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We consider two related models for the propagation of a curvature sensitive interface in a time
independent random medium. In both cases we suppose that the medium contains obstacles that
act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the
interface remains bounded for all times even when a small constant external driving force is applied.
This phenomenon has already been known when only inhibitory obstacles are present. In this work
we extend this result to the case of – for example – a random medium of random zero mean forcing.

The first model we study is discrete with a random forcing on each lattice site. In this case we
construct a supersolution employing a local path optimization procedure. In the second, continuous,
model we consider a random heterogenous medium consisting of localized small obstacles of random
sign. To construct a stationary supersolution here, we need to pass through sufficiently many blocking
obstacles while avoiding any obstacles of the other sign. This is done by employing a custom
percolation argument.
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1. Introduction

We are investigating a model for an interface propagating through a random, heterogeneous medium.
As a governing equation, we consider

@tu.t; x/ D �u.t; x/ � f
�
x; u.t; x/

�
C F: (1.1)

This equation arises for example as a linearization of the mean curvature flow with a spatially non-
homogeneous driving force (see, e.g., [5, 6] for a derivation). The graph of u is the shape of the
interface at time t , F is a given exterior driving force and f is the force exerted by the medium
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on the interface. The function f is supposed to be non-zero only in small sets which correspond,
for example, to obstacles, impurities or precipitates in the medium. Such a setting is commonly
found when studying magnetic domain values, dislocation lines, or charge density waves. For a
more detailed list of related problems and applications, we refer to [2, 6].

In the deterministic, periodic setting this problem was studied in [6], with f having zero mean
(or at least this being a sufficient condition for their results). The authors show that in this case,
under some non-degeneracy conditions, there exists a critical driving force F �, up to which pinning
occurs, i.e., the evolving interface stays below some stationary hypersurface for all times. For larger
driving forces, there is a non-stationary solution to the problem that propagates with positive average
velocity.

Here, we consider a random setting, which can be seen as a variant of the quenched Edwards–
Wilkinson model, in the sense that the strengths and positions of obstacles are random and non-
correlated on long distances, but time-independent. Furthermore, they may act on the interface
in both directions (i.e., f is not assumed to be non-negative). Thus, our model also includes the
case with random forces having zero mean, which is a common setting in the physics literature,
see, e.g., [2, 13]. A random force with zero mean implies “negative” obstacles, i.e., areas where
the random field acts in an acceleratory fashion. These areas must be avoided in our pinning
construction.

Our goal is to show a result regarding pinning for two models. In both models we consider only
the one-dimensional case, so that the interface is in fact a curve, and our equation reads

@tu.t; x; !/ D @xxu.t; x; !/ � f
�
x; u.t; x; !/; !

�
C F

where exceptionally we stressed the randomness of the setting given by a probability space
.˝; F ;P/ by writing the random variable !. The interface is initially supposed to be flat having
the height 0, i.e., u.0; �/ D 0. The basic idea is to a.s. find a (viscosity) supersolution (for the
definition and properties see, e.g., [3]), or “barrier function,” to the related stationary problem, i.e.,
a function v that satisfies

v00.x/ � f
�
x; v.x/

�
C F 6 0 and v.x/ > 0 for all x 2 R:

By employing an appropriate comparison principle, this immediately implies that the interface a.s.
stays below the graph of v for all times since this was the case at t D 0. Our main goal in this work
is thus to show the existence of such a non-negative stationary supersolution in the setting of our
two models.

The first model we study is spatially purely discrete; we there consider the lattice Z2. Each
lattice point acts with a force of random strength chosen by a suitable probability distribution. The
notions of the space and time derivative are adapted to the discrete case. This model was studied in,
e.g., [1], where in arbitrary dimension for some specific distributions of f pinning and depinning
results were shown. Here, we focus on results regarding pinning, but consider a larger class of
distributions (in particular, allowing the aforementioned case of f having zero mean).

For the continuous setting, for the case f > 0, the occurrence of pinning for sufficiently small
driving force was shown in [5]. Depinning results for unbounded obstacles were studied, e.g.,
in [7, 8]. To prove pinning results in the case of obstacles without prescribed sign, we follow
a similar strategy of localization and percolation as [5], but require a more explicit form of the
constructed supersolution. This is possible due to our one-dimensional setting. Moreover, it is
necessary to extend the percolation result from [4] to the case with finite dependence of sites.
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2. Discrete model on Z2

Let the obstacle strengths f .i; j /, i; j 2 Z be independent and identically distributed Z [ f�1g-
valued random variables defined on a probability space .˝; F ;P/. We denote the expected value of
a (possibly extended real-valued) random variable on that space by E (whenever it is defined). We
consider the following continuous time evolution of (random) functions ut W Z ! Z, t > 0. The
initial condition is u0 � 0. The function u can jump from its current value ut .i/ to ut .i/C 1 or to
ut .i/ � 1 depending on the value of f .i; ut .i// and the discrete Laplacian �1ut .i/ defined as

�1u.i/ D u.i C 1/C u.i � 1/ � 2u.i/:

The corresponding jump rate is � D �
�
�1ut .i/�f .i; ut .i//

�
with the interpretation that if � > 0,

then u can only jump to ut .i/C 1 (with rate �) and when � < 0, then u can only jump to ut .i/� 1
and does so with rate ��. Here, � is a strictly increasing function from Z to R which satisfies
�.0/ D 0. The phrase u jumps from ut .i/ to ut .i/ C 1 with rate � > 0 means - as usual - that
for some exponentially distributed random variable � with parameter � which is independent of the
field f , us.i/ D ut .i/ for all s 6 � ^ .t C �/, where � is the first time after t when the Laplacian
at ut .i/ changes (due to a jump of one of the neighbors) and where utC�.i/ D ut .i/ C 1 in case
� < �.

One may ask under which conditions on� as above there exists a unique process with values in
the functions from Z to Z associated to the given rates. This clearly holds when� is bounded which
we can safely assume since none of the following results in this section depends on � (except for
its sign).

Let Z;Z0; Z1; : : : be independent random variables which have the same distribution as
f .i; j /.

Theorem 2.1 If
E
�
Z0 _ .�1CZ1/ _ .�2CZ2/ _ : : :

�
> 0; (2.1)

then, almost surely, there exists a function v W Z ! N0 such that �1v.i/ 6 f .i; v.i//, i.e., a
non-negative supersolution.

Proof. Without loss of generality we can and will assume thatZ is essentially bounded from above.
We first construct a supersolution v and show that it is almost surely bounded from below. Then the
claim will follow easily.

We start by defining v.0/. FixN 2 N0, and letM be the smallest integer for whichM > N and
f .0;M/ > �1. The condition in the theorem guarantees that such an M exists. Let v.0/ WD M .
We will successively construct v.n C 1/ from the previous values v.0/; : : : ; v.n/ and the obstacle
strengths f .1; j /; : : : ; f .n C 1; j /, j 2 Z (the construction for negative values is completely
analogous). We will always first define a provisional value Nv.nC 1/ which we will then (possibly)
change to the smaller final value v.n C 1/ depending on the obstacles f .n C 1; j /, j 2 Z. We
will perform the construction in such a way that the sequence v.0/; : : : ; v.n/; Nv.nC 1/ satisfies the
condition of a supersolution at 1; : : : ; n. Note that when we later change Nv.nC 1/ to a smaller value
v.nC 1/ then this property still holds for the sequence v.0/; : : : ; v.n/; v.nC 1/.

We define the provisional values Nv.1/ D Nv.�1/ in such a way that the sequence Nv.�1/, v.0/,
Nv.1/ satisfies the condition of a supersolution at 0. Specifically, we choose Nv.1/ D Nv.�1/ WD
v.0/C bf .0;v.0//

2
c.
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Given v.n/ and Nv.n C 1/ for some n 2 N0, we now define v.n C 1/ and Nv.n C 2/ in such
a way that the increment Nv.n C 2/ � v.n C 1/ is as large as possible subject to the conditions
v.nC 1/ 6 Nv.nC 1/ and the supersolution condition at nC 1. The idea behind this choice is that
large increments are likely to ensure that v is bounded from below. Clearly, the optimal choices
are v.n C 1/ WD Nv.n C 1/ � m where m 2 N0 maximizes f .n C 1; Nv.n C 1/ � m/ � m and
Nv.nC 2/ WD 2v.nC 1/� v.n/C f .nC 1; v.nC 1// (which satisfies the supersolution condition at
nC 1 with equality). Note that a maximizing m exists since f is essentially bounded from above.
For an illustration of this procedure, see Figure 1 below.

Note that the sequence v.n/, n 2 Z is a supersolution by construction. We check that the function
n 7! v.n/ is almost surely bounded from below.

DefineDn WD Nv.n/�v.n�1/; n > 1. By construction (and our independence assumptions) the
random variables DnC1 �Dn, n 2 N are independent and identically distributed with expectation

˛ WD E
�
DnC1 �Dn

�
D E

�
Z0 _ .�1CZ1/ _ .�2CZ2/ _ : : :

�
> 0:

(Note that independence of the increments is generally lost if we delete the bar in the definition of
Dn.) We have, for n 2 N,

v.n/ D v.n/ � Nv.n/CDn C v.n � 1/:

Note that the sequence v.n/ � Nv.n/, n > 1 is i.i.d. with expected value larger than �1 which
implies limn!1.v.n/ � Nv.n//=n D 0 almost surely. Further, by the strong law of large numbers,
limn!1Dn=n D ˛ > 0 almost surely. Hence,

1

n

�
v.n/ � v.n � 1/

�
D
1

n

�
v.n/ � Nv.n/

�
C
1

n
Dn

converges to ˛ > 0 almost surely. In particular, v.n/ > v.n � 1/ for all sufficiently large n
(and, analogously, v.�n/ > v.�n C 1/ for all sufficiently large n). In particular, the function v
is almost surely bounded from below. Using translation invariance, we see that the probability that
the function v is non-negative converges to 1 as the initially chosenN converges to1, i.e., we have
proven the almost sure existence of a non-negative supersolution.

REMARK 2.2 A number of remarks are in order.

(a) It is possible to admit R [ f�1g-valued obstacle strengths by taking the integer floor in the
statement and the proof of Theorem 2.1 as well as adapting the definition of � suitably.

(b) In the special case P
�
Z0 D 1

�
D p, P

�
Z0 D �1

�
D 1 � p, the condition in the theorem holds

iff p > 1
2

�
3�
p
5
�
� :38. In particular, we note that pinning occurs here even if more than half

of the obstacles are negative.
(c) A sufficient condition for (2.1) to hold is E

�
ZC0

�
> 1 (even if Z0 takes the value �1 with

positive probability). To see this, define

� WD inf
˚
i 2 N0 W Zi > 1

	
:

� has a geometric distribution:

P.� D n/ D .1 � p/np; n 2 N0;
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FIG. 1. Discrete path optimization. Suppose that v.0/; : : : ; v.7/ are already set. Then Nv.8/ (connected by the blue line)
is determined as the maximal choice such that the supersolution condition v.i � 1/ � 2v.i/ C Nv.i C 1/ 6 f .i; v.i//
is satisfied for i D 7. However, we check all possible choices below Nv.8/ (which automatically satisfy the supersolution
condition at i D 7), and choose v.8/ such that the next provisional incrementD9 satisfying the supersolution condition at
i D 8 is maximal.

where p D P.Z0 > 1/ > 0. Then,

E
�
Z0 _ .�1CZ1/ _ .�2CZ2/ _ : : :

�
> E

�
� � CZ�

�
D

1X
nD0

.1 � p/np
�
� nC

1

p
E
�
ZC0

��
D
1

p
E
�
ZC0

�
�
1 � p

p
> 1 > 0:

(d) In Theorem 2.1, the existence of a non-negative stationary supersolution was proved. It is easy
to see that then also a minimal non-negative stationary supersolution v exists, as the pointwise
minimum over all supersolutions is again a supersolution. A close inspection of the proof of
Theorem 2.1 shows that large downward jumps are exponentially unlikely, and therefore the
height of v.0/ admits a finite exponential moment. This implies both bounded expectation and
logarithmic growth of v.x/ as x !˙1.

Corollary 2.3 If, for some F 2 Z,

E
�
Z0 _ .�1CZ1/ _ .�2CZ2/ _ : : :

�
> F;

then, almost surely, there exists a function v W Z! N0 such that �1v.i/ 6 f .i; v.i// � F .
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3. Continuum model

3.1 Setting

In the continuum setting of equation (1.1), we consider f WR2 �˝ ! R to be of the form

f .x; y; !/ D
X
j2N

fj .!/s.�/'

�
x � xj .!/

�
;
y � yj .!/

�

�
; (3.1)

where .xj ; yj / is a 2-dimensional Poisson point process prescribing the centers of the obstacles.
The random variables fj .!/ 2 Œ�1;1/, which are assumed to be identically distributed and
independent of the obstacle centers, prescribe the strength of each individual obstacle and must
satisfy Pff1 > kg > 0 for some 0 < k 6 1.

In order to prove our result, we have to introduce a small parameter � > 0 which determines
the spatial extent of the obstacles, and will be chosen according to the statistical parameters of the
obstacle distribution. Therefore, we assume that the function ' 2 C1c .R2/ satisfies 'jŒ�1;1�2 > 1
and 'jR2nB˛.0/ D 0 for some ˛ >

p
2. As one can read off (3.1), this implies that the obstacles

achieve their full strength fj on a square of side-length 2� and vanish outside a ball of radius ˛�.
Since small obstacles have a small effect on the propagating interface, we rescale their force by s.�/
such that their effect remains constant when changing �. It will turn out that the choice s.�/ D 2

�
is

suitable.
Such an assumption of very small obstacles is also made in [11], where point obstacles are

considered in a model for dislocation evolution. Their assumptions can be interpreted as the �! 0

limit of our model.
Again, we will show a.s. existence of a non-negative viscosity supersolution of

v00.x/ � f
�
x; v.x/

�
C F 6 0: (3.2)

The function v, that we construct, will be piecewise quadratic, and in points of non-differentiability
the condition on viscosity solution will be trivially met, as from our construction it will hold that

lim
x%a

v0.x/ > lim
x&a

v0.x/:

To simplify this construction, we will work with the following setting. We split the obstacles into
those with fj > k (and refer to them as positive) and into those with fj < 0 (negative). Obstacles
for which fj 2 Œ0; k/ will be ignored. The centers of the positive/negative obstacles .x˙j ; y

˙
j / are

now distributed according to independent Poisson point processes on R2 with parameters �˙. Then
all positive obstacles have full strength of at least ks.�/ in the squares of side-length 2� centered at
.xCj ; y

C

j /. We refer to these squares as cores of the obstacles and denote ks.�/ D 2k
�
D S .

The response of the medium to a given interface .x; v.x// � R2 may thus be estimated by

f
�
x; v.x/

�
> f�

�
x; v.x/

�
D

8̂<̂
:
X
j2N

S'
�
x�x
C

j

�

v.x/�y
C

j

�

�
; if for all i 2 N we have dist

�
.x; v.x//; .x�i ; y

�
i /
�
> ˛�;

�1 else;

dropping the dependence on ! 2 ˝ for notational convenience.
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FIG. 2. Idea for the construction. It follows from (3.2) that outside the obstacles any supersolution is concave, and inside
the positive obstacles it may be convex. Since we are looking for a positive supersolution (green line), it must pass through
sufficiently many positive obstacles (green dots), in which it can turn upwards, and avoid the negative ones (red dots).

In fact, as shown in Figure 2, we will construct a supersolution that will completely avoid
negative obstacles. Therefore, their precise strength does not matter. As for the positive obstacles,
we will only employ that they exert force (at least) S in the square of size 2�.

3.2 Localization

First we have to localize enough positive obstacles to construct a blocking supersolution. Therefore,
let us define

Qi;j WD
��
�
l
2
; l
2

�
C i.l C d/

�
�
�
jh; .j C 1/h

�
; i 2 Z; j 2 N: (3.3)

We will consider the obstacles with entire cores lying in one of Qi;j . As depicted in Figure 3, we
thus have columns of rectangles with length l and height h, and between them there is a free space
of width d . For now, these scales are still completely free. We start at the height h so that there is
no intersection of the localized positive obstacles with the x-axis as long as h > ˛� � �.

3.3 Inside a core

Within the core of a positive obstacle, a sufficient condition to fulfil (3.2) reads v00.x/ 6 S �F: Let
us suppose F 6 S

2
(since in fact, as we will see, we may only pin F � S ). We take the parabola

with v00 D S
2

that has its vertex on the mid vertical line of the core and goes through the upper
corners of the core. Its inclination at the upper corners has modulus k, and for k < 4 its vertex lies
within the core, see Figure 4.

3.4 An upper bound on the pinned force

Let us first determine the force F that we may block when we have two positive obstacles at a given
distance if we suppose that there is no negative obstacle in the vertical strip between them. The
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FIG. 3. Decomposition of the upper half-plane. TheQi;j from (3.3) are the green rectangles of length l and height h.

FIG. 4. Parabolas within a core. We take parabolas through the upper corners of a core with the second derivative S
2

. For
k < 4 the whole parabola lies within the core, the cases k D 1; 4 being depicted in blue and green. For larger k, the force
of the obstacle could not be fully exploited, as suggested by the red line.

FIG. 5. Parabola connecting two obstacles. The conditions are that it must connect the respective corners, fulfil the condition
on the second derivative, and have the appropriate inclinations at the corners so as to be a building block for a viscosity
supersolution.
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exiting points are, as specified in the previous section, the right resp. left corner. Let their positions
for the sake of simplicity be A D .0; 0/ and B D .m; n/ with m > 0.

The conditions read

v00.x/C F 6 0; v0.0/ 6 k; v0.m/ > �k (3.4)

with the latter two ensuring that this function together with the parabolas in the cores forms a
supersolution in the viscosity sense. Hence, necessary conditions for existence of a supersolution
through the points A and B are

k >
F

2
mC

n

m
and k >

F

2
m �

n

m
:

In the other direction, let k > F
2
mC n

m
and k > F

2
m � n

m
. Then the parabola

v.x/ D

�
F

2
mC

n

m

�
x �

F

2
x2;

depicted in Figure 5, is a supersolution between A and B since v00 C F D 0 and

v.0/ D 0; v.m/ D n; v0.0/ D
F

2
mC

n

m
6 k and � v0.m/ D

F

2
m �

n

m
6 k:

Conclusion 3.1 Having two obstacles that produce an exiting inclination k with horizontal distance
m and vertical n, we may pin any force of magnitude

F 6 2
km � jnj

m2
:

To control both distances, we will consider only parabolas between obstacles from the
neighboring columns whose heights differs at most by one unit. If we thus connect two obstacles
in boxes Qi;j and QiC1;jCe with e 2 f�1; 0; 1g, then d 6 m < 2l C d and jnj < 2h. We get a
positive force if

kd > 2h: (3.5)

We then block at least

F 6 2
kd � 2h

.d C 2l/2
: (3.6)

3.5 Length of the line between parabolas

We must take care not to intersect any negative obstacle with our supersolution. This we achieve by
considering only the positive obstacles that fulfill the following two conditions:

� There are no negative obstacles in the square centered at the center of the obstacle with the side
2.�C b/ where b is a new scale. Hence, we have a strip of thickness b around the core as shown
in Figure 6.
� There are less than N (for now arbitrary) negative obstacles in the whole region where parabolas

may lie.
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FIG. 6. Length of the line between parabolas. Around each core (the tiny squares) we have a concentric square of thickness b
where no negative obstacle may lie. The negative obstacles thus intersect the largest number of parabolas if their centers lie
on the intersection of the border of these squares with the ray of admissible parabola (the red lines).

We consider a ray of possible parabolas and assess an admissible size of (negative) obstacles as
follows:

The most problematic position for negative obstacles is on the border of the concentric square
(the red line in Figure 6). Suppose all the negative obstacles lie on this line. Then they cover a height
up to 2.N � 1/˛�. We must, however, take into account that parabolas have a certain inclination. If
a parabola meets this line outside the balls around the centers of the negative obstacles with radius
2˛� (the dotted line in Figure 7), then it does not intersect any negative obstacle (lying inside a ball
with radius ˛�, the red circle in Figure 7), as its inclination surely does not exceed 1. Thus, the
negative obstacles block at most 4.N � 1/˛�. If this length is shorter than the half of the red line,
we surely find a parabola around them on both sides.

If a ray of parabolas is given by u1 and u2 with

u001.x/ D �F1 and u002.x/ D �F2

where F1 > F2, then the length of the part of the border of each square determined by this ray is
given by

u1.b/ � u2.b/ D u1.m � b/ � u2.m � b/ D
F1 � F2

2
b.m � b/:

FIG. 7. Estimating the length of the blocked line. If a negative obstacle lies on the critical line, it may happen that it intersects
a parabola outside of this line, as the parabola has a certain inclination. However, since for sure its inclination is less than 1,
this cannot happen if we allow parabolas to pass this line only on the parts that are at least 2˛� away from the center of any
negative obstacle.
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We also notice: Since we restrict ourselves to k 6 1, that parabolas surely exit the concentric square
at the right resp. left side.

3.6 Position of vertex

The parabola

u.x/ D

�
F

2
mC

n

m

�
x �

F

2
x2

has its vertex in

x0 D

F
2
mC n

m

F
; y0 D

�
F
2
mC n

m

�2
2F

:

Since we want to control its height only between .0; 0/ and .m; n/, we have to look at the case
0 6 x0 6 m. In this case

0 6
F
2
mC n

m

F
6 m or Fm2 > 2jnj: (3.7)

It suffices to consider n > 0. If F is too small to fulfil (3.7), the whole piece of the parabola
lies lower than the higher obstacle. Otherwise, let us allow only parabolas with y0 6 2h. Since
y0 D

F
2
x20 6

F
2
m2; a sufficient condition for this is

F 6
4h

.2l C d/2
: (3.8)

For every such F , no point of the corresponding parabola between the obstacles lies more than
2h higher than the lower obstacle. Thus, these parabolas surely lie in rectangles of the height 3h
depicted in Figure 8.

3.7 Percolation

Now we must obtain a.s. a sequence of “good” rectangles fQi;j.i/gi2Z that contain positive obstacles
and avoid negative ones such that jj.i C 1/ � j.i/j 6 1 for all i 2 Z. This can be formulated as a
problem in Lipschitz percolation as follows.

Let d > 1 and consider d -independent site percolation on ZnC1 with parameter p 2 Œ0; 1�,
i.e. �.u/, u 2 ZnC1 are random variables taking values in f0; 1g such that P

�
�.u/ D 1

�
D p for

every u and �.u/, u 2M are independent wheneverM is a subset of ZnC1 for which the following
holds: if u ¤ v are elements of M , then either junC1 � vnC1j > d or .u1; : : : ; un/ ¤ .v1; : : : ; vn/.
Note that the case d D 1 corresponds to the independent site percolation set-up. If �.u/ D 1, then
we say that the site u is open and closed otherwise. The last component unC1 of u 2 ZnC1 plays a
different role compared to .u1; : : : ; un/. We will sometimes call the last coordinate vertical and the
others horizontal.

In this set-up the following result holds.

Proposition 3.2 There is a critical probability p0 D p0.n; d/ 2 .0; 1/ such that for every p > p0
there is a Lipschitz percolation cluster, i.e., almost surely, there exists an open Lipschitz surface,
i.e., a function � W Zn ! N such that j�.z/��. Nz/j 6 1 whenever jz� Nzj D 1 and that �.�.z// D 1
for all z 2 Zn.
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FIG. 8. Admissible boxes for parabolas. We set the condition on the connecting parabola that its highest point lies at most
2h higher that the lower obstacle. For the depicted situation, the respective parabolas lie in the shaded rectangles with side-
lengths 2l C d and 3h.

Proof. For d D 1 this is [4, Theorem 1] or [12, Theorem 1]. In the general case, we will sketch the
proof following that of [12, Theorem 1] rather closely.

For each u 2 ZnC1, h.u/ WD unC1 is its height. Let e1; : : : ; en; enC1 be the standard basis
vectors in RnC1.

A �-path from u to v is a finite sequence of distinct states x0; : : : ; xk with x0 D u and xk D v
such that for every i D 1; : : : ; k we have

� either xi � xi�1 D enC1, in which case we speak of a step upwards,
� or xi � xi�1 2 f˙e1 � enC1; : : : ;˙en � enC1g that is a step downwards.

A �-path is called admissible if the endpoint of every step upwards is closed. We denote by u� v

the event that there exists an admissible �-path from u to v. As was shown in [12, Section 4],
an open Lipschitz surface exists if and only if there exists some h0 > 0 such that there does not
exist any u D .z; 0/ with z 2 Zn and any h > h0 such that u � .0; h/ (for a slightly simpler
proof [in a slightly more general set-up] avoiding the concept of hills and mountains see [9, 10]).
Therefore, we have to show that for sufficiently large p < 1 and large h 2 N it is unlikely that
there exists an admissible path starting from any point of the form .z; 0/ to .0; h/. Due to a possible
lack of translation invariance, we need to modify the proof slightly compared to those mentioned
above.

For a �-path � from .z; 0/ to .0; h/, we denote by U and D the number of steps upwards
resp. downwards. Then h D U � D and jzj 6 D and � is admissible if every step upwards ends
at a closed site. Due to d -independence (and the fact that a �-path consists of distinct points) the
probability of this happening is at most qb

U�1
d
cC1 6 q

U
d . Figure 9 shows such an admissible �-
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FIG. 9. Admissible �-path. A �-path between two points consists of steps upwards and diagonally downwards. It is
admissible if all steps upwards end in a closed site. Here the red-coloured sites must be closed while the states of the
others are arbitrary.

path. The sites in red must be closed, and we obtain the bound on the probability by realizing that at
least bU�1

d
cC1 of them are independent. In every column, we may simply take the highest one and

then every d -th one that lies in the path. This bound is also optimal, take, e.g., the straight vertical
path .0; 0/� .0; Ud C 1/.

The rest of the proof is as usual (just replacing qU by q
U
d ): the expected number of admissible

�-paths from .z; 0/ to .0; h/ is upper bounded byX
U�DDh;D>jzj

 
U CD

U

!
.2n/Dq

U
d

6
X

U�DDh;D>jzj

2UCD.2n/Dq
U
d

D

X
D>jzj

22DCh.2n/Dq
DCh
d D 2hqh=d .8nq1=d /jzj

1

1 � 8nq1=d
;

provided that 8nq1=d < 1. In this case the last expression is summable over all h > h0 and all
z 2 Zn and the double sum converges to 0 as h0 ! 1, so the claim of the proposition follows
(with p0 D 1 �

�
1
8n

�d ).

3.8 Putting it together

Now let us state our problem in terms of Lipschitz percolation. Our sites .i; j / 2 Z2 are boxesQi;j .
We impose three conditions on a box to be open:

� Qi;j must contain the core of a positive obstacle. Thus we get a condition on the heights and
lengths. That means that 2� < l; h and that the probability is

P.Qi;j contains the core of a positive obstacle/ D 1 � e��
C.l�2�/.h�2�/:
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� Moreover, a core together with a strip of width b around it must not intersect any negative
obstacle. We need b < d

2
in order for probabilities to be independent in the horizontal direction

and, e.g., b < h to have limited dependence (more precisely, 2-independence) in the vertical
direction. The probability then reads

P.strip intersects no negative obstacles/ > e���.2bC2�C2˛�/2 :

� Lastly, we want the rectangle “around” a positive obstacle with length l C d and height 6h (as in
Figure 10) to contain less than N centers of negative obstacles. If we denote V WD 6h.l C d/,
then

P.rectangle intersects less than N centers of negative obstacles/ D

D e��
�V

N�1X
kD0

.��V /k

kŠ
> e���V

�
e�
�V
� e�

�V .�
�V /N

NŠ

�
D 1 �

.��V /N

NŠ

(If we want the last two events to independent, we may exclude here the square with side 2.bC�/.
The inequality, however, still holds.)

FIG. 10. Boxes corresponding to percolation sites. A site .i; j / is open ifQi;j contains the center of a positive obstacle, if
the square of thickness b around the core of this obstacle contains no center of negative obstacles, and if the larger rectangle
of side-lengths lCd and 6h contains less thanN centers of negative obstacles. In this figure some of these larger rectangles
are depicted in different colours, e.g., the red one belonging to .�1; 4/.
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Hence,

P.Qi;j is open/ > .1 � e��C.l�2�/.h�2�//e�4��.bC.1C˛/�/2
 
1 �

�
6��h.l C d/

�N
NŠ

!
:

We may surely employ Proposition 3.2 if the right-hand side is bigger than p0 D p0.1; 6/ since the
sites are 6-independent. The scales can be chosen in the following way:

(a) Let us suppose l; h > 4�. Set d WD l and h WD kd
4

(to obey (3.5)), and choose l so large that

1 � e��
C.l�2�/.h�2�/ > 1 � e��Chl=4 > p1=30 : (3.9)

(b) Suppose .1C ˛/� 6 b: We choose b small enough so that b < h (thus also b < d
2

) and

e�4�
�.2b/2 > p1=30 : (3.10)

(c) Finally, choose N 2 N so that

1 �

�
6��h.l C d/

�N
NŠ

> p
1=3
0 : (3.11)

The percolation result is now applicable, and we get a Lipschitz function between open sites. Each
of these open sites contains a positive obstacle, and by (3.6) and (3.8), we block by appropriately
chosen parabola at least all F 6 min

˚
4h

.2lCd/2
; 2 kd�2h
.2lCd/2

	
. Making the choices as above, we arrive

at

F � WD
1

2
min

�
4h

.2l C d/2
; 2
kd � 2h

.2l C d/2

�
D

k

18l
: (3.12)

We choose the interval of admissible forces ŒF �; 2F ��. The corresponding parabolas cut on the side
of the square a line of length

2F � � F

2
b.m � b/ >

F �

2
b.d � b/ D

kb.l � b/

36l
:

Surely, if
1

2

kb.l � b/

36l
> 4N˛�; and thus � 6

kb.l � b/

288˛N l
; (3.13)

there is a parabola that does not intersect any negative obstacle with center in the two rectangles of
size .l C d/� 6h belonging to the open sites. We see that the assumptions on � from (a) and (b) are
automatically fulfilled. Clearly, we also have ˛� < h; d , and thus this parabola also cannot intersect
any negative obstacle with center outside the rectangles.

Thus, we can show

Theorem 3.3 Let us suppose the following:

� Distribution: We have two independent Poisson point processes with parameters �˙ with
.x˙j ; y

˙
j /, j 2 N being the corresponding positions of random points.

� Shape: A non-negative function ' 2 C1c .R2/ fulfils ' > 1 on Œ�1; 1�2 and supp' � B˛.0/ for
some ˛ >

p
2.
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� Strength: k 2 .0; 1�.

Define for every � > 0:

f�.x; y; !/ WD
X
j

2k

�
'

 
x � xCj .!/

�
;
y � yCj .!/

�

!
:

Then there exist �� > 0 and F � > 0 such that a.s. there exists a function v W R �˝ ! .0;1/ that
satisfies

v00.x/ � f��
�
x; v.x/

�
C F � 6 0 (3.14)

in the viscosity sense and d
��
x; v.x/

�
; .x�j ; y

�
j /
�
> ˛�� for all j 2 N.

Proof. We choose the scales l; d; h; b;N as described in (3.9)–(3.11). Thus we obtain Lipschitz
percolating boxes fQi;j.i/gi2Z. Then we define

F � WD
k

18l
and �� WD

kb.l � b/

144˛N l

according to (3.12) and (3.13). Between two obstacles from adjacent boxes, for some F 2

ŒF �; 2F �� we may a.s. find a parabola v00CF D 0 that does not intersect any negative obstacle. (F
need not be the same for different pairs.)

We define the supersolution v in a piecewise manner. Between the cores from the Lipschitz
percolating boxes, we take the parabolas from above. Inside the cores, we take parabolas with v00 D
S
2
D

k
�

as described in Section 3.3. We notice that the assumption 2F � 6 k
�

made there is fulfilled.
Moreover, the cores also do not intersect any negative obstacle. At the edges of core, v may be non-
differentiable. However, due to (3.4), v suffices the inequality (3.14) in these points in the viscosity
sense.

REMARK 3.4 Clearly, also for every � 6 �� and F 6 F � we may a.s. find such a function.

REMARK 3.5 We note that the lowest non-negative Lipschitz percolating cluster, and therefore also
the lowest barrier function v, satisfies P.v > H/ 6 ce�ˇH for some constants c and ˇ, due to
the argument in [4, Theorem 2], adapted to our setting of finite range dependence. This of course
immediately implies bounded expectation of the barrier height. Furthermore, the growth of this
lowest barrier function v.x/ is logarithmic for large jxj.
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