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Minimal partition problems consist in finding a partition of a domain into a given number of
components in order to minimize a geometric criterion. In applicative fields such as image processing
or continuum mechanics, it is standard to incorporate in this objective an interface energy that
accounts for the lengths of the interfaces between components. The present work is focused on the
theoretical and numerical treatment of minimal partition problems with such interface energies. The
considered approach is based on a � -convergence approximation combined with convex analysis
techniques.
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1. Introduction

Consider a partition of a bounded domain ˝ of Rd into relatively closed subsets ˝1; : : : ; ˝N ,
called phases, that may intersect only through their boundaries:

˝ D

N[
jD1

j̋ ; with ˝i \ j̋ D @˝i \ @ j̋ \˝ for i ¤ j:

Denote the interface separating ˝i and j̋ by �ij :

�ij D @˝i \ @ j̋ \˝ for i ¤ j;
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FIG. 1. A partition of a domain into sets . j̋ / that intersect only at their boundaries. Interface �ij separates˝i from j̋ .

with the additional convention �i i = ;, see Figure 1. The prototype problem of minimal partition
can be written as

minimize
NX
iD1

Z
˝i

gi .x/dx C I.˝1; : : : ; ˝N / (1.1)

over all partitions .˝1; : : : ; ˝N / of ˝, where g1; : : : ; gN are given functions in L1.˝/, and
I.˝1; : : : ; ˝N / is the total interface energy. This energy is here chosen as

I.˝1; : : : ; ˝N / D
1

2

X
16i<j6N

˛ijHd�1.�ij /; (1.2)

where ˛ij > 0 is a coefficient called surface tension associated with �ij and Hd�1.�ij / is the d � 1
dimensional Hausdorff measure of �ij . It is convenient to assume that the surface tensions satisfy
˛ij D j̨ i whenever i ¤ j and ˛i i D 0. We denote

SN D
˚
.˛ij / 2 RN�N W ˛ij D j̨ i and ˛i i D 0

	
:

In order to guarantee the lower semicontinuity of the interface energy, it is required that the surface
tensions be nonnegative and satisfy the triangle inequality [4]

˛ij 6 ˛ik C ˛kj 8i; j; k: (1.3)

This condition is also discussed in [15, 16, 19]. We will therefore mainly place ourselves in the
classes of surface tensions

SCN D f.˛ij / 2 SN W ˛ij > 0g;

TN D
˚
.˛ij / 2 S

C

N W ˛ij 6 ˛ik C ˛kj 8i; j; k
	
:

For the rigorous mathematical analysis, the lower semicontinuity of (1.2) needs to be formulated in
an appropriate framework, namely the space of sets of finite perimeter, or Caccioppoli sets [6, 9, 23].
In this setting, the total interface energy writes

1

2

X
16i<j6N

˛ijHd�1
�
@M˝i \ @M j̋ \˝

�
; (1.4)
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where ˝1; : : : ; ˝N are now assumed to be sets of finite perimeter in ˝ such that ˝ D [NiD1˝i up
to a Lebesgue negligible set and j˝i \ j̋ j D 0 for all i ¤ j , denoting by j � j the d -dimensional
Lebesgue measure. Moreover, @M˝i is the measure theoretical (or essential) boundary of ˝i in ˝.
We refer to [6, 9, 23] for details on sets of finite perimeter and geometric measure theory.

Domain functionals of perimetric type are known to be difficult to handle within numerical
optimization procedures. The most direct approach in shape optimization relies on the concept of
shape derivative, often implemented by means of level-sets, see, e.g., the seminal paper [3] and [2]
for a multiphase application. Drawbacks of this setting are that it does not allow all types of topology
changes, and that it raises the difficulty, when perimetric terms are involved, of the numerical
evaluation of curvatures. In this paper we follow another path, and propose an approximation of
the energy (1.4) by a � -converging parameterized functional. This latter is constructed upon the
solutions of auxiliary elliptic boundary value problems, in the spirit of [7, 8]. This is in contrast
with the celebrated Modica–Mortola � -convergence approximation of the perimeter [26] which,
borrowing the terminology of numerical schemes, could be qualified as explicit. The Modica–
Mortola functional, special case of the Ginzburg–Landau free energy, has been used in particular by
several authors to address minimal partition problems, see, e.g., [10–12, 27], and specifically [15]
where the energy (1.4) is considered. Closely related to our approach is the parabolic approximation,
applied to (1.4) in [19], see also [1, 25] for the two phase case. Nonlocal functionals, either elliptic
or parabolic, lend themselves to optimization procedures which are less sensitive to the spatial
discretization than local, explicit ones. In particular, descent steps are unrelated to mesh size. As we
will see, the elliptic framework has a further advantage: it provides a variational formulation which
enables the implementation of alternating minimization schemes. The separated subproblems may
be linear or quadratic and be solved in one shot without line search. Finally, different from � -
convergence based methods, we mention the convex approximation of minimal partition problems
from [17].

On the mathematical side, two main questions are addressed in the present work. The first one
is the � -convergence of the approximating functionals, which we establish under two alternative
sets of assumptions. In the first setting we assume that the surface tensions satisfy an algebraic
property, denoted by .˛ij / 2 BCN , implying that the total interface energy can be written as a conical
combination of perimeters of clusters of phases. This allows to use results on the two-phase case
from [7, 8], under generalized forms. In the second setting we only assume that .˛ij / 2 TN , but we
suppose that ˝ is a Cartesian product of intervals. To prove the � � lim inf inequality we follow a
very different approach, to a large extent inspired from [19]. Our most novel contribution deals with
the second issue, namely the construction of the aforementioned variational formulation. It is based
on Legendre–Fenchel duality arguments, therefore it involves convexity assumptions. We actually
propose two complementary formulations in order to cope with all surface tensions .˛ij / 2 TN .

The paper is organized as follows. In Section 2 we recall and extend some useful results
from [7, 8]. In Section 3 we introduce our interface energy approximation and analyze its pointwise
convergence. Section 4 deals with the lower semicontinuity and equicoercivity properties. In
Section 5 we recall and complement known combinatorial issues concerning the decomposition
of the interface energy as a weighted sum of perimeters, and prove our two � -convergence results.
Sections 6 and 7 are dedicated to the variational formulation. The resulting algorithm is presented
in Section 8, together with some numerical examples. In Section 9 we describe an enrichment of
the algorithm in order to take into account volume constraints. A technical lemma is deferred in
appendix.
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2. Preliminary: A gradient-free perimeter approximation

To set up the mathematical framework, we assume that the hold-all˝ is an open and bounded subset
of Rd , d 2 f2; 3g, with Lipschitz boundary, and we first define the functional F W L1.˝; f0; 1g/!
R [ fC1g by

F.u/ D

8<:12 jDuj.˝/ if u 2 BV.˝; f0; 1g/;

C1 otherwise:

We recall that the total variation of u satisfies jDuj.˝/ D Hd�1.@M˝1 \ ˝/ whenever u 2
BV.˝; f0; 1g/ and u is the characteristic function of a Lebesgue-measurable subset ˝1 of ˝,
denoted by u D �˝1 , see again [6, 9, 23]. Then we say that ˝1 is a set of finite perimeter and
that Hd�1.@M˝1\˝/ is the relative perimeter of˝1 in˝. We also define the extended functional
QF over the convex set L1.˝; Œ0; 1�/ by

QF .u/ D

(
F.u/ if u 2 L1.˝; f0; 1g/;
C1 otherwise:

In all what follows we denote

hu; vi D

Z
˝

u.x/ � v.x/dx

for every pair of scalar or vector valued functions u; v having suitable regularity. It is shown in [7, 8]
that a variational approximation of QF , in the sense of � -convergence, is provided by the family of
functionals . QF"/">0 defined by

QF".u/ D inf
�2H1.˝/

�
"kr�k2

L2.˝/
C
1

"

�
k�k2

L2.˝/
C hu; 1 � 2�i

��
: (2.1)

We recall below some results proven in [7, 8]. The first one is a straightforward reformulation of
(2.1) with the help of Euler–Lagrange equations.

Proposition 2.1 Let u 2 L2.˝/ be given and L"u´ v" 2 H
1.˝/ be the (weak) solution of(

�"2�v" C v" D u in ˝;
@nv" D 0 on @˝:

(2.2)

Then we have

QF".u/ D
1

"
h1 � L"u; ui:

It follows straightforwardly from (2.2) that L"1 D 1. Also, the weak formulation yields for all
u; v 2 L2.˝/

hL"u; vi D

Z
˝

�
"2r.L"u/ � r.L"v/C .L"u/ � .L"v/

�
dx;

whereby the operator L" W L2.˝/! L2.˝/ is self-adjoint and positive definite. It follows that

QF".u/ D
1

"
hL"u; 1 � ui:

Moreover, the weak maximum principle yields 0 6 u 6 1) 0 6 L"u 6 1.
The second result will be useful for existence issues at " fixed.
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Lemma 2.2 The functional QF" is continuous on L1.˝; Œ0; 1�/ for the weak-� topology of L1.˝/.

The third result establishes the lim inf inequality of the � �convergence of the approximating
functionals. From now on, convergence statements for " ! 0 will refer to the convergence
of the corresponding quantity considering any sequence ."k/ of positive numbers such that
limk!C1 "k D 0.

Proposition 2.3 Let u 2 L1.˝; Œ0; 1�/ and .u"/ be a sequence of functions of L1.˝; Œ0; 1�/ such
that u" ! u strongly in L1.˝/. Then we have

lim inf
"!0

QF".u
"/ > QF .u/:

Proofs of the lim sup inequality of the � -convergence may involve more geometrical aspects,
with a possible influence of the space dimension and the shape of ˝. In [8] it was proved for a
Lipschitz domain˝ in any dimension, with the help of a recovery sequence .u"/. However, recovery
sequences become problematic in the multiphase case, since independent recovery sequences
.u"i /16i6N have no reason to satisfy

PN
iD1 u

"
i D 1, even if this property is verified at the limit.

In [7] the lim sup inequality was proved for the constant recovery sequence u" D u, which is
obviously a remedy to the above limitation, in two dimensions for ˝ rectangular. Here we extend
this result to Lipschitz domains in dimension d 2 f2; 3g.

Proposition 2.4 For all u 2 BV.˝; f0; 1g/ and all " > 0 we have

lim sup
"!0

QF".u/ 6
1

2
jDuj.˝/:

Proof. We first note that for all u 2 BV.˝; f0; 1g/ we can write

QF".u/ D F".u/´
1

"
hu � L"u; ui:

Moreover, standard arguments provide the variational formulation

F".u/ D inf
w2H1.˝/

�
"krwk2

L2.˝/
C
1

"
kw � uk2

L2.˝/

�
:

We will estimate F".u/ through three steps.

Step 1. In the first step we assume that u 2 H 1.˝; Œ0; 1�/. We have in particular for allw 2 C2.˝/

F".u/ 6 "krwk2
L2.˝/

C
1

"
kw � uk2

L2.˝/
;

which rewrites

F".u/ 6 "

Z
@˝

@nw.w � u/ds C "

Z
˝

rw � rudx C
1

"

Z
˝

.�"2�w C w � u/.w � u/dx: (2.3)

Here we have used the Green formula for BV functions [6, 9], which applies in Lipschitz domains.
We recall that u admits a trace in L1

Hd�1
.@˝/, and that this trace can be lifted by a function in
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W 1
1 .
Q̋ n˝/, where Q̋ is a bounded open smooth set containing ˝, see [6, 20]. Call Qu the obtained

extension of u, further extended by 0 outside Q̋ . Inequality (2.3) extends by density to any function
w 2 C1. Q̋ / with �w 2 L2. Q̋ /. We choose w D w" WD ˚" ? Qu where ˚" is the fundamental
solution of the operator �"2�C I . By construction, it holds �"2�w" C w" D Qu a.e. in Q̋ . Hence,
since Qu 2 W 1;1. Q̋ /, w" 2 C1. Q̋ / [21] and

F".u/ 6 "

Z
@˝

@nw".w" � u/ds C "

Z
˝

rw" � rudx: (2.4)

The construction from [20] permits to assume the 0 6 Qu 6 1 a.e. in Q̋ . Using ˚".x/ D

"�d˚1."
�1x/ we obtain

"rw".x/ D

Z
Rd
r˚1.z/ Qu.x � "z/dz:

Let � be a unit vector of Rd . We infer

"rw".x/ � � D

Z
Rd
r˚1.z/ � � Qu.x � "z/dz 6

Z
Rd

max.r˚1.z/ � �; 0/dz:

Due to the radial symmetry of ˚1 we can without loss of generality assume that � is oriented along
the first basis vector of Rd . It follows that

"rw".x/ � � 6
Z
Rd

max.@x1˚1.z/; 0/dz:

We subsequently infer

"rw".x/ � � 6
Z
R

max
�Z

Rd�1
@x1˚1.z1; Nz/d Nz; 0

�
dz1

because, due to radial symmetry, the sign of @x1˚1.z1; Nz/ only depends on the coordinate z1. By
uniqueness, the function

z1 7!

Z
Rd�1

˚1.z1; Nz/d Nz

is the one dimensional fundamental solution, i.e.,Z
Rd�1

˚1.z1; Nz/d Nz D
1

2
e�jz1j:

We arrive at

"rw".x/ � � 6
Z C1
0

1

2
e�z1dz1 D

1

2
;

whereby, since � is arbitrary,

"jrw".x/j 6
1

2
:

Coming back to (2.4) we obtain

F".u/ 6
1

2

Z
@˝

jw" � ujds C
1

2

Z
˝

jrujdx D
1

2

Z
@˝

j˚" ? Qu � ujds C
1

2

Z
˝

jrujdx: (2.5)
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Step 2. We now assume that u 2 BV.˝; Œ0; 1�/. By density of C1.˝/ in BV.˝/ for the
intermediate convergence [6, 9], there exists a sequence of functions uk 2 H 1.˝/ such that
uk ! u in L1.˝/ and jDukj.˝/ ! jDuj.˝/. The construction by mollifiers allows to assume
that 0 6 uk 6 1. By Parseval’s equality, as the Fourier transform of ˚1 is F ˚1.�/ D 1=.1C j�j2/,
we infer that ˚1 2 L2.Rd /. Since obviously uk ! u also in L2.˝/, Quk ! Qu in L2.Rd / by
continuity of the trace operator for the intermediate convergence, and F" is continuous on L2.˝/,
taking limits in (2.5) yields

F".u/ 6
1

2

Z
@˝

j˚" ? Qu � ujds C
1

2

Z
˝

jDuj: (2.6)

Step 3. It remains to estimate the first integral in (2.6), which denoting w" D ˚" ? Qu can be
rewritten Z

@˝

jw" � ujds D

Z
@˝

ˇ̌̌̌Z
Rd
˚1.y/ . Qu.x � "y/ � Qu.x// dy

ˇ̌̌̌
ds.x/:

Let ˛ > 0. Due to the decay of ˚1 at infinity there exists � > 0 such thatZ
@˝

ˇ̌̌̌Z
Rd nB�.0/

˚1.y/ . Qu.x � "y/ � Qu.x// dy

ˇ̌̌̌
ds.x/ 6 ˛:

The Cauchy–Schwarz inequality yields

Z
@˝

jw" � ujds 6 Hd�1.@˝/1=2k˚1kL2.Rd /

 Z
@˝

Z
B�.0/

j Qu.x � "y/ � Qu.x/j dyds.x/

!1=2
C ˛:

By a change of variable this rewrites asZ
@˝

jw" � ujds

6 Hd�1.@˝/1=2k˚1kL2.Rd /

 Z
@˝

"�d
Z
B"�.0/

j Qu.x � z/ � Qu.x/j dzds.x/

!1=2
C ˛:

Theorem 3.87 of [6] states the following: for Hd�1- a.e. x 2 @˝ it holds

lim
t!0

t�d
Z
˝\Bt .x/

ju.y/ � u.x/jdy D 0:

Obviously the same limit holds for the exterior part, which entails

lim
"!0

"�d��d
Z
B"�.0/

j Qu.x � z/ � Qu.x/j dz D 0

for Hd�1- a.e. x 2 @˝. Then it follows from Lebesgue’s dominated convergence theorem that

lim
"!0

Z
@˝

"�d
Z
B"�.0/

j Qu.x � z/ � Qu.x/j dzds.x/ D 0:
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We infer that, for " small enough, Z
@˝

jw" � ujds 6 2˛:

This completes the proof.

As straightforward consequences of Propositions 2.3 and 2.4, one obtains the desired � -
convergence and pointwise convergence results.

Theorem 2.5 When " ! 0, the functionals QF" � �converge in L1.˝; Œ0; 1�/ endowed with the
strong topology of L1.˝/ to the functional QF defined by

QF .u/ D

8<:12 jDuj.˝/ if u 2 BV.˝; f0; 1g/;

C1 otherwise:

Theorem 2.6 For all u 2 L1.˝; Œ0; 1�/ it holds

lim
"!0

QF".u/ D QF .u/: (2.7)

3. Approximation of interface energies: Pointwise convergence

Given two subsets ˝i and j̋ of ˝, we look for an approximation of the interface energy
Hd�1.@M˝i \ @M j̋ \˝/. The starting point is the following result established within the proof
of Proposition 1 of [5].

Lemma 3.1 Let ˝i ; j̋ be sets of finite perimeter such that j˝i \ j̋ j D 0. There exists an Hd�1-
negligible set L such that

@M .˝i [ j̋ / n L � @M˝i�@M j̋ � @M .˝i [ j̋ /:

We obtain the following extension of Proposition 1 of [5].

Proposition 3.2 Let .˝i /iD1;:::m be sets of finite perimeter such that j˝i \ j̋ j D 0 for any i ¤ j .
Then

Hd�1
�
@M .[

m
iD1˝i / \˝

�
D

mX
iD1

Hd�1.@M˝i \˝/ � 2
X

16i<j6m

Hd�1.@M˝i \ @M j̋ \˝/:

Proof. First we derive from Lemma 3.1 that if j˝i \ j̋ j D 0 then

Hd�1.@M .˝i [ j̋ / \˝/

D Hd�1.@M˝i \˝/CHd�1.@M j̋ \˝/ � 2H
d�1.@M˝i \ @M j̋ \˝/: (3.1)

This proves the proposition for m D 2. The general case is obtained by induction. For readability
we present the proof for m D 3. Using (3.1) we obtain

Hd�1.@M .˝1 [˝2 [˝3/ \˝/

D Hd�1.@M˝1 \˝/CHd�1.@M˝2 \˝/CHd�1.@M˝3 \˝/

� 2Hd�1.@M˝1 \ @M˝2 \˝/ � 2H
d�1.@M .˝1 [˝2/ \ @M˝3 \˝/:
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Using Lemma 3.1 we get

Hd�1
�
@M .˝1 [˝2/ \ @M˝3 \˝

�
D Hd�1

�
.@M˝1 \ @M˝3 \˝/�.@M˝2 \ @M˝3 \˝/

�
:

Now, we will prove that

Hd�1.@M˝1 \ @M˝2 \ @M˝3/ D 0: (3.2)

Call ˝
1
2

i the set of points of density 1
2

relatively to ˝i , see e.g. [6]. By definition we have

˝
1
2

1 \˝
1
2

2 \˝
1
2

3 D ;:

As a consequence, it follows that

0 D Hd�1.˝
1
2

1 \˝
1
2

2 \˝
1
2

3 / D Hd�1.@M˝1 \ @M˝2 \ @M˝3/; (3.3)

since the two sets above coincide up to an Hd�1-negligible set, see [6]. We infer that

Hd�1..@M˝1 \ @M˝3 \˝/�.@M˝2 \ @M˝3 \˝//

D Hd�1.@M˝1 \ @M˝3 \˝/CHd�1.@M˝2 \ @M˝3 \˝/

and subsequently

Hd�1.@M .˝1[˝2[˝3/\˝/ D Hd�1.@M˝1\˝/CHd�1.@M˝2\˝/CHd�1.@M˝3\˝/

�2Hd�1.@M˝1\@M˝2\˝/�2H
d�1.@M˝1\@M˝3\˝/�2H

d�1.@M˝2\@M˝3\˝/:

This proves the result for m D 3.

We have now all the ingredients to prove the pointwise convergence result.

Theorem 3.3 Let ˝i ; j̋ be two subsets of finite perimeter of ˝ such that j˝i \ j̋ j D 0. If
ui D �˝i and uj D � j̋

, then

Hd�1.@M˝i \ @M j̋ \˝/ D lim
"!0

2

"
hL"ui ; uj i:

Proof. By Proposition 3.2, we have

Hd�1.@M˝i \ @M j̋ \˝/

D
1

2

h
Hd�1.@M˝i \˝/CHd�1.@M j̋ \˝/ �Hd�1.@M .˝i [ j̋ / \˝/

i
:

Using Theorem 2.6 we obtain

Hd�1.@M˝i \ @M j̋ \˝/

D lim
"!0

�
QF".ui /C QF".uj / � QF".ui C uj /

�
D lim
"!0

�
1

"
h1 � L"ui ; ui i C

1

"
h1 � L"uj ; uj i �

1

"
h1 � L".ui C uj /; ui C uj i

�
D lim
"!0

2

"
hL"ui ; uj i:
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FIG. 2. (Left) Given partition, (right) convergence history of G".ui ; uj / computed with the FEM (solid lines), the FDM
(dashed lines) and the exact values (horizontal lines)

We denote

G".ui ; uj / D
1

"
hL"ui ; uj i: (3.4)

We present an example to illustrate the pointwise convergence of the functional G" in Figure 2. The
values of the function G" are computed using two discretization methods, namely the finite element
method (FEM) with Q1 elements and the finite difference method (FDM) with 5 points stencil. The
parameter " has the dimension of a length. In fact, in view of (2.2), it is a characteristic width of the
diffuse interface represented by the slow variable v". Thus we start with a characteristic size of ˝,
namely "0 D "max D max.m; n/ where .m; n/ is the size of the grid (its stepsize is fixed as unitary).
Then we divide " by two between each computation, that is, we choose "i D "max=2

i . In order to
approximate (2.2) properly, " must not be taken significantly smaller than the grid resolution. Thus
we stop the algorithm as soon as "i 6 "min D 1. We observe that the computed values of G".ui ; uj /
are always smaller using the FDM than using the FEM. This is due to higher diffusion of the FEM.

4. Lower semicontinuity and equicoercivity

4.1 Lower semicontinuity

The following important result is found in [4]. An alternative proof is given in [19] when ˝ is a
Cartesian product of intervals, in which case it is also a consequence of Theorem 5.11.

Theorem 4.1 Let .˛ij / 2 SCN . The condition (1.3) is necessary and sufficient for the function

I W .˝1; : : : ; ˝N / 7!
1

2

X
16i<j6N

˛ijHd�1.@M˝i \ @M j̋ \˝/

to be lower semicontinous for the convergence in measure in the set of N -tuples .˝1; : : : ; ˝N / of
Lebesgue-measurable subsets of ˝ such that �˝i 2 BV.˝/ for all i and

PN
iD1 �˝i D 1.

This property will lead to the existence of minimizers for the exact minimal partition problem in
Theorem 5.2. In addition, lower-semicontinuity is a necessary condition for � -convergence [9, 14],
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which will be addressed later. Equicoercivity is another important property. Basically, together with
� -convergence, it implies that sequences of minimizers of approximating functionals converge up
to a subsequence to a minimizer of the limiting functional, see again, e.g., [9, 14].

4.2 Equicoercivity

We will rely on the following theorem from [7].

Theorem 4.2 Let u" be a sequence of functions of L1.˝; Œ0; 1�/ such that sup">0 QF".u"/ < C1.
There exists u 2 L1.˝; f0; 1g/ such that u" ! u strongly in L1.˝/ for a subsequence.

We set

I".u1; : : : ; uN / D
X

16i<j6N

˛ijG".ui ; uj / D
1

"

X
16i<j6N

˛ij hL"ui ; uj i:

We now prove the equicoercivity of the functionals I".

Theorem 4.3 Assume that .˛ij / 2 SCN with ˛ij > ˛ > 0. Let .u"1; : : : ; u
"
N / be a sequence of N -

tuples of functions in L1.˝; Œ0; 1�/ such that
PN
iD1 u

"
i D 1 for all " and sup">0I".u"1; : : : ; u

"
N / <

C1. For all i , there exists ui 2 L1.˝; f0; 1g/ such that u"i ! ui strongly in L1.˝/ for a
subsequence. Moreover we have

PN
iD1 ui D 1.

Proof. Using (3.4), we obtain

X
16i<j6N

˛ijG".u
"
i ; u

"
j / D

1

"

X
16i<j6N

˛ij hL"u
"
i ; u

"
j i

>
˛

"

X
16i<j6N

hL"u
"
i ; u

"
j i D

˛

2"

X
16i¤j6N

hL"u
"
i ; u

"
j i D

˛

2"

NX
iD1

hL"u
"
i ;

NX
jD1
j¤i

u"j i:

Due to
P
j¤i u

"
j D 1 � u

"
i we infer

X
16i<j6N

˛ijG".u
"
i ; u

"
j / >

˛

2

NX
iD1

1

"
hL"u

"
i ; 1 � u

"
i i D

˛

2

NX
iD1

QF".u
"
i /:

The result follows from Theorem 4.2.

5. Conical combinations of perimeters and � -convergence

In this section we rewrite the interface energy as a linear combination of perimeters of aggregated
phases. If all coefficients can be taken nonnegative (conical combination) then the � -convergence
of the approximating functional is straightforward. Therefore special attention is paid to the signs
of the coefficients.

Let S � f1; : : : ; N g. From now on, we will denote ˝S D [i2S˝i and NS D f1; : : : ; N g n S .
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5.1 Algebraic properties of interface energies

Lemma 5.1 Let ˝1; : : : ; ˝N be subsets of finite perimeter of ˝ such that j˝ n [NiD1˝i j D 0 and
j˝i \ j̋ j D 0 for i ¤ j . Let Lij D Hd�1.@M˝i \ @M j̋ \˝/; PS D Hd�1.@M˝S \˝/. Then

PS D
X
i2S
j…S

Lij D PS :

Proof. By the definition of the essential boundary, we have

@M˝i D @M

�
Rd n˝i

�
D @M

�
[
j¤i

j̋ [

�
Rd n˝

��
:

As an elementary property of the essential boundary, we have that @M .A [ B/ � @MA [ @MB .
Moreover, as ˝ is open, we have @M˝ \˝ D ;. This yields

@M

�
[
j¤i

j̋ [

�
Rd n˝

��
\˝ �

�
[
j¤i
@M j̋

�
\˝;

which implies that

@M˝i \˝ D [
j¤i
.@M j̋ \ @M˝i \˝/: (5.1)

For i ¤ j; i ¤ k; j ¤ k, following (3.2), we have

Hd�1
�
.@M˝i \ @M j̋ \˝/ \ .@M˝i \ @M˝k \˝/

�
D Hd�1.@M˝i \ @M j̋ \ @M˝k \˝/ D 0: (5.2)

We deduce from (5.1), (5.2) that

Pfig D
X
j¤i

Lij :

From this fact and Proposition 3.2, we obtain that

PS D
X
i2S

Pfig � 2
X

.i;j /2S2

i<j

Lij D
X
i2S
j…S

Lij :

We arrive at the announced existence result.

Theorem 5.2 Assume that .˛ij / 2 TN with ˛ij > ˛ > 0. Let g1; : : : ; gN 2 L1.˝/. The problem

minimize J.˝1; : : : ; ˝N / WD
NX
iD1

Z
˝i

gi .x/dx C I.˝1; : : : ; ˝N /; (5.3)

in the set ofN -tuples .˝1; : : : ; ˝N / of Lebesgue-measurable subsets of˝ such that �˝i 2 BV.˝/
for all i and

PN
iD1 �˝i D 1, admits at least a solution.
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Proof. We have the inequality

J.˝1; : : : ; ˝N / > �
NX
iD1

kgikL1.˝/ C
˛

2

X
16i<j6N

Hd�1.@M˝i \ @M j̋ \˝/:

Lemma 5.1 entails

J.˝1; : : : ; ˝N / > �
NX
iD1

kgikL1.˝/ C
˛

4

NX
iD1

Hd�1.@M˝i \˝/:

Therefore, for a minimizing sequence .˝k
1 ; : : : ; ˝

k
N /, the quantity

PN
iD1 Hd�1.@M˝

k
i \ ˝/ is

bounded. By a standard property of bounded sequences of sets of finite perimeters, see, e.g., [6, 9,
23], there exists a family .˝1; : : : ; ˝N / of subsets of finite perimeters of ˝ such that ˝k

i ! ˝i in
measure for each i , for a non-relabeled subsequence. Equivalently, �˝k

i
! �˝i in L1.˝/, which

implies that
PN
iD1 �˝i D 1. The lower-semicontinuity of Theorem 4.1 shows that .˝1; : : : ; ˝N / is

a global minimizer.

5.2 Algebraic properties of approximate interface energies

We now prove the approximate counterpart of Lemma 5.1.

Lemma 5.3 Let ˝i ; : : : ; ˝N be subsets of finite perimeter of ˝ such that j˝ n [NiD1˝i j D 0 and

j˝i \ j̋ j D 0 for i ¤ j . Let ui D �˝i , L"ij D
1

"
hL"ui ; uj i, P"S D

1

"
h1�L"

P
i2S ui ;

P
i2S ui i.

Then

P"S D
X
i2S
j…S

L"ij D P"
S
:

Proof. We have

P"S D
1

"

*
1 � L"

X
i2S

ui ;
X
i2S

ui

+
D
1

"

*
L"
X
i2S

ui ; 1 �
X
i2S

ui

+
:

Using 1 �
P
i2S ui D

P
j…S uj we obtain

P"S D
1

"

*
L"
X
i2S

ui ;
X
j…S

uj

+
D
1

"

X
i2S
j…S

hL"ui ; uj i D
X
i2S
j…S

L"ij :

We emphasize that the properties stated in Lemmas 5.1 and 5.3 are formally the same. This
will allow to obtain similar reformulations for the interface energy and its approximation. The
approximate counterpart of Theorem 5.2 is stated below.



72 S. AMSTUTZ, D. GOURION AND M. ZABIBA

Theorem 5.4 Assume that .˛ij / 2 SCN with ˛ij > ˛ > 0. Let g1; : : : ; gN 2 L1.˝/. The problem

minimize J".u1; : : : ; uN / WD
NX
iD1

Z
˝

uigi .x/dx C I".u1; : : : ; uN /; (5.4)

in the set of N -tuples .u1; : : : ; uN / 2 L1.˝; Œ0; 1�/N such that
PN
iD1 ui D 1 a.e., admits at least

a solution.

Proof. Consider a minimizing sequence .uk1 ; : : : ; u
k
N / 2 L

1.˝; Œ0; 1�/N such that
PN
iD1 u

k
i D 1.

Up to a subsequence, this sequence converges weakly-� to some .u1; : : : ; uN / 2 L1.˝; Œ0; 1�/N .
Obviously it holds

PN
iD1 ui D 1. By Lemma 2.2, .u1; : : : ; uN / is a minimizer of (5.4).

5.3 Matrix representation of algebraic properties

We define the column vector L made of the values .Lij / in a chosen order. Similarly we define
the column vector ˛ of the surface tensions .˛ij / and P the vector gathering the values PS , for
S 2 S � P .f1; : : : ; N g/. The set S is made as small as possible by exploiting the property of
complementation. We adopt the following construction: when N is odd the elements of S are the
subsets of f1; : : : ; N g containing between 1 and .N � 1/=2 elements; when N is even the elements
of S are the subsets of f1; : : : ; N g containing between 1 and N=2 � 1 elements and the subsets
containing N=2 elements including 1 (see Table 1 for N 6 5). An alternative – bijective – set could
be taken as the set of nonempty subsets of f1; : : : ; N � 1g, so that ]S D 2N�1 � 1. In view of
Lemma 5.1, we can define a matrix M D .mij / 2 R]S�.

N
2 / such that

P DML: (5.5)

Note that mij 2 f0; 1g.
Let ˇ D .ˇS /S2S. Starting from the dot products

ˇ � P D ˇ �ML DM|ˇ � L;

one infers that X
16i<j6N

˛ijLij D
X
S2S

ˇSPS (5.6)

holds for any L and corresponding P as soon as the columns of coefficients satisfy the linear system

M|ˇ D ˛: (5.7)

Due to

Lij D
1

2
.Pi C Pj � Pij /; (5.8)

it turns out that M has full rank. However there are in general multiple ways to find a ˇ

corresponding to a given ˛. For the purpose of proving a � -convergence property, possible
nonnegative solutions of this system will be privileged.
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TABLE 1. The set S of values of S

N=2 ff1gg

N=3 ff1g; f2g; f3gg

N=4 ff1g; f2g; f3g; f4g; f12g; f13g; f14gg

N=5 ff1g; f2g; f3g; f4g; f5g; f12g; f13g; f14g; f15g,
f23g; f24g; f25g; f34g; f35g; f45gg

5.4 Existence of conical combination

We define the set

BCN D
˚
.˛ij / 2 SN W 9.ˇS / > 0 s.t. ˛ DM|ˇ

	
� SCN :

We now address the identification of the set BCN . We consider SN , TN and BCN as subsets of
the Euclidean space RN.N�1/=2. Note that SN is the full linear space, while TN and BCN are
polyhedral convex cones. Indeed, TN is defined as intersection of half-spaces of RN.N�1/=2, and
BCN is the convex cone generated by the row vectors of M. The sets TN and BCN are sometimes
called the semimetric cone (or metric cone) and the cut cone (or Hamming cone), respectively,
see for example [18]. For the sake of completeness, we recall that a matrix .˛ij / 2 SN is
called `1-embeddable if there exists some integer K and N points x1; : : : ; xN 2 RK such that
˛ij D kxi � xj k1 for all 1 6 i < j 6 N . It is known that the set of `1-embeddable matrices is
equal to BCN (see, for example, [18, Proposition 4.2.2]). It is also known that BCN � TN for any
N > 2 and that BCN D TN for N 6 4. Nevertheless we present our own proofs of these results,
without using the concept of `1-embeddability.

Theorem 5.5 For any N > 2 it holds BCN � TN .

Proof. Using the conic descriptions of BCN and TN , we only have to check that any row vector of M
is an element of TN . Consider an arbitrary row of M. It corresponds to a set S 2 S. Call .mij / the
entries of this row vector in the system of indices associated with phases. Recall that mij 2 f0; 1g.
Consider a nontrivial triangle inequalitymij 6 mikCmkj (with i; j and k distinct integers) defining
TN . In view of Lemma 5.1, if both i and j are in S , thenmij D 0 and the inequality is satisfied. The
same holds if both i and j are not in S . If i 2 S and j … S , thenmij D 1. In this case, either k 2 S
and mkj D 1, or k … S and mik D 1. In both cases the triangle inequality is satisfied. Obviously
the same occurs if i … S and j 2 S . Thus any row vector of M belongs to TN , which implies that
BCN � TN .

Theorem 5.6 If N D 3; 4 then TN � BCN .

Proof. We will use the notations ˇi for ˇfig and ˇij for ˇfij g. We treat separately the two cases.

� Case 1: N D 3. The unique solution of (5.7) is

ˇ1 D
�˛23 C ˛12 C ˛13

2
; ˇ2 D

�˛13 C ˛12 C ˛23

2
; ˇ12 D

�˛12 C ˛13 C ˛23

2
:

If .˛ij / 2 T3, then ˇ1; ˇ2; and ˇ12 are nonnegative, which implies that T3 � BC3 .
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� Case 2: N D 4. Solving (5.7) for N D 4, we choose the particular solution

ˇ12 D
�˛12 C ˛14 C ˛24

2
; ˇ13 D

�˛13 C ˛14 C ˛34

2
; ˇ23 D

�˛23 C ˛24 C ˛34

2
;

ˇ1 D
˛12 C ˛13 � ˛24 � ˛34

2
; ˇ2 D

˛12 C ˛23 � ˛14 � ˛34

2
;

ˇ3 D
˛13 C ˛23 � ˛14 � ˛24

2
; ˇ4 D 0:

It is immediate to see that if .˛ij / 2 T4, then ˇ12; ˇ13; and ˇ23 are nonnegative. Now, we want to
prove that if .˛ij / 2 T4, then ˇ1; ˇ2; and ˇ3 are nonnegative too. Let us define for i D 1; : : : ; 4,
˙i D

P
j¤i ˛ij : Up to reordering the phases, we assume that ˙4 6 ˙3 6 ˙2 6 ˙1. Then we

have8̂<̂
:
˙4 6 ˙1

˙4 6 ˙2

˙4 6 ˙3

)

8̂<̂
:
˛14 C ˛24 C ˛34 6 ˛12 C ˛13 C ˛14

˛14 C ˛24 C ˛34 6 ˛12 C ˛23 C ˛24

˛14 C ˛24 C ˛34 6 ˛13 C ˛23 C ˛34

)

8̂<̂
:
˛24 C ˛34 6 ˛12 C ˛13

˛14 C ˛34 6 ˛12 C ˛23

˛14 C ˛24 6 ˛13 C ˛23

)

8̂<̂
:
ˇ1 > 0

ˇ2 > 0

ˇ3 > 0

:

We now discuss the numerical search for some .ˇS / > 0, given coefficients .˛ij /. Let us first
recall the definition of a conical combination and Carathéodory’s theorem.

Given a finite number of vectors v1; v2; : : : ; vp in a real vector space, a conical combination of
these vectors is a vector of the form

�1v1 C �2v2 C : : :C �pvp;

where the real numbers �1; : : : ; �p are non-negative.

Theorem 5.7 (Carathéodory) In a vector space of dimension n, all conical combination of m
vectors .m > n/, can be written as a conical combination of n of these vectors.

By the above theorem and the linear system (5.7), when ˛ D .˛ij / 2 B
C

N , ˛ can be written
as a conical combination of

�
N
2

�
rows of the matrix M. Calling B the corresponding submatrix, we

have Bˇ D ˛, with ˇ > 0. Denoting k D rank B, then ˛ belongs to the space spanned by k
linearly independent columns of B. By Carathéodory’s theorem again, ˛ is a conical combination
of k columns of B. By completion of these vectors (since M| has full rank), ˛ writes as a conical
combination of

�
N
2

�
linearly independent columns of M|. This leads to Algorithm 1.

Using Algorithm 1 we are in particular able to find counterexamples to Theorem 5.6 when
N D 5. For instance, it is immediately seen that the matrix

.˛ij / D

0BBBB@
0 2 3 2 1

2 0 1 2 3

3 1 0 3 3

2 2 3 0 1

1 3 3 1 0

1CCCCA
satisfies the triangle inequality, but Algorithm 1 terminates without finding any ˇ > 0.
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Data: Given ˛ D .˛ij / 2 R.
N
2 /�1; M 2 R]S�.

N
2 /.

1 repeat
2 Loop on the set of square invertible submatrices � 2 R.

N
2 /�.

N
2 / of M|;

3 Compute ˇ D ��1˛;
4 until ˇ > 0;
5 Complete ˇ by zeros at the entries corresponding to the columns of M| that have been

removed.
Algorithm 1. Search for .ˇS / > 0.

The complexity of Algorithm 1 rapidly grows with N : for example for N D 6, there are
300540195

�
N
2

�
�
�
N
2

�
submatrices of M|. Hence, it is impossible in practice to use this algorithm

for N > 5. For this reason we propose a second algorithm. Let .BCN /
ı denote the polar cone of BCN .

Moreau’s decomposition theorem directly implies that ˛ 2 BCN if and only if the projection of ˛ on
.BCN /

ı is 0. This leads us to the following positive definite quadratic program:

min
ai �y60 8i

k˛ � yk2; (5.9)

where .ai / are the rows of M. Then ˛ 2 BCN if and only if the optimal value of this program is
0. This program is easily tractable up to N D 13. This technique, however, does not provide any
possible ˇ. Note that the algorithms developed in sections 8 and 9 do not require the knowledge of
such ˇ.

5.5 � -convergence with nonnegative coefficients

Define the set

QEN D

(
.u1; : : : ; uN / 2 L

1.˝; Œ0; 1�/N W

NX
iD1

ui D 1 a.e.

)

and the functional QI W QEN ! R such that

QI.u1; : : : ; uN / D

8<:
1

2

P
16i<j6N ˛ijH1.@M˝i \ @M j̋ \˝/

if ui 2 BV.˝; f0; 1g/ 8i;
ui D �˝i ;

C1 otherwise:

Theorem 5.8 If .˛ij / 2 BCN , then the functionals I" � -converge to QI in QEN endowed with the
strong topology of L1.˝/N .

Proof. We first prove the lim inf inequality. Let .u"i / 2 QEN be a sequence such that .u"i / converges
to ui . From (3.4), (5.6) and Lemma 5.3 we haveX

16i<j6N

˛ijG".u
"
i ; u

"
j / D

1

"

X
S2S

ˇS

�
1 � L"

X
i2S

u"i ;
X
i2S

u"i

�
: (5.10)
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This entails

lim inf
"!0

X
16i<j6N

˛ijG".u
"
i ; u

"
j / >

X
S2S

lim inf
"!0

1

"
ˇS

�
1 � L"

X
i2S

u"i ;
X
i2S

u"i

�
:

We infer from Theorem 2.5 and (5.6) that

lim inf
"!0

X
16i<j6N

˛ijG".u
"
i ; u

"
j / > QI.u1; : : : ; uN /:

Second, due to the pointwise convergence (Theorem 3.3), the lim sup inequality holds for the
constant recovery sequence.

5.6 � -convergence in the general case

Here we generalize Theorem 5.8 to arbitrary surface tensions when ˝ is a Cartesian product of
intervals. Our proof is widely inspired from [19], nevertheless it incorporates some adaptations to
our context. In [19] the functional

E".u1; : : : ; uN / D
1

"

X
16i<j6N

˛ij

Z
D

G" ? uiujdx (5.11)

is considered. The convolution kernel G" is mainly chosen as the Gaussian, and more generally it
is assumed to fulfill some properties which are not all satisfied in our case. The main ingredient
in the proof of [19] is an approximate monotonicity argument. Here we follow the same path. We
start with a rough estimate of derivative, however different from [19] since we exploit here the
underlying boundary value problems instead of the convolution structure. Therefore, we do not
need at this stage any geometric assumption on ˝.

Lemma 5.9 For all .u1; : : : ; uN / 2 QEN we have

d

d"
I".u1; : : : ; uN / D

1

2"2

NX
i;jD1

˛ij

Z
˝

�
�3v"i uj C 2v

"
i v
"
j

�
dx; (5.12)

with v"i WD L"ui , and
d

d"

�
"3I".u1; : : : ; uN /

�
> 0:

Proof. For arbitrary N -tuples v D .v1; : : : ; vN / 2 H 1.˝/N , w D .w1; : : : ; wN / 2 H 1.˝/N , we
define the Lagrangian

L."; v; w/ D
1

2"

NX
i;jD1

˛ij

Z
˝

viujdx C

NX
iD1

Z
˝

."2rvi � rwi C viwi � uiwi /dx:

Whenever vi D v"i the last integral vanishes, which results in

L."; v"; w/ D I".u1; : : : ; uN / 8w 2 H 1.˝/N : (5.13)
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Differentiating the Lagrangian with respect to v in the direction Ov yields

@L

@v
."; v; w/ Ov D

1

2"

NX
i;jD1

˛ij

Z
˝

Oviujdx C

NX
iD1

Z
˝

."2r Ovi � rwi C Oviwi /dx;

which can be rearranged as

@L

@v
."; v; w/ Ov D

NX
iD1

0@Z
˝

."2rwi � r Ovi C wi Ovi /dx C
1

2"

NX
jD1

˛ij

Z
˝

uj Ovidx

1A :
This vanishes as soon as, for all i D 1; : : : ; N ,

wi D �
1

2"

NX
jD1

˛ij v
"
j DW w

"
i : (5.14)

Going back to (5.13) we infer

d

d"
I".u1; : : : ; uN / D

@L

@"
."; v"; w"/:

By definition of the Lagrangian this entails

d

d"
I".u1; : : : ; uN / D �

1

2"2

NX
i;jD1

˛ij

Z
˝

v"i ujdx C

NX
iD1

Z
˝

2"rv"i � rw
"
i dx:

Using now the expression (5.14) of the adjoint state we arrive at

d

d"
I".u1; : : : ; uN / D �

1

2"2

NX
i;jD1

˛ij

Z
˝

v"i ujdx �

NX
i;jD1

˛ij

Z
˝

rv"i � rv
"
jdx:

Using that Z
˝

."2rv"i � rv
"
j C v

"
i v
"
j /dx D

Z
˝

uiv
"
jdx

we infer

d

d"
I".u1; : : : ; uN / D �

3

2"2

NX
i;jD1

˛ij

Z
˝

v"i ujdx C
1

"2

NX
i;jD1

˛ij

Z
˝

v"i v
"
jdx;

that is (5.12). We recognize that

d

d"
I".u1; : : : ; uN / D �

3

"
I".u1; : : : ; uN /C

1

"2

NX
i;jD1

˛ij

Z
˝

v"i v
"
jdx:

This implies that
d

d"

�
"3I".u1; : : : ; uN /

�
D "

NX
i;jD1

˛ij

Z
˝

v"i v
"
jdx > 0:
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The key estimate is the following.

Lemma 5.10 If .˛ij / 2 TN and˝ is a Cartesian product of open intervals, then for all " 6 "0 and
.u1; : : : ; uN / 2 QEN we have

I".u1; : : : ; uN / >
�

"0

"0 C "

�3
I"0.u1; : : : ; uN /: (5.15)

Proof. We assume that ˝ D .0; L1/ � : : : � .0; Ld / and we define the extended domain D D
.0; 2L1/� : : :� .0; 2Ld /. We extend the functions u1; : : : ; uN toD by successive symmetries, then
to Rd by periodicity, keeping the same notation. This leads to the representation L"ui D ˚" ? ui ,
with the convolution kernel

˚".x/ D
1

"d
˚.
x

"
/; (5.16)

˚.x/ D
1

2�
K0.jxj/ for d D 2; ˚.x/ D

1

4�jxj
e�jxj for d D 3;

involving the modified Bessel function K0 in the two-dimensional case. Indeed, ˚" is the
fundamental solution of the operator �"2�CI , and the construction yields the Neumann boundary
condition on @˝. We obtain

f ."/ WD I".u1; : : : ; uN / D
1

2"

NX
i;jD1

˛ij

Z
˝

˚" ? uiujdx D
1

2dC1
1

"

NX
i;jD1

˛ij

Z
D

˚" ? uiujdx:

This formulation is identical to (5.11), except that the kernel is different, in particular it admits here
a singularity at 0. A change of variable using (5.16) and the symmetry of the kernel yields

f ."/ D
1

2dC1
1

"

NX
i;jD1

˛ij

Z
D

Z
Rd
˚.h/ui .x C "h/uj .x/dhdx:

This rewrites as
f ."/ D

1

2dC1
1

"

Z
Rd
˚.h/	."h/dh; (5.17)

with

	.h/ D

NX
i;jD1

˛ij

Z
D

ui .x C h/uj .x/dx:

For the above function 	 (note that it does not involve the kernel), it is shown in [19] (proof of
Lemma A.2) that

	.hC h0/ 6 	.h/C 	.h0/ 8h; h0 2 Rd : (5.18)

This obviously entails 	.nh/ 6 n	.h/ for all n 2 N n f0g, and, in view of (5.17)

f .n"/ 6 f ."/ 8n 2 N n f0g: (5.19)

We conclude similarly to [19], choosing n such that

n � 1 <
"0

"
6 n



INTERFACE ENERGIES 79

and combining (5.19) and Lemma 5.9 to derive

f ."/ > f .n"/ D .n"/�3.n"/3f .n"/ > .n"/�3"30f ."0/

D

� "0
n"

�3
f ."0/ >

�
"0

"0 C "

�3
f ."0/:

The exponent 3 appearing in (5.15) is not necessarily the same as the exponent d C 1 obtained
in [19], but it enables the same proof of � -convergence, as shown below.

Theorem 5.11 If .˛ij / 2 TN and ˝ is a Cartesian product of open intervals, then the functionals
I" � -converge to QI in QEN endowed with the strong topology of L1.˝/N .

Proof. As in Theorem 5.8 only the lim inf inequality needs to be checked. We exploit the
approximate monotonicity in the same way as in [19]. Let .u"i / 2 QEN be a sequence such that
.u"i / converges to ui . For any "0 > 0, owing to Lemma 5.10 and the continuity of I"0 , we have

lim inf
"!0

I".u
"/ > I"0.u/:

It suffices then to pass to the limit when "0 ! 0 using the pointwise convergence to achieve the
proof.

6. Convexity issues

6.1 Conditional negative semidefiniteness

DEFINITION 6.1 A real symmetric N � N matrix Q D .˛ij / is said to be conditionally negative
semidefinite if

PN
i;jD1 ˛ij �i�j 6 0 for all � D .�1; : : : ; �N /

| 2 RN such that
PN
iD1 �i D 0. We

denote Q � 0.

In contrast we use the standard notation Q 6 0 if Q is negative semidefinite.
We define the .N � 1/ � .N � 1/ submatrix of Q D .˛ij / by

QQ D .˛ij /16i;j6N�1

and the column vector C D .Ci / by

C D .˛iN /16i6N�1: (6.1)

We also define the .N � 1/ � .N � 1/ matrix

NQ D QQ � 1C |
� C1|

DW . N̨ ij /; (6.2)

where 1 D .1; : : : ; 1/|. Let � D .�1; : : : ; �N /
| 2 RN , Q� D .�i /16i6N�1. If Q 2 SN andPN

iD1 �i D 0 it is immediately obtained that Q� � � D NQ Q� � Q� . This leads to the following
characterization.

Lemma 6.1 Let Q 2 SN . Then Q � 0 if and only if NQ 6 0.
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6.2 Sufficient condition for conditional negative semidefiniteness

According to [19], a sufficient condition for a matrix to be conditionally negative semidefinite is
its `1-embeddability. Since Q is `1-embeddable if and only if Q 2 BCN , we infer the following
statement, for which we provide a direct proof.

Theorem 6.2 If Q 2 BCN , then Q � 0.

Proof. The set of conditionally negative semidefinite matrices is a convex cone, and BCN is the
polyhedral cone generated by the row vectors of the matrix M. Therefore, as in the proof of
Theorem 5.5, it is enough to prove that any row vector of M defines a conditionally negative
semidefinite matrix Q. Consider an arbitrary row vector of M with entries .mij / in the system
of indices associated with phases, and denote by S 2 S its row index in the same system. Let
� 2 RN such that

PN
iD1 �i D 0. We have

X
16i<j6N

mij �i�j D

N�1X
iD1

�i

�
miN �N C

N�1X
jDiC1

mij �j

�

D

N�1X
iD1

�i

�
miN .��1 � : : : � �N�1/C

N�1X
jDiC1

mij �j

�

D �

N�1X
iD1

miN �
2
i C

X
16i<j6N�1

.mij �miN �mjN /�i�j :

Since miN 2 f0; 1g then miN D m2iN . Moreover, we claim that

mij �miN �mjN D �2miNmjN :

Indeed, if either i 2 S , j 2 S and N … S or i … S , j … S and N 2 S , then mij �miN �mjN D
�2miNmjN D �2. In the other cases we check that mij � miN � mjN D �2miNmjN D 0. We
derive X

16i<j6N

mij �i�j D �

N�1X
iD1

m2iN �
2
i � 2

X
16i<j6N�1

miNmjN �i�j

D �

 
N�1X
iD1

miN �i

!2
6 0:

By Theorem 5.6 we obtain the following useful implication.

Corollary 6.3 If N D 3; 4 and Q 2 TN , then Q � 0.

The converse of Corollary 6.3 is false. For N D 3 a counterexample is given by the matrix

Q D

0@ 0 1 1

1 0 3

1 3 0

1A : (6.3)

We have det. NQ/ D 3 and trace. NQ/ D �8, which implies that Q � 0, but ˛23 > ˛12 C ˛13.
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Corollary 6.3 is not true for N > 5. A counterexample is given by

Q D

0BBBB@
0 1 2 1 1

1 0 2 2 2

2 2 0 1 1

1 2 1 0 2

1 2 1 2 0

1CCCCA :
This matrix satisfies the triangle inequality, but the corresponding NQ admits a positive eigenvalue.

7. Variational formulations of the approximate interface energy

For algorithmic purposes we give in this section variational formulations of the approximate
interface energy I". Our approach relies on Legendre–Fenchel duality. Since this is strongly related
to convexity we distinguish between two cases. In the first case we assume thatQ � 0, which covers
a rather wide range of situations as seen in Corollary 6.3. Then the energy is concave with respect
to its natural variables and the Legendre–Fenchel transform directly provides a formulation as a
minimization problem. In the second case we assume that Q � 0, which corresponds to a convex
energy. We follow a parametric duality approach to obtain concavity with respect to well-chosen
perturbation variables. The general case is obtained by additive decomposition of the quadratic
form.

Other variational formulations, based on the representation of the total interface energy as a
linear combination of perimeters, are given in [28].

7.1 Case Q � 0

We assume thatQ is a conditionally negative semidefinite symmetricN �N matrix. Note that, with
the aforementioned additive decomposition in mind, we do not assume that Q 2 TN , not even that
Q 2 SN . Therefore we will use the expression of the approximate energy

I".u1; : : : ; uN / D
1

2"

NX
i;jD1

˛ij hui ; L"uj i: (7.1)

We set for all u; v 2 H 1.˝/

hu; viH1" D

Z
˝

�
"2ru � rv C uv

�
dx; (7.2)

and for all u; v 2 H 1.˝;RN /

Œu; v� D

NX
iD1

hui ; vi iH1" : (7.3)

We first state a small technical lemma.

Lemma 7.1 Let � 2 H 1.˝;RN / such that
PN
iD1 �i D 0. Then ŒQ�; �� 6 0.
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Proof. We have by definition

ŒQ�; �� D

NX
iD1

Z
˝

�
"2r.Q�/i � r�i C .Q�/i�i

�
dx;

which yields

ŒQ�; �� D

Z
˝

NX
i;jD1

˛ij
�
"2r�i � r�j C �i�j

�
dx

D

Z
˝

"
dX
kD1

"2.Q@k�/ � @k� CQ� � �

#
dx:

The fact that Q � 0 implies ŒQ�; �� 6 0.

With the help of the canonical embeddings H 1.˝/ ,! L2.˝/ ,! H 1.˝/0, where H 1.˝/0 is
the continuous dual space of H 1.˝/, we consider the extended operator L" W H 1.˝/0 ! H 1.˝/,
defined by L"u D u" such thatZ

˝

."2ru":r' C u"'/dx D hu; 'i 8' 2 H 1.˝/: (7.4)

Here the notation h�; �i is used for the duality pairing between H 1.˝/0 and H 1.˝/. Clearly this
defines a linear and continuous operator. If u; v 2 H 1.˝/0, then choosing ' D v" WD L"v in (7.4)
yields

hu;L"vi D

Z
˝

."2ru":rv" C u"v"/dx: (7.5)

This shows that L" is self-adjoint. In addition, hu;L"ui > 0 and L"1 D 1, from (7.4).
The operator I" defined in (7.1) canonically extends to a continuous functional on ŒH 1.˝/0�N .

A direct calculation yields for all u; v 2 ŒH 1.˝/0�N ; � 2 Œ0; 1�

I".�uC .1 � �/v/ � �I".u/ � .1 � �/I".v/ D
.� � 1/�

2"

NX
i;jD1

˛ij huj � vj ; L".ui � vi /i:

Using (7.5), denoting qki D "@kL".ui � vi /, ri D L".ui � vi /, we obtain

I".�uC .1 � �/v/ � �I".u/ � .1 � �/I".v/ D
.� � 1/�

2"

Z
˝

� NX
i;jD1

˛ij .

dX
kD1

qki q
k
j C rirj /

�
dx:

We define the affine space

V D

(
u 2 ŒH 1.˝/0�N W

NX
iD1

ui D 1

)
:

If u; v 2 V then
P
i q
k
i D

P
i ri D 0. Since Q is conditionally negative semidefinite, we infer that

I" is concave on V .



INTERFACE ENERGIES 83

Let ıV W ŒH 1.˝/0�N ! f0;C1g be the indicator function of V . We have that ıV � I" is a
proper, closed, convex function on ŒH 1.˝/0�N . Hence the Fenchel–Moreau biconjugation theorem
tells us that .ıV � I"/�� D ıV � I". This leads to the following theorem.

Theorem 7.2 Let Q � 0, u 2 V . We have

I".u/ D
1

"
inf

v2ŒH1.˝/�NPN
iD1 viD1

NX
i;jD1

˛ij

�˝
ui ; vj

˛
�
"2

2

˝
rvi ;rvj

˛
�
1

2

˝
vi ; vj

˛�
:

Proof. Let w 2 H 1.˝/N . The Legendre–Fenchel transform of ıV � I" is defined as

.ıV � I"/
�.w/ D sup

u2ŒH1.˝/0�N

� NX
iD1

hui ; wi i � ıV .u/C I".u/

�
;

which can be rewritten as

.ıV � I"/
�.w/ D sup

u2V

� NX
iD1

hui ; wi i C
1

2"

NX
i;jD1

˛ij
˝
ui ; L"uj

˛�
: (7.6)

By definition of L" and the fact that it is an isomorphism fromH 1.˝/0 intoH 1.˝/, we obtain with
the change of variables Oui D L"ui

.ıV � I"/
�.w/ D supbu2ŒH1.˝/�NPN

iD1buiD1
� NX
iD1

Z
˝

�
"2rbui � rwi Cbuiwi� dx

C
1

2"

NX
i;jD1

˛ij

Z
˝

�
"2rbui � rbuj Cbuibuj � dx�:

With the notation (7.2) this reads

.ıV � I"/
�.w/ D supbu2ŒH1.˝/�NPN

iD1buiD1
� NX
iD1

hwi ;bui iH1" C 1

2"

NX
i;jD1

˛ij hbui ;buj iH1" �;
which we rewrite as

.ıV � I"/
�.w/ D sup

 2ŒH1.˝/�NPN
iD1 iD1

� NX
iD1

hwi ;  i iH1" C
1

2"

NX
jD1

h.Q /j ;  j iH1"

�
:

From (7.3), we obtain

.ıV � I"/
�.w/ D sup

 2ŒH1.˝/�NPN
iD1 iD1

�
Œw;  �C

1

2"
ŒQ ; �

�
: (7.7)
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Observe that, for any � 2 H 1.˝/,

.ıV � I"/
�.w C �1/ D

Z
˝

�dx C .ıV � I"/
�.w/: (7.8)

Call

H D

(
.�1; : : : ; �N / 2 RN W

NX
iD1

�i D 0

)
;

and PH the orthogonal projection of RN onto H , i.e.,

PH � D � �
1

N
.1 � �/1 D � �

 
1

N

NX
iD1

�i

!
1:

Let R D PH ıQ ı PH and denote

Nw.x/ D PH

�
.w C

1

"
Q
1

N
1/.x/

�
:

We distinguish between two cases.

� Case 1: We assume here that
Nw.x/ 2 ImR for a.e. x 2 ˝:

Hence there exists v 2 ŒH 1.˝/�N such that Nw.x/ D Rv.x/ for a.e. x 2 ˝. We can write

w C
1

"
Q
1

N
1 D Nw C �1 D Rv C �1 D PH .Q Nv/C �1 D Q Nv C �1;

with Nv D PHv, �; � 2 H 1.˝/. Setting

Ov D Nv �
1

"N
1 D PHv �

1

"N
1;

we arrive at w D Q Ov C �1. Plugging this into (7.7)-(7.8) yields

.ıV � I"/
�.w/ D

Z
˝

�dx �
"

2
ŒQ Ov; Ov�C

1

2"
sup

 2ŒH1.˝/�NPN
iD1 iD1

ŒQ. C " Ov/;  C " Ov� : (7.9)

Observing that

"

NX
iD1

Ovi D �1 (7.10)

and using Lemma 7.1, we conclude that

.ıV � I"/
�.w/ D

Z
˝

�dx �
"

2
ŒQ Ov; Ov�: (7.11)

Note that conversely, if w D Q Ov C �1 with Ov satisfying (7.10), then

Nw.x/ D PH

�
w.x/C

1

"
Q
1

N
1

�
D PH ıQ

�
Ov.x/C

1

"N
1/

�
2 ImR: (7.12)
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� Case 2: There exists W � ˝, jWj > 0 such that

8x 2W; Nw.x/ … ImR D .kerR/?;

since R is self-adjoint. Let p.x/ be the orthogonal projection of Nw.x/ onto kerR. By assumption
we have p.x/ ¤ 0 8x 2W. Defining

 t D
1

N
1C tPHp; (7.13)

we will show that

Œw;  t �C
1

2"
ŒQ t ;  t �!C1; (7.14)

when t !C1. To see this we proceed by

Œw;  t �C
1

2"
ŒQ t ;  t � D Œw C

1

2"N
Q1;

1

N
1�C t Œw C

1

"N
Q1; PHp�C

t2

2"
ŒQPHp;PHp�:

Observing that QPHp.x/ 2 H?, since p.x/ 2 kerR, and PHp.x/ 2 H , we infer that
QPHp.x/ �PHp.x/ D 0. In addition, writing QPHp.x/ D �.x/1, we have @k.�1/ � @kPHp D
@k�@k.1 � PHp/ D 0. This entails

ŒQPHp;PHp� D 0:

Now, noting that @k.PHp/ D PH .@kp/, we have

Œw C
1

"N
Q1; PHp� D ŒPH .w C

1

"N
Q1/; p� D Œ Nw;p� D Œp; p� > 0:

Hence, when t !C1, it holds

Œw;  t �C
1

2"
ŒQ t ;  t �!C1: (7.15)

We infer from (7.7) that

.ıV � I"/
�.w/ D C1: (7.16)

The biconjugate of ıV � I" is defined by

.ıV � I"/
��.u/ D sup

w2ŒH1.˝/�N

NX
iD1

hui ; wi i � .ıV � I"/
�.w/:

In view of (7.16) it is equal to

.ıV � I"/
��.u/ D sup

w2ŒH1.˝/�N

Nw2ImR

NX
iD1

hui ; wi i � .ıV � I"/
�.w/:
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We now assume that u 2 V , which permits to write

I".u/ D �.ıV � I"/.u/ D �.ıV � I"/
��.u/:

By (7.11) and (7.12), we infer

I".u/ D inf
Ov2ŒH1.˝/�N ; �2H1.˝/

"
PN
iD1 OviD�1

(
�

NX
iD1

hui ; .Q Ov/i C �i C

Z
˝

�dx �
"

2
ŒQ Ov; Ov�

)
(7.17)

D inf
Ov2ŒH1.˝/�N

"
PN
iD1 OviD�1

(
�

NX
iD1

hui ; .Q Ov/i i �
"

2
ŒQ Ov; Ov�

)
: (7.18)

A change of variables yields

I".u/ D
1

"
inf

v2ŒH1.˝/�NPN
iD1 viD1

(
NX
iD1

hui ; .Qv/i i �
1

2
ŒQv; v�

)
; (7.19)

which completes the proof.

REMARK 7.1 For N D 2 the variational formulation amounts to (2.1) and has been used within
alternating minimization schemes in [8] in a context of structural optimization. The multiphase case
with uniform surface tensions has been considered in [7].

7.2 Case Q � 0

Theorem 7.3 Given .u1; : : : ; uN / 2 L1.˝; Œ0; 1�/N with
P
i ui D 1 consider the approximate

interface energy (7.1) with Q D .˛ij / symmetric conditionally positive semi-definite. We have the
expression

I".u1; : : : ; uN / D
1

2"
inf

�2ŒH div
0
.˝/�NPN

iD1 �iD0

NX
i;jD1

˛ij

Z
˝

�i � �jdx

C

NX
i;jD1

˛ij

Z
˝

.ui � " div �i /.uj � " div �j /dx: (7.20)

Proof. We compute a dual formulation with respect to an auxiliary perturbation variable, in order to
place ourselves in an appropriate convexity framework. Therefore u is considered as fixed, as well
as ", and we set

I D 2I".u1; : : : ; uN / D
1

"
hQu; vi D

1

2"

�
hQu; viChQv; ui

�
D

1

2"

NX
i;jD1

˛ij

Z
˝

.uivj Cuj vi /dx
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with vi D L"ui . We define for all � D .�i ; : : : ; �N / 2 L2.˝;Rd /N

F.�/ D

NX
i;jD1

˛ij

Z
˝

�
"2.rv�i � �i / � .rv

�
j � �j /C v

�
i v
�
j � uiv

�
j � uj v

�
i

�
dx

where v�i 2 H
1.˝/ is the solution ofZ
˝

�
"2.rv�i � �i / � r' C v

�
i '
�
dx D

Z
˝

ui'dx 8' 2 H 1.˝/:

We have immediately F.0/ D �"I .
There exists � 2 L.L2.˝;Rd /;H 1.˝// such that v�i D v0i C ��i . Elementary differential

calculus leads to

D2F.�/. O�; O�/ D 2

NX
i;jD1

˛ij

Z
˝

�
"2.r� O�i � O�i / � .r� O�j � O�j /C .� O�i /.� O�j /

�
dx:

Hence F is convex over the Hilbert space

H D

(
� 2 L2.˝;Rd /N W

NX
iD1

�i D 0

)
:

Let us compute the Legendre–Fenchel transform of F over H , given for any �� 2 H by

F �.��/ D sup
�2H

NX
iD1

Z
˝

��i � �i � F.�/:

This rewrites as

F �.��/ D sup
�2H

v2ŒH1.˝/�N

NX
iD1

Z
˝

��i � �i

�

NX
i;jD1

˛ij

Z
˝

�
"2.rvi � �i / � .rvj � �j /C vivj � uivj � uj vi

�
dx (7.21)

subject toZ
˝

�
"2.rvi � �i / � r' C vi'

�
dx D

Z
˝

ui'dx 8' 2 H 1.˝/; 8i D 1; : : : ; N: (7.22)

Assume that F �.��/ < C1. Since the functional to maximize is made of quadratic and linear
terms, the supremum is attained. Call .�; v/ a maximizer. There exists Lagrange multipliers
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.w1; : : : ; wN / 2 H
1.˝/N such that

NX
iD1

Z
˝

��i � O�i �

NX
i;jD1

˛ij

Z
˝

�
"2.rvi � �i / � .r Ovj � O�j /C "

2.r Ovi � O�i / � .rvj � �j /

C vi Ovj C Ovivj � ui Ovj � uj Ovi
�
dx

C

NX
iD1

Z
˝

�
"2.r Ovi � O�i / � rwi C Oviwi

�
dx D 0 8. O�; Ov/ 2 H �H 1.˝/N : (7.23)

Choosing O� D 0 yields

�

NX
i;jD1

˛ij

Z
˝

�
"2.rvi � �i / � r Ovj C "

2
r Ovi � .rvj � �j /C vi Ovj C Ovivj � ui Ovj � uj Ovi

�
dx

C

NX
iD1

Z
˝

�
"2r Ovi � rwi C Oviwi

�
dx D 0 8Ov 2 H 1.˝/N :

Due to the constraint (7.22) the first line vanishes. This entails wi D 0. Choosing now Ov D 0 yields

NX
iD1

Z
˝

��i � O�i �

NX
i;jD1

˛ij

Z
˝

�
"2.rvi � �i / � .�O�j /C "

2.�O�i / � .rvj � �j /
�
dx D 0

8O� 2 H:

It follows that �
��i C 2"

2

NX
jD1

˛ij .rvj � �j /

�
16i6N

2 H?;

i.e., there exists �� 2 L2.˝;Rd / such that

��i C 2"
2

NX
jD1

˛ij .rvj � �j / D �
�

8i D 1; : : : ; N: (7.24)

Setting
��j D �2"

2.rvj � �j / 2 H
div
0 .˝/; (7.25)

by (7.22), we write (7.24) as �� D Q��C��. Since � 2 H and
PN
iD1 ui D 1, the constraint (7.22)

implies
PN
iD1 vi D 1, whereby rv 2 H and �� 2 H . From (7.22) and (7.24) we obtain�

� div .��i � �
�/ D 2

PN
jD1 ˛ij .vj � uj / in ˝

.��i � �
�/ � n D 0 on @˝:

(7.26)

Choosing Ov D v, O� D � in (7.23) and recalling that w D 0, we obtain

NX
iD1

Z
˝

��i � �i �

NX
i;jD1

˛ij

Z
˝

�
2"2.rvi � �i / � .rvj � �j /C 2vivj � uivj � uj vi

�
dx D 0:
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Plugging this in (7.21) entails

F �.��/ D

NX
i;jD1

˛ij

Z
˝

�
"2.rvi � �i / � .rvj � �j /C vivj

�
dx:

This rewrites as

F �.��/ D

NX
iD1

Z
˝

0@"2.rvi � �i / � NX
jD1

˛ij .rvj � �j /

1A dx C NX
iD1

Z
˝

vi

0@ NX
jD1

˛ij vj

1A dx:
Taking into account (7.24) and (7.26) we arrive at

F �.��/ D �
1

2

NX
iD1

Z
˝

.rvi � �i / � .�
�
i � �

�/dx C

NX
iD1

Z
˝

vi

0@ NX
jD1

˛ijuj �
1

2
div .��i � �

�/

1A dx:
This can be rearranged as

F �.��/ D �
1

2

NX
iD1

Z
˝

.rvi � �i / � .�
�
i � �

�/dx C

NX
jD1

Z
˝

uj

 
NX
iD1

˛ij vi

!
dx

�
1

2

NX
iD1

Z
˝

vi div .��i � �
�/dx:

Using again (7.26) we obtain

F �.��/ D �
1

2

NX
iD1

Z
˝

.rvi � �i / � .�
�
i � �

�/dxC

NX
jD1

Z
˝

uj

 
NX
iD1

˛ijui �
1

2
div .��j � �

�/

!
dx

�
1

2

NX
iD1

Z
˝

vi div .��i � �
�/dx:

With (7.24) and the notation (7.25) this leads to

F �.��/ D �
1

2

NX
i;jD1

˛ij

Z
˝

.rvi � �i / � �
�
j dx C

NX
i;jD1

˛ij

Z
˝

uiujdx

�
1

2

NX
i;jD1

˛ij

Z
˝

uj div ��i dx �
1

2

NX
i;jD1

˛ij

Z
˝

vi div ��j dx:

Using (7.24) and (7.26) yields

F �.��/ D
1

4"2

NX
jD1

Z
˝

.��j � �
�/ � ��j dx C

NX
i;jD1

˛ij

Z
˝

uiujdx �
1

2

NX
i;jD1

˛ij

Z
˝

uj div ��i dx

�
1

2

NX
jD1

Z
˝

 
NX
iD1

˛ijui �
1

2
div .��j � �

�/

!
div ��j dx:
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Expressing �� in terms of �� leads to

F �.��/ D
1

4"2

NX
i;jD1

˛ij

Z
˝

��i � �
�
j dx C

NX
i;jD1

˛ij

Z
˝

uiujdx �
1

2

NX
i;jD1

˛ij

Z
˝

uj div ��i dx

�
1

2

NX
i;jD1

˛ij

Z
˝

ui div ��j dx C
1

4

NX
i;jD1

˛ij

Z
˝

div ��i div ��j dx:

Rearranging entails

F �.��/ D
1

4"2

NX
i;jD1

˛ij

Z
˝

��i � �
�
j dx C

NX
i;jD1

˛ij

Z
˝

.ui �
1

2
div ��i /.uj �

1

2
div ��j /dx DW ˚.�

�/:

(7.27)
To recapitulate, we have shown so far that

F �.��/ < C1) 9.��; ��/ 2 L2.˝;Rd / � .H \H div
0 .˝/N / s.t.

�
�� D Q�� C ��

F �.��/ D ˚.��/:

Suppose now that F �.��/ < C1 and �� D Q� C � 2 H for some .�; �/ 2 L2.˝;Rd / �
.H \H div

0 .˝/N /. Writing F �.��/ D ˚.��/ with �� D Q��C �� and observing, from inspection
of (7.27), that Q.� � ��/ D �� � �) ˚.�/ D ˚.��/, we infer that F.Q�C �/ D ˚.�/.

We are now in position to obtain the dual formulation of F , given for any � 2 H by

F.�/ D F ��.�/ D sup
��2H

NX
iD1

Z
˝

�i � �
�
i dx � F

�.��/:

We infer from the preceding findings that

F.�/ D sup
�� 2 H \ ŒH div

0 .˝/�N

�� 2 L2.˝;Rd /
Q�� C �� 2 H

NX
iD1

Z
˝

�i � .

NX
jD1

˛ij�
�
j C �

�/dx �
1

4"2

NX
i;jD1

˛ij

Z
˝

��i � �
�
j dx

�

NX
i;jD1

˛ij

Z
˝

.ui �
1

2
div ��i /.uj �

1

2
div ��j /dx:

Since � 2 H this simplifies as

F.�/ D sup
��2H\ŒH div

0
.˝/�N

NX
i;jD1

˛ij

Z
˝

�i � �
�
j dx �

1

4"2

NX
i;jD1

˛ij

Z
˝

��i � �
�
j dx

�

NX
i;jD1

˛ij

Z
˝

.ui �
1

2
div ��i /.uj �

1

2
div ��j /dx:
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Recalling that I D �1
"
F.0/ we arrive at

I D
1

"
inf

��2H\ŒH div
0
.˝/�N

1

4"2

NX
i;jD1

˛ij

Z
˝

��i ��
�
j dxC

NX
i;jD1

˛ij

Z
˝

.ui�
1

2
div ��i /.uj �

1

2
div ��j /dx:

A change of variable yields (7.20).

7.3 General case

Consider an arbitrary Q 2 TN . We see it as the matrix representation of a quadratic form q on
RN . Then q can be decomposed as q D q� C qC, where q� and qC are negative semi-definite and
positive semi-definite, respectively, on the linear subspace f� 2 RN W

P
i �i D 0g. This leads to the

decomposition Q D Q� C QC, where Q� and QC are conditionally negative semi-definite and
conditionally positive semi-definite, respectively. The linearity of the interface energy with respect
to Q allows to combine the two variational formulations. Let us recall that when N 6 4 we have
Q � 0, hence it is natural to assume that QC D 0.

8. Applications

8.1 Algorithm

We consider the approximate minimal partition problem

min
.u1;:::;uN /2QEN

8<: NX
iD1

hgi ; ui i C
1

"

X
16i<j6N

˛ij hL"ui ; uj i

9=; : (8.1)

Consider the decomposition ˛ij D ˛�ij C ˛
C

ij , with .˛�ij / � 0 and .˛Cij / � 0. Plugging the adequate
variational formulation of each component of the approximate interface energy, (8.1) rewrites as

min
.u1;:::;uN /2QEN

inf
.v1;:::;vN /2H1.˝/NPN

iD1 viD1

inf
.�1;:::;�N /2ŒH

div
0
.˝/�NPN

iD1 �iD0

� NX
iD1

hgi ; ui i

C
1

"

NX
i;jD1

˛�ij

�
hui ; vj i �

"2

2
hrvi ;rvj i �

1

2
hvi ; vj i

�

C
1

2"

NX
i;jD1

˛Cij
�
h�i ; �j i C hui � " div �i ; uj � " div �j i

��
:

We propose an alternating minimization algorithm with respect to the three N -tuples of variables
.u1; : : : ; uN /, .v1; : : : ; vN / and .�1; : : : �N /.

1. Minimizing with respect to .v1; : : : ; vN / simply amounts to setting vj D L"uj for each j .
2. From inspection of the Euler–Lagrange equations, minimizing with respect to .�1; : : : ; �N / is

achieved with �j D �"rvj .
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3. Minimizing with respect to .u1; : : : ; uN / is a quadratic problem with linear constraints, spatially
uncoupled. If QC D 0, then the problem is linear. It is straightforwardly solved by

ui .x/ D

(
1 if i D k.x/;
0 otherwise;

where

�i D gi C
1

"

X
j

˛ij vj ; �k.x/ D min
˚
�1.x/; : : : ; �N .x/

	
:

If QC ¤ 0, then the problem becomes more complicated. In fact, it can be simplified by
performing the decompositionQ D QCCQ� in such a way thatQC satisfies special properties.
For instance, one can always chooseQC of the formQC D 
IN , with 
 > 0 large enough. Then
the minimization with respect to u amounts to performing at each point an orthogonal projection
onto the simplex of RN . Note that in this case u is no longer binary-valued during the iterations,
and that large values of 
 tend to enhance this property.

The main computational tasks within each iteration is the numerical solution of L". In the
subsequent experiments we use the standard finite difference scheme with 5 points stencil combined
with the Fast Fourier Transform, since the discrete system writes in terms of convolutions. In the
examples under consideration the matrix Q is always chosen conditionally negative semi-definite,
hence we choose Q� D Q, QC D 0.

8.2 Examples

Let E0; E1; : : : ; EN be a given partition of ˝. We define gi ; i D 1; : : : ; N , by

gi D
X

06j6N

j¤i

�Ej D 1 � �Ei :

This means that, in the set Ei , i > 1, the label i is favored, whereas in the set E0 there is no
preference, or, said otherwise, no information on which label to choose.

Figure 3 shows an example with four phases with two different sets of surface tensions. The
domain is discretized by 512 � 512 pixels. We use "max D 512 and "min D 1, with the mesh size
fixed to 1. For the initialization each ui uniformly equals 1=4. In case (a) we fix ˛ij D 1 for all i; j .
We obtain a classical picture with two Fermat points. In case (b) we prescribe ˛ij D 1 if Ei and Ej
share a common boundary and ˛ij D 2 otherwise.

8.3 Comments

The present algorithm shares some common features with the generalized version of the threshold
dynamics presented in [19], see [24] for the seminal paper. Let us briefly point out some
similarities and differences. We recall that the approximate interface energy used in [19] is based
on convolutions with the heat kernel, whereas we consider instead of this latter its implicit semi-
discrete counterpart. In addition, rather than convolutions, we work with the related boundary value
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FIG. 3. Partition with 4 phases: dataEi (left), obtained result for case (a) (middle), obtained result for case (b) (right)

problem which we believe more versatile regarding the geometry of the computational domain, even
if both formulations are equivalent in the cases addressed here as examples. More fundamentally,
our elliptic framework appears to be well-suited to develop optimization strategies, while in contrast
the parabolic framework is exploited in [19] to simulate time evolutions.

9. Volume constraints

In this section we extend the previous algorithm to the minimal partition problem with constraints
on the measure of each phase. Given m1; : : : ; mN 2 RC such that

PN
iD1mi D j˝j, we define the

set

EN D

�
.u1; : : : ; uN / 2 QEN W

Z
˝

uidx D mi 8i

�
:

The approximate minimal partition problem with volume constraints and gi D 0 is

min
.u1;:::;uN /2EN

8<:1" X
16i<j6N

˛ij hL"ui ; uj i

9=; : (9.1)

Theorem 7.2 yields the formulation

minPN
iD1 uiD1

ui>0;
R
˝ uidxDmi

inf
vi2H

1.˝/PN
iD1 viD1

1

"

X
ij

˛ij

�
hui ; vj i �

"2

2
hrvi ;rvj i �

1

2
hvi ; vj i

�
:

We implement the same type of alternating minimization algorithm as previously. The only
difference is that the minimization with respect to u is no longer explicit due to spatial coupling.
It requires solving a linear programming subproblem. Standard routines may be used, however we
present a specific algorithm to take advantage of the fact that the number of volume constraints is
usually very small in comparison with the number of pixels. In order to highlight this aspect we will
analyze the algorithm in the continuous spatial setting.
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9.1 Linear programming subproblem

Let � D .�1; : : : ; �N / 2 L
2.˝/N and m D .m1; : : : ; mN / 2 RNC be given such that

PN
iD1mi D

j˝j. For u D .u1; : : : ; uN / 2 L2.˝/N consider the primal criterion

�.u/ D

NX
iD1

Z
˝

�iuidx:

Our goal is to solve the minimization problem

minPN
iD1 uiD1

ui>0;
R
˝ uidxDmi

�.u/: (9.2)

In the discrete case, this kind of problem is sometimes called a semi-assignment problem, see
for example [22]. As already seen, removing the volume constraints makes this problem trivial.
Therefore we limit the duality treatment to those constraints. For � D .�1; : : : ; �N / 2 RN we
define the Lagrangian

L.u; �/ D �.u/C

NX
iD1

�i

�Z
˝

uidx �mi

�
:

By standard duality results (see, e.g., [13, Theorem 3.9 and Theorem 3.4], note that Robinson’s
qualification holds for such linear constraints), if u is a minimizer of (9.2) then there exists � 2 RN
such that

L.u; �/ D minPN
iD1 viD1

vi>0

L.v; �/: (9.3)

Moreover, such � are maximizers over RN of the dual criterion

D.�/ D infPN
iD1 viD1

vi>0

L.v; �/:

Let us compute this dual criterion. A rearrangement yields

L.v; �/ D

NX
iD1

Z
˝

.�i C �i /vidx �

NX
iD1

�imi : (9.4)

It follows immediately that

D.�/ D

Z
˝

minf.�i C �i /NiD1g �
NX
iD1

�imi :

Note that D.�Cc1/ D D.�/ for any c 2 R, therefore the dual problem can be set over the quotient
space RN =R. We suggest alternating maximizations with respect to each multiplier. Since the
function D is not smooth some care must be taken as regards to the relevance of such a procedure.
It is supported by the following equivalence.



INTERFACE ENERGIES 95

Proposition 9.1 The N -tuple .�1; : : : ; �N / is a maximizer of D if and only if each �i is a
maximizer of the partial function Q�i 7! D.�1; : : : ; �i�1; Q�i ; �iC1; : : : ; �N /. This is also equivalent
to satisfying for each i D 1; : : : ; N

jf�i C �i < min
j¤i

.�j C �j /gj 6 mi 6 jf�i C �i 6 min
j¤i

.�j C �j /gj: (9.5)

Proof. Using Lemma A.1 we obtain on the one hand the superdifferential of D as

@�D.�1; : : : ; �N / D

�
.s1 �m1; : : : ; sN �mN / 2 RN W

jf�i C �i < min
j¤i

.�j C �j /gj 6 si 6 jf�i C �i 6 min
j¤i

.�j C �j /gj 8i;

NX
iD1

si D j˝j

�
:

Since
P
i mi D j˝j it follows

@�D.�1; : : : ; �N / D

�
.�1; : : : ; �N / 2 RN W

jf�i C �i < min
j¤i

.�j C �j /gj 6 mi C �i 6 jf�i C �i 6 min
j¤i

.�j C �j /gj 8i;

NX
iD1

�i D 0

�
:

We derive the optimality condition

0 2 @�D.�1; : : : ; �N /”jf�i C �i < min
j¤i

.�j C �j /gj 6 mi

6 jf�i C �i 6 min
j¤i

.�j C �j /gj 8i D 1; : : : ; N:

On the other hand the partial maximization with respect to �i provides in a similar (simpler) way
the optimality condition

0 2 @�i D.�1; : : : ; �N /”jf�i C �i < min
j¤i

.�j C �j /gj 6 mi 6 jf�i C �i 6 min
j¤i

.�j C �j /gj:

This means that

0 2 @�D.�1; : : : ; �N /” 0 2 @�i D.�1; : : : ; �N / 8i D 1; : : : ; N;

completing the proof.

Each iteration of the alternating procedure consists in solving (9.5), i.e., finding �i such that

jf�i < min
j¤i

.�j C �j / � �igj 6 mi 6 jf�i 6 min
j¤i

.�j C �j / � �igj:

In the discrete framework this only requires sorting the values of minj¤i .�j C�j /��i and selecting
the mi -th largest value. Once the multipliers .�1; : : : ; �N / have been fixed, the primal solution
.u1; : : : ; uN / is searched among the minimizers of (9.3). In view of (9.4) this minimization is
straightforward, as in the unconstrained case. Note that in case of multiple solutions one that
satisfies the volume constraints has to be chosen, however this situation is unlikely in practice due
to numerical errors.
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9.2 Examples

In Figure 4 we consider 5 phases: 4 interior phases and the remaining set, called exterior phase (in
white). We use the indices I to represent an arbitrary interior phase and E for the exterior phase.
The computational grid is made of 512 � 512 pixels and we choose "max D 64, "min D 1. The
volume constraints are given by the initialization. In case (a) we fix ˛II D ˛IE D 1. In case (b) we
set ˛II D 1 and ˛IE D 0:5. In case (c) we choose ˛II D 1 and ˛IE D 2. Case (d) is the same as
case (c) except that "max D 512.

We now illustrate Herring’s law at triple junction points between phases i; j; k, namely

sin �i
j̨k

D
sin �j
˛ik

D
sin �k
˛ij

;

where �i ; �j ; �k are the opening angles of phases i; j; k, respectively. To do so we consider a four
phase problem similar to the previous one, see Figure 5. In case (a), the surface tensions are taken
uniformly equal to 1, leading to the classical Fermat point. In the other cases we only modify a
surface tension between two interior phases, chosen equal to

p
2 in case (b) and 0:01 in case (c).

This gives rise to a right angle and a nearly flat angle, respectively.
In Figure 6, we again consider 5 phases, but one of them is not subject to optimization. We

use the indices L to represent the 3 first phases (liquid), S to represent the fixed phase (solid, in
black), and V for the remaining set (vapor, in white). The grid contains 600 � 400 pixels and we
use "max D 16, "min D 1. The surface tensions are chosen as ˛LL D ˛LS D ˛LV D ˛SV D 1 in
case (a), ˛LL D ˛LS D 1, ˛LV D ˛SV D 2 in case (b), ˛LL D 0:5, ˛LS D 1, ˛LV D ˛SV D 2 in
case (c).

Finally we illustrate the lack of lower semicontinuity when the triangle inequality fails to hold
in Figure 7. We consider 3 phases and surface tensions given by (6.3). Phase 1 is the background
medium, phases 2 and 3 are initially two half-disks. We incorporate forcing terms by functions gi
as in (8.1), while maintaining the initial volumes. These functions are chosen as gi D �10�2uini

i ,

FIG. 4. Partition with 5 phases and volume constraint: initialization (top left), obtained result in case (a) (top middle),
obtained result in case (b) (top right), obtained result in case (c) (bottom left), obtained result in case (d) (bottom right).
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FIG. 5. Illustration of Herring’s law. Initialisation (top left), obtained result in case (a) (top right), obtained result in case (b)
(bottom left), obtained result in case (c) (bottom right). The theoretical angles at the junction point are displayed in dashed
line.

FIG. 6. Partition with 5 phases and volume constraint: initialization (top left), obtained result in case (a) (top right), obtained
result in case (b) (bottom left), obtained result in case (c) (bottom right).
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FIG. 7. Illustration of the lack of lower semicontinuity when the triangle inequality does not hold. Initialisation (left) and
obtained result (right).

in order to enforce ui to stay close to its initial configuration uini
i , since for characteristic functions

satisfying the constraint�2hui ; uini
i i is equal to kui�uini

i k
2
L2.˝/

up to an additive constant. The band
of phase 1 appearing between phases 2 and 3, which can be theoretically arbitrarily thin, shows the
lack of lower semicontinuity of the optimization problem, resulting in the absence of solution.

10. Conclusion

In this paper we have introduced and analyzed a � -convergence approximation of a class of
interface energies for minimal partition problems. We have derived variational formulations of
this functional that permit the implementation of alternating minimization algorithms. Our main
numerical application has been the computation of equilibrium shapes of incompressible phases
with surface tensions. The extension of this approach to other types of interface energies and to
dynamical problems could be subjects of future research.

A. Appendix

Lemma A.1 Let f1; : : : ; fN 2 L1.˝/ and define the function ˚ W RN ! R by

˚.t1; : : : ; tN / D

Z
˝

max
16i6N

.fi .x/C ti /dx:

Then ˚ is convex and its subdifferential is

@˚.t1; : : : ; tN / D

�
.s1; : : : ; sN / 2 RN W

jffi C ti > max
j¤i

.fj C tj /gj 6 si 6 jffi C ti > max
j¤i

.fj C tj /gj 8i;

NX
iD1

si D j˝j

�
:

Proof. It is obvious that ˚ is convex, since the integrand is itself convex as supremum of convex
functions. Let us compute the subdifferential at 0. Then the subdifferential at .Nt1; : : : ; NtN / will be
inferred with the help of the change of functions Nfi D fi C Nti . We must show that

@˚.0; : : : ; 0/

D

(
.s1; : : : ; sN / 2 RN W jffi > max

j¤i
fj gj 6 si 6 jffi > max

j¤i
fj gj 8i;

NX
iD1

si D j˝j

)
:
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Assume that .s1; : : : ; sN / 2 @˚.0; : : : ; 0/. By definition we have

˚.t1; : : : ; tN / � ˚.0; : : : ; 0/ >
NX
iD1

si ti 8.t1; : : : ; tN / 2 RN ;

that is, Z
˝

max
16i6N

.fi .x/C ti /dx �

Z
˝

max
16i6N

fi .x/dx >
NX
iD1

si ti 8.t1; : : : ; tN / 2 RN :

Choosing ti D 1 for all i , then ti D �1 for all i , yields already

NX
iD1

si D

Z
˝

dx D j˝j:

Fix k and take tk D �t , t > 0, ti D 0 if i ¤ k. We have

skt >
Z
˝

�
max
16i6N

fi .x/ � max
16i6N

.fi .x/C ti /

�
dx:

The integrand vanishes whenever fk.x/ 6 maxi¤k fi .x/. Thus

skt >
Z
ffk>maxi¤k fi g

�
fk.x/ � max

16i6N
.fi .x/C ti /

�
dx:

This can be rewritten as

skt >
Z
ffk>maxi¤k fi g

min
16i6N

.fk.x/ � fi .x/ � ti /dx;

that is,

skt >
Z
ffk>maxi¤k fi g

min
�
t;min
i¤k

.fk.x/ � fi .x//

�
dx:

Adding and subtracting t yields

skt > t jffk > max
i¤k

figj C

Z
ffk>maxi¤k fi g

min
�
0;min
i¤k

.fk.x/ � fi .x// � t

�
dx:

Dividing by t entails

sk > jffk > max
i¤k

figj C

Z
ffk>maxi¤k fi g

min
�
0;

mini¤k.fk.x/ � fi .x//
t

� 1

�
dx:

Letting t ! 0C yields by monotone convergence

sk > jffk > max
i¤k

figj:



100 S. AMSTUTZ, D. GOURION AND M. ZABIBA

Now fix k and take tk D t , t > 0, ti D 0 if i ¤ k. We have

skt 6
Z
˝

�
max
16i6N

.fi .x/C ti / � max
16i6N

fi .x/

�
dx:

This entails

skt 6 t jffk > max
i¤k

figj C

Z
ffk<maxi¤k fi g

�
max
16i6N

.fi .x/C ti / � max
16i6N

fi .x/

�
dx:

Rearranging yields

skt 6 t jffk > max
i¤k

figj C

Z
ffk<maxi¤k fi g

max.0; fk.x/C t �max
i¤k

fi .x//dx:

Hence

sk 6 jffk > max
i¤k

figj C

Z
ffk<maxi¤k fi g

max.0;
fk.x/ �maxi¤k fi .x/

t
C 1/dx:

Letting t ! 0C yields by monotone convergence

sk 6 jffk > max
i¤k

figj:

Assume now that

jffi > max
j¤i

fj gj 6 si 6 jffi > max
j¤i

fj gj 8i;

NX
iD1

si D j˝j:

Thus, there exists a partition ˝ D [NiD1Ai such that

ffi > max
j¤i

fj g � Ai � ffi > max
j¤i

fj g 8i; jAi j D si 8i:

Indeed, such a construction is immediate for N D 2, then one proceeds by induction setting g D
max16i6N�1 fi . In each Ak it holds

max
16i6N

.fi .x/C ti / � max
16i6N

fi .x/ > tk :

It followsZ
˝

max
16i6N

.fi .x/C ti /dx �

Z
˝

max
16i6N

fi .x/dx >
NX
kD1

Z
Ak

tkdx D

NX
kD1

tkjAkj D

NX
kD1

tksk :

This completes the proof.
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