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This paper is concerned with the well-posedness theory of the impact of a subsonic axially symmetric
jet emerging from a semi-infinitely long nozzle, onto a rigid wall. The fluid motion is described by
the steady isentropic Euler system. We showed that there exists a critical value Mcr > 0, if the
given mass flux is less thanMcr , there exists a unique smooth subsonic axially symmetric jet issuing
from the given semi-infinitely long nozzle and hitting a given uneven wall. The surface of the axially
symmetric impinging jet is a free boundary, which detaches from the edge of the nozzle smoothly.
It is showed that a unique suitable choice of the pressure difference between the chamber and the
atmosphere guarantees the continuous fit condition of the free boundary. Moreover, the asymptotic
behaviors and the decay properties of the impinging jet and the free surface in downstream were
also obtained. The main results in this paper solved the open problem on the well-posedness of the
compressible axially symmetric impinging jet, which has proposed by A. Friedman in Chapter 16
in [26]. The key ingredient of our proof is based on the variational method to the quasilinear elliptic
equation with the Bernoulli’s type free boundaries.
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1. Introduction

The problem of a compressible jet falling from a channel and impacting on a wall is a fascinating
one, with very practical applications. The canonical problem is of interest in a number of areas, such
a flow is produced by the downwards-directed jet from a vertical take-off aircraft spreading out over
the ground, or by a jet of water form a tap falling into a full sink. The monographs of Birkhoff and
Zarantonello in [10], Jacob in [31], Gurevich in [30] and Milne-Thomson in [33] gave good surveys
of these flows.
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FIG. 1. Subsonic impinging jet in two dimensions

The two-dimensional impinging jets have been considered by Helmholtz and Kirchhoff in 1968.
They constructed a solution to the steady irrotational flows of ideal incompressible weightless
fluid, bounded by the walls and free streamlines. A first systematic well-posedness result on
the incompressible impinging jet was mentioned in Page 364 and Page 416 in [25] that A.
Friedman and L. Caffarelli established the existence of the incompressible irrotational jet issuing
from a two-dimensional semi-infinite channel and impinging on an infinite plate (see also in
Chapter 16.3 in [26]), see [2–4, 13, 15] in different settings. Furthermore, A. Friedman investigated
the compressible subsonic free surface flow theory on the sharped charge jets in [26] and proposed
several open problems on the impinging jets in two dimensions. The one is

Problem (4). Do the same for the compressible case.

In the recent work [14], the authors established the existence result on the subsonic jets issuing
from a convergent nozzle and impact on a flat plate for some special atmospheric pressure (Please
see Figure 1).

As A. Friedman pointed out in [26], “: : : the compressible axially symmetric case is quite
open : : :”. In this paper, we will focus on another open problem pointed out by A. Friedman in [26]:

Problem (5). Extend the results to the axially symmetric flows.

We will establish the existence and uniqueness of the compressible impinging jet in axially
symmetric case, and solve the open problem (5) pointed out by A. Friedman. Many numerical
simulations of the impact of a compressible flows from a cylinder on a rigid wall are referred
to [27, 29, 32, 34, 35].

The present paper treats the compressible impinging jet problem created by the impingement
of a subsonic axially symmetric jet emerging from a semi-infinitely long nozzle on a solid curved
wall (see Figure 2). The geometry considered here is a semi-infinite nozzle in the form of a circular
cylinder, in an unbounded space. The infinite uneven wall is solid and undeformable. The fluid is
assumed to be steady, inviscid and irrotational throughout, and the jet emerges from the orifice of
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FIG. 2. Subsonic axially symmetric impinging jet

the nozzle of circular cross-section bounded by a stream surface, the nozzle wall and the curved
wall.

1.1 Formulation of the physical problem

The steady isentropic compressible flow is governed by the following three-dimensional Euler
system (

r � .�U / D 0;

.�U � r/U Crp D 0;
(1.1)

with the irrotational condition
r � U D 0: (1.2)

Here, U D .u1; u2; u3/ is the velocity, � D �.x1; x2; x3/ is the density and p D p.�/ denotes the
pressure, .x1; x2; x3/ 2 R3 is the space variable. Without loss of generality, we assume that the flow
is perfect polytropic gas satisfying the 
 -law

p D A�
 ; (1.3)

with A > 0 and the adiabatic exponent 
 > 1. The sound speed of the flow is defined as c.�/ Dp
p0.�/ D

p
A
�
�1, and the flow is subsonic if and only if jU j < c.�/.

Here, we consider the axially symmetric flow in this paper, and take y D x3 to be the axis of
symmetry and

x D

q
x21 C x

2
2 :

Let the fluid density and velocity be �.x; y/ and u.x; y/; v.x; y/; w.x; y/ in cylindrical coordinates,
where u; v;w are radial velocity, axially velocity and swirl velocity respectively. Furthermore, we
look for such an axisymmetric flow without swirl in this paper, one has

u1.x1; x2; x3/ D u.x; y/
x1

x
; u2.x1; x2; x3/ D u.x; y/

x2

x
; u3.x1; x2; x3/ D v.x; y/:
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FIG. 3. Axially symmetric impinging jet

Then the governing system (1.1) and (1.2) are written in the cylindrical coordinates as8̂<̂
:
.x�u/x C .x�v/y D 0;

.x�u2/x C .x�uv/y C xpx D 0;

.x�uv/x C .x�v
2/y C xpy D 0;

(1.4)

with the irrotational condition
uy � vx D 0: (1.5)

In order to clarify the physical problem, we start with the notation and the assumptions on the
geometry of the nozzle and the impermeable wall as follows. As shown in Figure 3, we denote the
semi-infinite nozzle as

N W y D g.x/ 2 C 2;˛
�
.a; b�

�
; g.b/ D 1 and lim

x!aC
g.x/ D C1; (1.6)

with A D .b; 1/ being the endpoint of the nozzle, and g.x/ is decreasing in .a; aC"0/ for any small
"0 > 0. Denote the uneven wall as N0 W y D g0.x/ for x > 0 satisfying

g0.x/ 2 C
2;˛
�
Œ0;C1/

�
; g0.0/ D 0; g.x/ > g0.x/ for any x 2 .a; b�; (1.7)

and there exist a � 2
�
0; �

2

�
, and a R0 > b, such that

g00.x/! tan � as x !C1, and g000.x/ > 0 for any x > R0: (1.8)

The boundary conditions require that the nozzle wall N and the uneven wall N0 are assumed to be
impermeable, thus

.u; v/ � En D 0 on N [N0; (1.9)
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where En is the unit outward normal to N [ N0. We denote the incoming mass flux as M0 in the
axially symmetric nozzle, namely

�

ˆ x0

0

2�x�.x; y0/v.x; y0/dx DM0 > 0; (1.10)

for any y0 2 .1;C1/, where x0 D inffx j g.x/ D y0g.
The well-known Bernoulli’s law gives that

q2

2
C

A


 � 1

�
�1 D B in the fluid field, (1.11)

where q D
p
u2 C v2 is the flow speed and B is the Bernoulli’s constant.

The free surface � is defined as an interface between the fluid issuing from the nozzle wall
N and the fluid outside. And then the fluid still satisfies the slip boundary condition on the free
surface � . Moreover, the pressure on � balances to the atmospheric pressure patm, and thus we
assume that

p D patm on �: (1.12)

Hence, we can formulate the compressible subsonic impinging jet problem into the following free
boundary problem (FBP).

DEFINITION 1.1 (The free boundary problem (FBP)) Given a semi-infinitely long nozzle wall N ,
an uneven wallN0, for some appropriate incoming mass fluxM0 > 0, whether there exists a unique
axially symmetric subsonic impinging jet flow, such that the free surface � detaches smoothly from
the endpoint of the nozzle wall N , and goes to infinity in x-direction, and the pressure balances to
the atmospheric pressure patm on the free surface?

Next, we give the definition of the subsonic solution to the FBP.

DEFINITION 1.2 (A subsonic solution to the FBP) A vector .u; v; �; � / is called a subsonic solution
to the FBP, provided that

(1) the free surface � is given by a C 1-smooth function y D k.x/ for x 2 .b;C1/ with

k.b C 0/ D g.b � 0/ D 1; k
0

.b C 0/ D g0.b � 0/; (1.13)

and
k0.x/! tan �; k.x/ � g0.x/! 0 as x !C1:

(2) .u; v; �/ 2 C 1;˛.˝0/\C. N̋0/ solves the compressible Euler system (1.4) in ˝0, where ˝0 is
the flow field bounded by N , N0, I and � ;

(3) sup.x;y/2 N̋0
p
u2Cv2

c.�/
< 1 and p D patm on � .

REMARK The conditions (1.13) are so-called continuous fit condition and smooth fit condition to
the impinging jet, which imply that the free surface � initiates smoothly from the endpoint A of the
nozzle wall N .

1.2 Main results

Before we state the main results in this paper, we would like to emphasize that the atmospheric
pressure patm is an arbitrary constant here. Once it is fixed, we found that there exists an interval
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.p1; p2/ for the constant pressure pin in the inlet, and then our results reveal that we can impose
a unique pin 2 .p1; p2/ to guarantee the unique existence of the axially symmetric impinging jet.
And the critical values p1, p2 depend on the atmospheric pressure patm and the mass fluxM0, which
can be determined uniquely by the following formulas,

M 2
0

2�2a4
�
p1
A
� 2



C
A


 � 1

�p1
A

� 
�1



D
A


 � 1

�patm

A

� 
�1



and
M 2
0

2�2a4
�
p2
A
� 2



C
A


 � 1

�p2
A

� 
�1



D
A
.
 C 1/
2.
 � 1/

�patm

A

� 
�1



:

Obviously, p2 > p1 and the interval .p1; p2/ is well-defined.
The main results in this paper are stated as follows.

Theorem 1.3 Assume that the semi-infinitely long nozzle wallN and the uneven wallN0 satisfy the
conditions (1.6)–(1.8), for any given atmospheric pressure patm > 0, then there exists a critical mass
flux Mcr , such that for any M0 2 .0;Mcr /, there exist a unique incoming pressure pin 2 .p1; p2/
and a unique subsonic solution .u; v; �; � / to the FBP. Moreover,

(1) the subsonic impinging jet flow satisfies the asymptotic behavior in upstream as follows,

.u; v; �/.x; y/! .0; vin; �in/ and r.u; v; �/! 0;

uniformly in any compact subset of .0; a/ as y ! C1, where vin D �
M0

�a2�in
and

�in D .
pin
A /

1

 .

Similarly, the subsonic impinging jet flow satisfies the asymptotic behavior in downstream as
follows,

.u; v; �/.x; y/! .q0 cos �; q0 sin �; �0/ ; .x; y/ 2 ˝0;

as x2 C y2 !C1, where �0 D
�
patm
A
� 1

 and q0 D

q
v2in C

2A


�1

�
�

�1
in � �


�1
0

�
;

(2) the free boundary � converges to N0 in the far field, and

x
�
k.x/ � g0.x/

�
!

M0

2�0q0� cos �
as x !C1: (1.14)

Furthermore, the free boundary � is analytic;
(3) the radial velocity u > 0 in N̋0 n I ;
(4) Mcr is the upper critical value of mass flux for the existence of subsonic jet flow in the following

sense: either
sup
N̋
0

�
u2 C v2 � c2.�/

�
! 0 as M0 !M�cr ;

or there is no � > 0, such that for any M0 2 .Mcr ;Mcr C �/, there exists a subsonic solution
to the compressible jet flow problem and

sup
M02.Mcr ;McrC�/

�
sup
N̋
0

�
u2 C v2 � c2.�/

��
< 0:
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REMARK In view of the statement (4) in Theorem 1.3, we have that either

sup
N̋
0

�
u2 C v2 � c2.�/

�
! 0 as M0 !M�cr ;

or for any M0 > Mcr , there exists an incoming mass flux QM0 2 ŒMcr ;M0�, such that there are no
an incoming pressure pin 2 .p1; p2/ and a subsonic solution to the compressible jet flow problem
satisfying

sup
N̋
0

�
u2 C v2 � c2.�/

�
< 0:

REMARK Our result indicates that the chamber pressure pin in the inlet is determined uniquely by
the continuous fit condition, provided that the atmospheric pressure patm is imposed. On another
hand, the result implies that there exists a unique pressure difference between the chamber and
the outside, such that there exists a unique axially symmetric impinging jet with continuous fit
condition.

REMARK The result (1.14) in fact gives the convergence rate of the distance between the free
surface � and the curved wall N0 in the downstream, which is quite different from the two-
dimensional case.

REMARK Here, we restrict the magnitude of the incoming mass flux M0 to guarantee the global
subsonicity of the impinging jet, this idea is motivated by the recent works [16, 17, 21–23, 36–38]
on the global subsonic flow in an infinitely long nozzle. This is also quite different from the recent
results on two-dimensional subsonic impinging jets in [14].

Based on the significant work [7] by Alt, Caffarelli and Friedman, we can obtain the higher
regularity of the free boundary near the end point A.

Theorem 1.4 IfN isC 3;˛ nearA, then the solution .u; v; �; � / established in Theorem 1.3 satisfies
that either

(1) N [ � is C 2 at A or,
(2) the optimal regularity of N [ � at A is only C 1;

1
2 and the curvature of � goes to ˙1 as

x ! bC.

REMARK The results of Theorem 1.4 imply that either

the curvature along � tends to the curvature of N at A,

or

the curvature of � tends to˙1 in absolute value as one approaches A along � .

The second case is so-called abrupt separation. The proof of Theorem 1.4 follows from Theorem 1.1
in [7] directly.

To investigate the well-posedness of the compressible subsonic impinging jet in axially
symmetric case, from the mathematical point of view, there are at least three difficulties and key
points here. The one is how to discover a mechanism to guarantee the smoothness and the global
subsonicity of the impinging jet in the whole fluid field. In the first well-posedness result [6] on
compressible subsonic jet, the authors suggested to constrain the atmospheric pressure with subsonic



8 J. CHENG, L. DU AND Q. ZHANG

condition and the convex geometry condition of the nozzle wall. With the aid of geometry property,
they can conclude that the compressible jet achieves its maximal speed on the free boundary, and
then the subsonic condition on the free boundary implies the global subsonicity of the jet. A similar
idea has been adapted in the recent work on subsonic impinging jet in two dimensions in [14].
However, in the present work, our idea is quite different from the one in [6]. We do not restrict the
condition on the atmospheric pressure and the geometry condition on the nozzle wall, and we find
an upper critical value of the incoming mass flux and show the regularity and global subsonicity of
the impinging jet provided that the incoming mass flux is less than the upper critical value.

The second difficulty is how to fulfill the continuous fit condition between the nozzle wall and
the free boundary. In the pioneer work [6], the continuous fit condition was fulfilled for special
choice of the incoming mass flux. Namely, they showed that there exists a unique incoming mass
flux, such that the free boundary connects smoothly at the endpoint of the nozzle wall. Here, we
choose the pressure in the inlet as a parameter and show that there exists a unique pressure in the inlet
lying in an appropriate interval .p1; p2/, such that the continuous fit condition holds. As mentioned
in the second Remark, the result implies that there exists a pressure difference between the inlet and
the outlet, such that the continuous fit condition is fulfilled. This makes the result more reasonable
from the physical point of view. The third key point here is that for the 3D axially symmetric
impinging jet there is no uniform positive distance between the free surface � and the uneven wall
N0. Our proof firstly focuses on the decay estimates of the solution in far field. Moreover, with the
optimal decay rate in hand, we get the convergence rate of the distance between the free surface and
the ground. And then rescaling the impinging jet in downstream obtains many important facts, such
as the asymptotic behavior of the impinging jet in downstream.

The rest of the paper is organized as follows. In Section 2, we introduce a variational problem
to solve the free boundary problem, and moreover, establish some properties of the minimizer,
such as the bounded gradient lemma and the non-degeneracy lemma. The Section 3 is about the
free boundary of the minimizer, we prove the continuous dependence of the minimizer and the
free boundary with respect to the parameter �, and obtain the continuous fit condition of the free
boundary. In Section 4, we establish the existence and uniqueness of the subsonic solution to the
axially symmetric impinging flow problem, provided that the incoming mass flux is small enough.
The existence of critical mass flux is obtained in Section 5. In the final section, we give a summary
of the proof to the main results in this paper.

2. Mathematical setting on the FBP

2.1 Stream function setting

Based on the continuity equation, the stream function  can be introduced such that

u D
1

x�
 y and v D �

1

x�
 x : (2.1)

Without loss of generality, we can impose the boundary condition as

 D m0 on N [ � and  D 0 on N0 [ I ;

where m0 D M0
2�

. Denote ˝ as the possible fluid field and E D ˝ \ fx > bg. Define the free
boundary of the stream function as follows

� D E \ @f < m0g:
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Since the pressure is equal to the constant atmospheric pressure patm > 0 on the free boundary � , it
follows from Bernoulli’s law (1.11) that the density � and the momentum �q are also constants on
� , denote

�0 D
�patm

A

� 1



; q0 D

�
2B �

2A


 � 1

�

�1
0

� 1
2

and � D �0q0 on �: (2.2)

It is easy to see thatˇ̌̌̌
r 

x

ˇ̌̌̌
D
1

x

@ 

@�
D � D �q D �0q0 D �0

�
2B �

2A


 � 1

�

�1
0

� 1
2

on �; (2.3)

where � is the outer normal vector of � . Moreover, one has

2m20
a4�2in

C
A


 � 1

�

�1
in D

�2

2�20
C

A


 � 1

�

�1
0 D B: (2.4)

By virtue of (2.4), � is uniquely determined by the density �in in upstream, oncem0 and �0 are fixed.
Therefore, we can take � as a parameter to solve the free boundary problem firstly, and denote

B.�2/ D
�2

2�20
C

A


 � 1

�

�1
0 : (2.5)

As we know, there exist some critical quantities,

q�;cr D

�
2B.�2/


 � 1


 C 1

� 1
2

; ��;cr D

�
2B.�2/
A



 � 1


 C 1

� 1

�1

; ��;max D

�
B.�2/
A


.
 � 1/

� 1

�1

;

such that the flow is subsonic if and only if q < q�;cr or ��;cr < � 6 ��;max (see also in [9]
and [18]).

Let t D
ˇ̌̌
r 
x

ˇ̌̌2
be the square norm of the momentum and the Bernoulli’s law (1.11) gives that

t

2�2
C

A


 � 1

�
�1 D
�2

2�20
C

A


 � 1

�

�1
0 D B.�2/:

Moreover, set
˘� D ��;crq�;cr

and

H.t; �I�2/ D
t

2�2
C

A


 � 1

�
�1 � B.�2/ D 0; (2.6)

for t > 0, ��;cr < � 6 ��;max and � 2 .0;˘�/.
A simple manipulation leads to that

@H
@.�2/

.t; �I�2/ D �
1

2�20
and

@H
@t
.t; �I�2/ D

1

2�2
; (2.7)
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and

@H
@�
.t; �I�2/ D

1

�

�
A
�
�1 �

t

�2

�
D
1

�

�

 C 1


 � 1
A
�
�1 � 2B.�2/

�
D
1

�


 C 1


 � 1
A


�
�
�1 � �


�1

�;cr

�
> 0; (2.8)

for any ��;cr < � 6 ��;max and � 2 .0;˘�/, where we used the equality (2.6). Thus, noticing (2.6),
the density � can be described as a function of t with a parameter � 2 .0;˘�/ saying �.t I�2/,
provided that ��;cr < � 6 ��;max . Furthermore, it follows from (2.7) and (2.8) that

@�.t I�2/

@t
D �

@H.t;�I�2/
@t

@H.t;�I�2/
@�

D �
1

2�2 @H.t;�I�
2/

@�

< 0; (2.9)

and
@�.t I�2/

@.�2/
D �

@H.t;�I�2/
@.�2/

@H.t;�I�2/
@�

D
1

2�20
@H.t;�I�2/

@�

> 0; (2.10)

for any ��;cr < � 6 ��;max and � 2 .0;˘�/. In view of (2.9), it is easy to check that for any
� 2 .0;˘�/,

��;cr < � 6 ��;max if and only if t 2 .0;˘2
�/: (2.11)

Thus we can conclude that �.t I�2/ is a decreasing smooth function with respect to t 2 Œ0;˘2
�
/ for

� 2 .0;˘�/. Moreover, the density � for subsonic flow has the following uniform estimates�
2


 C 1

� 1

�1

�0 6 ��;cr < � 6 ��;max 6
�

 C 1

2

� 1

�1

�0: (2.12)

After a direct computation, there exists a �cr D
�
A
�
C10

� 1
2

D .A
/ 12
�
patm
A
� 
C1
2
 , such that

� < ˘� for any � < �cr , and �cr D ˘�cr :

In this paper, we assume that the parameter � < �cr . In the following, denote

�1.t I�
2/ D

@�.t I�2/

@t
and �2.t I�

2/ D
@�.t I�2/

@.�2/

the derivatives of the function �.t I�2/ for any t 2 .0;˘2
�
/ and � 2 .0;˘�/.

Furthermore, the irrotational condition (1.5) deduces to the governing equation for the stream
function in the flow field that

Q� D r �

 
r 

x�.jr 
x
j2I�2/

!
D 0 in ˝0; (2.13)

where r D .@x ; @y/ and ˝0 D ˝ \ f < m0g is the fluid field.
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It is not difficult to see that the equation in (2.13) becomes degenerate as jr j
x
! ˘�, in order to

guarantee the uniform ellipticity, at first we consider the following modified problem. The essence
of this idea has already been illustrated in the compressible subsonic problem, seeing [6, 8, 9, 11,
19–23, 36–38].

Let Q�.t I�2/ be a smooth decreasing function satisfying

Q�.t I�2/ D

�
�.t I�2/; for t 6 .˘� � 2Q"/

2;

�..˘� � Q"/
2I�2/; for t > .˘� � Q"/

2;
(2.14)

for any small Q" > 0, and

�
Q�1.t I�

2/

Q�2.t I�2/
6

CQ"

1C t
for CQ" > 0. (2.15)

Here, Q�1.t I�2/ denotes the derivative function of Q�.t I�2/ with respect to t .
Hence, we first consider the following modified free boundary problem8̂̂̂<̂

ˆ̂:
QQ� D r �

�
r 

x Q�.jr x j
2I�2/

�
D 0 in ˝ \ f < m0g;

1
x
@ 
@�
D � on �;

 D 0 on N0 [ I;  D m0 on N [ �:

(2.16)

In the end of this section, we will verify that jr j
x

6 ˘� � 2Q" in N̋0, thus the subsonic cut-off can

be taken away and Q�
�ˇ̌
r 
x

ˇ̌2
I�2

�
D �

�ˇ̌
r 
x

ˇ̌2
I�2

�
.

2.2 Variational approach

To solve the free boundary value problem (2.16) with any parameter � < ˘�, we will introduce
the variational method, which has been adapted to solve the compressible jet problem in [6]. Next,
we give the corresponding variational problem as follows. Firstly, define an admissible set (see
Figure 3) as

K D
˚
 2 H 1

loc
.R2/ j  6 m0 a.e. in R2;  D m0 lies above N;

 D 0 lies below N0 and lies left I
	
:

Denote

F.t I�/ D

ˆ t

0

1

Q�.� I�2/
d�; F1.t I�/ D

@F.t I�/

@t
and F11.t I�/ D

@2F.t I�/

@t2
;

which together with (2.15) yield that

F.0I�/ D 0; F.�2I�/ D
1

�0
; 0 6 F11.t I�/ 6

CQ"

1C t
: (2.17)

Set
� D �.�2/ D

p
2F1.�2I�/�2 � F.�2I�/:
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In view of (2.12), it is easy to check that

�2.�2/

�2
D

2
�0
�

1
�2

´ �2
0

1
Q�.� I�2/

d� 6 1
�0

�
2 �

�
2

C1

� 1

�1

�
; (2.18)

and
�2.�2/

�2
D

2
�0
�

1
�2

´ �2
0

1
Q�.� I�2/

d� > 1
�0

�
2 �

�

C1
2

� 1

�1

�
> 0; (2.19)

for any � 2 Œ0;˘�/. Furthermore, it follows from (2.10) that

d�2.�2/

d.�2/
D

1

�0
C

ˆ �2

0

�2.� I�
2/

�2.� I�2/
d� >

1

�0
; (2.20)

for any � 2 Œ0;˘� � 2Q"/, which implies that �.�2/ is uniquely determined by � 2 .0;˘� � 2Q"/.
Set

f .�I�/ D F.j�j2I�/ with � D .�1; �2/ 2 R2, (2.21)

it follows from (2.17) that f .�I�/ is convex with respect to �, and there exists a constant #
depending on �cr and Q", such that

#j�j2 6
2X

i;jD1

@2f .�I�/

@�i@�j
�i�j 6 #�1j�j2 for any � D .�1; �2/ 2 R2;

and
#j�j2 6 f�.�I�/ � � and #j�j2 6 f .�I�/ 6 #�1j�j2:

Define a function with any parameter � 2 .0;˘�/ as follows,

G.r ; ; xI�/ D xF

 ˇ̌̌̌
r 

x

ˇ̌̌̌2
I�

!
C
�
x�2 � 2�F1.�

2
I�/r � e

�
�f <m0g\E ; (2.22)

where �D is the indicator function of the set D and e D .� sin �; cos �/. By virtue of the convexity
of F.t I�/ with respect to t , one has

G.r ; ; xI�/ > x

 
F

 ˇ̌̌̌
r 

x

ˇ̌̌̌2
I�

!
� F.�2I�/ � F1.�

2
I�/

 ˇ̌̌̌
r 

x

ˇ̌̌̌2
� �2

!!
�f <m0g\E

C xF1.�
2
I�/

ˇ̌̌̌
r 

x
� �e

ˇ̌̌̌2
�f <m0g\E

> xF1.�
2
I�/

ˇ̌̌̌
r 

x
� �e

ˇ̌̌̌2
�f <m0g\E ; (2.23)

and

G.r ; ; xI�/ 6 Cx
ˇ̌̌
r 
x
� �e

ˇ̌̌2
�f <m0g\E C xF1

�ˇ̌̌
r 
x

ˇ̌̌2
I�

�
�f <m0gnE : (2.24)



AXIALLY SYMMETRIC SUBSONIC IMPINGING JETS 13

x

y

O

θ

Nμ

N0

A

ba

μ
Lμ

Iμ

T

Ωμ

Ωμ

FIG. 4. Truncated domain

Hence, we define a functional

J�. / D

ˆ
˝

G.r ; ; xI�/dxdy:

It follows from (2.23) that the functional J�. / is non-negative for any  2 K. Obviously, J�. /
is unbounded for any  2 K. Thus we will truncate the domain as˝� for any � > 1 (see Figure 4),
which is bounded by N�; I�; N0; L� and T D f.b; y/ j y > 1g, where

N� D N \ fx > x�g, I� D I \ fy 6 �g, and L� D f.x; y/ j 0 6 x 6 x�; y D �g;

with x� D minfx j g.x/ D �g. Define the following functional in the truncated domain ˝�,

J�;�. / D

ˆ
˝�

G.r ; ; xI�/dxdy:

To overcome the singularity of the functional J�;� near y-axis, we first consider the following
variational problem.

The truncated variational problem .P ı
�;�
/

For any � 6 ˘� � 3Q", � > 1 and small ı > 0, find a  ı
�;�
2 Kı� such that

J ı�;�. 
ı
�;�/ D min

 2Kı�

J ı�;�. /;

where
J ı�;�. / D

ˆ
˝�

G.r ; ; x C ıI�/dxdy
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and

Kı� D

�
 2 K j  D min

nm0
x2�
..x C ı/2 � ı2/;m0

o
on L�

�
:

Lemma 2.1 The variational problem .P ı
�;�
/ has a minimizer  ı

�;�
and  ı

�;�
2 C 0;1.˝�/.

Furthermore, the minimizer  ı
�;�

satisfies that

ˆ
˝�

f�

 
r ı

�;�

x C ı
I�

!
� r�dxdy > 0 for any � 2 C10 .˝�/ and � > 0;

and

ˆ
˝�

f�

 
r ı

�;�

x C ı
I�

!
� r�dxdy D 0 for any � 2 C10 .˝� \ f 

ı
�;� < m0g/; (2.25)

where f .�I�/ is defined in (2.21). Furthermore,

0 6  ı�;�.x; y/ 6 min
nm0
x2�

�
.x C ı/2 � ı2

�
; m0

o
in ˝�. (2.26)

Proof. Define

 0.x; y/ D min
�
�max

n
.x C ı/

��
y � g0.R0/

�
cos � � .x C ı �R0/ sin �

�
; 0
o
; m0

�
;

it follows from (1.8) that  0 D 0 on N0 \ fx > R0g. Then we can extend  0 into the domain
˝� n fx 6 R0g so that it belongs to the admissible set Kı� and f 0 < m0g \ .˝� n fx 6 R0g/ is
bounded. Hence, it suffices to verify that

ˆ
˝�\fx>R0g

G.r 0;  0; x C ıI�/dxdy < C1:

In fact, it follows from (2.24) that
ˆ
˝�\fx>R0g

G.r 0;  0; x C ıI�/dxdy

6 C

ˆ C1
R0

ˆ g0.R0/C.xCı�R0/ tan �C
m0

�.xCı/ cos�

g0.R0/C.xCı�R0/ tan �
.x C ı/

ˇ̌̌̌
r 0

x C ı
� �e

ˇ̌̌̌2
dydx

6 C

ˆ C1
R0Cı

ˆ g0.R0/C.x�R0/ tan �C
m0

�x cos�

g0.R0/C.x�R0/ tan �

�2
��
y � g0.R0/

�
cos � � .x �R0/ sin �

�2
x

dydx

6
C

.R0 C ı/3
:

The existence of the minimizer to the variational problem .P ı
�;�
/ can be obtained via the similar

arguments in Lemma 1.1 in [4] and Theorem 1.1 in [5], and denote  ı D  ı
�;�

as the minimizer to
the variational problem .P ı

�;�
/ for simplicity.
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For any nonnegative function � 2 C10 .˝�/ and " > 0, it is easy to check that minf ı C
"�;m0g 2 K� and fminf ı C "�;m0g < m0g � f ı < m0g. Thus, we have

0 6 J ı�;�

�
minf ı C "�;m0g

�
� J ı�;�. 

ı/

D

ˆ
˝�

.x C ı/F

 
jr minf ı C "�;m0gj2

.x C ı/2
I�

!
� .x C ı/F

 
jr ı j2

.x C ı/2
I�

!
dxdy

6
ˆ
˝�\f ıC"�6m0g

.x C ı/F

 
jr. ı C "�/j2

.x C ı/2
I�

!
� .x C ı/F

 
jr ı j2

.x C ı/2
I�

!
dxdy

6 2"

ˆ
˝�\f ıC"�6m0g

F1

 
jr. ı C "�/j2

.x C ı/2
I�

!
r ı � r�

x C ı
dxdy C o."/;

which implies that

0 6
ˆ
˝�\f ıC"�6m0g

F1

 
jr. ı C "�/j2

.x C ı/2
I�

!
r ı � r�

x C ı
dxdy:

Taking "! 0 in above inequality, we have

0 6
ˆ
˝�

F1

 
jr ı j2

.x C ı/2
I�

!
r ı � r�

x C ı
dxdy:

Similarly, we can verify that (2.25) holds.
Next, we will show that

 ı.x; y/ > 0 in ˝�: (2.27)

Denote  ı" D  
ı � "minf ı ; 0g for " 2 .0; 1/. It is easy to check that  ı" 2 K

ı
�,

 ı" > 0 if and only if  ı > 0 and  ı" >  ı in ˝�:

Since  ı is the minimizer to the truncated variational problem .P ı
�;�
/, one has

0 6 J ı�;�. 
ı
" / � J

ı
�;�. 

ı/: (2.28)

For any sufficiently large R > 0, denote ˝�;R D ˝� \ fy < Rg and ER D ˝�;R \ fx > bg, we
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haveˆ
˝�;R

G.r ı" ;  
ı
" ; x C ıI�/dxdy �

ˆ
˝�;R

G.r ı ;  ı ; x C ıI�/dxdy

D

ˆ
˝�;R

.x C ı/F

0@ˇ̌̌̌ˇ r ı"x C ı

ˇ̌̌̌
ˇ
2

I�

1A � .x C ı/F 0@ˇ̌̌̌ˇ r ıx C ı

ˇ̌̌̌
ˇ
2

I�

1A dxdy
� 2�F1.�

2
I�/

ˆ
˝�;R\E

r ı" � e�f ı"<m0g
� r ı � e�f ı<m0gdxdy

6
ˆ
˝�;R

F1

0@ˇ̌̌̌ˇ r ı"x C ı

ˇ̌̌̌
ˇ
2

I�

1A jr ı" j2 � jr ı j2
x C ı

dxdy

� 2�F1.�
2
I�/

ˆ
@ER

. ı" �  
ı/e � �dS

6
ˆ
˝�;R

F1

0@ˇ̌̌̌ˇ r ı"x C ı

ˇ̌̌̌
ˇ
2

I�

1A ..1 � "/2 � 1/jr minf ı ; 0gj2

x C ı
dxdy: (2.29)

Here, we have used the factˆ
@ER

. ı" �  "/e � �dS D sin �
ˆ
@ER\fxDbg

. ı" �  "/dS C cos �
ˆ
@ER\fyDRg

. ı" �  "/dS > 0:

Taking R!C1 in (2.29), it follows from (2.28) that

0 6
�
.1 � "/2 � 1

�ˆ
˝�

F1

0@ˇ̌̌̌ˇ r ı"x C ı

ˇ̌̌̌
ˇ
2

I�

1A jr minf ı ; 0gj2

x C ı
dxdy;

which implies that (2.27) holds.
Since 0 6  ı

�;�
6 m0 in ˝�, it suffices to show that

 ı�;� 6
m0

x2�
..x C ı/2 � ı2/ in ˝� \

n
x 6

q
x2� C ı

2 � ı
o
: (2.30)

In view of (2.25), the maximum principle gives that the inequality (2.26) holds.

With the aid of Lemma 2.1, we consider the following truncated variational problem.

The truncated variational Problem .P�;�/

For any � 6 ˘� � 3Q" and � > 1, find a  2 K� such that

J�;�. �;�/ D min
 2K�

J�;�. /;

where

K� D

�
 2 K j  D

m0

x2�
x2 on L� and  6 min

nm0
x2�
x2; m0

o
a.e. in ˝�

�
:
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2.3 Existence and fundamental properties of minimizer

Lemma 2.2 There exists a minimizer  �;� to the variational problem .P�;�/ and  �;� 2

C 0;1.˝�/. Moreover,

(1) the minimizer  �;� satisfies that
ˆ
˝�

f�

�
r �;�

x
I�

�
� r�dxdy > 0 for any � 2 C10 .˝�/ and � > 0;

and

QQ� �;� D 0 in ˝� \ f �;� < m0g and  �;� 2 C
2;˛.˝� \ f �;� < m0g/:

Furthermore,
 �;�.x; y/ > 0 in ˝�. (2.31)

(2) The free boundary ��;� D E \ @f �;� < m0g is analytic, and

1

x
jr �;�j D � on ��;�;

and
1

x
jr �;�j > � on l;

where l is a segment with l � T \ @f �;� < m0g.

Proof. (1) Along the similar arguments in the proof of Lemma 1.1 in [4] and Theorem 1.1 in [5],
one has that there exists a sequence fıng with ın ! 0 as n!C1, such that

 
ın
�;�

*  0 in H 1
loc.˝�/ and  ın

�;�
!  0 uniformly in any compact subset of ˝�:

It follows from (2.26) that

0 6  0.x; y/ 6 min
�
x2

x2�
m0; m0

�
in ˝�;

which together with (2.25) gives that

r � f�

�
r 0

x
I�

�
D 0 in ˝� \

n
x <

x�

2

o
:

Next, we will check that J�;�. 0/ < C1. By virtue of the proof of Lemma 2.1, it suffices to
show that

jr 0.X/j

x
6 C near I :

For any X0 D .x0; y0/ 2 ˝� with x0 <
x�
4

, denote �.X/ D  0.X0Cr0X/

r2
0

with r0 D x0
2

. It is

easy to check that

r � f�

�
r�

2C x
I�

�
D 0 and 0 6 � 6 .2C x/2m0 in B1.0/:
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Thanks to the gradient estimate in Chapter 12 in [28], one has

jr�.0/j 6 C;

where the constant C is independent of x0. This gives that

jr 0.X0/j D r0jr�.0/j 6 Cx0:

Since J�;�. 0/ < C1 and  0 2 K�, the minimal functional J�;�. / is finite. By using the
proof of Lemma 1.1 in [4], we can conclude that there exists a minimizer to the variational
problem .P�;�/.
Denote �;� be the minimizer to the variational problem .P�;�/ and ��;� D E\@f �;� < m0g
as the free boundary of  �;�. Thanks to Lemma 2.1, we can show that  �;� 2 C 0;1.˝�/
satisfies the assertion (1) of this lemma.

(2) Since F.t I�/ is C 2-smooth with respect to t 2 Œ0;C1/, it follows from Theorem 6.3 in [5]
that the free boundary ��;� is C 1;˛ , and thus  �;� is C 1;˛ up to the free boundary. Since
� 6 ˘� � 3Q", the subsonic cut-off can be removed near the free boundary. Then F.t I�/ is
analytic near ��;�, the Remark 6.4 in [5] gives that the free boundary ��;� is analytic. By using
the similar arguments in the proof of Lemma 9.1 in [14], we can conclude that

1

x
jr �;�j D � on ��;�; and

1

x
jr �;�j > � on l;

where l is a segment with l � T \ @f �;� < m0g.

Next, we will give the bounded gradient lemma in the following.

Lemma 2.3 Let X0 D .x0; y0/ be a free boundary point and let Br .X0/ � BR.X0/ � E with
r < R. Then

jr �;�.X/j 6 C�x in Br .X0/,

where the constant C depends only on #;N;N0 and
�
1 � r

R

��1, but not on m0.

ψλ,μ < m0

BR(X0)Br(X0)

X0

Bd(X1)(X1)

X1

Γλ,μ

FIG. 5. Bd.X1/.X1/ and BR.X0/
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Proof. Step 1. In this step, we will show that

m0 �  �;�.X/ 6 C�xd.X/ for any X 2 Br .X0/; (2.32)

where d.X/ D dist.X; ��;�/ and the constant C depends only on #; b and
�
1 � r

R

��1.
Denote d0 D R � r . Suppose that X1 D .x1; y1/ 2 Br .X0/ \ f < m0g and d.X1/ < d0.

Thus Bd.X1/.X1/ � BR.X0/ \ f �;� < m0g (please see Figure 5). Next, we assume that

m0 �  �;�.X1/ > Md.X1/x1; (2.33)

and we will derive an upper bound of M in the following. Denote

�.X/ D
m0 �  �;�.X1 C dX/

dx1
with d D d.X1/, (2.34)

and one has

r � f�

�
x1r�

x1 C dx
I�

�
D 0 in B1.0/:

It follows from (2.33) that
�.0/ > M:

It follows from Harnack’s inequality (see Theorem 8.20 in [28]) that

�.X/ > cM in B 3
4
.0/ for some c > 0; (2.35)

where the constant c is independent of d and x1. On another hand, there exists a QX D . Qx; Qy/ 2

@B1.0/ \ ��;�. Define a function 	 , which satisfies that(
r � f�

�
x1r	
x1Cdx

I�
�
D 0 in B1. QX/;

	 D � outside B1. QX/:

Since r � f�
�
x1r�
x1Cdx

I�
�

> 0 in B1. QX/, the maximum principle gives that

� 6 	 in B1. QX/: (2.36)

Then we have

0 6
ˆ
B1. QX/

.x1 C dx/

�
F

�
jx1r	 j

2

.x1 C dx/2
I�

�
� F

�
jx1r�j

2

.x1 C dx/2
I�

��
dxdy

� 2�F1.�
2
I�/

ˆ
B1. QX/

r.	 � �/ � edxdy C�2
ˆ
B1. QX/

.x1 C dx/.�f	>0g � �f�>0g/dxdy

6
ˆ
B1. QX/

�#
x21 jr.	 � �/j

2

x1 C dx
C f�

�
x1r	

x1 C dx
I�

�
� r.	 � �/C�2.x1 C dx/�f�D0gdxdy

D �#

ˆ
B1. QX/

x21 jr.	 � �/j
2

x1 C dx
dxdy C�2

ˆ
B1. QX/

.x1 C dx/�f�D0gdxdy;
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which implies that
ˆ
B1. QX/

jr.	 � �/j2dxdy 6 C

ˆ
B1. QX/

x1jr.	 � �/j
2

x1 C dx
dxdy

6
C�2

x1

ˆ
B1. QX/

.x1 C dx/�f�D0gdxdy

6 C�2
ˆ
B1. QX/

�f�D0gdxdy; (2.37)

where C is a constant depending only on # and
�
1 � r

R

��1.
It follows from (2.35) and (2.36) that

	.X/ > �.X/ > cM in B 3
4
.0/ \ B1. QX/:

Applying Harnack’s inequality for 	 in B1. QX/, one has

	.X/ > C0 in B 1
2
. QX/; C0 D cM: (2.38)

Define '.X/ D C0
�
e��jX�

QX j2 � e��
�

, after a direct computation, we have

r � f�

�
x1r'

x1 C dx
I�

�
D
2�C0x1e

��j�j2

x1 C dx

�
f�i�j .2��i�j � ıij /C

d.f�1�1�1 C f�1�2�2/

x1 C dx

�
> 0

in B1. QX/ n B 1
2
. QX/, provided that � is large enough, where f�i�j D f�i�j

�
x1r'
x1Cdx

I�
�

and � D

.�1; �2/ D X � QX for i; j D 1; 2.
It is easy to check that

	 > ' on @
�
B1. QX/ n B 1

2
. QX/

�
:

The maximum principle gives that

	.X/ > '.X/ D C0
�
e��jX�

QX j2
� e��

�
> cC0.1 � jX � QX j/ in B1. QX/ n B 1

2
. QX/;

which together with (2.38) gives that

	.X/ > cM.1 � jX � QX j/ in B1. QX/ n B 1
2
. QX/: (2.39)

With the aid of (2.37) and (2.39), along the similar arguments in the proof of Lemma 3.2 in [1] and
Lemma 2.2 in [5], one has

M 2 6 C�2;

where the constant C depends only on #;N;N0 and
�
1 � r

R

��1. This implies that

m0 �  �;�.X1/ 6 C�d.X1/x1: (2.40)

Take any point X2 D .x2; y2/ 2 Br .X0/ such that d.X2/ > d0 and there exists a point X1 2
Bd0

2

.X2/ with d.X1/ < d0. By using Harnack’s inequality for m0 �  �;� in Bd0.X2/ and (2.40),
one has

m0 �  �;�.X2/ 6 C
�
m0 �  �;�.X1/

�
6 C�d.X1/x1 6 C�d.X2/x2:
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For any X 2 Br .X0/, we can repeat this argument step by step, and after a finite steps k (depending
only on #;N;N0 and

�
1 � r

R

��1), such that

m0 �  �;�.X/ 6 C�d.X/x:

Hence, we complete the proof of (2.32).

Step 2. In this step, we will complete the proof of this lemma. For any X1 2 Br .X0/, denote
d0 D R � r and d.X/ D dist.X; ��;�/, and we consider the following two cases.

Case 1. d.X1/ < d0. Then it follows from (2.32) that

r � f�

�
x1r�

x1 C dx
I�

�
D 0 and 0 6 � 6

C�.x1 C dx/d.X1 C dX/

dx1
6 C� in B1.0/;

where � and d are defined in (2.34), the constant C depends only on #;N;N0 and�
1 � r

R

��1. Applying the elliptic estimate for the quasilinear equation in [28], one has

jr�.0/j 6 C;

which gives that
jr �;�.X1/j D x1jr�.0/j 6 Cx1:

Case 2. d.X1/ > d0. Obviously, Bd0.X1/ � BR.X0/ \ f �;� < m0g. Denote �0.X1/ D
m0� �;�.X1Cd0X/

d0x1
, it follows from (2.34) that

r�f�

�
x1r�0

x1 C d0x
I�

�
D 0 and 0 6 �0 6

C�.x1 C d0x/d.X1 C d0X/

d0x1
6 C� in B1.0/:

By using the elliptic estimate for �0 in B1.0/, one has

jr�0.0/j 6 C and jr �;�.X1/j D x1jr�0.0/j 6 Cx1:

With the aid of Lemma 2.3, applying the similar arguments in the proof of Lemma 2.4 in [5],
we can obtain the following lemma.

Lemma 2.4 There exists a positive constant C �, such that for any disc Br .X0/ �� ˝� with
X0 D .x0; y0/, r 6 x0

2
, then

1

r

 
@Br .X0/

.m0 �  �;�/dS > C ��x0;

implies that
 �;� < m0 in Br .X0/:

We next establish a non-degeneracy lemma.

Lemma 2.5 There is a universal constant c� > 0 such that for any disc Br .X0/ with center X0 D
.x0; y0/ 2 E and r 6 x0

2
, then

1

r

� 
Br .X0/

.m0 �  �;�/
2dxdy

� 1
2

6 c��x0; (2.41)

implies that
 �;� D m0 in B r

8
.X0/ \E:
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Proof. It is easy to check that the set

B r
8
.X0/ \E

can be covered by discs of the form

Br1.X1/ � B r
4
.X0/ \E with r1 D

r

16
:

Thus, it suffices to show that  �;� D m0 in any discs Br1.X1/ � B r
4
.X0/ \ E, provided that the

assumption (2.41) holds. Let  0 solves the following boundary value problem(
r � f�

�
r 0
x
I�
�
D 0 in B2r1.X1/ n Br1.X1/;

 0 D m0 in Br1.X1/;  0 D  �;� outside of B2r1.X1/:
(2.42)

Obviously, maxf 0;  �;�g 2 K�, and thus

0 6 J�;�
�
maxf �;�;  0g

�
� J�;�. �;�/

D

ˆ
B2r1 .X1/

xF

 ˇ̌̌̌
r maxf �;�;  0g

x

ˇ̌̌̌2
I�

!
� xF

 ˇ̌̌̌
r �;�

x

ˇ̌̌̌2
I�

!
dxdy

� 2F1.�
2
I�/�

ˆ
B2r1 .X1/

r maxf 0 �  �;�; 0g � edxdy

C�2
ˆ
B2r1 .X1/

x�fmaxf �;�; 0g<m0g � x�f �;�<m0gdxdy

D I1 C I2 C I3: (2.43)

For the first term on the right hand side of (2.43), one has

I1 6
ˆ
B2r1 .X1/nBr1 .X1/

r maxf 0 �  �;�; 0g � f�

�
r maxf �;�;  0g

x
I�

�
dxdy

�

ˆ
Br1 .X1/

xF

 ˇ̌̌̌
r �;�

x

ˇ̌̌̌2
I�

!
dxdy

6 �
ˆ
Br1 .X1/

xF

 ˇ̌̌̌
r �;�

x

ˇ̌̌̌2
I�

!
dxdy

C 2

ˆ
@Br1 .X1/

.m0 �  �;�/F1

 ˇ̌̌̌
r 0

x

ˇ̌̌̌2
I�

!
r 0 � �

x
dS: (2.44)

It is easy to check that I2 D 0 and

I3 D ��
2

ˆ
B2r1 .X1/

x�f �;�< 0Dm0gdxdy 6 ��2
ˆ
Br1 .X1/

x�f �;�<m0gdxdy;
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which together with (2.43) and (2.44) gives that

ˆ
Br1 .X1/

xF

 ˇ̌̌̌
r �;�

x

ˇ̌̌̌2
I�

!
dxdy C�2

ˆ
Br1 .X1/

x�f �;�<m0gdxdy

6 2

ˆ
@Br1 .X1/

.m0 �  �;�/F1

 ˇ̌̌̌
r 0

x

ˇ̌̌̌2
I�

!
r 0 � �

x
dS: (2.45)

Set Q .X/ D m0� �;�.X1Cr1X/

r1x0
and Q 0.X/ D

m0� 0.X1Cr1X/
r1x0

, one has

r � f�

 
x0r Q 

x1 C r1x
I�

!
> 0 in B16

�
X0 �X1

r1

�
:

Moreover, it follows from the assumption (2.41) that

  
B16

�
X0�X1
r1

� Q 2dxdy
! 1
2

6 ı�;

where ı is to be chosen later on. By using the L1 estimate in Theorem 8.17 in [28], one has

sup
X2B8

�
X0�X1
r1

� Q .X/ 6 C

  
B16

�
X0�X1
r1

� Q 2dxdy
! 1
2

6 Cı�; (2.46)

where C is a constant depending only on # and a. Since B2.0/ � B8

�
X0�X1
r1

�
, it follows

from (2.46) that

0 6 Q 0 D Q 6 C�ı on @B2.0/ and Q 0 D 0 on @B1.0/: (2.47)

It is easy to check that

r � f�

 
x0r Q 0

x1 C r1x
I�

!
D 0 in B2.0/ n B1.0/:

Applying the boundary elliptic estimate in Lemma 6.10 in [28], one has

jr Q 0 � �j 6 Cı� on @B1:
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In view of (2.45), (2.47) and the trace theorem, one has

ˆ
B1.0/

.x1 C r1x/F

 
x20 jr

Q j2

.x1 C r1x/2
I�

!
C�2.x1 C r1x/�f Q >0gdxdy

6 2x0

ˆ
@B1.0/

Q F1

 
x20 jr

Q 0j
2

jx1 C r1xj2
I�

!
x0jr 0 � �j

x1 C r1x
dS

6 Cx0ı�

ˆ
@B1.0/

Q dS

6 Cx0ı�

�ˆ
B1.0/

Q dxdy C

ˆ
B1.0/

jr Q jdxdy

�
6 Cx0ı�

��
Cı�C

1

4"

� ˆ
B1.0/

�
f Q >0gdxdy C "

ˆ
B1.0/

jr Q j2dxdy

�
; (2.48)

where we have used the fact

jr Q j 6 "jr Q j2 C
1

4"
a.e. in B1 \ f Q > 0g:

On the other hand, we have

x0

ˆ
B1.0/

jr Q j2dxdy C x0

ˆ
B1.0/

�2�
f Q >0gdxdy

6 C

ˆ
B1.0/

.x1 C r1x/F

 
x20 jr

Q j2

.x1 C r1x/2
I�

!
C�2.x1 C r1x/�f Q >0gdxdy

6 Cx0ı�

��
Cı� �

1

4"

�ˆ
B1.0/

�
f Q >0gdxdy C "

ˆ
B1.0/

jr Q j2dxdy

�
: (2.49)

Taking " D 1
Cı�

, it follows from (2.48) and (2.49) that�
1 � Cı2

�
x0�

2
´
B1.0/

�
f Q >0gdxdy 6 0;

which implies that
Q D 0 in B1.0/;

provided that ı <
q

1
C

, where the constant C depends on # and b. The proof is completed.

Theorem 2.6 The minimizer  �;� is Lipschitz continuous in any compact subset of N̋� that does
not contain A or the points where @˝� is not C 1;˛ .

Proof. Denote  D  �;� and � D ��;� for simplicity. The Lipschitz continuity of  in any
compact subset of ˝� follows from the proof of Lemma 2.3. On another hand, the Lipschitz
continuity of  near L� [N� [

�
N0;� \

˚
x 6 b

2

	�
can be obtained by using the elliptic estimate.

Along the similar arguments in the proof of Lemma 2.2, we can obtain the Lipschitz continuity of  
near the symmetric axis I .

We next consider the Lipschitz continuity of  near T or near the wall N0 \
˚
x > b

2

	
.
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For X D .x; y/ 2 ˝� with y � 1 > ı, denote X0 D .b; y/, d.X/ D dist.X; ��;�/ and
d1.X/ D dist.X; T /. If d.X/ 6 d1.X/, by using the similar arguments in the proof Lemma 2.3,
we have jr .X/j 6 C , where the constant C depends on � and # .

For the case d.X/ > d1.X/ D x � b, set r0 D minfb
2
; y � 1g and Br0 D Br0.X0/.

Consider a function �, which solves the following boundary value problem(
r � f�

�
r�
x
I�
�
D 0 in Br0 \ fx > bg;

� D 0 on Br0 \ fx D bg; � D m0 �  on @Br0 \ fx > bg:

The maximum principle gives that

m0 �  6 � in Br0 \ fx > bg. (2.50)

Set Q�. QX/ D �.X0Cr0 QX/
r0

with QX D . Qx; Qy/. Noting 0 6 � 6 m0, one has(
r � f�

�
r Q�

bCr0 Qx
I�
�
D 0 in B1.0/ \ f Qx > 0g;

0 6 Q� 6 m0
r0

on @
�
B1.0/ \ f Qx > 0g

�
:

Applying the elliptic estimates for Q� in B1.0/ \ f Qx > 0g, one has

Q�. QX/ 6 C
Qx

r0
in B 1

2
.0/ \ f Qx > 0g;

which gives that

�.X/ D Q�

�
X �X0

r0

�
6 C

x � b

r0
in B r0

2
.X0/ \ fx > bg: (2.51)

If r D d1.x/ D x � b < r0
4

, we have Br .X/ � B r0
2
.X0/ \ fx > bg. Set Q . QX/ D m0� .XCr QX/

r

with QX D . Qx; Qy/, it follows from (2.50) and (2.51) that

Q . QX/ 6
�.X C r QX/

r
6
C.x C r Qx � b/

rr0
6
C

r0
in B1.0/:

By using the elliptic estimate, one has

jr .X/j D jr Q .0/j 6
C

r0
:

If r D d1.x/ D x � b > r0
4

, the elliptic estimate gives the desired uniform bound for r .X/.
Finally, we consider the Lipschitz continuity of  near N0 \ fx > bg. Since N0 is C 2;˛ and

 �;� D 0 on N0, the Harnack’s inequality is still valid up to the boundary N0\fx > b
2
g. It follows

from the similar arguments in the proof of Lemma 2.3 that

jr .X/j

x
6 C� near N0 \

n
x >

b

2

o
:
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3. The free boundary of the minimizer  �;�

In this section, we will show some important properties of the free boundary, such as the continuity
of the graph and the continuous fit condition.

3.1 Uniqueness and monotonicity of the minimizer

To obtain the continuous fit condition of the free boundary, we construct the uniqueness and the
monotonicity of the minimizer to the truncated variational problem .P�;�/.

Lemma 3.1 For any � 6 ˘� � 3Q" and � > 1, the minimizer  �;� to the truncated variational
problem .P�;�/ is unique, and  �;�.x; y1/ >  �;�.x; y2/ for any y1 > y2.

Proof. Suppose that  1 and  2 are two minimizers to the truncated variational problem .P�;�/. Set

 "1.x; y/ D  1.x; y � "/ for any " > 0:

Notice that  "1.x; y/ is a minimizer of the functional J "
�;�

in˝"
� with the corresponding admissible

set K"� as follows

˝"
� D

˚
.x; y/j .x; y � "/ 2 ˝�

	
and K"� D

˚
 ".x; y � "/ 2 K�j .x; y/ 2 ˝

"
�

	
:

Extend  2.x; y/ D m0
x2�
x2 in f.x; y/ j 0 < x 6 x�; � < y 6 �C "g and denote

'1 D minf "1;  2g and '2 D maxf "1;  2g:

Obviously, '1 2 K"� and '2 2 K�. For any sufficiently large R > R0, denote ˝�;R D ˝� \ fy <
Rg and ˝"

�;R D ˝
"
� \ fy < Rg. Since '1 D  "1 in ˝�;R n˝"

�;R and '1 D  "1 in ˝"
�;R n˝�;R, it

is easy to check that

ˆ
˝"
�;R

xF

�
jr'1j

2

x2
I�

�
dxdy C

ˆ
˝�;R

xF

�
jr'2j

2

x2
I�

�
dxdy

D

ˆ
˝"
�;R

xF

�
jr "1j

2

x2
I�

�
dxdy C

ˆ
˝�;R

xF

�
jr 2j

2

x2
I�

�
dxdy; (3.1)

and
ˆ
E"
R

x�f'1<m0gdxdy C

ˆ
ER

x�f'2<m0gdxdy

D

ˆ
E"
R

x�f "
1
<m0gdxdy C

ˆ
ER

x�f 2<m0gdxdy; (3.2)

where ER D ˝�;R \ fx > bg and E"R D ˝
"
�;R \ fx > bg.
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Integration by parts, one hasˆ
E"
R

r'1�e�f'1<m0gdxdy C

ˆ
ER

r'2 � e�f'2<m0gdxdy

�

ˆ
E"
R

r "1 � e�f'1<m0gdxdy C

ˆ
ER

r 2 � e�f 2<m0gdxdy

D

ˆ
@E"
R

.'1 �  
"
1/e � �dS C

ˆ
ER

.'2 �  2/e � �dS

D

ˆ
@E"
R
\@ER

.'1 C '2 �  
"
1 �  2/e � �dS

D 0; (3.3)

where we have used the facts '2 D  2 D 0 in ER nE"R.
In view of (3.1)–(3.3), one hasˆ

˝"
�;R

G.r'1; '1; xI�/dxdy C

ˆ
˝�;R

G.r'1; '1; xI�/dxdy

D

ˆ
˝"
�;R

G.r "1;  
"
1; xI�/dxdy C

ˆ
˝�;R

G.r 2;  2; xI�/dxdy: (3.4)

Taking R!C1 in (3.4) yields that

J "
�;�
. "1/C J�;�.'2/ D J

"
�;�
.'1/C J�;�. 2/: (3.5)

Since  "1 and  2 are minimizers, it follows from (3.5) that

J "�;�. 
"
1/ D J

"
�;�.'1/ and J�;�. 2/ D J�;�.'2/: (3.6)

Next, we claim that
 "1.x; y/ <  2.x; y/ in D; (3.7)

where D is the maximal connected component of ˝� \ f 2 < m0g, which contains an ˝�-
neighborhood of N�.

Suppose not, note that  "1 < m0 D  2 on N�, then there exists a dist B1, such that

 "1 <  2 in B1; NB1 � ˝� \ f 2 < m0g;

and
 "1 D  2 at some points X0 2 @B1 \

�
˝� \ f 2 < m0g

�
:

Thanks to Hopf’s lemma, one has

@. "1 �  2/

@�
> 0 at X0;

where � is the outer normal vector of @B1 at X0. This implies that the level set f "1 D  2 D

 2.X0/g is smooth curve in a neighborhood of X0. Then there exists a smooth curve �0 D fX j
 "1.X/ D  2.X/ D  2.X0/g passing through X0 and a disc B2, such that

 "1 >  2 in B2 and X0 2 �0 \ @B2 \ @B1:
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Hence, one has

@.'1 �  2/.X/

@�
D
@. "1 �  2/.X/

@�
!

@. "1 �  2/.X0/

@�
> 0 as X ! X0, X 2 B1;

and
@.'1 �  2/.X/

@�
D
@. 2 �  2/.X/

@�
D 0; X 2 B2;

which implies that '1 is not C 1-smooth in a neighborhood of X0, due to that  2 is smooth at X0.
On the other hand, it follows from (3.6) that '1 is a minimizer, and '1.X0/ < m0. By virtue of
the elliptic regularity, we can conclude that '1 is smooth in a neighborhood of X0. This leads a
contradiction. Hence, we complete the proof of the claim (3.7).

We next show that

 1.x; y/ is monotone increasing with respect to y in ˝�. (3.8)

Choosing  1 D  2 in (3.7), it implies that

@ 1

@y
> 0 in D. (3.9)

To obtain (3.8), it suffices to show that

D D ˝� \ f 1 < m0g:

Suppose not, it follows from (3.7) that D \ fx > bg D fx > b; y < �.x/g. As a part of the free
boundary of the graph �, we can conclude that �.x/ is continuous (see the proof of Lemma 3.3
later). Define  0 D  1 in D and  0 D m0 in ˝� \ fx > b; y > �.x/g, it is easy to check that
 2 K�. Therefore, we have

J�;�. 0/ � J�;�. 1/ D �

ˆ
˝�nD

G.r 1;  1; xI�/dxdy < 0;

which leads a contradiction.
Similarly, we can obtain that

 2.x; y/ is monotone increasing with respect to y in ˝�,

which together with (3.8) gives that

˝� \ f 1 < m0g and ˝� \ f 2 < m0g are connected:

In view of (3.7), one has
 "1.x; y/ 6  2.x; y/ in ˝�:

Taking "! 0 in above inequality, we have

 1 6  2 in ˝�:

Similarly, we can obtain that
 1 >  2 in ˝�:

Hence,  1 D  2 and the minimizer to the variational problem .P�;�/ is unique.
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3.2 Fundamental properties of the free boundary

In this section, we show some significant properties of the free boundary ��;� to the truncated
variational problem .P�;�/. Thanks to the monotonicity of the minimizer  �;�.x; y/ with respect
to y, there exists a mapping y D k�;�.x/, such that

E \
˚
 �;� < m0

	
D
˚
.x; y/ j b < x <1; g0.x/ < y < k�;�.x/

	
:

To obtain the continuity of the function k�;�.x/, we need the following non-oscillation lemma and
the proof can be found in Lemma 4.4 in [6].

Lemma 3.2 Let G be a domain in E \ f �;� < m0g, bounded by two disjointed arcs 
1, 
2 of the
free boundary, y D ˇ1, y D ˇ2. Suppose that the arcs 
i (i D 1; 2) lie in fˇ1 < y < ˇ2g with the
endpoints .˛i ; ˇ1/ and .�i ; ˇ2/. Suppose the distant d D dist.G;B/ > 0, then

jˇ2 � ˇ1j 6 C max
˚
j˛1 � ˛2j; j�1 � �2j

	
;

where C is a constant depending only on �;# , d;N;N0 and m0.

REMARK The nonoscillation Lemma 3.2 remains true provided that one of the arcs 
2 is a line
segment on T D f.b; y/ j y > 1g, and

1

x

@ �;�

@�
> � on 
2:

Lemma 3.3 The function y D k�;�.x/ is continuous for x 2 .b;C1/. Moreover, k�;�.b/ D
limx!bC k�;�.x/ exists and is finite.

x

y

O

θ

Nμ

N0

A

ba

μ

y

Iδ γ1
n Dn γ2

n

FIG. 6. The domainDn
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Proof. We first consider the existence of the limit limx!bC k�;�.x/.

Step 1. limx!bC k�;�.x/ D limx!bC k�;�.x/.
Suppose not, one has that lim infx!bC k�;�.x/ < lim supx!bC k�;�.x/, then we consider the

following two cases for y D limx!bC k�;�.x/.

Case 1. y < 1. Denote ı D
1�y

4
and Iı D

˚
.1; y/ j 1 � 5

2
ı 6 y 6 1 � 3

2
ı
	
. Then there exist two

sequences fxng and f Qxng with xn # b and Qxn # b, such that

k�;�.xn/! 1 � ı and k�;�.xn/! 1 � 3ı; ı > 0; (3.10)

and

 �;�.xn; y/ D m0;  �;�. Qxn; y/ < m0 for jy � 1C 2ıj 6
ı

2
; xnC1 < Qxn < xn:

(3.11)
By virtue of Lemma 2.3 and the monotonicity of  �;�, we have that  �;� is Lipschitz
continuous in an NE-neighborhood of Iı and  �;� D m0 on Iı .
It follows from (3.11) that there exists a domain Dn � E \ f �;� < m0g (please see
Figure 6), which is bounded by the arcs y1 D 1 � 3

2
ı, y2 D 1 � 5

2
ı, 
1n and 
2n . Here, 
1n

and 
2n are parts of free boundary ��;� \ fx 6 xn�1g, and the curve 
1n lies the right of the
curve 
2n . Denote hn D dist.
1n ; 


2
n /. By virtue of that xn ! bC, one has

hn ! 0 as n!C1: (3.12)

Thanks to the non-oscillation Lemma 3.2, we have

0 < ı 6 Chn;

which contradicts to (3.12), provided that n is sufficiently large.
Case 2. y > 1. Take a constant ı > 0, such that ı 6 lim sup

x!bC
k�;�.x/�y

4
. Denote 
ı D f.b; y/ j

y C 3
2
ı 6 y 6 y C 5

2
ıg. In an E-neighborhood of 
ı , we can obtain a contradiction by

using the non-oscillation Lemma 3.2.
Similarly, we can show that the limits lim

x!x
C

0

k�;�.x/ and limx!x�
0
k�;�.x/ exist for any

x0 2 .b;C1/.

Step 2. lim
x!x

C

0

k�;�.x/ D limx!x�
0
k�;�.x/ for any x0 2 .b;C1/.

Suppose that there exists a x0 2 .b;C1/, such that lim
x!x

C

0

k�;�.x/ ¤ limx!x�
0
k�;�.x/.

Without loss of generality, we assume that lim
x!x

C

0

k�;�.x/ > limx!x�
0
k�;�.x/. Denote 
 D

f.x0; y/ j y1 6 y 6 y2g with limx!x�
0
k�;�.x/ < y1 < y2 < limx!x�

0
k�;�.x/. The monotonicity

and Lipschitz continuity of  �;� give that 
 is the free boundary of  �;� and  �;� < m0 in
E" D f.x; y/ j x0 < x < x0 C "; y1 < y < y2g for small " > 0. Then we have

QQ� �;� D 0 in E";  �;� D m0 and
1

x

 �;�

@x
D �� on 
:

Since  �;� is analytic in E" for small " > 0, thanks to Cauchy–Kovalevskaya theorem, one has

 �;�.x; y/ D ��.x
2
� x20/Cm0 in ˝� \ fx0 < x < x0 C "g;
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which contradicts to  �;� D 0 on N0.

Step 3. k�;�.x/ < C1 for any x 2 Œb;C1/. We first show that

the free boundary ��;� is non-empty in E: (3.13)

Suppose that ��;� is empty, it implies that

 �;� < m0 in E: (3.14)

For any R > 0, there exists a disc BR.X0/ � E with X0 D .x0; y0/, such that

1

R

� 
BR.X0/

.m0 �  �;�/
2dxdy

� 1
2

6
m0

R
6 c��x0;

for sufficiently large R. It follows from non-degeneracy Lemma 2.5 that  �;� D m0 in BR
8
.X0/.

This contradicts to (3.14). With the aid of (3.13), we can take a maximal interval .
1; 
2/ �
.b;C1/, such that

k�;�.x/ is finite in .
1; 
2/ and k�;�.
1 C 0/ D k�;�.
2 � 0/ D C1:

We first show that

2 D C1: (3.15)

If not, then 
2 < C1. By using the proof of (3.13), we can conclude that ��;� is non-empty in
E \ fx > 
2g, and there exists a 
3 2 Œ
2;C1/, such that

��;� \ f
2 < x < 
3g D ¿ and k�;�.x/ is finite in .
3; 
3 C "/ for small " > 0:

Denote DR D
˚
.x; y/ j 
1C
2

2
< x < 
3 C

"
2
; R < y < 2R

	
for large R, applying the non-

oscillation Lemma 3.2 for  �;� in DR, one has

R 6 C

ˇ̌̌̌

1 C 
2

2
� 
3 �

"

2

ˇ̌̌̌
;

where the constant C is independent of R. This leads a contradiction for sufficiently large R > 0.
Next, we will show that


1 D b:

If not, then 
1 > b and we consider the following two cases.

Case 1. k�;�.x/ D 1 for any x 2 .b; 
1/. It follows from Lemma 2.2 that 1
x

@ �;�
@�

> � on TR D
f.b; y/ j R < y < 2Rg for large R > 0. Denote DR D f.x; y/ j b < x < 
1C
2

2
; R <

y < 2Rg, by using the non-oscillation Lemma 3.2 and the Remark in Section 3.2 for  �;�
in DR, one has

R 6 C

1 C 
2 � 2b

2
;

which leads a contradiction for sufficiently large R > 0.
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Case 2. There exists a 
0 2 .b; 
1�, such that

��;� \ f
0 < x < 
1g D ¿ and k�;�.x/ is finite in .
0 � "; 
0/ for small " > 0:

Using the non-oscillation Lemma 3.2 for  �;� in DR leads a contradiction for sufficiently
large R > 0, where DR D f.x; y/ j 
0 � "

2
< x < 
1C
2

2
; R < y < 2Rg.

Finally, we can show that k�;�.b/ < C1 by using the non-oscillation Lemma 3.2 and the Remark
in Section 3.2.

In the following, we will show some important properties, such as, the optimal decay rate of the
free boundary, the convergence rate and the asymptotic behavior of the subsonic impinging jet in
downstream.

Lemma 3.4 The minimizer  �;� and the free boundary y D k�;�.x/ satisfy that

(1) for any sufficiently large x0 > b, there exists a constant C (independent of x0) such that
ˆ
˝�\fx>x0g

G.r ; ; xI�/dxdy 6
C

x30
; (3.16)

where

G.r ; ; xI�/ D xF

 ˇ̌̌̌
r 

x

ˇ̌̌̌2
I�

!
C
�
x�2 � 2�F1.�

2
I�/r � e

�
�f <m0g\E :

(2) In the downstream,

x.k�;�.x/ � g0.x//!
m0

� cos �
as x !C1; (3.17)

and

r �;�.x; y/

x
! .�� sin �; � cos �/ for .x; y/ 2 ˝� \ f �;� < m0g, as x !C1. (3.18)

Proof. (1) By using the inequality (2.24), we have

ˆ
˝�\fx>x0g

G.r ; ; xI�/dxdy 6 C

ˆ
˝�\fx>x0g

x

ˇ̌̌̌
r �;�

x
� �e�f <m0g

ˇ̌̌̌2
dxdy; (3.19)

for x0 > b.
It follows from the proof of Proposition 4.4 in [12] that

ˆ
˝�\fx>x0g

x

ˇ̌̌̌
r �;�

x
� �e�f <m0g

ˇ̌̌̌2
dxdy 6

C

x30
;

for sufficiently large x0 > b, where C is a constant independent of x0. This together with (3.19)
gives (3.16).
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(2) For a sequence fxng with xn ! C1, set  n. QX/ D  �;�.Xn C
QX
xn
/ with Xn D .xn; g0.xn//

and QX D . Qx; Qy/. Obviously, r n. QX/ D 1
xn
r �;�.XnC

QX
xn
/. For any R > 0, thanks to (3.16),

we have

In D

ˆ
fj Qxj<Rxng

�
1C

Qx

x2n

� ˇ̌̌̌ˇ̌ r n
1C Qx

x2n

� �e�f n<m0g

ˇ̌̌̌
ˇ̌
2

d Qxd Qy

D xn

ˆ
˝�\fxn�Rj<x<xnCRg

x

ˇ̌̌̌
r �;�

x
� �e�f �;�<m0g

ˇ̌̌̌2
dxdy

6
Cxn

.xn �R/3
! 0 as xn !C1:

Without loss of generality, we may assume that

 n !  0 weakly in H 1
loc.R

2/ and a:e: in R2, (3.20)

and
�f n<m0g ! 
 weakly star in L1loc.R

2/ and �f 0<m0g 6 
 6 1:

Furthermore, one has
´
R2
ˇ̌
r 0 � �e�f 0<m0g

ˇ̌2
d Qxd Qy 6

´
R2 jr 0 � �e
 j

2 d Nxd Ny 6 lim infn!C1 In D 0;

which gives that
r 0 D ��f 0<m0ge a.e. in R2 and  0.0/ D 0: (3.21)

Denote !.s; t/ D  0. Qx; Qy/ with s D Qx cos � C Qy sin � and t D Qy cos � � Qx sin � , one has

@!

@s
D
@ 0

@ Qx
cos � C

@ 0

@ Qy
sin � and

@!

@t
D �

@ 0

@ Qx
sin � C

@ 0

@ Qy
cos �:

By virtue of (3.21), one has

@!.s; t/

@s
D 0 and

@!.s; t/

@t
D ��f!<m0g a.e. in R2; (3.22)

which imply that !.s; t/ is only a function of t . Moreover, !.s; t/ is monotone increasing with
respect to t . In view of !.0; 0/ D 0 and 0 6 ! 6 m0, it follows from (3.22) that

 0. Qx; Qy/ D !.t/ D minfmaxf�t; 0g; m0g D minfmaxf�. Qy cos � � Qx sin �/; 0g; m0g in R2:

To obtain the asymptotic behavior of the free boundary ��;�, we first show that

@f n < m0g converges to @f 0 < m0g locally in Hausdorff metric, as n!C1: (3.23)

Definition of Hausdorff distance d.D;F / between two sets D and F is as follows

d.D;F / D inf
�
" > 0 j D �

[
X2F

B".X/ and F �
[
X2D

B".X/

�
:
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For any X0 D .x0; y0/ … @f 0 < m0g, the continuity of  0 gives that  0.X0/ < m0 or
 0.X0/ D m0. If  0 < m0 in Br .X0/, it follows from (3.20) that

lim
n!C1

 
@Br .X0/

.m0 �  n/dS > 0;

which implies that

1

r

 
@B r
xn

�
XnC

X0
xn

�.m0 �  �;�/dS D 1

r

 
@Br .X0/

.m0 �  n/dS > C�;

for sufficiently large n and small r > 0. Thanks to Lemma 2.4, one has

 �;� < m0 in B r
xn

�
Xn C

X0

xn

�
, namely,  n < m0 in Br .X0/;

for sufficiently large n and small r > 0.
If  0 D m0 in Br .X0/, it follows from (3.20) that for a.e r > 0,

lim
n!C1

2

r

� 
B r
2
.X0/

.m0 �  n/
2dxdy

� 1
2

D 0;

which together with Lemma 2.5 gives that  n D m0 in B r
8
.X0/ for sufficiently large n.

Hence, we have the convergence of the free boundary in the Hausdorff distance.
For any R > 0 and small " > 0, it follows from (3.23) that there exists a large N";R, such
that the free boundary BR.0/ \ @f n < m0g and BR.0/ \ @f 0 < m0g lie each within an "-
neighborhood of one another, provided that n > N";R. Thus we can check that the free boundary
BR.0/ \ @f n < m0g satisfies the flatness condition (see Section 5 in [5]), it follows from
Theorem 6.3 in [5] that

BR.0/ \ @f n < m0g ! BR.0/ \ @f 0 < m0g in C 1;˛;

which implies that
k0�;�.xn C Qx/! tan � as xn !C1:

Since Qy D xn
�
k�;�.xn C

Qx
xn
/ � g0.xn/

�
is the free boundary of  n, we have

d Qy

d Qx
D k0�;�

�
xn C

Qx

xn

�
! tan � and xn

�
k�;�

�
xn C

Qx

xn

�
� g0.xn/

�
! Qx tan �C

m0

� cos �
;

which imply that

k0�;� .xn/! tan � and xn
�
k�;� .xn/ � g0.xn/

�
!

m0

� cos �
:

The compactness of  n gives that

r n ! r 0 D �.� cos �; sin �/ uniformly in any compact subset of S;

where S D
˚
. Qx; Qy/ j 0 < Qy cos � � Qx sin � < m0

�

	
, and thus (3.18) holds.
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Finally, we will give the gradient estimate of  �;� near the initial point of ��;� in the following.

Lemma 3.5 Let P D .b; k�;L.b//, then

jr �;�.X/j 6 C in Br .P /;

for some r > 0, where C is constant depending only on �; b and # , but not on m0.

Proof. Without loss of generality, we assume that P D A. For any small 
 > 0, it suffices to show
that

jr �;�.X/j 6 C in ˝ \ f
 < r < 2
g;

where r D jX � Aj. Denote

 
 .X/ D
m0 �  �;�.AC 
X/



in D1 D

�
X j

1

2
< jX j <

5

2
;AC 
X 2 ˝

�
;

and
D2 D

˚
X j 1 < jX j < 2;AC 
X 2 ˝

	
:

Then we have

r � f�

�
r 


b C 
x
I�

�
D 0 in D1 \ f 
 > 0g:

It follows from Lemma 2.1 that

 
 D 0;
1

b C 
x

@ 


@�
D � on the free boundary of  
 , and 0 6  
 6

m0



:

Since @D1 \ fX j AC 
X 2 @˝�g is C 2;˛-smooth and  
 D 0 on @D1 \ fX j AC 
X 2 @˝�g,
the Harnack’s inequality is still valid up to this part of the boundary. By using the similar arguments
in the proof of Lemma 2.3, we have

jr �;�.AC 
X/j D jr 
 .X/j 6 C in D2;

where C is a constant depending on �; b and # , but not on m0



. Therefore, we obtain the assertion
of this lemma.

3.3 Continuous dependence of  �;� and ��;� with respect to �

To obtain the continuous fit condition, we will show that the minimizer  �;� and the free boundary
��;� are continuous dependence with respect to the parameter � 6 ˘� � 4Q".

Lemma 3.6 Let  �n;� be a minimizer to the variational problem .P�n;�/ with the admissible set
K� and �n 6 ˘�n � 4Q", then we have

 �n;� *  �;� in H 1
loc.˝�/ and  �n;� !  �;� a.e. in ˝�;

as �n ! � 6 ˘� � 4Q", where  �;� is the minimizer to the variational problem .P�;�/.
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Proof. Denote  n D  �n;� for simplicity. By virtue of Proposition 2.1, we have jr nj 6 C in any
compact subset of ˝�, where the constant C is independent of n. Then there exists a subsequence
f ng such that

 n * ! weakly in H 1
loc.˝�/ and  n ! ! in C ˛loc.˝�/ for all 0 < ˛ < 1; (3.24)

and
r n ! r! weakly star in L1loc.˝�/:

Step 1. E \ @f n < m0g ! E \ @f! < m0g locally in the Hausdorff distance in ˝�.
For any X0 D .x0; y0/ … E \ @f! < m0g, the continuity of ! gives that there exists a small

r > 0, such that Br .X0/ \ @f! < m0g D ¿. We next claim that

B r
16
.X0/ \ @f n < m0g D ¿ for sufficiently large n. (3.25)

If ! < m0 in Br .X0/, (3.24) implies that the claim (3.25) is valid. If ! D m0 in Br .X0/, for any
small " > 0, it follows from (3.24) that there exists a N" such that

jm0 �  n.X/j < " in B r
2
.X0/ for n > N";

which implies that

2

r

  
B r
2
.X0/

.m0 �  n/
2dxdy

! 1
2

<
2"

r
6 �c��x0 for n > N":

Thanks to Lemma 2.5 for  n, one has  n D m0 in B r
16
.X0/ for sufficiently large n, and the

claim (3.25) holds.
On the other hand, for anyX0 D .x0; y0/ … E\@f n < m0g. ThenBr .X0/\@f n < m0g D ¿

for small r > 0, and we claim that

B r
2
.X0/ \ @f! < m0g D ¿: (3.26)

If  n < m0 in Br .X0/ for a subsequence f ng, one has

QQ�n n D 0 in Br .X0/;

which implies that
QQ�! D 0 in Br .X0/; ! 6 m0 in Br .X0/:

The strong maximum principle yields that ! D m0 or ! < m0 in Br .X0/. Thus, the claim (3.26)
holds.

It is easy to check that the claim (3.26) is valid, if  n D m0 in Br .X0/ for a subsequence f ng.
Hence, we complete the proof of the convergence of the free boundary in the Hausdorff distance.

Step 2. �f n<m0g\E ! �f!<m0g\E locally in L1.˝�/.
In view of (3.24), we can deduce that Lemma 2.4 and Lemma 2.5 still hold for ! by taking the

limit n!1. By using Theorem 2.8 in [5], one has

L2.E \ @f! < m0g \ BR/ D 0; for any R > 0;

where L2 is the Lebesgue measure in R2.
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Applying the results in Step 1, there exists a sequence f"ng with "n ! 0, such that

E \ f n < m0g � O"n ;

where O"n be an "n-neighborhood of E \ @f! < m0g. Then we have
ˆ
˝�\BR

ˇ̌
�f n<m0g\E � �f!<m0g\E

ˇ̌
dxdy 6

ˆ
˝�\BR\O"n

dxdy ! 0;

for any R > 0.

Step 3. r n ! r! a.e. locally in ˝�.
Let D be any compact subset of ˝� \ f! < m0g. Then one has

QQ�n n D 0 in D for sufficiently large n:

The elliptic estimates for  n gives that

r n ! r! in D: (3.27)

Next, we claim that
r n ! r! a.e. in ˝� \ f! D m0g: (3.28)

Since f! D m0g is L2-measurable, it follows from Corollary 3 in [24] that

lim
r!0

L2
�
Br .X/ \ f! D m0g

�
L2
�
Br .X/

� D 1 for L2 a.e. X 2 f! D m0g:

Denote

S D
(
X 2 f! D m0g j lim

r!0

L2
�
Br .X/ \ f! D m0g

�
L2
�
Br .X/

� D 1

)
:

We next show that
m0 � !.X0 CX/ D o.jX j/ for any X0 2 S: (3.29)

In fact, if m0 � !.Y / > kr for some Y 2 Br .X0/ with r ! 0 and k > 0. The Lipschitz continuity
of ! gives that

m0 � !.X/ >
k

2
r in B"kr .Y / for some small " > 0;

which implies that f! < m0g has positive density at X0, and then it contradicts to X0 2 S.
With the aid of (3.24) and (3.29), for any " > 0, we have

m0 �  n

r
< " in Br .X0/ for small r;

provided that n is sufficiently large, that is n > N."; r/. It follows from the non-degeneracy
Lemma 2.5 that  n � m0 in B r

8
.X0/, which implies that ! � m0 in B r

10
.X0/. Then we have

that the set S is open. Furthermore, one has

 n � ! in any compact subset of S , provided that n is sufficiently large.

This completes the proof of the claim (3.28).
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Since L2.E \ @f! < m0g/ D 0, it follows from (3.27) and (3.28) that r n ! r! a.e. in R2.

Step 4. ! D  , where  D  �;� is the minimizer to the truncated variational problem .P�;�/.
First, we will show that

JR.!/ 6 JR.�/ for any � 2 K� and � D ! on @˝R; (3.30)

where JR.�/ D
´
˝R

G.r�; �; xI�/dxdy and ˝R D ˝� \ BR.0/ for sufficiently large R > 0.
For any � 2 K� and � D ! on @˝R, set

�n D � C .1 � �ı/. n � !/;

where �ı.X/ D min
˚ dist.X;R2n˝R/

ı
; 1
	
. Obviously, �n D  n on @˝R and extend �n D  n outside

˝R, such that �n 2 K�. Then one has
ˆ
˝R

G.r n;  n; xI�n/dxdy 6
ˆ
˝R

G.r�n; �n; xI�n/dxdy:

By using the convergence results in Step 2 and Step 3, taking n ! 1 in the above inequality, we
have

ˆ
˝R

G.r!;!; xI�/dxdy

6
ˆ
˝R\f�ıD1g

G.r�; �; xI�/dxdy C

ˆ
˝R\f�ı<1g

G.r�; �; xI�/dxdy: (3.31)

Taking ı ! 0 in (3.31) yields that
´
˝R

G.r!;!; xI�/dxdy 6
´
˝R

G.r�; �; xI�/dxdy: (3.32)

Hence, (3.30) can be obtained by taking R!C1 in (3.32).
It follows from (3.16) that

ˆ
˝�\fx>x0g

G.r!;!; xI�/dxdy 6
C

x30
;

for sufficiently large x0 > 0, which implies that the results (2) in Lemma 3.4 still be valid for !.
For any " > 0, Set  ".x; y/ D  .x; y � "/ and ˝"

� D f.x; y/ j .x; y � "/ 2 ˝�g. Extend
!.x; y/ D m0

x�
x2 in f.x; y/ j 0 6 x 6 x�; � 6 y 6 �C "g. It is easy to check that minf "; !g 2

K"� and maxf "; !g 2 K�. Therefore, one has

J "�;�. "/ 6 J "�;�
�
minf "; !g

�
: (3.33)

Similar to the proof of Theorem 4.1 in [12], we can check that

J�;�.!/C J
"
�;�. "/ D J�;�

�
maxf "; !g

�
C J "�;�

�
minf "; !g

�
: (3.34)

With the aid of the asymptotic behaviors of  and ! in Lemma 3.4, we have

 ".x; y/ 6 !.x; y/ in ˝� n BR for any sufficiently large R > 0:
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Thus maxf "; !g D ! on @˝R, it follows from (3.30) that

JR.!/ 6 JR
�
maxf "; !g

�
:

Taking R!C1 in the above inequality yields that

J�;�.!/ 6 J�;�
�
maxf "; !g

�
;

which together with (3.33) and (3.34) gives that

J "�;�. "/ D J
"
�;�

�
minf "; !g

�
:

Since the minimizer  " to the variational problem .P "
�;�
/ is unique, one has

 .x; y � "/ D  ".x; y/ D minf "; !g 6 !.x; y/ in ˝�: (3.35)

Similarly, we can show that
 .x; y C "/ > !.x; y/ in ˝�: (3.36)

Taking "! 0 in (3.35) and (3.36), we have that  D ! in ˝�.

Next, we will obtain the continuous dependence of the free boundary ��;� with respect to �.
We remark that even though the ideas of the proof borrow from the one for incompressible jet
as done in Theorem 3.1 in [4] and Theorem 6.1 in Chapter 3 in [25], due to the difference of
the governing equations and the functional, we have to overcome several additional difficulties.
Actually, the stream function satisfies the linear elliptic equation for the incompressible flows, and
here we have to deal with a quasilinear elliptic equation.

Lemma 3.7 The free boundary y D k�n;�.x/ of the minimizer  �n;� with �n 6 ˘�n � 4Q" satisfies
that

k�n;�.x/! k�;�.x/ for any x 2 .b;C1/;

as �n ! �, where y D k�;�.x/ is the free boundary of the minimizer  �;�.

Proof. For any fixed x 2 .b;C1/, the convergence of k�n;�.x/ can be obtained by using the Step 1
in the proof of Lemma 3.6.

Next, we will consider the initial point of the free boundary and show that k�n;�.b/! k�;�.b/

as �n ! �. Suppose not, then there exists a subsequence fk�n;�.b/g, such that k�n;�.b/ !
k�;�.b/C ˇ and ˇ ¤ 0. We will show that it is impossible case by case based on the sign of ˇ.

Case 1. ˇ < 0. The monotonicity of  �;�.x; y/ with respect to y gives that k�;�.b/ C ˇ > 1. In
fact, if k�;�.b/C ˇ < 1, it follows from Lemma 3.6 that

 �;�.b; y/ D m0 for k�;�.b/C ˇ 6 y 6 minfk�;�.b/; 1g;

which contradicts to the fact  �;� < m0 for y < minfk�;�.b/; 1g, due to the fact that  �;�.x; y/ is
monotone increasing with respect to y.

Denote

Tˇ D

�
.b; y/ j k�;�.b/C

3ˇ

4
< y < k�;�.b/C

ˇ

4

�
:
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Next, we claim that
@ �;�.b C 0; y/

@x
D �� on Tˇ : (3.37)

For small " > 0, set

U" D

�
.x; y/ j b � " < x < b C "; k�;�.b/C

3ˇ

4
< y < k�;�.b/C

ˇ

4

�
:

It is easy to check that
Tˇ D U" \ @f �;� < m0g:

Set �n D m0 �  �n;� and � D m0 �  �;�, then one has8<: QQ�n�n D 0 in U" \ f�n > 0g;
1
x
@�n
@�n
D �n on U" \ @f�n > 0g;

where �n is the inner normal vector to U" \ @f�n > 0g. Now, in order to show the claim (3.37), it
suffices to check that � satisfies the following boundary value problem,(

QQ�� D 0 in U" \ f� > 0g;
1
x
@�
@�
D � on U" \ @f� > 0g;

(3.38)

where � D .1; 0/ is the inner normal vector to @f� > 0g at Tˇ .
We divide the proof into two steps to show that (3.38) holds.

Step 1. In this step, we will verify that

1

x

@�

@�
> � on U" \ @f� > 0g: (3.39)

It follows from (3.24) that for ˛ 2 .0; 1/,

�n ! � uniformly in C ˛.U"/;

and U" \ f�n > 0g ! U" \ f� > 0g in the Hausdorff metric space, and

r�n ! r� weakly in L2.U"/;

as n ! C1. Moreover, by virtue of the bounded gradient Lemma 2.3 and the Step 4 in the proof
of Lemma 3.6, one has

jr�nj 6 C�x in U" and r�n ! r� a.e. in U", as n!1; (3.40)

where the constant C is independent of n.
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Since F1.t I�/ D 1
Q�.t I�2/

is C 1;˛ , it follows from (3.40) that

lim
n!C1

F1.�
2
nI�n/�n

ˆ
U"\@f�n>0g

�dS

D � lim
n!C1

ˆ
U"\f�n>0g

1

x
F1

 ˇ̌̌̌
r�n

x

ˇ̌̌̌2
I�n

!
r�n � r�dxdy

D �

ˆ
U"\f�>0g

1

x
F1

 ˇ̌̌̌
r�

x

ˇ̌̌̌2
I�

!
r� � r�dxdy

D

ˆ
U"\@f�>0g

1

x
F1

 ˇ̌̌̌
r�

x

ˇ̌̌̌2
I�

!
@�

@�
�dS; (3.41)

for any non-negative � 2 C10 .U"/.
On other hand, it follows from (3.6) in Chapter 3 in [25] that

ˆ
U"\@f�>0g

�dS 6 lim inf
n!C1

ˆ
U"\@f�n>0g

�dS: (3.42)

In view of (3.41) and (3.42), one has

F1.�
2
I�/�

ˆ
U"\@f�>0g

�dS 6
ˆ
U"\@f�>0g

1

x
F1

 ˇ̌̌̌
r�

x

ˇ̌̌̌2
I�

!
@�

@�
�dS; (3.43)

for any non-negative � 2 C10 .U /. Since � is C 1;˛ up to the boundary @f� > 0g, it follows
from (3.43) that

F1

 ˇ̌̌̌
r�

x

ˇ̌̌̌2
I�

! ˇ̌̌̌
r�

x

ˇ̌̌̌
D F1

 ˇ̌̌̌
r�

x

ˇ̌̌̌2
I�

!
1

x

@�

@�
> F1

�
�2I�

�
� on U" \ @f� > 0g: (3.44)

Since F1.t2I�/t is increasing with respect to t , (3.44) gives that (3.39) holds.

Step 2. In this step, we will check that

1

x

@�

@�
6 � on U" \ @f� > 0g: (3.45)

By virtue of the non-oscillation Lemma (3.2) and the flatness of the free boundary in Section 5
in [5], we have that

the free boundary ��n;� is a y-graph in U" for sufficiently large n,

where we denote ��n;� W x D f�n;�.y/ in the region U". It follows from the result in Theorem 6.3
and Remark 6.4 in [5] thatˇ̌̌

f
.j /

�n;�
.y/
ˇ̌̌

6 C for k�;�.b/C
3ˇ

4
< y < k�;�.b/C

ˇ

4
; j D 1; 2:
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Then we have

U" \ @f�n > 0g ! U" \ @f� > 0g in C 1;˛ for some ˛ 2 .0; 1/.

For any fixed X0 D .x0; y0/ 2 U" \ @f� > 0g, it follows from Lemma 3.6 that there exists a
sequence Xn 2 U" with �n.Xn/ D 0, such that Xn ! X0 as n ! C1. Take a small r > 0 and
domain En � Br .X0/ � U", such that

Br .X0/ \ @En ! Br .X0/ \ @f� > 0g in C 1;
 ; �n > 0 in En and Xn … En; (3.46)

for 0 < 
 < ˛. We can take a sequence f"ng with "n # 0, such that

En D Br .X0/ \ fx > b C "ng:

Define a function fı;n.y/ as follows

fı;n.y/ D b C "n � ı�

�
2.y � y0/

r

�
; ı > 0;

where

�.y/ D

8<:e�
y2

1�y2 for jyj < 1;

0 for jyj > 1:

Denote the domain Eı;n D Br .X0/ \ fx > fı;n.y/g. It is easy to check that E0;n D En. By virtue
of the definitions of En and Eı;n, there exists the largest number ı D ın, such that �n > 0 in Eın;n,
andBr .X0/\@Eın;n contains a point of the free boundary of �n, which is denoted as QXn D . Qxn; Qyn/
with Qxn D fın;n. Qyn/. Furthermore,

ın ! 0 as n!C1:

Let !n be the solution of the following Dirichlet problem8̂̂<̂
:̂
QQ�n!n D 0 in Eın;n;

!n D 0 on @Eın;n \ B r
2
.X0/; !n D ��n on @Eın;n \

�
Br .X0/ n B r

2
.X0/

�
;

!n D �n on @Eın;n \ @Br .X0/;

where �.X/ D min
˚
max

˚
2jX�X0j�r

r
; 0
	
; 1
	
. Since �n satisfies the quasilinear equation QQ�n�n D 0

in Eın;n and !n 6 �n on @Eın;n, the maximum principle implies that !n 6 �n in Eın;n. Hence,
one has

�n D
1

Qxn

@�n. QXn/

@�n
>

1

Qxn

@!n. QXn/

@�n
; (3.47)

where �n is the inner normal vector to @Eın;n at QXn.
It follows from the fact (3.46) that

fın;n.y/! b in C 1;
 :
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Thanks to the standard estimates of the solutions of the elliptic equation of second order, we
conclude that !n in Eın;n \ B r

2
.X0/ converges to � in f� > 0g \ B r

2
.X0/ in C 1;
 -sense. Suppose

that
QXn ! QX D . Qx; Qy/ 2 @f� > 0g \ B r

2
.X0/:

This together with (3.47) gives that

1

Qxn

@!n. QXn/

@�
!

1

Qx

@�. QX/

@�
and

1

Qx

@�. QX/

@�
6 �:

Taking r ! 0, we have QX ! X0 and

� >
1

Qx

@�. QX/

@�
!

1

x0

@�.X0/

@�
; X0 2 U" \ @f� > 0g;

which gives the inequality (3.45) holds.
Therefore, the claim (3.38) follows from (3.39) and (3.45).
With the aid of the claim (3.37),  �;� satisfies

QQ� �;� D 0 in E";
1

x

@ �;�

@x
D �� and  �;� D m0 on @E" \ fx D bg;

for small " > 0, where E" D f.x; y/ j b < x < b C "; k�;�.b/C
3ˇ
4
< y < k�;�.b/C

ˇ
4
g.

It follows from the Cauchy–Kovalevskaya theorem that

 �;� D ��.x
2
� b2/Cm0 in f.x; y/ j b < x < b C "; g0.b/ < y < C1g \˝�:

This contradicts to the fact  �;� D 0 on N0.

Case 2. ˇ > 0 and k�;�.b/ < 1. By using the similar arguments in Case 1, we can conclude that

1

b

@ �;�.b � 0; y/

@x
D � if k�;�.b/C

ˇ

4
< y < min

�
k�;�.b/C

3ˇ

4
; 1

�
:

We can obtain a contradiction by using Cauchy–Kovalevskaya theorem as in Case 1 again.

Case 3. ˇ > 0 and k�;�.b/ > 1. It follows from the arguments in Lemma 2.2 that

1

b

@ �n;�.b C 0; y/

@x
6 ��n on

�
x D b; k�;�.b/C

ˇ

4
< y < k�;�.b/C

3ˇ

4

�
;

for sufficiently large n. Let Dn be bounded by x D b, y D k�n;�.x/, y D k�;�.b/ C
ˇ
4

and
y D k�;�.b/C

3ˇ
4

. Furthermore, we have

xn D min
�
x j k�n;�.x/ D k�;�.b/C

3ˇ

4

�
! b as n!C1:

Thanks to the non-oscillation Lemma 4.4 in [6] for  �n;� in Dn, one has

ˇ

2
6 C.xn � b/; the constant C is independent of n;

which leads a contradiction for sufficiently large n.
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3.4 The continuous fit condition of the free boundary ��;�

In the following, we will consider the continuous fit condition of the free boundary at A.

Proposition 3.8 For any � > 1 and small m0 > 0, there exists a �� 6 ˘�� � 4Q", such that the
free boundary ���;� satisfies the continuous fit condition at A, namely, k��;�.b/ D 1. Moreover,

�� 6 C0m0; the constant C0 is independent of � and m0:

Proof. Step 1. In this step, we will show that

for m0 > 0, if � > 0 is sufficiently small, then k�;�.b/ > 1.

Suppose that there exists a small �0, such that k�0;�.b/ 6 1. Let S be a ring centered at P D
.b; k�0;�.b// with some suitable radius R1 and R2 which are independent of m0 and R1 < R2,
such that ��0;� \ S \ fx > bg and N0 \ NS \ fx > bg are nonempty.

It follows from Lemma 2.3 that there exists a constant C0 depending on N;N0; # (independent
of m0), such that ˇ̌

D �0;�
ˇ̌

6 C0�.�0/ in S \ fx > bg;

where �.�0/ D
q
2F1.�

2
0I�0/�

2
0 � F.�

2
0I�0/.

Choosing X1 2 ��0;� \ NS \ fx > bg, X2 2 N0 \ NS \ fx > bg with jX1 � P j D jX2 � P j,
shows that

m0 D

ˆ



ˇ̌̌̌
@ �0
@s

ˇ̌̌̌
dS 6 jD �;�j2�R2 6 C�.�20/; (3.48)

where 
 � S is disc curve which connects X1 and X2, s is the unit tangent vector of 
 . On another
hand, it follows from (2.18) that

�.�0/ 6 �0

s
1

�0

�
2 �

� 2


 C 1

� 1

�1

�
;

which together with (3.48) gives that

0 < m0 6 C�0:

This is impossible for sufficiently small �0.

Step 2. For � D �cr
2

, we will show that

if m0 > 0 is sufficiently small, then k�;�.b/ < 1.

Suppose that k�;�.b/ > 1 for some small m0 > 0, then there exists a disc BR.X0/ � ˝� (R is
fixed), such that X0 2 E and BR

8
.X0/ \ ��;� ¤ ¿. According to the non-degeneracy Lemma 2.5,

we have
m0

R
>
1

R

� 
BR.X0/

.m0 �  �;�/
2dxdy

� 1
2

> c�.�2/;

which together with (2.19) gives that

m0 > cR�.�2/ > C� D
C�cr

2
> 0:

This leads a contradiction for sufficiently small m0.
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Step 3. In this step, we will show that there exists a �� 6 ˘�� � 4Q", such that k��;�.b/ D 1.
For any small m0 > 0, with the aid of the results in Step 1, we can define a set

˙� D
˚
� j k�;�.b/ > 1

	
:

Define
�� D sup

�2˙�

�: (3.49)

The result in Step 2 gives that
�� 6 C0m0; (3.50)

where C0 is a constant depending onN;N0 and # , independent ofm0 and �. It is easy to check that
there exists a C0 > 0 (independent of �), such that

�� 6 C0m0 6 ˘�� � 4Q";

for sufficiently small m0. The continuous dependence of k�;�.b/ with respect to � gives that

k��;�.b/ D 1:

If not, the definition of �� implies that k��;�.b/ > 1. By using the continuous dependence of
k�;�.b/ with respect to � in Lemma 3.7, there exists a � 2 .��; ˘� � 3Q"/, such that

� � �� is small and k�;�.b/ > 1:

Therefore, � 2 ˙�, which contradicts to the definition of �� in (3.49).

4. The existence of subsonic solution to the impinging jet flow problem

To establish the existence of subsonic solution to the impinging jet flow problem, we will take limit
� ! 1 to the solution  ��;� of the truncated variational problem .P��;�/ and show the limit
 � is indeed a solution to the following variational problem .P�/ stated as follows in the whole
domain ˝.

The variational problem .P�/

For any bounded domain D � ˝, find a  � 2 K such that

JD. �/ 6 JD. /;

for any  2 K0 with  D  � on @D, where JD. / D
´
D
G.r ; ; xI�/dxdy and

K0 D
n
 2 K j  6 min

nm0
a2
x2; m0

o
a.e. in ˝�

o
:
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Theorem 4.1 If m0 > 0 is sufficiently small, there exist a � 6 ˘� � 4Q" and a subsonic solution
. �; ��/ to the compressible impinging jet flow.

Proof. By virtue of the uniform gradient estimate jr ��n ;�n j 6 C in any compact subset of R2,
it follows from the similar arguments in the proof of Lemma 3.6 that there exist subsequences
f ��n ;�ng and f��ng with ��n 6 ˘��n � 4Q" and k��n ;�n.b/ D 1, such that

��n ! � 6 ˘� � 4Q";

and

 ��n ;�n !  � weakly in H 1
loc.R

2/ and uniformly in any compact subset of R2;

as n!1. Moreover, it follows from (3.50) that

� 6 C0m0; the constant C0 depends on N;N0; # , not on m0: (4.1)

Step 1.  � is a subsonic solution of the free boundary problem (2.16).
By using the similar arguments in Step 4 in the proof of Lemma 3.6, we can check that  �

is a minimizer to the variational problem .P�/. Moreover, the monotonicity of  ��n ;�n.x; y/ in
Lemma 3.1 gives that  �.x; y/ is monotonic increasing with respect to y, which implies that the
free boundary of  � is x-graph. Applying the similar arguments in the proof of Lemma 3.3, there
exists a continuous function k�.x/, such that the free boundary �� of the minimizer  � can be
described as

�� D E \ @f � < m0g W y D k�.x/ for x 2 .b;C1/:

Furthermore, it follows from the similar arguments in Lemma 3.7 that

k�.x/ D lim
n!1

k��n ;�n.x/ for any x 2 Œb;C1/:

In particular, one has
k�.b/ D 1;

which is the continuous fit condition to the axially symmetric compressible subsonic impinging jet
flow.

In Theorem 6.1 in [5] and Section 3.11 in [25], Alt, Caffarelli and Friedman obtained that the
continuous fit condition implies the smooth fit condition at the detachment point A, namely,N [��
is C 1 at A. Since  � is a minimizer to the variational problem .P�/, it follows from Theorem 6.3
in [5] that the free boundary �� is C 1;˛ , and thus  � is C 1;˛-smooth up to the free boundary ��. In
view of � 6 ˘� � 3Q", the subsonic cut-off can be removed near ��. Then F.t I�/ is analytic with
respect to t , near the free boundary ��. Recalling Remark 6.4 in [5], we can conclude that the free
boundary �� is analytic. By using the similar arguments in the proof of Theorem 9.1 in [14], we can
conclude that

1

x

@ �

@�
D

ˇ̌̌̌
r �

x

ˇ̌̌̌
D � on ��,

where � is outer normal vector to ��. Utilizing Lemma 6.4 in [6], one has

r � is uniformly continuous in a f � < m0g-neighborhood of A;
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and ˇ̌̌̌
r �

x

ˇ̌̌̌
D � at A.

Since  � is a minimizer to the variational problem .P�/, applying the results (2) in Lemma 2.2, one
has

QQ� � D 0 in ˝ \ f � < m0g:

Hence, the minimizer  � is a solution of the truncated free boundary problem (2.16).

Step 2. The asymptotic behavior of  � will be obtained. For the asymptotic behavior of  � in
upstream, we can use the blow-up arguments in the proof of Lemma 5 in [37], and obtain that

r �.x; y/! .�vin; 0/; Q�! �in and r.@x �; @y �; Q�/! 0;

uniformly in any compact subset of .0; a/, as y ! C1, where vin D � 2m0�0a2
and �in D

Q�
�4m2

0

a4
I�2

�
.

By virtue of (3.16), there exists a constant C > 0, such that

ˆ
˝\fx>x0g

x

ˇ̌̌̌
r 

x
� �e�f <m0g

ˇ̌̌̌2
dxdy 6

C

x30
; (4.2)

for sufficiently large x0 > b, where the constant C is independent of x0.
With the aid of (4.2), by using the similar arguments in the proof of Lemma 3.4, we can show

that
x
�
k�.x/ � g0.x/

�
!

m0

� cos �
as x !C1; (4.3)

and

r �.x; y/

x
! .�� sin �; � cos �/ for .x; y/ 2 ˝� \ f � < m0g, as x !C1. (4.4)

Step 3. In this step, we will remove the subsonic cut-off for Q�� in (2.14).
For � 6 ˘� � 3Q", it is easy to check that Q�

�ˇ̌
r �
x

ˇ̌2
I�2

�
is a monotonic decreasing function ofˇ̌

r �
x

ˇ̌
2 .0;˘�/. Moreover,

jr �j

x
takes the maximum at X0 if and only if q takes the maximum at X0, (4.5)

where q D
p
u2 C v2 is the speed of the fluid.

By using the similar arguments in Page 114 in [6], one has

Qq2 D Di
�
e
q

2

aij .X I�/Dj q
2
�

> 0 in the fluid region ˝0,

for some 
 > 0, where

aij .X I�/ D Q�
�
jr'.X/j2I�2

�
ıij C 2�1

�
jr'.X/j2I�2

�
Di'.X/Dj'.X/
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and the potential function ' satisfies that r' D .u; v/. In view of the maximum principle for q2

in ˝0, we have that q2 cannot take its maximum in ˝0. Since the flow is assumed to be symmetric
with respect to the symmetric axis I , thus I can be regarded as the interior of the fluid field by the
even extension of '. Thus we conclude that the speed q cannot take its maximum at the symmetric
axis I . By virtue of (4.5), jr �.X/j

x
takes its maximal value at N [��[N0 or in the far field. Next,

we consider the following three cases for the maximal momentum jr �.X/j
x

.

Case 1. jr �.X/j
x

takes its maximum in the far field or on the free boundary ��. By virtue of (4.1),
it follows from the asymptotic behavior and the free boundary condition that

sup
X2 N̋0

jr �.X/j

x
D max

nm0
a
; �
o

6 C0m0; (4.6)

where C0 is a constant depending only on N;N0 and # .
Case 2. jr �.X/j

x
takes its maximum on walls N0 \

˚
x 6 aCb

2

	
or on N \

˚
x 6 aCb

2

	
. By using

the similar arguments in Section 3 in [37], we have

sup
X2 N̋0

jr �.X/j

x
6 C0m0; (4.7)

where C0 is a constant depending only on N;N0 and # .
Case 3. jr �.X/j

x
takes its maximum at the nozzle wall N0 \

˚
x > aCb

2

	
or N \

˚
x > aCb

2

	
.

Applying the similar arguments in the proof of Theorem 2.3 and Lemma 3.5, we have

sup
X2 N̋0

jr �.X/j

x
6 C� 6 C0m0; (4.8)

where C0 is a constant depending only on N;N0 and # .

It follows from (4.7)–(4.8) that

jr �.X/j

x
6 C0m0 in ˝0;

which implies that C0m0 6 ˘� � 4Q" for sufficiently small m0 > 0. Then the subsonic cut-off can
be taken away �.t I�2/ D Q�.t I�2/.

Step 4. In this step, the positivity of horizontal velocity will be obtained, namely,

@ �

@y
> 0 in N̋

0 n I; (4.9)

where ˝0 D ˝ \ f � < m0g.
Set ! D @y �, which solves

@i

�
@i!x

2� � 2�1@i �@j �@j!

x3�2

�
D 0 in ˝ \ f � < m0g:

Since ! > 0 in ˝0, the strong maximum principle gives that ! > 0 in ˝0.
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Owing to that  � attains its maximal value m0 on N , it follows from Hopf’s lemma that

0 <
@ �

@�

�
x; g.x/

�
D @y �

q
1C

�
g0.x/

�2
D !

q
1C

�
g0.x/

�2 on N n A;

where � D .g0.x/;1/p
1C.g0.x//2

is the outer normal vector to N . Similarly, we can show that

! > 0 on N0 n
�
0; g0.0/

�
:

Next, we will show that
! > 0 on ��: (4.10)

Suppose that there exists a free boundary point X0 D .x0; y0/, such that !.X0/ D 0. Without loss
of generality, we take � D .0; 1/ as the outer normal vector of �� at X0. Since �� is analytic at X0,
thanks to Hopf’s lemma, one has

@xy � D
@!

@x
D
@!

@�
< 0 at X0: (4.11)

On another hand, it follows from jr �j2 D �2x2 on �� that

0 D
@.�2x2/

@s
D
@jr �j

2

@s
D 2@x �@xy � C 2@y �@yy � D 2@x �@xy �;

where s D .0; 1/ is the tangential vector of �� at X0. This contradicts to (4.11).
Recalling that jg0.b � 0/j < C1, one has

! D
jr �jq

1C
�
g0.x/

�2 D �xq
1C

�
g0.x/

�2 > 0 at A:

Hence, we complete the proof of (4.9). In view of (4.10), the implicit function theorem gives that
k�.x/ 2 C

1..b;1//. The analyticity of free boundary �� gives that k�.x/ is analytic in .b;C1/.

4.1 Uniqueness of the compressible subsonic jet flow

In this section, we will consider the uniqueness of subsonic solution of the compressible jet flow
problem for any given incoming mass flux m0.

Theorem 4.2 For any given m0 > 0, suppose that . �1 ; Q��1/ and . Q �2 ; ��2/ be two subsonic
solutions to compressible impinging jet flow problem, respectively. Then �1 D �2 and  �1 D Q �2 .

Proof. We will divide the proof into two steps.

Step 1. We will show that �1 D �2. If not, without loss of generality, one may assume that �1 > �2.
In view of the asymptotic behaviors of  �1 and Q �2 in downstream (see Step 2 in the proof of
Theorem 4.1), one has

k�1.x/ � g0.x/ �
m0

�1x cos �
and Qk�2.x/ � g0.x/ �

m0

�2x cos �
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for sufficiently large x > 0, which implies

k�1.x/ <
Qk�2.x/ for sufficiently large x > 0. (4.12)

Denote �1 D
m0� �1
˘�1

and Q�2 D
m0� Q �2
˘�2

, where ˘�1 D ��1;crq�1;cr and ˘�2 D ��2;crq�2;cr . It
is easy to check that

jr�1j
2

2x2�2
C
�
�1


 � 1
D


 C 1

2.
 � 1/
in ˝ \ f�1 > 0g; (4.13)

and
jr Q�2j

2

2x2�2
C
�
�1


 � 1
D


 C 1

2.
 � 1/
in ˝ \ f Q�2 > 0g; (4.14)

where

�.t/ D

�

�
t

˘2
�1

I�21

�
��1;cr

D

�

�
t

˘2
�2

I�22

�
��2;cr

:

Moreover, � D �
�ˇ̌
r�
x

ˇ̌2� is monotone decreasing with respect to
ˇ̌
r�
x

ˇ̌
2 Œ0; 1/. Thus �1 and Q�2

satisfy the following quasilinear elliptic equations,

Q�1 D div

 
r�1

x�.jr�1
x
j2/

!
D 0 in the fluid ˝ \ f�1 > 0g;

and

Q Q�2 D div

 
r Q�2

x�.jr
Q�2
x
j2/

!
D 0 in the fluid ˝ \ f Q�2 > 0g;

respectively. Denote Q�"2.x; y/ D Q�2.x; y � "/ for " > 0, let Q� "
�2
W y D Qk�2.x/ C " to be the free

boundary of Q�"2. Choose "0 > 0 to be the smallest one, such that

Q�
"0
2 .X/ > �1.X/ in ˝, and Q�

"0
2 .X0/ D �1.X0/ for some X0 2 ˝ \ f�1 > 0g:

Next, we consider the following two cases for "0.

Case 1. "0 D 0, then we can choose X0 D A. The strong maximum principle gives that

Q�2.X/ > �1.X/ and Q�1 D Q Q�2 D 0 in ˝ \ f�1 > 0g:

Since ��1 [N and Q��2 [N are C 1 at A, one has

�1

˘�1
D
1

b

@�1

@�
6
1

b

@ Q�2

@�
D

�2

˘�2
at A, (4.15)

where � is the inner normal vector of ��1 and Q��2 at A. After a direct computation, one
has

d

d�

�
˘�

�

�
D

˘�.�
2 � �2cr /

.
 � 1/��20B.�2/
< 0 for � < �cr ,
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which implies that

˘�1
�1

<
˘�2
�2

for any 0 < �2 < �1 < �cr : (4.16)

This contradicts to (4.15).
Case 2. "0 > 0. It follows from strong maximum principle thatX0 … ˝\f�1 > 0g. In fact, if there

exists a point X0 2 ˝ \ f�1 > 0g, the continuity of �1.X/ and Q�"02 .X/ give that there
exists a disc Br .X0/ � ˝ \ f�1 > 0g with r > 0, such that

Q�1 D Q Q�
"0
2 D 0 in Br .X0/, and Q�

"0
2 .X/ > �1.X/ in Br .X0/:

Since �1.X0/ D Q�
"0
2 .X0/, the strong maximum principle implies that �1.X/ � Q�

"0
2 .X/ in

Br .X0/. By using the strong maximum principle again, one has

�1.X/ � Q�
"0
2 .X/ in ˝ \ f�1 > 0g;

which leads a contradiction.
In view of "0 > 0, it follows from (3.16) that jX0j < C1, and thus X0 2 Q�

"0
�2
\ ��1 .

Moreover,

Q�
"0
2 .X/ > �1.X/ and Q�1 D Q Q�

"0
2 D 0 in ˝ \ f�1 > 0g:

Since ��1 and Q� "0
�2

are analytic at X0, it follows from Hopf’s lemma that

�2

˘�2
D
1

x

@ Q�
"0
2

@�
>
1

x

@�1

@�
D

�1

˘�1
at X0,

where � is the inner normal vector to Q� "0
�2

and ��1 atX0, which leads a contradiction to the
assumption �1 > �2, due to (4.16).
Hence, we obtain that �1 D �2, and denote � D �1 D �2 in the following.

Step 2.  � D Q �. Suppose that  � ¤ Q �, without loss of the generality, one may assume that there
exists some x0 2 .0;C1/, such that

k�.x0/ > Qk�.x0/ for some x0 > 0. (4.17)

Consider a function  "
�
.x; y/ D  �.x; y � "/ for " > 0 and � "

�
W y D k�.x/ C " is the free

boundary of  "
�

, choosing the smallest "0 > 0 such that

 
"0
�
.X/ 6 Q �.X/ in ˝, and  

"0
�
.X0/ D Q �.X0/ for some X0 2 N̋ :

It follows from (4.17) that "0 > 0, which together with the strong maximum principle and the
asymptotic behavior imply that X0 … ˝ \ f Q � < m0g and X0 2 �

"0
�
\ Q�� with jX0j < C1. Then

we have
 
"0
�
.X/ < Q �.X/ and Q� 

"0
�
D Q� Q � D 0 in ˝ \ f Q � < m0g:

Thanks to the Hopf’s lemma, one has

� D
1

x

@ 
"0
�

@�
>
1

x

@ Q �

@�
D � at X0,

where � is the outer normal vector of � "0
�
\ Q�� at X0, which leads a contradiction.
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5. The existence of the critical mass flux

For any sufficiently small m0 > 0, we have shown that there exist a unique � 6 ˘� � 4Q" and a
unique solution .u; v; �; ��/ to the free boundary problem in previous section. One key point is that
the smallness of m0 guarantee the global subsonicity of the compressible jet flow. In this section,
we will increase m0 as large as possible, and obtain the critical upper bound of the incoming mass
flux m0.

Let f"ng1nD1 be a strictly decreasing sequence with "n # 0. Denote  n
�;m

.x; y/ as the solution
of the following free boundary value problem8̂̂̂<̂

ˆ̂:
r �

�
r 

x�n.jr x j
2I�2/

�
D 0 in ˝ \ f < mg;

 D 0 on T;  D m on N [ � n
�;m

;

1
x
@ 
@�
D � on � n

�;m
;

(5.1)

for any sufficiently smallm > 0 and the free boundary � n
�;m
W y D kn

�;m
.x/ satisfies the continuous

fit condition kn
�;m

.b/ D 1, where � is the outer normal vector. Here, �n.t I�2/ is a smooth function
satisfying

�n.t I�2/ D

(
�.t I�2/ if 0 6 t 6 .˘� � 2"n/

2;

�
�
.˘� � "n/

2I�2
�

if t > .˘� � "n/
2;

and �n.t I�/ � 2�n1.t I�/t < 
n < C1 with some constant 
n > 0.
First, we define a set

Kn.m/ D
˚
 n�;m j  

n
�;m is a subsonic solution to free boundary problem (5.1)

	
;

for any small "n > 0 and m > 0. For any small m > 0 and "n > 0, it follows from Theorem (4.1)
that there exist a � D �.m/ and a unique subsonic solution  n

�.m/;m
to the free boundary problem

with

�.m/ 6 ˘�.m/ � 4"n and sup
X2˝\f0< n

�.m/;m
<mg

ˇ̌̌̌
r n

�.m/;m

x

ˇ̌̌̌2
�˘�.m/ 6 �4"n:

Thus m 2 Kn.m/ for small m > 0 and the set Kn.m/ is not empty. The uniqueness of subsonic
solution and � are established in Section 4. Denote � D �.m/ and  n

�.m/;m
as the unique subsonic

solution to the free boundary problem (5.1) with

�.m/ 6 ˘�.m/ � 4"n and sup
X2˝\f0< n

�.m/;m
<mg

ˇ̌̌̌
r n

�.m/;m

x

ˇ̌̌̌
�˘�.m/ 6 �4"n:

Denote

Tn.m/ D inf
 n
�;m
2Kn.m/

�
sup

.x;y/2˝n
�;m

ˇ̌̌̌
r n

�;m

x

ˇ̌̌̌
�˘�

�
; (5.2)

where ˝n
�;m
D ˝ \ f0 <  n

�;m
< mg.



AXIALLY SYMMETRIC SUBSONIC IMPINGING JETS 53

Define a set

˙n D fm j for any � 2 .0;m/, there exists a subsonic solution  n�;m to the

free boundary problem with Tn.�/ 6 �4"ng:

Along the above arguments, we have m 2 ˙n for small m > 0, which implies that the set ˙n is
non-empty. Obviously, ˙n � ˙nC1.

Set
mn D sup

m2˙n

m: (5.3)

The definition ofmn implies thatmn is monotone increasing with respect to n. Form > 0, it is easy
to check that

m D  n�;m.B/ �  
n
�;m

�
b; g0.b/

�
6 sup
X2˝n

�;m

jr n�;m.X/jj1 � g0.b/j 6 �crbj1 � g0.b/j: (5.4)

With the aid of (5.4), we can define

mcr D lim
n!C1

mn: (5.5)

Lemma 5.1 For any m 2 .0;mn�, Tn.m/ is left-continuous with respect to m, namely, Tn.m/ D
lim�!m� Tn.�/.

Proof. For any m 2 .0;mn�, there exists a sequence f�kg with �k " m. The definition of ˙n gives
that there exists a subsonic solution  n

�;�k
to the free boundary problem, which satisfies that

Tn.�k/ D inf
 n
�;�k
2Kn.�k/

�
sup

X2˝n
�;�k

ˇ̌̌̌
r n

�;�k
.X/

x

ˇ̌̌̌
�˘�

�
6 �4"n:

By using the uniqueness result in Section 4, we have that � D �.�k/ and solution  n
�;�k
D  n

�.�k/;�k
is the unique subsonic solution to the free boundary problem (5.1). Then one has

Tn.�k/ D sup
X2˝n

�.�k/;�k

ˇ̌̌̌
r n

�.�k/;�k
.X/

x

ˇ̌̌̌
�˘�.�k/ 6 �4"n: (5.6)

By using the similar arguments in the proof of Lemma 2.5, we can take a subsequence f�kg, such
that

�.�k/! �0 6 ˘�0 � 4"n;

and

 n�.�k/;�k !  n�0;m weakly in H 1
loc.˝/ and uniformly in any compact subset of R2;

as k !C1. Moreover, the inequality (5.6) gives that

lim
�k!m

Tn.�k/ D sup
X2˝n

�0;m

ˇ̌̌̌
r n

�0;m
.X/

x

ˇ̌̌̌
�˘�0 6 �4"n:
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Thus  n
�0;m

is a subsonic solution to the free boundary problem (5.1). Applying the uniqueness
results in Section 4, we conclude that �0 D �.m/ and  n

�0;m
D  n

�.m/;m
2 Kn.m/. It follows from

the definition of Tn.m/ in (5.2) and the uniqueness result in Section 4 that

Tn.m/ D lim
�k!m

�
Tn.�k/:

Lemma 5.2 There exists a critical mass flux mcr > 0, such that for any m 2 .0;mcr /, there exist a
unique � D �.m/ < �cr and a unique subsonic solution  �;m to the free boundary problem (5.1),
such that

T .m/ D sup
X2˝�;m

ˇ̌̌̌
r �;m.X/

x

ˇ̌̌̌
�˘� < 0; (5.7)

where ˝�;m D ˝ \ f0 <  �;m < mg. And mcr is the upper critical mass flux for the existence of
subsonic solution in the following sense: either

T .m/! 0 as m! mcr ; (5.8)

or there is no � > 0, such that for any m 2 .mcr ; mcr C �/, there exist a � < �cr and a subsonic
solution  �;m to the free boundary problem (5.1), and

sup
m2.mcr ;mcrC�/

T .m/ < 0: (5.9)

Proof. For any m 2 .0;mcr /, the definition of mcr in (5.5) gives that there exists a N , such that
m < mn for any n > N . Therefore, it follows from the definition of mn that we have

Tn.m/ D inf
 n
�;m
2Kn.m/

�
sup

X2˝�;m

ˇ̌̌̌
r n

�;m
.X/

x

ˇ̌̌̌
�˘�

�
6 �4"n for n > N:

By virtue of Theorem 4.1, we can conclude that there exist a unique �.m/ 6 ˘�.m/ � 4"n and a
unique subsonic solution  n

�.m/;m
to the free boundary problem (5.1), such that

Tn.m/ D sup
X2˝�.m/;m

ˇ̌̌̌
r n

�.m/;m
.X/

x

ˇ̌̌̌
�˘�.m/ 6 �4"n:

Taking  �;m D  n
�.m/;m

, then  �;m is the unique subsonic solution to the compressible impinging
jet flow problem (5.1) and T .m/ D Tn.m/ 6 �4"n < 0.

If supm2.0;mcr / T .m/ < 0, there exists a large N , such that

sup
m2.0;mcr /

T .m/ < �4"n (5.10)

for any n > N . It is easy to check that mcr 2 ˙n, and thus mcr 6 mn for any n > N .
It follows from Lemma 5.1 that Tn.m/ is left-continuous for m 2

�
0;mn�, and thus

T .mcr / D Tn.mcr / 6 �4"n: (5.11)

Suppose that there exists a � > 0, such that for any m 2 .mcr ; mcr C �/, there exists a subsonic
solution  �;m with � < �cr to the free boundary problem (5.1) and

sup
m2.mcr ;mcrC�/

T .m/ D sup
m2.mcr ;mcrC�/

�
sup

X2˝�;m

ˇ̌̌̌
r �;m.X/

x

ˇ̌̌̌
�˘�

�
< 0: (5.12)
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In view of (5.12), there exists a large k > 0, such that

sup
m2.mcr ;mcrC�/

T .m/ D sup
m2.mcr ;mcrC�/

 
sup

X2˝�;m

ˇ̌̌̌
r �;m.X/

x

ˇ̌̌̌
�˘�

!
6 �4"nCk : (5.13)

By virtue of (5.10), (5.11) and (5.13), one has

TnCk.mcr C �/ D T .mcr C �/ 6 sup
m2.0;mcrC�/

T .m/ 6 4"nCk ;

for any n > N , which implies that mcr C � 2 ˙nCk . The definition of mnCk in (5.3) gives that

mnCk > mcr C � > mcr :

This leads a contradiction to the definition of mcr in (5.5).

6. The proof of the main results

Based on the previous sections, we will complete the proof of Theorem 1.3 and Theorem 1.4 in this
section.

Proof of Theorem 1.3. For any given atmosphere pressure patm > 0, it follows from Lemma 5.2
that there exists a critical mass flux Mcr > 0, such that for any M0 2 .0;Mcr /, there exist a
unique � D �.m0/ < �cr and a unique subsonic solution . �;m0 ; ��;m0/ to the axially symmetric
compressible impinging flow, where

Mcr D 2�mcr and M0 D 2�m0:

In view of the proof of Theorem 4.1, we conclude that  �;m0 and the free boundary ��;m0 W y D
k�;m0.x/ satisfy that

 �;m0 2 C
2;˛.˝0/ \ C

1. N̋0/; k�;m0.x/ 2 C
1.Œb;C1/

�
;

and

k�;m0.b C 0/ D 1; k
0

�;m0
.b C 0/ D g0.b � 0/; k0�;m0.x/! tan �; k�;m0.x/ � g0.x/! 0

as x !C1. Moreover, sup.x;y/2 N̋0
jr �;m0 j

x˘�
< 1 and p D patm on ��;m0 .

By virtue of the Bernoulli’s law (1.11), one has

M 2
0

2�a4�2in
C

A


 � 1

�

�1
in D

�2

2�20
C

A


 � 1

�

�1
0 ; �0 D

�patm

A

� 1



;

which implies that the incoming pressure pin D A�


in is determined uniquely by �. Moreover, the

subsonicity of solution  �;m0 gives that pin 2 .p1; p2/, where p1 and p2 satisfy that p1 < p2 and

M 2
0

2�2a4
�
p1
A
� 2



C
A


 � 1

�p1
A

� 
�1



D
A


 � 1

�patm

A

� 
�1
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and
M 2
0

2�2a4
�
p2
A
� 2



C
A


 � 1

�p2
A

� 
�1



D
A
.
 C 1/
2.
 � 1/

�patm

A

� 
�1



:

Denote

u D
1

x�.
jr �;m0 j

2

jxj2
I�/

@ �;m0
@y

; v D �
1

x�.
jr �;m0 j

2

jxj2
I�/

@ �;m0
@x

; � D ˝ \ f �;m0 < m0g

and the density � is determined uniquely by

jr �;m0 j
2

2x2�2
C

A


 � 1

�
�1 D
�2

2�20
C

A


 � 1

�

�1
0 :

Thus, .u; v; �; � / satisfies the conditions (1)–(3) in Definition 1.1, and .u; v; �; � / is the unique
subsonic solution to FBP.

The statements (1)–(3) of Theorem 1.3 follows from the Step 2 and Step 4 in the proof of
Theorem 4.1 directly. The final statement (4) of Theorem 1.3 is proved in Section 5.

Hence, we complete the proof of Theorem 1.3.

Proof of Theorem 1.4. By virtue of Theorem 1.3, the subsonic solution . �;m0 ; ��;m0/ established
in Theorem 1.3 satisfies that

r �;m0 is uniformly continuous in a f �;m0 < m0g-neighborhood of A, (6.1)

and
��;m0 [N is C 1 at A. (6.2)

Under the assumption thatN isC 3;˛ nearA, with the aid of (6.1) and (6.2), the proof of Theorem 1.4
follows from Theorem 1.1 in [7] directly.
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