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We consider a one-phase free boundary problem for p-Laplacian with non-zero right hand side.
We use the approach present in [6] to prove that flat free boundaries and Lipschitz free boundaries
are C 1;
 .
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1. Introduction

Given a bounded domain ˝ � Rn and p > 2 we consider the degenerate problem�
�pu D f; in ˝C.u/;

jrujp D Q; on F.u/:
(1.1)

Here, as usually �puW D div.jrujp�2ru/, Q > 0 is a C 0;˛-continuous function, f 2 L1.˝/ \
C.˝/ and

˝C.u/ WD
˚
x 2 ˝ W u.x/ > 0

	
and F.u/ WD @˝C.u/ \˝:

The study of the regularity of the free boundary F.u/ to the problem (1.1) has a large literature:

1. Variational approach. The case f D 0 and p D 2 was studied in the seminal work of Alt and
Caffarelli [1]. Danielli and Petrosyan in [5] established the regularity of F.u/ for f D 0 and
p > 2. Recently, Lederman and Wolansky in [9] completed the study of the regularity of the free
boundary for the case f ¤ 0 and p > 2.

2. Non-variational approach. The case f D 0 and p D 2 was studied in [2–4] and for p D 2

and f ¤ 0 the regularity of F.u/ for the problem (1.1) was obtained in [6]. In [11, 12] a theory
for general two-phase free boundary problems for the p-Laplace operator was developed in the
homogenous case f D 0.

In this paper we will develop the regularity theory of F .u/ through a non-variational approach.
Precisely, we will apply the technique presented in [6] to prove that flat free boundaries are C 1;


(see Section 2 for the definition of viscosity solutions):
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Theorem 1.1 Let u be a viscosity solution to (1.1) in ball B1.0/. Suppose that 0 2 F .u/ and
Q.0/ D 1. There exists a universal constant Q" > 0 such that, if the graph of u is Q"-flat in B1.0/, i.e.

.xn � Q"/
C 6 u.x/ 6 .xn C Q"/

C for x 2 B1.0/;

and

kf kL1.B1.0// 6 Q"; ŒQ�C0;ˇ.B1.0// 6 Q";

then F.u/ is C 1;
 in B 1
2
.0/.

As in [6], the strategy of the proof of Theorem 1.1 is to obtain the improvement of flatness
property for the graph of a solution u: if the graph of u oscillates " away from a hyperplane in
B1 then in Bı0.0/ it oscillates ı0"

2
.0/ away from possibly a different hyperplane. The fundamental

steps to achieve this property are: Harnack type Inequality and Limiting solution. In our problem,
the structure of the operator �p requires some changes. In next section, we comment on the main
difficulties we came across and how to overcome them.

Moreover, through a blow-up from Theorem 1.1 and the approach used in [2], we obtain the our
second main result:

Theorem 1.2 (Lipschitz implies C 1;
 ) Let u be a viscosity solution for the free boundary problem�
�pu D f; in ˝C.u/;

jrujp D Q; on F.u/:

Assume that 0 2 F.u/, f 2 L1.B1/ is continuous in BC1 .u/ and Q.0/ > 0. If F.u/ is a Lipschitz
graph in a neighborhood of 0, then F.u/ is C 1;
 in a (smaller) neighborhood of 0.

In Theorem 1.2, the size of the neighborhood where F.u/ is C 1;
 depends on the radius r of the
ball Br where F.u/ is Lipschitz, the Lipschitz norm of F.u/, ˇ, kf k1 and dimension n.

Finally, we further mention that Theorem 1.1 can be established, with minor modifications, to
more general operator. For example, if we consider the problem�

div.Ajrujp�2ru/ D f in ˝C.u/

hAjrujp�2ru;rui D Q on F.u/;

where the matrix A is assumed to be Lipschitz and positive definite, we extend the results obtained
in [10].

The paper is organized as follows. In Section 2 we define the notion of viscosity solution to
the free boundary problem (1.1) and gather few tools that we shall use in the proofs of Theorem
1.1 and Theorem 1.2. In Section 3 we present the proof of Harnack type inequality. Section 4 is
devoted to the proof of improvement of flatness and in Section 5 we establish the regularity of the
free boundary F.u/.

2. Mathematical set-up

Let us move towards the hypotheses, set-up and main notations used in this article. ForB1 we denote
the open unit ball in the Euclidean space Rn. We start by gathering some basic information of the
limiting configuration. We shall use viscosity solution setting to access the free boundary regularity
theory.
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DEFINITION 2.1 Given two continuous functions u and � defined in an open˝ and a point x0 2 ˝,
we say that � touches u by below (resp. above) at x0 whenever u.x0/ D �.x0/

u.x/ > �.x/ .resp. u.x/ 6 �.x// in a neighborhood O of x0:

If this inequality is strict in O n fx0g, we say that � touches u strictly by below (resp. above).

DEFINITION 2.2 Let u 2 C.˝/ nonnegative. We say that u is a viscosity solution to�
�pu D f; in ˝C.u/;

jrujp D Q; on F.u/:
(2.1)

if and only if the following conditions are satisfied:

(F1) If � 2 C 2.˝C.u// touches u by below (resp. above) at x0 2 ˝C.u/ then

�p�.x0/ 6 f .x0/
�
resp. �p�.x0/ > f .x0/

�
:

(F2) If � 2 C 2.˝/ and �C touches u below (resp. above) at x0 2 F.u/ and jr�j.x0/ 6D 0 then

jr�jp.x0/ 6 Q.x0/
�
resp. jr�jp.x0/ > Q.x0/

�
:

We refer to the usual definition of subsolution, supersolution and solution of a degenerate PDE.
Let us introduce the notion of comparison subsolution/supersolution.

DEFINITION 2.3 We say u 2 C.˝/ is a strict (comparison) subsolution (resp. supersolution) to
(1.1) in ˝, if only if u 2 C 2.˝C.v// and the following conditions are satisfied:

(G1) �pu > f .x/ .resp. < f / in ˝C.u/;
(G2) If x0 2 F.u/, then

jrujp.x0/ > Q.x0/
�
resp. 0 < jrujp.x0/ < Q.x0/

�
:

The next lemma provides a basic comparison principle for solutions to the free boundary
problem (1.1). The Lemma below yields the crucial tool in the proof of main result.

Lemma 2.4 The following remark is a consequence of the definitions above: Let u; v be respectively
a solution and a strict subsolution to (1.1) in ˝. If u > vC in ˝ then u > vC in ˝C.v/ [ F.v/.

Difficulties and changes

1. Harnack type Inequality. When we consider the problem (1.1) for p > 2 the main difficulty lies
in the following fact: if p is an affine function and u is a solution to the problem

�pu D f; in Br .x0/; (2.2)

we can not conclude that uCp is a solution to the equation (2.2). For p D 2 we know uCp is still
solution for the problem (2.2). In [6], this fact is important because it allows us to apply Harnack
Inequality for v D uCp which is crucial to reach a improvement of flatness for the graph of u . We
overcome this difficulty by observing that uC p is a solution for the problem

Lp;ev WD div
�
jrv C ejp�2.rv C e/

�
D f; in Br

�
x0
�
;

where e 2 Rn with jej D 1 and the operator Lp;e behaves like the �p . Precisely, we use the
following result:
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Lemma 2.5 (Harnack) Let u be a nonnegative viscosity solution to

div
�
jrv C ejp�2.rv C e/

�
D f; in B2r ; (2.3)

where jej D 1. Then, there exists a constant C depending only on n and p such that

sup
Br

v 6 C
n

inf
Br
v C r.kf kL1.B2r / C C/

o
:

Proof. Define A W Rn ! Rn
A.�/ D j�C ejp�2.�C e/: (2.4)

Notice that
jA.�/j D j�C ejp�1 6 C.p/j�jp�1 C C.p/; for all � 2 Rn: (2.5)

On the other hand, we have

hA.�/; �i D j�C ejp�2h.�C e/; �i (2.6)

D j�C ejp�2h.�C e/; �C e � ei

D j�C ejp � j�C ejp�2h�C e; ei

> j�C ejp � j�C ejp�1; for all � 2 Rn:

Thus, if j�C ejp�1 6 2 we obtain

hA.�/; �i > j�C ejp � 2p�1 (2.7)

> c.p/j�jp � .1C 2p�1/;

and for j�C ejp�1 > 2 we have

hA.�/; �i > j�C ejp � j�C ejp�1 (2.8)

D j�C ejp.1 � j�C ej�1/

>
1

2
j�C ejp

>
1

2

�
c.p/j�jp � 1

�
:

Then, using (2.6), (2.7) and (2.8) we estimate

hA.�/; �i > c1.p/j�j
p
� C1.p/; for all � 2 Rn: (2.9)

Hence, by classical theory (see [8] and [14]) the result follows.

2. Limiting solution. In what follows, we denote by

BC� WD
˚
x 2 Rn W jxj < �; xn > 0

	
(2.10)

�� WD
˚
x 2 Rn W jxj < �; xn D 0

	
(2.11)
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Our main result will follow from the regularity properties of solutions to the classical Neumann
problem for the constant coefficient linear equation�

Lpu1 D 0; in BC� ;
@u1
@�

D 0; on ��;
(2.12)

where � WD .0; 0; : : : ; 0; 1/ and Lpu WD �uC .p� 2/@nnu. We use the notion of viscosity solution
to (2.12).

DEFINITION 2.6 Let u1 2 C.B� \ fxn > 0g/. We say that u1 is a viscosity solution to (2.12) if
given P.x/ a quadratic polynomial touching u1 by below (i. above) at x0 2 B� \ fxn > 0g, then

(i) if x0 2 BC� then LpP.x0/ 6 0 (resp. LpP.x0/ > 0);
(ii) if x0 2 �� then @P.x0/

@�
6 0 (resp. @P.x0/

@�
> 0)

REMARK 2.7 Notice that, in the definition above we can choose polynomials P that touch u1
strictly by below/above. Also, it suffices to verify that (ii) holds for polynomials QP with Lp QP > 0

(see [6]).

The proof this result is classical and will be omitted (see for example [6]).

Lemma 2.8 Let u1 be a viscosity solution to(
Lpu1 D 0; in BC�
@u1
@�
D 0; on ��

(2.13)

with ku1kL1 6 1. There exists a universal constant C0 > 0 such thatˇ̌
u1.x/ � u1.0/ � ru1.0/ � x

ˇ̌
6 C0�

2 in B� \ fxn > 0g:

REMARK 2.9 When p D 2 the operator L2 coincides with the Laplacian, i.e., we obtain the
DeSilva’s limiting equation.

3. Harnack type inequality

In this section, based on comparison principle granted in Lemma 2.4, we prove a Harnack type
inequality for a solution u to the problem (1.1) with the following conditions:

kf kL1.˝/ 6 "2; (3.1)
kQ � 1kL1.˝/ 6 "p; (3.2)

for 0 < " < 1.

Lemma 3.1 Let u be a viscosity solution to (1.1) in ˝, under assumptions (3.1)–(3.2). There exists
a universal constant Q" > 0 such that if 0 < " 6 Q" and u satisfies

pC.x/ 6 u.x/ 6
�
p.x/C "

�C
; j� j <

1

20
in B1.0/; p.x/ D xn C �; (3.3)

then if at x0 D 1
10
en

u.x0/ >
�
p.x0

�
C
"

2
/C; (3.4)
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then
u > .p C c"/C in B 1

2
.0/; (3.5)

for some 0 < c < 1. Analogously, if

u.x0/ 6
�
p.x0

�
C
"

2
/C; (3.6)

then
u 6

�
p C .1 � c/"

�C in B 1
2
.0/: (3.7)

Proof. We verify (3.5). The proof of (3.7) is analogous. Notice that

B 1
20
.x0/ � B

C
1 .u/: (3.8)

From [15] we know that u is C 1;˛ in B 1
40
.x0/ with

Œu�1C˛;B1=40.x0/ 6 C;

where ˛ D ˛.n; p/ 2 .0; 1/ and C D C.n; p/ > 1. Now we consider two cases:

Case 1: jru.x0/j < 1
4

. Choose r1 D r1.n; p/ > 0 such that

jruj 6
1

2
in Br1.x0/: (3.9)

There exists a constant r2 D r2.r1/ D r2.n; p/ > 0 that satisfies

.x � r2en/ 2 Br1.x0/; for all x 2 B r1
2
.x0/:

Notice that v D u � p satisfies

Lp;env D f; in B1=20.x0/;

where en WD .0; : : : ; 1/ 2 Rn. In particular, for r3 D min
˚
r1
4
; r2
8

	
we apply the Lemma 2.5 in

B2r3.x0/ to obtain

u.x/ � p.x/ > c0
�
u.x0/ � p.x0/

�
� 4r3 >

c0"

2
� 4r3 (3.10)

for all x 2 Br3.x0/. From (3.9) and (3.10) we can write

c0"

2
� 4r3 6 u.x/ � p.x/

D u
�
.x � r2en/C r2en

�
� p

�
.x � r2en/C r2en

�
D u

�
.x � r2en/C r2en

�
� p

�
.x � r2en/

�
� r2

6 u
�
.x � r2en/

�
� p

�
.x � r2en/

�
C
r2

2
� r2;
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for all x 2 Br3.x0/. Thus, we find

c0"

2
6
c0"

2
� 4r3 C

r2

2
(3.11)

6 u.x/ � p.x/;

for all x 2 Br3.x0/, where x0 D x0 � r2en. Let wWD ! R be defined by

w.x/ D c

�
jx � x0j

�

�

�4
5

��
�
; (3.12)

where D WD B 4
5
.x0/ n Br3.x0/. We choose c D c.n; p; 
/ > 0 such that

w D

�
0; on @B 4

5
.x0/;

1; on @Br3.x0/:
(3.13)

Now define
v.x/ D p.x/C

c0"

2

�
w.x/ � 1

�
; x 2 B 4

5
.x0/; (3.14)

and for t > 0,
vt .x/ D v.x/C t; x 2 B 4

5
.x0/: (3.15)

By choice of c we have w 6 1 in D. Then, extending w to 1 in Br3.x0/ we find

v0.x/ D v.x/ 6 p.x/ 6 u.x/; x 2 B 4
5
.x0/: (3.16)

Consider
t0 D sup

˚
t > 0 W vt 6 u in B 4

5
.x0/

	
:

Assume, for the moment, that we have already verified t0 > c0"
2

. From definition of v we have

u.x/ > v.x/C t0 > p.x/C
c0"

2
w.x/; 8x 2 B 4

5
.x0/:

Notice that B 1
2
.0/ � B 3

5
.x0/ and

w.x/ >
�
c
�
.3
5
/�
 � .4

5
/�


�
; in B 3

5
.x0/ n Br3.x0/;

1; on Br3.x0/:

Hence, we conclude (" small) that

u.x/ � p.x/ > c1"; in B1=2.0/;

and the result is proved. Let us now prove that indeed t0 > c0"
2

. For that, we suppose for the sake of
contradiction that t0 < c0"

2
. Then there would exist y0 2 B 4

5
.x0/ such that

vt .y0/ D u.y0/:
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In the sequel, we show that y0 2 Br3.x0/. From definition of vt and by the fact that w has zero
boundary data on @B4=5.x0/ we have

vt D p �
c0"

2
C t0 < u in @B4=5.x0/;

where we have used that u > p and t0 < c0"
2

. We compute directly,

@iw D �

�
xi � x

i
0

�
jx � x0j

�
�2 (3.17)

and
@ijw D 
 jx � x0j

�
�2
˚
.
 C 2/.xi � x

i
0/.xj � x

j
0/jx � x0j

�2
� ıij

	
: (3.18)

Moreover, since jrwj 6 C.n; p; 
/ in D we find

1

2
6 jrvt j 6 2 in D;

if " > 0 is small. Thus, if 
 D 
.n; p/ > 1 is large, from (3.17) and (3.18) we have

�pvt D div
�
jrvt j

p�2.c0"rw/
�
C div.jrvt jp�2en/

D c0"

nX
iD1

jrvt j
p�2@i iw C c

3
0"
3

nX
i;jD1

.p � 2/jrvt j
p�4.@iw/.@jw/@ijw

C c20"
2.p � 2/jrvt j

p�4

nX
iD1

@iw@wn@inw C c
2
0"
2.p � 2/jrvt j

p�4

nX
iD1

@iw@inw

C c0"jrvt j
p�4.p � 2/@nnw

D 
 jx � x0j
�.
C2/c0"jrvt j

p�2
˚

 C 2C .
 C 2/

.xn � x
n
0/
2

jx � x0j2jrvt j2
.p � 2/ � .p � 2/ � n

	
C c20"

2.p � 2/jrvt j
p�4

n
c0"

nX
i;jD1

.@iw/.@jw/@ijw C

nX
iD1

.1C @wn/@iw@inw
o

> .c1 � C2"/"

> "2 in D:

On the other hand, we have

jrvt0 j > j@nvj D j1C .c0=2/"@nwj; in D: (3.19)

By radial symmetry of w, we have

@nw.x/ D jrw.x/jh�x ; eni; x 2 D; (3.20)

where �x is the unit vector in the direction of x � x0. From (3.17) we have

jrwj D c
 jx � x0j
�.
C2/

jx � x0j

D c
 jx � x0j
�.
C1/

> c6 > 0; in D:
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Also we have h�x ; eni > c in fvt0 6 0g \D (for " small enough). In fact, if " is small enough˚
vt0 6 0

	
\D �

n
p 6

c0"

2

o
D

n
xn 6

c0"

2
� �

o
� fxn < 1=20g :

We therefore conclude that

h�x ; eni D
1

jx0 � xj
hx0 � x; eni

>
5

4
hx0 � x; eni

D
5

4
.
1

10
� r2 � xn C

1

20
�
1

20
/

> c7; in fvt0 6 0g \D:

From (3.19) and (3.20) we obtain

jrvt0 j
2 > j@nvt0 j

2

D 1C 2 Qc" C Qc"2jrwj2

> 1C 2c9"C c10"
2

> 1C "2:

Hence, we find
jrvt0 j

p > 1C "p > Q in D \ F.vt0/

in fvt0 6 0g \D. In particular, we have

jrvt0 j
p > Q in D \ F.vt0/:

Thus, vt0 is a strict subsolution in D and by Lemma 2.4 (u is a viscosity solution of problem (1.1)
in B1.0/) we conclude that y0 2 Br3.x0/. This is a contradiction. In fact, we would get

u.y0/ D vt0.y0/ D v.y0/C t0 6 p.y0/C t0 < p.y0/C c0":

which drives us to a contradiction to (3.11). The Lemma 3.1 is concluded.

Case 2: jru.x0/j > 1
4

. Since u is C 1;˛ and Lipschitz continuous inB 1
40
.x0/, there exist constants

r0 D r0.n; p/ > 0 and C D C.n; p/ > 1 such that

1

8
6 jruj 6 C in B2r0.x0/: (3.21)

Thus, u satisfies the uniformily elliptic equation

nX
i;jD1

aij .x/@ij v D f in B2r0.x0/; (3.22)

where

aij D jruj
p�2

�
ıij C .p � 2/

@iu@ju

jruj2

�
:
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Then, by classical Harnack Inequality we obtain

u.x/ � p.x/ > c0
�
u.x0/ � p.x0/

�
� Ckf k1

>
c0"

2
� C1"

2

> c1";

for all x 2 Br0.x0/, if " > 0 is sufficiently small. Now, we consider the barrie

w.x/ D

�
c
�
jx � x0j

�
 � .4
5
/�


�
; in B 4

5
.x0/ n Br0.x0/;

1; on Br0.x0/;

and the Lemma 3.1 follows as in Case 1.

Now we establish the main tool in the proof of Theorem 1.1.

Theorem 3.2 Let u be a viscosity solution to (1.1) in˝ under assumptions (3.1)–(3.2). There exists
a universal constant Q" > 0 such that, if u satisfies at some x0 2 ˝C.u/ [ F.u/,

.xn C a0/
C 6 u.x/ 6 .xn C d0/

C in Br .x0/ � ˝; (3.23)

with ja0j < 1
20

and
d0 � a0 6 "r; " 6 Q" (3.24)

then
.xn C a1/

C 6 u.x/ 6 .xn C d1/
C in B r

40
.x0/ (3.25)

with
a0 6 a1 6 d1 6 d0; d1 � a1 6 .1 � c/"r; (3.26)

and 0 < c < 1 universal.

Proof. With no loss of generality, we can assume x0 D 0 and r D 1. We put p .x/ D xn C a0 and
by (3.23)

pC .x/ 6 u .x/ 6 .p .x/C "/C .d0 6 a0 C "/ : (3.27)

Then, since

u
� 1
10
en

�
>
�
p
� 1
10
en

�
C
"

2

�C
or u

� 1
10
en

�
<

�
p
� 1
10
en

�
C
"

2

�C
we can apply Lemma 3.1 to obtain the result.

From Harnack inequality, Theorem 3.2, precisely as in [6], we obtain the following key estimate
for flatness improvement.

Corollary 3.3 Let u be a viscosity solution to (1.1) in˝ under assumptions (3.1)–(3.2). If u satisfies
(3.23) then in B1.x0/ the function Qu" WD u�xn

"
has a Hölder modulus of continuity at X0 outside of

ball of radius "=Q", i.e., for all x 2 .˝C.u/ [ F.u// \ B1.x0/ with jx � x0j > "=Q"ˇ̌
Qu".x/ � Qu".x0/

ˇ̌
6 C jx � x0j


 :
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4. Improvement of flatness

In this section we prove the improvement of flatness lemma, from which the proof of main
Theorem 1.1 will follow via an interactive argument. Next, we present the basic induction step
towards C 1;
 regularity at 0.

Theorem 4.1 (Improvement of flatness) Let u 2 C.˝/ be a viscosity solution to�
�pu D f; in ˝C.u/;

jrujp D Q; on F.u/:
(4.1)

with (0 < � < 1)
max

˚
kf kL1.˝/; kQ � 1kL1.˝/

	
6 �p: (4.2)

Suppose that u satisfies

.xn � �/
C 6 u.x/ 6 .xn C �/

C for x 2 B1 (4.3)

with 0 2 F.u/. If 0 < r 6 r0 for r0 a universal constant and 0 < � 6 �0 for some �0 depending on
r , then �

hx; �i � r
�

2

�C
6 u.x/ 6

�
hx; �i C r

�

2

�C
x 2 Br ; (4.4)

with j�j D 1, and j� � enj 6 C�2 for a universal constant C > 0.

Proof. We divide the proof of this Lemma into three steps. We use the following notation:

˝�.u/ WD
�
BC1 .u/ [ F.u/

�
\ B�:

Step 1 – Compactness Lemma: Fix r 6 r0 with r0 universal (the precise r0 will be given in Step 3).
Assume by contradiction that we can find a sequence �k ! 0 and a sequence fukgk>1 � C.˝/ be
a sequence of viscosity solution to�

�puk D fk in ˝C1 .uk/

jrukj
p D Qk.x/ on F.uk/

(4.5)

with
max fkfkkL1 ; kQk � 1kL1g 6 �

p

k
; (4.6)

as k !1, such that

.xn � �k/
C 6 uk.x/ 6 .xn C �k/

C for x 2 B1; 0 2 F.uk/ (4.7)

but it does not satisfy the conclusion (4.4) of the Lemma. Let vk W ˝1.uk/! R defined by

vk.x/ WD
uk.x/ � xn

�k
:

Then (4.7) gives,
�1 6 vk.x/ 6 1 for x 2 ˝1.uk/: (4.8)

From Corollary 3.3, it follows that the function vk satisfies

jvk.x/ � vk.y/j 6 C jx � yj
 ; (4.9)
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for C universal and
jx � yj > �k=N�; x; y 2 ˝1=2.uk/:

From (4.7) it clearly follows that F.uk/ ! B1 \ fxn D 0g in the Hausdorff distance. This fact
and (4.9) together with Arzelà–Ascoli give that as �k ! 0 the graphs of the vk over ˝1=2.uk/
converge(up to a subsequence) in the Hausdorff distance to the graph of a Hölder continuous
function u1 over B1=2 \ fxn > 0g.

Step 2 – Limiting Solution: We claim that u1 is a solution of the problem(
Lpu1 D 0 in BC1

2

@nu1 D 0 on �1=2
(4.10)

in viscosity sense. In fact, given a quadratic polynomial P.x/ touching u1 at x0 2 B 1
2
.0/ \

fxn > 0g strictly by below we need to prove that

(i) If x0 2 B 1
2
.0/ \ fxn > 0g then LpP 6 0;

(ii) If x0 2 B 1
2
.0/ \ fxn D 0g then @nP.x0/ 6 0.

As in [6], there exist points xj 2 ˝ 1
2
.uj /, xj ! x0, and constants cj ! 0 such that

uj .xj / D QP .xj /

and
uj .x/ > QP .x/ in a neighborhood of xj

where
QP .x/ D "j .P.x/C cj /C xn:

We have two possibilities:

(a) If x0 2 B 1
2
\ fxn > 0g then, since P touches uj by below at xj , we estimate

"
p
j > fj .xj /

> �p QP

D "j

nX
i;kD1

.p � 2/jr QP jp�4.@i QP /.@k QP /@ikP C "j

nX
iD1

jr QP jp�2@i iP:

Using that r QP D "jrP C en and taking "j �! 0 we obtain

LpP 6 0:

(b) If x0 2 B 1
2
\ fxn D 0g we can assume, see [6], that

LpP > 0 (4.11)
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Notice that for j sufficiently large we have xj 2 F.uj /. In fact, suppose by contradiction that there
exists a subsequence xjn 2 B

C
1 .ujn/ such that xjn ! x0. Then arguing as in (i) we obtain

LpP 6 C"j ;

which contradicts (4.11) as jn ! 1. Therefore, there exists j0 2 N such that xj 2 F.uj / for
j > j0. Moreover,

jr QP j > 1 � "j jrP j > 0;

for j sufficiently large (we can assume that j > j0). Since that QPC touches uj by below we have

jr QP jp 6 Qj .xj / 6 .1C "
p
j /:

Then, we obtain
jr QP j2 6 .1C "2j /:

Moreover,
jr QP j2 D "2j

ˇ̌
rP.xj /

ˇ̌2
C 1C 2"j @nP.xj /;

where we have used jr QP j2 6 C . In conclusion, we obtain

"2j
ˇ̌
rP.xj /

ˇ̌2
C 1C 2"j @nP.xj / 6 1C "2j : (4.12)

Hence, dividing (4.12) by "j and taking j !1 we obtain @nP.x0/ 6 0.
The choice of r0 and the conclusion of the Theorem 1.1 follows from the regularity of Qu:

Step 3 – Improvement of flatness: From the previous step, u1 solve (4.10) and from (4.8),

�1 6 u1 6 1 in B1=2 \ fxn > 0g:

From Lemma 2.8 and the bound above we obtain that, for the given r ,ˇ̌
u1.x/ � u1.0/ � hru1.0/; xi

ˇ̌
6 C0r

2 in Br \ fxn > 0g;

for a universal constant C0. In particular, since 0 2 F.u1/ and @u1.0/
@�

D 0, we estimate

h Qx; Q�i � C1r
2 6 u1.x/ 6 h Qx; Q�i C C0r2 in Br \ fxn > 0g;

where Q�i D hru1.0/; ei i, i D 1; : : : ; n � 1, j Q�j 6 QC and QC is a universal constant. Therefore, for
k large enough we get,

h Qx; Q�i � C1r
2 6 vk.x/ 6 h Qx; Q�i C C1r2 in ˝r .uk/:

From the definition of vk the inequality above reads

�k Qx � Q� C xn � �kC1r
2 6 uk 6 �kh Qx; Q�i C xn C �kC1r

2 in ˝r .uk/: (4.13)

Define
� WD

1q
1C �2

k

.�k Q�; 1/:
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Since, for k large,

1 6
q
1C �2

k
6 1C

�2
k

2
;

we conclude from (4.13) that

hx; �i �
�2
k

2
r � C1r

2�k 6 uk 6 hx; �i C
�2
k

2
r C C1r

2�k in ˝r .uk/:

In particular, if r0 is such that C1r0 6 1
4

and also k is large enough so that �k 6 1
2

we find

hx; �i �
�k

2
r 6 uk 6 hx; �i C

�k

2
r in ˝r .uk/;

which together with (4.7) implies that�
hx; �i �

�k

2
r
�C

6 uk 6
�
hx; �i C

�k

2
r
�C

in Br :

Thus the uk satisfy the conclusion of the Lemma, and we reached a contradiction.

5. Regularity of the free boundary

In this section we will prove the Theorem 1.1 and via a blow-up from Theorem 1.1 we will present
the proof of Theorem 1.2. The proof of Theorem 1.1 is based on flatness improvement coming from
Harnack type estimates and it follows closely the work of [6]. Hereafter, we will assume

jQ.x/ �Q.y/j 6 �.jx � yj/ for x; y 2 B1; (5.1)

where the modulus of continuity � satisfies

�.t/ . Ctˇ ; (5.2)

for some 0 < ˇ < 1 and C > 0.

Proof of Theorem 1.1. The idea of proof is to iterate the Theorem 4.1 in the appropriate geometric
scaling. Let u be a viscosity solution to the free boundary problem�

�pu D f; in BC1 .u/;

jrujp D Q; on F.u/:
(5.3)

where BC1 .u/ D fx 2 B
C
1 W u.x/ > 0g and FC.u/ WD @BC1 .u/ \ B1. Let us fix Nr > 0 to be a

universal constant such that
rˇ 6 min

n
.
1

2
/p; r0

o
; (5.4)

with r0 the universal constant in Theorem 4.1. For the chose r , let �0 WD �0.r/ give by Theorem 4.1.
Now, let

� WD �
p
0 and � D �k WD 2

�k�0: (5.5)

Our choice of � guarantees that

.xn � �0/
C 6 u.x/ 6 .xn C �0/

C in B1: (5.6)
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Thus by Theorem 4.1�
hx; �1i � Nr

�0

2

�C
6 u.x/ 6

�
hx; �1i C Nr

�0

2

�C
in B Nr ;

with j�1j D 1 and j�1 � �0j 6 C�0
2 (where �0 D en).

Smallness regime: Consider the sequence of rescalings uk W B1 ! R

uk.x/ WD
u.�kx/

�k

with �k D rk , k D 0; 1; 2; : : :, for a fixed r as in (5.4). Then each uk satisfies in the following free
boundary problem �

�puk D fk ; in BC1 .uk/;

jrukj
p D Qk ; on F.uk/:

(5.7)

fk.x/ WD �kf .�kx/ and Qk.x/ WD Q.�kx/:

We claim that for the choices made in (5.5) the assumption (4.2) are holds. Indeed, in B1

jfk.x/j 6 kf kL1�k 6 � Nrk 6 �
p
0 2
�pk
D .�02

�k/p D �p;

jQk.x/ � 1j D jQ.�kx/ �Qk.0/j 6 �.1/�
ˇ

k
6 � Nrkˇ 6 .�02

�k/p D �p

Therefore, we can iterate the argument above and obtain that�
hx; �ki � �k

�C 6 uk.x/ 6
�
hx; �ki C �k

�C in B1; (5.8)

with j�kj D 1, j�k � �kC1j 6 C�k (�0 D en), where C is a universal constant. Thus, we have�
hx; �ki �

�0

2k
rk
�C

6 u.x/ 6
�
hx; �ki C

�0

2k
rk
�C

in B
rk

(5.9)

with
j�kC1 � �kj 6 C

�0

2k
: (5.10)

Inequality (5.9) implies that

@fu > 0g \ B
rk
�

n
jhx; �kij 6

�0

2k
rk
o

(5.11)

This implies that B3=4 \ F.u/ is a C 1;
 graph. In fact, by (5.10) we have that f�kgk>1 is a Cauchy
sequence, therefore the limit

�.0/ WD lim
k!1

�k

exists. Yet from (5.10) we conclude ˇ̌
�k � �.0/

ˇ̌
6 C

�0

2k
:
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From (5.11) we have ˇ̌
hx; �ki

ˇ̌
6
�0

2k
rk (5.12)

Fix x 2 B3=4 \ @fu > 0g and choose k such that

rkC1 6 jxj 6 rk

Then ˇ̌
hx; �.0/i

ˇ̌
6
ˇ̌
hx; �.0/ � �ki

ˇ̌
C
ˇ̌
hx; �ki

ˇ̌
6
ˇ̌
�.0/ � �k

ˇ̌
jxj C

�0

2k
rk

6 C
�0

2k
jxj C

�0

2k
rk

6 C
�0

2k

�
jxj C rk

�
6 C

�0

2k

�
jxj C

rkC1

r

�
6 C

�0

2k

�
1C

1

r

�
jxj

From the convenient choice of k, we have jxj > rkC1. Hence, if we define 0 < 
 < 1 such that

1

2
D r


i.e., define 
 WD ln.2/
ln.r�1/

. Thus, we have

ˇ̌
hx; �.0/i

ˇ̌
6 C

�1
2

�k
.1C r�1/jxj

D C
�1
2

�kC1
.1C r�1/2jxj

6 C.1C r�1/�0jxj
1C
 6 C�0jxj

1C
 :

Finally, we obtain
@fu > 0g \ B

rk
�

n
hx; �.0/i 6 C�0r

k.1C
/
o
;

which implies that @fu > 0g is a differentiable surface at 0 with normal �.0/. Applying this
argument at all points in @fu > 0g\B3=4 we see that @fu > 0g\B3=4 is in fact a C 1;
 surface.

The next lemma is a standard result, that is, Lipschitz continuity and non-degeneracy of a
solution u to �

�pu D f; in ˝C.u/;

jrujp D Q; on F.u/:
(5.13)

Lemma 5.1 Let u 2 C.˝/ be a viscosity solution to (5.13). Given � 2 .0; 1/, we can find a
universal constant Q� such that if � 2 .0; Q��, F.u/ \ B1 6D ¿, F.u/ is a Lipschitz graph in B2 and

max
˚
kf kL1.˝/; kQ � 1kL1.˝/

	
6 �p; (5.14)
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then u is Lipschitz and non-degenerate in BC1 .u/ i.e. there exists universal conconstants c0; c1 > 0

c0dist.z;F.u// 6 u.z/ 6 c1dist.z;F.u// for all z 2 BC1 .u/:

Lemma 5.2 (Compactness) Let uk be a sequence of (Lipschitz) viscosity solutions to�
�uk D fk in ˝C.uk/;

jrukj
p D Qk on F.uk/

where fk and Qk satisfies the assumption (5.14). Assume that

(i) uk ! u1 uniformly on compactsI
(ii) @fuk > 0g ! @fu1 > 0g locally in the Hausdorff distance;

(iii) kfkkL1 C kQk � 1kL1 D o.1/, as k !1.

Then u1 be a viscosity solution of�
�pu1 D 0; in ˝C.u1/;

jru1j D 1; on F.u1/;

in the viscosity sense.

Proof. The proof follows the same scheme of the model Lemma 4.1 (see also [6, Lemma 7.3]).

Although not strictly necessary, we use the following Liouville type result for global viscosity
solutions to a one-phase homogeneous free boundary problem, that could be of independent interest.
The result is more general, but we will only show the result for one-phase problems.

Lemma 5.3 Let v W Rn ! R be a non-negative viscosity solution to�
�pv D 0; in fv > 0g;

hrv; �i D 1; on F.v/ WD @fv > 0g:

Assume that F.v/ D fxn D g.x0/; x0 2 Rn�1g with Lip.g/ 6 M . Then g is linear and

v.x/ D xCn :

Proof. Let’s follow the ideas of [6]. Initially, assume for simplicity, 0 2 F.v/. Also, balls (of radius
� center at 0) in Rn�1 are denote by B

0

�. By the regularity theory in [2, 11] and [12] since v is a
solution in B2, the free boundary F.v/ is C 1;
 in B1 with a bound depending only on n and on M .
Thus, ˇ̌

g.x0/ � g.0/ � rg.0/ � x0
ˇ̌

6 C jx0j1C
 for x
0

2 B
0

1

with C depending only on n, M . Moreover, since v us a global solution, the rescaling

g�.x
0/ WD

1

�
g.�x0/; x0 2 B

0

2

which preserves the same Lipschitz constant as g, satisfies the same inequality as above, i.e.ˇ̌
g�.x

0/ � g�.0/ � rg�.0/ � x
0
ˇ̌

6 C jx0j1C
 for x
0

2 B
0

1:

Thus, ˇ̌
g.y0/ � g.0/ � rg.0/ � y0

ˇ̌
6 C

1

R

jy0j1C
 ; y0 2 B

0

R:

Passing to the limit as R!1 we obtain the desired claim.
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In this section we finally prove of our second main theorem.

Proof of Theorem 1.2. Let � > 0 be the universal constant in Theorem 1.1 and u. Without loss of
generality, assume Q.0/ D 1. Consider the re-scaled function

uk WD uık .x/ D
u.ıkx/

ık
;

with ık ! 0 as k !1. Each uk solves�
�puk D fk in BC1 .uk/;

jrukj
p D Qk on F.uk/;

with
fk.x/ WD ıkf .ıkx/ and Qk.x/ WD Q.ıkx/:

Furthermore, for k large, the assumption (5.14) are satisfied for the universal constant N�. In fact, in
B1 we have

jfk.x/j D ıkjf .ıkx/j 6 ıkkf kL1 6 �p

jQk.x/ � 1j D jQk.x/ �Qk.0/j 6 �.1/ı
ˇ

k
6 �p

for k large enough. Therefore, using non-degeneracy (see Lemma 5.1) and uniform Lipschitz
continuity of the u0

k
s (see Lemma (5.1)), standard arguments imply that (up to a subsequence)

(i) There exists u1 2 C.˝/ such that uk ! u1 uniformly on compactsI
(ii) @fuk > 0g ! @fu1 > 0g locally in the Hausdorff distance;

(iii) kfkkL1 C kQk � 1kL1 D o.1/, as k !1

and, as in Lemma 5.2, the blow-up limit u1 solves the global homogeneous one-phase free
boundary problem �

�pu1 D 0; in fu1 > 0g;

jru1j D 1; on F.u1/:

Since F.u/ is a Lipschitz graph in a neighborhood of 0 we also have from have (i)–(iii) that F.u1/
is Lipschitz continuous. Thus, follows the Lemma 5.3 that u1 is a so-called one-phase solution,
i.e., (up to rotations)

u1 D x
C
n :

Thus, for k large enough we have
kuk � u1kL1 6 �

and the facts thar uk is �-flat say in B1, i.e,

.xn � �/
C 6 uk.x/ 6 .xn C �/

C; x 2 B1:

Therefore, we can apply our flatness Theorem 4.1 and conclude that F.uk/ and hence F.u/ is C 1;
 ,
for some 
 2 .0; 1/.

Acknowledgments. RAL and GCR thanks the Analysis research group of UFC for fostering a
pleasant and productive scientific atmosphere. The authors research has been partially funded by
FUNCAP-Brazil.



FREE BOUNDARY REGULARITY FOR A DEGENERATE PROBLEM 595

References

1. Alt, H. W. & Caffarelli, L. A., Existence and regularity for a minimum problem with free boundary.
J. Reine Angew. Math. 325 (1981), 105–144. Zbl0449.35105 MR0618549

2. Caffarelli, L. A., A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free
boundaries are C 1;˛ . Rev. Mat. Iberoamericana 3 (1987), 139–162. Zbl0676.35085 MR0990856

3. Caffarelli, L. A., A Harnack inequality approach to the regularity of free boundaries. II. Flat free
boundaries are Lipschitz. Comm. Pure Appl. Math. 42 (1989), 55–78. Zbl0676.35086 MR0973745

4. Caffarelli, L. A., A Harnack inequality approach to the regularity of free boundaries. III. Existence theory,
compactness, and dependence onX . Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 (1988), 583–602. Zbl0702.
35249 MR1029856

5. Danielli, D. & Petrosyan, A., A minimum problem with free boundary for a degenerate quasilinear
operator. Calc. Var. Partial Differential Equations 23 (2005), 97–124. Zbl1068.35187 MR2133664

6. De Silva, D., Free boundary regularity for a problem with right hand side. Interfaces Free Bound. 13
(2011), 223–238. Zbl1219.35372 MR2813524

7. Gilbarg, D. & Trudinger, N. S., Elliptic partial differential equations of second order. Second edition.
Springer-Verlag, Berlin (1983). Zbl0562.35001 MR0737190

8. Juutinen, P., Lindqvist, P., & Manfredi, J. J., On the equivalence of viscosity solutions and weak solutions
for a quasi-linear equation. SIAM J. Math. Anal. 33 (2001), 699–717. Zbl0997.35022 MR1871417

9. Lederman, C. & Wolanski, N., Weak solutions and regularity of the interface in an inhomogeneous free
boundary problem for the p.x/-Laplacian. Interfaces Free Bound. 19 (2017), 201–241. Zbl06751269

10. Leitão, R. & Teixeira, E., Regularity and geometric estimates for minima of discontinuous functionals.
Rev. Mat. Iberoam. 31 (2015), 69–108. Zbl1323.35219 MR3320834

11. Lewis, J. L. & Nyström, K., Regularity of Lipschitz free boundaries in two-phase problems for the p-
Laplace operator. Advances in Mathematics 225 (2010), 2565–2597. Zbl1200.35335 MR2680176

12. Lewis, J. L. & Nyström, K., Regularity of flat free boundaries in two-phase problems for the p-Laplace
operator. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 29 (2010), 83–108. Zbl1241.
35221 MR2876248

13. Savin O., Small perturbation solutions for elliptic equations. Comm. Partial Differential Equations 32
(2007), 557–578. Zbl1221.35154 MR2334822

14. Serrin, J., A Harnack inequality for nonlinear equations. Bull. Amer. Math. Soc. 69 (1963), 481–486.
Zbl0137.06902 MR0150443

15. Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations
51 (1984), 126–150. Zbl0488.35017 MRMR727034

http://www.emis.de/MATH-item?0449.35105
http://www.ams.org/mathscinet-getitem?mr=0618549
http://www.emis.de/MATH-item?0676.35085
http://www.ams.org/mathscinet-getitem?mr=0990856
http://www.emis.de/MATH-item?0676.35086
http://www.ams.org/mathscinet-getitem?mr=0973745
http://www.emis.de/MATH-item?0702.35249
http://www.emis.de/MATH-item?0702.35249
http://www.ams.org/mathscinet-getitem?mr=1029856
http://www.emis.de/MATH-item?1068.35187
http://www.ams.org/mathscinet-getitem?mr=2133664
http://www.emis.de/MATH-item?1219.35372
http://www.ams.org/mathscinet-getitem?mr=2813524
http://www.emis.de/MATH-item?0562.35001
http://www.ams.org/mathscinet-getitem?mr=0737190
http://www.emis.de/MATH-item?0997.35022
http://www.ams.org/mathscinet-getitem?mr=1871417
http://www.emis.de/MATH-item?06751269
http://www.emis.de/MATH-item?1323.35219
http://www.ams.org/mathscinet-getitem?mr=3320834
http://www.emis.de/MATH-item?1200.35335
http://www.ams.org/mathscinet-getitem?mr=2680176
http://www.emis.de/MATH-item?1241.35221
http://www.emis.de/MATH-item?1241.35221
http://www.ams.org/mathscinet-getitem?mr=2876248
http://www.emis.de/MATH-item?1221.35154
http://www.ams.org/mathscinet-getitem?mr=2334822
http://www.emis.de/MATH-item?0137.06902
http://www.ams.org/mathscinet-getitem?mr=0150443
http://www.emis.de/MATH-item?0488.35017
http://www.ams.org/mathscinet-getitem?mr=MR727034

	Introduction
	Mathematical set-up
	Harnack type inequality
	Improvement of flatness
	Regularity of the free boundary

