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We study the asymptotic behavior of the N -clock model, a nearest neighbors ferromagnetic spin
model on the d -dimensional cubic "-lattice in which the spin field is constrained to take values in
a discretization SN of the unit circle S1 consisting of N equispaced points. Our � -convergence
analysis consists of two steps: we first fix N and let the lattice spacing "! 0, obtaining an interface
energy in the continuum defined on piecewise constant spin fields with values in SN ; at a second
stage, we letN !C1. The final result of this two-step limit process is an anisotropic total variation
of S1-valued vector fields of bounded variation.
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1. Introduction

In this paper we are interested in the variational analysis of theN -clock model (also known as planar
Potts model or ZN -model) in the d -dimensional setting. The N -clock model is a nearest neighbors
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ferromagnetic spin model on the cubic lattice in which the spin field is constrained to take values in
a set ofN equispaced points of the unit circle S1. It plays a fundamental role in understanding phase
transition phenomena in the theory of classical ferromagnetic spin fields, as it is closely related to
the XY (planar rotator) model, for which the spin field is allowed to attain all the values of S1. In
fact, theN -clock model is considered as an approximation of theXY model, as forN large enough
it predicts Berezinskii–Kosterlitz–Thouless transitions [30], i.e., phase transitions mediated by the
formation and interaction of topological singularities, the so-called vortices [15, 31, 32].

With the aim of describing the relation between the N -clock model and the XY model,
probabilistic methods have been used in [33, 39], while a variational analysis at zero temperature
has been only very recently carried out in [26, 27]. There the authors study the effective behavior
of (suitably rescaled versions of) the energy of the N -clock model on the 2-dimensional square
lattice "Z2, examining the case when the number N D N" of equi-spaced points on S1 depends on
" and diverges as " ! 0. The coarse grained model, which describes the microscopic/mesoscopic
geometry of the spin field, is strongly affected by the rate of divergence of N" !C1 as "! 0.

In this paper we advance the variational analysis of theN -clock model by considering the model
on a d -dimensional cubic lattice "Zd , with d > 2, in the case where the number N is fixed and
independent of ". We shall first identify the limit of the N -clock model as " ! 0 keeping N fixed
and, at a second stage, we will let N ! C1. In contrast to the energy of the XY model, the
energy resulting from this two-step limit process is by nature unfit to describe the concentration of
energy around vortex-like singularities, indicating that the dependence of N on " seems inevitable
with the intent to approximate the XY model at zero temperature. To the best of our knowledge, the
explicit identification of the limit energies in the "! 0 and N !1 regimes and in any dimension
makes the result contained in this paper the first quantitative answer to the question whether the N -
clock model approximates the XY model at zero temperature. We shall see that the result is rather
analogous to the limiting energy of the N"-clock model in a specific rate of divergence N" !C1,
chosen among those examined in the two-dimensional setting in [27]. To present in detail the results
in this paper, we first recall the � -convergence result on the d -dimensional XY -model. Given a
bounded open set ˝ � Rd , the energy associated to a spin field u W "Zd \˝ ! S1 is given by

XY".u/ D
1

2

X
hi;j i in˝

"d ju."i/ � u."j /j2;

where the sum is taken over ordered pairs of nearest neighbors hi; j i, i.e., .i; j / 2 Zd�Zd such that
ji � j j D 1 and "i; "j 2 ˝. As observed in [5] the relevant scaling of the energy is "2j log "j in the
sense that a bound of the type XY".u"/ 6 C"2j log "j implies compactness of the Jacobians J Ou"
of the continuous piecewise affine interpolations Ou" of u" on the cells of the lattice. More precisely,
the Jacobians, seen as .d � 2/ dimensional currents concentrate on rectifiable sets of codimension
2. For d D 2; 3 the latter are the so-called vortices and vortex lines of the spin field, respectively.
For d D 2 the � -limit of XY" at the logarithmic scaling is, with a slight abuse of notation, given by

� - lim
"!0

1

"2j log "j
XY".u/ D 2�j�j.˝/;

where � D
PN
iD1 diıxi is the measure encoding the location xi 2 ˝ and the multiplicity di 2 Z of

the vortex-like singularities (cf. [4–6, 10, 13, 14, 20, 25, 36] in the discrete setting and [1, 11, 17, 38]
in the continuum setting for more details).



COARSE GRAINING AND LARGE-N BEHAVIOR OF THE N -CLOCK MODEL 325

Next we summarize the analysis of [27] (valid only in dimension d D 2), starting with some
notation. Given N 2 N, we consider the set of N equispaced points on the unit circle

SN WD
˚
exp

�
�2�
N
k
�
W k D 0; : : : ; N � 1

	
;

where � is the imaginary unit. Given a bounded, open set ˝ � R2, the energy of a spin field
uW "Z2 ! SN is given by

EN" .u/ WD
1

2

X
hi;j i in˝

"2ju."i/ � u."j /j2;

We recall that a wide range of phenomena has been observed in [26, 27] when exploring the possible
regimes of N D N". Here we outline the one pertaining to the discussion in the present paper,
namely N D N" � 1

"j log "j . The relevant scaling of the energy in this regime is N"
2�"

E
N"
" . Sequences

of spin fields u" with equibounded energy accumulate to vector fields in BV.˝IS1/, and the scaled
energy N"

2�"
E
N"
" approximates an anisotropic total variation for maps in BV.˝IS1/.

In the next theorem we state the result in the regimeN" � 1
"j log "j rigorously. We denote by j � j1

the 1-norm on vectors, by j � j2;1 the anisotropic norm on matrices given by the sum of the Euclidean
norms of the columns, and by dS1 the geodesic distance on S1. For the notation concerning functions
of bounded variation we refer to Section 2.1.

Theorem 1.1 ([27]) Let ˝ � R2 be a bounded, open set with Lipschitz boundary. Assume that
N" �

1
"j log "j . Then the following results hold true:

(i) (Compactness) Let u"W˝ \ "Z2 ! SN" be such that N"
2�"

E
N"
" .u"/ 6 C . Then there exists a

subsequence (not relabeled) and a function u 2 BV.˝IS1/ such that u" ! u in L1.˝IR2/.
(ii) (� -liminf inequality) Assume that u"W˝ \ "Z2 ! SN" and u 2 BV.˝IS1/ satisfy u" ! u

in L1.˝IR2/. Then

lim inf
"!0

N"

2�"
EN"" .u"/ >

Z
˝

jruj2;1 dx C jD.c/uj2;1.˝/C
Z
˝\Ju

dS1.u
�; uC/j�uj1 dH1:

(iii) (� -limsup inequality) Let u 2 BV.˝IS1/. Then there exists a sequence u"W˝ \ "Z2 ! SN"
such that u" ! u in L1.˝IR2/ and

lim sup
"!0

N"

2�"
EN"" .u"/ 6

Z
˝

jruj2;1 dx C jD.c/uj2;1.˝/C
Z
˝\Ju

dS1.u
�; uC/j�uj1 dH1:

We are now in a position to present the two main results in this paper. We shall consider˝ � Rd
a bounded, open set with Lipschitz boundary and the energy defined for admissible spin fields on
the d -dimensional cubic lattice uW˝ \ "Zd ! SN by

EN" .u/ WD
1

2

X
hi;j i in˝

"d ju."i/ � u."j /j2;

where the sum is taken over ordered pairs of nearest neighbors hi; j i, i.e., .i; j / 2 Zd�Zd such
that ji � j j D 1 and "i; "j 2 ˝ (the factor 1

2
accounts for the fact that each pair is counted twice).
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We state the first result concerning the limit of EN" as " ! 0. For N fixed, the physical system is
expected to behave like a classical Ising-type system with N phases. (See also [3, 7, 8, 12, 18, 21–
24, 28, 29] for the analysis of spin systems in the surface scaling.) According to the results proven
for the Ising system, we expect the limit energy to be finite on functions of bounded variation with
values in the finite set SN . In the next theorem we identify precisely the surface energy concentrated
on the interfaces between the phases of the spin field. We denote by �N WD 2�

N
the smallest angle

between two different vectors in SN .

Theorem 1.2 (Limit as " ! 0) Let ˝ � Rd be a bounded, open set with Lipschitz boundary. Let
N > 2 and �N WD 2�=N . Then the following results hold true:

(i) (Compactness) Let u"W˝ \ "Zd ! SN be such that N
2�"

EN" .u"/ 6 C . Then there exists a
subsequence (not relabeled) and a function u 2 BV.˝ISN / such that u" ! u in L1.˝IR2/
as "! 0.

(ii) (� -liminf inequality) Assume that u"W˝ \ "Zd ! SN and u 2 BV.˝ISN / satisfy u" ! u

in L1.˝IR2/ as "! 0. Then

lim inf
"!0

N

2�"
EN" .u"/ >

4 sin2
�
�N
2

�
�2N

Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1:

(iii) (� -limsup inequality) Let u 2 BV.˝ISN /. Then there exists a sequence u"W˝ \ "Zd ! SN
such that u" ! u in L1.˝IR2/ as "! 0 and

lim sup
"!0

N

2�"
EN" .u"/ 6

4 sin2
�
�N
2

�
�2N

Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1:

To clarify the expression of the limit functional in Theorem 1.2, we sketch here the proof
of the � -limsup inequality in a very simple setting. Assume that ˝ is the unit cube Q D

.�1=2; 1=2/d and u is the pure-jump function with constant value u� D .1; 0/ in Q� D

.�1=2; 1=2/d�1�.�1=2; 0/ and constant value uC D exp.�kC�N / in QC D .�1=2; 1=2/d�1�

.0; 1=2/, where kC 2 N is such that 0 6 kC�N 6 � . In this case, the jump set is given by
Ju D .�1=2; 1=2/d�1�f0g. Then u" is constructed by rotating kC times of an angle �N starting
from u� up to uC on hyperplanes parallel to the jump set, cf. Figure 1. More precisely, for
0 6 k 6 kC we define

u"."i/ WD exp.�k�N / if "i � ed D k"

and we put u"."i/ D .1; 0/ if "i � ed < 0 and u"."i/ D exp.�kC�N / if "i � ed > kC", instead.
Between two hyperplanes there are 1

"d�1
interacting pairs of nearest neighbors. For two such points

"i; "j we have by a simple geometric argument ju"."i/ � u"."j /j D 2 sin. �N
2
/. Summing over all

interactions we conclude that

N

2�"
EN" .u"/ D

1

2�N

X
hi;j i inQ

"d�1ju"."i/ � u"."j /j
2
D

1

�N

kCX
kD0

4 sin2
��N
2

�
D
4 sin2

�
�N
2

�
�2N

kC�N :
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FIG. 1. On the left: A recovery sequence in the case of a jump set aligned with the lattice. The spin makes a transition from
u� to uC jumping with the smallest possible non-zero angle �N . On the right: Euclidean distance between two vectors of
length 1 with angle �N between them.

Since kC�N D dS1.u�; uC/, the previous expression reduces to the one in Theorem 1.2 and makes
clear the role of 4 sin2. �N

2
/=�2N : it is the correcting factor which allows us to pass from the Euclidean

distance between vectors to their geodesic distance. The proof of the upper bound is based on the
construction in a more general setting of a recovery sequence which mimics the one presented here
in the introduction, cf. Proposition 3.4. The proof of the lower bound is based on Lemma 3.1, which
shows that the behavior described above is always the most convenient from an energetical point of
view.

We further emphasize that the proofs of Theorems 1.1 and 1.2 are significantly different.
Theorem 1.1 is obtained in [27] as a by-product of the more involved analysis in the scaling regime
N" �

1
"j log "j using Cartesian currents. Theorem 1.2 is proven here with a different approach that

allows us to circumvent the use of Cartesian currents and to prove the result in any dimension d .
In Section 5 we also study the � -convergence of the functionals EN" as " ! 0 under volume

constraints on the phases of the spin fields or under Dirichlet boundary conditions.
We are now interested in the limit as N !C1 of the energy defined by

EN .u/ WD
4 sin2

�
�N
2

�
�2N

Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1; for u 2 BV.˝ISN /;

where �N WD 2�=N , i.e., the energy resulting from the limit process "! 0 in Theorem 1.2. Up to
the factor 4

�
sin2

�
�N
2

�
=�2N

�
, which is close to 1 for N large, the energy EN coincides (for d D 2)

with the limiting energy of Theorem 1.1 restricted to Caccioppoli partitions taking values in SN .
In the second result of this paper we show that the � -limit of EN as N ! C1 agrees with the
limiting energy of Theorem 1.1. This is rigorously proved in the next theorem, which holds for any
dimension d .

Theorem 1.3 (Limit as N ! C1) Let ˝ � Rd be a bounded, open set with Lipschitz boundary.
Then the following results hold:

(i) (Compactness) Let uN W˝ ! SN be such thatEN .uN / 6 C . Then there exists a subsequence
(not relabeled) and a function u 2 BV.˝IS1/ such that uN ! u inL1.˝IR2/ asN !C1.
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(ii) (� -liminf inequality) Assume that uN W˝ ! SN and u 2 BV.˝IS1/ satisfy uN ! u in
L1.˝IR2/ as N !C1. Then

lim inf
N!C1

EN .uN / >
Z
˝

jruj2;1 dx C jD.c/uj2;1.˝/C
Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1:

(iii) (� -limsup inequality) Let u 2 BV.˝IS1/. Then there exists a sequence uN W˝ ! SN such
that uN ! u in L1.˝IR2/ as N !C1 and

lim sup
N!C1

EN .uN / 6
Z
˝

jruj2;1 dx C jD.c/uj2;1.˝/C
Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1:

The proof of the upper bound in Theorem 1.3 is based on the following remark: a map
u 2 BV.˝IS1/ can be approximated in energy by maps W 1;1.˝IS1/ which are smooth outside
manifolds of codimension 2; such maps can be suitably sampled far from the singularities to define a
uN 2 BV.˝ISN /; a crucial observation is that the precise definition of uN close to the singularities
is not important, as the energyEN .uN / does not concentrate close to manifolds of codimension 2. It
is worth noticing that the latter feature is peculiar of this regime: in the other regimes studied in [26]
where N D N" depends on " and N" � 1

"j log "j the behavior of the recovery sequence around
the singularities becomes relevant and makes the generalization to the d -dimensional setting of the
results in [26] more delicate and out of the scope of the present paper.

2. Notation and preliminary results

Let Sd�1 D fx 2 Rd W jxj D 1g be the unit sphere. If u; v 2 S1, their geodesic distance on S1 is
denoted by dS1.u; v/. It is given by the angle in Œ0; �� between the vectors u and v, i.e., dS1.u; v/ D
arccos.u � v/. Observe that

1
2
ju � vj D sin

�
1
2

dS1.u; v/
�
: (2.1)

We denote the imaginary unit by �. When it is convenient we will tacitly identify R2 with the
complex plane C. Given a vector a D .ai /

d
iD1 2 Rd , its 1-norm is jaj1 D

Pd
iD1 jai j. We define

the .2; 1/-norm of a matrix A D .aij /
d
i;jD1 2 Rd�d as the sum of the Euclidean norms of its

columns, i.e.,

jAj2;1 WD

dX
jD1

� dX
iD1

jaij j
2

�1=2
:

Given a unit vector � 2 Sd�1, we denote by Q� a cube with two faces orthogonal to �, namely, we
consider an orthonormal basis .�; �2; : : : ; �d / of Rd and we define

Q� D
n
x 2 Rd W jx � �j < 1

2
; jx � �i j <

1
2

o
: (2.2)

For two sequences ˛" and ˇ" of positive numbers, we write ˛" � ˇ" if lim"!0
˛"
ˇ"
D 0.

2.1 BV-functions

In this section we recall basic facts about functions of bounded variation. For more details we refer
to the monograph [2].
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Let O � Rd be an open set. A function u 2 L1.OIRn/ is a function of bounded variation if
its distributional derivative Du is given by a finite matrix-valued Radon measure on O . In that case,
we write u 2 BV.OIRn/.

The space BVloc.OIRn/ is defined as usual. The space BV.OIRn/ becomes a Banach space
when endowed with the norm kukBV.O/ D kukL1.O/ C jDuj.O/, where jDuj denotes the total
variation measure of Du. The total variation with respect to the anisotropic norm j � j2;1 is denoted
by jDuj2;1. When O is a bounded Lipschitz domain, then BV.OIRn/ is compactly embedded
in L1.OIRn/. We say that a sequence un converges weakly� in BV.OIRn/ to u if un ! u in
L1.OIRn/ and Dun

�
* Du in the sense of measures.

We state some fine properties of BV -functions. To this end, we need some definitions. A
function u 2 L1.OIRn/ is said to have an approximate limit at x 2 O whenever there exists
z 2 Rn such that

lim
�!0

1

�d

Z
B�.x/

ju.y/ � zj dy D 0:

Next we introduce so-called approximate jump points. Given x 2 O and � 2 Sd�1 we set

B˙� .x; �/ D
˚
y 2 B�.x/ W ˙.y � x/ � � > 0

	
:

We say that x 2 O is an approximate jump point of u if there exist a ¤ b 2 Rn and � 2 Sd�1 such
that

lim
�!0

1

�d

Z
B
C
� .x;�/

ju.y/ � aj dy D lim
�!0

1

�d

Z
B�� .x;�/

ju.y/ � bj dy D 0:

The triplet .a; b; �/ is determined uniquely up to the change to .b; a;��/. We denote it by
.uC.x/; u�.x/; �u.x// and we let Ju be the set of approximate jump points of u. The triplet
.uC; u�; �u/ can be chosen as a Borel function on the Borel set Ju. Denoting byru the approximate
gradient of u, we can decompose the measure Du as the sum

Du.B/ D
Z
B

ru dx C
Z
Ju\B

.uC � u�/˝ �u dHd�1
C D.c/u.B/;

where D.c/u is the so-called Cantor part and D.j /u D .uC � u�/˝ �uHd�1 Ju is the so-called
jump part. If S � Rn, we define the spaceBV.OIS/ as the space of those functions u 2 BV.OIRn/
such that u.x/ 2 S for Ld -a.e. x 2 O .

We will need the slicing properties of BV -functions. Given a unit vector � 2 Sd�1, we denote
by ˘ � the hyperplane orthogonal to � . For every set E � Rd and z 2 ˘ � , the section of E
corresponding to z is the set E�z WD ft 2 R W z C t� 2 Eg. Accordingly, for any function
uWE ! Rn, the function u�z WE

�
z ! Rn is defined by u�z.t/ WD u.z C t�/.

We recall a characterization of BV functions by slicing [2, Remark 3.104]. Let us fix an open
set O � Rd and u 2 L1.OIRn/. Then u 2 BV.OIRn/ if and only if for every � 2 Sd�1 we have
u
�
z 2 BV.O

�
z IRn/ for Hd�1-a.e. z 2 ˘ � andZ

˘�
jDu�zj.O

�
z / dHd�1.z/ <1:

Moreover, it is possible to reconstruct the distributional gradient Du from the gradients of the slices
Du�z through the formula Du � D Hd�1 ˘ � ˝ Du�z , i.e.,

Du �.B/ D
Z
˘�

Du�z.B
�
z / dHd�1.z/;
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for every Borel set B � Rd . More precisely, the same decomposition holds true for each part of the
decomposition of Du, namelyZ

B

ru � dx D
Z
˘�
ru�z.B

�
z / dHd�1.z/;

D.c/u �.B/ D
Z
˘�

D.c/u�z.B
�
z / dHd�1.z/;

D.j /u �.B/ D
Z
˘�

D.j /u�z.B
�
z / dHd�1.z/;

for every Borel set B � Rd . Moreover, J
u
�
z
D .Ju/

�
z for Hd�1-a.e. z 2 ˘ � and .u�z/˙.t/ D

.u˙/
�
z.t/ (D .u�/�z.t/, respectively) for every t 2 .Ju/

�
z if � � �u.zC t�/ > 0 (if � � �u.zC t�/ < 0,

respectively).

2.2 Known results for general models with finite phases

We recall here some results that were proved for more general energies defined for functions taking
values in a given finite set. In [19], Braides together with the first and third author consider energies
E" defined for spin variables uW "L! S, where S is a finite set and L is a so-called thin stochastic
lattice. In general, these points sets are located in a fixed neighborhood of a lower-dimensional
subspace such that there is a minimal distance between points and there are no arbitrarily large
holes in the neighborhood of the subspace. The energies in [19] can be of the form

E".u/ D
X

."x;"y/2."L\˝/2

"d�1f
�
x � y; u."x/; u."y/

�
;

where the energy density f WRd�S2 ! Œ0;C1/ has to satisfy certain growth and decay conditions.
We do not state them explicitly here, but we mention that they cover in particular the case when
L D Zd is a periodic lattice that is completely contained in the subspace Rd and

f .x;m1; m2/ D

(
c jm1 �m2j

2 if jxj D 1;
0 otherwise.

With c D N
4�

and S D SN we recover the energy N
2�"

EN" , so that all results of [19] can be applied. In
particular, we can use an integral representation result and the characterization of the corresponding
integrand through an asymptotic cell formula. Indeed, by [19, Theorem 5.8] we know that in the
case of spatially homogeneous interactions the � -limit as "! 0 of N

2�"
EN" exists, is finite only on

BV.˝ISN /, and for u 2 BV.˝ISN / it is of the formZ
˝\Ju

'.u�; uC; �u/ dHd�1; (2.3)

where the integrand is given by an asymptotic minimization problem with suitable boundary
conditions. More precisely, denoting by us;r� W Rd ! R (� 2 Sd�1 and s; r 2 SN ) the function

us;r� .x/ D

(
s if x � � > 0;
r if x � � 6 0;
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then in the case of just nearest neighbor interactions the function '.s; r; �/ is given by

'.s; r; �/ D lim
"!0

min
�
N

2�"
EN" .v;Q�/ W v."i/ D u

s;r
� ."i/ 8 "i 2 "Z

d s.t. dist."i; @Q�/ 6 2"

�
;

(2.4)
cf. [19, Remarks 5.9 and 4.2(i)] for the fact that the width of the discrete boundary layer can be taken
as 2". In the above formula,Q� denotes a unit cube centered at the origin with two faces orthogonal
to � as in (2.2). The energyEN" .u;Q�/ denotes the energy restricted to the setQ� . More in general,
for any non-empty set A � Rd and uW "Zd ! SN let us introduce for later purposes the localized
functional

EN" .u; A/ D
1

2

X
"i;"j2"Zd\A
ji�j jD1

"d ju."i/ � u."j /j2:

3. Continuum limit for fixed N as lattice spacing vanishes

In this section we identify the variational limit of theN -clock model as "! 0 for the scaled energy
N
2�"

EN" . We start with the following auxiliary result that will be crucial to establish the lower bound.

Lemma 3.1 Let k 2 N. Then for all � 2 Œ0; �=k� it holds that

sin2
�
k�

2

�
> k sin2

�
�

2

�
:

Proof. We can assume that k > 2. Setting y D k�
2

we have that y 2 Œ0; �=2� and the claim reduces
to sin2.y/ > k sin2.y=k/ for all y 2 Œ0; �=2�. Since for y 2 Œ0; �=2� both sin.y/ and sin.y=k/ are
non-negative, we can alternatively show that

sin.y/ >
p
k sin.y=k/ for all y 2 Œ0; �=2�: (3.1)

Let us define the auxiliary function fk.y/ D sin.y/ �
p
k sin.y=k/. We show that it is strictly

concave on Œ0; �=2�, so that its minimum is achieved at y D 0 or y D �=2. Indeed, for y 2 Œ0; �=2�
we have by the monotonicity of the sinus function that

f 00k .y/ D � sin.y/C k�
3
2 sin.y=k/ 6 � sin.y/C k�

3
2 sin.y/ 6 �

1

2
sin.y/;

so that f 00
k
.y/ < 0 whenever y 2 .0; �=2�. Hence

min
y2Œ0;�=2�

fk.y/ D min
˚
fk.0/; fk.�=2/

	
D min

˚
0; 1 �

p
k sin

�
�=.2k/

�	
:

We conclude the proof once we show that
p
k sin.�=.2k// 6 1 for all k > 2. Using that sin.x/ < x

for all x > 0, for k > 3 we can bound the left hand side by
p
k sin

�
�=.2k/

�
6

�

2
p
k

6
�

2
p
3
< 1;

while for k D 2 we have
p
2 sin.�=4/ D 1. Thus fk.y/ > 0 for all y 2 Œ0; �=2� which yields (3.1)

and concludes the proof.
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Next we establish a lower-semicontinuity result which helps to prove the lower bound.

Lemma 3.2 For an open set A � ˝ let E. � ; A/WL1.AIR2/ ! Œ0;C1� be the functional
defined by

E.u;A/ D

Z
A

jruj2;1 dx C jD.c/uj2;1.A/C
Z
Ju\A

dS1.u
�; uC/j�uj1 dHd�1

for u 2 BV.AIS1/ and extended to C1 otherwise. Then u 7! E.u;A/ is L1.AIR2/-lower
semicontinuous.

Proof. For an open set I � R let E1d . � ; I /WL1.I IR2/! Œ0;C1� be defined by

E1d .w; I / WD

8̂<̂
:
Z
I

jw0j dt C jD.c/wj.I /C
X

t2Jw\I

dS1
�
wC.t/; w�.t/

�
; if w 2 BV.I IS1/;

C1 ; otherwise.

By [9, Theorem 3.1] (see also [9, Remark 4.3]), the functional E1d . � ; I / is the relaxation ofZ
I

jw0j dt ; w 2 W 1;1.I IS1/

with respect to the strong topology of L1.I IR2/. In particular, it is lower semicontinuous.
We next fix an open set A � ˝ and vn; v 2 L1.AIR2/ such that vn ! v strongly in L1.AIR2/.

We want to prove that
E.vIA/ 6 lim inf

n!C1
E.vnIA/: (3.2)

Without loss of generality, we assume that the right-hand side in (3.2) is finite and that the lim inf
is actually a limit. Since jDvnj.A/ 6 E.vnIA/ we obtain v 2 BV.AIS1/ and vn

�
* v weakly* in

BV.AIR2/. Note further that

E.vn; A/ D

dX
`D1

n Z
A

jrvn e`j dxCjD.c/vn e`j.A/C
Z
Jvn\A

dS1.v
C
n ; v

�
n /j�vn � e`j dHd�1

o
: (3.3)

Let us fix a direction � 2 S1, which plays the role of one of the coordinate directions e`. In the
following we use the notation and the properties of slicing recalled in Section 2.1. We start by
extracting a subsequence of n (possibly depending on � and which we do not relabel) such that the
liminf

lim inf
n!C1

Z
A

jrvn �j dx C jD.c/vn �j.A/C
Z
Jvn\A

dS1.v
C
n ; v

�
n /j�vn � �j dHd�1

is actually a limit. Moreover, since vn ! v strongly in L1.AIR2/, by Fubini’s Theorem we extract
a further subsequence (possibly depending on � and which we do not relabel) such that

.vn/
�
z ! v�z strongly in L1.A�z IR

2/ ; for Hd�1-a.e. z 2 ˘ � :

Moreover, we know that v�z 2 BV.A
�
z IS1/ for Hd�1-a.e. z 2 ˘ � .
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We observe now that the coarea formula (cf. [2, formula (272)] with g D dS1.vCn ; v
�
n /, E D

Jvn \ A, and f the projection onto the orthogonal complement of �) impliesZ
Jvn\A

dS1.v
C
n ; v

�
n /j�vn � �j dHd�1

D

Z
˘�

� X
t2J

.vn/
�
z
\A

�
z

dS1
��
.vn/

�
z

�C
.t/;

�
.vn/

�
z

��
.t/
��

dHd�1.z/:

Hence, by the equality above and by Fatou’s Lemma, we deduce that

lim
n!C1

Z
A

jrvn �j dx C jD.c/vn �j.A/C
Z
Jvn\A

dS1.v
C
n ; v

�
n /j�vn � �j dHd�1

D lim
n!C1

Z
˘�

� Z
A
�
z

ˇ̌�
.vn/

�
z

�0 ˇ̌ dt C jD.c/.vn/�zj.A
�
z/

C

X
t2J

.vn/
�
z
\A

�
z

dS1
��
.vn/

�
z

�C
.t/;

�
.vn/

�
z

��
.t/
��

dHd�1.z/

>
Z
˘�

lim inf
n!C1

� Z
A
�
z

ˇ̌�
.vn/

�
z

�0 ˇ̌ dt C jD.c/.vn/�zj.A
�
z/

C

X
t2J

.vn/
�
z
\A

�
z

dS1
��
.vn/

�
z

�C
.t/;

�
.vn/

�
z

��
.t/
��

dHd�1.z/: (3.4)

From the one-dimensional lower semicontinuity result we infer that

lim inf
n!C1

Z
A
�
z

ˇ̌�
.vn/

�
z

�0 ˇ̌ dt C jD.c/.vn/�zj.A
�
z/C

X
t2J

.vn/
�
z
\A

�
z

dS1
��
.vn/

�
z

�C
.t/;

�
.vn/

�
z

��
.t/
�

D lim inf
n!C1

E1d
�
.vn/

�
z ; A

�
z

�
> E1d .v�z ; A

�
z/ D

Z
A
�
z

ˇ̌�
v�z
�0 ˇ̌ dt C jD.c/v�z j.A

�
z/C

X
t2J

v
�
z
\A

�
z

dS1
�
.v�z/

C.t/; .v�z/
�.t/

�
for Hd�1-a.e. z 2 ˘ � . Integrating the inequality above with respect to z 2 ˘ � , again by the coarea
formula, and by (3.4) we obtain that

lim
n!C1

Z
A

jrvn �j dx C jD.c/vn �j.A/C
Z
Jvn\A

dS1.v
C
n ; v

�
n /j�vn � �j dHd�1

>
Z
A

jrv �j dx C jD.c/v �j.A/C
Z
Jv\A

dS1.v
C; v�/j�v � �j dHd�1: (3.5)

We conclude the proof of (3.2) by evaluating the last inequality for � D e1; : : : ; ed , by (3.3), and
employing the superadditivity of the lim inf.

Now we can prove the lower bound for the � -limit of the functionals N
2�"

EN" .
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Proposition 3.3 Let u"W "Zd ! SN and u 2 BV.˝ISN / be such that u" ! u in L1.˝IR2/. Then

lim inf
"!0

N

2�"
EN" .u"/ >

4 sin2
�
�N
2

�
�2N

Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1:

Proof. To simplify the notation we denote �N by � . Let A �� ˝ be an open set. By (2.1) it holds
that

ju"."i/ � u"."j /j D 2 sin
�
1
2

dS1.u"."i/; u"."j /
�
:

Since u" takes values in SN , the geodesic distance dS1.u"."i/; u"."j // is an integer multiple of � ,
i.e., there exists a k 2 N (depending on i , j , and ") such that dS1.u"."i/; u"."j // D k� . Note that
k� 6 � . Hence from Lemma 3.1 we infer that

1

2
ju"."i/ � u"."j /j

2
D 2 sin2

�
1
2

dS1.u"."i/; u"."j /
�
D 2 sin2

�k�
2

�
> 2k sin2

��
2

�
D 2dS1

�
u"."i/; u"."j /

� sin2. �
2
/

�
:

Since u" is piecewise constant on cubes of the form Q D .�"=2; "=2/d C z, z 2 Zd , with faces of
length " that are parallel to the coordinate axes (so that the outer normal vector satisfies j�j1 D 1),
we obtain that for " small enough

N

2�"
EN" .u"/ >

1

�

2 sin2
�
�
2

�
�

X
hi;j i in˝

"dS1
�
u"."i/; u"."j /

�
>
4 sin2

�
�
2

�
�2

Z
A\Ju

dS1.u
�
" ; u

C
" /j�u" j1 dHd�1;

where we also used that N D 2�=� and that the discrete energy counts each interaction twice. Note
that by Lemma 3.2 the functional

u 7!

Z
A\Ju

dS1.u
�; uC/j�uj dHd�1

isL1.AIR2/-lower semicontinuous onBV.AISN /, as it is the restriction of a lower semicontinuous
functional to a closed subset of BV.AISN /. Thus letting "! 0 we deduce that

lim inf
"!0

N

2�"
EN" .u"/ >

4 sin2
�
�
2

�
�2

Z
A\Ju

dS1.u
�; uC/j�uj1 dHd�1:

The claim now follows from the arbitrariness of A �� ˝.

We next prove that the corresponding upper bound for the � -limit.

Proposition 3.4 Let u 2 BV.˝ISN /. Then there exists a sequence u"W "Zd ! SN such that
u" ! u in L1.˝IR2/ and

lim sup
"!0

N

2�"
EN" .u"/ D

4 sin2
�
�N
2

�
�2N

Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1:
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Proof. To simplify the notation we denote �N by � . Due to the discussion in Section 2.2, the
� -limit of N

2�"
EN" has the form (2.3). To prove the upper bound it suffices to define a suitable

candidate for the minimum problem (2.4) whose energy can be bounded in the limit as " ! 0 by
4 sin2. �

2
/��2dS1.s; r/j�j1. Write s D exp.�ks�/ and r D exp.�kr�/ with 0 6 ks; kr 6 N � 1.

We will treat the case when kr D 0, i.e., r D .1; 0/, and 0 < ks� 6 � . The construction
we provide can then be composed with a rotation in the co-domain to cover the general case.
The idea is to define a candidate whose angular variable jumps by � along the discretization
of ks parallel hyperplanes orthogonal to �, where all hyperplanes are O."/-close to the hyperplane
˘� WD fx 2 Rd W x � � D 0g. The correction in order to satisfy the boundary conditions of the
minimum problem (2.4) will be of lower order. In formulas, let u"W "Zd ! SN be defined by

u"."i/ WD

(
exp

�
�min

˚
ks;maxf0; bi � �cg

	
�
�

if dist."i; @Q�/ > 2";

u
s;r
� ."i/ if dist."i; @Q�/ 6 2";

where bxc denotes the integer part of x. Hence for all "i 2 "Zd \Q� such that "i � � 6 0 we have
u"."i/ D r , while for all "i 2 "Zd with "i � � > ks" we have u"."i/ D s, so that for non-vanishing
interactions at least one point belongs to the set

H ks
" WD

˚
x 2 Q� W x � � 2 .0; "ks/

	
:

Note that we have the volume boundˇ̌
H
ks
2" \

˚
dist.x; @Q�/ 6 4"

	ˇ̌
6 Cks"

2;

where C depends only on the dimension. Hence, for " small enough,

#
n
z 2 Zd W "z 2 H ks

2" \
˚
dist.x; @Q�/ 6 3"

	o
6 Cks"

2�d (3.6)

To simplify notation, we also define the auxiliary function v"W "Zd ! SN by

v"."i/ WD exp
�
�min

˚
ks;maxf0; bi � �cg

	
�
�
:

As SN � S1, it holds that ju"."i/�u"."j /j2 6 4, so due to the almost additivity of the set function
A 7! EN" .u; A/ the energy of u" can be estimated by

N

2�"
EN" .u";Q�/ 6

N

2�"
EN"

�
u";H

ks
2" \ fdist.x; @Q�/ 6 3"g

�
C

N

2�"
EN" .v";Q�/

6 CNks"C
N

2�"
EN" .v";Q�/ 6 CN 2"C

N

2�"
EN" .v";Q�/:

As N is fixed, the first term in the right-hand side vanishes when "! 0. Since u" is admissible for
the minimum problem (2.4) it suffices to show that

lim sup
"!0

N

2�"
EN" .v";Q�/ 6

4 sin2
�
�
2

�
�2

ks� j�j1 D
4 sin2

�
�
2

�
�

ksj�j1: (3.7)

We start by noticing that when "i; "j 2 "Zd \Q� are such that ji � j j D 1 and v"."i/ ¤ v"."j /,
then "i �� ¤ "j ��. Without loss of generality, we assume "i �� > "j ��. Note that j �� > 0. Indeed,
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if instead j � � < 0, then i � � < 1 and thus v"."i/ D v"."j /, which contradicts v"."i/ ¤ v"."j /.
Moreover, by a similar argument we also know that ks C 1 > i � �. To sum up, we have that

0 6 "j � � < "i � � < .ks C 1/": (3.8)

Finally, we have the estimate j."i � "j / � �j 6 ", so that by (2.1)

jv"."i/ � v"."j /j
2
D 4 sin2

�
�
2

�
: (3.9)

It remains to count the interactions. We will first split them according to their jump between "j � �
and "i � �. More precisely, for a natural number k 2 f1; : : : ; ksg we set

Ik;" WD
n
."i; "j / 2

�
"Zd \Q�

�2
W ji � j j D 1 ; bj � �c D k � 1 ; bi � �c D k

o
:

Note that a pair ."i; "j / 2 Ik;" is only counted once. Since each pair of interactions in the energy is
counted twice, we deduce from (3.9) and the equality N=2� D 1=� that

N

2�"
EN" .v";Q�/ 6

4 sin2
�
�
2

�
�

ksX
kD1

"d�1#Ik;":

We deduce then (3.7) from the asymptotic formula

lim sup
"!0

"d�1#Ik;" 6 j�j1: (3.10)

The above formula can be justified as follows: First further subdivide the set Ik;" into the d disjoint
sets .I `

k;"
/d
`D1

defined by

I `k;" WD
˚
."i; "j / 2 Ik;" W .i � j / is parallel to e`

	
for ` D 1; : : : ; d:

Observe that Ik;" D
Sd
`D1 I

`
k;"

and that if there exists a pair ."i; "j / 2 I `
k;"

, then �` ¤ 0. Indeed, in
that case the hyperplane H� D fx � � D 0g does not contain .i � j /, and in turn e`, by definition
of Ik;". Next we estimate where the line "j C Re` intersects the hyperplane H� D fx � � D 0g. It
does in a unique point "j C �e` when I `

k;"
¤ Ø. Since 0 6 "j � � 6 k" it follows that

j�j 6
k"

j�`j
:

Therefore, given t > 1, for " D ".t/ small enough the intersection point is contained in tQ� \H� .
Since by definition the mapping I `

k;"
3 ."i; "j / 7! "j � ."j � e`/e` is injective, we obtain that

#I `k;" 6 #
˚
"i 2 "Zd W "i 2 ˘x`D0.tQ� \H�/

	
;

where ˘x`D0 denotes the projection onto the subspace fx` D 0g. In particular, it holds that

"d�1#Ik;" D
dX
`D1

"d�1#I `k;" 6
dX
`D1

"d�1#
�
"Zd \˘x`D0.tQ� \H�/

�
:
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ν

Hν

Qν

tQν

kε

e`

I`k,ε
λ

FIG. 2. Counting the number of points in I`
k;"

By elementary geometric considerations we can bound the cardinality via a .d � 1/-dimensional
volume as

lim
"!0

"d�1
�
#"Zd \˘x`D0.tQ� \H�/

�
D Hd�1

�
˘x`D0.tQ� \H�/

�
D td�1Hd�1

�
˘x`D0.Q� \H�/

�
:

Since t > 1 was arbitrary we deduce that

lim sup
"!0

"d�1#I `k;" 6 Hd�1
�
˘x`D0.Q� \H�/

�
:

We claim that the right-hand side term equals j�`j, which then concludes the proof summing over `.
This is a consequence of the coarea formula in the form [2, Theorem 2.93] taking f to be the
projection ˘x`D0 and E D Q� \H� and using the fact that the .d � 1/-dimensional coarea factor
of the projection ˘x`D0 on the tangent space H� is given by j�`j (cf. [2, formula (3.110)]).

4. Limit of the continuum functional for large N

In this section we study the � -convergence of the limit functionals EN defined on L1.˝IR2/ by

EN .u/ WD

8̂<̂
:
4 sin2

�
�N
2

�
�2N

Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1 if u 2 BV.˝ISN /;

C1 otherwise,
(4.1)

as N ! C1, where we write �N to stress the dependence on N of the minimal angle between
vectors in SN . We show that the � -limit of EN coincides with the functional derived in [27] in the
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regime N D N" � 1
"j log "j and d D 2. More precisely, we define the functional

E.u/ WD

8<:
Z
˝

jruj2;1 dx C jD.c/uj2;1.˝/C
Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1; if u 2 BV.˝IS1/;

C1 otherwise,
(4.2)

for u 2 L1.˝IR2/.
We first state and prove the lower bound together with a compactness result.

Proposition 4.1 (Lower bound and compactness) Let uN 2 BV.˝ISN / be a sequence such that

sup
N

EN .uN / < C1:

Then up to subsequences uN ! u 2 BV.˝IS1/ strongly in L1.˝IR2/. Moreover, for any
sequence uN 2 BV.˝ISN / and u 2 BV.˝IS1/ such that uN ! u in L1.˝IR2/ it holds that

lim inf
N!C1

EN .uN / > E.u/:

Proof. Since dS1.u; v/ > ju � vj and j�j1 > 1 for any unit vector �, the functionals EN satisfy

EN .u/ >
4 sin2

�
�N
2

�
�2N

Z
˝\Ju

juC � u�j dHd�1
D
4 sin2

�
�N
2

�
�2N

jDuj.˝/:

Note that �N D 2�=N implies �N ! 0 as N !C1. Hence

lim
N!C1

4 sin2
�
�N
2

�
�2N

D 1: (4.3)

Thus the compactness statement follows from the inclusion SN � S1 and standard compactness
results in BV.˝IR2/.

In order to prove the lower bound, note that

EN .u/ >
4 sin2

�
�N
2

�
�2N

�Z
˝

jruj2;1 dx C jD.c/uj2;1.˝/C
Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1

�
D
4 sin2

�
�N
2

�
�2N

E.u/

for all u 2 BV.˝IS1/, cf. (4.1)–(4.2). The functional E is L1.˝IR2/-lower semicontinuous by
Lemma 3.2. Hence, the claim follows from (4.3).

We now establish the upper bound via several approximations combined with a relaxation result
for integral functionals defined on W 1;1.˝IS1/.

We recall here the density result proven in [16]. Let

R11 .˝IS
1/ WD

n
u 2 W 1;1.˝IS1/ W there exists ˙ D

Sm
iD1˙h ; m 2 N; ˙h closed subset of

a .d � 2/-dimensional manifold, such that u 2 C1.˝ n˙ IS1/
o
:
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Theorem 4.2 The class R11 .˝IS1/ is dense inW 1;1.˝IS1/ with respect to the strong convergence
in W 1;1.˝IR2/.

Proposition 4.3 (Upper bound) For every function u 2 BV.˝IS1/ there exists a sequence uN 2
BV.˝ISN / such that uN ! u strongly in L1.˝IR2/ and

lim
N!C1

EN .uN / D E.u/:

Proof. Thanks to Proposition 3.3, it is enough to prove that for every u 2 BV.˝IS1/ there exists a
sequence uN 2 BV.˝ISN / such that uN ! u strongly in L1.˝IR2/ and

lim sup
N!C1

EN .uN / 6 E.u/: (4.4)

Step 1. (Reducing to the case u 2 W 1;1.˝IS1//. Let us start by considering the functional given
by Z

˝

jruj2;1 dx ; if u 2 W 1;1.˝IS1/ (4.5)

and byC1 otherwise in L1.˝IR2/. This functional satisfies all the assumptions of the functionals
studied in [9], cf. assumptions (H1)–(H5) therein. Then, by [9, Theorem 3.1], its relaxation is given
by Z

˝

jruj2;1 dx C jD.c/uj2;1.˝/C
Z
˝\Ju

K.u�; uC; �u/ dHd�1; if u 2 BV.˝IS1/

and by C1 otherwise in L1.˝IR2/. The density of the surface energy KW S1�S1�Sd�1 !
Œ0;C1/ is characterized by the formula

K.a; b; �/ WD inf
�Z
Q�

jr j2;1 dx W  2 P .a; b; �/

�
;

where Q� is a unit cube centered at the origin with two faces orthogonal to � and P .a; b; �/ is
the collection of all  2 W 1;1.Q� IS1/ with  .x/ D a if x � � D �1

2
,  .x/ D b if x � � D 1

2
,

and  is periodic with period 1 in the direction orthogonal to �. In particular, P .a; b; �/ contains
the collection of functions with a one-dimensional profile in the direction �, i.e., functions  2
W 1;1.Q� IS1/ such that there exists a curve  2 W 1;1..�1

2
; 1
2
/IS1/ with .�1

2
/ D a, .1

2
/ D b

satisfying  .x/ D .x � �/. For such functions we have r .x/ D  0.x � �/˝ � and therefore, since
j 0.x � �/˝ �j2;1 D j

0.x � �/j j�j1,

K.a; b; �/ 6
Z
Q�

jr j2;1 dx D j�j1

Z
Q�

j 0.x � �/j dx D j�j1

Z 1
2

� 12

j 0.t/j dt:

Taking the infimum over all such curves  2 W 1;1
�
.�1

2
; 1
2
/IS1

�
with .�1

2
/ D a, .1

2
/ D b, we

conclude that
K.a; b; �/ 6 dS1.a; b/j�j1:

In particular, the relaxation of (4.5) is smaller than E, cf. (4.2). This entails that for every u 2
BV.˝IS1/ there exists a sequence uj 2 W 1;1.˝IS1/ such that uj ! u in L1.˝IR2/ and

lim sup
j!C1

Z
˝

jruj j2;1 dx 6 E.u/:
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Thanks to this property and to a diagonal argument, it is enough to prove the upper bound (4.4)
assuming u 2 W 1;1.˝IS1/.

Step 2. (Extending outside ˝). Let u 2 W 1;1.˝IS1/. There exists t > 0 and a bi-Lipschitz map
� W .@˝�.�t; t // ! � .@˝�.�t; t // such that � .x; 0/ D x for all x 2 @˝, � .@˝�.�t; t // is an
open neighborhood of @˝ and

�
�
@˝�.�t; 0/

�
� ˝; �

�
@˝ � .0; t/

�
� R2 n˝: (4.6)

This result is a consequence of [35, Theorem 7.4 & Corollary 7.5]; details can be found for instance
in [34, Theorem 2.3]. The extension of u is then achieved via reflection. More precisely, for a
sufficiently small Qt > 0 we define it on Q̋ with Q̋ D ˝ C BQt .0/ by

Qu.x/ D

8<:u
�
�
�
P
�
� �1.x/

���
if x … ˝;

u.x/ otherwise,
(4.7)

where P.x; �/ D .x;��/. Since � is bi-Lipschitz, we have that Qu 2 W 1;1. Q̋ IS1/ and by a change
of variables we can bound the L1-norm of its gradient viaZ

Q̋

jr Quj dx 6
Z
˝

jruj dx C C�

Z
Q̋ n˝

j.ru/ ı � ı P ı � �1j dx 6 C�

Z
˝

jruj dx; (4.8)

where the constant C� depends only on the bi-Lipschitz properties of � and the dimension. With
an abuse of notation we will denote the extended function Qu 2 W 1;1. Q̋ IS1/ again by u.

Step 3. (Reducing to the case u 2 R11 . Q̋ IS1/). Given u 2 W 1;1.˝IS1/, we extend it to a function
in W 1;1. Q̋ IS1/ as in the previous step. By Theorem 4.2 there exists a sequence uj 2 R11 . Q̋ IS1/
such that uj ! u strongly in W 1;1. Q̋ IR2/. In particular,

lim
j!C1

Z
˝

jruj j2;1 dx D
Z
˝

jruj2;1:

Hence, by a diagonal argument it is enough to prove the upper bound (4.4) assuming u 2

R11 . Q̋ IS1/.

Step 4. (Reducing to the case of piecewise constant S1-valued maps). Let u 2 R11 . Q̋ IS1/. Then
there exists ˙ D

Sm
hD1˙h with ˙h closed subset of a smooth .d � 2/-dimensional manifold such

that u 2 C1. Q̋ n ˙ IS1/ \ W 1;1. Q̋ IS1/. We construct now an approximation of u through S1-
valued maps which are piecewise constant on a lattice of spacing � > 0. Let us consider the family
of half-open cubes

I�.�z/ D �z C �Œ0; 1/
d ; z 2 Zd

and the set
˝�
WD

[˚
I�.�z/ W z 2 Zd such that I�.�z/ \˝ ¤ Ø

	
:

Let ˝ 0 be such that ˝ �� ˝ 0 �� Q̋ . For � small enough we have ˝� �� ˝ 0 �� Q̋ . We
now define the piecewise constant function u�W˝� ! S1 as follows. Let z 2 Zd be such that
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I�.�z/ � ˝
�. If I�.�z/ \ ˙ D Ø, the map u is C1 in the interior of I�.�z/ and thus it admits

a lifting 'z (unique up to a multiple integer of 2�), which is C1 in the interior of I�.�z/, namely
u D exp.�'z/ in I�.�z/. We consider the average

'z WD
1

�d

Z
I�.�z/

'z.x/ dx

and we set u�.x/ WD exp.�'z/ for x 2 I�.�z/. If, instead, I�.�z/ \ ˙ ¤ Ø we put u�.x/ WD e1
for x 2 I�.�z/ (the precise value e1 being not relevant).

We remark that u� ! u strongly in L1.˝IR2/. Indeed, let B be a ball such that B �� ˝ n˙ .
Since B is simply connected and u 2 C1.BIS1/, there exists a lifting ' 2 C1.BIR/, namely,
u D exp.�'/ in B . If I�.�z/\B ¤ Ø, then I�.�z/\˙ D Ø for � small enough. In particular, we
can consider the lifting 'z of u in I�.�z/ used in the definition of u�. By uniqueness of the liftings
up to integer multiples of 2� , there exists a kz 2 Z such that 'z D ' C 2�kz . This entails

'z D
1

�d

Z
I�.�z/

'.y/ dy C 2�kz :

Given x 2 B , we consider a family of cubes I�.�z�/ 3 x. By Lebesgue’s differentiation theorem

1

�d

Z
I�.�z�/

'.y/ dy ! '.x/

for Ld -a.e. x 2 B . Then u� ! u a.e. in ˝ and by dominated convergence we obtain u� ! u in
L1.˝IR2/.

Let us prove that

lim sup
�!0

Z
˝�\Ju�

dS1.u
�
� ; u

C

�
/j�u� j1 dHd�1 6

Z
˝

jruj2;1 dx: (4.9)

For i 2 f1; : : : ; dg we define the families of indices

Zi .�/ WD
n
z 2 Zd W I�.�z/ [ I�

�
�.z C ei /

�
� ˝�

o
;

Gi .�/ WD
n
z 2 Zi .�/ W I�.�z/ \˙ D Ø and I�

�
�.z C ei /

�
\˙ D Ø

o
;

Bi .�/ WD
n
z 2 Zi .�/ W I�.�z/ \˙ ¤ Ø or I�

�
�.z C ei /

�
\˙ ¤ Ø

o
:

Let z 2 Gi .�/. As in the definition of u�, we let 'z and 'zCei be the liftings of u in I�.�z/ and
I�.�.z C ei //, respectively. Moreover, since u is C1 in the interior of the rectangle I�.�z/ [
I�.�.z C ei //, it admits a C1 lifting ' such that u D exp.�'/ in I�.�z/ [ I�.�.z C ei //. By
uniqueness of the liftings up to integer multiples of 2� , there exist kz ; kzCei 2 Z such that 'z D
' C 2�kz in I�.�z/ and 'zCei D ' C 2�kzCei in I�.�.z C ei //. Note that

'z D
1

�d

Z
I�.�z/

'.x/ dx C 2�kz ; 'zCei D
1

�d

Z
I�.�.zCei //

'.x/ dx C 2�kzCei :
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Now we are in a position to estimate

dS1
�
u�
�
�.z C ei /

�
; u�.�z/

�
D dS1

�
exp.�'zCei /; exp.�'z/

�
6

1

�d

ˇ̌̌ Z
I�.�.zCei //

'.x/ dx �
Z
I�.�z/

'.x/ dx
ˇ̌̌

D
1

�d

Z
I�.�.z//

ˇ̌
'.x C �ei / � '.x/

ˇ̌
dx

6
1

�d�1

Z
I�.�.z//

Z 1

0

ˇ̌
@i'.x C t�ei /

ˇ̌
dt dx

D
1

�d�1

Z 1

0

Z
I�.�.z//

ˇ̌
@iu.x C t�ei /

ˇ̌
dx dt: (4.10)

Using the fact that ˝� �� ˝ 0, for � small enough we obtain

dX
iD1

X
z2Gi .�/

�d�1dS1
�
u�
�
�.z C ei /

�
; u�.�z/

�
6

dX
iD1

X
z2Gi .�/

Z 1

0

Z
I�.�.z//

ˇ̌
@iu.x C t�ei /

ˇ̌
dx dt

6
Z 1

0

dX
iD1

Z
˝�

ˇ̌
@iu.x C t�ei /

ˇ̌
dx dt

6
dX
iD1

Z
˝0

ˇ̌
@iu.x/

ˇ̌
dx D

Z
˝0

ˇ̌
ru.x/

ˇ̌
2;1

dx:

Let z 2 Bi .�/. Since I�.�z/ \ ˙ ¤ Ø or I�.�.z C ei // \ ˙ ¤ Ø, we have that I�.�z/ �
B
4�
p
d
.˙/. By [2, Theorem 2.104], the Minkowski content of ˙ equals its Hausdorff measure,

namely Ld .B�.˙//

!2�2
! Hd�2.˙/ as �! 0. This implies that

#Bi .�/ 6
1

�d
Ld
�
B
4�
p
d
.˙/

�
6

1

�d
2Hd�2.˙/!2.4�

p
d/2 6 C˙;d

1

�d�2

for � small enough. Using the rough estimate dS1
�
u�.�.z C ei //; u�.�z/

�
6 � we deduce that

dX
iD1

X
z2Bi .�/

�d�1dS1
�
u�
�
�.z C ei /

�
; u�.�z/

�
6 C˙;d�; (4.11)

the constant C˙;d being larger than the previous one.
From (4.10) and (4.11) it follows thatZ
˝�\Ju�

dS1.u
C

�
; u�� /j�u� j1 dHd�1

6
dX
iD1

� X
z2Gi .�/

�d�1dS1
�
u�
�
�.z C ei /

�
; u�.�z/

�
C

X
z2Bi .�/

�d�1dS1
�
u�
�
�.z C ei /

�
; u�.�z/

��
6
Z
˝0

ˇ̌
ru
ˇ̌
2;1

dx C C˙;d�
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and hence, letting � ! 0 and ˝ 0 & ˝, (4.9). Thanks to this step, it suffices to prove the upper
bound assuming that the S1-valued map is constant on each of the cubes I�.�z/ � ˝�.

Step 5. (Construction of uN ). Let u�W˝� ! S1 be a map that is constant on each of the cubes
I�.�z/. We consider the discretization map PN W S1 ! SN defined as follows: given a 2 S1, we let
'a 2 Œ0; 2�/ be the unique angle such that a D exp.�'/ and we set

PN .a/ WD exp
�
��N

�
'a=�N

˘�
:

Note that dS1.PN .a/; a/ D j�N
�
'a=�N

˘
� 'aj 6 �N . We put uN WD PN .u�/ 2 BV.˝ISN /.

Then, by the triangle inequalityZ
˝\JuN

dS1.u
�
N ; u

C

N /j�uN j1 dHd�1

6
X

z2Zi .�/

�d�1dS1
�
uN
�
�.z C ei /

�
; uN .�z/

�
6
Z
˝�\Ju�

dS1.u
C

�
; u�� /j�u� j1 dHd�1

C

X
z2Zi .�/

�d�1
�

dS1
�
uN
�
�.z C ei /

�
; u�

�
�.z C ei /

��
C dS1

�
uN .�z/; u�.�z/

��
6
Z
˝�\Ju�

dS1.u
C

�
; u�� /j�u� j1 dHd�1

C

X
z2Zi .�/

�d�12�N

6
Z
˝�\Ju�

dS1.u
C

�
; u�� /j�u� j1 dHd�1

C 2�NHd�1.˝�
\ Ju�/:

Letting N !C1 and by (4.3) we conclude the proof.

5. Constrained problems

In this final section we apply the results for the discrete-to-continuum limit to some constrained
minimization problem. Again here we can use the more abstract results of [19]. We consider the
case of discrete Dirichlet boundary conditions and discrete phase constraints. We start with the
latter. Note that in both cases we do not state separately the convergence of minimizers which is a
standard consequence of the general theory of � -convergence.

Volume constraints in theN -clock model. Let V D .Vk/NkD1 2 .0; 1/
N be such that

PN
kD1 Vk D 1

and for k D 1; : : : ; N let Vk;" 2
�
#."Zd \˝/�1N

�
\ Œ0; 1� be such that

lim
"!0

Vk;" D Vk 81 6 k 6 N: (5.1)

We define a new set of constrained spin configurations by

P C".V / WD

(
u W "Zd \˝ ! SN W

#
˚
u D exp.ik�/

	
#."Zd \˝/

D Vk;" 81 6 k 6 N

)
:
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Define then the constrained functional

EN";V .u/ D

(
EN" .u/ if u 2 P C".V /;

C1 otherwise in L1.˝IR2/:

Then by [19, Theorem 6.2] we have the following � -convergence result.

Corollary 5.1 Let N 2 N and for 1 6 k 6 N let Vk;" 2 .0; 1/ satisfy (5.1). Then as " ! 0 the
sequence of functionals N"

2�"
EN";V � -converge with respect to the strongL1.˝IR2/ to the functional

EN;V WL
1.˝IR2/! Œ0;C1� defined by

EN;V .u/ WD

8̂̂̂<̂
ˆ̂:
4 sin2

�
�N
2

�
�2N

Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1

if u 2 BV.˝ISN / and
jfu D exp.ik�/gj D Vk
81 6 k 6 N ,

C1 otherwise.

Dirichlet Boundary conditions. In order to define discrete Dirichlet boundary conditions and to
derive a convergence result, we need to assume some well-preparedness of the boundary condition.
For the sake of simplicity we assume that u0 2 BVloc.Rd ISN / is such that there exists a locally
finite partition of Rd into Lipschitz domains .Ei /i2N such that u0 is constant on each Ei . In
particular, the closure of the jump set J u0 is a locally finite union of Lipschitz graphs. When the
sets .Ei /i2N are polyhedra, we call u0 a polyhedral partition. We further assume that

Hd�1.@˝ \ J u0/ D 0:
1 (5.2)

We define the set of configurations satisfying a discrete Dirichlet boundary condition u D u0 by

P C";u0 D
˚
uW "Zd \˝ ! SN W u."i/ D u0."i/ if dist."i; @˝/ 6 2"

	
:

As for the case of volume constraints, we define the constrained functionals

EN";u0.u/ WD

(
EN" .u/ if u 2 P C";u0 ;

C1 otherwise in L1.˝IR2/:

Then we have the following result.

Corollary 5.2 Let u0 2 BVloc.Rd ISN / be a polyhedral partition satisfying (5.2). Then as "! 0

the sequence of functionals N"
2�"

EN";u0 � -converge with respect to the strong L1.˝IR2/ to the
functional EN;u0 WL

1.˝IR2/! Œ0;C1� that is finite only on BV.˝ISN /, where it is given by

EN;u0.u/ WD
4 sin2

�
�N
2

�
�2N

�Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1

C

Z
@˝

dS1.u
�; uC0 /j�xj1 dHd�1

�
;

where �x denotes the unit outer normal vector at Hd�1-a.e. x 2 @˝.

1 This is a technical assumption that we need in the proof. In general, this condition can be ensured by a local reflection
argument which does not change u0 inside˝, but one would need to prove that this reflection keeps the level sets Lipschitz
regular. While this should follow from construction, we avoid such technical details here.
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Proof. Step 1. Proof of the lim inf-inequality. Without loss of generality let u" ! u in L1.˝/ be
such that

lim inf
"!0

N"

2�"
EN";u0.u"/ 6 C:

By Theorem 1.2(i) we obtain that u 2 BV.˝ISN /. Passing to a subsequence we can assume that
u" 2 P C";u0 for all ". Given ı > 0, using property (5.2), we find Lipschitz sets ˝1 �� ˝ �� ˝2
such that

Hd�1..˝2 n˝1/ \ J u0/ 6 ı: (5.3)

Define u";0 2 P C";u0 by u";0."x/ WD u0."x/. Since the level sets of u0 are Lipschitz sets, it is not
difficult to prove that u";0 ! u0 in L1.˝/. Moreover, note that for "i; "j 2 "Zd with ji � j j D 1

we have that u";0."i/ ¤ u";0."j / only if

f"i; "j g 2 J u0 C B".0/:

In order to bound the energy of u";0 on the set ˝2 n ˝1, one can use suitable level sets of the
signed distance function to @˝h, h D 1; 2, to find sequences of Lipschitz sets ˝1;n; ˝2;n such that
˝1;n �� ˝1, ˝2 �� ˝2;n and ˝1;n " ˝1 and ˝2;n # ˝2. Additionally, we can suppose that

Hd�1
�
.@˝1;n [ @˝2;n/ \ J u0

�
D 0 8n 2 N: (5.4)

For fixed n and " small enough we then have

EN" .u";0; ˝2 n˝1/ 6 C"d#
˚
"i 2 "Zd \˝2 n˝1 W "i 2 J u0 C B".0/

	
6 C

ˇ̌�
˝2;n n˝1;n

�
\
�
J u0 C BC".0/

�ˇ̌
:

Since J u0 is a locally finite union of Lipschitz graphs which satisfies (5.4), it follows by the theory
of Minkowski contents that

lim sup
"!0

N

2�"
EN" .u";0; ˝2 n˝1/ 6 lim sup

"!0

C

ˇ̌�
˝2;n n˝1;n

�
\
�
J u0 C BC".0/

�ˇ̌
"

6 CHd�1
�
.˝2;n n˝1;n/ \ J u0

�
:

Letting n!C1, it follows from (5.3) that

lim sup
"!0

N

2�"
EN" .u0;"; ˝2 n˝1/ 6 CHd�1

�
.˝2 n˝1/ \ J u0

�
6 Cı: (5.5)

Define Qu" 2 P C";u0 by

Qu"."i/ D 1˝."i/u"."i/C
�
1 � 1˝."i/

�
u";0."i/:

Observe that
Qu" ! Qu WD 1˝uC .1 � 1˝/u0 in L1.˝2/: (5.6)

The energy of Qu" in the larger set ˝2 can be estimated by

EN";u0. Qu"; ˝2/ 6 EN";u0.u"; ˝/CE".u";0; ˝2 n˝/C 2
X

i;j2"Zd ; ji�j jD1
"i2˝;"j2˝2n˝

1

2
"d j Qu"."i/ � Qu"."j /j

2;

(5.7)
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where we used that the discrete energy counts each interaction twice. Note that when "i 2 ˝ and
"j 2 ˝2 n ˝, then dist."i; @˝/ 6 j"i � "j j D ", so that by the boundary conditions of u" imply
that Qu"."i/ D u";0."i/. Moreover, by definition Qu"."j / D u";0."j /, so that the last two terms in the
right-hand side of (5.7) can be estimated via

EN" .u";0; ˝2 n˝/C 2
X

i;j2"Zd ; ji�j jD1
"i2˝;"j2˝2n˝

1

2
"d j Qu"."i/ � Qu"."j /j

2 6 EN" .u";0; ˝2 n˝1/:

Combining this bound with (5.7) and (5.5) we conclude that

lim inf
"!0

N

2�"
EN";u0. Qu"; ˝2/ 6 lim inf

"!0

N

2�"
EN";u0.u"; ˝/C Cı:

Since Theorem 1.2 holds for any bounded Lipschitz-domain, we can in particular choose˝2 so that
with (5.6) we obtain

4 sin2
�
�N
2

�
�2N

Z
˝2\J Qu

dS1. Qu
�; QuC/j� Quj1 dHd�1 6 lim inf

"!0

N

2�"
EN";u0.u"; ˝/C Cı:

Now letting ˝2 # ˝ and then ı ! 0 we obtain the lim inf-inequality using the structure of Qu given
by (5.6).

Step 2. Proof of the lim sup-inequality. We start assuming that u D u0 in a neighborhood of @˝.
Let u"W "Zd ! SN be a recovery sequence for u given by Theorem 1.2, so that

lim
"!0

N

2�"
EN" .u"; ˝/ D

4 sin2
�
�N
2

�
�2N

Z
˝\Ju

dS1.u
�; uC/j�uj1 dHd�1: (5.8)

We will modify u" such that it fulfills the discrete boundary conditions but without changing its
energy too much. First we redefine u"."i/ D u0."i/ for all "i … ˝. Since u D u0 in a neighborhood
of @˝, we can find a Lipschitz set ˝1 �� ˝ such that

u D u0 on ˝ n˝1;

Hd�1.@˝1 \ J u0/ D 0:
(5.9)

Fix 0 < � 6 1
2

dist.˝1; @˝/. SettingM" D b
�

2
p
d"
c (i.e., the integer part of �

2
p
d"

), for 1 6 k 6 M"

we introduce the sets
˝";k WD

˚
x 2 ˝ W dist.x;˝1/ <

p
dk"

	
:

We further define uk" 2 P C";u0 via interpolation by

uk" ."i/ WD 1˝";k ."i/u"."i/C
�
1 � 1˝";k ."i/

�
u0."i/:

Next we compute the energy of such a spin field. It holds that

EN" .u
k
" ; ˝/ 6 EN" .u"; ˝";k/CE

N
" .u";0; ˝ n˝";k/C

X
"i;"j2"Zd ; ji�j jD1
"i2˝";k ;"j2˝n˝";k

"d
ˇ̌
uk" ."i/ � u

k
" ."j /

ˇ̌2
6 EN" .u"; ˝/CE

N
" .u";0; ˝ n˝1/C

X
"i;"j2"Zd ; ji�j jD1
"i2˝";k ;"j2˝n˝";k

"d
ˇ̌
uk" ."i/ � u

k
" ."j /

ˇ̌2
: (5.10)
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Note that by a discrete product rule we have

uk" ."i/ � u
k
" ."j / D 1˝";k ."i/

�
u"."i/ � u"."j /

�
C
�
1˝";k ."i/ � 1˝";k ."j /

� �
u"."j / � u0."j /

�
C
�
1 � 1˝";k ."i/

��
u0."i/ � u0."j /

�
:

Using this inequality, the terms in the last sum above can be bounded by

juk" ."i/ � u
k
" ."j /j

2 6 2
�
ju"."i/ � u"."j /j

2
C ju"."j / � u0."j /j

2
C ju0."i/ � u0."j /j

2
�
:

Hence, we can control the energy on the boundary layer of @˝";k byX
"i;"j2"Zd ; ji�j jD1
"i2˝";k ;"j2˝n˝";k

"d juk" ."i/�u
k
" ."j /j

2 6 4EN" .u"; ˝";kC1n˝";k�1/C4E
N
" .u";0; ˝";kC1n˝";k�1/

C C
X

"j2"Zd\˝";kC1n˝";k�1

"d ju"."j / � u0."j /j
2:

We can estimate the last sum as an integral over the slightly larger set S";k WD ˝";kC2 n˝";k�2, so
that we can continue the estimate (5.10) by

EN" .u
k
" ; ˝/ 6 EN" .u"; ˝/CE

N
" .u";0; ˝ n˝1/C C

�
EN" .u"; S";k/CE

N
" .u";0; S";k/

�
C Cku" � u";0k

2
L2.S";k/

:

Now we can use a classical averaging argument. Note that each point "i 2 "Zd can belong to at
most 4 different sets S";k . Since S";k � ˝ n˝1 for all 3 6 k 6 M" � 2, the superadditivity of the
energy yields

M"�2X
kD3

�
EN" .u"; S";k/CE

N
" .u";0; S";k/C ku" � u";0k

2
L2.S";k/

�
6 4

�
EN"

�
u"; ˝ n˝1

�
CEN"

�
u";0; ˝ n˝1

�
C ku" � u";0k

2

L2.˝n˝1/

�
:

Now choose k" 2 f3; : : : ;M" � 2g such that the term in the above sum is minimal. Then

EN"
�
uk"" ; ˝

�
6 EN" .u"; ˝/CE

N
"

�
u";0; ˝ n˝1

�
C

C

M" � 4

M"�2X
kD3

�
EN" .u"; S";k/CE

N
" .u";0; S";k/C ku" � u";0k

2
L2.S";k/

�
6
�
1C

C

M"

� �
EN" .u"; ˝/CE

N
" .u";0; ˝ n˝1/

�
C

C

M"

ku" � u";0k
2

L2.˝n˝1/
:

Multiplying the above estimate by N
2�"

, we note that ."M"/
�1 remains bounded when " ! 0.

Moreover, as in Step 1 (cf. (5.5) and (5.2), (5.9)) one shows that

lim sup
"!0

N

2�"
EN"

�
u";0; ˝ n˝1

�
6 CHd�1

�
.˝ n˝1/ \ J u0

�
D CHd�1

�
.˝ n˝1/ \ J u0

�
;
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while for the term N
2�"

EN" .u"; ˝/ we can use (5.8). In order to control the L2-norm in the last but
one estimate, note that on ˝ n˝1 the two sequences u" and u";0 converge in L1 (and thus in L2 by
uniform boundedness) to the same limit since u D u0 on ˝ n˝1. Consequently,

lim sup
"!0

N

2�"
EN" .u

k"
" ; ˝/ 6 lim sup

"!0

N

2�"
EN" .u"; ˝/C CHd�1

�
.˝ n˝1/ \ J u0

�
:

In order to conclude, we remark that on ˝1 it holds that uk"" ! u in L1, while as explained above,
on ˝ n ˝1 the sequences u" and u";0 have the same limit, so that uk"" , being a varying convex-
combination of those sequences, converges also to u on ˝ n ˝1. We conclude that uk"" ! u in
L1.˝/. Hence from the definition of the � - lim sup we deduce that

� - lim sup
"!0

�
N

2�"
EN";u0.�; ˝/

�
.u/ 6 lim sup

"!0

N

2�"
EN" .u

k"
" ; ˝/C C Hd�1

�
.˝ n˝1/ \ J u0

�
:

As the choice of ˝1 with the properties (5.9) was arbitrary, we can take a sequence ˝1;n such that
˝1;n " ˝ which makes the last term negligible. Hence

� - lim sup
"!0

�
N

2�"
EN";u0.�; ˝/

�
.u/ 6

4 sin2
�
�N
2

�
�2N

Z
˝\Ju

dS1.u�; u
C/j�uj1 dHd�1: (5.11)

Note that due to (5.2) the right-hand side coincides with the functional EN;u0 if the function u
coincides with u0 in a neighborhood of @˝. The general case can be deduced with a density
argument as follows.

Given any u 2 BV.˝ISN / we extend it to Rd by setting ujRd n˝ WD e1 and we let ˝2 �� ˝
be a Lipschitz set. Set Qu D 1˝u C .1 � 1˝/u0. Due to (5.2) we can apply [19, Lemma B.1] to
deduce that there exists a sequence ˝n �� ˝ of sets of finite perimeter such that un WD 1˝nuC

.1�1˝n/u0 converges to Qu in L1.˝2/ and in addition Hd�1.˝2\Jun/! Hd�1.˝2\J Qu/. Those
properties allow us to use the Reshetnyak continuity result for partitions [37, Theorem 3.1] which
yields that

lim
n!C1

4 sin2
�
�N
2

�
�2N

Z
˝2\Jun

dS1.u
�
n ; u

C
n /j�un j1 dHd�1

D
4 sin2

�
�N
2

�
�2N

Z
˝2\J Qu

dS1. Qu
�; QuC/j� Quj1 dHd�1:

Moreover, note that un D u0 in a neighborhood of @˝. Hence by the previous reasoning and lower
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semicontinuity of the � - lim sup we obtain

� - lim sup
"

�
N

2�"
EN";u0.�; ˝/

�
.u/ 6 lim inf

n!C1

 
� - lim sup

"!0

�
N
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�
.un/

!

6 lim inf
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4 sin2
�
�N
2

�
�2N

Z
˝\Jun

dS1.u
�
n ; u

C
n /j�un j1 dHd�1

6 lim inf
n!C1

4 sin2
�
�N
2

�
�2N

Z
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dS1.u
�
n ; u

C
n /j�un j1 dHd�1

D
4 sin2

�
�N
2

�
�2N

Z
˝2\J Qu

dS1. Qu
�; QuC/j� Quj1 dHd�1:

Letting ˝2 # ˝ yields the upper bound using the structure of Qu.
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