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In this paper we develop a penalty method to approximate solutions of the free boundary problem
for minimal surfaces. To this end we study the problem of finding minimizers of a functional F �
which is defined as the sum of the Dirichlet integral and an appropriate penalty term weighted by a
parameter �. We prove existence of a solution for � large enough as well as convergence to a solution
of the free boundary problem as � tends to infinity. Additionally regularity at the boundary of these
solutions is shown, which is crucial for deriving numerical error estimates. Since every solution is
harmonic, the analysis is largely simplified by considering boundary values only and using harmonic
extensions.

In a subsequent paper we develop a fully discrete finite element procedure for approximating
solutions to this problem and prove an error estimate which includes an order of convergence with
respect to the grid size.
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0. Introduction

A “minimal surface with free boundaries” or a “solution of the free boundary problem” is a
stationary point of Dirichlet’s integral among all disk type surfaces, whose boundary curves lie
on a prescribed support surface S .

One main example is, when S is given as a topological torus. Then there is a stationary surface,
which“fills the hole of S”, but there are also more stationary solutions which are positioned inside
the tube. In order to specify the position of the solution more precisely and avoid degeneration,
one can choose a polygon, which does not meet the surface S , and demand, that the boundary of
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FIG. 1. A minimal surface, whose boundary curve is linked with a polygon: The linking number is nonzero.

the minimal surface on S is “linked” with that polygon (see Figure 1 and see [4, Ch. 1.2] for the
topological concept of linking number).

Of course, the problem is also well defined for support surfaces of higher topological type.
The free boundary problem is a variant of the classical “Plateau Problem”, which consists in

finding a disk type minimal surface spanning a prescribed closed boundary curve � . Analytically
both problems are investigated very well. There are existence results, valid under weak assumptions
on the data, and one can show regularity of solutions up to the boundary under natural assumptions
on S or � respectively. In the first section we give an overview about the most pertinent analytic
results. A comprehensive treatise on minimal surfaces and related topics can be found in the
monographs by Dierkes, Hildebrandt, Sauvigny and Tromba [2], [3], [4] and Nitsche [13].

Besides the highly nonlinear nature of the Plateau Problem or the Free Boundary Problem,
the numerical approximation of solutions is difficult in both cases for the following reason: the
subsidiary condition, namely that the boundary points have to lie on a prescribed set, is a pointwise
condition and hence is unfavorable for numerics.

For the Plateau Problem many authors have developed different methods to tackle this difficulty:
for the sake of conciseness we refer here only to Dziuk and Hutchinson [5], where a detailed
overview on previous results can be found. In the papers by Dziuk and Hutchinson ([5], [6]) the
fact is used, that the Dirichlet integral over the unit disk B can be written as integral over @B by
using the harmonic extension. This functional is defined on the space of reparametrisations of � , so
the boundary condition has been hidden into the functional.

Dziuk and Hutchinson are the first authors who give a fully discrete, finite element procedure
for approximating (minimizing and stationary) minimal surfaces, which also yields an order of
convergence with respect to the grid size. Further error estimates for their setting are shown in
Pozzi [14].

The only work on the approximation of solutions to the free boundary problem, which we are
aware of, is the dissertation of Tchakoutio [16]. He applies the method of [5] and [6] to torus type
support surfaces and also obtains convergence results similar as in [6]. Our results here are more
general as Tchakoutios’ in that we allow arbitrary support surfaces S .

In this paper we develop a new approach to the free boundary problem by using a penalty
method. To this end we will set up a new class of “Penalty Problems”, which approximate the
original free boundary problem in a suitable way and also replace the boundary condition. This is
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independent of the topological type of the support surface S , but only yields minimizers rather than
merely stationary surfaces (which need not furnish a minimum for the Dirichlet- or area- functional).

In a subsequent paper (see [10]) we will apply methods of Dziuk and Hutchinson ([5], [6]) to
approximate solutions of these penalty problems numerically and prove a convergence result, which
yields an order of convergence with respect to the grid size. For this proof, besides the (geometrically
motivated) assumption on the non-degeneracy of the second variation, we will not need any further
a-priori assumptions.

Our method is based on the following idea: let B � R2 be the unit disk, � > 0 a parameter,
ı the signed distance function to S , X W B ! R3 a parametrization of a surface, and D.X/ D
1
2

R
B
jrX j2 the Dirichlet integral. We consider functionals of the form

D.X/C �

Z
@B

ı.X/2jX' j:

Here the second term “penalizes” by assigning large values if the distance of the boundary of X and
the surface S increases. We want to minimize this functional among all functions whose boundary
curves lie in a neighbourhood of S and are linked with a prescribed polygon. The procedure is
mostly inspired by the classical existence theory.

Because of technical difficulties we will use a slightly modified version F� of the above
functional (see Definition 4). We can then show that the corresponding variational problems P �
have a solution, assuming � is large enough (see Theorem 5).

In this way we have replaced the free boundary condition by adding a penalty term, but solutions
X� of the penalty problems P � are in general no solutions of the free boundary problem. So the
next step is to prove, that these solutions X� converge to a solution of the free boundary problem as
� ! 1 (see Theorem 9). The proof crucially relies on the classical existence theory. Furthermore
we can even show an order of convergence with respect to � (see Theorem 10).

Since we can show that solutions X� of P � are harmonic functions, F�.X�/ is uniquely
determined by the boundary values 
 D X�j@B . We can therefore write E�.
/ rather than F�.X�/
and similarly as in the work of Dziuk and Hutchinson ([5], [6]) we may reformulate the penalized
problem into one-dimensional variants P �� (see Theorem 15), which in turn is more favorable for
numerics.

Additionally we prove that solutions 
 of P �� are of class C 2 (see Theorem 14), which will later
also be important for the numerical analysis.

Finally we give an outlook to our subsequent paper [10], where we introduce a discretization
E�
h
.
h/ of E�.
/ and prove an error estimate of the following form: Let 
 be a minimizer of the

one-dimensional problem P ��, such that ı2E�.
/ is positive definite, i.e. there is a constant Qc > 0,
such that ı2E�.
/.�; �/ > Qck�k2

H1
2

for all variations �. Then there is a unique solution 
h of the

discrete problem with

k
 � 
hkH1
2

6 ch;

where c is independent of h. In section 7 we sketch the employed algorithm and comment on some
numerical examples.

To conclude, let us remark that a related problem to the one considered here, is the computation
of harmonic maps into surfaces: for this several interesting numerical approaches have been
proposed, see Bartels [1], Steinhilber [15] and the references given in there.
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1. The free boundary problem

In this section we give a short review of the solution to the free boundary problem for minimal
surfaces. Here we present a greatly reduced version of the Chapters 1.1 to 1.3 in [4]. For more
comprehensive reasoning we refer to [4].

Consider a closed set S � R3. By T� D T�.S/ WD fx 2 R3 j dist.x; S/ < �g we denote its
tubular �-neighbourhood and by M.S/ the set of all homotopy classes of closed paths in S .

ASSUMPTION A Suppose there is a number � > 0 such that the inclusion map S ! T� induces a
bijection from M.S/ to M.T�/.

Let B � R2 be the unit disk and choose a closed polygon ˘ in R3 with ˘ \ T� D ;. Then the
class of admissible functions is defined as

C.˘; S/ WD
˚
X 2 H 1

2 .B;R
3/
ˇ̌
X j@B.w/ 2 S for a.e. w 2 @B; L.X j@B ; ˘/ ¤ 0

	
:

Here X j@B is the L2-trace of X and L denotes the linking number of two closed curves. (For the
exact definition and properties of linking numbers see [4], Ch. 1.2 and the literature cited therein.)
Although X j@B is not necessarily continuous, one can show that the linking number is well defined
(see [4, Ch. 1.1, Theorem 3]).

The main existence result (cp. [4, Ch. 1.3, Theorems 1 and 2]) is

Theorem 1 Let S be a closed set satisfying assumption A. If there is a closed polygon˘ in R3 with
˘ \ T� D ;, such that the class C.˘; S/ is not empty, then there is a solution QX of the variational
problem

P .˘; S/ W D.X/! min in C .˘; S/;

where D.X/ D 1
2

R
B
jrX j2 denotes the Dirichlet integral. Any solution QX is a minimal surface,

i.e., QX 2 C 2.B;R3/ \ C.˘; S/ is harmonic and conformal

� QX D QXuu C QXvv D 0; j QXuj
2
D j QXvj

2; h QXu; QXvi D 0

in B . Furthermore QX minimizes the area functional A.X/ in C.˘; S/ and infC.˘;S/A D

infC.˘;S/D.

REMARK To avoid degeneration of minimizing sequences and exclude trivial solutions, we may
specify the topological position of the solution surface relative to the boundary surface S in advance.
Here we have chosen to preassign a nontrivial linking number, however also similar topological
devices may be equally pertinent, cp. Chapter 1.1 in [4].

For the convenience of the reader we present the main ideas of the existence proof:
Let A and B be closed sets, then g.A;B/ WD supfdist.x; B/ j x 2 Ag denotes the greatest

distance of A to B . A sequence Xk 2 H 1
2 .B;R3/ is said to be a “generalized admissible sequence”

(g.a.s.) for P .˘; S/, if there is a sequence of closed sets Sk such that Xk 2 C.˘; Sk/ and
limk!1 g.Sk ; S/ D 0 holds true.

We set
e WD inf

˚
D.X/j X 2 C.˘; S/

	
and

e� WD inf
˚

lim inf
k!1

D.Xk/j.Xk/ is a g.a.s. for P .˘; S/
	
:
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Evidently we have e� 6 e.
Now we choose a “g.a.s.” Zk with limk!1D.Zk/ D e�, which we call a “generalized

minimizing sequence” (g.m.s.). It is possible to pass from the sequence Zk to a “g.m.s.” Yk of
functions with absolutely continuous boundary curves. Then we get a “g.m.s.” Xk by taking the
harmonic extension of these boundary curves.

Lemma 2 Let Xk be a “generalized minimizing sequence” for P .˘; S/ of harmonic functions.
Then there is a subsequence, which converges weakly in H 1

2 (B) and uniformly on every subset
˝ �� B to a harmonic function QX 2 C.˘; S/.

(See proof of Theorem 1 in [4].) We denote the subsequence again by Xk . The lower
semicontinuity of the Dirichlet integral with respect to weak convergence in H 1

2 yields D. QX/ 6
lim infk!1D.Xk/ D e� 6 e 6 D. QX/ and therefore D. QX/ D e D e�.

For solutions of P .˘; S/ the following regularity result holds:

Theorem 3 Let S be a 2-dimensional compact submanifold of R3 of class Cm or Cm;ˇ , m > 3,
ˇ 2 .0; 1/. Then any stationary point of the Dirichlet integral in C.˘; S/ is of class Cm�1;˛.B/ for
any ˛ 2 .0; 1/ or of class Cm;ˇ .B/ respectively.

This is mainly the statement of Theorem 1 in Chapter 2.8. of [4]. One can easily see that S is an
“admissible support surface” (in the sense of Definition 1 in Ch. 2.6 of [4]) since – by assumption –
S is a compact submanifold. Furthermore the statement of Theorem 1 loc. cit. is formulated for
solutions of semifree boundary problems, but all considerations in the proof are strictly local and
can hence be carried over in essentially the same way (see the remarks at the end of Chapter 2.4
in [4]).

2. The Penalty Functional

From now on we will always assume that S fulfills

ASSUMPTION B Let S � R3 be a 2-dimensional compact submanifold of class C 3.

Clearly, Assumption B implies Assumption A.
Consider a suitably small neighborhood U � R3 of S and a C 3-function G W U ! R such that

S D
˚
x 2 U W G.x/ D 0

	
;

i.e., S is the zero level set of the function G. It is well known that we may choose G as the signed
distance function relative to S (cp. for example Appendix in [8]), however we do not explicitly
require rG 6D 0 on S , hence also other choices for G might be appropriate.

DEFINITION 4 Let � > 0 be a parameter and G 2 C 3.U / such that S D G�1.0/. Furthermore
consider a point P 2 R3 and a mapping % 2 H 1

2 .@B/ with % > 0, %.0/ D 1 and %.�/ D 0. For
X 2 H 1

2 .B;R3/ \H 1
2 .@B;R3/ with X.@B/ � U we define the penalty functional

F�.X/ WD D.X/C �

Z
@B

G.X/2

r
jX' j2 C

1

�
C
1

�

Z
@B

�
jX' j

2
C %jX � P j2

�
: (1)

By .r; '/ we denote polar coordinates in B .
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REMARK The main idea behind the definition of the functional F� above consists in adding a
term to Dirichlet’s integral which penalizes the functional for not assuming boundary values on the
prescribed surface S . Additionally we add a small third term which allows us to work in the class
H 1
2 .@B/ and a fourth one which (for an appropriate choice of the point P ) removes the invariance

with respect to rotations of B . This property is crucial for the numerical analysis carried out in the
subsequent paper [10].

We now want to choose a � > 0, such that the �-neighbourhood T� of S fulfills some important
properties. At first we choose � > 0 so small that T� � U . Because G 2 C 3.U /, there is an open
set QU with T� � QU � U , in which G as well as its first, second and third derivatives are bounded.
Therefore we may assume that G as well as its first and second derivatives are Lipschitz continuous
in T�. Furthermore let � be so small that the inclusion map S ! T2� induces a bijection from
M.S/ to M.T2�/.

This choice of � would be sufficient for most of the following results. For later purposes in
Section 5 we select � > 0 so small that - in addition to the other requirements - we have that the
absolute values of principle curvatures of S are bounded by 1

2�
and that for all �0 < 2� the parallel

surface to S at distance �0 is again of class C 3.
Let ˘ be a closed polygon, such that ˘ \ T2� D ;. Now we can define the class of admissible

functions:

C WD
˚
X 2 H 1

2 .B;R
3/ \H 1

2 .@B;R
3/
ˇ̌
X.@B/ � T�; L.X j@B ; ˘/ ¤ 0

	
(2)

Again, L is the linking number of two closed curves, which can be defined here in a classical way
as X j@B is continuous (recall that H 1

2 .@B/ is embedded in C 0;
1
2 .@B/). We remark that the class C

does not depend on �. Furthermore it is not empty, if we assume that C.˘; S/ is not empty (see
remark following Theorem 5).

We are now concerned with the following questions:
Is the variational problem

P � W F�.X/! min in C (3)

solvable, at least if � is large enough? And in case this is true, do solutions X� of the problems P �
converge to a solution QX of P .˘; S/ for �!1 in a suitable way?

In the next sections we will show that these questions can be answered in the affirmative. Hence
as far as a numerical treatment is concerned, it is convenient to consider problem P � rather that the
original problem P .˘; S/. A main advantage of our approach is that - in this way - we do not need
to enforce the pointwise boundary condition X j@B.@B/ � S .

3. Existence of a solution

For 0 6 t 6 � we set
h.t/ WD min

z2T�nTt

G.z/2;

where T0 WD ;. Then h.0/ D 0 and h.t/ > 0, if t > 0. By definition h is continuous and increasing.
If G is the signed distance function, we have h.t/ D t2.

Our main goal in this section is to prove the following existence theorem:
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Theorem 5 Let the class C.˘; S/ be non empty and consider a solution QX of P .˘; S/. Then for
all � > max

n
D. QX/C2

�h.�2 /
;
R
@B

�
j QX' j

2 C %j QX � P j2
�o
DW �0.�; QX/ the variational problem P � is

solvable. Every solution of P � is a harmonic function.

First we note that the class C (recall equation (2)) is not empty, since by Theorem 1 there is a
solution QX of P .˘; S/, which, by Theorem 3, is smooth up to the boundary.

We set e� WD inffF�.X/j X 2 C g and pick a minimizing sequence for P �, i.e. a sequence
Xk � C with limk!1 F�.Xk/ D e�.

There is a constant M�, such that D.Xk/ 6 F�.Xk/ 6 M� for all k. This implies that there is
a subsequence Xk , that converges weakly in H 1

2 .B/ to a function X 2 H 1
2 .B/.

Furthermore the trace Xkj@B converges in L2.@B/ to X j@B . Because Xk is a minimizing
sequence, we have

R
@B
j.Xk/' j

2 6 �F�.Xk/ 6 �M�. So there is another subsequence Xk , whose
boundary values Xkj@B converge weakly in H 1

2 .@B/ to X j@B whence X 2 H 1
2 .B/ \H

1
2 .@B/.

Lemma 6 For 0 < �0 < � and a solution QX ofP .˘; S/ let � > �0.�0; QX/. Consider a minimizing
sequence Xk for P �, that converges weakly in H 1

2 .B/ to a function X 2 H 1
2 .B/ \H

1
2 .@B/. Then

X.@B/ � T�0 holds true.

Proof. Assume there was a subsequence Xk with Xk.1; 'k/ … T�0 for some 'k 2 Œ0; 2��. If
@T�0

2
\Xk.@B/ D ; we obtain

�

Z
@B

G.Xk/
2

r
j.Xk/' j2 C

1

�
> �

Z
@B

G.Xk/
2
j.Xk/' j > �h

��0
2

�
2��;

becauseXkj@B lies completely in T�nT�0
2

(recall, that h is increasing) and, because of˘\T2� D ;
and L.Xkj@B ; ˘/ ¤ 0, the boundary curve Xkj@B has to wind around a �-neighbourhood of ˘ , so
the length of Xkj@B has to be at least 2�� (see Figure 2).

If @T�0
2
\Xk.@B/ ¤ ; (see Figure 3) we obtain

�

Z
@B

G.Xk/
2

r
j.Xk/' j2 C

1

�
> �

Z
@B

G.Xk/
2
j.Xk/' j > �h

��0
2

�
2
�0

2
;

because Xkj@B takes values in T�0
2

as well as in T�nT�0 and therefore two parts of Xkj@B with
length �0

2
have to be contained in T�0nT�0

2
. These two estimates yield

�

Z
@B

G.Xk/
2

r
j.Xk/' j2 C

1

�
> ��0h

��0
2

�
:

As already seen, we have QX 2 C . Additionally G.z/ D 0 holds for all z 2 QX.@B/. For � >
�0.�0; QX/ D max

n
D. QX/C2

�0h.
�0
2 /
;
R
@B

�
j QX' j

2 C %j QX � P j2
� o

and every k we get

F�.Xk/ > �

Z
@B

G.Xk/
2

r
j.Xk/' j2 C

1

�
> ��0h

��0
2

�
> D. QX/C 2

> D. QX/C
1

�

Z
@B

�
j QX' j

2
C %j QX � P j2

�
C 1 D F�. QX/C 1 > e� C 1:
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S

@T�0

@T�0
2

@T�

�˘

FIG. 2. The case @T�0
2
\Xk.@B/ D ;

S

@T�0

@T�0
2

@T�

�0
2 ˘

FIG. 3. The case @T�0
2
\Xk.@B/ ¤ ;

This is a contradiction as Xk is a minimizing sequence. We conclude, that our assumption was
wrong and therefore Xk.@B/ � T�0 holds true for every k > k0.�/.
Since Xk converges weakly in H 1

2 .B/ to X , the boundary values Xkj@B converge in L2.@B/ to
X j@B . So there is a subsequence, which converges almost everywhere and we get X j@B.w/ 2 T�0
for almost all w 2 @B . As X j@B is continuous, X.@B/ � T�0 holds true.

The following corollary will be used later.

Corollary 7 Let 0 < �0 < � and QX be a solution of P .˘; S/. Further let � > �0.�0; QX/ and X�
be a solution of P �. Then X�.@B/ � T�0 holds true.

Proof. This is a direct consequence of Lemma 6 applied to the constant sequence Xk WD X� for
all k.

By Lemma 6 we now have X.@B/ � T�0 � T�, for � large enough. Hölder’s inequality yields

jXk.'2/ �Xk.'1/j 6
Z '2

'1

j.Xk/' j 6
p
'2 � '1

sZ '2

'1

j.Xk/' j2 6
p
'2 � '1

p
�M�:

Therefore the Xkj@B are equicontinuous and because of Xk.@B/ � T� they are uniformly bounded.
Applying the theorem of Arzelà–Ascoli we can extract another subsequence Xk , which converges
uniformly on @B . As L.Xkj@B ; ˘/ ¤ 0 holds for all k, we get L.X j@B ; ˘/ ¤ 0. We conclude that
X 2 C and therefore

e� 6 F�.X/:

We will now make use of a well known lower semicontinuity result (see for example Theorem 1.8.2
in [12]):
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Lemma 8 Let f .x; z; p/ 2 C 0.Rn; U;RnN /, where U � RN . Let f be convex in p for all .x; z/,
f .x; z; p/ > 0 for all .x; z; p/ and fp 2 C 0.Rn; U;RnN /. Consider a domain ˝ � Rn with
zk.˝/; z.˝/ � U and zk + z in H 1

1 .˝/. Then we haveZ
˝

f .x; z;rz/dx 6 lim inf
k!1

Z
˝

f .x; zk ;rzk/dx:

We apply this lemma with n D 1,N D 3, f .x; z; p/ D �G.z/2
q
jpj2 C 1

�
C
1
�

�
jpj2C%.x/jz�

P j2
�

and U D T�. In connection with the lower semicontinuity of the Dirichlet integral we obtain

F�.X/ 6 lim inf
k!1

F�.Xk/ D e�

and therefore F�.X/ D e�. We conclude that X is a solution of P �.
Every solution X of P � is a minimizer of the Dirichlet integral among all variations with

compact support in B , because these do not change the boundary integrals. Therefore X is a weak
solution of the Laplace equation and a standard regularity result (see, for example, [8, Corollary
8.11]) yields that X is a classical solution and hence harmonic.

4. Convergence for �!1

In this section we investigate the connection between solutions of P � and those of P .˘; S/.
Invoking Corollary 7 the following convergence result follows from the classical theory.

Theorem 9 Consider a solution QX of the free boundary problem P .˘; S/ and solutions X�n of the
problems P �n , where �n !1 as n!1. Then

lim
n!1

D.X�n/ D lim
n!1

F�n.X�n/ D D.
QX/

holds true and there is a subsequence of X�n , which converges in H 1
2 .B/ and uniformly on every

subset ˝ �� B to a solution of P .˘; S/.

Proof. By Theorem 3 we obtain QX 2 C and thus

lim sup
n!1

D.X�n/ 6 lim sup
n!1

F�n.X�n/ 6 lim sup
n!1

F�n.
QX/

D lim sup
n!1

�
D. QX/C

1

�n

Z
@B

�
j QX' j

2
C %j QX � P j2

� �
D D. QX/: (4)

For all n > N0 we have �n > max
˚
D. QX/C2

�h.�2 /
;
R
@B

�
j QX' j

2 C %j QX � P j2
�	

. From the properties of

the function h it follows that the function f .�/ WD D. QX/C2

�h. �2 /
is continuous and strictly decreasing on

.0; ��. Furthermore we have lim�!0 f .�/ D1, so for every n > N0 there exists exactly one �0 D
�0.n/ < � with �n D f .�0.n// and we obtain �n D max

˚
D. QX/C2

�0h.
�0
2 /
;
R
@B

�
j QX' j

2 C %j QX � P j2
�	

.

By applying Corollary 7 we get X�n.@B/ � T�0.n/ and thus X�n 2 C.˘; T�0.n// for all n > N0.
Using the notation introduced in Theorem 1, we infer from limn!1 �0.n/ D 0 the relation

limn!1 g.T�0.n/; S/ D 0. Whence X�n is a “generalized admissible sequence” for P .˘; S/ and

D. QX/ D e D e� 6 lim inf
n!1

D.X�n/ 6 lim inf
n!1

F�n.X�n/: (5)
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The estimates (4) and (5) prove the first assertion.
Since limn!1D.X�n/ D D. QX/ D e holds true, the harmonic functions X�n form a

“generalized minimizing sequence”. Therefore by Lemma 2, there is a subsequence of X�n , which
converges weakly in H 1

2 .B/ and uniformly on every subset ˝ �� B to a solution P .˘; S/. From
weak convergence in H 1

2 .B/ we get strong convergence in L2.B/ by Rellich’s theorem. Since also
the Dirichlet integrals converge, we obtain strong convergence in H 1

2 .B/.

Theorem 10 Let G be the signed distance function of S , QX a solution of P .˘; S/, � >

max
˚
4
�3
.D. QX/C 2/;

R
@B

�
j QX' j

2C %j QX �P j2
�	

and X� a solution of P �. Then there is a constant
C that does not depend on � such that

jD. QX/ �D.X�/j 6
C
3
p
�
; jD. QX/ � F�.X�/j 6

C
3
p
�
:

REMARK In order to simplify the notation in the proof, we have assumed that G is the signed
distance function. With the same arguments it can be shown that, if G is a function with polynomial
growth of order n, the order of convergence is 1

2nC1
.

Proof. Similarly to the proof of the previous theorem we infer

D.X�/ �D. QX/ 6 F�.X�/ �D. QX/ 6 F�. QX/ �D. QX/

D
1

�

Z
@B

�
j QX' j

2
C %j QX � P j2

�
D
C1

�
: (6)

Setting �0 WD 3

q
4
�
.D. QX/C 2/, we have �0 < �. According to Theorem 1 there is a solution QY�0

of the problem P .˘; T�0/, because the closed set T�0 fulfills Assumption A and we have QX 2
C.˘; T�0/. By the definition of �0 we have � > max

˚
4

�3
0

.D. QX/C 2/;
R
@B

�
j QX' j

2C %j QX �P j2
�	

.

Corollary 7 yields X�.@B/ � T�0 and thus X� 2 C.˘; T�0/. It follows that

D. QX/ � F�.X�/ 6 D. QX/ �D.X�/ 6 D. QX/ �D. QY�0/: (7)

As QX and QY�0 are minimal surfaces by Theorem 1, we obtain

D. QX/ �D. QY�0/ D A.
QX/ � A. QY�0/: (8)

In order to continue estimating this term, we have to show, that QY�0 is also a solution of the problem
P .˘; @T�0/.

Since the closed set T�0 fulfills a chord-arc condition, QY�0 2 C
0.B/ holds (see Chapter 2.5,

Theorem 4 in [4]). Assume there was a w 2 @B with QY�0.w/ 2 T�0 . Then, because QY�0 is
continuous, there is an � > 0 such that QY�0.B \ B�.w// 2 T�0 . From the linking condition we
infer that the minimal surface QY�0 is certainly not a constant and therefore DB\B�.w/. QY�0/ > 0.
According to the Riemann mapping theorem we choose a conformal mapping � from B to
BnB�.w/. Because of DBnB�.w/.

QY�0/ D DB. QY�0.�// we get a function QY�0.�/ 2 C.˘; T�0/
with D. QY�0.�// < D. QY�0/, which is not possible. This shows that QY�0 cannot take boundary
values in T�0 and we obtain QY�0.@B/ � @T�0 .

Again because of continuity, QY�0.@B/ is contained in a connected component of @T�0 , which
we denote by @T 1�0 . This is a parallel surface of S with distance �0 < � and thus, according to our



APPROXIMATION OF MINIMAL SURFACES WITH FREE BOUNDARIES 561

choice of � in Section 2, a compact submanifold of class C 3. In particular, by Theorem 3 we have
QY�0 2 C

2.B/. Now we define a mapping Y�0 by

Y�0 D

(
QY�0.2r; '/ in B 1

2

QY�0.1; '/C �0.2r � 1/N.
QY�0.1; '// in BnB 1

2

;

whereN denotes the inner normal of @T 1�0 . By construction we have Y�0 2 C
2.B 1

2
/\C 2.BnB 1

2
/\

C 0.B/ and thus Y�0 2 C.˘; S/. We obtain

A. QX/ � A. QY�0/ D A.
QX/ � AB1=2.Y�0/ D A.

QX/ � A.Y�0/C ABnB1=2.Y�0/

6 ABnB1=2.Y�0/; (9)

because QX also minimizes the area functional according to Theorem 1. We denote the principal
curvatures of S by �i , i D 1; 2. By our choice of � their absolute values are bounded by 1

2�
. For

the principal curvatures Q�i of the parallel surfaces with distance �0 2 Œ0; ��

Q�i D
�i

1˙ �i�0

holds, depending on the choice of orientation (see Ch. 14.6 in [8]). We obtain

j Q�i j 6
j�i j

1 � j�i�0j
6

1

2�
�
1 � j�0j

2�

� 6
1

�
:

Therefore the absolute values of the principal curvatures of @T 1�0 are bounded by 1
�

. Setting 
.'/ WD
QY�0.1; '/ we have for all r 2 .1

2
; 1/:

.Y�0/r D 2�0N
�

.'/

�
; .Y�0/' D 


0.'/C �0.2r � 1/rN
�

.'/

�
� 
 0.'/:

It follows that

ABnB1=2.Y�0/ D

Z 2�

0

Z 1

1
2

j.Y�0/r � .Y�0/' jdrd'

6
Z 2�

0

Z 1

1
2

j.Y�0/r jj.Y�0/' jdrd'

D

Z 2�

0

Z 1

1
2

2�0j

0.'/C �0.2r � 1/rN

�

.'/

�
� 
 0.'/jdrd'

D

Z 2�

0

Z 1

1
2

2�0

�
j
 0.'/j2 C 2�0.2r � 1/h


0.'/;rN
�

.'/

�
� 
 0.'/i

C �20.2r � 1/
2
jrN.
.'// � 
 0.'/j2

� 1
2

drd'

6
Z 2�

0

�0

�
j
 0.'/j2 C 2�0jh


0.'/;rN
�

.'/

�
� 
 0.'/ij

C �20jrN
�

.'/

�
� 
 0.'/j2

� 1
2

d':
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Depending on the choice of orientation, the Weingarten mapping of @T 1�0 is ˙rN . Note that the
identity KI � 2HII C III D 0 holds for the three fundamental forms I , II and III , where I
and II are the first and the second fundamental forms resp. and the third fundamental form III is
essentially given by the square of the Weingarten map. For details see Chapter 1.2 in [2], especially
Definition (9) and Equation (26). Therefore III 6 jKjI C 2jH jjII j and we obtainˇ̌

rN
�

.'/

�
� 
 0.'/

ˇ̌2 6
ˇ̌
Q�1 Q�2

ˇ̌ˇ̌

 0.'/

ˇ̌2
C
ˇ̌
Q�1 C Q�2

ˇ̌ˇ̌
h
 0.'/;rN.
.'// � 
 0.'/i

ˇ̌
;

and thus with j Q�1j; j Q�2j 6 1
�

and �0 < �:

ABnB1=2.Y�0/ 6
Z 2�

0

�0

�
.1C �20j Q�1 Q�2j/j


0.'/j2

C .2�0 C �
2
0j Q�1 C Q�2j/jh


0.'/;rN.
.'// � 
 0.'/ij
� 1
2

d'

6
Z 2�

0

�0

�
2j
 0.'/j2 C 4�0jh


0.'/;rN.
.'// � 
 0.'/ij
� 1
2

d':

For 
 0.'/ ¤ 0 we have

ˇ̌
h
 0.'/;rN

�

.'/

�
� 
 0.'/i

ˇ̌
D

ˇ̌
h
 0.'/;rN

�

.'/

�
� 
 0.'/i

ˇ̌
j
 0.'/j2

j
 0.'/j2 6
1

�
j
 0.'/j2;

since the normal curvature is bounded by the principal curvatures (see Chapter 1.2, Definitions (20)
and (21) in [2]). For 
 0.'/ D 0 this inequality is trivial and it follows that

ABnB1=2.Y�0/ 6
Z 2�

0

�0
�
6j
 0.'/j2

� 1
2 d' D

p
6�0

Z 2�

0

j
 0.'/jd'

D
p
6�0l.
/ D

p
6�0l. QY�0 j@B/: (10)

According to Chapter 4.6, Remark 10 in [4] the inequality

l. QY�0 j@B/ 6
2

�
D. QY�0/ (11)

holds, as @T 1�0 fulfills a ‘�-sphere condition’. Collecting (7), (8), (9), (10) and (11) we infer

D. QX/ � F�.X�/ 6 D. QX/ �D.X�/ 6 2
p
6
�0

�
D. QY�0/

6 2
p
6
�0

�
D.X�/ 6 2

p
6
�0

�
F�.X�/ 6 2

p
6
�0

�
F�. QX/

D 2
p
6
�0

�

�
D. QX/C

1

�

Z
@B

�
j QX' j

2
C %j QX � P j2

��
6 2
p
6
�0

�

�
D. QX/C 1

�
D
2
p
6

�

3

r
4

�
.D. QX/C 2/

�
D. QX/C 1

�
D

C2
3
p
�
: (12)

Because � is bounded from below, the assertion follows from (6) and (12).
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5. Regularity

In this section we show that the boundary values X�j@B of a solution X� of P � are of class C 2: this
will be important later for the numerical analysis (see Jenschke [10]).

We recall some basic results about fractional order Sobolev spaces (see [6, � 3]).
The spaces H s

2 .@B/ and H s
2 .B/ can be defined for all real s, but apart from the classical cases

s 2 N (and H 0
2 WD L2) we will only need the following cases.

For f W @B 7! R the H 1=2
2 .@B/-seminorm is defined by

jf j2
H
1=2
2

.@B/
D

Z
@B

Z
@B

jf .'/ � f . Q'/j2

j' � Q'j2
d'd Q'

and for uWB 7! R the H 1=2
2 .B/-seminorm is defined by

juj2
H
1=2
2

.B/
D

Z
B

Z
B

ju.x/ � u. Qx/j2

jx � Qxj3
dxd Qx:

In both cases the corresponding norm is given by

k � k
2

H
1=2
2

D k � k
2
L2
C j � j

2

H
1=2
2

:

Furthermore we have

jf j
H
3=2
2

.@B/
D jf' jH1=2

2
.@B/

; juj
H
3=2
2

.B/
D jruj

H
1=2
2

.B/

and
k � k

2

H
3=2
2

D k � k
2

H1
2

C j � j
2

H
3=2
2

:

If u 2 H sC1=2
2 .B/ for s 2

˚
1
2
; 1; 3

2

	
, then u has a well defined trace f on @B and

kf kH s
2
.@B/ 6 ckuk

H
sC1=2
2

.B/
:

(See Chapter 1, Section 9.2 in [11].) Such an estimate is in general not true for s D 0, but if a
function u 2 H 1=2

2 .B/ fulfills �u 2 L2.B/, then u again has a trace f and

kf kL2.@B/ 6 c
�
kuk

H
1=2
2

.B/
C k�ukL2.B/

�
: (13)

(See Chapter 2, Section 7.3, Theorem 7.3 in [11].) Conversely, if f 2 H s
2 .@B/ for s 2

˚
0; 1
2
; 1; 3

2

	
,

then there is a unique harmonic function˚.f / defined onB with trace f as before, and in particular

k˚.f /k
H
sC1=2
2

.B/
6 ckf kH s

2
.@B/: (14)

(See Chapter 2, Section 7.3, Theorem 7.4 in [11].)
Collecting the above results we are able to prove the following lemma:

Lemma 11 Let u 2 H 1
2 .B/ \ H

1
2 .@B/ be a harmonic function. Then the derivatives @u

@x
and @u

@y

have L2-traces on @B and Z
B

ru � r	 D

Z
@B

ru � �	

holds true for all 	 2 C1.B/, where � denotes the outer normal of @B .
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Proof. As uj@B 2 H 1
2 , it follows from (14) and the uniqueness of the harmonic extension that

u 2 H
3=2
2 .B/. Evidently we have @u

@x
2 H

1=2
2 .B/ and @u

@y
2 H

1=2
2 .B/. Furthermore these derivatives

are again harmonic functions, so according to (13) @u
@x

and @u
@y

have L2-traces on @B . Choosing a
sequence of functions gk 2 C1.@B/ with limk!1 ku � gkkH1

2
.@B/ D 0, we obtain from the

linearity of ˚ and (14)

kru � r˚.gk/kH1=2
2

.B/
6 ku � ˚.gk/kH3=2

2
.B/

6 cku � gkkH1
2
.@B/:

Thus limk!1 kru � r˚.gk/kL2.B/ 6 limk!1 kru � r˚.gk/kH1=2
2

.B/
D 0. Furthermore from

the linearity of the trace operator and (13) we infer

kru � � � r˚.gk/ � �kL2.@B/ 6 kru � r˚.gk/kL2.@B/ 6 ckru � r˚.gk/kH1=2
2

.B/

and therefore limk!1 kru � � � r˚.gk/ � �kL2.@B/ D 0. ClearlyZ
B

r˚.gk/ � r	 D

Z
@B

r˚.gk/ � �	

is fulfilled for all 	 2 C1.B/, so the assertion follows by approximation.

Using the result above, we can derive a natural boundary condition for solutions of P �.

Lemma 12 Let X� be a solution of P �, then there is a function f 2 H 1
2 .@B;R3/, such that

�G.X�/
2.X�/'q

j.X�/' j2 C
1
�

C
2

�
.X�/' D f (15)

almost everywhere on @B . If additionally .X�/' 2 C 0;
1
2 .@B/ holds, we even have f 2

C 1;
1
2 .@B;R3/.

Proof. Consider 	 2 C1.B;R3/, then

0 D
@

@t
F�.X� C t	/

ˇ̌̌̌
ˇ
tD0

D

Z
B

hrX�;r	 i

C �

Z
@B

�
G.X�/

2 h.X�/' ; 	'iq
j.X�/' j2 C

1
�

C 2G.X�/hrG.X�/; 	 i

r
j.X�/' j2 C

1

�

�
C
2

�

Z
@B

�
h.X�/' ; 	'i C h%.X� � P /; 	 i

�
:

According to Theorem 5 the map X� 2 H 1
2 .B;R3/ \H 1

2 .@B;R3/ is a harmonic function and thus
Lemma 11 yields Z

B

hrX�;r	 i D

Z
@B

hrX� � �; 	 i DW

Z
@B

h.X�/r ; 	 i:
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Therefore we haveZ
@B

�
h.X�/r ; 	 i C 2�G.X�/

r
j.X�/' j2 C

1

�
hrG.X�/; 	 i C

2

�
h%.X� � P /; 	 i

�
C �

Z
@B

G.X�/
2 h.X�/' ; 	'iq
j.X�/' j2 C

1
�

C
2

�

Z
@B

h.X�/' ; 	'i D 0:

Integration by parts over the interval Œ'0; '0C 2�� yields for all 	 with 	 j@B 2 C1c .@Bnf'0g;R3/

�

Z
@B

� Z '

'0

.X�/r C 2�G.X�/

r
j.X�/' j2 C

1

�
rG.X�/C

2

�
%.X� � P /d Q'; 	'

�
C �

Z
@B

G.X�/
2 h.X�/' ; 	'iq
j.X�/' j2 C

1
�

C
2

�

Z
@B

h.X�/' ; 	'i D 0:

(Here we have to keep in mind that the indefinite integral of a periodic function need not be periodic
as well.) By Du Bois-Reymond’s Lemma there is a constant C.'0/ 2 R3, such that

�

Z '

'0

.X�/r C 2�G.X�/

r
j.X�/' j2 C

1

�
rG.X�/C

2

�
%.X� � P /d Q'

C �G.X�/
2 .X�/'q
j.X�/' j2 C

1
�

C
2

�
.X�/' D C.'0/

almost everywhere on Œ'0; '0 C 2��. Therefore we set

f'0 D C.'0/C

Z '

'0

.X�/r C 2�G.X�/

r
j.X�/' j2 C

1

�
rG.X�/C

2

�
%.X� � P /d Q':

Then f'0 2 H 1
2 .@Bnf'0g;R3/ holds, because the integrand is of class L2.@B/. Moreover f'0

satisfies equation (15) almost everywhere on @B . As '0 was arbitrary, we can consider the functions
f0 and f� . They coincide almost everywhere on @B , because both satisfy equation (15) and
therefore we have f0 D f� DW f 2 H 1

2 .@B;R3/.
If additionally .X�/' 2 C 0;

1
2 .@B/ holds, the harmonic function X� has boundary values of

class C 1;
1
2 . Therefore we have X� 2 C 1;

1
2 .B/. (See Theorem 8.34. and Lemma 6.38. in [8].) It

follows that .X�/r 2 C 0;
1
2 .@B/ and thus f'0 2 C

1; 12 .@Bnf'0g;R3/. With the same argument as
above we conclude f'0 WD f 2 C

1; 12 .@B;R3/.

In order to prove regularity of X�, we have to solve the equation for .X�/' . For that we will
use a very specific version of the Implicit Function Theorem. (In the following the norm of a matrix
always denotes the operator norm.)

Theorem 13 Let F.x; y/WR � Rm ! Rm be continuous and continuously differentiable with
respect to y. Assume that jF jC0;˛.R�Rm/ < 1 holds. Let .a; b/ 2 R � Rm be a point with
det @F

@y
.a; b/ ¤ 0 and F.a; b/ D 0. Then there is an open neighbourhood V1 � R of a, a
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neighbourhood V2 � Rm of b as well as a uniquely determined mapping g 2 C 0.V1; V2/ with
jgjC0;˛.V1/ <1 and g.a/ D b such that F.x; g.x// D 0 for all x 2 V1.

If additionally @F
@y

is uniformly continuous on R�Rm and


� @F

@y
.a; b/

��1

 6 C for all .a; b/ 2

˝, where ˝ � f.x; y/ 2 R � Rm j F.x; y/ D 0; det @F
@y
.x; y/ ¤ 0g, we can choose V1 D B�.a/,

where � is independent of .a; b/ 2 ˝.

REMARK 1 In contrast to the main assertion it is of course crucial for the additional assertion to
hold that F is defined on the whole space R�Rm and has a global Hölder constant. Notice that we
do not need boundedness of F .

REMARK 2 We only need and prove the version of the theorem containing the additional assertion.
It is quite obvious from the proof that the main assertion holds as well.

Proof. We follow the reasoning in [7], only adding and changing arguments where it is necessary.
We set B WD @F

@y
.a; b/ 2 GL.m;R/ and define the mapping GWR � Rm ! Rm by G.x; y/ WD

y � B�1F.x; y/. Then since F.x; y/ D 0” y D G.x; y/, we will therefore consider a fixed-
point problem.

Set K WD jF jC0;˛.R�Rm/. Because @G
@y
.x; y/ D I � B�1 @F

@y
.x; y/, where I denotes the m �m

unit matrix, we obtain @G
@y
.a; b/ D 0. It follows that



@G@y .x; y/





 D 



@G@y .x; y/ � @G@y .a; b/




 D 



B�1 �@F@y .x; y/ � @F@y .a; b/

�




6 kB�1k





@F@y .x; y/ � @F@y .a; b/




 6 C





@F@y .x; y/ � @F@y .a; b/




 :

Since all components of the matrix @F
@y

are uniformly continuous, there exist Q� > 0 and Qr > 0 which

are independent of .a; b/ 2 ˝, such that


 @G
@y
.x; y/



 6 1
2CKC

for all .x; y/ 2 BQ�.a/ � BQr .b/ �
R � Rm.

We choose r > 0 with r < Qr . As G.a; b/ D b and F is uniformly continuous, there is an � > 0
which is independent of .a; b/ with � 6 Q� such thatˇ̌

G.x; b/ � b
ˇ̌
D
ˇ̌
B�1

�
F.x; b/ � F.a; b/

�ˇ̌
6 C

ˇ̌
F.x; b/ � F.a; b/

ˇ̌
6
r

2

for all x 2 B�.a/. We set V1 D B�.a/ and V2 D Br .b/, then according to the mean value theorem
it follows for all x 2 V1 and y; Qy 2 V2 that

jG.x; y/ �G.x; Qy/j 6
1

2CKC
jy � Qyj 6

1

2
jy � Qyj: (16)

Setting Qy D b we have for all x 2 V1

jy � bj 6 r H) jG.x; y/ � bj 6 r: (17)

For every fixed x 2 V1 the mapping y 7! G.x; y/ is therefore a mapping from the closed ball V2 to
itself, which by .16/ is also a contraction. The Banach Fixed-Point Theorem yields for all x 2 V1
the existence of exactly one y DW g.x/ 2 V2, such that G.x; y/ D y or F.x; y/ D 0 respectively.
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Consider a function '.x/ 2 C 0.V1;Rm/ with k' � bkC0.V1/ 6 r and j'jC0;˛.V1/ 6 1C KC ,
then for the mapping defined by  .x/ WD G.x; '.x// we again obtain  .x/ 2 C 0.V1;Rm/ with
k � bkC0.V1/ 6 r because of (17). Furthermore according to (16) we have

j .x/ �  . Qx/j

jx � Qxj˛
D

ˇ̌
G
�
x; '.x/

�
�G

�
Qx; '. Qx/

�ˇ̌
jx � Qxj˛

6
ˇ̌
G
�
x; '.x/

�
�G

�
x; '. Qx/

�ˇ̌
jx � Qxj˛

C

ˇ̌
G
�
x; '. Qx/

�
�G

�
Qx; '. Qx/

�ˇ̌
jx � Qxj˛

6
1

2CKC

j'.x/ � '. Qx/j

jx � Qxj˛
C kB�1k

ˇ̌
F
�
x; '. Qx/

�
� F

�
Qx; '. Qx/

�ˇ̌
jx � Qxj˛

6
1

2CKC
.1CKC/CKC 6 1CKC;

which shows that j jC0;˛.V1/ 6 1C KC holds, too. The mapping ' 7!  is therefore a mapping
˚ from the closed subset

A WD
˚
' 2 C 0.V1;Rm/W k' � bkC0.V1/ 6 r; j'jC0;˛.V1/ 6 1CKC

	
of the Banach space consisting of all bounded functions of class C 0.V1;Rm/ to itself. From (16)
we infer for '1; '2 2 A

k˚.'1/ � ˚.'2/kC0.V1/ D sup
x2V1

ˇ̌
G
�
x; '1.x/

�
�G

�
x; '2.x/

�ˇ̌
6
1

2
sup
x2V1

j'1.x/ � '2.x/j D
1

2
k'1 � '2kC0.V1/:

The mapping ˚ WA ! A is therefore a contraction and hence has exactly one fixed point g 2 A �
C 0.V1;Rm/. This function g 2 C 0;˛.V1; V2/ satisfies G.x; g.x// D g.x/ or F.x; g.x// D 0

respectively for all x 2 V1 and coincides with the mapping obtained above.

Theorem 14 Let X� be a solution of P �, then we have X� 2 C 2.@B/.

Proof. We define F.'; z/WR � R3 ! R3 by

F.'; z/ WD
�G

�
X�.1; '/

�2
zq

jzj2 C 1
�

C
2

�
z � f .'/;

where f is the function from Lemma 12. (We have identified the functions defined on @B with
2�-periodic functions on R.) Then for almost all ' 2 R we obtain F.'; .X�/'.1; '// D 0 .

We have X�.1; '/ 2 H 1
2 .R/ � C 0;

1
2 .R/ and f .'/ 2 H 1

2 .R/ � C 0;
1
2 .R/. The function G2

is Lipschitz continuous on T� and therefore G.X�.1; '//2 2 C 0;
1
2 .R/. Since all these functions

are periodic, they even have globally finite Hölder constants. The functions �zq
jzj2C 1

�

and 2
�
z

are globally Lipschitz continuous. As �zq
jzj2C 1

�

is also bounded, F.'; z/ is globally 1
2

-Hölder
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continuous. Furthermore F.'; z/ is continuously differentiable with respect to z and we derive

@Fi

@zi
D
2

�
�
�G.X�/

2z2i�
jzj2 C 1

�

� 3
2

C
�G.X�/

2q
jzj2 C 1

�

;
@Fi

@zj
D �

�G.X�/
2zizj�

jzj2 C 1
�

� 3
2

; i ¤ j:

As above it can be shown that the derivatives are globally 1
2

-Hölder continuous and therefore
uniformly continuous. A straightforward calculation shows

det
@F

@z
D

�
2

�
C

�G.X�/
2q

jzj2 C 1
�

�2�
2

�
C

G.X�/
2�

jzj2 C 1
�

� 3
2

�
>
�
2

�

�3
:

Therefore @F
@z

is invertible. Because of
ˇ̌̌
@Fi
@zj

ˇ̌̌
6 2

�
C�

3
2G.X�/

2 for all i; j 2 f1; 2; 3g andX�.@B/ �
T� we haveˇ̌̌̌

ˇ
�
@F

@z

��1
ij

ˇ̌̌̌
ˇ D 1

det @F
@z

ˇ̌̌̌
ˇ
�

Adj
@F

@z

�
ij

ˇ̌̌̌
ˇ 6

�
2

�

��3
2

�
2

�
C �

3
2G.X�/

2

�2
6 C:

Now all conditions of Theorem 13 are fulfilled and we infer that for almost all a 2 R there
is a neighbourhood B�.a/ and a mapping ga 2 C 0.B�.a// with jgajC0;˛.B�.a// < 1 and
ga.a/ D .X�/'.1; a/ such that F.'; ga.'// D 0. These local solutions are unique only in a small
neighbourhood of .X�/'.a/, so it remains to show that they coincide with .X�/' .

Assume that F.'; z/ D 0 and F.'; Qz/ D 0, then we get

f .'/ D
2

�
z C

�G
�
X�.'/

�2
zq

jzj2 C 1
�

and f .'/ D
2

�
Qz C

�G
�
X�.'/

�2
Qzq

j Qzj2 C 1
�

;

which yields �
2

�
C
�G

�
X�.'/

�2q
jzj2 C 1

�

�
z D

�
2

�
C
�G

�
X�.'/

�2q
j Qzj2 C 1

�

�
Qz:

As the terms in brackets are positive, we have Qz D tz with t > 0. If z D 0, it follows that Qz D 0. If
z ¤ 0, we consider the function

h.s/ WD

�
2

�
C
�G

�
X�.'/

�2q
s2jzj2 C 1

�

�
s:

Its derivative fulfills

h0.s/ D
G
�
X�.'/

�2q
s2jzj2 C 1

�

3
C
2

�
> 0

and therefore h.s/ is injective. From�
2

�
C
�G

�
X�.'/

�2q
jzj2 C 1

�

�
z D

�
2

�
C
�G

�
X�.'/

�2q
jtzj2 C 1

�

�
tz
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and z ¤ 0 we infer h.1/ D h.t/. We obtain t D 1 and therefore z D tz D Qz.
That is, for every ' 2 R there is at most one solution z of the equation F.'; z/ D 0. Therefore

the functions ga 2 C 0;
1
2 .B�.a// have to coincide with .X�/' almost everywhere. As � can be

chosen independently of a, the open sets B�.a/ cover the interval Œ0; 2��, and since Œ0; 2�� is
compact, only a finite number of the B�.a/ are needed. We infer that .X�/' 2 C 0;

1
2 .@B;R3/.

Lemma 12 even yields f .'/ 2 C 1;
1
2 .@B/ and therefore F.'; z/ is continuously differentiable.

We can now apply the standard version of the Implicit Function Theorem and obtain .X�/' 2
C 1.@B/ or X� 2 C 2.@B/ respectively.

6. The one-dimensional functional

We now reformulate the variational problem (3) into a one-dimensional problem.

Theorem 15 We define the class of functions

C � WD
˚

 2 H 1

2 .@B;R
3/
ˇ̌

.@B/ � T�; L.
;˘/ ¤ 0

	
(18)

and for 
 2 C � we define the functional

E�.
/ WD D.˚.
//C �

Z
@B

G.
/2

r
j
 0j2 C

1

�
C
1

�

Z
@B

�
j
 0j2 C %j
 � P j2

�
; (19)

where ˚.
/ is the harmonic extension of 
 . Then P � is equivalent to the variational problem

P �� W E�.
/! min in C �: (20)

Proof. As solutions of P � are harmonic due to Theorem 5, they are exactly the minimizers of F�
in the class fX 2 C j �X D 0g. Because of uniqueness, the boundary values of these solutions
are exactly the minimizers of E� in the class f
 2 C �j ˚.
/ 2 H 1

2 .B;R3/g. But by (14) ˚.
/ 2
H 1
2 .B;R3/ holds for all 
 2 C �, which yields the assertion.

Notice, that solutions ofP �� are of classC 2 by Theorem 14. One can showE�.
/ 2 C 1.C �;R/,
but it is not true that E�.
/ 2 C 2.C �;R/. However, the second variation exists for all 
 2 C �.
Fixing 
 2 C � and �; � 2 H 1

2 .@B;R3/, and using the linearity of ˚ , we derive:

ıE�.
/.�/ D
d

d�
E�.
 C ��/

ˇ̌̌̌
�D0

D

Z
B

hr˚.
/;r˚.�/i

C �

Z
@B

�
2G.
/hrG.
/; �i

r
j
 0j2 C

1

�
CG.
/2

h
 0; � 0iq
j
 0j2 C 1

�

�
C
2

�

Z
@B

�
h
 0; � 0i C h%.
 � P /; �i

�
(21)
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and

ı2E�.
/.�; �/ D
d

d�

d

d�
E�.
 C �� C ��/

ˇ̌̌̌
�D0

ˇ̌̌̌
�D0

D

Z
B

hr˚.�/;r˚.�/i

C �

Z
@B

 
2hrG.
/; �ihrG.
/; �i

r
j
 0j2 C

1

�
C 2G.
/h�;r2G.
/�i

r
j
 0j2 C

1

�

C 2G.
/hrG.
/; �i
h
 0; �0iq
j
 0j2 C 1

�

C 2G.
/hrG.
/; �i
h
 0; � 0iq
j
 0j2 C 1

�

CG.
/2
h� 0; �0i

�
j
 0j2 C 1

�

�
� h
 0; � 0ih
 0; �0i�

j
 0j2 C 1
�

� 3
2

!
C
2

�

Z
@B

�
h� 0; �0i C %h�; �i

�
: (22)

7. Implementation and numerical results

It is beyond the scope of this article to show in detail how the one-dimensional version (20) of the
penalty functional can be treated numerically and we refer the reader to the subsequent paper (see
[10]) for a comprehensive presentation. There we will show how the algorithm given in this section
can be transformed to matrix vector form, prove an error estimate for solutions of the discrete
problem and discuss various aspects of the numerical results in some detail. Here we only sketch
the approach.

The main ideas of the discretization are taken from the papers of Dziuk and Hutchinson ([5]
and [6]), and we use their notation as far as possible. Let Gh be a triangulation of B with the
following properties: Every triangle G 2 Gh has diameter at most h and at least �h for some � > 0
independent of h and has angles bounded away from zero independently of h.

We define
Bh D

[˚
G j G 2 Gh

	
; @Bh D

[˚
Ej j 1 6 j 6 M

	
;

where the Ej are the boundary edges. We denote the boundary nodes by ei'j , 1 6 j 6 M or just
'j if convenient. Furthermore we define the projection � W @B ! @Bh by

�
�
ei..1�t/'j�1Ct'j /

�
D .1 � t /ei'j�1 C tei'j

for all 0 6 t 6 1 and all j 2 f1; : : : ;M g. (Of course we will always identify '0 with 'M .) We work
in the following discrete function space:

C h D
˚

h 2 C

0.@B;R3/
ˇ̌

h 2 P1.�

�1ŒEj �/ 8j; 
h.@B/ � T�; L.
h; ˘/ ¤ 0
	
; (23)

where P1.��1ŒEj �/ is the set of polynomials of degree one over the arc ��1ŒEj �. Thus we have
C h � C

�. The space of discrete variations is defined by

Hh D
˚
�h 2 C

0.@B;R3/
ˇ̌
�h 2 P1.�

�1ŒEj �/ 8j
	

(24)
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and

Hh D
˚
�h 2 C

0.@B;R/
ˇ̌
�h 2 P1.�

�1ŒEj �/ 8j
	
:

ThenHh is anM -dimensional vector space and C h is an open subset of the 3M -dimensional vector
space Hh. Consider f 2 C 0.@B;Rn/, n 2 f1; 3g. Then we define the piecewise linear interpolant
Ihf 2 Hh or Ihf 2 Hh respectively by

Ihf
�
.1 � t /'j�1 C t'j

�
D .1 � t /f .'j�1/C tf .'j /

for all 0 6 t 6 1 and all j , where we identified the function f defined on @B with a 2�-periodic
function defined on R. (Notice, that this differs from the definition in [5] and [6], where this operator
is defined on @Bh rather than on @B .)

Clearly the class C h is not empty, if h is small enough and C � is not empty. Note that Theorem
5 yields the existence of a solution 
� of P ��, which belongs to T�0 by Corollary 7. Thus for h small
enough we have Ih
� 2 C h.

DEFINITION 16 For 
h 2 C h the discrete functional is defined by

E�h .
h/ WD Dh
�
˚h.
h.�

�1//
�
C �

Z
@B

Ih
2

�
G.
h/

2
�r
j
 0
h
j2 C

1

�

C
1

�

Z
@B

�
j
 0hj

2
C .Ih%/j
h � P j

2
�
: (25)

Here Dh.˚h.fh// D 1
2

R
Bh
jr˚h.fh/j

2 is the Dirichlet integral of the discrete harmonic extension
˚h of a suitable discrete function fh.

REMARK The discrete harmonic extension is defined in the usual way (see for instance [5, � 4.1]).
In order to obtain a good algorithm, we have chosen a more refined interpolation Ih

2
instead of Ih

for the function G2 (see [9] or [10] for details). This allows us to use coarser grids.

Notice that E�
h

is not the restriction of E� to C h. In contrast to the functional (19) we have
E�
h
.
h/ 2 C

2.C h;R/. For 
h 2 C h, �h; �h 2 Hh we derive the first and second variation:

ıE�h .
h/.�h/ D

Z
Bh

D
r˚h.
h.�

�1//;r˚h.�h.�
�1//

E
C �

Z
@B

�
2Ih

2

�
G.
h/hrG.
h/; �hi

�r
j
 0
h
j2 C

1

�
C Ih

2

�
G.
h/

2
� h
 0

h
; � 0
h
iq

j
 0
h
j2 C

1
�

�
C
2

�

Z
@B

�
h
 0h; �

0
hi C .Ih%/h
h � P; �hi

�
;

(26)
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ı2E�h .
h/.�h; �h/ D

Z
Bh

˝
r˚h.�h.�

�1//;r˚h.�h.�
�1//

˛
C �

Z
@B

�
2Ih

2

�
hrG.
h/; �hihrG.
h/; �hi

�r
j
 0
h
j2 C

1

�

C 2Ih
2

�
G.
h/h�h;r

2G.
h/�hi
�r
j
 0
h
j2 C

1

�

C 2Ih
2

�
G.
h/hrG.
h/; �hi

� h
 0
h
; �0
h
iq

j
 0
h
j2 C

1
�

C 2Ih
2

�
G.
h/hrG.
h/; �hi

� h
 0
h
; � 0
h
iq

j
 0
h
j2 C

1
�

C Ih
2

�
G.
h/

2
� h� 0

h
; �0
h
i
�
j
 0
h
j2 C

1
�

�
� h
 0

h
; � 0
h
ih
 0

h
; �0
h
i�

j
 0
h
j2 C

1
�

� 3
2

�
C
2

�

Z
@B

�
h� 0h; �

0
hi C .Ih%/h�h; �hi

�
:

DEFINITION 17 A function 
h 2 C h is called a “Solution of the Discrete Problem”, if
ıE�

h
.
h/.�h/ D 0 for all �h 2 Hh.

To compute solutions of the discrete problem we use a damped Newton Algorithm:

Algorithm
0. Choose an initial parametrization 
h and a tolerance �.
1. Compute ıE�

h
.
h/.

2. If kıE�
h
.
h/kH 0

h
6 �, then go to Step 7.

3. Compute ı2E�
h
.
h/.

4. Solve the linear problem ı2E�
h
.
h/.�h; �h/=-ıE�

h
.
h/.�h/ 8�h 2 Hh.

5. If kıE�
h
.
h/kH 0

h
6 kıE�

h
.
h C �h/kH 0

h
, set �h WD

�h
2

and do Step 5 again.
6. Update the solution: 
h WD 
h C �h and go to Step 1.
7. Compute the discrete surface ˚h.
h.��1// and the value E�

h
.
h/ and stop.

For the implementation we have used Mathematica (Version 10.2). In particular the meshes were
produced with the Mathematica function “DiscretizeRegion”. It is convenient to use the functional

F�;�.X/ D D.X/C �

Z
@B

G.X/2

s
jX' j2 C

1

�
C
1

�

Z
@B

�
jX' j

2
C %jX � P j2

�
instead of (1) as well as a discrete version E�;�

h
instead of (25). By setting � D C� with a fixed

constant C > 0, � directly depends on �. As before we again write F�, X� etc. In the following
examples we have set P D .1; 0; 0/ and

%.'/ D

(
1 � '

�
in Œ0; ��

'
�
� 1 in Œ�; 2��

:

Example 1: We consider the function

G.x; y; z/ D .x2 C y2 C z2 C 2/2 � 9.x2 C y2/
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whose zero level set defines a torus in R3, and are interested in the order of convergence which
can be observed numerically (see Theorem 10). The solution of the free boundary problem (see
Theorem 1) is QX.x; y; z/ D .x; y; 0/ and therefore D. QX/ D � . For �1, �2 and discrete solutions


�1
h

of E�1
h

and 
�2
h

of E�2
h

respectively we define the experimental order of convergence eoc by

eoc.E�h / D ln

 ˇ̌
E
�1
h

�


�1
h

�
�D. QX/

ˇ̌ˇ̌
E
�2
h

�


�2
h

�
�D. QX/

ˇ̌!� ln
�
�2

�1

�
and

eoc.Dh/ D ln

0@ˇ̌̌Dh �˚h�
�1h .��1/
��
�D. QX/

ˇ̌̌
ˇ̌̌
Dh

�
˚h
�


�2
h
.��1/

��
�D. QX/

ˇ̌̌1A� ln
�
�2

�1

�
:

Note that since we deal here with the discrete functionalsDh andE�
h

we cannot expect convergence
for fixed h as �!1. We take a fine grid (h D 0:07), the tolerance � D 0:001 and C D 100 (i.e.,
� D 100�).

The results are shown in Table 1 and one can observe that the experimental order of convergence
lies about 1. This is notably better than the order 1

9
, which we can prove for a polynomial of

degree four (see Remark after Theorem 10). Some heuristic calculations indicate that the order
of convergence in � derived in Theorem 10 can indeed be improved when the supporting surface S
is a torus: however, whether this can be done for different S is still not clear.

Comparing the two graphics in Figure 4, we can observe convergence: for � D 1 there is still
a visible gap between the boundary of the solution and the supporting surface S , whereas the gap
seems to disappear for � D 16.

Both pictures show also the effect of the fourth term in the functional E�
h

: the solution is pulled
to the right side (in direction of the point P ) where the triangles are smaller than at the left side.

Example 2: By

G.x; y; z/ D
�
x2 C y2 � z2 � 10

� �
x2 C z2 � 1

�
� 10

a non-torus-type support surface is given. We choose � D 0:1, C D 10000, h D 0:13443 and
� D 0:001 and get Dh D 42:9789 and E�

h
D 43:2267 (see Figure 5).

TABLE 1. EOCs for the test problem described in Example 1

� E�
h
.
h/ eoc.E�

h
/ Dh.
h/ eoc.Dh/

1 3.18966 — 3.05301 —
2 3.16601 0.97715 3.09751 1.00681
4 3.15383 0.99662 3.11951 0.99730
8 3.14768 1.00741 3.13045 0.98682

16 3.14464 0.99826 3.13592 0.97400
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FIG. 4. Discrete solutions for Example 1 for � D 1 and � D 16

FIG. 5. A discrete solution for Example 2

Example 3: One can also simulate the classical Plateau Problem or the partially free boundary
problem by using a thin torus-type surface or a part of this. By

G.x; y; z/ D
�
.x2 C y2 C z2 C 4/2 � 16.x2 C y2/

��
.x2 C y2 C z2 � 1/x C

1

10

�
� ı;
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FIG. 6. A discrete solution for Example 3

where ı D 1
10

a surface is given, which “almost defines” a partially free boundary problem.
Choosing � D 0:001,C D 100, h D 0:13443 and � D 16we getDh D 7:45652 andE�

h
D 7:51755

(see Figure 6). Note that for ı ! 0 the thickness of the thin torus around the semi-arc tends to zero.
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13. Nitsche, J. C. C., Vorlesungen über Minimalflächen. Springer-Verlag, Berlin-New York, 1975. Die
Grundlehren der mathematischen Wissenschaften, Band 199. Zbl0319.53003 MR0448224

14. Pozzi, P., L2-estimate for the discrete Plateau problem. Math. Comp. 73 (2004), 1763–1777. Zbl1054.
65066 MR2059735

15. Steinhilber, J., Numerical analysis for harmonic maps between hypersurfaces and grid improvement for
computational parametric geometric flows. Dissertation, Albert-Ludwigs-Universität Freiburg i. Br. 2014.
Zbl1296.53010

16. Tchakoutio, P., The Numerical Approximation of Minimal Surfaces with Free Boundaries by Finite
Elements. Dissertation, Albert-Ludwigs-Universität Freiburg i. Br. 2002. Zbl1019.65041

http://www.emis.de/MATH-item?0223.35039
http://www.ams.org/mathscinet-getitem?mr=0350177
http://www.emis.de/MATH-item?1213.49002
http://www.ams.org/mathscinet-getitem?mr=2492985
http://www.emis.de/MATH-item?0319.53003
http://www.ams.org/mathscinet-getitem?mr=0448224
http://www.emis.de/MATH-item?1054.65066
http://www.emis.de/MATH-item?1054.65066
http://www.ams.org/mathscinet-getitem?mr=2059735
http://www.emis.de/MATH-item?1296.53010
http://www.emis.de/MATH-item?1019.65041

	Introduction
	The free boundary problem
	The Penalty Functional
	Existence of a solution
	Convergence for 
	Regularity
	The one-dimensional functional
	Implementation and numerical results

