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A curve shortening equation related to the evolution of grain boundaries is presented. This equation
is derived from the grain boundary energy by applying the maximum dissipation principle. Gradient
estimates and large time asymptotic behavior of solutions are considered. In the proof of these results,
one key ingredient is a new weighted monotonicity formula that incorporates a time-dependent
mobility.
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1. Introduction

We study a curve shortening equation related to the evolution of grain boundaries. Most materials
have a polycrystalline microstructure composed of a myriad of tiny single crystalline grains
separated by grain boundaries. Many experimental results indicate that the microscale structure
of the grain boundaries is strongly related to the macroscale properties of the material composed of
these grain boundaries.

Mathematical modeling of the grain boundaries was first studied by Mullins and Herring [9, 15,
16]. In particular, when the grain boundary energy depends only on the length and shape of these
grain boundaries, a curve shortening equation or a mean curvature flow equation is obtained. Both
equations are quasilinear and underlie important problems in geometric analysis; hence there is a
diversity of research looking into these problems.

However, from the perspective of research on grain boundaries, it is also important to treat other
state variables. For instance, grain boundaries are regarded as some singularity in lattice orientation
of each grain. Kinderlehrer-Liu [11] introduced misorientations, which are the differences in lattice
orientation of two grains separated by a grain boundary, as a parameter in the expression for the grain
boundary energy. They derived geometric evolution equations based on the maximal dissipation
principle. Epshteyn-Liu-Mizuno [6, 7] considered the case that the misorientation depends on the
time and demonstrated the local existence of network solutions provided the grain boundaries are
straight line segments. Nevertheless, the interaction between curvature and misorientation is not
well-known.
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FIG. 1. Let �t � R2 be a smooth Jordan curve, and let ˛.1/, ˛.2/ be time-dependent unknown functions, called
orientations. The difference ˛ D ˛.2/ � ˛.1/ is called the misorientation.

In this article, we study the grain boundary energy that include time-dependent misorientations
as a state variable. First, we consider a smooth Jordan curve �t � R2 as a grain boundary, with
vn and � denoting the normal velocity and the curvature of �t , respectively. We assume that the
misorientation ˛.t/ D ˛.2/.t/ � ˛.1/.t/ depends on the time and is independent of the position
vector of the grain boundary (see Figure 1). Taking the grain boundary energy asZ

�t

�.˛/ dH 1
D �.˛/j�t j;

we derived a system of evolution equations obtained from the maximum dissipation principle:(
vn D ��.˛/�; on �t ; t > 0;
˛t D ��˛.˛/j�t j; t > 0:

(1.1)

Here, � and  denote positive constants, � W R! Œ0;1/ denotes a given smooth function, and j�t j
the length of �t . We present a derivation of (1.1) in Section 2. Our system consists of two equations,
one being a curve shortening equation with time-dependent mobility, and the other describing the
evolution of the misorientation. The most significant difference between the PDE in [11] and (1.1)
is the time-dependent misorientation. The evolution of a misorientation was considered in [6, 7].
However, only the relaxation limit � ! 1 was studied, namely, the authors employed straight
line segments to be grain boundaries. On the other hand, they considered curved grain boundaries
in the derivation of the system. For this reason, understanding the relationship between the effect
of curvature and the evolution of misorientations is important. In regard to curve shortening flow,
specifically time-independent misorientations, a solution of (1.1) exists in a finite time if the initial
data is a Jordan curve. For example, if inf˛2R �.˛/ > C and Q�0 D fjxj D Rg for some constants
C > 0 and R > 0, then the solution . Q�t ; Q̨ / of (1.1) with the initial data . Q�0; Q̨0/ is also a circle and
the radius r.t/ coincides with s

R2 � 2�

Z t

0

�
�
Q̨ .s/

�
ds:
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Note that the comparison principle implies �t � fjxj 6
p
R2 � 2�C tg for any solution .�t ; ˛/

such that �0 � fjxj 6 Rg, since fjxj D
p
R2 � 2�C tg is a solution of vn D �C�. Therefore, any

solution starting from a Jordan curve disappears in a finite time. In contrast, as for curve shortening
flow, the solution is expected to converge to a straight line under suitable conditions, although the
effects from boundary conditions and junctions also need to be considered (See Example 2.3). The
mean curvature flow of the graph has been studied in [3–5], but is not well-known in regard to effects
concerning the evolving misorientations. Consequently, to understand the nature of the time global
classical solution of (1.1), we consider two unbounded grains, and their grain boundary represented
by a periodic graph (see (2.18) below). In this situation, we study the properties of the time global
solutions.

To obtain the solvability of the system in the graphical setting, a priori gradient estimates for
solutions of our system play an important role. For the curve shortening equation with constant
mobility, Huisken [10] derived the so-called monotonicity formula (cf. [8]) and Ecker-Huisken [4]
provided gradient estimates for the entire graph using Huisken’s monotonicity formula (See also [14,
18]. Sharp gradient estimates are given in [1]). Key ingredients of Huisken’s monotonicity formula
are the properties of the standard backward heat kernel. We derive the weighted monotonicity
formula in similar manner as for Huisken’s formula (cf. Ecker [2, Theorem 4.13]) for the curve
shortening equation with a time-dependent mobility (see Theorem 3.1 below). Then, using the
weighted monotonicity formula we obtain gradient estimates and the global existence of solutions
for the problem (See Theorem 4.2 and Theorem 4.5 below). Our new argument is to replace the
standard backward heat kernel with one with time-dependent thermal conductivity. Finally, we prove
that the time global solution converges to a straight line exponentially in C 2 (see Theorem 5.1).

The paper is organized as follows. In Section 2, we set up the model and derive evolution
equations using the maximum dissipation principle. We consider a graph of an unknown function as
a grain boundary and derive a governing equation from the model. In Section 3, we briefly review
backward heat kernels with time-dependent thermal conductivity. Next, we obtain the weighted
monotonicity identity for our problem. Using this identity, we derive gradient estimates and the
global existence of solutions to our problem in Section 4. In Section 5, we deduce the large time
asymptotic behavior of the global solution.

2. Derivation of the system

We begin by deriving the governing equations of our systems from the energy dissipation principle.
This approach is taken from [6, 7], without the effect of the triple junction drag. We consider a single
grain boundary �t represented by point vector E�.s; t/ 2 R2 for 0 6 s 6 1 and t > 0. Note that s is
not necessarily the arclength parameter. To understand the relationship between misorientations and
the effect of curvature, we impose the periodic boundary condition, specifically E�.0; t/ D E�.1; t/
and E�s.0; t/ D E�s.1; t/ for t > 0. We denote a tangent vector by Eb D E�s and a normal vector by
En D REb where R is a matrix describing an anti-clockwise rotation through angle �=2. Again we
remark that the tangent vector Eb and the normal vector En are not necessarily unit vectors because in
general s is not the arclength parameter.

Next, we let ˛ D ˛.t/ be the lattice misorientation on the grain boundary �t . We assume that
the lattice misorientation ˛ depends on time t , but is independent of parameter s. We consider the
normal vector En and the lattice misorientation ˛ as state variables so we define the interfacial grain
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FIG. 2. Model of a single grain boundary �t . State variables ˛.1/ and ˛.2/ represent the lattice orientations of the grains.
State variable ˛ D ˛.2/ � ˛.1/ defines the misorientation on the grain boundary �t .

boundary energy density of �t as
� D �.En; ˛/ > 0:

Thus the total grain boundary energy of the system �t is written

E.t/ D

Z
�t

�.En; ˛/ dH 1
D

Z 1

0

�
�
En.s; t/; ˛.t/

�
jEb.s; t/j ds; (2.1)

where H 1 is the 1-dimensional Hausdorff measure and j � j is the standard Euclidean vector norm
on R2. Next, we assume that � is a non-negative smooth function and positively homogeneous of
degree 0 in En.

Let us now derive the grain boundary motion from the dissipation principle of the total grain

boundary energy (2.1). Let O be the normalization operator of vectors, e.g., OEb D Eb

jEbj
. Next, we

compute the dissipation rate of the total grain boundary energy E.t/ at time t ,

d

dt
E.t/ D

Z 1

0

�En �
d En

dt
jEbj ds C

Z 1

0

�
Eb

jEbj
�
d Eb

dt
ds C

Z 1

0

�˛
d˛

dt
jEbj ds

D

Z 1

0

�
jEbjtR�En C �

OEb

�
�
d Eb

dt
ds C

Z 1

0

�˛
d˛

dt
jEbj ds:

(2.2)

Now, consider a polar angle � for En and set En D jEnj.cos �; sin �/. Since � is positively homogeneous
of degree 0 in En, we have

0 D
d

d�
�.�En; ˛/

ˇ̌̌̌
�D1

D �En.En; ˛/ � En;
tR�En D .

tR�En �
OEn/ OEn;

�� WD
d

d�
�.En; ˛/ D jEnjtR�En �

OEn; ��
OEn D jEbjtR�En;

(2.3)

and thus, we define the vector ET known as the line tension vector,

ET WD ��
OEnC �

OEb D jEbjtR�En C �
OEb:
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Next, using a change of variable
d Eb

dt
D

d

ds

d E�

dt
; (2.4)

we rewrite (2.2) as

d

dt
E.t/ D

Z 1

0

ET �
d

ds

d E�

dt
ds C

Z 1

0

�˛
d˛

dt
jEbj ds D �

Z 1

0

ETs �
d E�

dt
ds C

Z 1

0

�˛
d˛

dt
jEbj ds (2.5)

from the periodic condition Eb.0; t/ D Eb.1; t/.
For the reader’s convenience, we recall a property of the derivative of the line tension vector ET .

Lemma 2.1 (cf. [11]) Let � be the curvature of �t . Then

ETs D jEbj.��� C �/�
OEn: (2.6)

Proof. Denote @�t D
1

jEbj
@s , which is the arc-length derivative along with �t . From the Frenet–

Serret formula, we obtain

OEbs D jEbj@�t
OEb D jEbj� OEn; OEns D jEbj@�t

OEn D �jEbj�
OEb: (2.7)

Hence, we obtain,

ETs D
�
�En� � Ens

�
OEnC ��

OEns C
�
�En � Ens

� OEb C � OEbs
D
�
tR�En� �

Ebs C jEbj��
�
OEnC

�
�jEbj��� C

tR�En �
Ebs
� OEb: (2.8)

Since � and �� are positively homogeneous of degree 0 in En, as the similar calculation on (2.3), we
have

��
OEn D jEbjtR�En; ���

OEn D jEbjtR�En� : (2.9)

Using the orthogonal relation Eb � OEn D 0 and the Frenet–Serret formula (2.7), we obtain Ebs � OEn D
�Eb � OEns D jEbj

2�. Thus, from (2.9)

tR�En� �
Ebs C jEbj�� D

1

jEbj
���
OEn � Ebs C jEbj�� D jEbj .��� C �/ �;

�jEbj��� C
tR�En �

Ebs D �jEbj��� C
1

jEbj
��
OEn � Ebs D 0

and hence we derive (2.6).

To ensure that the whole system is dissipative, i.e.

d

dt
E.t/ 6 0;

we impose the so called Mullins equation or the curve shortening equation for the evolution of the
grain boundary �t . From Lemma 2.1, ETs is proportional to the normal vector on �t and therefore
we impose

vn D �@�t
ET � OEn D �.��� C �/� on �t ; (2.10)
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where vn denotes the normal velocity vector of �t and � > 0 a positive mobility constant. Note
that equation (2.10) may be derived from the variation of the energy E with respect to the curve E�.
Indeed, for any test function E� 2 C10 .0; 1/,

ıE

ıE�
Œ E�� D

Z 1

0

�
.�En.En; ˛/ �R E�s/j

Ebj C �.En; ˛/
OEb � E�s

�
ds

D

Z 1

0

�
jEbjtR�En.En; ˛/C �.En; ˛/

OEb
�
� E�s ds

D �

Z
�t

@�t

�
jEbjtR�En.En; ˛/C �.En; ˛/

OEb
�
� E� dH 1;

(2.11)

thus (2.10) is turned into
d E�

dt
D ��

ıE

ıE�
:

Since vn D E�t � OEn, we obtain

ETs �
d E�

dt
D
1

�
jvnj

2
jEbj > 0: (2.12)

Next, we consider the law underlying evolution of lattice misorientations. Since ˛ is independent of
the parameter s, Z 1

0

�˛
d˛

dt
jEbj ds D

d˛

dt

Z 1

0

�˛jEbj ds D
d˛

dt

Z
�t

�˛ dH 1;

hence for a constant  > 0, we impose the following relation for the rate of change of the lattice
misorientation;

d˛

dt
D �

Z
�t

�˛ dH 1; (2.13)

to ensure the whole system is dissipative, namely d
dt
E.t/ 6 0. Note that our proposed

equation (2.13) can be derived from the variation of the energy E with respect to lattice
misorientation ˛. Indeed, for any number � 2 R,

ıE

ı˛
Œ�� D

d

d"

ˇ̌̌̌
"D0

Z 1

0

�.En; ˛ C "�/jEbj ds D �

Z 1

0

�˛.En; ˛/jEbj ds;

thus (2.13) becomes
d˛

dt
D �

ıE

ı˛
: (2.14)

Now, substituting equations (2.10) and (2.13) in the rate of change for the total energy (2.5), we find
that the whole system is dissipative, namely

d

dt
E.t/ D �

1

�

Z
�t

jvnj
2 dH 1

�
1



ˇ̌̌̌
d˛

dt

ˇ̌̌̌2
6 0: (2.15)

REMARK We emphasize in (2.15) that the evolving misorientation ˛ has a dissipative structure. See
also [6]. In contrast, the misorientation is a fixed parameter in [11].
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We next consider the grain boundary motion for the isotropic case. The grain boundary energy
density � is independent of the normal vector En. Then, the equations (2.10) and (2.13) become(

vn D ��.˛/�; on �t ; t > 0;
˛t D ��˛.˛/j�t j; t > 0:

(2.16)

Imposing the periodic boundary condition, we put T WD R=Z and write �t as a graph of an unknown
function u D u.x; t/ on T � Œ0;1/, namely

E�.x; t/ D
�
x; u.x; t/

�
; x 2 T; t > 0: (2.17)

With the initial data E�.x; 0/ D .x; u0.x//, ˛.0/ D ˛0 2 R, and the periodic boundary condition
E�.0; t/ D E�.1; t/, E�s.0; t/ D E�s.1; t/, equation (2.16) becomes8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

utp
1C juxj2

D ��.˛/

�
uxp

1C juxj2

�
x

; x 2 T; t > 0;

˛t D ��˛.˛/j�t j; t > 0;

u.0; t/ D u.1; t/; ux.0; t/ D ux.1; t/; t > 0;

u.x; 0/ D u0.x/; x 2 T;
˛.0/ D ˛0:

(2.18)

Indeed, the normal velocity vn and the curvature � are given by

vn D E�t �
OEn D .0; ut / �

�
1p

1C juxj2
.�ux ; 1/

�
D

utp
1C juxj2

;

� D @�t
OEb � OEn D

1p
1C juxj2

�
1p

1C juxj2
.1; ux/

�
x

�

 
1p

1C juxj2
.�ux ; 1/

!
D

�
uxp

1C juxj2

�
x

:

From (2.1), the associated total grain boundary energy E.t/ is given by

E.t/ D

Z
�t

�.˛/ D �.˛/

Z 1

0

p
1C juxj2 dx: (2.19)

Proposition 2.2 (Free energy dissipation) Let u be a solution of (2.18). Then

dE

dt
D �

1


j˛t j

2
�
1

�

Z 1

0

 
utp

1C juxj2

!2p
1C juxj2 dx: (2.20)
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Proof. By direct calculation, we obtain

dE

dt
D �˛˛t j�t j C �

Z 1

0

uxuxtp
1C juxj2

dx

D �˛˛t j�t j � �

Z 1

0

�
uxp

1C juxj2

�
x

ut dx

D �
1


j˛t j

2
�
1

�

Z 1

0

�
utp

1C juxj2

�2p
1C juxj2 dx:

(2.21)

This proves the proposition.

Hereafter, we make two assumptions, first being that the energy density is strictly positive,
namely there exists a positive constant C1 > 0 such that

�.˛/ > C1 (A1)

for all ˛ 2 R. The second is that for ˛ 2 R

˛�˛.˛/ > 0: (A2)

EXAMPLE 2.3 When we consider �.˛/ D 1C 1
2
˛2, then C1 D 1 and we obtain equations:8̂̂<̂

:̂
utp

1C juxj2
D �

�
1C

1

2
˛2.t/

��
uxp

1C juxj2

�
x

; x 2 .0; 1/; t > 0;

˛t D �˛.t/j�t j; t > 0:

For example, .u; ˛/ D .c1; c2e�t / is an explicit solution for any constants c1 and c2.

3. Weighted monotonicity formula

Next, we derive a weighted monotonicity formula for (2.18), which is useful for gradient estimates.
In order to obtain the formula, we describe the backward heat kernel with time dependent thermal
conductivities and its properties.

3.1 Backward heat kernels with time-dependent thermal conductivities

From (2.16), we have to consider the fundamental solution of the heat equation with a time-
dependent thermal conductivity. Let us study

@u

@t
.x; t/ D k0.t/�u.x; t/ x 2 Rd ; t > 0; (3.1)

where k.t/ denotes the given thermal conductivity depending on t > 0. Taking a change of variable
s D k.t/, we obtain

@u

@s
.x; s/ D �u.x; s/ x 2 Rd ; s > 0:
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Thus, the fundamental solution of (3.1) is given by

1

.4�s/d=2
exp

�
�
jxj2

4s

�
D

1�
4�k.t/

�d=2 exp
�
�
jxj2

4k.t/

�
: (3.2)

Let k0.t/ D ��.˛.t//; note that k0 > �C1 by (A1). For X0 2 R2 and t0 > 0, we define the
backward heat kernel � D �.X0;t0/ as

�.X; t/ D
1�

4�
�
k.t0/ � k.t/

�� 12 exp

 
�
jX �X0j

2

4
�
k.t0/ � k.t/

�! ; 0 < t < t0; X 2 R2: (3.3)

Then, by direct calculation we get

�t D
k0.t/

2
�
k.t0/ � k.t/

�� � k0.t/jX �X0j
2

4
�
k.t0/ � k.t/

�2 �;
D� D �

�

2
�
k.t0/ � k.t/

� .X �X0/;
D2� D �

�

2
�
k.t0/ � k.t/

�I C �

4
�
k.t0/ � k.t/

�2 .X �X0/˝ .X �X0/;
(3.4)

where X ˝ Y D .xiyj /16i;j62 for X D .x1; x2/, Y D .y1; y2/ 2 R2. Therefore we obtain

�t C ��
�
˛.t/

� .D� � Ea/2
�

C ��
�
˛.t/

��
.I � Ea˝ Ea/ W D2�

�
D

 
k0.t/

2
�
k.t0/ � k.t/

�� � k0.t/jX �X0j
2

4
�
k.t0/ � k.t/

�2 �
!
C

k0.t/�

4
�
k.t0/ � k.t/

�2 �.X �X0/ � Ea�2
C k0.t/

 
�

�

2
�
k.t0/ � k.t/

� C �

4
�
k.t0/ � k.t/

�2 jX �X0j2 � �

4
�
k.t0/ � k.t/

�2 �.X �X0/ � Ea�2
!

D 0;

(3.5)

for Ea 2 S1. We now use the backward heat kernel with k0.t/ D ��.˛.t// and k.0/ D 0, namely

�.X; t/ WD
1�

4�
�
˙.t0/ �˙.t/

�� 12 exp

 
�

jX �X0j
2

4
�
˙.t0/ �˙.t/

�! ; 0 < t < t0; X 2 R2; (3.6)

where

˙.t/ WD �

Z t

0

�
�
˛.�/

�
d�: (3.7)
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3.2 Weighted monotonicity identity

The monotonicity formula for the mean curvature flow was derived by Huisken [10] to study
asymptotics of blow-up profiles. Ecker and Huisken [4] used the formula to show the existence
for the entire graph solutions. To the best of our knowledge, the monotonicity formula for the
curve shortening flow with variable mobilities is not known. We derive the weighted monotonicity
identity in a similar manner to [2, Theorem 4.13]. The key observation in deriving the identity is the
usefulness of the energy dissipation (2.20).

A continuously differentiable function f WD f .x; y; t/ W Œ0; 1� � R � Œ0;1/ ! R is called
admissible if f .0; y; t/ D f .1; y; t/ and fx.0; y; t/ D fx.1; y; t/ for y 2 R and t > 0. From now
on, for a solution u of (2.18), let En D 1p

1Cjux j2
.�ux ; 1/ be an upward unit normal vector of �t ,

� D
�

uxp
1Cjux j2

�
x

be the curvature of �t and E� D �En be the curvature vector of �t .

Theorem 3.1 Let .u; ˛/ be a solution of (2.18). Then for any X0 2 R2, t0 > 0, and for any
admissible f W Œ0; 1� � R � Œ0;1/! R,

d

dt

Z
�t

f��
�
˛.t/

�
D

Z
�t

�
ft � ��

�
˛.t/

�
��tf C ��

�
˛.t/

�
.Df � E�/

�
��
�
˛.t/

�
� ��

�
˛.t/

� Z
�t

 
f�

�
�� C

D� � En

�

�2
�
�
˛.t/

�!
�

1

 j�t j

Z
�t

f�˛2t ; (3.8)

where � D �.X0;t0/ is given by (3.6).

Proof. We first calculate

d

dt

Z
�t

f�� D

Z
�t

@

@t
f�� C

Z
�t

f
@

@t
�� C

Z
�t

f��˛˛t C

Z 1

0

f��
uxuxtp
1C juxj2

dx

DW I1 C I2 C I3 C I4:

(3.9)

By integration by parts, I4 is transformed into

I4 D �

Z 1

0

 
f .x; u; t/�.x; u; t/�.˛.t//

uxp
1C juxj2

!
x

ut dx

D �

Z
�t

@

@x
f��

uxp
1C juxj2

utp
1C juxj2

�

Z
�t

f
@

@x
��

uxp
1C juxj2

utp
1C juxj2

�

Z
�t

f��

 
uxp

1C juxj2

!
x

utp
1C juxj2

:

(3.10)
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By direct calculation of the backward heat kernel �, we have

@

@t
� �

@

@x
�

uxp
1C juxj2

utp
1C juxj2

D �t C �yut � .�x C �yux/
uxp

1C juxj2

utp
1C juxj2

D �t C

 
��x

uxp
1C juxj2

C �y
1p

1C juxj2

!
utp

1C juxj2

D �t C .D� � En/
utp

1C juxj2
;

(3.11)

where En D 1p
1Cjux j2

.�ux ; 1/. Similarly,

@

@t
f �

@

@x
f

uxp
1C juxj2

utp
1C juxj2

D ft C .Df � En/
utp

1C juxj2
: (3.12)

Therefore

I1 C I2 C I3 C I4 D

Z
�t

 
ft C .Df � En/

utp
1C juxj2

!
��

C

Z
�t

f

 
�t C

 
.D� � En/ � �

 
uxp

1C juxj2

!
x

!
utp

1C juxj2

!
�

C

Z
�t

f��˛˛t :

(3.13)

Next, by equation (2.18), 
.D� � En/ � �

�
uxp

1C juxj2

�
x

!
utp

1C juxj2

D
�
.D� � En/ � ��

�
� ���

D ����

�
�2 �

.D� � En/

�
�

�
D ���

 
�

�
�� C

.D� � En/

�

�2
�
.D� � En/2

�
C .D� � En/�

!

D ���

 
�

�
�� C

.D� � En/

�

�2
�
.D� � En/2

�
C .D� � E�/

!
;

(3.14)

and

.Df � En/
utp

1C juxj2
D ��.Df � E�/: (3.15)
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Again, we use equation (2.18) and

I1 C I2 C I3 C I4 D

Z
�t

�
ft C ��.Df � E�/

�
�� C

Z
�t

f

�
�t C ��

.D� � En/2

�
� ��.D� � E�/

�
�

� ��

Z
�t

f�

�
�� C

.D� � En/

�

�2
� �

1

 j�t j

Z
�t

f�˛2t :

(3.16)

By Gauss’ divergence formula and assumption f .0; y; t/ D f .1; y; t/ D 0, we haveZ
�t

div�t .fD�/ D �
Z
�t

f .D� � E�/:

Here,

div�t .fD�/ D
1p

1C juxj2

@

@x

�
f .x; u; t/

�
�x.x; u; t/; �y.x; u; t/

��
�

.1; ux/p
1C juxj2

D
f

1C juxj2

��
1 ux
ux juxj

2

�
W D2�

�
C

1p
1C juxj2

.�x C �yux/

 
1p

1C juxj2

@

@x

!
f

D f .I � En˝ En/ W D2�C

 
1p

1C juxj2

@

@x

!
�

 
1p

1C juxj2

@

@x

!
f:

(3.17)

With f admissible, we obtain by integration by partsZ
�t

 
1p

1C juxj2

@

@x
�

! 
1p

1C juxj2

@

@x
f

!
D

Z 1

0

@

@x
�

 
1p

1C juxj2

@

@x
f

!
dx

D �

Z 1

0

�

 
1p

1C juxj2

@

@x
f

!
x

dx

D �

Z
�t

���tf:

(3.18)

Therefore, by (3.5) we obtain

d

dt

Z
�t

f�� D

Z
�t

�
ft � ����tf C ��.Df � E�/

�
��

� ��

Z
�t

f�

�
�� C

.D� � En/

�

�2
� �

1

 j�t j

Z
�t

f�˛2t :

(3.19)

This proves the theorem.

REMARK Equality (3.8) also holds when �t is not a graph. A key relation in proving (3.8) is

d

dt

Z
�t

F D

Z
�t

˚
.rF � F E�/ � Evn C Ft

	
(3.20)
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for any smooth function F W R2 � Œ0;1/ ! R, where Evn and E� denote the normal velocity vector
and the curvature vector of �t , respectively. Indeed, the relation (3.20) also holds for a smooth
Jordan curve �t (see [2, Proposition 4.6 and Theorem 4.13]).

On the proof of Theorem 3.1, we only use the smoothness of the energy density � . If we assume
the positivity (A1) and the non-negativity of the admissible function f , we obtain the weighted
monotonicity formula.

Corollary 3.2 Let .u; ˛/ be a solution of (2.18) and let f W Œ0; 1� � R � Œ0;1/ ! Œ0;1/ be a
non-negative admissible function. Then, under Assumption (A1), we obtain

d

dt

Z
�t

f��
�
˛.t/

�
6
Z
�t

�
ft � ��

�
˛.t/

�
��tf C ��

�
˛.t/

�
.Df � E�/

�
��
�
˛.t/

�
; (3.21)

where � D �.X0;t0/ is given by (3.6).

4. Gradient estimates and existence of solutions

In this section, we first obtain the a priori gradient estimates by applying the area elementp
1C juxj2 to the admissible function in the weighted monotonicity formula, obtained in previous

section. Note that the area element is the non-negative admissible function and the integrand of
the right hand side of (3.21) is non-positive. Next, we prove the existence of classical solutions
for (2.18) from the a priori gradient estimates.

Lemma 4.1 Let .u; ˛/ be a solution of (2.18) and let v WD
p
1C juxj2. Then

vt � ����t v C ��.Dv � E�/ D ���v�
2
� 2��

v2x
v3
: (4.1)

Proof. Taking a derivative of (2.18) with respect to x, we obtain

utx D ��.˛/ .vx� C v�x/ :

Multiplying ux=v and using the relation vvt D uxuxt , we have

vt D ��.˛/
�uxvx

v
� C ux�x

�
: (4.2)

Next, we manipulate the curvature � as

� D
�ux
v

�
x
D

�uxx
v
�
u2xuxx

v3

�
D
uxx

v3
.v2 � u2x/ D

uxx

v3
:

Let @�t D
1
v
@x be the derivative along �t . Then, ��t D @

2
�t

and

@�t v D
1

v
vx D

1

v2
uxuxx D v

2ux

v
�:

Therefore

��t v D
1

v
.@�t v/x D

2vxux�

v
C v�2 C ux�x

D
2v2x
v3
C v�2 C ux�x :

(4.3)
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Since
Dv � E� D vx

�
��
ux

v

�
; (4.4)

we obtain (4.1) by direct substitution of (4.2), (4.3), and (4.4).

Theorem 4.2 Let .u; ˛/ be a solution of (2.18) and let v WD
p
1C u2x . Assume (A1). Then, for all

0 < x0 < 1 and t0 > 0,

v.x0; t0/ 6
�
�
˛.0/

�
C1

sup
0<x<1

v2.x; 0/: (4.5)

Proof. Put X0 D .x0; u.x0; t0// and consider the backward heat kernel � D �.X0;t0/. Then,
Theorem 3.1 with f D v and Lemma 4.1 imply

d

dt

Z
�t

v��
�
˛.t/

�
6 �

Z
�t

�
��v�2 C 2��

v2x
v3

�
��
�
˛.t/

�
6 0 (4.6)

for 0 < t < t0. Here we use the non-negativity of � . ThusZ
�t

v.x; t/�.X; t/�
�
˛.t/

�
6
Z
�0

v.x; 0/�.X; 0/�
�
˛.0/

�
6 �

�
˛.0/

�
sup
0<x<1

v.x; 0/

Z 1

0

�
��
x; u.x; 0/

�
; 0
�
v.x; 0/ dx

6 �
�
˛.0/

�
sup
0<x<1

v2.x; 0/:

(4.7)

Taking a limit t " t0 on (4.7) and Assumption (A1), we have

C1v.x0; t0/ 6 �
�
˛.t0/

�
v.x0; t0/ 6 �

�
˛.0/

�
sup
0<x<1

v2.x; 0/: (4.8)

This proves the theorem.

Lemma 4.3 Let .u; ˛/ be a solution of (2.18). Assume (A2). Then, for all t0 > 0

j˛.t0/j 6 j˛.0/j: (4.9)

Proof. Multiplying the equation (2.18) by ˛ and using (A2) imply

1

2
.˛2/t D �˛�˛.˛/j�t j 6 0: (4.10)

Integrating the above inequality on 0 6 t 6 t0, we have (4.9).

In a similar manner to the arguments in [17], the following holds:

Lemma 4.4 Let .u; ˛/ be a solution of (2.18). Assume (A1). Then, for all 0 < x0 < 1 and t0 > 0,

ju.x0; t0/j 6 sup
0<x<1

ju.x; 0/j: (4.11)
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Proof. Let M WD sup0<x<1 u.x; 0/ and assume that there is a point .x0; t0/ 2 .0; 1/ � .0;1/ such
that u takes maximum M1, which is greater than M , at the point .x0; t0/. At this point, we have

u.x0; t0/ DM1 > M; ux.x0; t0/ D 0; uxx.x0; t0/ 6 0; and ut .x0; t0/ > 0: (4.12)

Let us define

w.x; t/ WD u.x; t/C
M1 �M

2
.x � x0/

2: (4.13)

Then

w.x; 0/ D u.x; 0/C
M1 �M

2
.x � x0/

2 6 M C
M1 �M

2
< M1; w.x0; t0/ DM1: (4.14)

Therefore, the maximum point .x1; t1/ ofw is in the interior of .0; 1/�.0;1/. From equation (2.18),
we obtain a differential inequality

wt D ut D ��
�
˛.t/

�uxx
v2

< ��
�
˛.t/

�wxx
v2

: (4.15)

At point .x1; t1/, the left hand side of (4.15) is non-negative but the right hand side of (4.15) is non-
positive. This is a contradiction, and therefore, there is no interior point .x0; t0/ 2 .0; 1/ � .0;1/
such that u takes a maximum at .x0; t0/. Similarly, u does not take minimum at any interior point
of .0; 1/ � .0;1/; thus we obtain (4.11).

We recall T D R=Z. Let QT WD T � .0; T /, and Q"
T WD T � ."; T / be parabolic cylinders for

0 < " < T < 1. Using the L1-estimates and the gradient estimates, we obtain the time global
existence theorem:

Theorem 4.5 Assume that u0 is a Lipschitz function on T with a Lipschitz constant M > 0, ˇ 2
.0; 1/, ˛0 2 R and � 2 C 1.R/ satisfies (A1) and (A2). Moreover, there exists L > 0 such that
j�˛.a/ � �˛.b/j 6 Lja � bj for any a; b 2 R. Then, for any 0 < " < T <1, there exists a unique
solution .u; ˛/ 2 C.QT / \ C 2;ˇ .Q"

T / � C.Œ0; T // \ C
1;1.."; T // of (2.18) with .u.�; 0/; ˛.0// D

.u0; ˛0/. Furthermore, we have
kukC2;ˇ.Q"

T
/ 6 C2; (4.16)

where C2 > 0 depends only on  , �, ", L, M , C1, and �.˛.0//.

Proof. Set T > 0 and 0 < ˇ < 1 and X WD C 1;ˇ .QT /. First, we assume u0 2 C 2;ˇ .˝/.
Let w 2 X . Then, fw.t/ WD

R 1
0

p
1C jwx.x; t/j2 dx is continuous and bounded in Œ0; T �. In

addition, the function gw.˛; t/ WD ��˛.˛/fw.t/ is continuous and jgw.˛; t/�gw.ˇ; t/j 6 L.1C

kwkX /j˛ � ˇj for any ˛; ˇ 2 R and t 2 Œ0; T �. Therefore, there exists a unique solution ˛w.t/ of(
.˛w/t .t/ D gw

�
˛w.t/; t

�
; t 2 .0; T /;

˛w.0/ D ˛0:
(4.17)

With the same argument as in Lemma 4.3, we have j˛w.t/j 6 j˛0j for t > 0 from Assumption (A2).
Thus ˇ̌̌̌

d

dt
˛w.t/

ˇ̌̌̌
6 L.1C kwkX /j˛w.t/j 6 L.1C kwkX /j˛0j; t 2 .0; T /;
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and ˇ̌̌̌
d

dt
�
�
˛w.t/

�ˇ̌̌̌
6 L2.1C kwkX /j˛0j

2; t 2 .0; T /; (4.18)

where (A2) is used. Next, we consider the following linearized equation:8<: ut D ��.˛w/
uxx

1C jwxj2
; x 2 T; t > 0;

u.x; 0/ D u0.x/; x 2 T:
(4.19)

Note that
 ��.˛w/
1Cjwx j2


1

is bounded in QT and (4.19) is uniformly parabolic in QT . In addition, we
computeˇ̌̌̌

1

1C jwx.x; t/j2
�

1

1C jwx.y; s/j2

ˇ̌̌̌
6

jwx.x; t/j C jwx.y; t/j�
1C jwx.x; t/j2

��
1C jwx.y; t/j2

� jwx.x; t/ � wx.y; s/j
6 jwx.x; t/ � wx.y; s/j (4.20)

for any .x; t/; .y; s/ 2 T � Œ0; T �. Therefore, (4.18) and (4.20) imply ��.˛w/1C jwxj2


Cˇ.QT /

6 �
�

sup
j˛j6j˛0j

j�.˛/j.1C kwkX /C L
2.1C kwkX /j˛0j

2
�

(4.21)

for any w 2 X . Thus there exists a unique solution uw 2 C 2;ˇ .QT / of (4.19) with

kuwkC2;ˇ.QT / 6 C3; (4.22)

where C3 > 0 depends only on  , �, kwkX , L, j˛0j, and ku0kC2;ˇ.T/. Next, we define A W X ! X

by Aw D uw . We remark that A is a continuous and compact operator. Set

S WD
˚
u 2 X j u D �Au in X; for some � 2 Œ0; 1�

	
:

Next, we show that S is bounded in X . For any u 2 S , we have8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

utp
1C juxj2

D ��.˛/

 
uxp

1C juxj2

!
x

; x 2 T; t > 0;

˛t D ��˛.˛/j�t j; t > 0;

u.x; 0/ D �u0.x/; x 2 T;
˛.0/ D ˛0;

(4.23)

for some � 2 Œ0; 1�. Here j�t j D
R 1
0

p
1C jux.x; t/j2 dx. The gradient estimate (4.5) implies

sup
QT

juxj 6
�
�
˛.0/

�
C1

sup
0<x<1

�
1C �2j.u0/xj

2
�
: (4.24)

By (4.11), (4.24), and the interior Schauder estimates (cf. [12, Theorem 6.2.1]) we have

kuxkCˇ.QT / 6 C4; (4.25)
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where C4 > 0 depends only on C1, �.˛.0//, sup0<x<1 ju0.x/j, and sup0<x<1 j.u0/x.x/j.
Therefore, by an argument similar to (4.22), we obtain

kukX 6 kukC2;ˇ.QT / 6 C5; (4.26)

where C5 > 0 depends only on C1, �.˛.0//, and ku0kC2;ˇ.QT /. Hence, S is bounded in X and
the Leray–Schauder fixed point theorem implies that there exists a solution .u; ˛/ 2 C 2;ˇ .QT / �
C 1;1.0; T / of (2.18).

Next, we consider the case when u0 is a Lipschitz function with Lipschitz constant M > 0. Set
" 2 .0; T /. Let fui0g

1
iD1 be a family of smooth functions such that ui0 converges uniformly to u0 on

T. Then, (4.5) implies

sup
QT

juixj 6
�
�
˛i .0/

�
C1

sup
0<x<1

.1CM 2/; i > 1;

where .ui ; ˛i / is a solution of (2.18) with .ui .�; 0/; ˛i .0// D .ui0; ˛0/. Using a similar argument as
for (4.25) and (4.26), along with the interior Schauder estimates, we have

sup
i

kuikC2;ˇ.Q"
T
/ 6 C6; (4.27)

where C6 > 0 depends only on  , �, ", L, M , C1, and �.˛.0//. Therefore, by taking the
subsequence, .ui ; ˛i / converges to a solution .u; ˛/ in Q"

T with (4.16). Thus, from the diagonal
arguments, we obtain a solution .u; ˛/ 2 C.QT / \ C 2;ˇ .Q"

T / � C.Œ0; T // \ C
1;1."; T / of (2.18)

with .u.�; 0/; ˛.0// D .u0; ˛0/. Uniqueness is obvious from the comparison principle, and thereby,
we prove Theorem 4.5.

We remark that Assumption (A1) is not a necessary condition to obtain the gradient estimate.
For example, consider

�.˛/ D
1

2
˛2: (4.28)

Then Assumption (A1) does not hold so we cannot use Theorem 4.2 directly. However, we may
write ˛.t/ explicitly as

˛.t/ D ˛.0/ exp
�
�

Z t

0

j�� j d�

�
(4.29)

so we obtain

v.t0; x0/ 6 exp
�
2

Z t0

0

j�� j d�

�
sup
0<x<1

v2.x; 0/

6 exp .2t0j�0j/ sup
0<x<1

v2.x; 0/;

(4.30)

provided ˛.0/ ¤ 0.
From (4.29) and j�t j > 1 for t > 0, we have

j˛.t/j 6 j˛.0/j exp .�t / : (4.31)

Hence the misorientation ˛.t/ goes to 0 exponentially as t !1.
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5. Asymptotics of solutions

In regard to Theorem 4.5, we can take T D 1 and show the existence of a unique time global
solution of (2.18). In this section, we study large time asymptotic behavior for the solution. Without
loss of generality, we assume that the initial data u0 is sufficiently smooth by the Schauder estimates.

Theorem 5.1 Let u0 W T ! R, ˛0 2 R and assume the same assumption as for Theorem 4.5. Let
.u; ˛/ be a time global solution of (2.18). Then, there exists a constant u1 such that ku1�ukC2.T/
goes to 0 exponentially. In addition, the curvature � also goes to 0 uniformly and exponentially
on T.

To prove Theorem 5.1, we first derive the energy dissipation estimates for (2.18). In fact, the
estimates are obvious from the derivation of equation (2.18).

Proposition 5.2 Let .u; ˛/ be a solution of (2.18). Then

d

dt
j�t j C ��

�
˛.t/

� Z
�t

�2 D 0; (5.1)

where � D
�

uxp
1Cu2x

�
x

.

Proof. Taking the time derivative to j�t j and integrating by parts, we obtain

d

dt
j�t j D

Z 1

0

uxuxtp
1C u2x

dx

D �

Z 1

0

 
uxp
1C u2x

!
x

ut dx

D ���
�
˛.t/

� Z 1

0

 
uxp
1C u2x

!2
x

q
1C u2x dx D ���

�
˛.t/

� Z
�t

�2:

Since the second term of left hand side of (5.1) is non-negative, d
dt
j�t j has to be non-positive,

and hence we have

Corollary 5.3 Let .u; ˛/ be a solution of (2.18). Assume � > 0. Then j�t j 6 j�0j for t > 0.

From Proposition 5.2, �2 is integrable on .0; 1/ � .0;1/. Hence,

Corollary 5.4 Let .u; ˛/ be a time global solution of (2.18). Assume (A1). Then, there is a sequence
ftj g
1
jD1 such that tj !1 and �.x; tj /! 0 almost all x 2 .0; 1/ as j !1.

We derive more explicit decay estimates via the energy methods. Note that if .u; ˛/ is a classical
solution of (2.18), then

ut D
��.˛/

1C juxj2
uxx : (5.2)
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Taking the derivative with respect to x, we obtain

uxt D
��.˛/

1C juxj2
uxxx �

2��.˛/

.1C juxj2/2
uxu

2
xx ;

uxxt D
��.˛/

1C juxj2
uxxxx �

6��.˛/

.1C juxj2/2
uxuxxuxxx �

2��.˛/

.1C juxj2/2
u3xx C

8��.˛/

.1C juxj2/3
u2xu

3
xx ;

uxxxt D
��.˛/

1C juxj2
uxxxxx �

8��.˛/

.1C juxj2/2
uxuxxuxxxx �

12��.˛/

.1C juxj2/2
u2xxuxxx

�
6��.˛/

.1C juxj2/2
uxu

2
xxx C

48��.˛/

.1C juxj2/3
u2xu

2
xxuxxx C

24��.˛/

.1C juxj2/3
uxu

4
xx

�
48��.˛/

.1C juxj2/4
u3xu

4
xx :

(5.3)

Proposition 5.5 Let .u; ˛/ be a classical solution of (2.18). Then there exists C7 > 0 such thatZ 1

0

jux.x; t/j
2 dx 6 e�C7t

Z 1

0

ju0x.x/j
2 dx (5.4)

for t > 0.

Proof. Taking the derivative of the left hand side of (5.4) and then integrating by parts, we have

d

dt

Z 1

0

jux.x; t/j
2 dx D 2

Z 1

0

ux.x; t/uxt .x; t/ dx

D 2

Z 1

0

��.˛/

1C juxj2
uxuxxx dx � 4

Z 1

0

��.˛/

.1C juxj2/2
u2xu

2
xx dx

D �2

Z 1

0

��.˛/

1C juxj2
u2xx dx:

(5.5)

Using Assumption (A1), Theorem 4.2 and the Poincaré inequality, we obtain

� 2

Z 1

0

��.˛/

1C juxj2
u2xx dx 6 �C7

Z 1

0

jux.t; x/j
2 dx; (5.6)

where C7 > 0 is a positive constant depending only on �, C1. �.˛0/, supx2T.1C u
2
0x.x//. By the

Gronwall inequality, we obtain (5.4).

Proposition 5.6 Let .u; ˛/ be a classical solution of (2.18). Then there exists C8 > 0 such thatZ 1

0

juxx.x; t/j
2 dx 6 e�C8t

Z 1

0

ju0xx.x/j
2 dx (5.7)

for t > 0.
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Proof. Taking the derivative of the left hand side of (5.7) and then integrating by parts, we have

d

dt

Z 1

0

juxx.x; t/j
2 dx D 2

Z 1

0

uxx.x; t/uxxt .x; t/ dx

D 2

Z 1

0

��.˛/

1C juxj2
uxxuxxxx dx � 12

Z 1

0

��.˛/

.1C juxj2/2
uxu

2
xxuxxx dx

� 4

Z 1

0

��.˛/

.1C juxj2/2
u4xx dx C 16

Z 1

0

��.˛/

.1C juxj2/3
u2xu

4
xx dx

D �2

Z 1

0

��.˛/

1C juxj2
u2xxx dx � 8

Z 1

0

��.˛/

.1C juxj2/2
uxu

2
xxuxxx dx

� 4

Z 1

0

��.˛/

.1C juxj2/2
u4xx dx C 16

Z 1

0

��.˛/

.1C juxj2/3
u2xu

4
xx dx:

(5.8)

By the Young inequality,

8

ˇ̌̌̌Z 1

0

��.˛/

.1C juxj2/2
uxu

2
xxuxxx dx

ˇ̌̌̌
6
Z 1

0

��.˛/

.1C juxj2/
u2xxx dx C 16

Z 1

0

��.˛/

.1C juxj2/6
u2xu

4
xx dx;

hence

d

dt

Z 1

0

juxx.x; t/j
2 dx 6 �

Z 1

0

��.˛/

1C juxj2
u2xxx dx C C9

Z 1

0

u2x dx;

where C9 > 0 depends only on �, �.˛.0// and C2. Using Assumption (A1), Theorem 4.2 and the
Poincaré inequality, we obtain

�

Z 1

0

��.˛/

1C juxj2
u2xxx dx 6 �C10

Z 1

0

juxx.t; x/j
2 dx; (5.9)

where C10 > 0 is a positive constant depending only on �, C1, �.˛0/, and supx2T.1 C u
2
0x.x//.

By (5.4), we obtain

d

dt

Z 1

0

juxx.x; t/j
2 dx 6 �C10

Z 1

0

juxx.t; x/j
2 dx C C9e

�C7t

Z 1

0

ju0x.x/j
2 dx:

By the Gronwall inequality, we obtain (5.7).

Next, we show exponential decay for kuxxx.�; t /kL2.0;1/. We need the Schauder estimates for
the higher derivatives.

Proposition 5.7 Let .u; ˛/ be a time global solution of (2.18) with the same assumptions as for
Theorem 4.5. Then, there is a constantC11 > 0 depending only on  ,�, ",L,M ,C1, and �.˛.0// >
0 such that

kuxkC2;ˇ.Q"
T
/ 6 C11: (5.10)
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Proof. We let w D ux . Then w satisfies

wt D ��
�
˛.t/

� � 1

1C u2x
wxx �

2uxuxx

.1C u2x/
2
wx

�
: (5.11)

With u satisfying (4.25), we can apply the Schauder estimates [13, Theorem 4.9]. There is then a
constant C11 > 0 such that

kuxkC2;ˇ.Q"
T
/ D kwkC2;ˇ.Q"

T
/ 6 C11: (5.12)

This proves the proposition.

Using the Schauder estimates, (5.10), and similar arguments in Proposition 5.6, we obtain

Proposition 5.8 Let .u; ˛/ be a classical solution of (2.18). Then there exists C12 > 0 such thatZ 1

0

juxxx.x; t/j
2 dx 6 e�C12t

Z 1

0

ju0xxx.x/j
2 dx (5.13)

for t > 0.

Finally, we prove the asymptotic behavior of the global solution.

Proof of Theorem 5.1. Using Proposition 5.8 and the Sobolev inequality, we obtain

j�.x; t/j 6 juxx.x; t/j 6
Z 1

0

juxxx.x; t/j dx 6
�Z 1

0

juxxx.x; t/j
2 dx

� 1
2

6 C13e
�
C12
2 t (5.14)

for some C13 > 0. Thus uxx and curvature � go to 0 exponentially and uniformly on Œ0; 1/. In
addition, we can show that ux converges to 0 exponentially and uniformly on Œ0; 1/, similarly.
Therefore we only need to prove that there exists a constant u1 such that u goes to u1 exponentially
and uniformly on Œ0; 1/. For any 0 6 t1 < t2 and x 2 Œ0; 1/, we have

ju.x; t2/ � u.x; t1/j 6
Z t2

t1

jut .x; s/j ds 6
Z t2

t1

��.˛.s//
juxx.x; s/j

1C jux.x; s/j2
ds

6 � max
j˛j6j˛0j

�.˛/

Z t2

t1

juxx.x; s/j ds 6 � max
j˛j6j˛0j

�.˛/

Z t2

t1

C13e
�
C12
2 s ds

6 � max
j˛j6j˛0j

�.˛/
2C13

C12
e�

C12
2 t1 ;

where (4.31) and (5.14) are used. Hence, there exists u1 D u1.x/ such that u goes to u1
exponentially for any x 2 Œ0; 1/. In addition, with ux converging to 0 uniformly, u1 should be
a constant. Consequently, u converges to constant u1 exponentially and uniformly on Œ0; 1/.
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