gv; kig � w .H
2
� 2K/

�
�t

Div eT D� �
�
�gH CH.H

2=2 � 2K/C C0.2K �HC0=2/
�
�t :

(2)

Here, gradg , divg , rg , �g denote the differential operators (acting on tangential tensor fields)
corresponding to the metric g, and, with a slight abuse of notation, we write hrgv; kig for the
contraction of the tensor fields rgv and k using g.

At first sight, the basic structure of our system (1) might not be so clear. Note that Div eT can
be computed from �t alone. Hence, we have to solve the Stokes-type system defined by the left
hand side of (1) with �Div eT as a right hand side for the fluid velocity u. Then, the normal part
w of u on �t tells us how the vesicle will move in the next instant. Furthermore, it is easy to
conclude from (1)2;4 that area and the enclosed volume of each connected component � it of �t
are preserved under this evolution; see [14]. Hence, the phase space N of our system consists of
embedded surfaces � � ˝ with a fixed number k of connected components � i and with fixed
area and enclosed volume of each � i . Moreover, we showed in [14] that (1) can be formulated as a
gradient flow of the Canham–Helfrich energy (see [3, 9, 10])

F.� / D

Z
�

�

2
.H � C0/

2 dA
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with respect to a suitably defined Riemannian metric on N . This observation will be particularly
important for the present paper. For this reason we will repeat the details. For � 2 N , the tangent
space T�N can be identified with the space of scalar fields w on � such that the linearized
constraints Z

� i
w dA D 0 and

Z
� i
wH dA D 0 (3)

hold for all i D 1; : : : ; m. For w 2 T�N , consider the system

divS D 0 in ˝ n �;
divu D 0 in ˝ n �;

P�
�

Div f T C ŒŒS���
�
D 0 on �;

Divu D 0 on �;
u � � D w on �;
u D 0 on @˝:

(4)

Here, P� denotes the field of orthogonal projections onto the tangent spaces of � . Note that the
conditions (3) are necessary for the solvability of these equations, due to the incompressibility
constraints. For w1; w2 2 T�N , define the Riemannian metric on N associated with fluid vesicle
dynamics by

hw1; w2iV WD 2�b

Z
˝n�

hDu1;Du2ie dx C 2�

Z
�

hDu1;Du2ig dA; (5)

where u1; u2 solve the system (4) with data w1; w2. Note that the length of a curve in N endowed
with this metric is given by the energy dissipated during the corresponding forced deformation of
the membrane. The representation of�dF� with respect to the metric (5) is given by Œu�� ��, where
u solves (1) and where we use the notation Œu�� to emphasize that we are taking the trace of u on
� . Indeed, for all w 2 T�N and corresponding solutions Qu of (4) we have

hu � �;wiV D 2�b

Z
˝n�

hDu;D Quie dx C 2�

Z
�

hDu;D Quig dA

D �

Z
�

hŒŒS���; Quie dA �

Z
�

hDiv f T ; Quie dA D
Z
�

hDiv eT ; Quie dA

D �

Z
�

gradL2 F� w dA D �dF� .w/:

(6)

Here, S and f T denote the stress tensors with respect to u, and we used integration by parts for the
second identity (see [14]), (1)3 for the third identity, and (2)3 for fourth identity. We conclude that,
indeed, (1) is the gradient flow of the Canham–Helfrich energy onN endowed with the Riemannian
metric (5). In particular, the energy F is a strict Lyapunov functional, and, along the flow,

d

dt
F.�t / D dF�t .u � �/ D �hu � �; u � �iV D �2�b

Z
˝n�t

jDuj2e dx � 2�

Z
�t

jDuj2g dA:

In [14] we concluded from this identity that the equilibria of (1) must satisfy the well-known
Helfrich equation

gradL2 F� C ŒŒ���C q H D 0 (7)
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with the pressure jump and the surface pressure acting as Lagrange multipliers with respect to the
volume and area constraints.

We refer the reader to the introduction in [14] for an overview of what is known concerning
equilibrium configurations and dynamics of fluid vesicles from a physical point of view on the one
hand and from the point of view of a rigorous mathematical analysis on the other hand. We only
remark that in [14] we presented a thorough L2-analysis of the Stokes-type systems defined by
the left hand sides of (1) and (4) that takes into account geometric variations of the membrane,
while in [13] we proved a local well-posedness result for the dynamical system (1); both results
will turn out to be fundamental ingredients in the present article. Here, we will show that surfaces
that minimize the Canham–Helfrich energy locally are asymptotically stable, that is, solutions
starting near such a minimizer �0 exist for all times, remain nearby, and converge to a possibly
different minimizer. The limit will in general be different from �0 because the Canham–Helfrich
energy admits continuous symmetries, and the equilibria therefore constitute a finite-dimensional
manifold in phase space. In fact, these symmetries do not only include the rather trivial Euclidean
group but, in the case of vanishing spontaneous curvature and higher genus, also special conformal
transformations; see [24] and the references therein.1 For parabolic (that is, purely relaxational)
systems, stability usually follows in a more or less straightforward manner from the well-known
principle of linearized stability provided that the spectrum of the linearization is strictly negative;
see for instance [1, 17]. However, due to the symmetries mentioned above, in our case the kernel of
the linearization will be non-trivial; this is a typical situation in geometric problems. One can deal
with this difficulty by center manifold theory (which is technical; see for instance [7, 8, 11, 17])
or by the generalized principle of linearized stability (see [21, 22]). For the latter, however, one
needs to know quite a lot about the equilibria and the symmetry group; more precisely, one needs
to assure that the linearization’s kernel not only contains the tangent space to the manifold of
equilibria (which is always true) but actually coincides with it. Usually, this is shown by direct
computations. Proving this in our case is difficult for two reasons. Firstly, as mentioned above,
the symmetry group can be rather complicated, and secondly, almost all local minimizers have a
highly non-trivial configuration; in fact, while the round sphere is a solution of (7) for any choice
of C0, it is the only known solution of spherical topology for C0 D 0 which admits an analytical
expression. Fortunately, for gradient-type systems there exists a third method for proving stability,
the Łojasiewicz inequality ([15, 16]) and its infinite-dimensional analogue, the Łojasiewicz–Simon
inequality ([12, 25]). The coincidence of the tangent space to the manifold of equilibria and the
linearization’s kernel essentially says that transversely to the manifold of equilibria the energy grows
quadratically; this leads, in fact, to exponential convergence.2 However, as long as the energy grows
to some (uniformly bounded) power in transverse directions, one at least has algebraic convergence;
this essentially is the content of the Łojasiewicz inequality and its application to stability. In finite
dimensions an analytic energy always grows to some power in transverse directions since otherwise
it would be constant in this direction. Now, the essential step towards an application in infinite
dimensions is to note that all the critical directions are contained in the linearization’s kernel which
in applications usually is finite-dimensional. An abstract result following such a Lyapunov–Schmidt
type reduction which is sufficiently general for our purpose can be found in [5].

1 These symmetries can in fact be observed under the microscope where thermal excitation continuously drives the vesicle
along the manifold of equilibria; this phenomenon is called conformal diffusion.

2 It might be interesting to understand in general under what circumstances geometric energies grow quadratically in all
transverse directions.
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The present article is organized as follows. In Section 1 we prove a suitable Łojasiewicz–Simon
inequality for our system by applying results from [5]. In Section 2 we will combine this inequality
with the local well-posedness result from [13] and a quantitative form of parabolic regularization to
prove asymptotic stability. In the appendix we derive the second variation of the Canham–Helfrich
energy and the linearization of its L2-gradient.

Before we proceed, let us fix some notation. Throughout the article, let ˝ � R3 be a smooth
bounded domain. For a closed surface � � ˝ we write � for outer unit normal, � i , i D 1; : : : ; m,
for the connected components of � , ˝i for the open set enclosed by � i , and we define

˝0
WD ˝ n

� m[
iD1

� i [˝i
�
:

We denote by Œu�� the trace of the bulk field u on � ; however, when there is no danger of confusion
we will sometimes omit the brackets. Sometimes we use the notation u � v instead of hu; vie for
u; v 2 R3. We denote by r.a/ generic tensor fields that are polynomial or analytic functions of
their argument a. For tensor fields r1 and r2 we write r1 � r2 for any tensor field that depends in a
bilinear way on r1 and r2, and we use the abbreviations r � .r1; : : : ; rk/ D r � r1C : : :C r � rk and
rk D r � : : : � r (with k factors on the right hand side). For p 2 .1;1/, k 2 N, and s 2 RC n N
we denote by W k

p the usual Sobolev spaces and by W s
p the Sobolev-Slobodetskij spaces. For an

arbitrary smooth, d -dimensional Riemannian manifold .M; Qe/ the norm of the latter spaces is given
by

kT kW s
p .M/ D kT kW k

p .M/ C j.r
Qe/kT jW s�k

p .M/;

where k is the largest integer smaller than s and

ˇ̌
.r Qe/kT

ˇ̌p
W s�k
p .M/

WD

Z
M

Z
M

ˇ̌
.r Qe/kT .x/ � .r Qe/kT .y/

ˇ̌p
e

dQe.x; y/dC.s�k/p
dVQe.x/ dVQe.y/:

In this formula dQe is the Riemannian distance function while dVQe is the volume element
corresponding to Qe. Finally, we define H s WD W s

2 .

1. Łojasiewicz–Simon Inequality

Let M be the (formal) manifold of closed, embedded surfaces of class H 7=2 contained in ˝. We
introduce local coordinates near an arbitrary element ofM by approximating it by a smooth � 2M
(see, for instance, [21]) and writing nearby surfaces as graphs over � . Let us make this more precise.
We denote by S˛ , ˛ > 0, the open set of points in ˝ whose distance from � is less than ˛. It’s
a well-known fact from elementary differential geometry that there exists a maximal �� > 0 such
that the mapping

� W � � .��� ; �� /! S�� ; .x; d/ 7! x C d �.x/

is a diffeomorphism. For h 2 U D U.� / WD fh 2 H 7=2.� / j jhj < �� =2 on � g, let

'h W � ! R3; x 7! x C h.x/�.x/

and �h WD 'h.� / � R3. Then, the bijection

	 W U ! 	.V / �M; h 7! �h
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defines a local chart. We consider the Canham–Helfrich energy F as a function on U , that is, for
h 2 U , we let

QF .h/ WD .F ı 	/.h/ D
�

2

Z
�

.H.h/ � C0/
2
p
g.h/ dA:

Here and in the following, we denote by H.h/, g˛ˇ .h/, etc. the geometric quantities on �h pulled
back by 'h and

p
g.h/ WD

p
det.g˛ˇ .h//. Furthermore, for i D 1; : : : ; m we define � i

h
WD 'h.�

i /,

Ai .h/ WD

Z
� i
h

dAh; and Vi .h/ WD
1

3

Z
� i
h

x � �h dAh.x/;

where �h is the outer unit normal and dAh is the area element on �h. Note that, by the divergence
theorem, Vi .h/ is nothing but the volume of the set enclosed by � i

h
.

Lemma 1.1 Let X; Y be smooth tangent vector fields on � . Then, the following functions are
well-defined and analytic:

(i) U ! H 5=2.� / W h 7! g.h/.X; Y / and h 7!
p
g.h/,

(ii) U ! H 3=2.� / W h 7! k.h/.X; Y /, h 7! H.h/, and h 7! K.h/,
(iii) U ! R W h 7! Ai .h/, h 7! Vi .h/ (for i D 1; : : : ; m), and h 7! QF .h/,
(iv) U ! .H 1=2.� //0 W h 7! d QFh.

Proof. We proved in Appendix B in [14] that

g˛ˇ .h/ D r˛ˇ .h=�� ; hk;rh/;

g˛ˇ .h/ D r˛ˇ .h=�� ; hk;rh/;

k˛ˇ .h/ D r˛ˇ .h=�� ; hk;rh/ �
�
k;rh=�� ; hr

gk; .rg/2h
�
:

Since det.g˛ˇ .h// is uniformly positive andH s.� / is an algebra for s > 1, claim (i) follows. From
these considerations and H.h/ D g˛ˇ .h/ k˛ˇ .h/, K.h/ D det.k˛ˇ .h// we infer that claim (ii) is
true. Since the map

L1.� /! R; f 7!

Z
�

f dA

is linear and bounded, from (i) and (ii) we can deduce the first and the third claim in (iii).
Furthermore, by a straightforward computation one can check that the normal �h to �h is given
by

�h ı 'h D
� � grad Ng h

.1C j grad Ng hj2g/1=2
D r.hk;rh/ (8)

with the metric Ng˛ˇ D g˛ˇ � 2hk˛ˇ C h2k˛k


ˇ
. In view of

Vi .h/ D
1

3

Z
� i
h

x � �h dAh D
1

3

Z
� i
.y C h �/ � .�h ı 'h/

p
g.h/ dA.y/;

this proves the second claim in (iii). Finally, note that for w 2 H 7=2.� / we have

d	h.w/ D �h �
�
.w�/ ı '�1h

�
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and thus for sufficiently smooth h 2 U

d QFh.w/ D dF�hd	h.w/

D �

Z
�

 
�g.h/H.h/CH.h/

��
H.h/2=2 � 2K.h/

�
C C0

�
2K.h/ �H.h/C0=2

��!
.�h ı 'h/ � � w

p
g.h/ dA:

(9)

In view of (i), (ii), (8), and the fact thatH 3=2.� / is an algebra, we see that the summands in (9) not
involving the Laplacian give rise to an analytic map from U to H 3=2.� /. We proved in Appendix
B in [14] that

�g.h/H.h/ D r.h=�� ; hk;rh/ � .r
g/2H.h/

C r.h=�� ; hk;rh/ �
�
k;rh=�� ; hr

gk; .rg/2h
�
� r

gH.h/: (10)

Since
H 3=2.� / �H 1=2.� / ,! H 1=2.� /;

that is, pointwise multiplication is continuous in the indicated function spaces, the expressions in
(9) involving the second summand in (10) give rise to an analytic map from U toH 1=2.� /. Finally,
concerning the expressions involving the first summand in (10), we note that, on the one hand, since

H 5=2.� / � L2.� / ,! L2.� /;

the map
H 7=2.� /! B.H 2.� /; L2.� //; h 7! r.h=�� ; hk;rh/ � .r

g/2

is analytic. On the other hand, for scalar fields f integration by parts givesZ
�

r.h=�� ; hk;rh/ � .r
g/2f w dA

D

Z
�

r.h=�� ; hk;rh/ � rf � rw dA

C

Z
�

r.h=�� ; hk;rh/ �
�
k;rh=�� ; hr

gk; .rg/2h
�
� rf w dA;

proving that

H 7=2.� /! B
�
H 1.� /;

�
H 1.� /

�0�
; h 7! r.h=�� ; hk;rh/ � .r

g/2

is also analytic. Thus, by interpolation, this map is analytic from H 7=2.� / to
B.H 3=2.� /; .H 1=2.� //0/. This together with the second assertion in (ii) proves (iv).

REMARK 1.2 The preceding proof shows that for h 2 U the (formal) derivative of d	h defines
linear isomorphisms from H s.� / to H s.�h/ for all s 2 Œ0; 5=2� which are uniformly bounded in
both directions for h 2 U being uniformly bounded in H 7=2.� /.
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For A D .A1; : : : ; Ak/, and V D .V1; : : : ; Vk/ with Ai ; Vi > 0, let N D NA;V � M denote
the (formal) submanifold of closed, embedded surfaces of classH 7=2 contained in˝ which consist
of k connected components � i of fixed area Ai and fixed enclosed volume Vi . For fixed smooth
� 2 N , in a neighbourhood of � we can consider N as an analytic submanifold of U.� /. By
Lemma 1.1 (iii), the map

f W U ! R1 � : : : �Rk ; h 7!
�
f1.h/; : : : ; fk.h/

�
;

where fi .h/ D .Ai .h/; Vi .h//, Ri D R2 if � i is not a round sphere and fi .h/ D Ai .h/, Ri D R
else, is analytic, and its differential at h D 0 is surjective. Indeed, for w 2 H 7=2.� / we have

d.fi /hD0.w/ D

�Z
� i
wH dA;

Z
� i
w dA

�
if �i is not a round sphere, and else

d.fi /hD0.w/ D

Z
�i

w dAI

note that in the first case the functions 1 and H are linearly independent. Thus, by the implicit
function theorem (see [6], for instance), there exist a closed complement B of T�N WD ker dfhD0
in H 7=2.� /, bounded open neighbourhoods QU and OU of the origin in T�N and B , respectively,
and an analytic function  W QU ! OU such that .0/ D 0, d.0/ D 0, and˚

h 2 QU � OU jf .h/ D f .0/
	
D
˚
w C .w/ jw 2 QU

	
DW G:

Concatenating the map 1C W QU ! G, which is bianalytic, with the map 	 W U !M yields local
coordinates for N .

For � 2 N and s > 0 let

H s
n.� / WD

˚
w 2 H s.� / such that (3) holds

	
:

Furthermore, let L2;n.� / WD H 0
n .� /, Y� WD H

1=2
n .� /, and note that T�N D H

7=2
n .� /.

REMARK 1.3 For w0 2 QU , let us have a closer look at the map

d.1C /w0 W T�N ! T.1C/.w0/G;

which is a linear isomorphism. Let b1; : : : ; bn be a basis for B . From the definition of the functional
f it is not hard to see that there exist analytic maps gi W U ! H 3=2, i D 1; : : : ; n, such that

T.1C/.w0/G D ker df.1C/.w0/ D Zw0 \H
7=2.� /

for theL2-orthogonal complementZw0 D .spanfg1.w0/; : : : ; gn.w0/g/? � L2.� /. Thus, we have

d.1C /w0 W w 7! w C ai .w/ bi ;

where the real coefficients ai are determined by the linear system

ai .w/
�
bi ; gj .w0/

�
L2.� /

D �
�
w; gj .w0/

�
L2.� /
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for j D 1; : : : ; n. The matrix on the left hand side is invertible, all coefficients depend analytically
on w0, and the right hand side as a function in w is a continuous functional on L1.� /. In particular,
for all s > 0, d.1C / can be extended to an analytic map

d.1C / W QU ! B
�
H s.� /;H s.� /

�
;

and for all w0 2 QU
d.1C /w0 W H

s
n.� /! Zw0 \H

s.� /

is an isomorphism with uniformly bounded continuity constants. Furthermore, from Remark 1.2 we
infer that d	.1C/.w0/ W Zw0 \ H

s.� / ! H s
n.�.1C/.w0//, s 2 Œ0; 5=2�, defines isomorphisms

which are uniformly bounded in both directions for w0 2 QU .

Now we are ready to state one of the main results of this section.

Theorem 1.4 (Łojasiewicz–Simon inequality) Let �0 2 N be a smooth stationary point for F in
N , that is, dF�0 D 0. Then there exists a neighbourhood QU of �0 in N (in the above sense), a
constant c > 0, and a number � 2 .0; 1=2� such that

jF.� / � F.�0/j
1�� 6 ckdF� kY 0

�

for all � 2 QU .

In order to prove the theorem, we have to analyze the second variation of F in N .

Proposition 1.5 For smooth � 2 N the second variation d2F� W T�N ! Y 0� is a Fredholm
operator of index 0.3 In particular, we have

rg d2F� D .ker d2F� /? \ Y 0� : (11)

Proof. In the appendix we show that the second variation has the form

d2F� .w; Qw/ D �

Z
�

�
�gw�g Qw C Bw Qw

�
dA;

wherew; Qw 2 T�N andBw D .a˛ˇw;ˇ /I˛Cb w. The operatorB obviously maps T�N compactly
into Y 0� . Hence, it suffices to consider the biharmonic operator alone. By standard arguments based
onL2-theory for the Laplacian on � and Riesz’ representation theorem, for some � > 0 the operator
�2gC� W H

2
n .� /! .H 2

n .� //
0 is an isomorphism. From this and againL2-theory for the Laplacian,

we have that �2g C � W H
4
n .� / ! .L2;n.� //

0 is an isomorphism, too. Indeed, each element of
.L2;n.� //

0 is an element of .H 2
n .� //

0 and hence the image of some H 2
n .� / function. However,

.�2g C �/u 2 .L2;n.� //
0 means that .�2g C �/u 2 L2;n.� / modulo some linear combination of

the functions 1 and H on each connected component of � , thus, �2gu 2 L2.� /. Now, L2-theory
tells us that, in fact, u 2 H 4

n .� /, and hence, �2g C � W H
4
n .� /! .L2;n.� //

0 is surjective. On the
other hand, injectivity is obvious. Interpolating these results we obtain that�2gC� W T�N ! Y 0� is
an isomorphism. Thus, by Fredholm’s alternative, for K WD �.�2g C �/

�1 we have that id�K is a
Fredholm operator of index 0 on T�N . However, it is easy to see that ker.id�K/ D ker�2g � T�N

3 The condition of smoothness can be weakened of course. It is assumed here only for simplicity.
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and .�2g C �/.rg.id�K// D rg�2g � Y
0
� . Hence, �2g W TN� ! Y 0� is Fredholm of index 0, and,

thus, the same is true for d2F� .
Finally, the symmetry of d2F� implies that

rg d2F� � .ker d2F� /? \ Y 0� : (12)

But, by
ker d2F� \ .ker d2F� /? D f0g in Y 0�

and the vanishing Fredholm index, the inclusion in (12) must be an identity, that is, (11) holds.

Proof of Theorem 1.4. We consider F as a function on QU , that is, for w 2 QU , we let OF .w/ WD
QF .w C .w//. By Lemma 1.1 (iii), OF is analytic. Furthermore, for w0 2 QU and w1 2 T�N we

have
d OFw0.w1/ D d

QF.1C/.w0/d.1C /w0.w1/

D dF�.1C/.w0/d	.1C/.w0/d.1C /w0.w1/:
(13)

Thus, by Remark 1.3 it is sufficient to show that there exists a neighbourhood QU � T�0N of the
origin and a number � 2 .0; 1=2� such thatˇ̌

OF .w0/ � OF .0/
ˇ̌1�� 6 c kd OFw0kY 0�

for all w0 2 QU .
We want to apply Corollary 3.11 in [5] with X D V D T�N and Y D W D Y 0� . From the first

equality in (13), Remark 1.3, and Lemma 1.1 (iv), it follows that the map QU ! Y 0� ; w0 7! d QFw0 is
analytic. Moreover, since � is a stationary point for F in N and d.0/ D 0, for w0; w1 2 T�N we
have

d2 OFwD0.w0; w1/ D d
2F� .w0; w1/:

Thus, by Proposition 1.5, ker d2 OFwD0 is finite-dimensional and

rg d2 OFwD0 D .ker d2 OFwD0/? \ Y 0� : (14)

Let QP W Y� ! ker d2 OFwD0 be a continuous projection and consider its restriction P to T�N , that
is, the projection P W T�N ! ker d2 OFwD0 along kerP \ T�N . For w 2 T�N and y0 2 Y 0� we
have

hP 0y0; wiY� D hy
0; QPwiY� 6 ky0kY 0

�
k QPwkY� 6 c ky0kY 0

�
kwkY� ;

which, by denseness of T�N in Y� , proves that P 0 leaves Y 0� invariant. Since kerP 0 D .rgP /?,
equation (14) takes the form

rg d2 OFwD0 D kerP 0 \ Y 0� :

Hence, we checked all assumptions in Corollary 3.11 in [5]. This finishes the proof.

2. Asymptotic stability

For T > 0 we define I WD .0; T /. In [13] we proved the following theorem with the exception of
(15) which expresses parabolic regularization in a quantitative form.
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Theorem 2.1 Let � � ˝ be a smooth, closed surface that contains no round sphere. For all
p 2 .3;1/ n f4g and sufficiently small � > 0 there exists a time T > 0 such that for all height
functions h0 2 NB�.0/ � W

5�4=p
p .� / there exists a unique

h 2 W 1
p

�
I; W 2�1=p

p .� /
�
\ Lp

�
I; W 5�1=p

p .� /
�

with khkL1.I�� / 6 �� =2 as well as suitable hydrodynamic fields .u; �; q/ such that �t D �h.t/
and .u; �; q/ solve (1) in the time interval I with initial value �h0 . The map

NB� � W
5�4=p
p .� /! W 1

p

�
I; W 2�1=p

p .� /
�
\ Lp

�
I; W 5�1=p

p .� /
�
; h0 7! h

is Lipschitz continuous. Furthermore, for sufficiently small ı > 0 and all t 0 2 .0; T / there exists a
constant c > 0 such that

khk
C.Œt 0;T �;W

5�4=pCı
p .� //

6 c: (15)

For details concerning the hydrodynamic fields see [13]; alternatively, these can be constructed
(in the L2-scale) by applying Theorem 3.6 or Theorem 3.7 from [14].

If � consists only of round spheres, then (1) is uniquely solved by the constant-in-time solution
with �t D � , u D 0, and suitably chosen pressure functions; global well-posedness is trivial in
this case. So far, we cannot prove the well-posedness of our system in the case that � contains both
round spheres and non-spheres. The reason for this lies in the different degrees of gauge freedom
of the pressure functions for round spheres on the one hand and non-spheres on the other hand; see
[13].

Proof. In order to show (15) we have to repeat parts the proof of Theorem 3.1 in [13] in a time-
weighted setting. We will only briefly sketch the procedure. Without further explanation we will use
the notation from [13]. Let p 2 Œ2;1/ and � 2 .1=p; 1/ such that

2C 3� � 4=p 2 .2 � 1=p; 5 � 4=p/

is not a natural number.
First, we prove that the linearization

�b�u � grad� D f1 in ˝ n �;
divu D f2 in ˝ n �;

�
�
�gv C gradg.wH/CK v � 2 divg.w k/

�
� gradg q C P� ŒŒS��� D f

>
3 on �;

2�
�
hr

gv; kig � w .H
2
� 2K/

�
� q H C ŒŒS��� � � � Ah D f ?3 on �;

divg v � wH D f4 on �;
u � v � w � D f5 on �;

@th � w D f6 on �

(16)

admits a unique solution .u; v; w; �; q; h/ with

t1��u 2 Lp
�
I;W 2

p .˝ n �; R3/ \W 1
p .˝;R3/

�
; t1��v 2 Lp

�
I;W 2

p .�; T� /
�
;

t1��w 2 Lp
�
I;W

2�1=p
p .� /

�
; t1��� 2 Lp

�
I;W 1

p .˝ n � /
�
; t1��q 2 Lp

�
I;W 1

p .� /
�
;

t1��h 2 Lp
�
I;W

5�1=p
p .� /

�
; t1��@th 2 Lp

�
I;W

2�1=p
p .� /

�
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and
R
˝
� dx D 0 provided that the data .f1; : : : ; f6; h0/ satisfy

t1��f1 2 Lp
�
I; Lp.˝ n �;R3/

�
; t1��f2 2 Lp

�
I;W 1

p .˝ n � /
�
;

t1��f >3 2 Lp
�
I; Lp.�; T� /

�
; t1��f ?3 2 Lp

�
I;W

1�1=p
p .� /

�
;

t1��f4 2 Lp
�
I;W 1

p .� /
�
; t1��f5; t

1��f6 2 Lp
�
I;W

2�1=p
p .�;R3/

�
;

h0 2 W
2C3��4=p
p .� /

with
R
˝
f2 dx D 0. To this end, we eliminate h0 by choosing an extension Qh such that t1�� Qh 2

Lp.I;W
5�1=p
p .� // and t1��@t Qh 2 Lp.I;W

2�1=p
p .� //; see Proposition 3.1 in [20]. Next, we

eliminate .f1; : : : ; f5/ by solving the stationary system

�b�u � grad� D f1 in ˝ n �;
divu D f2 in ˝ n �;

�
�
�gv C gradg.wH/CK v � 2 divg.w k/

�
� gradg q C P� ŒŒS��� D f

>
3 on �;

2�
�
hr

gv; kig � w .H
2
� 2K/

�
� q H C ŒŒS��� � � D f ?3 on �;

divg v � wH D f4 on �;
u � v � w � D f5 on �

(17)

for almost all t 2 I . In the proof of Theorem 3.2 in [13] we showed unique Lp-solvability of the
principal linearization of this system in the double half-space; combining this result with standard
localization and transformation techniques as well as the L2-theory proved in [14], we easily obtain
unique Lp-solvability for (17). Thus, it is sufficient to solve (16) for h with all data vanishing except
for f6. We can write this system in the form

@thC Lh D f6; h.0/ D 0: (18)

Here, L W D.L/ ! X with X D W
2�1=p
p .� / and D.L/ D W

5�1=p
p .� / is the linear operator

that maps h 2 D.L/ to w D Œu�� � � 2 X , where u solves (17) with f ?3 D Ah and all other
data vanishing. This operator is closed as can be seen from the Lp-theory for (17) and for the
Laplacian on � . Furthermore, we proved in [14] that for f6 2 Lp.I; X/ equation (18) admits a
unique solution h 2 Lp.I;D.L// with @th 2 Lp.I; X/. From this, however, using a summation
argument one easily deduces that the same assertion holds with I D .0;1/ if we replace L by
LC � for a sufficiently large � > 0. Now, from Theorem 2.4 in [20] we finally obtain the existence
of a unique solution h of (18) such that t1��h 2 Lp.I;D.L// and t1��@th 2 Lp.I; X/ provided
that t1��f6 2 Lp.I; X/.

Next, we have to repeat the contraction mapping argument from Section 4 in [13] in a time-
weighted setting. Essentially, throughout the proof we simply replace the spaces Ep.T /, Gp.T /,
and Fp.T / by the corresponding time-weighted spaces, which we denote by Ep;�.T /, etc., and
correspondingly the time-trace space W 5�4=p

p .� / by W 2C3��4=p
p .� /. However, we have to prove

that for p > 3 and � > 3=p the statement analogous to Lemma 4.1 in [13] holds. The analogue
of assertion (i) in Lemma 4.1 follows from Proposition 3.1 in [20] and the existence of a bounded
extension operator Ep;�.T / ! Ep;�.1/; the latter can be constructed quite simply via reflection.
The analogue of assertion (ii) in Lemma 4.1 follows from Theorem 4.2 in [18]. Furthermore, noting
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that for � > 1=p C 2=3 we have W �1C3��4=pp .� / ,! W
1�1=p
p .� /, the assertion analogous to

Lemma 4.2 in [13] can be shown. Now, we can follow the proof of Theorem 1.1 in [13] line by line
to see that the first part of Theorem 2.1 holds with W 5�4=p

p .� / replaced by W 2C3��4=p
p .� / and

W 1
p .I; W

2�1=p
p .� // \ Lp.I; W

5�1=p
p .� // replaced by the corresponding time-weighted space.

Finally, let us fix a p 2 .3;1/ n f4g. We choose Qp 2 .p;1/ and � 2 .1= Qp; 1/ such that the
well-posedness result we just proved holds and such that the spatial regularities of the time-trace
spaces of Ep.T / and E Qp;�.T / coincide, that is, 2C 3� � 4= Qp D 5 � 4=p. Thus, we can apply the
well-posedness theorem in the time-weighted setting to all h0 2 NB� � W

5�4=p
p .� / for sufficiently

small � and obtain a solution h 2 Ep.T / such that

khkE Qp;�.T / 6 c

for some constant c > 0. However, for all t 0 2 .0; T / the space E Qp;�.T / obviously embeds into
C.Œt 0; T �;W

5�4= Qp

Qp
.� //; this proves (15).

Now, we can prove the asymptotic stability of local Helfrich minimizers.

Theorem 2.2 Let � 2 N be a smooth local minimizer for F in N that contains no round sphere,
and let QU � T�N be the set from Theorem 1.4. For all � > 0 there exists an � > 0 such that for all

h0 2
�
NB�.0/ \ .1C /. QU/

�
� W 5�4=p

p .� /

the corresponding solution h from Theorem 2.1 exists for all times and satisfies kh.t/k
W
5�4=p
p .� /

6
� as well as

kh.t/ � h1kW 5�4=p
p .� /

6 c t�ˇ (19)

for all t > 0, constants c; ˇ > 0, and some h1 2 .1C /. QU/ with F.�h1/ D F.� /.

Proof. The proof proceeds in two steps. First, we use Theorem 1.4 to show that if our solution exists
for all times then its energy will converge to the local minimum and it will satisfy an arbitrarily small
bound in a low norm. Then, combining these insights and parabolic regularization in a bootstrap
argument we can prove that the solution will indeed exist for all times and converge in phase space.

By the Lipschitz continuity of the solution map from Theorem 2.1, we can choose � so small
that for all h0 as in the assertion of the present theorem the corresponding solution h satisfies
kh.t/k

W
5�4=p
p .� /

6 � for all t 2 NI . Let �t WD �h.t/. Let us fix an instant t 2 I and consider
the space

X�t WD
˚
u 2 H 1

0 .˝IR
3/ j divu D 0 in ˝ n �t ; Divu D 0 on �t ; P�t Œu��t 2 H

1.�t IT�t /
	

endowed with the canonical scalar product and with the bilinear form

B�t .u; '/ D 2�b

Z
˝n�t

hDu;D'ie dx C 2�

Z
�t

hDu;D'ig dA:

We saw in the proof of Theorem 3.11 in [14] that B�t defines a uniformly equivalent scalar product
on X�t for h.t/ being uniformly bounded in W 5�4=p

p .� / with kh.t/kL1.� / 6 �� =2. Also recall
from [14] that the weak solution u 2 X�t of (1) is characterized by the equation B�t .u; '/ D
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�dF�t .Œ'��t � �t / for all ' 2 X�t ; cf. (6). Thus, we have

�
d

dt

�
F.�t / � F.� /

�
D �dF�t

�
Œu��t � �t

�
D B�t .u; u/

D kdF�t k
2
B0
�t

>
1

c
kdF�t k

2
X 0
�t

>
1

c
kdF�t k

2
Y 0
�t

(20)

for some uniform constant c > 0. Here, the third identity reflects the fact that Riesz’ isomorphism
is an isometry, for the first estimate we employed the inequality k � kB�t 6 ck � kX�t , and the second
estimate follows from the inequality k QukX�t 6 ck QwkY�t , where Qu 2 X�t is a suitable extension
of Qw 2 Y�t , with a uniform constant c > 0 (this follows from Theorem 3.12 in [14]). Without
restriction we can choose � so small that Theorem 1.4 can be applied, and thus we infer from (20)
that

d

dt

�
F.�t / � F.� /

�
6 �

1

c

�
F.�t / � F.� /

�2.1��/
I

here, we additionally assumed � to be so small that F.�t / > F.� /. This shows that for all t 2 I
we have

F.�t / � F.� / 6 c

(
t�1=.1�2�/ if � < 1=2;
e�c0t if � D 1=2:

(21)

Moreover, we can apply Theorem 1.4 once more to obtain

�
d

dt

�
F.�t / � F.� /

��
D �

�
F.�t / � F.� /

���1
B�t .u; u/

> �=c
�
F.�t / � F.� /

���1
kdF�t kY 0�t

kŒu��t � �tkY�t

> �=c kŒu��t � �tkY�t :

(22)

Here, for the first estimate we used the identity B�t .u; u/ D kdF�t kB0�t kukB�t , the inequalities
in (20), the uniform equivalence of the scalar products on X�t , and the uniform continuity of the
trace operatorX�t ! Y�t ; u 7! Œu��t ��t (see Lemma 3.8 in [14]). Since d	�1

h.t/
.Œu��t ��t / D @th,

by Remark 1.3 it follows thatZ t

0

k@thkH1=2.� / ds 6 c

Z t

0

kŒu��t � �tkY�t ds 6 c
�
F.�h0/ � F.� /

�� (23)

for all t 2 I ; hence

kh.t/kH1=2.� / 6 kh0kH1=2.� / C c
�
F.�h0/ � F.� /

��
: (24)

Furthermore, for sufficiently small � we deduce from Theorem 2.1 that our solution h exists at
least as long as h.t/ remains in NB� .0/ � W

5�4=p
p .� /, and if the latter is true on a time interval

I 0 D .0; T 0/ then
khk

C.Œt 0;T 0�;W
5�4=pCı
p .� //

6 c (25)

for arbitrarily small t 0 > 0 and some constant c > 0. Now, let

T � WD sup
˚
T 0 > 0 j khk

C. NI 0;W
5�4=p
p .� //

6 �
	
:
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By interpolation and (25) there exists a � 0 2 .0; 1/ such that

kh.t/k
W
5�4=p
p .� /

6 kh.t/k� 0
W
5�4=pCı
p .� /

kh.t/k1��
0

H1=2.� /
6 c kh.t/k1��

0

H1=2.� /

for all t 2 Œ0; T ��. However, from this estimate and (24), for sufficiently small � we obtain that
kh.t/k

W
5�4=p
p .� /

6 �=2. Hence, T � D 1 and the solution exists for all times. Furthermore, from

(23) we obtain @th 2 L1..0;1/IH 1=2.� //, and thus h.t/ ! h1 in H 1=2.� // for t ! 1 and
some h1 2 H 1=2.� //. Integrating (22) over .t;1/ yields

kh.t/ � h1kH1=2.� / 6 c

Z 1
t

k@sh.s/kH1=2.� / ds 6 c .F.�t / � F.� //
� 6 c t�ˇ

0

for some ˇ0 > 0. By weak compactness, we have h1 2 W
5�4=pCı
p .� / and thus we can

use interpolation once more to obtain (19). Finally, from (19) and (21) we conclude that
F.�h1/ D F.� /.

Appendix. Second variation of the Canham–Helfrich energy

We give a brief derivation of the second variation of the Canham–Helfrich energy and of the
linearization of its L2-gradient. Of course, this issue has been addressed before in the literature; see,
for instance, [4, 19, 26]. Our result agrees with the one in [19] (which, however, is not explicitly
covariant; see (42), (43)), but it does not agree with the ones in [4] (which lacks one of the terms in
our expression) and in [26] (which seems to contain typos; expressions like Hg˛ˇ �Kk˛ˇ do not
make sense from the point of view of physical dimensions).

Let �t � R3 be a closed vesicle moving with velocity u D w �t . Consider the family of
diffeomorphisms 't;s W �t ! �s associated with the vector field u, that is, 't;t D id�t and @s't;s D
u ı 't;s . We denote by Df=Dt the material derivative of a scalar field f on �t with respect to the
vector field u, that is,

Df

Dt

ˇ̌̌
t
WD @sjsDtf ı 't;s :

Throughout this appendix we shall work in convected coordinates .x˛/ on �t , that is, x˛jt D
x˛js ı 't;s . Taking the material derivative of (tangential) tensor components in such coordinates
yields the Lie derivative of the corresponding tensor field which is again a tensor field. In [14] we
proved the identities

D

Dt
g˛ˇ D �2w k˛ˇ ;

D

Dt
g˛ˇ D �g˛�gˇ�

D

Dt
g�� D 2w k

˛ˇ ;

D

Dt
k˛ˇ D wI˛ˇ � w k˛k



ˇ
;

D

Dt
k˛ˇ D w ˛ˇ

I C 3w k
˛kˇ ;

D

Dt
dA D �wH dA;

D

Dt
H D �gw C w.H

2
� 2K/

The Christoffel symbols are given by

�


˛ˇ
D
1

2
gı.gˇı;˛ C g˛ı;ˇ � g˛ˇ;ı/:
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Recall that the difference of two connections is a tensor field and, hence, so is the material derivative
of a connection. Thus, we have

D

Dt
�


˛ˇ
D �

1

2
�
�

˛ˇ
g�

D

Dt
g�� C

1

2
gı

�� D
Dt
gˇı

�
;˛
C

� D
Dt
g˛ı

�
;ˇ
�

� D
Dt
g˛ˇ

�
;ı

�
D
1

2
gı

�� D
Dt
gˇı

�
I˛
C

� D
Dt
g˛ı

�
Iˇ
�

� D
Dt
g˛ˇ

�
Iı

�
D �k˛w;ˇ � k



ˇ
w;˛ C k˛ˇw


; � w k



˛Iˇ
;

where the second identity follows by making use of Riemannian normal coordinates in which the
Christoffel symbols vanish (at the center). For a scalar field f on �t we have �gf D g˛ˇ .f;˛ˇ �

�


˛ˇ
f; / and thush D

Dt
;�g

i
f D 2w k˛ˇfI˛ˇ � g

˛ˇf;
D

Dt
�


˛ˇ

D 2w k˛ˇfI˛ˇ C 2k
˛ˇf;˛w;ˇ �Hf;˛w

˛
; C wf;˛H

˛
; ;

where Œ � ; � � denotes the commutator. We conclude that

D

Dt
�gH D 2w k

˛ˇHI˛ˇ C 2k
˛ˇw;˛H;ˇ �Hw;˛H

˛
; C wH;˛H

˛
;

C�g.�gw C w.H
2
� 2K//

D �2gw C�gw .H
2
� 2K/C w;˛

�
2k˛ˇH;ˇ C 3HH

˛
; � 4K

˛
;

�
C w

�
2k˛ˇHI˛ˇ CH;˛H

˛
; C�g.H

2
� 2K/

�
(26)

Furthermore, we recall that the Riemannian curvature tensor R is given by

R ı
˛ˇ D �

ı
ˇ;˛ � �

ı
˛;ˇ C �

ı
�˛�

�

ˇ
� � ı�ˇ�

�
˛;

while the Ricci tensorRc satisfiesRcˇ D R ˛
˛ˇ

D Kgˇ . Thus, making again use of Riemannian
normal coordinates, we derive

D

Dt
Rcˇ D

� D
Dt
� ıˇ

�
I˛
�

� D
Dt
� ı˛

�
Iˇ
;

and hence

D

Dt
K D

D

Dt

1

2

�
Rcˇg

ˇ
�
D w kˇRcˇ C

1

2
gˇ

�� D
Dt
� ˛ˇ

�
I˛
�

� D
Dt
� ˛˛

�
Iˇ

�
D wKH CH�gw � k

˛ˇwI˛ˇ :

From this we deduce

D

Dt
H.H 2=2 � 2K/

D
�
�gw C w.H

2
� 2K/

�
.H 2=2 � 2K/

CH
�
H.�gw C w.H

2
� 2K// � 2wKH � 2H�gw C 2k

˛ˇwI˛ˇ
�

D wI˛ˇ
�
.�H 2=2 � 2K/g˛ˇ C 2Hk˛ˇ

�
C w.3H 4=2 � 7KH 2

C 4K2/

(27)
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and

D

Dt
.2K �HC0=2/ D wI˛ˇ

�
.2H � C0=2/g

˛ˇ
� 2k˛ˇ

�
C w.2KH � C0=2H

2
C C0K/: (28)

Collecting (26), (27), and (28), we finally compute the linearization of gradL2 F�t by taking its
material derivative, that is,

1

�

D

Dt
gradL2 F�t D �

2
gw C wI˛ˇ

�
.H 2=2 � 4K C 2HC0 � C

2
0 =2/g

˛ˇ
C 2.H � C0/k

˛ˇ
�

C w;˛
�
2k˛ˇH;ˇ C 3HH

˛
; � 4K

˛
;

�
C w

�
2k˛ˇHI˛ˇ C�g.H

2
� 2K/

CH;˛H
˛
; C 3H

4=2 � 7KH 2
C 4K2 C 2C0KH � C

2
0 =2H

2
C C 20K

�
DW �2gw C .a

˛ˇw;˛/Iˇ C Qb w:

Since
d2

dt2
F.�t / D d

2F�t .w;w/C dF�t

� D
Dt
w
�
;

the second variation of the Canham–Helfrich energy is given by

d2F�t .w;w/ D

Z
�t

D

Dt
gradL2 F�t w dAC

Z
�t

gradL2 F�t w
D

Dt
dA

D �

Z
�t

�
.�gw/

2
C a˛ˇw;˛w;ˇ C b w

2
�
dA;

where

b D
�
.2k˛ˇ �Hg˛ˇ /H;˛

�
Iˇ
C�g.H

2
� 2K/CH 4

� 5KH 2
C 4K2 C C 20KI

note that the first term on the right hand side is not contained in the analogous expression (84) in
[4].
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