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Thin obstacle problem: Estimates of the distance to the exact solution
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We consider elliptic variational inequalities generated by obstacle type problems with thin obstacles.
For this class of problems, we deduce estimates of the distance (measured in terms of the natural
energy norm) between the exact solution and any function that satisfies the boundary condition and is
admissible with respect to the obstacle condition (i.e., they are valid for any approximation regardless
of the method by which it was found). Computation of the estimates does not require knowledge of
the exact solution and uses only the problem data and an approximation. The estimates provide
guaranteed upper bounds of the error (error majorants) and vanish if and only if the approximation
coincides with the exact solution. In the last section, the efficiency of error majorants is confirmed
by an example, where the exact solution is known.
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1. Introduction

Let ˝ be an open, connected, and bounded domain in Rn with Lipschitz continuous boundary @˝,
and let M be a smooth .n � 1/-dimensional manifold in Rn, which divides ˝ into two Lipschitz
subdomains ˝C and ˝�. Throughout the paper, we use the standard notation for the Lebesgue and
Sobolev spaces of functions. Since no confusion may arise, we denote the norm in L2 .˝/ and the
norm in the space L2 .˝;Rn/ containing vector valued functions by one common symbol k � k˝ .

For given functions  WM! R and ' W @˝ ! R satisfying ' >  on M \ @˝, we consider
the following variational Problem (P): minimize the functional

J.v/ D
1

2

Z
˝

jrvj2dx (1.1)

over the closed convex set

K D
˚
v 2 H 1 .˝/ W v >  on M \˝; v D ' on @˝

	
:
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FIG. 1. The thin obstacle problem

Here, ' 2 H 1=2.@˝/ and the function  is supposed to be smooth.
Problem (P) is called the thin obstacle problem associated with the thin obstacle  . In many

respects, it differs from the classical obstacle problem where the constrain v >  is imposed on the
entire domain ˝. This mathematical model arises in various real life problems. In the 2D case (see
Fig. 1), it describes equilibrium of an elastic membrane above a very thin object (see, e.g., [17]).
The well known Signorini problem belongs to the same class of mathematical models. Similar
models appear in continuum mechanics, e.g., in temperature control problems and in analysis of
flow through semi-permeable walls subject to the phenomenon of osmosis (see, e.g., [8]). Thin
obstacle problems also arise in financial mathematics if the random variation of an underlying asset
changes discontinuously (see [6, 26, 36] and the references therein).

The problem (P) is an example of a variational inequality, which mathematical analysis goes
back to the fundamental paper [21]. Existence of the unique minimizer u 2 K is well known
(see [21] and also the books [13, 18] and [32]). For smooth M and  it is also known that
u 2 C

1;˛
loc

.˝˙ [M/ with 0 < ˛ 6 1=2 (see [1, 4, 37] and the book [26]). This optimal regularity
of u guarantees that @u

@nC
and @u

@n�
belong to L2.M/, where n˙ denote the outer unit normals to˝˙

on M. It is also easy to see that the minimizer u satisfies the harmonic equation �u D 0 in the
subdomains ˝C and ˝�, but in general u is not a harmonic function in ˝. Instead, on M, we have
the so-called complimentarity conditions

u �  > 0;

�
@u

@n

�
> 0; .u �  /

�
@u

@n

�
D 0; (1.2)

where
�
@u
@n

�
WD

@u
@nC
C

@u
@n�

is the jump of ru � n across M. Here and later on � denotes the inner
product in Rn.

Thin obstacle problems have been actively studied from the early 1970s. These studies were
mainly focused either on regularity of minimizers (see [1, 4, 11, 12, 15, 31, 37]) or on properties of
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the respective free boundaries (see [2, 5, 7, 14, 19, 20]). A systematic overview of these results can
be found in the book [26].

In this paper, we are concerned with a different question. Our analysis is focused not on properties
of the exact minimizer, but on estimates of the distance (measured in terms of the natural energy
norm) between u and any function v 2 K. In other words, we wish to obtain estimates able to detect
which neighborhood of u contains a function v (considered as an approximation of the minimizer).

These estimates are fully computable, i.e., they depend only on v (which is assumed to be
known) and on the data of the problem ( the exact solution u and the respective exact coincident
set fu D  g do not enter the estimate explicitly). A general approach to the derivation of such
type estimates based on methods of the duality theory in the calculus of variations is presented in
[30]. For the classical obstacle problem (which solution is bounded in ˝ from above and below
by two obstacles) analogous estimates were obtained in ([29]). For the two-phase obstacle problem
(which was introduced in [39] and studied from regularity point of view in [33–35], and [38]) similar
estimates has been recently derived in [28]. These results were obtained by methods of the duality
theory in the calculus of variations, which are widely used for analysis of various variational and
optimization problems (see, e.g., [3, 8, 9, 16, 18]).

It should be noted that getting explicit estimates of errors is based upon the general relations
exposed in [30], is not at all a straight-forwarding and simple matter. In this context, there is a
clear difference with the results mentioned above. Indeed, the estimate (2.8) contains an integral
term related to the lower dimensional set M. Therefore, our analysis will require estimates with
explicitly known constants for the traces of functions on M. For this purpose, we will introduce
and analyze an auxiliary variational problem, which generates constants in special Poincaré-type
inequalities valid for functions with zero mean boundary traces.

The main results are presented in Theorems 2.1, 2.4, and 3.2, that suggest different majorants of
the norm kr.v � u/k˝ . The majorants are non-negative and vanish if and only if v coincides with
u. Section 4 is devoted to the boundary thin obstacle problem (also known as the scalar Signorini
problem). Finally, in the last section we consider an example, where the exact solution of a thin
obstacle problem is known. We find the exact distance between this solution and some selected
functions v and show that our estimates provide correct upper bounds of the distance.

2. Estimates of the distance to the exact solution

Let u 2 K be a minimizer of variational problem (P). Elementary calculations yield the identity

J.v/ � J.u/ D
1

2
kr.v � u/k2˝ � kruk

2
˝ C

Z
˝

rv � rudx;

which holds for every v 2 K. Since u satisfies the respective variational inequality, we conclude
that

1

2
kr .v � u/ k2˝ 6 J.v/ � J.u/; 8v 2 K: (2.1)

The inequality (2.1) does not provide a computable majorant of the distance between u and v
because the value J.u/ is unknown. Therefore, our goal is to replace the difference J.v/ � J.u/ in
(2.1) by a fully computable quantity.
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2.1 The first form of the majorant

For any � 2 � WD f� 2 L2.M/ W �.x/ > 0 a.e. onMg, we introduce the perturbed functional

J�.v/ WD J.v/ �

Z
M

� .v �  / d�:

It is easy to see that

sup
�2�

J�.v/ D J.v/ � inf
�2�

Z
M

�.v �  /d� D

(
J.v/; if v >  on M;

C1; otherwise.
;

Hence,
J.u/ D inf

v2K
J.v/ D inf

v2'CH1
0
.˝/

sup
�2�

J�.v/; (2.2)

where 'CH 1
0 .˝/ WD

˚
w D ' C v W v 2 H 1

0 .˝/
	
, andH 1

0 .˝/ is a subspace ofH 1.˝/ containing
the functions vanishing on the boundary.

The functional J� generates the following variational problem .P�/: find u� 2 'CH 1
0 .˝/ such

that
J�.u�/ WD inf

v2'CH1
0
.˝/

J�.v/: (2.3)

Since ' CH 1
0 .˝/ is the affine subspace of H 1.˝/ and J� is a quadratic functional, the results of

[21] imply unique solvability of the problem (P�) for any � 2 �. Moreover, in view of (2.2), J.u/
is bounded from below by the quantity J�.u�/. Indeed,

J.u/ D inf
v2'CH1

0
.˝/

sup
�2�

J�.v/ > sup
�2�

inf
v2'CH1

0
.˝/

J�.v/ > J�.u�/ 8� 2 �: (2.4)

The dual counterpart of (P�) is generated by the Lagrangian

L�.v; y�/ WD
Z
˝

�
y� � rv �

1

2
jy�j2

�
dx �

Z
M

�.v �  /d�;

which is defined on the set .' CH 1
0 .˝// � L

2 .˝;Rn/. Obviously,

J�.v/ D sup
y�2L2.˝;Rn/

L�.v; y�/

and the corresponding dual functional J �
�

is defined by the relation

J �� .y
�/ WD inf

v2'CH1
0
.˝/

L�.v; y�/:

It is not difficult to see that

J �� .y
�/ WD

8̂̂<̂
:̂
Z
˝

�
y� � r' �

1

2
jy�j2

�
dx �

Z
M

� .' �  / d� if y� 2 Q��;M;

�1 if y� … Q��;M;
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where

Q��;M WD

�
y� 2 L2 .˝;Rn/ W

Z
˝

y� � rwdx D

Z
M

�wd� 8w 2 H 1
0 .˝/

�
:

The set Q�
�;M contains functions that satisfy (in the generalized sense) the equation divy� D 0 in

˝� and ˝C and the condition Œy� � n� D � on M (here Œy� � n� denotes the jump of y� � n) . The
functional J �

�
generates a new variational Problem (P�

�
) (dual to (P�)): find y�

�
2 Q�

�;M such that

J �� .y
�
�/ WD sup

y�2Q�;M

J �� .y
�/:

This is a quadratic maximization problem with a strictly concave and continuous functional. Well
known results of convex analysis (see, e.g., [9]) guarantee that it has a unique maximizer in the
affine subspace Q�

�;M. Moreover, we have the duality relation

J�.u�/ D inf
v2'CH1

0
.˝/

J�.v/ D sup
y�2Q�

�;M

J �� .y
�/ D J �� .y

�
�/: (2.5)

Combining (2.4) and (2.5), we deduce the estimate

J.v/ � J.u/ 6 J.v/ � J �� .y
�
�/ D J.v/ � sup

y�2Q�
�;M

J �� .y
�/

D J.v/C inf
y�2Q�

�;M

�
�J �� .y

�/
�
D inf
y�2Q�

�;M

�
J.v/ � J �� .y

�/
�
:

Therefore, the inequality
J.v/ � J.u/ 6 J.v/ � J �� .y

�/ (2.6)

holds true for all v 2 K, all � 2 �, and all y� 2 Q�
�;M.

Thanks to the assumption ' 2 H 1=2.@˝/, the boundary datum ' allows a continuation as
H 1-function on the whole set ˝. We will preserve the notation ' for the extended function. Since
y� 2 Q�

�;M and v � ' 2 H 1
0 .˝/ for any v 2 K, we find thatZ

˝

y� � r'dx D

Z
˝

y� � rvdx �

Z
˝

y� � r.v � '/dx D

Z
˝

y� � rvdx �

Z
M

�.v � '/d�:

Now the right-hand side of (2.6) can be rewritten as follows:

J.v/ � J �� .y
�/ D

Z
˝

�
1

2
jrvj2 C

1

2
jy�j2 � y� � r'

�
dx C

Z
M

�.' �  /d�

D
1

2

Z
˝

jrv � y�j2dx C

Z
M

� .v �  / d�: (2.7)

Combination of (2.1), (2.6) and (2.7) yields the following upper bound of the error:
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Theorem 2.1 For any v 2 K, the distance to the minimizer u is subject to the estimate

kr.v � u/k2˝ 6 krv � y�k2˝ C 2
Z
M

� .v �  / d�; (2.8)

where � and y� are arbitrary functions in � and Q�
�;M, respectively.

Theorem 2.1 can be viewed as a generalized form of the hypercircle estimate (see [27] and [23])
for the considered class of problems.

REMARK 2.2 Define the coincidence sets associated with u and v:

Mu
 WD fx 2M W u.x/ D  .x/ g and Mv

 WD fx 2M W v.x/ D  .x/ g:

Assume that Mu
 � Mv

 . In this case, the estimate (2.8) is sharp in the sense that there exist y�

and � such that the inequality holds as the equality. Indeed, let y� D p� WD ru and �� D Œp� � n�.
Evidently, p� 2 Q�

��;M. In view of (1.2), �� D 0 on M nMu
 . Since M nMv

 �M nMu
 , we

conclude that Z
M

�� .v �  / d� D

Z
MnMv

 

�� .v �  / d� D 0:

Hence, the right hand side of (2.8) coincides with the left one.

2.2 Advanced forms of the majorant

Inequality (2.8) provides a simple and transparent form of the upper bound, but it operates with the
set Q�

�;M, which is defined by means of differential type conditions. This set is rather narrow and
inconvenient if we wish to use simple approximations. In this section, we overcome this drawback
and replace (2.8) by a more general estimate valid for functions in the set

H .˝˙; div/ WD
˚
q� 2 L2 .˝;Rn/ W div .q�j˝˙/ 2 L

2 .˝˙/ ;
�
q� � n

�
2 L2.M/

	
;

which is much wider than Q�
�;M.

Lemma 2.3 Let q� 2 H.˝˙; div/, and let � 2 �. Then

inf
y�2Q�

�;M

kq� � y�k˝ 6 CF˝C kdiv q�k˝C C CF˝� kdiv q�k˝� C CT rMk� � Œq
�
� n�kM; (2.9)

where CT rM and CF˝
˙

are the constants defined by (2.13) and (2.14), respectively.

Proof. Consider an auxiliary variational problem (Pq�/: minimize the functional

Jq�.w/ D
Z
˝

�
1

2
jrwj2 C q� � rw

�
dx �

Z
M

�wd�

on the space H 1
0 .˝/. For any given q� 2 H.˝˙; div/ and � 2 �, the functional Jq� is convex,

continuous, and coercive onH 1
0 .˝/. Hence the problem Pq� has a unique minimizer w�;q� 2 H 1

0 .
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Since q� 2 H .˝˙; div/, the functional Jq� has the form

Jq�.w/ D
Z
˝

1

2
jrwj2dx �

Z
˝C

wdiv q�dx �
Z
˝�

wdiv q�dx �
Z
M

�
� � Œq� � n�

�
wd�: (2.10)

For any ew 2 H 1
0 .˝/, the minimizer w�;q� satisfies the identityZ

˝

rw�;q� � rewdx D Z
˝C

ewdiv q�dx C
Z
˝�

ewdiv q�dx C
Z
M

�
� �

�
q� � n

�� ewd�: (2.11)

We set ew D w�;q� and use the estimateZ
M

�
� �

�
q� � n

��
w�;q�d� 6 CT rM.˝˙/krw�;q�k˝˙ k� �

�
q� � n

�
kM

6 CT rMkrw�;q�k˝ k� �
�
q� � n

�
kM;

(2.12)

where
CT rM WD min

˚
CT rM.˝C/; CT rM.˝�/

	
(2.13)

and the constants come from the trace inequalities

kwkM 6 CT rM.˝˙/krwk˝˙ :

Two other terms in the right hand side of (2.11) are estimated by the Friedrich’s type inequalities

kwk˝˙ 6 CF˝
˙
krwk˝˙ : (2.14)

Thus, (2.11) and (2.12) yield the estimate

krw�;q�k˝ 6 CF˝C kdiv q�k˝C C CF˝� kdiv q�k˝� C CT rMk� �
�
q� � n

�
kM: (2.15)

Notice that (2.11) implies the identityZ
˝

�
rw�;q� C q

�
�
� rewdx D Z

M

�ewd� 8ew 2 H 1
0 .˝/;

which shows that the function �� WD rw�;q� C q� 2 Q��;M. Hence

inf
y�2Q�

�;M

kq� � y�k˝ 6 kq� � ��k˝ D krw�;q�k˝ :

Now (2.9) follows from (2.15).

Let q� 2 H.˝˙; div/, and let � 2 �. For any v 2 K and y� 2 Q�
�;M we have

krv � y�k˝ 6 krv � q�k˝ C kq� � y�k˝ : (2.16)

By (2.8), (2.16), and (2.9), we obtain the first advanced form of the error majorant:
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Theorem 2.4 For any v 2 K, the distance to the minimizer u is subject to the estimate

kr.v � u/k˝ 6 M.v; q�; �;  /; (2.17)

where

M.v; q�; �;  / WD krv � q�k˝ C
p
2

� Z
M

�.v �  /d�

�1=2
C CF˝C kdiv q�k˝C C CF˝� kdiv q�k˝� C CT rMk� � Œq

�
� n�kM;

� 2 �, q� is an arbitrary function inH.˝˙; div/, CF˝C , CF˝� , and CT rM are the same constants
as in Lemma 2.3.

In (2.17), the function q� is defined in a much wider set of functions defined without differential
relations. The majorant M is a non-negative functional, which vanishes if and only if v D u and
q� D ru almost everywhere in ˝, and � D �� WD

�
@u
@n

�
almost everywhere on M.

REMARK 2.5 By the same arguments as in Remark 2.2, we can prove that the majorant
M.v; q�; �;  / is sharp if Mu

 �Mv
 .

It is useful to have also a modified version of (2.17), which follows from (2.8), (2.16), and
Young’s inequalities (with the parameters ˇ1 and ˇ2).

Corollary 2.6 For any v 2 K, ˇ1 > 0, ˇ2 > 0, q� 2 H.˝˙; div/, and � 2 �, we have

kr.v � u/k2˝ 6 M1.v; q
�; ˇ1; ˇ2/CM2.v; q

�; ˇ1; ˇ2�; /; (2.18)

where

M1.v; q
�; ˇ1; ˇ2/ WD .1C ˇ1/krv � q

�
k
2
˝

C .1C ˇ�11 /.1C ˇ2/
h
CF˝C kdiv q�k˝C C CF˝� kdiv q�k˝�

i2
;

M2.v; q
�; ˇ1; ˇ2; �;  / WD .1C ˇ

�1
1 /.1C ˇ�12 /C 2T rMk� �

�
q� � n

�
k
2
M C 2

Z
M

�.v �  /d�;

and the constants CF˝C , CF˝� , and CT rM are the same as in Lemma 2.3.

The majorant (2.18) contains parameters and free functions that can be selected arbitrarily in the
respective sets. Below we deduce a new form of (2.18) where the function � will be chosen in the
optimal way.

First, we optimize M2 with respect to �. The respective minimization problem is reduced to

inf
�2�

M2 D c
�1
ˇ inf

�2�

Z
M

�
C 2T rM.� �

�
q� � n

�
/2 C 2�cˇ .v �  /

�
d�;

where cˇ WD ˇ1ˇ2.1Cˇ1/�1.1Cˇ2/�1. The corresponding Euler–Lagrange equation has the form

2C 2T rM.� �
�
q� � n

�
/C 2cˇ .v �  / D 0:
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From here, taking into account the condition � > 0 a.e. on M, we find the minimizer

� D

(
Œq� � n� � cˇC�2T rM.v �  /; if Œq� � n� > cˇC

�2
T rM

.v �  /;

0; if Œq� � n� < cˇC�2T rM.v �  /:

Plugging � in the right-hand side of (2.18) implies the following result.

Theorem 2.7 For any v 2 K,

kr.v � u/k2˝ 6 M1.v; q
�; ˇ1; ˇ2/CM3.v; q

�; ˇ1; ˇ2;  /; (2.19)

where q� is an arbitrary function in H.˝˙; div/, ˇ1 and ˇ2 are arbitrary non-negative numbers,
M1 is the same as in (2.18),

M3.v; q
�; ˇ1; ˇ2;  / WD

Z
M

�.v; q�; cˇ ;  /d�;

and

�.v; q�; cˇ ;  / WD

8̂̂̂<̂
ˆ̂:
.v �  /

�
2
�
q� � n

�
�

cˇ

C 2T rM

.v �  /
�
; if

�
q� � n

�
>

cˇ

C 2T rM

.v �  /;

C 2T rM
cˇ

�
q� � n

�2
; if

�
q� � n

�
<

cˇ

C 2T rM

.v �  /:

It is clear that the quantities M1 and M3 are always non-negative and the functional
M4 WD M1 CM3 satisfies for any ˇ1; ˇ2 > 0 the relation

M4.u;ru; ˇ1; ˇ2;  / D 0:

On the other hand, if M4.v; q
�; ˇ1; ˇ2;  / D 0 then v D u almost everywhere in ˝. Moreover, in

this case the conditions
q� D ru a. e. in ˝;
�u D 0 a. e. in ˝˙;

.u �  / Œru � n� D 0 a. e. on M
(2.20)

hold true. We point out that the third equality in (2.20) is provided by strict positivity of the factor
2 Œq� � n� � cˇ

C2
TrM

.v �  / in definition of �. Therefore, one can conclude that the majorant M4

vanishes if and only if v D u and q� D ru almost everywhere in ˝.

REMARK 2.8 Applying the same arguments as in Remark 2.2, we can prove that the majorant
M4.v; q

�; ˇ1; ˇ2;  / is sharp if Mu
 �Mv

 .

One can also prove that for any ˇ1; ˇ2 > 0, the functional M4.v; q
�; ˇ1; ˇ2;  / possesses

necessary continuity properties with respect to the first and second arguments. Thus,

M4.vk ; q
�
k ; ˇ1; ˇ2;  /! 0

if vk ! u in K and q�
k
! ru in L2.˝˙/ and

�
q�
k
� n
�
! Œru � n� in L2.M/. Thus, taking into

account Remark 2.8, we conclude that the estimate (2.19) has no gap between the left and right
hand sides and we can always select the parameters of M4 such that it is arbitrary close to the
energy norm of the error.
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3. Estimates with explicit constants

It should be also noted that for complicated domains the constants CF˝
˙

and CT rM.˝˙/ entering
above derived estimates (2.17)–(2.19) may be unknown. In this case, we need to find guaranteed and
realistic upper bounds of them. Depending on a particular domain, this task may be fairly easy or
very difficult. It is therefore of interest to look at other variants of Lemma 2.3, which operates with
different constants. In this section, we establish another estimate based on the Poincaré inequality
for functions having zero mean values in˝˙ and on the so-called “sloshing” inequality for functions
with zero mean traces on M. As a result, we obtain estimates of the distance to the minimizer u
containing the constants which are either explicitly known or easily definable.

Henceforth, we denote by fjw jg! the mean value of w on the set !. In view of the Poincare
inequality

kwk˝˙ 6 CP˝
˙
krwk˝˙ 8w 2 eH 1.˝˙/ WD

˚
w 2 H 1.˝˙/ W fjw jg˝˙ D 0

	
: (3.1)

Similar inequalities hold for the functions defined in ˝C and ˝� having zero mean values on M:

kwkM 6 CPM.˝˙/krwk˝˙ 8w 2 eH 1
M.˝˙/ WD

˚
w 2 H 1.˝˙/ W fjw jgM D 0

	
: (3.2)

Lemma 3.1 Let q� 2 H.˝˙; div/ and � 2 � satisfy the following additional conditions:Z
˝C

div q�dx D
Z
˝�

div q�dx D 0 and
Z
M

�
� � Œq� � n�

�
d� D 0: (3.3)

Then, for any ˛ 2 Œ0; 1�, we have

inf
y�2Q�

�;M

kq� � y�k2˝ 6
�
D�.q

�/C ˛m�.q
�/
�2
C
�
DC.q

�/C .1 � ˛/mC.q
�/
�2
; (3.4)

where D˙.q
�/ WD CP˝

˙
kdiv q�k˝˙ and m˙.q

�/ D CPM.˝˙/k� � Œq
� � n�kM.

Proof. We use the same arguments as in the proof of Lemma 2.3 and arrive at the identity (2.11). In
view of (3.3), this identity implies the relation

krw�;q�k
2
˝ D

Z
˝C

�
w�;q� � fw�;q�g˝C

�
div q�dx

C

Z
˝�

�
w�;q� � fw�;q�g˝�

�
div q�dx

C

Z
M

.� �
�
q� � n

�
/
�
w�;q� � fw�;q�gM

�
d�:

By (3.1) and (3.2), we obtainZ
˝˙

�
w�;q� � fw�;q�g˝C

�
div q�dx 6 CP˝

˙
krw�;q�k˝˙kdiv q�k˝˙ ;Z

M

.� �
�
q� � n

�
/
�
w�;q� � fw�;q�gM

�
d� 6 CPM.˝˙/krw�;q�k˝˙k� � Œq

�
� n�kM:
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Then,

krw�;q�k
2
˝ 6 D�.q

�/krw�;q�k˝� CDC.q
�/krw�;q�k˝C C ˛m�.q

�/krw�;q�k˝�

C .1 � ˛/mC.q
�/krw�;q�k˝C

6
�
.D�.q

�/C ˛m�.q
�//2 C

�
DC.q

�/C .1 � ˛/mC.q
�/
�2�1=2

krw�;q�k˝ :

(3.5)

Using (3.5) and repeating the same arguments as at the end of the proof of Lemma 2.3, we arrive
at (3.4).

The quantities D˙.q�/ contain the Poincaré constants for˝˙. If these domains are convex, then
due to the estimate of Payne and Weinberger (see [25]) we know that

CP˝
˙

6
diam˝˙

�
:

The constants CPM.˝˙/ entering m˙.q
�/ are also easy to estimate. These constants are known for

triangles (see [24] and [22]). Due to this fact, we can easily obtain upper bounds of the constants
for a wide collection of domains.

Indeed, let TC � ˝C and M as a face of this triangle (see Fig. 2). It is clear that

kwkM 6 CPM.TC/krwkTC 6 CPM.TC/krwk˝C 8w 2 eH 1
M.˝C/;

and we can use the constant CPM.TC/ as an upper bound of CPM.˝C/.
Lemma 3.1, (2.8), and (2.16) yield the following majorant of the distance to u.

€ 

Τ+

Ω+

M 

€ 

Τ−

Ω-

FIG. 2. Triangles TC and T�
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Theorem 3.2 Let u 2 K be a minimizer of variational problem (P). Let q� 2 H.˝C; ˝�; div/,
and let the conditions (3.3) be satisfied. Then, for any v 2 K, ˛ 2 Œ0; 1�, and � 2 �, the upper
bound of error is given by the estimate

kr.v � u/k˝ 6 M5.v; q
�; ˛; �;  /; (3.6)

where

M5.v; q
�; ˛; �;  / WD krv � q�k˝ C

p
2

�Z
M

�.v �  /d�

�1=2
C

��
D�.q

�/C ˛m�.q
�/
�2
C
�
DC.q

�/C .1 � ˛/mC.q
�/
�2�1=2

;

where the functionals D˙.q�/ and m˙.q
�/ are the same as in Lemma 3.1.

As in Section 2, it is easy to see that the majorant M5 is a non-negative function of its arguments,
which vanishes if and only if v D u and q� D ru a.ė. in ˝, and � D

�
@u
@n

�
a. e. on M.

REMARK 3.3 The majorant M5.v; q
�; ˛; �;  / is sharp if Mu

 �Mv
 . The proof is based on the

same arguments as in Remark 2.2.

REMARK 3.4 Other forms of the majorant arise if the conditions (3.3) are satisfied only partially.
For example, if only the condition Z

M

.� �
�
q� � n

�
/d� D 0 (3.7)

is satisfied, then the estimate (3.6) holds true for any q� 2 H.˝˙; div/ satisfying (3.7), where the
functionals D�.q�/ and DC.q�/ in M3 are replaced by CF˝� kdiv q�k˝� and CF˝C kdiv q�k˝C ,
respectively. This version of the estimate is used in the examples considered in Section 5.

Obviously, if mC.q�/ D m�.q
�/ D 0 then the parameter ˛ in (3.6) has no influence to the

majorant value and it can be chosen arbitrarily in Œ0; 1�. Otherwise, we can define ˛ in the optimal
way by solving the minimization problem

inf
˛2Œ0;1�

n�
D�.q

�/C ˛m�.q
�/
�2
C
�
DC.q

�/C .1 � ˛/mC.q
�/
�2o

;

which yields the best value

˛� WD

8<: ˛; if 0 6 ˛ 6 1;

0; if ˛ < 0;
1; if ˛ > 1;

where ˛ WD
m2C.q

�/CDC.q
�/mC.q

�/ �D�.q
�/m�.q

�/

m2C.q
�/Cm2�.q

�/
:

4. The scalar Signorini problem

A problem close to .P/ arises if M coincides with a part of @˝. In this case, the functional (1.1) is
minimized over the set

KS D
˚
v 2 H 1 .˝/ W v >  on M; v D ' on @˝ nM

	
:
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This problem is known as the boundary thin obstacle problem or the (scalar) Signorini problem.
Under appropriate assumptions on the data of the problem .S/, the existence of the unique

minimizer u 2 H 1.˝/ has been proved in [10]. The exact solution u is a harmonic function in ˝,
which satisfies the so-called Signorini boundary conditions

u �  > 0;
@u

@n
> 0; .u �  /

@u

@n
D 0 on M;

where n denotes the unit outward normal to @˝.
Throughout this sectionH 1

0;S.˝/ denotes a subset ofH 1.˝/ containing the functions with zero
traces on @˝ nM and

Q
�;S
�;M WD

˚
y� 2 L2.˝;Rn/ W

Z
˝

y� � rwdx D

Z
M

�wd� for all w 2 H 1
0;S .˝/

	
:

Repeating all the arguments used in the derivation of (2.8) (whereH 1
0 .˝/ is replaced byH 1

0;S.˝/),
we conclude that the estimate

1

2
kr.v � u/k2˝ 6

1

2
krv � y�k2˝ C

Z
M

� .v �  / d� (4.1)

holds true for all v 2 KS , all � 2 �, and all y� 2 Q�;S
�;M.

The estimate (4.1) can be extended to a wider set of functions by the arguments similar to those
used in Section 2. For this purpose, we consider an auxiliary problem (PS

q� ): find wS
�;q�
2 H 1

0;S.˝/

that minimizes the functional

Jq�.w/ D
Z
˝

�
1

2
jrwj2 C q� � rw

�
dx �

Z
M

�wd�

for a given q� 2 HS.˝; div/ WD
˚
q� 2 L2.˝;Rn/ j div q� 2 L2.˝/; Œq� � n� 2 L2.M/

	
.

By the same arguments as in Section 2.2, we conclude that the problem .PS
q�/ has a unique

minimizer wS
�;q�

in H 1
0;S.˝/. In view of the respective integral identity, the function

��S.x/ WD rw
S
�;q�.x/C q

�.x/

belongs to the set Q�;S
�;M. Hence

inf
y�2Q

�;S
�;M

krv � y�k˝ 6 krv � q�k˝ C inf
y�2Q

�;S
�;M

kq� � y�k˝

6 krv � q�k˝ C kq� � ��Sk˝

6 krv � q�k˝ C CF˝kdiv q�k˝ C CT rMk� � q
�
� nkM:

(4.2)

for any v 2 KS , q� 2 HS.˝; div/, and � 2 �. Here CF˝ and CT rM are constants in is the the
Friedrichs and trace inequalities, respectively.

Combining (4.1) and (4.2), we find that for any v 2 KS the following estimate holds

kr.v � u/k˝ 6 MS.v; q�; �;  /; (4.3)
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where

MS.v; q�; �;  / WD krv � q�k2˝ C
p
2

0@Z
M

�.v �  /d�

1A1=2
C CF˝kdiv q�k˝ C CT rMk� � q

�
� nkM; (4.4)

� 2 �, and q� is an arbitrary function in HS.˝; div/.
Obviously, MS.v; q�; �;  / > 0. By the same arguments as in Section 2, we prove that

MS.v; q�; �;  / D 0 if and only if v D u, q� D ru a. e. in ˝, and � D @u
@n a. e. on M.

Assume that a function q� 2 HS.˝; div/ additionally satisfies the conditionsZ
˝

div q�dx D 0 and
Z
M

�
� � q� � n

�
d� D 0:

Then, we obtain the following analog of the estimate derived in Section 3:

kr.v � u/k˝ 6 MS
1 .v; q

�; �;  /;

where

MS
1 .v; q

�; �;  / WD krv�q�k2˝C
p
2

�Z
M

�.v� /d�

�1=2
CCP˝kdiv q�k˝CCPMk��q

�
�nkM:

Here � is any function from � and CP˝ and CPM are the constants from the Poincaré type
inequalities for ˝ and for M, respectively. It is not difficult to show that MS

1 is non-negative and
vanishes if and only if v D u and q� D ru a. e. in ˝, and � D @u

@n a. e. on M.

5. Examples

Let˝ D ˝C [˝�, where˝˙ are two right triangles having a common face M WD fx2 D 0g (see
Fig. 3).

In this example, @˝ consists of four parts:

.i/ x1 C x2 � a D 0, .iii/ �x1 � x2 � a D 0,

.ii/ �x1 C x2 � a D 0, .iv/ x1 � x2 � a D 0.

Notice that for this example, we can explicitly define the minimizer. It is well known (see [26]) that
for all R > 0

u.x1; x2/ D Re
�
.x1 C i jx2j/

3=2
�

is the exact solution of the thin obstacle problem in BR � R2 with M WD fx2 D 0g, and  � 0,
and ' D uj@BR . Here, BR denotes the open ball with center at the origin and radius R. It is clear
that �u D 0 in ˝˙. In addition,

u.x1; 0/ D

(
0; if x1 6 0;

x
3=2
1 ; if x1 > 0

and
�
@u

@n

�
D

(
3
p
�x1; if x1 < 0;

0; if x1 > 0:
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-a a x1

-a

a

x2 coincidence	set	

€ 

Ω+

€ 

(i)

M
€ 

(ii)

€ 

Ω−

€ 

(iii)

€ 

(iv)

€ 

(ii)

€ 

(iii)

€ 

Ω−

€ 

Ω+

€ 

(i)

M

€ 

(iv)

-a -ε a x1

-a

a

x2

FIG. 3. Domains˝C and˝�; coincidence sets for u and v1 (left) and for v3;" (right)

Setting the boundary condition ' on @˝ as the trace of Re
�
.x1 C i jx2j/

3=2
�

and taking  � 0, we
see that the restriction of u to ˝ is the exact solution of the thin obstacle problem in this bounded
domain (see Fig. 4 (left)).

In order to verify the performance of our estimates, we select different functions v in K and
compute the distances between v and u.

EXAMPLE 5.1 First, we define v D v1 as follows:

v1.x1; x2/ WD u.x1; x2/C

(
x22.x2 � x1 � a/.x2 C x1 � a/; if x2 > 0;

x22.x2 � x1 C a/.x2 C x1 C a/; if x2 < 0:

It is clear that v1 2 K and v1 > u in˝ and v1.x1; 0/ D u.x1; 0/. Thus, v1 has the same coincidence
set as the exact solution u (see Fig. 3 (left) and Fig. 4 (right)).

u	 ψ	

(0;-a)	

(-a;0)	

(a;0)	

FIG. 4. The exact solution u (left) and the function v1 � u (right)



526 D. E. APUSHKINSKAYA AND S. I. REPIN

By direct computations, we find that
�
@v1
@n

�
D
�
@u
@n

�
C 12ax22 ,

�v1 D

(
10x22 � 12x2a � 2x

2
1 C 2a

2; in ˝C
10x22 C 12x2a � 2x

2
1 C 2a

2; in ˝�
;

and the exact error

kr.v1 � u/k˝ D
4

3

r
2

35
a4:

Let us set here q� D rv1 and � D
�
@v1
@n

�
. Computing the majorant M

�
v1;rv1;

�
@v1
@n

�
; 0
�
, defined

by (2.17), we get

M

�
v1;rv1;

�
@v1

@n

�
; 0

�
D krv1 � rv1k˝ C

p
2

0@ aZ
�a

�
@v1

@n

�
v1dx

1A1=2
C CF˝C kdivrv1k˝C C CF˝� kdivrv1k˝�

C CT rMk

�
@v1

@n

�
� Œrv1 � n� kM

D CF˝C k�v1k˝C C CF˝� k�v1k˝� :

(5.1)

REMARK 5.2 Here the constants CF˝C and CF˝� are defined by the quotient type relations

inf
w2H1

0;˙
.˝˙/

krwk˝˙
kwk˝˙

D
1

CF˝
˙

;

where H 1
0;C.˝C/ contains all H 1-functions vanishing on (i) and (ii) and H 1

0;�.˝�/ contains all
H 1-functions vanishing on (iii) and (iv). It is easy to show that

CF˝C D CF˝� D
a

�
: (5.2)

Indeed, consider the rotated triangle (see Figure 5) and the respective eigenvalue problem

�w C ~w D 0 in ˝C;

w D 0 on ex1 D 0;
w D 0 on ex2 D 0;
@w

@n
D 0 on M;

M WD
˚ex1 Cex2 D ap2	;

Figure 5 is referred to the eigenvalue problem where the minimal eigenvalue corresponds to the
eigenfunction ew D sin

�
�

a
p
2
ex1� sin

�
�

a
p
2
ex2�:

Direct calculation of krewk˝˙ and kewk˝˙ yields (5.2).
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Ω+

M 

€ 

w = 0
€ 

n

€ 

∂w
∂n

= 0

€ 

˜ x 1

€ 

˜ x 2

€ 

a 2

€ 

w = 0
€ 

a 2

FIG. 5. Eigenvalue problem

Plugging (5.2) into (5.1) yields the equality

M
�
v1;rv1;

h@v1
@n

i
; 0
�
D

16

3
p
5�
a4:

Therefore, the efficiency of the estimate is characterized by the value (efficiency index)

1 6
M
�
v1;rv1;

�
@v1
@n

�
; 0
�

kr.v1 � u/k˝
D
4

�

r
7

2
� 2:382:

It should be pointed out that for q� D rv1 and � D
�
@v1
@n

�
the assumption (3.7) is fulfilled.

Moreover, k
�
@v1
@n

�
�
�
rv1 � n

�
kM D 0. Thus, for any ˛ 2 Œ0; 1� we can also compute a version

of the majorant M3

�
v1;rv1; ˛;

�
@v1
@n

�
; 0
�
, which is modified in accordance with Remark 3.4. We

will denote this modified majorant by M03. Taking into account (5.2), we get

M03

�
v1;rv1; ˛;

�
@v1

@n

�
; 0

�
D krv1 � rv1k˝ C

p
2

0@ aZ
�a

�
@v1

@n

�
v1dx

1A1=2

C

h
C 2F˝�

kdivrv1k2˝� C C
2
F˝C
kdivrv1k2˝C

i1=2
D
a

�

h
k�v1k

2
˝�
C k�v1k

2
˝C

i1=2
D

8
p
2

3
p
5�
a4:

Hence we have better efficiency index

1 6
M03

�
v1;rv1; ˛;

�
@v1
@n

�
; 0
�

kr.v1 � u/k˝
D
2

�

p
7 � 1:684:

Finally, we notice that in view of Remark 2.5, the majorant M is sharp for q� D ru and � D
�
@u
@n

�
,

i.e.,
M
�
v1;ru;

�
@u
@n

�
; 0
�

kr.v1 � u/k˝
D 1:
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EXAMPLE 5.3 Consider now another function v D v2, where

v2.x1; x2/ WD u.x1; x2/C .x1 C x2 � a/.x2 � x1 � a/.x1 C x2 C a/.x2 � x1 C a/:

Obviously, v2 > u in ˝. Hence v2 2 K and the respective coincidence set is empty.
Moreover, we have �v2 D 8.x21 C x

2
2 � a

2/ in ˝˙, and�
@v2

@n

�
D

�
@u

@n

�
D

(
3
p
�x1; if x1 < 0;

0; if x1 > 0:
(5.3)

Let q� D rv2 and � D
h
@v2
@n

i
. Then the assumption (3.7) is satisfied. We take into account (5.2),

Remark 3.4 and apply the estimate (3.6), which gives

kr.v2�u/k˝ D
16

3
p
5
a4 6

p
2

� 0Z
�a

3
p
�x1 v.x1; 0/dx1

�1=2
C
a

�

�
k�v2k

2
˝C
C k�v2k

2
˝�

�1=2
:

This estimate has the efficiency index

1 6
M3

�
v;rv2;

�
@v2
@n

�
; 0
�

kr.v2 � u/k˝
6
p
22

�
C

r
45

2 � 77
a�5=4 � 1:493C 0:541a�5=4;

which shows that the upper bound is quite realistic.

In the next example, we study the behavior of error majorants for some sequences of the
approximate solutions .v3;"/ � K, which converges to the exact solution u as "! 0.

EXAMPLE 5.4 Let v D v3;" be defined as follows:

v3;".x1; x2/ WD u.x1; x2/

C "2

8̂<̂
:
0; if .x1; x2/ 2 ˝; x1 6 �";
ˇ.x1/.aC x1 C x2/.aC x1 � x2/; if .x1; x2/ 2 ˝; �" < x1 6 0;

ˇ.x1/.a � x1 � x2/.a � x1 C x2/; if .x1; x2/ 2 ˝; 0 < x1 6 a;

where " 2 .0I a/ is an arbitrary small number and ˇ.x1/ D .a � x1/.x1 C "/2.
For any " 2 .0I a/ we have v3;" 2 K, and v3;k > u in ˝. It is also evident that Mv3;"

0 �Mu
0

(see Figure 3 (right)); in other words, for any " the function v3;" has smaller coincidence set that u.
First, we set q� D ru, � D

�
@u
@n

�
. Taking into account (5.2) and appyling the estimate (2.17),

we obtain by direct calculations the following equalities:

kr.v3;" � u/k˝ D
2

15
p
7
"2A .a; "/;

M
�
v3;";ru;

h@u
@n

i
; 0
�
D

2

15
p
7
"2A .a; "/C 4

p
6"11=4B.a; "/;

where

A .a; "/ D .3a10 C 30a9"C 135a8"2 C 360a7"3/1=2 C o."2/;

B.a; "/ D

�
a3

35
�
"a2

105
�
"2a

231
C

"3

429

�1=2
:
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Thus, the efficiency index takes the form

1 6
M
�
v3;";ru;

�
@u
@n

�
; 0
�

kr.v3;" � u/k˝
D 1C 30

p
42"3=4

B.a; "/

A .a; "/
: (5.4)

Obviosly, the last term on the right-hand side of (5.4) tends to zero as "! 0.
Next, we take q� D rv3;" and � D

� @v3;"
@n

�
. Due to (5.2), (5.3), and the equality

� @v3;"
@n

�
D
�
@u
@n

�
,

we get

M

�
v3;";rv3;";

�
@u

@n

�
; 0

�
D
p
6"

� 0Z
�"

p
�x1ˇ.x1/.aC x1/

2dx1

�1=2
C
a

�

�
k�v3;"k

2
˝�
C k�v3;"k

2
˝C

�1=2
D 4
p
6"11=4B.a; "/C

2

3�

r
2

35
a"2C .a; "/;

where C .a; "/ D .37a8 C 296a7"C 2716a6"2 � 1288a5"3/1=2 C o."2/.
In this case, the majorant (2.17) has the efficiency index

1 6
M.v3;";rv3;";

� @v3;"
@n

�
; 0/

kr.v3;" � u/k˝
D 30

p
42"3=4

B.a; "/

A .a; "/
C
a
p
10

�

C .a; "/

A .a; "/
:

It is easy to see that if " tends to zero then the efficiency index can not exceed 3:54.

REMARK 5.5 In the above examples, rather simple functions q� and � (constructed directly by
means of the function v) provide quite realistic bounds of the error. In more complicated examples,
such a simple choice might lead to a considerable overestimation of the error. In this case, so defined
q and �may be considered as a starting point for the iteration process of majorant minimization that
generates a monotonically decreasing sequence of numbers, which are guaranteed upper bounds of
the error.
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