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Spatial segregation occurs in population dynamics when k species interact in a highly competitive
way. As a model for the study of this phenomenon, we consider the competition-diffusion system of
k differential equations

��ui .x/ D ��ui .x/
X
j¤i

uj .x/; i D 1; : : : ; k

in a domain D with appropriate boundary conditions. Any ui represents a population density and
the parameter � determines the interaction strength between the populations. The purpose of this
paper is to study the geometry of the limiting configuration as �!C1 on a planar domain for any
number of species. If k is even we show that some limiting configurations are strictly connected to
the solution of a Dirichlet problem for the Laplace equation.
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1. Introduction and setting of the problem

When two or more species live in proximity and share the same basic requirements, they
usually compete for resources, habitat or territory. Only the strongest prevails, driving the weaker
competitors to extinction. This is the principle of competitive exclusion (also known as Gause’s
law). One species wins because its members are more efficient at finding resources, which leads
to an increase in population. This means that a population of competitors finds less of the same
resources and cannot grow at its maximal capacity [13].

According to the competitive exclusion principle, many competing species cannot coexist
under very strong competition, but when spatial movements are permitted more than one species
can coexist thanks to the segregation of their habitats. For a theoretical discussion and some
experimental results see [14, 17].
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From a mathematical viewpoint the determination of the configuration of the habitat segregation
for some populations is an interesting problem which can be modelled by an optimal (in a
suitable sense) partition of a domain; for example in the papers [8–11, 22] the problem is studied
modelling the interspecies competition with a large interaction term in an elliptic system of partial
differential equations inspired by classical models in populations dynamics. In [3, 4, 12] the
problem is modelled as a Cauchy problem for a parabolic system of semilinear partial differential
equations describing the dynamics of the densities of different species. In the evolutive case,
in particular see [12], it is proved that some populations can vanish under the competition of
other species; moreover, in [3, 4] the authors are able to estimate the number of the long-term
surviving populations and other interesting qualitative properties of the spatial distributions of
interacting populations. Note that also the study of the territoriality, that is how different groups
of the same species divide an area, avoiding to effectively fight for resources, can be viewed as a
habitat segregation produced by competition (see, for example, [5, 16, 20]); moreover, this kind
of competition is a struggle between competitors having the same features, that is between perfect
competitors.

Others approaches have been considered. In [6], for example, a phase segregation problem
is studied by minimization of integral functionals. The authors obtain results showing mixing or
separation of the two phases, depending of the strength of the interaction between the two species
(that is depending on some relations between the parameters in the model). The main difference
with our study is that, in [6], the densities have no to satisfy a boundary datum, so that the optimal
partition of the domain is related only to the geometry of the domain and the interaction between
the parameters.

As a model for the study of the segregation phenomena, we consider the competition-diffusion
system of k differential equations

8̂̂<̂
:̂
��ui .x/ D ��ui .x/

X
j¤i

uj .x/ in D ;

ui .x/ > 0 in D ;

ui .x/ D �i .x/ on @D :

i D 1; : : : ; k : (1.1)

Here D � Rn is an open bounded, simply connected domain with smooth boundary @D. In this
paper we consider the case n D 2. We assume that the function ˚ D .�1; : : : ; �k/ is an admissible
datum that is �i 2 W 1;1.@D/, �i > 0, i D 1; : : : ; k, �i � �j D 0 a.e. on @D for i ¤ j , the sets
f�i > 0g are nonempty, open connected arcs and the function

Pk
iD1 �i vanishes exactly in k points

of @D (the endpoints of the �i ’s supports).
The system (1.1) governs the steady states of k competing species coexisting in the same domain

D. Any ui represents a population density and the parameter � > 0 determines the interaction
strength between the populations. In this model the competition between two species is depicted
without direct reference to the resources they share, rather, it is assumed that the presence of each
population leads to a depression of its competitor’s growth rate.

If ˚ is admissible, the existence of positive solutions of (1.1) for any positive � is proved
in [9] using Leray–Schauder degree theory. The uniqueness is proved in [24], using the sub- and
super-solution method.
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Let us define the class of segregated densities

U˚ D

n
U D .u1; : : : ; uk/ 2

�
H 1.D/

�k : ui D �i on @D;
ui > 0 in D;

ui � uj D 0 for i ¤ j a.e. in D
o

and the class

S˚ D
n
U D .u1; : : : ; uk/ 2U˚ : ��ui 6 0 in D;

��
�
ui �

P
j¤i uj

�
> 0 in D

o
:

Let U .�/ D .u1;�; : : : ; uk;�/ be the solution of (1.1) for every � > 0. In [9] it is proved that there
exists U D . Nu1; : : : ; Nuk/ 2U such that, up to subsequences, ui;� ! Nui inH 1.D/ and S˚ contains
all the asymptotic limits of (1.1) that is U 2 S˚ .

The uniqueness of the limit solution of (1.1) as � ! C1 was proved in [9] in the case k D 2

and in [11] in the case of k D 3 and in dimension n D 2. Specifically, the authors prove that the
class S˚ consists of one element. In [24] it is proved that S˚ consists of one element also in the case
of arbitrary dimension and arbitrary number of species. A different proof of uniqueness of the limit
configuration, based on the maximum principle and on the qualitative properties of the elements
of S˚ , is given in [2].

The description of the qualitative properties of the limiting configurations in the planar case (i.e.,
n D 2) was considered in [11] for k D 3 and in [19] for k D 4. The aim of this paper is to describe
the geometry of the limiting configurations in the planar case, for any number of species.

The outline of the paper is as follows. In Section 2 we recall some basic facts and known results
of the class S˚ , which will be used later. In Section 3 we study the geometry of the limiting
configuration in any number of species. If k D 2s, starting from the argument used in [19] for
k D 4 species, we prove that some limiting configurations are strictly related to the solution of
a Dirichlet problem for the Laplace equation. Our results rely on the construction of a harmonic
function which assumes the value

P2s
jD1.�1/

j�j on @D. This function has an even number of
nodal regions compatible with an alternate sign rule. We emphasize that this construction cannot be
done in the case of odd k. This will be the object of a forthcoming paper. In Section 4 we focus on
the case of k D 6 number of species.

2. Basic facts

In this section we recall some basic facts that will play an important role in our study. Suppose that
D is a simply connected domain in R2. Due to the conformal invariance of the problem, with no
loss of generality we can assume

D D B.O; 1/ D
˚
x D .x1; x2/ 2 R2 W jxj < 1

	
and consider the class

S˚ D
n
U D .u1; : : : ; uk/ 2

�
H 1.D/

�k : ui > 0 in D; ui D �i on @D;

ui � uj D 0 for i ¤ j;��ui 6 0;��
�
ui �

P
j¤i uj

�
> 0 in D

o
:
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The study of S˚ provides the understanding of the segregated states of k species induced by strong
competition. If ˚ D .�1; : : : ; �k/ is an admissible datum then �i ; i D 1; : : : ; k; are positive in their
supports, the sets f�i > 0g � @D are open connected arcs and ˚ D

Pk
iD1 �i vanishes at exactly k

points of @D, the endpoints p1; : : : :; pk in counter clockwise order.
In the following we will denote by U both the k-tuple .u1; : : : ; uk/ and the function

Pk
iD1 ui .

For any U 2 S˚ define the nodal regions

!i D
˚
p 2 D W ui .p/ > 0

	
i D 1; : : : ; k;

the multiplicity of a point p 2 D with respect to U :

m.p/ D #
˚
i W j!i \ Br .p/j > 0 8r > 0

	
where Br .p/ D fq 2 R2 W jp � qj < rg, and the interfaces between two densities

�ij D @!i \ @!j \
˚
p 2 D W m.p/ D 2

	
:

The element U 2 S˚ defines exactly k nodal regions and

D D !1 [ : : : [ !k :

Let us summarize the basic properties of the elements U 2 S˚ :

(s1) Each ui 2 W 1;1.D/ (see [10, Theorem 8.4]). It follows that ui 2 C.D/, !i is open and
p 2 !i implies m.p/ D 1. By standard regularity theory for elliptic equations we also have
that ui 2 C1.!i /;

(s2) each !i is connected and each �ij is either empty or a connected arc starting from a point
pi 2 @D (see [11, Remark 2.1]);

(s3) ui is harmonic in !i ; ui � uj is harmonic in D n [h¤i;j!h (see [10, Proposition 6.3]);
(s4) if p 2 D satisfies m.p/ D 2, then (see [10, Remark 6.4])

lim
!i3q!p

rui .q/ D � lim
!j3q!p

ruj .q/I

(s5) U 2 W 1;1.D/ and if p 2 D satisfies m.p/ D 2, then

jrU.p/j D lim
!i3q!p

jrui .q/j D lim
!j3q!p

jruj .q/j ¤ 0

and the set fq W m.q/ D 2g is locally a C 1-curve through p ending either at points with higher
multiplicity, or at the boundary @D (see [10, Lemma 9.4]);

(s6) if p 2 D satisfies m.p/ > 3, then jrU.q/j ! 0, as q ! p (see [10, Theorem 9.3]);
(s7) the set fp 2 D W m.p/ > 3g consists of a finite number of points (see [10, Lemma 9.11]);
(s8) if p 2 D with m.p/ D h > 3 then there exists �0 2 .��; �� such that

U.r; �/ D rh=2
ˇ̌̌̌
cos

�
h

2
.� C �0/

�ˇ̌̌̌
C o.rh=2/ (2.1)

as r ! 0, where .r; �/ is a system of polar coordinates around p (see [10, Theorem 9.6]).

REMARK 2.1 The asymptotic formula (2.1) describes the behavior of U in a neighborhood of a
multiple point in D. As a consequence, at multiple point U 2 S˚ shares the angle in equal parts.
This property does not hold true if U 2 S˚ has a multiple point p on the boundary @D.



SOME REMARKS ON SEGREGATION OF k SPECIES 407

3. Results on k species

Let U 2 S˚ , we define the set of points of multiplicity greater than or equal to h 2 N

Zh.U / D
˚
p 2 D W m.p/ > h

	
:

The set Zh.U / consists of a finite number of isolated points [10, Lemma 9.11 and Theorem 9.13].

Proposition 3.1 Let k > 3 and U 2 S˚ , then Z3.U / is nonempty and does not contain points of
multiplicity higher than k.

Proof. If Z3.U / D ; then the interfaces �ij between any two densities do not intersect in D. The
function ˚ D

Pk
iD1 �i vanishes in exactly k points and any �ij links a point pi 2 @D to a point

pj 2 @D, i ¤ j . Therefore, if k is odd there exists at least a point p` 2 @D which belongs to two
interfaces. Then p` 2 Z3.U / and we get a contradiction.

If k is even, since � vanishes in exactly k points, then there are only k=2C 1 interfaces which
are nonempty, with endpoints on the boundary and do not intersect. This contradicts the fact that
U 2 S˚ defines k nodal regions. It also implies that Zs.U / D ; for s > k.

Let U 2 S˚ . We associate to any p 2 Z3.U / the number

i.p/ D m.p/ � 2:

Proposition 3.2 Let k > 2. The following relation holds:

k � 2 D
X

p2Z3.U /

i.p/: (3.1)

Proof. If k D 2 then Z3.U / D ; and (3.1) is trivially satisfied. Let k > 3. First of all we want to
point out that the set

�
[� ij

�
[ @D, that is the union of the interfaces between any two species and

the boundary of the disk forms a planar, connected graph, whose vertices are the points in Z3.U /

and the zeros of the boundary datum. From classical arguments in graph theory (essentially the
Euler polyhedral formula, see for example [18, Theorem 1.5.2]) it follows that

n �mC f D 2

where n is the number of the vertices of the graph, m the number of the edges and f the number of
the faces. In our case we have that n D ]fZ3.U / \Dg C k, that is the multiple points in the disk
plus the k zeros of the boundary datum, m D ]f�ij g C k, the number of the arcs �ij ¤ ; plus k
(the number of the arcs f�i > 0g � @D), and f is the number of the nodal regions !i plus 1 so that
f D k C 1. Then, it follows that

m D nC f � 2 D 2k C ]
˚
Z3.U / \D

	
� 1:

Now we want to point out that, for any p 2 Z3.U / \ D, the number m.p/ corresponds to the
number of the arcs �ij such that p 2 � ij , whereas for the others vertices p 2 @D (the zeros of ˚
on the boundary) it holds thatm.p/ is the number of the arcs �ij such that p 2 � ij augmented of 1.
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Then, recalling that for any vertex p 2 @D nZ3.U / we have m.p/ D 2, we can write thatX
p2Z3.U /

i.p/ D
X

p2Z3.U /

Œm.p/ � 2� D
X

p2Z3.U /\D

Œm.p/ � 2�C
X

p vertices on @D

Œm.p/ � 2�

D

X
p2Z3.U /\D

�
]f�ij W p 2 � ij g � 2

�
C

X
p vertices on @D

�
]f�ij W p 2 � ij g C 1 � 2

�
D

X
p vertices

of the graph

�
]f�ij W p 2 � ij g � 2

�
C k

since the vertices on the boundary are exactly k. Then, it follows thatX
p2Z3.U /

i.p/ D
X

p vertices
of the graph

�
]f�ij W p 2 � ij g � 2

�
C k D

X
p vertices

of the graph

�
]f�ij W p 2 � ij g

�
� 2nC k

D 2.m � k/ � 2nC k D 2.f � 2/ � k D k � 2

since the edges are the union of the interfaces �ij and of the k arcs f�i > 0g � @D, and summing
over the vertices any edge is counted twice.

REMARK 3.3 Note that, following [18], the set � D [� ij , that is the union of the interfaces
between two species, the zeros of the boundary datum ˚ and the points in Z3.U / form a tree, since
it is a planar, acyclic, connected graph. The zeros of ˚ are the leaves and the multiple points in
Z3.U / are the other vertices. From classical arguments in graph theory it follows that the number
of the arcs composing � is .k C #fZ3.U /g � 1/.

REMARK 3.4 Let k > 3. We want to point out that identity (3.1) implies that

1 6 #
˚
Z3.U /

	
6 k � 2 :

In the following we assume that the number of species k is even, that is k D 2 s, s > 1. Then
we can define a harmonic function having opposite signs on adjacent nodal regions and strictly
connected to U 2 S˚ .

Consider the boundary value problem�
�� D 0 in D
 D � on @D :

(3.2)

Proposition 3.5 Let  a be the solution of (3.2) with boundary datum ˚a D
P2s
jD1.�1/

j�j and
let U 2 S˚ .

1. If U D j aj then for any p 2 Z3.U / \D we have that m.p/ is even.
2. If there exists p 2 Z3.U / \D such that m.p/ is odd then U ¤ j aj.

Proof. 1. Let U D j aj and p 2 Z3.U /. If p 2 D then U.p/ D 0 and rU.p/ D .0; 0/ ([10,
Theorem 9.3]). It follows that p is a critical point for  a at level 0. By standard theory of harmonic
functions the zero set of a around a critical point at level 0 is made by (at least) 4 half-lines, meeting
with equal angles. We infer that locally around p the function  a defines q nodal components with
q > 4 and q is even because  a has alternate positive or negative sign on adjacent sets.
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2. Let p 2 Z3.U / such that m.p/ D q with odd q. If p 2 D and U D j aj then p is a critical
point for  a at level 0. We infer that locally around p the function  a defines q nodal region, and
q is odd. This is a contradiction because  a has alternate positive or negative sign on adjacent
sets.

Theorem 3.6 Let ˚ D .�1; : : : ; �2s/ be an admissible datum. The harmonic function  a which
solves (3.2) with boundary datum ˚a D

P2s
jD1.�1/

j�j possesses at most s � 1 critical points q in
D such that  a.q/ D 0.

Proof. Since ˚ is an admissible datum, the solution of (3.2) with boundary datum ˚a vanishes
at exactly 2s points on @D, each arc f�j > 0g � @D is connected and  a has different signs on
adjacent arcs.

Since a harmonic function does not admit closed level lines, the set � D fx 2 D W  a.x/ D 0g
has no closed loop. We infer that  a has alternate positive or negative sign on � sets, with s C 1 6
� 6 2s: the nodal components of  a (see Figure 1 in the case k D 6). The zero set of the harmonic
function  a around a critical point at level 0 is made by (at least) 4 half-lines, meeting with equal
angles. We infer that locally around each critical point at level 0 the function  a defines ` nodal
components with 4 6 ` 6 � and ` is even because  a has alternate positive or negative sign on
adjacent sets.

Suppose that  a has r critical points q1; : : : ; qr in D such that  a.qj / D 0, j D 1; : : : ; r ,
r > 1. Then qj 2 Z3.j aj/ with m.qj / > 4, j D 1; : : : ; r . If  a defines 2s nodal regions, i.e.,
� D 2s then the function U D j aj is an element of S˚ . From (3.1),

2s � 2 D
X

p2Z3.U /

i.p/ >
rX

jD1

i.qj / D

rX
jD1

m.qj / � 2r > 4r � 2r D 2r

that is r 6 s � 1. If  a defines � nodal regions with � < 2s then, by repeating the same argument
in the proof of formula (3.1), we obtain that

2� � 2 � 2s D
X

p2Z3.j aj/

i.p/: (3.3)

Then,

2� � 2 � 2s D
X

p2Z3.j aj/

i.p/ >
rX

jD1

i.qj / D

rX
jD1

m.qj / � 2r > 4r � 2r D 2r:

We infer that r < � � s � 1 < s � 1.

If the solution  a to (3.2) with alternate sign on adjacent arcs has exactly s � 1 critical points at
level zero we can say much more.

Proposition 3.7 Let ˚ D .�1; : : : ; �2s/ be an admissible boundary datum and suppose that
the harmonic function  a, solution to (3.2) with boundary datum ˚a D

P2s
jD1.�1/

j�j , has
q1; : : : ; qs�1 critical points in D such that  a.qi / D 0, i D 1; : : : ; s � 1. Then q1; : : : ; qs�1 are
4-points for the function U D j aj 2 S˚ .
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C�

�C

.a/

C�

C�

�C

.b/
C�

C�

�C

.c/

C�

C�

�C

.d/

FIG. 1. The level set � D fx 2 D W  a.x/ D 0g and the nodal components of  a , where the function  a solves (3.2)
with boundary datum ˚a D

P6
jD1.�1/

j�j . Three different situations can occur: the function  a has 4 nodal regions
(Figure a), 5 nodal regions (Figure b) or 6 nodal regions (Figures c and d).

Proof. The zero set of the harmonic function  a around a critical point at level 0 is made by (at
least) 4 half-lines, meeting with equal angles. We infer that locally around each qi , i D 1; : : : ; s�1,
the function  a defines ` nodal components with ` > 4. The function  a defines � 6 2s nodal
regions. From formula (3.3),

2� � 2 � 2s D
X

p2Z3.j aj/

.m.p/ � 2/ >
s�1X
jD1

�
m.qj / � 2

�
> 2.s � 1/:

We infer that � > 2s, hence � D 2s.
The function U D j aj is nonnegative, satisfies the boundary datum and has exactly 2s nodal

regions. This function generates an element of S˚ , with boundary datum ˚ and fq1; : : : ; qs�1g 2
Z3.U /. Hence, we have

fq1; : : : ; qs�1g � Z3.U /; m.qj / D mj

with mj > 4, j D 1; : : : ; s � 1. From (3.1) we get

s�1X
jD1

i.qj / 6 2s � 2

or equivalently
s�1X
jD1

mj � 2.s � 1/ 6 2s � 2 ”

s�1X
jD1

mj 6 4.s � 1/ :

Since mj > 4 we deduce that mj D 4, j D 1; : : : ; s � 1.
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Proposition 3.8 Let ˚ D .�1; : : : ; �2s/ be an admissible datum. If U 2 S˚ possesses a 2s-point
aU in D then U D j aj, where  a is the harmonic function such that  a D ˚a D

P2s
jD1.�1/

j�j
on @D. If aU 2 D then aU is a critical point for  a at zero level.

Proof. Let U D .u1; : : : ; u2s/ be an element of S˚ with a 2s-point aU , then there exist 2s � 1
or 2s arcs connecting aU to any of the isolated zeros of the boundary datum (note that there are
2s � 1 arcs if and only if aU 2 @D). Then the function  a D

P2s
jD1.�1/

juj is harmonic in D n
faU g (see [10, Proposition 6.3]), moreover,  a is bounded so, by Schwarz’s removable singularity
principle (see [21, Proposition 11.1])  a is harmonic in D and, by construction, U D j aj in D
and U D j˚aj D ˚ on @D.

If aU 2 Z3.U / \ D then, for the property (s6), U.aU / D 0 and rU.aU / D .0; 0/. Hence
 a.aU / D 0 and r a.aU / D .0; 0/.

We can generalized Proposition 3.8 as follows.

Proposition 3.9 Let ˚ D .�1; : : : ; �2s/ be an admissible datum. Let U 2 S˚ be such that Z3.U /

contains only points with even multiplicity in D. Then U D j aj, where  a is the solution of the
Dirichlet problem (3.2) with boundary datum  a D ˚a D

P2s
jD1.�1/

j�j on @D. Moreover, any
p 2 Z3.U / \D is a critical point for  a at zero level.

Proof. Let U be an element of S˚ such that Z3.U / D fq1; : : : ; qrg with m.qi / D 2`i > 4,
i D 1; : : : ; r . Then, for every i D 1; : : : ; r , there exist s.i/1 ; : : : ; s

.i/

2`i
2 f1; : : : ; 2sg such that

(i) !
s

.i/
1

\ : : : \ !
s

.i/

2`i

D fqig;

(ii)
P2`i

jD1.�1/
jusj is harmonic in P̋ i n fqig where ˝i D !s.i/

1

[ : : :[ !
s

.i/

2`i

and P̋ i denotes the

interior of ˝i .

Keeping in mind that ui D 0 in !j , i ¤ j , then  a D
P2s
jD1.�1/

juj is harmonic in P̋ i n fqig,
i D 1; : : : ; r . It is easy to see that P̋1 [ : : : [ P̋ r D D n fq1; : : : ; qrg. Then the function  a DP2s
jD1.�1/

juj is harmonic inDnfq1; : : : ; qrg (see [10, Proposition 6.3]), moreover,  a is bounded
so, by Schwarz’s removable singularity principle (see [21, Proposition 11.1])  a is harmonic in D
and, by construction, U D j aj in D and U D j˚aj D ˚ on @D.

If q 2 Z3.U / \ D then U.q/ D 0 and rU.q/ D .0; 0/. Hence  a.q/ D 0 and r a.q/ D
.0; 0/.

The next Proposition gives conditions on the admissible datum ˚ such that the limiting
configuration has a point with multiplicity 2s in D.

Proposition 3.10 Let ˚ D .�1; : : : ; �2s/ be an admissible boundary datum and let  a be the
solution to (3.2) with boundary datum ˚a D

P2s
jD1.�1/

j�j . Let p 2 D such that ˚a satisfies the
conditions Z

@D

˚a
�
� C p

p� C 1

�
Tj .�1/ds� D 0; j D 0; 1; : : : ; s � 1 (3.4)Z

@D

˚a
�
� C p

p� C 1

�
�2Uj�1.�1/ds� D 0; j D 1; : : : ; s � 1 (3.5)
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with � D .�1; �2/, where Tj and Uj denote the Chebyshev polynomials of the first and second kind,
respectively. Then p is a 2s-point for the function U D j aj 2 S˚ .

Proof. We introduce the transformation

x D Rp.�/ D
� C p

p� C 1
: (3.6)

Here we identify the complex numbers x D x1C ix2 and � D �1C i�2 with the points .x1; x2/ and
.�1; �2/ 2 R2, respectively. Rp is a conformal map which maps the unit disk D into itself such that
Rp.@D/ D @D and Rp.0/ D p. Set

e	a.�/ D  a�Rp.�/�; e̊a.�/ D ˚a�Rp.�/� : (3.7)

Then e	a solves the problem (
��e	a D 0 in D ;e	a D e̊a on @D :

(3.8)

Introducing a system of polar coordinates .r; �/, we can write the Fourier expansion of e	a
e	a.r; �/ D A0

2
C

1X
jD1

�
Aj cos.j�/C Bj sin.j�/

�
rj ; � D .r; �/ : (3.9)

Let Tj and Uj denote the Chebychev polynomials of the first and second kind, respectively.
Keeping in mind the representation Tj .cos.�// D cos.j�/ and Uj�1.cos.�// D sin.j�/= sin.�/
([1, 22.3.15–16]) from the conditions (3.4)–(3.5) we get

Aj WD
1

�

Z �

��

e̊a�ei�� cos.j�/d� D 0; j D 0; 1; : : : ; s � 1; (3.10)

Bj WD
1

�

Z �

��

e̊a�ei�� sin.j�/d� D 0; j D 1; : : : ; s � 1: (3.11)

It follows that, around the origin,

e	a.r; �/ D 1X
jDs

�
Aj cos.j�/C Bj sin.j�/

�
rj ; � D .r; �/ :

We have .As; Bs/ ¤ .0; 0/. Indeed, if not, let .A� ; B�/ ¤ .0; 0/ where � > s is the index of the
first nonzero Fourier component. Then there would be 2� arcs starting form the origin, on whiche	a vanishes. Since a harmonic function does not admit closed level lines, this contradicts the fact
that e̊a has exactly 2s zeros.

Therefore U.x/ D j a.x/j D je	a.R�1p .x//j is nonnegative, satisfies the boundary datum ˚

and has exactly 2s nodal regions. This function generates an element of S˚ , with datum ˚ and the
2s-point p (see also [11, Lemma 3.2]).

Conversely, we have the following result.
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Proposition 3.11 Suppose that˚ D .�1; : : : ; �2s/ is an admissible datum and the functionU 2 S˚
generates a configuration with a 2s-point in p 2 D. Then ˚a D

P2s
jD1.�1/

j�j satisfies the
conditions (3.4)-(3.5).

Proof. For Proposition 3.8, we have U D j aj with  a solution of (3.2) with boundary datum
˚a D

P2s
jD1.�1/

j�j . Then the function e	a.�/ D  a.Rp.�//, with Rp in (3.6), solves (3.8), it is
given by e	a.�/ D 1 � j�j2

2�

Z
@D

e̊a.�/
j� � �j2

ds� (3.12)

and it belongs to C 2.D/ \ C 0.D/ (cf. [15, (2.27)]).
On the other hand in the Fourier expansion (3.9) of e	a we have

A0 D Aj D Bj D 0; j D 1; : : : ; s � 1

and .As; Bs/ ¤ .0; 0/. The result follows from (3.10)–(3.11).

Proposition 3.12 Let ˚ D .�1; : : : ; �2s/ be an admissible boundary datum, ˚a D
P2s
jD1.�1/

j�j
and p 2 D. Conditions (3.4)–(3.5) are equivalent toZ

@D

˚a
�
� C p

p� C 1

�
�
j�h
1 �h2ds� D 0; h D 0; : : : ; j I j D 0; : : : ; s � 1 (3.13)

with � D .�1; �2/.

Proof. From the representations

sin.j�/ D
jX
hD1
h odd

.�1/
h�1

2

�
j

h

�
cosj�h � sinh �;

cos.j�/ D
jX
hD0
h even

.�1/
h
2

�
j

h

�
cosj�h � sinh �

we infer that, setting �1 D cos.�/; �2 D sin.�/,

�2Uj�1.�1/ D

jX
hD1
h odd

.�1/
h�1

2

�
j

h

�
�
j�h
1 �h2 ; �21 C �

2
2 D 1; j > 1 (3.14)

Tj .�1/ D

jX
hD0
h even

.�1/
h
2

�
j

h

�
�
j�h
1 �h2 ; �21 C �

2
2 D 1; j > 0: (3.15)

If conditions (3.13) are satisfied, from the representations (3.14)–(3.15), we deduce that even
conditions (3.4)–(3.5) are.

Conversely, let conditions (3.4)–(3.5) hold. For j D 0, since T0 � 1, we getZ
@D

˚a
�
� C p

p� C 1

�
ds� D 0: (3.16)
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For j D 1, since T1.�1/ D �1 and U0 � 1, we getZ
@D

˚a
�
� C p

p� C 1

�
�1ds� D

Z
@D

˚a
�
� C p

p� C 1

�
�2ds� D 0:

For j D 2, from the relations T2.�1/ D 2�21 � 1 and U1.�1/ D 2�1, and (3.16) we get

0 D

Z
@D

˚a
�
� C p

p� C 1

�
.2�21 � 1/ds� D 2

Z
@D

˚a
�
� C p

p� C 1

�
�21ds� ;

0 D

Z
@D

˚a
�
� C p

p� C 1

�
�2.2�1/ds� D 2

Z
@D

˚a
�
� C p

p� C 1

�
�1�2ds� :

Since �21 C �
2
2 D 1, we also get

0 D

Z
@D

˚a
�
� C p

p� C 1

�
�22ds� :

We proceed by induction on j . Suppose that conditions (3.13) are valid for h D 0; : : : ; j with
j < s � 1. We prove thatZ

@D

˚a
�
� C p

p� C 1

�
�
jC1�h
1 �h2ds� D 0; h D 0; : : : ; j C 1: (3.17)

Using the inverse formula (see [7, p. 412])

�
jC1
1 D 2�j

jC1X
iD0

jC1�i even

0

�
j C 1

i

�
Ti .�1/; j > 0 (3.18)

where the prime at the sum symbol means that the first term (at i D 0) is to be halved unless it is
skipped, and conditions (3.4) we getZ

@D

˚a
�
� C p

p� C 1

�
�
jC1
1 ds� D 0;

that is (3.17) for h D 0. If h D 2` with 0 < ` 6 .j C 1/=2, we have, keeping in mind (3.18)
and (3.4),Z

@D

˚a
�
� C p

p� C 1

�
�
jC1�2`
1 �2`2 ds� D

Z
@D

˚a
�
� C p

p� C 1

�
�
jC1�2`
1 .1 � �21/

`ds�

D

X̀
iD0

�
`

i

�
.�1/`�i

Z
@D

˚a
�
� C p

p� C 1

�
�
jC1�2i
1 ds� D 0:

If h D 2`C 1, with 0 6 ` 6 j=2, we can write (3.17) asZ
@D

˚a
�
� C p

p� C 1

�
�
j�2`
1 �2`C12 ds� D

X̀
iD0

�
`

i

�
.�1/`�i

Z
@D

˚a
�
� C p

p� C 1

�
�2�

j�2i
1 ds� : (3.19)
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From the relations T0.�1/ D U0.�1/, T1.�1/ D 2�1U1.�1/, T�.�1/ D 2�1.U�.�1/ � U��2.�1//,
� > 2, and the inverse formula (3.18), we infer that �j�2i1 can be expressed as a linear combination
of the polynomials U�.�1/, 0 6 � 6 j � 2i . Hence, conditions (3.5) imply that the integrals in the
right-hand side of (3.19) vanish.

For example, if k D 4 the conditions (3.13) reduce toZ
@D

˚a
�
� C p

p� C 1

�
ds� D 0;

Z
@D

˚a
�
� C p

p� C 1

�
�jds� D 0; j D 1; 2;

which were obtained in [19, Proposition 3.12].
As a consequence of Propositions 3.10, 3.11 and 3.12 we deduce the following necessary and

sufficient conditions such that p 2 D is a point with multiplicity 2s.

Theorem 3.13 Let ˚ D .�1; : : : ; �2s/ be an admissible boundary datum and let  a be the solution
to (3.2) with boundary datum ˚a D

P2s
jD1.�1/

j�j . The point p 2 D is a 2s-point for the function
U D j aj if and only if ˚a satisfies conditions (3.13).

4. Results on 6 species

In this section we consider the case of 6 competing species. As a consequence of Proposition 3.2
we show that 5 limiting configurations are possible.

Proposition 4.1 Let U 2 S˚ , then only one of the following statement is satisfied

i. Z3.U / consists of one point aU 2 D such that m.aU / D 6,
ii. Z3.U / consists of two points aU ; bU 2 D, aU ¤ bU , with m.aU / D m.bU / D 4,

iii. Z3.U / consists of two points aU ; bU 2 D with m.aU / D 3 and m.bU / D 5,
iv. Z3.U / consists of three different points aU ; bU ; cU 2 D withm.aU / D 4;m.bU / D m.cU / D

3,
v. Z3.U / consists of four different points aU ; bU ; cU ; dU 2 D with m.aU / D m.bU / D

m.cU / D m.dU / D 3.

Proof. The set Z3.U / is nonempty and contains at most 4 points. If Z3.U / D faU g then,
from (3.1), we deduce that m.aU / D 6 (cf. Figure 2). If Z3.U / D faU ; bU g then, from (3.1),

FIG. 2. Configurations with one 6-point insideD (on the left) and on @D (on the right)
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FIG. 3. Configurations when Z3.U / consists of two points aU ¤ bU , with m.aU / D m.bU / D 4 (on the left) and
m.aU / D 3 andm.bU / D 5 (on the right)

FIG. 4. Configurations when Z3.U / consists of three points (on the left) and four points (on the right)

we deduce thatm.aU /Cm.bU / D 8, that is ii. or iii. (cf. Figure 3). If Z3.U / D faU ; bU ; cU g then,
from (3.1), we deduce that m.aU /Cm.bU /Cm.cU / D 10, that is iv. (cf. Figure 4 on the left). If
Z3.U / D faU ; bU ; cU ; dU g then, from (3.1), we deduce thatm.aU /Cm.bU /Cm.cU /Cm.dU / D
12, that is v. (cf. Figure 4 on the right).

In the case of 6 species, Theorem 3.13 can be formulated as follows.

Proposition 4.2 Let ˚ D .�1; : : : ; �6/ be an admissible datum, let U 2 S˚ and let  a be the
solution to (3.2) with boundary datum ˚a D

P6
jD1.�1/

j�j . The function U has a 6-point p 2 D
if and only if the boundary datum ˚ D .�1; : : : ; �6/ satisfies the conditions

6X
jD1

.�1/j
Z
@D

�j

�
� C p

p � C 1

�
ds� D 0 ; (4.1)

6X
jD1

.�1/j
Z
@D

�j

�
� C p

p � C 1

�
�rds� D 0 ; r D 1; 2 (4.2)

6X
jD1

.�1/j
Z
@D

�j

�
� C p

p � C 1

�
�21ds� D 0 ; (4.3)
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6X
jD1

.�1/j
Z
@D

�j

�
� C p

p � C 1

�
�1�2ds� D 0: (4.4)

Moreover, the function U D j aj.

Proof. Conditions (4.1)–(4.4) are easily obtained by assuming s D 3 in (3.13).

Proposition 4.3 Let ˚ be an admissible datum and let  a be the solution to (3.2) with boundary
datum ˚a D

P6
jD1.�1/

j�j . Conditions (4.1)–(4.4) are equivalent to

 a.p/ D 0; r a.p/ D .0; 0/; H a.p/ D 0 (4.5)

where H a D f@2xixj
 agi;jD1;2 denotes the Hessian matrix of the function  a.

Proof. We introduce the transformation (3.6) and define e	a and e̊a according to (3.7). We have

 a.p/ D  a
�
Rp.0/

�
D e	a.0/I

rx a.p/ D

�
.1 � jpj2/�1 0

0 .1 � jpj2/�1

�
r�
e	a.0/

and, assuming p D .p1; p2/,

Hx a.p/ D
1

.1 � jpj2/2
H�e	a.0/
C

2

1 � jpj2

�
@�1
e	a.0/�p1 p2

p2 �p1

�
C @�2

e	a.0/��p2 p1
p1 p2

��
:

By construction, e	a solves (3.8). By the Poisson integral formula (3.12) we deduce that

e	a.0/ D 1

2�

Z
@D

e̊a.�/
j�j2

ds� D
1

2�

Z
@D

e̊a.�/ds� D 1

2�

Z
@D

˚a
�
Rp.�/

�
ds�:

On the other hand, by direct differentiation of the Poisson integral, we get

@

@�j
e	a.0/ D 1

�

Z
@D

e̊a.�/�jds� D 1

�

Z
@D

˚a
�
Rp.�/

�
�jds�; j D 1; 2;

@2

@2�j
e	a.0/ D � 2

�

Z
@D

e̊a.�/ds� C 4

�

Z
@D

e̊a.�/�2j ds�; j D 1; 2;

@2

@�1@�2
e	a.0/ D 4

�

Z
@D

e̊a.�/�1�2ds�:
The equivalence between (4.1)–(4.4) and (4.5) easily follows.

Proposition 4.4 Let ˚ D .�1; : : : ; �6/ be an admissible datum and suppose that the related
harmonic function  a, solution to (3.2) with boundary datum �a, has two critical points p; q 2 D
such that  a.p/ D  a.q/ D 0, then p; q are 4-points for the function U D j aj 2 S˚ .
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Proof. By standard theory of harmonic functions the zero set of  a around a critical point at level 0
is made by (at least) 4 half-lines, meeting with equal angles. We infer that locally around p the
function  a defines kp nodal components with kp > 4 and kp is even because  a has alternate
positive or negative sign on adjacent sets. Analogously around q the function  a defines kq nodal
components with kq > 4 and kq is even. By Proposition 4.1 we infer that kp D kq D 4. Hence the
function U D j aj is nonnegative, satisfies the boundary datum ˚ , has exactly 6 nodal regions and
generates an element of S˚ , with p; q 2 Z3.U /.

Conversely, as a direct application of Proposition 3.9 we have the following result.

Proposition 4.5 Let ˚ D .�1; : : : ; �6/ be an admissible datum. Let U 2 S˚ such that Z3.U /

contains two points p; q in D with multiplicity 4. Then U D j aj, where  a is the harmonic
function such that  a D ˚a D

P6
jD1.�1/

j�j on @D. Moreover, p; q are critical points for  a at
zero level.

5. Conclusion and open problems

Propositions 4.4 and 4.5 show that the limiting configurations, which elements of Z3.U / have
only even multiplicity, are closely connected to harmonic solutions of (3.2) with alternate boundary
datum. Since such solutions have to satisfy some integral conditions (see (3.13)), it follows that the
most probable segregation configurations have only points in Z3.U / with odd multiplicity (see also
Remark 3.13 in [19]).

In fact, we think that the most probable configurations in nature are those with points with
multiplicity three. But this means that odd multiple points (with multiplicity greater than 3) have to
verify some conditions in order to belong to subsets of admissible data with nontrivial codimension.
Now this is an open problem, since our techniques are strongly related to the properties of the
harmonic functions, and these functions are related only to critical points with even multiplicity.

An open problem we wish to handle is to compare results by reaction-diffusion systems in
populations competition, as in [3, 4, 9, 11, 12, 19, 23], and results obtained by differential games
theory contained in [16, 20] (see also the references therein), in order to reach a better understanding
of the territoriality of the competing species or groups (see also [5]).

Acknowledgment. The authors are very grateful to the anonymous referees for their insightful
comments and helpful suggestions.
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