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We consider the sharp interface limit of a coupled Stokes/Cahn—Hilliard system in a two-dimensional,
bounded and smooth domain, i.e., we consider the limiting behavior of solutions when a parameter
€ > 0 corresponding to the thickness of the diffuse interface tends to zero. We show that for
sufficiently short times the solutions to the Stokes/Cahn—Hilliard system converge to solutions of a
sharp interface model, where the evolution of the interface is governed by a Mullins—Sekerka system
with an additional convection term coupled to a two—phase stationary Stokes system with the Young—
Laplace law for the jump of an extra contribution to the stress tensor, representing capillary stresses.
We prove the convergence result by estimating the difference between the exact and an approximate
solutions. To this end we make use of modifications of spectral estimates shown by X. Chen for the
linearized Cahn-Hilliard operator. The treatment of the coupling terms requires careful estimates,
the use of the refinements of the latter spectral estimate and a suitable structure of the approximate
solutions, which will be constructed in the second part of this contribution.
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1. Introduction and overview

Classically, the transition between two immiscible fluids was considered to be sharp, in the sense of
an appearance of a lower-dimensional surface separating the phases. The behavior of a multiphase
system is then governed by the intricate interactions between the bulk regions and the interface,
mathematically expressed as equations of motion, which hold in each fluid, complemented by
boundary conditions at the (free) surface. Models incorporating these ideas — often called sharp
interface models — and the corresponding free-boundary problems have been widely studied and
used to great success in describing a multitude of physical and biological phenomena. However,
fundamental problems arise in the analysis and numerical simulation of such problems, whenever
the considered interfaces develop singularities. In fluid dynamics, topological changes such as the
pinch off of droplets or collisions are non-negligible features of many systems, having a significant
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impact on the flow. Conversely, diffuse interface models turn out to provide a promising, alternative
approach to describe such phenomena and overcome the associated difficulties. In these diffuse
interface (or phase field) methods, a partial mixing of the two phases throughout a thin interfacial
layer, heuristically viewed to have a thickness proportional to a length scale parameter € > 0, is
taken into account. Naturally, the question of the behavior for the limit ¢ — O arises. This so-called
sharp interface limit is in fact a question about the connection of sharp and diffuse interface models.
Concerning the flow of two macroscopically immiscible, viscous, incompressible Newtonian fluids
with matched densities, a fundamental and broadly accepted diffuse interface model is the so-called
model H. This model consists of a Navier—Stokes system coupled with the Cahn—Hilliard equation
and was derived in [15, 16]. The sharp interface limit was studied with the method of formally
matched asymptotics in [2] and the existence of solutions for the model H was shown in [1, 10].
Regarding the formal sharp interface limit, short time existence of strong solutions was shown in [7]
and existence of weak solutions for long times in [6]. Despite these analytic results and the formal
findings for the sharp interface limit, there are only few attempts at rigorously discussing the sharp
interface limit for the model H. Using the notion of varifold solutions as discussed in [12] such
results for large times were shown in [6] for the model H and in [3] also for the more general
situation of fluids with different densities. But the notion of solution for the latter contributions
is rather weak and no rates of convergence were obtained and convergence was only shown for a
suitable subsequence.

For the Allen—Cahn and Cahn-Hilliard equation another approach is based on the works [18]
and [9], where the method of formally matched asymptotics is made rigorous. However, in view
of two-phase flow models in fluid mechanics and the arising difficulties therein, the first and so far
only convergence result with convergence rates in strong norms is [4]. More precisely, considering
a coupled Stokes/Allen—Cahn system in two dimensions, it is shown that smooth solutions of the
diffuse interface system converge for short times to solutions of a sharp interface model, where
the evolution of the free surface is governed by a convective mean curvature flow coupled to a
two-phase Stokes system together with the Young-Laplace law for the jump of the stress tensor,
accounting for capillary forces. This contribution builds upon the ideas introduced in [4] and aims
to establish the first rigorous result in strong norms for a sharp interface limit of a two phase flow
model involving the Cahn—Hilliard equation with convergence rates. In doing so, we hope to build
another cornerstone on the way to rigorously showing the sharp interface limit for model H.

More precisely we consider the Stokes/Cahn—Hilliard system

—AVE 4+ Vp¢ = uVe in 27, (1.1)

divve = 0 in Qr, (12)

0;c€ + v Vet = Au€ in 27, (1.3)

u = —eAc + lf’ () in 27, (1.4)

cfli=0 = ¢§ ¢ in §2, (1.5)

(—2Dsv¢ + pI) -mye = apv, u¢ =0, c°=-1 on 982 x (0, T). (1.6)

Here T > 0, 2 C R? is a bounded and smooth domain, 27 = £ x (0,7) and g > 0
is fixed. v¢: 27 — R? and p¢: 27 — R represent the mean velocity and pressure, Dyv¢ :=
%(Vv€ + (VVG)T), c€: 2 — R is an order parameter representing the concentration difference
of the fluids and 1¢: 27 — R is the chemical potential of the mixture. Moreover, c¢g: 2 — Ris a
suitable initial value, specified in Theorem 1.1 and f:R — R is a double well potential. The system
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corresponds to the model H if one would add the convection term 9,v¢ +v¢-Vv€ on the left-hand side
to (1.1).

Existence of smooth solutions to (1.1)—(1.6) can be shown with similar methods asin [1]. A word
is in order about the choice of boundary conditions (1.6). The reason we prescribe such boundary
conditions for v¢ instead of periodic, no-slip or Navier boundary conditions, are major difficulties
which arise in the construction of the approximate solutions for v¢. A more detailed account is given
in [5, Remark 3.9]. Classically, the Cahn—Hilliard system is complemented with Neumann boundary
conditions for ¢€ and ©€. While it is rather unproblematic to adapt the present work to Neumann
boundary conditions for c€, major issues arise when considering 0p,, u¢ = 0 instead of u¢ = 0,
see Remark 3.16 below. To circumvent these problems and as the focus of our interest and analysis
lies in the obstacles and difficulties occurring close to the interface I';, we decided on the present
choice of boundary conditions. We will show that the sharp interface limit of (1.1)—(1.6) is given by
the system

—AV+Vp=0 in 2%(1),1 €0, Ty]. 1.7)

divv =0 in 2%(1).1 €0, To]., (1.8)

Ap =0 in 2% (1), 1 €0, Ty]. (1.9)

(=2Dsv + pDnyo = apv on 97,82, (1.10)
nw=0 on 07, £2, (1.11)

2Dgv — pIinr, = —20Hr,nr, on Iy, t €0, Ty, (1.12)
w=ocHr, only,t €[0,Tp], (1.13)

—Vr, +nr, - v= %[np, -Vul on Iy, t €0, Ty, (1.14)
[v]=0 only,t €[0,Tp], (1.15)

) =T (1.16)

Here Ty > 0, £2 is the disjoint union of smooth domains £2%(¢), £27(¢) and a curve I'; C £
for every t € [0, Tp], where I} = 9221(t), n r, is the exterior normal with respect to £27(¢),
and Hr, and Vr, denote the mean curvature and normal velocity of the interface I';. Furthermore,
07,82 := 9082 x (0, Ty), I'p is a given initial surface and we use the definitions

8] (p.1) := Jim (2(p +nr, (p)h) ~ 2(p —nr, (p)})) for p & I
o= %/oo 05(s)* ds, (1.17)

where 6y: R — R is the so-called optimal profile, i.e., the unique solution to the ordinary differential
equation
—0y+ f'(6) =0 inR, 6y(0)=0, lir}[l Oo(p) = £1. (1.18)
p—Fo0

Regarding the existence of local strong solutions of (1.7)—(1.16), the proof in [7] may be
adapted, where a coupled Navier—Stokes/Mullins—Sekerka system was treated. Regularity theory for
parabolic equations and the Stokes equation may then be used to show smoothness of the solution
for smooth initial values.
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Assuming that suitable approximate solutions (cj, IIYRE p§)€> o o (1.1)—(1.6) are constructed

we show the existence of some 77 > 0 such that the difference between ¢€ and cﬁ goes to zero in
L (0, Ty, H_l(.Q)) with H~1(R) := (HO1 (.Q))/, L?(27,), L? (O, Ty, HI(Q)) and many other
norms as € — 0 with explicit convergence rates, for some small 77 > 0. These rates will depend
on the order up to which the approximate solutions have been constructed. Moreover, we will also
present convergence rates for the error v¢ — v§ in L'(0,Ty; L4(R2)) for g € (1,2). This result is
stated in Theorem 1.1. The key to this endeavors will be a modification of the spectral estimate
for the linearized Cahn—Hilliard operator as given in [11], see Theorem 2.13 below. As in [4], the
main difficulties which arise in the treatment of the Stokes/Cahn-Hilliard system are due to the
appearance of the capillary term 1€ Vc€ in (1.1) and the convective term v - V€ in (1.3). Although
we may build upon the insights gained in the cited article, several new and severe obstacles arise
in the context of system (1.1)-(1.6) which have to be overcome. A novelty in this context is the
introduction of terms of fractional order in the asymptotic expansions. The necessity of such terms
is at its core a consequence of our treatment of the convective term v¢ - Vc€. Where [4] relied
on the intricate analysis of a second order, parabolic, degenerate partial differential equation in
the construction of the highest order terms, the introduction of fractional order terms renders such
considerations unnecessary. The caveat being, that while the produced fractional order terms are
smooth, they may not be estimated uniformly in € in arbitrarily strong norms. This is the cause for
many technical subtleties in [5], where the construction is discussed and where estimates for the
remainder are shown. See also the second author’s PhD-thesis [17], which contains the results of
this contribution and [5].

Throughout this work we make the following assumptions: Let 2 C R? be a smooth domain,
Iy CC £2 be a given, smooth, non-intersecting, closed initial curve. Let moreover (v, p, u, I") be
a smooth solution to (1.7)—(1.16) and (c€, u€, v¢, p€) be a smooth solution to (1.1)—(1.6) for some
To > 0. We assume that I" = U;¢[o,1,]1 X {t} is a smoothly evolving hypersurface in R2, where
(I't) 0,1, are compact, non-intersecting, closed curves in £2. We define £27F(¢) to be the inside of
Iy and set £27(¢) such that £2 is the disjoint union of 27 (¢), 27 (¢) and I';. Moreover we define
QF = Usepo. %) x {t}, r := 2 x (0,T) and also 372 := 32 x (0, T) for T € [0, To).
We define nr, (p) for p € I'; as the exterior normal with respect to £27(¢) and Vr,, and H, as the
normal velocity and mean curvature of I'; with respecttonr,, ¢ € [0, Tp]. Let

d' SZ* f Q,
dr: @ o B, (o) |SEO) X270,
—dist(21(r).x) ifx € 27(1)

denote the signed distance function to I" such that dr is positive inside SZ;O . We write
Ii(e) = {x € 2| |dr(x,1)| < a}

for o > 0 and set I'(o; T) := U,epo,r7 It (@) x {t} for T € [0, To]. Moreover, we assume that
8 > 0 is a small positive constant such that dist (I, d§2) > 56 for all ¢ € [0, Tp] and such that the
orthogonal projection Prr, : I'1(36) — I} is well-defined and smooth for all ¢ € [0, Tp]. In the
following we often use the notation I"(«) := I'(«; Tp) as a simplification. We also define a tubular
neighborhood around 92: For this let dg: 2 — R be the signed distance function to d£2 such that
dg < 01n £2. As for I'; we define a tubular neighborhood by 0£2(«) := {x € 2| — o < dg(x) < 0}
and 072 (o) := {(x,t) € 27|dg(x) € (—,0)} fora > 0 and T € (0, Tp]. Moreover, we denote
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the outer unit normal to §2 by ny; and denote the normalized tangent by Ty, which is fixed by the

relation

ma(m =( | ) matr)

for p € 052. Finally, we assume that 6 > 0 is chosen small enough such that the orthogonal
projection Pryg : 0£2(8) — 92 along the normal nyg, is also well-defined and smooth.
Concerning the potential f, we assume that it is a fourth order polynomial, satisfying

F(ED) = f/(£1) =0, f"(£1)>0, f(s) = f (—s) >0 foralls € R (1.19)

and fulfilling f® > 0. Then the ordinary differential equation (1.18) allows for a unique,
monotonically increasing solution 8y : R — (—1, 1). This solution furthermore satisfies the decay
estimate

102(0) — 1] + 16" (0)] < Cae™@#! forall p € R, n € N\ {0} (1.20)

for constants C,, > 0, n € N\{0}, and fixed « € (0, min{,/ f"(—1), ,/f”(l)}). We denote by

& € C* (R) a cut-off function such that
£(s) = Lif |s| <8, &(s) = 0if |s| > 28, and 0 = s&'(s) = —4 if § < |s]| < 26. (1.21)
The following theorem is the main theorem of this article (for an explanation of the used

notations see the preliminaries section):

Theorem 1.1 Let M € Nwith M = 4, £ be a cut-off function satisfying (1.21), y(x) := & (4dg(x))
for all x € §2 and let for € € (0,1) a smooth function y§:§2 — R be given, which satisfies
|| v H cl@ S CwoeM for some Cy, > 0 independent of €. Then there are smooth functions c§: §2 X

[0, To] — R, v§: 82 x [0, To] — R? for € € (0, 1) such that the following holds:
Let (v, p€, c€, u€) be smooth solutions to (1.1)—(1.6) with initial value

c6(x) = g (x,0) + ¥g(x) (1.22)

for all x € §2. Then there are some €y € (0,1], K > 0, T € (0, Ty] such that

e = HL2(QT) + HVF (¢ =) L2(I'(8,T)) < KM, (1:232)
1
€|V (e~ Cfl)”Lz(QT\r(s,T)) + € —cf HLz(QT\r(s,T)) < KeM*z, (1.23b)
3
€2 [ an (€~ Cfn)”Lz(r(s,T)) + e —cf ”LOO(O,T;H*I(.Q)) < Ke, (1.23¢)
/ €|V (cc— cj)\z el (eq) (¢ =)’ d(x,1) < K2eM, (1.23d)
27
| (€ —c) ||L°°(0,T;L2(.Q)) +e |lyA (€~ Cfl)”ﬁ(:zT) < KeM3, (1.23¢)
[¥V (€ —ch) “L2(9T) + [y (e —ch) V(e - cfl)”LZ(gT) < Ke', (1.23f)

and for g € (1,2)

”Vé — Vi HLI(O,T;L‘I(.Q)) s C(K.q) GM_%’ (1.24)
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hold for all € € (0, €g) and some C (K, q) > 0. Moreover, we have
lim c§ = % 1in L (27) (1.25)
and
lim v = v* in L((s.0): H* (2')?) (1.26)
for every 2/ x (s, t) CC .Q%
Throughout this work we will often consider the following assumptions.

ASSUMPTION 1.2 Let M € N with M > 4 and y(x) := £(4dg(x)) for all x € §2. We assume
that c4: £2 x [0, To] — R is a smooth function and that there are €y € (0,1), K = 1 and a family
(Te)ee(o,e9) C (0, To] such that the following holds: If ¢€ is given as in Theorem 1.1 with ¢§(x) =
c4 (x,0), then it holds for R := ¢€ —c§

r M-1
IR L2 (27, + IV RllL2crres) + [(:R.VR) ||L2(_QTE\F(T€’8)) < KMz, (1.27a)
3
€2 ”anR“Lz(I‘(TE,S)) + ”R”L‘X’(O,TG;H—l(Q)) < KGM, (1.27b)
/ €|IVRP> + L f"(c)R*d (x.1) < K**M, (1.27¢)
Te
1
€2 lyRl oo (o,1522(2) T | (VAR Y VR, YR (VR))||L2(_QT€) < KeM (1.27d)

for all € € (0, €9). Moreover, we assume that there exist €g > 0 and a constant Cy > 0 independent
of €, such that

E€ (c§) + lIc§ll ooy < Co (1.28)
for all € € (0, €).

As a first result, we give an energy estimate for (1.1)—(1.6). We consider for € > 0 the free
energy

E€(c)(t) = %/ Ve (x, 1)) dx + é/ f (c€(x,1)) dx fort € [0, To]. (1.29)
2 2

Then one derives
T t
sup Ee(cé(z))—i—/ /(|Vv€|2+|V;f|2) dxdt+ao[/ lv|?do dt < Cy. (1.30)
0<t<T 0 22 0 082

in a standard manner from testing (1.1) with v¢, (1.3) with € and (1.4) with d,c€ and integration
by parts. As a corollary we obtain:

Lemma 1.3 Let (c€, u¢, ve, p%) be a classical solution to (1.1)—(1.6) and let €9 > 0 and Cy > 0
be given such that (1.27) and (1.28) hold true. Then there is some €1 € (0, €y) and some constant
C > 0, depending only on Ty, Cy and €y, such that

2 2 2 2
€ | Act|z2q, + € S?P] IVes (O z22) + 1VRE VYY) 1200, + @0 IV 72, 0) < C
7€[0,t

forallt € [0,T¢] and € € (0, €y).
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Proof. All estimates apart from the one for €’ || Ac€ ||i2 (@2, follow directly from (1.30). Because of
the Dirichlet boundary condition of € we get

1 1 1 1
[Ac |20, < < 11N L2,y + 2 |/ (Ce)”Lz(_qt) < ;C IVicll2eg,) + o) I/ (CE)HLz(Qt)

¢ 3 c 3 C _3
< 6_2 (1 + ”CEHLG(Q[)) < 6_2 (1 + ”VCE||L°°(O,Z;L2(_Q))) < 6_2 (1 + ¢ 2)

for € small enough, where we used Poincaré’s inequality in the second inequality, and the fact that
f is a polynomial of fourth order in the third inequality. O

The contribution is organized as follows: Section 2 summarizes the needed mathematical tools,
in particular existence results for stationary Stokes equations with relevant boundary conditions
and we discuss a modified spectral estimate, which is key for the proof of Theorem 1.1. Section 3
is then devoted to showing Theorem 1.1. First we will state a result on existence of approximate
solutions, cf. Theorem 3.1 below. This result and all subsequently discussed properties of the
approximate solutions which are needed in this work, are shown in [5], see also [17]. A key result
in Subsection 3.1 is Lemma 3.4, which provides an estimate for the leading term of the error in
the velocity v§ — v¢. In order to show this, a spectral decomposition of ¢¢ — c§ is needed. In
Subsection 3.2, we collect many important statements which are essential to the proof of Theorem
1.1, many of which are concerned with dealing with the aforementioned error in the velocity.
These results enable us to effectively deal with the problems arising due to the presence of the
convective term in the Cahn—Hilliard equation. Finally, a list of notation can be found at the end of
the manuscript.

2. Preliminaries
2.1  Stationary stokes equation in one phase

We consider the one-phase stationary Stokes equation

—Av+Vp =1 in £2, 2.1
divv=g in §2, 2.2)
(—2Dgv + pI)nyo = apv  on 952 (2.3)

for given f € Vg’(.Q) and g € L?(£2). We denote Cé’o(ﬁ) = {u e C*® (5)2|divu = 0},
———H ()
HL(£2) := C2(R2) " and set

Hl(2) ifg=0,
H'(2)? else,

L2(2) ifg=0,

L%(£2)? else 24

Ve(2) := { Hy(2) :=

and let V4 (£2) denote the dual space of Vg (2).
We call v € Vg (£2) a weak solution of (2.1)—(2.3) if

2/ Dyv: Doy dx—i—ao/ vy dH () = (£ V) y, p, (2.5)
2 02
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holds for all € C° (£2) and

divv = g in L*(£2). (2.6)
Note that in the case g = 0 the condition (2.6) is already included in the definition of the space
and can thus be omitted. Moreover, a classical solution to (2.1)—(2.3) is a weak solution.

Theorem 2.1 For each g € L*(2) and f € Vé (82) there is a unique weak solution v € Vg (S82)
of (2.1)—(2.3). Moreover there exists a constant C (2, o) > 0, which is independent of f, such that
IVl @) < C(2,a0)(Ifllv;2) + llgllL22)- 2.7

Proof. In the case g = 0 the result is a direct consequence of the Lax—Milgram Lemma. The
case ¢ # 0 can be easily reduced to the latter case by considering v = v — Vg, where g €
H?(2) N H}(£2) is such that Ag = g. O

The following corollary yields existence of a pressure term.

Corollary 2.2 Let g € L*(2) and £ € L*(82)%. Then there is a unique (v, p) € Vg x L*(£2)
of (2.1)—(2.3) such that

2/ Dyv : Dsvp — pdivep dx +oc0/ v-pdH(s) = / f-pdx forallyp € HY(2)
2 92 2
and (2.6) holds. Moreover, there is a constant C > 0, independent of v and p, such that

1. Dl @yxr2@) < C(Ifl2@) + lIgllz2))-
Proof. Let v be the weak solution to (2.5)—(2.6) as given by Theorem 2.1. Elliptic theory implies
that
Ap:D(Ap) := H*(R2) N Hy (2) — L*(2):u — Au
is bijective. Thus, the adjoint operator (Ap)": L?(2) — (H?*(2) N H}(£2))' is also bijective.
Using the continuity of the trace operator and Holder’s inequality we find that the functional
F:D(Ap) > R

F(p) = /Q 2Dgv: Dg (Vo) —f- Vo) dx + o /arzv' VodH!(s) V¢ € D(Ap)

is bounded and linear. Thus the Riesz representation theorem yields the existence of p € L2(£2)
such that

(p’ A(p)Lz = (AID ((p’ ')Lz)’ (p)D(AD)/,D(AD) = F(p) (2.8)
for all ¢ € D(Ap). Since the operator ((A D)’)_1 is bounded, we find

IPl2@) < C I l(m2@)nm )y < C(Ivla (@) + Ifl2@) < C(Ifl2@) + gl2@))-
where we used (2.7) in the last line.
Now let v € H'(£2)? be arbitrary and let ¢ € D(Ap) be such that Ag = div y. Moreover set
Yo := ¥ — Vgq. Then div ¢y = 0 and
/ 2Dgv : Dgtp — pdivep dx + aof v dH!(s)
2 a2
= / f-apodx +/ (2Dgv : Dy (Vgq) — pAg) dx +a0/ v-VgdH!(s) = / f-dx,
2 2 a2 2

where we used (2.5) and (2.8). As ¢ € H'(£2)? was arbitrary, this yields the claim. O



SHARP INTERFACE LIMIT OF A STOKES/CAHN—HILLIARD SYSTEM I 361

Theorem 2.3 (Existence of strong solutions) Let g = 0 andf € L?(£2)2. Then there exists a unique
solution (v, p) € H*(22)? x H'(2) to (2.1)~(2.3), which satisfies the estimate

IVlla2e2) + 1PIla 2) < C Ifll22) -
Moreover, if £ is smooth, then v and p are smooth as well.

Proof. For g € (1,00), Theorem 3.1 in [20] implies that there is A > 0 such that for every g €
L9(£2)?> and a € qu (£2)? the problem
Au—Au+Vg=g in £2,
diva=0 in £2,
(—2Dsu + g ny, = alye on 02 2.9

admits for a unique solution (u, ¢) € qu(.Q)2 X qu (£2). Additionally, the estimate

||“||Wq2(g) + ||Q||qu @ S C(”g”L‘I(Q) + ”a”qu (Q)) (2.10)

holds. Considering a weak solution (v, p) € Vo x L?(£2) of (2.1)—(2.3) as given in Corollary 2.2
and defining g := £+ Av € L?(22)? and a := aov € H!(£2)?, we now introduce (u,q) €
H?(2) x H'(£2) as the strong solution to (2.9) regarding these data. Writing w := u — v and
r := ¢ — p we easily find that (w,r) € H'(£2)? x L?(£2) is a weak solution to
AW—Aw+Vr =0 1in 2,
divw=0 1in £,
(—2Dsw+rDnge =0 onds2.
Testing with v = w we immediately find that w = 0 a.e. and thus u = v, in particular v € H?(£2)2.
Furthermore, w = 0 implies Vr = 0 in £2 and r = 0 on 042, so that we can conclude r = 0 a.e.
in 2 leading to p = g and p € H'(£2). The estimate follows from (2.10) and (2.7). For higher
regularity one may use results on existence of solutions with higher regularity, e.g., due to Grubb

and Solonnikov [14] in a similar manner to obtain smoothness of the solution for smooth boundaries
and smooth data. [

Lemma 24 Let g = 0 and f € Vy, and let v € HL($2) be the weak solution to (2.1)~(2.3). Then
forall ¢’ € (1,2)

[f ()l
VIl e 2y < Cq sup T
vewz@2y+o 1V Ilwz2)

where é + % = 1 and C4 > 0 is independent of v and f.

Proof. For this we introduce 7' (u, p) := —2Dsu + pIforu € qu (22), p € L*(£2) and set
D(As) = {ue W2(2)|divu=0.3p € W' (2) : T (u. p)n|ye = aoulse} .

We define the operator

As:D(As) C LL(2) » LL(2), u—> Py (—Au+ Vp),
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for p as in the definition of D(Ags) and where P, denotes the Helmholtz projection given by
Py : L1(2)* - LL(R), ¥ = Py (¥) =y — Vr,
where r € qu,o(Q) is the unique weak solution to

Ar =divy  in £,
r=0 on d52.

One can verify in a straight-forward manner that A is well defined. Moreover,
/ (Asu) -udx = / 2|Dsul? dx + aO/ wdH' (s) = C )72, (2.11)
2 2 392

for some C > 0andu € D (Ag), where we used [8, Corollary 5.8] in the last line. This immediately
shows the injectivity of Ag. Concerning surjectivity, letfe LY (£2). As g > 2, Theorem 2.3 implies
that there is a unique strong solution (v, p) € H?(£2) x H'(£2) to (2.1)—(2.3) (with f replaced by f
and g = 0). Choosing A > 0 as in the proof of Theorem 2.3, we find that g := f+Avanda:= ooV
satisfy g € L9(§2) and a € qu (£2) as a consequence of the Sobolev embedding theorem. Thus,
Theorem 3.1. in [20] implies the existence of a unique solution (u, r) € W2(£2) x W,/ (£2) to (2.9)
and an analogous argumentation as in the proof of Theorem 2.3 leads to v = u and p = r along
with the estimate

Wliwze) + 121w @) < Clfllae). (2.12)
In particular, T (V, p) n|pe = aoV[ae is satisfied. So v € D (4;) and, since —AV + Vp = f holds
in L9(82), we have A; (v) = f. In fact, this not only implies surjectivity, but also the existence

of a bounded inverse Agl as a result of (2.12). Consequently, (D (Ag), || A.v) is a Banach space,
where ||.||4, denotes the graph norm. All these considerations result in the fact that the adjoint

Ao (LE (.Q))' — (D (Ag))’ is an invertible and bounded operator.
Let now v € H; (£2) be the given weak solution to (2.1)—(2.3) and fix ¢ > 2. Then v €

Lg/ (2) = (Lg (Q))/ and we have for ¢ € D (As)

(Asv.¥) pagyy pas) = 2/9 Dav: Dyt dx + a0 /a.(z Vovdx = {£9) gy pias)
As aresult Agv = fin (D (As)) and thus v = (A:g)_1 fin (L‘Z, (Q))/ which enables us to estimate

||V||Lq’(9) = ” (A/s)_lfH (LZ(Q))' <C ”f“(D(AS))/ sC ||f||(qu(_Q))/' O

2.2 Differential-geometric background

We use a similar notation as in [4]. We parameterize the curves (17),¢[o,7,] by choosing a family of
smooth diffeomorphisms
Xo:T! x [0, To] = 2 (2.13)

such that 95 Xg (s, 1) # Oforall s € T', ¢ € [0, Tp]. In particular, Ureo.10] Xo(T' x{t})x{ty =T.
Moreover, we define the tangent and normal vectors on Iy at Xo(s, ) as

aSXO(S7 Z)
|05 Xo(s,1)|

0

T(s,1) ;== and n(s,t):= ( 1 _01 )‘r(s,t) (2.14)
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for all (s,7) € T! x [0, Ty]. We choose X (and thereby the orientation of I';) such that n(., ) is
the exterior normal with respect to §£27(¢). Thus, for a point p € I with p = Xg(s, ) it holds

nr, (p) = n(s, 1)

Furthermore, we define V (s, t) := Vr,(Xo(s,t)) and H(s,t) := Hr,(Xo(s,?)) and note that
V(s.t) = 3;Xo(s.t) -n(s,t) for all (s,t) € T' x [0, Tp] by definition of the normal velocity. We
also introduce the pull-back and write for a function v: " — R, d € N

(Xgv) (s.1) := v(Xo(s.2).1) forall (s,r) € T' x [0, Tp]. (2.15)
On the other hand, we define for a function /: T1 x [0, To]
(Xg’_lh)(p) = h(Xgl(p)) forall p € I'y,t € [0, Tp]. (2.16)

Choosing § > 0 small enough, the orthogonal projection Prp,: I;(36) — I} is well defined and
smooth for all ¢ € [0, Tp] and the mapping

¢r: I1(38) — (—38,38) x Iy, x — (dr(x,1),Prr, (x))

is a diffeomorphism. Its inverse is given by ¢, !(r, p) = p + rnr,(p). Although Prr, and ¢, are
well defined in I (38), almost all computations later on are performed in I';(25), which is why, for
the sake of readability, we work on I'(28) in the following.

Combining ¢; ! and X we may define a diffeomorphism

X:(=28,28) x T x [0, To] — I'(28),
(r.s.t) — (¢,_1(r, Xo(s,t)),t> = (Xo(s,t) + rn(s,1),1) (2.17)
with inverse given by
X1 28) - (-26,28) x T' x [0, To] . (x,1) > (dr(x,1), S(x,1),1), (2.18)

where we define
S(x,1):= (X()_I(Prp, (x)))1 (2.19)

for (x,¢) € I'(28) and where (.); signifies that we take the first component. In particular it holds
S(x,t) = S(Prr,(x),1). In the following we will write n(x,?) := n(S(x,?),?) and 7(x,?) :=
T (S(x,1),t) for (x,t) € I'(36).

Proposition 2.5 Foreveryt € [0, Ty], x € I(28), s € T, r € (=26, 26) it holds
|Vdr(x,t)| =1, Adrp(Xo(s.1),t) = —H(s. 1),

—Btdp(X(r,s,t)) = V(s,1), Vdp(X(r,s,t)) =n(s,1),
VS(x,t)-Vdp(x,t) =0.

Proof. We refer to [19, Chapter 2.3] and [13, Chapter 4.1] for the proofs. O

For a function ¢: I"(2§) — R we define G(r.s.1) := ¢ (X(r,s,1)) and often write ¢(r, s, 1)
instead of ¢(r,s,t). In the case that ¢ is twice continuously differentiable, we introduce the
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notations
AL P(r.s,t) = (3¢ + 3, S(X(r,5,1))d5) §(r,5,1),
VI¢(r,s,t) = VS(X(r,s,t))asqg(r,s,t),
AT G(r5,1) = (AS(X(r,s, 1)ds + (VS - VS) (X(r. s, z))ass)¢3(r,s, H. (2.20)

Similarly, if v:I"(2§) — R? is continuously differentiable, we will also write V(r,st) :=
v (X(r,s,t)) and introduce

divi¥(r, s, 1) = VS(X(r,s,1)) - 9,9(r, 5,1). (2.21)
For later use we introduce

VIg(x,t) := VS(x,1)d5¢(dr (x,1), S(x,1),1),
divl v(x, 1) := VS(x,0)3,9(dr (x,1), S(x,1),1)

for (x,¢) € I'(28). With these notations we have the decompositions

Vo(x,1) = dap(x,0n + VI g(x,1), (2.22)
divv(x,t) = 9,v(x, 1) - + div! v(x, 1) (2.23)

for all (x,t) € I"'(26), as

d
=, @ X) |ras.t)= - e, S Geary = OB, 1).

REMARK 2.6 If h: T! x [0, Ty] — Ris a function that is independent of r € (—2§, 2§), the functions
dI"h, VI'h and AT h will nevertheless depend on r via the derivatives of S. To connect the presented
concepts with the classical surface operators we introduce the following notations:

D,rh(s,t) :== aFh(0,5,1), Vrh(s,t) :=VIh(,s,1), Arh(s.t):= ATh(0,s,7). (2.24)

Later in this work, we will often consider a concatenation % (S(x,?),¢) and thus will write for
simplicity

T h(x,1) := (3; + 9, S(x,1)35)h(S(x,1).1),
VI h(x,t) := (VS(x,0)d5)h(S(x, 1), 1),
AT h(x,1) := (AS(x,1)05 + VS(x,1) - VS(x,1)d55)h (S (x, 1), 1) (2.25)

for (x,¢) € I'(28). As a consequence we obtain the identity
OF h(x,t) = Xg5 (07 ) (s,t) = 3T h(0,s,t) = Dy rh(s,1) (2.26)

for (s,1) € T! x [0, Ty] and (Xo(s,),t) = (x,t) € I". This might seem cumbersome but turns out
to be convenient throughout this work.
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In later parts of this article, we will introduce stretched coordinates of the form

S et) = dr(x,t) — eeh(S(x, 1),t) 227

for (x,t) € I'(28), € € (0, 1) and for some smooth function 4: T! x [0, Ty] — R (which will later
on also depend on €). Writing p = p€, the relation between the regular and the stretched variables
can be expressed as

X(p,s5.1) = X(e(p + h(s.1)).5. x) - (Xo(s, 1)+ €(p + h(s,0))n(s, 1), z). (2.28)

Lemma 2.7 Let ¢:R x I'(26) — R be twice continuously differentiable and let p be given as
in (2.27). Then the following formulas hold for (x,t) € I'(28) and € € (0, 1)
00 (¢ (p(x.1).x.1)) = (= LV (s.1) = 8] h(x.1)) Do (. x.1) + 8 (p. x.1).
V(g (p(x.1), x.1)) = (In(s.1) = VI h(x,1)) 0,6 (p.x.1) + Vi (p. x.1) |
A (p(x. 1), x.1)) = (F + [V h(x,1)[*)ppp (. x. 1)
+ (71 Adr(x,t) — AT h(x,1))3,¢ (p, x,1)
+2(e7'n(s, 1) = VI h(x, 1)) - Vo (0, x,1) + Axg (p(x, 1), x,1)

where s = S(x,t) and p = p(x,t). Here Vy and Ay operate solely on the x-variable of ¢.

Proof. This follows from the chain rule, Proposition 2.5 and the notations introduced in Remark 2.6.

O]

By (2.22) and (2.23) we have
Viu(x,1) = (I —n(S(x.1).) ® n(S(x, t),t))Vu(x, 1) and (2.29)
divl v(x,1) = (I—n(S(x,t),t) ® n(S(x,t),t)) D Vv(x, 1) (2.30)

for suitable u: I'(28) — R, v: I'(28) — R2. A consequence is:
Lemma 2.8 Lert € [0, Tyl andv € H' (I';(8))% u € H' (I';(8)). Then it holds

f udivi vdx = —/ Vru-vdx—/ uv-n/cdx—i—/ u(I—n®n)-v)-vdH'(s),
I (8) I (8) Iy (%) (I (8))

where k := —div(n (S(x,1),t)) and v(s) is the outer unit normal to I;(8) for s € d (I;(6)).
Proof. This is a consequence of (2.29), (2.30), and the divergence theorem. ]
For later use we define
[0, VI ]u := 80(@I—n®n) Vi) = I —n®n) V (dpu) (2.31)

and compute
[0, VI Ju =—VS (9;n- VT u). (2.32)
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2.3 Remainder terms
We introduce the following function spaces. For ¢ € [0, Tp] and 1 < p < oo we define
LP®(I;(28)) :={ f : I1(28) — R measurable| || /|| ».co(1, 28)) < O©} -

where 1

P
e = ( [, esuppicas (sl os)

Here X (r,s,t) := Xo(s,t) 4+ rn(s, t) denotes the first component of X. The following embedding
was already remarked in [4, Subsection 2.5].

Lemma 2.9 We have H! (I';(28)) — L% (I';(28)) with operator norm uniformly bounded with
respecttot € [0, Ty].

Proof. This is a consequence of the Gagliardo—Nirenberg interpolation and the fact that I'; is one-
dimensional. O

For T €[0,Tp],1 < p,q < oo and & € (0, 35) we set

L? (0, T:LP(Iy (Ol))) :={f:T (a.T) — R measurable| || /| La(0.7:1.0 (I, @)y) < O°} -

T p é
||f||L‘1(0,T;LP(Fr(0¢))) = / ([ |f(x, f)|p dx) dr .
0 Tt ()

In a similar way, we define L?(0,7T;L? (2\Iy(«))) and L9 (0, T,LP (.Qi(t)))) and the
corresponding norms. Moreover, for m € Ny we denote for U(t) = 2% (¢) or U(t) = I't(«)

{f c LP(o, T; Lz(szi(t))) LS e LP(o, T; LZ(U(t)))V|a| < m}

L? (o, T:H™ (U(t))) :
L lr@r:mmwoy = Y 1%/ lLror2wey-
|a|<m
For future use, we introduce a concept of remainder terms, similar to [4, Definition 2.5].

DEFINITION 2.10 Let n € N, ¢g > 0. For ¢ > 0 let R, denote the vector space of all families
(Fe)ee(o,e) ©f continuous functions 7¢ : R x I'(28) — R" which satisfy

Fe (p.x.1)| < Ce™@Pl forall p € R, (x,1) € I'(28),€ € (0,1).
Moreover, let RO be the subspace of all (7¢) ee(0,e0) € Ra such that

Fe(p,x,t) =0 forall p e R, (x,1) € I.

2.4 Spectral theory

The results in this chapter are adapted from [11]. For detailed proofs concerning the changed
stretched variable see [17, Chapter 3]. Moreover, we define

J(r,s,1) := det (D5 X(r,5,1)) (2.33)

The statements in this section are made under the following assumptions:
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ASSUMPTION 2.11 Let e € (0,¢9), T € (0, To] and & be a cut-off function satisfying (1.21). We
assume that cj : 27 — R is a smooth function, which has the structure

ci(x,1) = E(dr(x,1)) (Go(p(x, 1)) + ep€(Prr, (x), 1) 01 (p(x, t))) + &(dr(x.1))e*q (x.1)

(1= 8(dr ) ) (€ 0 Dxgy () + 57Dy (1.0) 234)

forall (x,t) € 27, where p(x,t) := w —h€(S(x,1),t). The occurring functions are supposed
to be smooth and satisfy for some C* > 0 the following properties:
01:R — R is a bounded function satisfying

| ex08502 r Eut) dp = 0. 235)

Furthermore, p€: I" — R, ¢¢: I'(28) — R satisfy

€
sup sup |p€(Prr, (x), )] + lg(x.0)| | < C,
e€(0,¢0) (x,0)el(28;T) ( ! €+ |dr(x,1) —ehe(S(x.1).1)]
(2.36)
hé: T x [0, T] — R fulfills
sup sup  (|h€(s. )] + |0shS(s.1)]) < C* (2.37)
€€(0,e0) (s,t)€T x[0,T]
and cfl’i: .Q;E — R satisty
+c5F > 0in QF. (2.38)
Additionally, we suppose that there is some C* such that
sup sup |cf1(x,t)| + sup )Vrcfl(x,t)) <C*, (2.39)
€€(0,60) \(x,0)eRr xel'(§)
1
inf inf "(cq(x, 1)) = —. 2.40
ee?&eo) (x,z)e:;;l\r(ﬁ;r) f (CA(X )) Cc* (240)

Corollary 2.12 Let Assumptions 2.11 hold true and let t € [0, T), let v € H'(I';(§)) and Ac € R
be such that

/ VPP + € f7 (50 1) Y (0% dx < A
It (8)

and denote IS := (—% —he(s,1), g —he(s, t)). Then, for € > 0 small enough, there exist functions
Z € HY(TY), yR € H'(I'4(8)) and smooth ¥: I&' x T' — R such that

v (r,s) = e—%Z(s)(ﬁ(s)e()(p(r, $)) + ¥ (p(r.s). s)) T uR () (2.41)

_1
foralmost all (r, 5) € (~8,8)xT, where p (r,s) = E—h<(s, 1) and B(s) = ( I CA) dp) ’
Moreover,

2
H‘/’RHLZ(F,(S)) < Clede + € ||‘/’||12_2(F;(8)))’ (2.42)
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2

2 r R |2 2 Ae
”Z”Hl(']rl) + Hv 1// L2(I',(8)) + Hl// ”Hl(f't(é')) < C (HI//HLz(Ft(ﬁ)) + ?) s (243)

and

sup (/It (11/ (0.5)> + ¥, (p, s)2) J(e(p + RS (s, ;)),s) dp) <ce. (2.44)

SET!

Proof. We define 1} = m Then we have

- - A
/ R A O R
Iy (8) ”w”LZ(I‘,(S))
and may use Lemma 2.2 and Lemma 2.4 in [11] adapted to the case of the stretched variable p =
£ — h€(s,t) instead of z = 2, where r € I, s € T, see [17, Chapter 3] for the details. This yields

existence of some functions Z € H'(T"), y® € H'(I;(8)) and ¥ such that

U (r,s) = e 27(s) (ﬂ(s)% (o(r,s)) + ¥ (p(r,s), s)) + ¥R(r, 5) (2.45)
with
Z|? viy|? IR2 <cC|1 A 2.46
” ”H‘(’H‘l) + ” WHLZ(FY((;)) + ||W ||H1(Ft(8)) ~ + W s (2.46)
L2(I(8))

~ A
Rj2 € 2
W 2,y S € <G—IIWI|2 +e ) (2.47)
L2(Iy(5)

and such that ¥ satisfies (2.44). Furthermore, if we define
_1
Y1 (r.5) = €2 (B)0(o(r.9)) + ¥ (p(r.5). 5)),
Z(s):= W y); and YR(rs) = ¢(rs) — Z($)Y(r,9),
we have the identities

Z(s) = (1.9 = (V1. ¥ IV ll2m ) = Z68) 1V 22y sy

and

YR (rs) =¥ () 1V ll2am ¢y + Z6) IV L2 6y - Y10 8) = YR 1V 20, 65
for almost all (r,s) € (—8,8) x T!. Thus, (2.41), (2.42), (2.43) follow immediately. O

In the following we consider H (£2) equipped with the scalar product (u, v); = [, o Yu-Vudx.
The induced norm |.|; is equivalent to the usual H !-norm by Poincaré’s inequality.

Theorem 2.13 (Spectral estimate) Let Assumption 2.11 hold true and let t € [0, T]. There exist
constants C1 > 0, C, = 0 and €; > 0, independent of t, such that for all € HO1 (£2) it holds

[ v e e an = el e+ s (arrno) T Vi)

+Ci (63 ”Vw“iHQ) + 6”VI// ||i2(g\pl (5))) -G HWHE*I(Q)' (2.48)

forall € € (0,¢y).
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Proof. Due to (2.40) we may estimate

/ elVy > +e ' 1 (c5) v?dx
2

\V

§
[ evuP e R axt [ (el P el VuP e () ) drds
2\ TI7(5) T! J-§

> / e|VY 2+ Cre |y dx + e/ Vv |? dx — czef V2 dx, (2.49)
2\I1(8) I (6) Q

where the last inequality is a consequence of [11, Lemma 2.2], adapted to the case of the stretched
variable p = 2 — h€(s,t) instead of z = g, where r € (=46,8), s € I', cf. [17, Proof of
Theorem 3.12] for more details. We observe that we may now use (2.49) to derive

/ elVY P+ et £ () y2 dx
2

= (6 HVFV’sz(r,(S)) +e! ”W”izm\n(s)) + GHV‘/f”iZ(.Q\r,(S)))
+ G ”Vl/f ”22(9) - C2€H‘ﬂ”22(9) (2.50)

for C;,C, > 0 and all € € (0, €1), after choosing €; so small that €; < % is fulfilled. Now, in order
to prove (2.48) we fix a constant ¢ > C; and € € (0, €p) and consider two different cases: First, we
assume

L emuR+ et () v an > ce v gy
which leads to the claim immediately, with C, = 0. In the case
/Q eIVY >+ e £ (cq) v dx < ce ¥l
let w € H?(£2) N H{ (£2) be the unique solution to —Aw = . Then [11, Theorem 3.1] implies
Cell¥liaig) < IVwliag,- 2.51)

Moreover, ||1//||§_1_1(9) = ||Vw||iz(9) and thus we get

/{2€|V‘ﬂ|2+6—1f/ (ci)ydx=C (E ||W||22(9) + e V] 2@vrey + 6|WF¢Hiz(ms)))

+C (E ”V‘”Hiz(g\nw)) + E3||V‘/f||12d2(.rz)) -C ”Vf”?rl(:z)'

This proves the assertion. O

3. Proof of Theorem 1.1
3.1  The approximate solutions

A major ingredient of this work is the construction of an approximate solution, which satisfies
(1.1)—(1.6) up to a sufficiently high order. In the following we present a collection of properties of the
approximations, which are necessary to prove Theorem 1.1 and are constructed in [5], alternatively
see [17].
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Theorem 3.1 For every € € (0,1) there are v§,w5: 21, — R? cq. g, py: 21, — R and
r$: 27, > R%, ré . rég s rém: 21, — R such that

—AVG 4+ Vp§ = u§Vey +rs, (3.1)
divv§ = rg,, (3.2)
dics + (v + M2 WS| R E(dr)) - Vi = Aus + rés 3.3)
uy = —€eAcq +e ' f1(ch) + (3.4)
in 21, and
cg=—1, u§y =0, (=2Dsv§+ pl)myp = agvy, 1§, =0 (3.5)

are satisfied on 01, $2. If additionally Assumption 1.2 holds for g € (0,1), K = 1 and a family
(Te)ee(o,e0) € (0,To], then there are some €1 € (0,¢€0], C(K) > 0 depending on K and Ck :
(0, To] x (0, 1] — (0, 00) (also dependent on K ), which satisfies Cx (T,€) — 0 as (T, €) — 0, such

that
Te
/o

dr < CK (Te, E) €M ”(p”Loo(o’TE;Hl(Q)) s (36)

/Q rém(x, e(x, t) dx

/OTG fgrém(x,t) (c€(x,1) —cq(x,0)) dx| dr < Ck (Te, €)M, (3.7)
Hr§ HLZ(O,TG;(H‘(.Q))/) + Hrgiv”L2(9T€) < C(K)eM, (3.8)
[V eil 2 o.r,sa ey < CHOC (Tece) € (39)

&Nz o, 2(3)) < €M (3.10)

foralle € (0,€1) and ¢ € L™= (0, T; H'(£2)).

In the following we will need a more intricate knowledge of the approximate solutions. Let &
be a cut-off function satisfying (1.21), and we denote v* := Vot ut = p| oz for solutions
To To

i, v of (1.7)—(1.16). We assume that v*, u* are smoothly extended to .Q%O U I" (26; Ty), where

v* is moreover divergence free in that region. We refer to [5, Remark 3.1], for more details on this

extension and [5, Remark 4.3] for more information on the structural details discussed below. We
have

ci(r.0) = £(dr(x.0)es (x.0) + (1= E(dr(x.0) Jeon(x.0),
Hh . 0) = £(dr () (e + (1= §(dr () Jposen) + €M 72us (o).

Vi(r.0) = E(dr (e 0)vi () + (1= £(dr () Jvon(r.0) + M2 ) (x0)

for (x,t) € $27,. Here cop = £1 + O (€) in C! (.Q%)) as € — 0, with ||co | < C and

c2(27,)
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pop = ut +0()andvop = vF + O (€) in L® (.Q%O) as € — 0. Moreover,

M+1

cr(x,t) = Z Fer(p(x,0),x,1) Y(x,1) € I (26;Ty),
k=0

where ¢ : Rx " (26;Tp) - R,k € {0,..., M + 1}, are smooth and bounded functions, which
do not depend on € and have bounded derivatives. Here

d]—'(-x,t) —hi (S(X,t),t) V(x7t) e’ (28’ TO) N (311)

p(x, 1) =
where h§(s.t) = ZkM=0 hy (s, 1) + eM_%h;I (s, 1) for (s,) € T! x [0, Tp] and hy are
2

smooth and bounded functions independent of € with bounded derivatives, fork € {1,..., M + 1}.
Moreover, py and vy have the same kind of expansion with coefficients ui and vg, k €
{0,..., M + 1}. In particular, we have

co(,o,x,t) = 60(p)7 VO(p7xvt) = V+(X,t)1’}(p) - V_(X,l)(l - 77(/0))
po(p. x,1) = pt(x,0)n(p) — = (x,1)(1 = n(p)) (3.12)

for (p, x,t) € R x I'" (28; Tp), where n : R — [0, 1] is smooth and satisfies = 0 in (—oo, —1],
n = lin[l,00) and n’ = 0 in R. The so-called inner terms satisfy moreover Viai”aiju € Ry for
some o > 0, where i = 1,m,l = 0and u = cg, g, vg fork € {0, ..., M + 1}. Additionally, we
note for later use /2§ (s,0) = O forall s € T!.

Regarding the structure of the fractional order terms, we have

Wy = EW@r) g+ (1= @r) (i Tz + 1" ) X, ).

€ _ € +,6 — —,€ -
Viuoy D = £V, (1= 8@r) (v Tag +V" 1ar,)

. +, +, . . . ;

in £27,, where /,LMi%, v i% are functions defined on .Q%O U I (28; Tp) and M;,,_% = M;i%’? -
—€ _ € b e N . : :

/LM_% (1 —n)and VM_% = VM_% n VM_% (1 —n)in I" (26; Tp). As technical details, we remark

that
rém = eM_%M;/[_% + O (M) in L (27,\(26)) as e — 0, (3.13)

which is a direct consequence of [5, Remark 4.4] and that ,u;l . = 0on d7,£2, which is discussed
)

in [5, Remark 4.3].

A key element in the proof of Theorem 1.1 is an understanding of the term w{ mentioned in
Theorem 3.1 and also of the appearing fractional order terms, which are in the end a consequence
of the appearance of w{. This motivates the following analysis: For T' € (0, To] we consider weak
solutions W¢ : 27 — R? and ¢§ : 27 — R of

—AW{ + Vg = —ediv((Veg —h) ® VR) in 27, (3.14)
divw§ = 0 in 27, (3.15)
(—2DsW§ + ¢5I) - nye = aW§ on a7 2 (3.16)
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in the sense of (2.5). Here we denote R := ¢ — cj and we define h by

M+1

h(x,1) := —&(dr(x,1)) ;; ekapck(p(x,t),x,t)eM_%VFh;l_%(x,t) (3.17)

and ®s; asa®s;b:=a®b+ b ®afora,b e R". We calculate

M+1
(Ve§ —h) (x,1) = ' (dr(x.0))Vdr(x,t)cr (x, 1) + £(dr (x,1)) ( > Vaer(p(x.0). x, t))
k=0
M+1

+ &(dp(x,1)) (Z *dpcr (o(x, 1), x,1) (p(x,1), x,1)

k=0 1 M
(Varean =Y v b, z)))

i=0
+9( (1= #@r))eontrn) (3.18)
for (x,7) € £27,,. We understand the right-hand side of (3.14) as a functional in (V)" given by
)= / €((Veg—h) @ VR + VR ® (Vg —h)) : Vyrdx (3.19)
2

for y € Vp and fixed ¢ € [0, T]. w{ as introduced in Theorem 3.1 is just a rescaling of W5, i.e.,

WG
wé = —1 3.20
1 €M—% ( )
holds. Furthermore, we introduce
Xr = L*(0,T; H*(TY)) n H'(0,T; H3(T")) (321

for T € Ry U {oo}, where we equip X7 with the norm

17 llx7 = N7l + 12l + [le=oll 21y -

7 1
L2(0,T;H 2 (TY) H'(0,T;H2(TY)

Note that X7 < C° ([0 T):H? (Tl)), where the operator norm of the embedding can be bounded
independently of 7.

The following lemma is shown in [5, Lemma 3.13] and enables us to access the results obtained
in Subsection 2.4.

Lemma 3.2 Let €9 > 0, T € (0, To] and (Te)ee(o,¢) C (0, T] be given. We assume that there is
some C > 0 such that

he <C
o Wy,

holds. Then there is €1 € (0, €] such that c§ (., 1) satisfies Assumption 2.11 for all t € [0, T¢] and

€ € (0, €1), where the appearing constant C* does not depend on €, Tk, h;[_% or C.
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The following technical proposition is an essential ingredient for many estimates. Essentially it
states that an error R can be split into a multiple of ;) plus perturbation terms that is of higher order
in €.

Proposition 3.3 Let ¢ > 0, T € (0,To] and a family (Te)ce,e,y € (0,T] be given. Let
Assumption 1.2 hold true for c4 = c§ and we assume that there is some C = 1 such that

C.

/A

sup Hh

o1 lx
€€(0,60) M—3 14T

We denote

8 8 _
13 :=( hjl(s,t),g—hj(s,t)) and B(s.t) == ||9()||L§(,g,,)

-
fore € (0,€0), s € T and t € [0, T.]. Then there is some €; € (0,€q] and there exist Z €
L?2(0,Te; H' (T")), F € L? (0, Te; H' (I7(8))) and smooth FR: I (8 Te) — R such that

R(x,1) = e 2 Z(S(x, 1), 1) (B(S(x. 1), )6} (0(x. 1)) + FR(x. 1)) + FR(x.1) (3.22)

for almost all (x,t) € I'(8;T¢) and all € € (0,€1). Furthermore, there exist C(K), C > 0
independent of €, T, h;l_% and C such that || B|| oo (11 x(0,1,y) < C and

I F2l{||i2(r(8;rg)) < C(K)eMH, (3.23)

2 R|2 2M—1
”Z”LZ(O,TE;HI(T‘)) + ” F HLZ(O,Te;Hl(F,(S))) < C(K)e (3.24)

forall e € (0,€1) as well as

2 2
sup sup / ) (|F1R (p,s,t)| + |8pF1R (p,s,t)| )Je (p.s.1) dp < C(K)e? (3.25)
1€[0,T] seT! JIZ

forall € € (0,€71), where
FR(p,s,t) == FlR(X<e(,o + hS (s, t)),s,t))

for X asin(2.17)and J€(p, s,t) := J(e(p+h4(s,1)),s,t) with J(r,s,t) := det (D(r,S)X) (r,s,1).

Proof. Let €1 be chosen as in Lemma 3.2. Then c§ satisfies Assumption 2.11 for all € € (0, €1). Let
A1) = / €|VRP + € £ (c5) (R)?dx.
I (8)
Then (1.27c) and (2.40) imply

Te
/ Ac(t) < CK?2M forall € € (0, €;). (3.26)
0
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Hence for each ¢ € [0, T.], Lemma 2.12 implies the existence of functions Z (.,1) € H! (']I‘l),
FR(.,t): Iy(8) > Rand FR(.,1) € H! (I;(8)) such that (3.22) holds for almost all x € I}(8)
and all € € (0, €1). Moreover,

2 2
| ER O Fa 6y < € (eAé(t) + 2R, t)||L2(W)))

2 Ae(?)
1Z (wl)”,%{l(qu) + ” FzR ("Z)HHI([‘I(S)) <C (”R ("t)||i2(F,(8)) + ET)

for all € € (0,€). Note that C > 0 is independent of €, T, and C since C* in Lemma 3.2 is
independent of these quantities as well. Since ||R||22( 2r) S CK?2e2M~=1 and (3.26) hold true due

to (1.27), integration over (0, T¢) yields (3.23) and (3.24). Finally, (3.25) is a direct consequence of
(2.44). O

Now we show the main estimate for w§ :

Lemma 3.4 Let ¢¢ > 0, T' € (0,To] and a family (Te)eeo,e,y € (0,T'] be given. Let
Assumption 1.2 hold true for c4 = c§ and we assume that there is C = 1 such that

sup ||h <C. (3.27)

w_1lx
€€(0,60) M=3 A7

Then there exists a constant C(K) > 0, which is independent of €, T, h¢ | and C, and some
M—3
€1 € (0, €9) such that

195 20,7001 2y) < C(K)eM=2  foralle € (0,€,),T € (0,T,]. (3.28)

Proof. First of all, we note that there exists €1 € (0, o], which depends on C, such that

drCet) _pe (sl = 28—6 (3.29)

for all (x,t) € I' (28; T)\I" (8: T¢) and € € (0, €;) because of X7 «— C° ([0 T]:C! (']I‘l)) and
(3.27). After possibly choosing €; > 0 smaller, we may ensure that

160 (p(x. 1)) = X+ (. 1) + x-(x,0)| + |65 (p(x, )| < Cre~C23 (3.30)

holds true for all (x,¢) € I" (26; Te) \I" (6; T¢) and € € (0, €1), as a consequence of (1.20), where
_3

C1, Cy > 0canbe chosen independently of €. As a last condition on €; we impose that eiw 2 < %,

which yields

M3 | he <1 (3.31)

n
—Llxz,

forall € € (0, ¢7).
Since w{ is a weak solution to (3.14)—(3.16) in §27,, we have due to Theorem 2.1

IWillz2 (0711 (2)) < € IEMlL20.7:7502))
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for all T € (0, T¢), where f€ is given as in (3.19). Let in the following T € (0,7¢] and ¢ €
L2(0,T.; Vo(£2)), ¥ # 0. As a starting point, we decompose

/ €(Veg —h) ® VR : Vyrd(x, 1)
7
:/ €(Veg—h) ® VR : Vyd(x,1)
re,7)

+/ €(Ve§—h) ® VR : Vyd(x,1) (3.32)
27\ 6:T)

and estimate the two integrals on the right-hand side separately. The second summand in f€ may be
treated analogously.

To estimate the second integral in (3.32), note that ¢, Vxcg, 0pck, VIip e L® (ré)),i
{I,....M +1},k €{0,....M + 1}, cos,Vcop € L“(Q%O) and that we may employ (3.30).

Thus, |Ve§(x. 1) —h(x,1)| < Ci (1 + ge—CZ%) for all (x,¢) € 27, \I" (§: Tc) and € € (0, ¢;) and
we may estimate

T
L[ (e =1 @ VR V9] ardr < Ce IV Rz iz Wiz @
t

1
< CERM 2N N2, 7.1 29)

for T € (0, T¢), where we used (1.27a) in the last inequality. Dealing with the first integral on the
right-hand side of (3.32) is more complicated. We compute

/ €(Veg—h) ® VR : VY d(x,1)
I'(6:T)

M
N /F(a;T) 96(/0) (n B 6(; 6lvrhi+l)) ® VR : Vyrd(x,t)

+ f e(v (c5 — bo(p)) — (h + Qé(p)eM—%VFh;I_l)) ® VR : VY d(x,1), (3.33)
r;T) 2

where we employ the shortened notations p = p(x,?) andn = n(S(x,?),7). As
M+1

(c§—boop)(x,1)= Z €lci(p(x,1),x,1)

i=1

for all (x,2) € I" (§; T¢) we find that there exists some C > 0 independent of K and € such that
_3

Y (¢S — fo(p)) — (h +0,(p)eM 2VthW_%)‘ <C

forall (x,z) € I" (§; T¢). Thus

T
/l; /;7(5)
_1
< Ce|\VRI2(re,my) 1V 20,1 02)) < C(K)eM 2 IVl 0,701 (2))
for T € (0, T¢] and € € (0,€1), by (1.27).

dx dr

E(V (c§ — 6o(p)) — (h + Gé(p)eM_%VFh;l_Q) ® VR : Vy
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Using the boundedness of 6 in L*° (R) and that of VI h;in L®(I"'(28)),i e {1,....M + 1},
we also find

T

/0 /1"1(3)
T

/0 /Ft(S)

by (1.27). Hence, plugging these results into (3.33), we obtain

R:Vlﬁ‘dxdt

<C HVFR‘

M-—1
L2(I6.T)) W2 (0,01 @) < CROET2 IV lL2 0,1 ()

dx dt

M
€6} (p) (ZeiVFhi+1> ® VR : Vy

i=0

_1
< Ce|VRI2re,ry 1V llL2 0,701 @) < C(K)eM—> IV llL20.7:01 (2))

_1
<TIT+ C(K)GM 2 |W||L2(o,T;H1(.(2))

/ €(Veg —h) ® VR : Vyrd(x, 1)
r;T)

for T € (0, T¢) and € € (0, €1), where

7= ‘/ Op(P)n @ MdyR : Vyr d(x,1)|.
I';T)

Since ¢ € Vp, we have div iy = 0, which implies by (2.23) that divl Y = -—n®n: V{ holds. As
the assumptions of Proposition 3.3 are satisfied, we may estimate Z using (3.22) and obtain

7T =

f 00 (€72 Z(S(x,0).0) (B(SCx.0),005(p) + FF) + FR) div" yrd(x, 1)
re;7)

L. (65(0)2) €2 Z(S(x, 1), B(S(x, 1), 1)divI y dx d
r; 6 2

8 _p (s.0)
0y, (p)e_% Z(s,)3,FR(p. s, t)div ¢ J€(p, s, 1) dpds dt

Tl J—8—hS(s,0)

+G H 2o, mm cryom 1V 200 (o)
=N+ T+ Tz

Here we used the same notations as in Proposition 3.3 and in the first lines the short notation p =
p(x,t). Now (3.24) implies

_1
T3 < CCROEM 2 1l 20,7001 (1o o)

and we may estimate /> by

D=

———he (s, t)

8 (s.1)
2
V20,8 (1 61) (/ / Z(s,1)? (0o F1 (p.5,1)) JEdeSdl>

< C(K)eM~2 IV llL2 0,000 (1 6y)) -
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where we used (3.25) in the last line. To treat the remaining integral, we may use Lemma 2.8 to get

» EvF (66(p)%) € 2 Z(S(x.1). 1)B(S(x, ). 1)) - ¥ dx dr

/ / w (05(0)2) €2 Z (S(x,1),1) B(S(x, 1), 1) - mic(x, 1) dx dt
Iy

+CZ/ /qu

::jll-}-jl +j1’ +\71’

ds dr

( (— — kS (s, z)) )e—iz(s,z)ﬂ(s,z)w(ia,s,x)

Now

T
jf’i $Cle_%e_C2%/ / |Z(s,t)| sup |¥(r,s,t)| dsdt
o Jr

re[—6,6]

_1
< CKIM 2Nl 20,7501 (1 67) -

where we used (3.30) and the uniform bound on S in the first step and H! (I;(8)) < L% (I3(8))
(cf. Lemma 2.9) in the second step. For J2, we use integration by parts and get

(65(0)) € 2 Z(S(x,1), 1) B(SCx. 1), 1)y - n(S(x, 1), 1)ic(x, 1) dix dt

I (%)
T
l 2 _%
+ C/O /p,(a) ’(90(;0)) € Z(S(x,t),t)ﬂ(S(x,t),[)w‘ dx dr

—_C, 5
+ C(K)e™ 2 [ ll 20,001 (1 1)

_1 1 2
< CH 1 Z o o) Wiz rion < [ @) .,

_C, 5
+ C(K)e™ 2 [ ll 20,7101 (ry o)

_1
< C(K)EM 2 ”w”Lz(O,T;H](F;(ﬁ))) s

where the exponential decaying term in the first inequality is a consequence of the appearing
boundary integral, which may be estimated as in the case of Jf’i. Moreover, we used a change
of variables r > £ — K¢ in the second step and (3.24) in the last step.

Now we discuss ;! — the last term we need to estimate. Note that by the definition of 8 in

Proposition 3.3, we have

r ! MO d e - d
v = W[& he ( t)id_p(go(f’) ) dp (=V7 k) < Cre™"22¢
L2ty Ve s
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for all € € (0, €1), due to (3.30) and eM_%

hS,

< 1, cf. (3.31). Thus, we compute

i\-)

XTe

L. vF (,o(x, z))z) 3 Z(S(x.0).0) B(S(x.1).1) - ¥ dx dt

r, ¢ 2
! [0 V] (eg(p(x, z))z) €3 Z(S(x.0).1)B(S(x.1).1) - ¥ dx dt

I (6)
a,,( (p(x. 1)) ) VI (Z(S(x.1).1)B (S(x.0).1)) - ¥ dx dt

Fz(3)

C1/ /F((g) ‘ap (96 p(x,1)) )Vl"hee_EZ(S(x 1),8)B (S(x,1),1) - 3n¢, d dr
+ sz /F(S) dp (Gé(p(x,t))2) thAe—%Z(S(x,t),z)ﬁ(S(x,[),t) . 1/,‘ dx dr

T
/ 2 _% '
+C3/ /1“[(8) (90(P(X,l)) )E VFZ(S(x,t),t),B(S(x,[),[) anw‘ dox dr

+C4/T/p(s) (eg(p(x,z))z) 6—%asz(S(x,z),t)ﬁ(s(x,t),t)w‘ doc di

+ CseCode Wl L2000 0) 12 L2 (0,711 (11))
< C(K)eM—3 Iz (0,701 (1 8y)) -

Here we used the definition of [8,1, vl ] in the first estimate (cf. (2.31)), integration by parts, (2.32)

and the exponential decay of V! and the boundary terms in the second step. In the third step we

again used eM—3 Hh;[ . ”XT < 1. This concludes the proof. O
~1lx7,

Regarding the fractional order terms, we have the following bounds, which are a result of [5],
Theorem 3.15. This enables us to use (3.28), whenever Assumption 1.2 is satisfied.

Lemma 3.5 Let ¢ € (0, 1). If Assumption 1.2 holds for c4 = c§, then there exist €1 € (0, €9] and
a constant C(K) > 0 independent of € such that

”hju_% ”XTE + ”M HZTE + ”VM ”LG(O Te;H2(2% (1)) < C(K) (3.34)

foralle € (0,€;1), where Zt, := L2 (0, Te; H2(.Qi(t))) N L® (0, T, H (.Qi(t))).
As a direct consequence of (3.34) and X7 < C°([0, T]: C'(T?')), we remark

”hf‘l “CO(o,Té;Cl (T1)) < C(K) (3.35)

for all € € (0, €;). Finally, concerning the relation between c; and co g, we have in the case that

€9 € (0, 1) and Assumption 1.2 holds for ¢4 = ¢ that

|| D)lc (CI co, B) HLOO(F(ZB TN (8:Te)) C(K)e ? (3.36)

for [ € {0, 1} and constants C(K), C > 0. This is discussed in [5, Corollary 4.9].
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3.2 Auxiliary results
Without repeating it, we will consider the following assumptions throughout this section.

ASSUMPTION 3.6 We assume that Assumption 1.2 holds true holds for ¢4 = c§, g € (0,1),
K = 1 and a family (Te)ce(o,¢,) C (0, To]. Moreover, we assume that €; € (0, €] is chosen small
enough, such that (3.6)—(3.10), the statement of Lemma 3.5, (3.28) and (3.36) hold true.

Finally, we denote R := c€ —c§.

The following proposition guarantees that Lemma 1.3 may be used.

Proposition 3.7 Let €g € (0,1) and Y : 2 — R be a smooth function satisfying the inequality
|| v ”cl(rz) < C¢0€M for € € (0,ep). Moreover, let cj(x) = cg (x,0) + ¥5(x) for all x €
§2. Then there is some € € (0,¢€g] and a constant Cy > 0 which only depends on €, Cy, and
SUPce(0,¢0) H cg (x,0) HLOO(Q), such that

E€ (cg) < Co, ”C(E)”L‘X‘(.Q) <Gy foralle € (0,€),
where E€ is given as in (1.29).

Proof. For simplicity we consider ¢g(x) = c§ (x,0) and highlight the situations where ¥ would
play arole. The estimate for H c H L0(2) follows immediately by the construction of c§. Considering

s o }chl (x, 0)|2 dx we note that chfl ”LOO(.QT < Ce and estimate
0

\I"(28))

E/ |chl(x,0)|2 dx < E/ |€ (dr) Ver (x,0)% dx
2 Jry) 2 Jro(28)
+ g / (1= & (dr))Veo(x,0) + V(£ (dr)) (c1 — cop) (x,0)|* dx.  (3.37)
T (26)

Now we have Vcop (.,0) € O (€) in L™ (2% (0)) and ¢7,cop € O (1) in L (I5(28)\I6(5)).
Moreover, p (x,0) = M, as hf4 (x,0) = 0, and thus

1 /
V(co(p(x,O),x,O)) = EGO(p(x, 0)) -n(x, 0).
In particular

€

28
2 €

_/ ‘g(dp)V(co(p(x,O),x,O))’ dx sC/ / 0,(p)* dpds < C.
2 Jroe8) T J-28

As €5V (¢x (p(.,0),.,0)) € O (1) in L® (I'H(28)) fork = 1, we find § [ 25y Vs (x,0)|2 dx <

C1 due to (3.37). Note that ¢ can be estimated uniformly in C!(£2) and is multiplied by M so
would cause no troubles in these estimates. For the second term in E€ (cf,), we compute

: e T e (a0 1) ds <
_/9+(0)f (¢5) dx = /(2+(0) F(B(x))(ci(x,00—1)dx < C

€ €



380 H. ABELS AND A. MARQUARDT

for some suitable B(x) € (1 o (x, 0)), where we used a Taylor expansion and the explicit structure
of ¢§. In particular, in I' 0+ (8) := £27 (0) N IH(8) a change of variables yields

1 , . g
_/(2+(0)f (B(x)) (c§ (x,0) — 1) dx < C; +C2/1rl/0 |60(p) — 1] dpds < C.

€

The appearance of v/ would have changed nothing in this argumentation. This proves the claim.
O

Lemma 3.8 Let o,k € (0, 1). There are some C(K), C(K,a) such that for all € € (0, €71)

”R”Lz(O,Té;LOO(.Q)) < C(K, OI)GM_%E_(M-’_D“,
1
||VR||L0°(0,T€;L2(_Q)) < C'(I()6 2, (338)
1k
||VR||L°°(O,T5,L2+K(.Q)) $ C(K)EM 2 2-‘y-I(M7

1 _1
IRl Loo (0. 7:22(2)) S C(K)ez(M 3).
Proof. Fora € (0,1) it holds
[RllLoo(2) < C (@) Rl g1+e(m) < C (a) ||R||;I_IOEQ) ||R||‘;12(9). (3.39)

Due to the construction and since /2§ is uniformly bounded in X7, (cf. (3.34)). It can be easily
verified by direct calculations and the properties of c¢§ given in Section 3.1 that || Ac§ || L2(2r.) <

C(K)Eiz. Because of Lemma 1.3 and R|yp = 0, we get

_z
IR 22y < C' 1 ARIlL2 (@) < C(K)e2, (3.40)

where C(K) depends only on K, Ty, and Cy (where Cy is the constant from (1.28)). Using this and
(1.27) in (3.39), we find

11—« o
IR 20,7050 (2)) < C(K)(GM%) (E*%) = C(K)eM 3~ (M2

In order to prove the second inequality, we employ Lemma 1.3, which yields
1 1
€2 VRl oo (0,1e:22(02)) < €7 (”VCE”Loo(o,Te;Lz(m) + [ Ves Lo o 11202y) ) < COO-

Here we used €2 || Vg “LOO(O To:L2(9)) < C(K), which is a consequence of the uniform bound

on ck, co,p and their derivatives for k € {0,..., M + 1} and the boundedness of h;’_l in Xr,,
combined with a change of variables. .
For the proof of the third inequality we note that for k > 0 we have for any u € H_ (£2)

K

1— =K
el oy < Cr llull oy 190l 258, (3.41)




SHARP INTERFACE LIMIT OF A STOKES/CAHN—HILLIARD SYSTEM I 381

for some C; > 0 due to the Gagliardo—Nirenberg interpolation inequality. Moreover, (3.4 1) together
with by (3.38) and (1.27d) we obtain

1-24% e
||VR||L°°(0,T€;L2+K(.Q)) <G ”yR”L‘x’(O,Tg;LQ(.Q)) ||VR||LOO(O,T5;L2(39(%)))
< C(K)eM— 1725 M (3.42)
because of Poincaré’s inequality, ||R||22(9) < Rl g—1(2) IVRIL2(g), (1.27b) and (3.38). O

The following lemma is an adapted version of [4, Lemma 5.4].

Lemma 3.9 Letu € H'(R2). Then there is some constant C > 0 such that

1

) (jul + Jlonu] )
Lz([‘t((g)) Lz(Ft (8)) n L2(Ft(5))

3
el s < € (2 + | 970
2
(Il L2(ry sy)

holds for all t € [0, Ty].

Proof. Note
§
3 3 1 3
”u”LB([}(s)) < C/J)’/F lu(p.r)|” dH (p)dr =C ||||u||L3(F[)”L3(_5,5)
! t

1 5
and [ullp3r,y < C ”“”;11(1}) ”””22(1}) as I; is one-dimensional. Now Holder’s inequality leads
to

3
1 5
. 1 5
lullzs @y < € el gy 1l L3(=8.6)
, 5
% 2
<C| ||u||H1(Ft)||L2(—5,5) ”u”L%(—&ts) 20
t

1 1 5
<C ” ||”||H1(Ft)||z2(—5,5) H”“HHI(—B,S) ||22(r,) || ||”||L2(—5,5) “L2(r,)’

1 4
< 5 5
where we used ||u||L%(_5,5) <C ||u||H1(—8,8) ||u||L2(_5,5). O

3.2.1 The error in the velocity. For € € (0, €g) we consider strong solutions V€ : 7, — R? and
€ = 21, — R of the system

—AVE 4+ Vp€ = u§Veq in 27, (3.43)
divve = 0 in 27, (3.44)
(=2Dsv€ + peI) my = g Ve on a7, §2 (3.45)
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(cf. Theorem 2.3) and weak solutions W5 : 27, — R? and ¢§ : 27, — R of

—AWS + Vg§ = —€(div (h ®; VR) + div (VR ® VR)) in 27,, (3.46)
divws =0 in 27, (3.47)
(=2Ds W5 + ¢SI) g = argWS in 97,92, (3.48)

where h is defined as in (3.17). We consider the right-hand side of (3.46) as a functional in V] given
by

g (W) :=¢ /Q((h ®s VR) + (VR ® VR)) :Vydx forally € V. (3.49)

Introducing
v = Ve — (V€ + WS + W5) (3.50)

€

we have v¢ — vé = v + W§ + W5. Hence, if we control V¢,

error v¢ — ve.

WS, and W5, we will control the

Lemma 3.10 Let W5 be the unique weak solution to (3.46)—(3.48) in 2, for € € (0,€1). Then it
holds for all r € [1,2] and q € (1,2)

2(M—1)

IW3llLro,7.:0(2) < C(K,roq)e 7 (3.51)

forall e € (0,€7).
Proof. Since 2 C R?, we have qu, (2) = C%(£), where % + é = 1. Thus Lemma 2.4 implies

||‘7V2||Lr(o,TE;Lq(g)) < C(g)e (”VR ® h”Lr(o,Té;Ll(m) +[VR® VR”u(o,n;]}(g))) .
We use X7, <> C°([0, 7] ; C1(T')) and d,cx € Ry fork € {0,..., M + 1} and get

€[VR®hllLro,1..01(02))
M+1

Z ek8pck

k=0

M-1 1 €
< Ce" ™ 2¢2

1
M-3

‘ h

VR .
corcrny 1Y I20.TL2@)

Loo(I'(28;T0);L2(R))

< C(K)e2M—3
for all € € (0, €1) due to (3.34) and (1.27). Moreover,

s_2

2M _ 2
LOO(O,Te;Lz(.Q)) § C(K)E r r

€[VR® VRl ro,1..L1(2)) S €IVR] VR

2
r
L2(0,Te;L2(2)) |

for € € (0,€1), by (1.27) and (3.38). Combining the above estimates and using r = 1 the claim
follows. 0

Lemma 3.11 Lerp € L™ (0, T.; H! (.Q)) and let the assumptions of Lemma 3.10 hold. Then there
is some r’ > 0 such that

Te
/0 /Q (W5 - V) pdx

dr < C(K)TGr/gM ||§0||L00(0,T€;H1(9)) foralle € (0,¢7).




SHARP INTERFACE LIMIT OF A STOKES/CAHN—HILLIARD SYSTEM I 383

Proof. Letr € (1,2). As Vc§ € O (€) in L™ (27,\I"(28)) it immediately follows

Te
/0

by (3.51) for ¢ € (1,2) and due to H!(£2) < L5(£2) for all s > 1. The same estimate holds for

(V& (dr) (c1 —cop) + (1 =& (dr)) Veop) in I7(28)\17(8) by (3.36).
In I" (26; T¢) we consider V (co (p(x,1),x,t)) = V (6p (p(x,1))) and compute

Te
/ / (Wg'V<90(P(x»’))))f(dr)<pdx dr
0 i (28)

Te
/ /Ft (26)

T.
1 ~
S CK) 19l oo (o.7:m1 (2) € /0 WSl 2oy A (65 oo

Te
[ (Ve odr| ar < Celvlimqoramioy | 195loce
2\, (28) 0

2 —-1)

1
< C(K)T/! ”(p”LOO(o,TE;Hl(.Q))E — t1 (3.52)

(n— eV (x, t)) (p(x,t)))q;‘ dx dr

2M—1) _

1
< C(K)TS ||90||L°°(0,T€;H1(.Q))E g

Since V(¢ —co(p(.),.)) € O (1) in L= (I" (28; T¢)), we immediately get

/OTG /n(zs) (WZ : V(cI — co(p(.), )))¢ dx

by similar arguments as in (3.52).

As M = 4 there always exists r € (1,2) (and with it r’ € (2, 00)) such that MR- M
which concludes the proof. O

2(M—1)

1
dt < CRTE Npllpeoo, ) € "

Theorem 3.12 (Error in the velocity) Let V¢ be a strong solution to (3.43)—(3.45), let the
assumptions of Lemma 3.10 hold true and let v&,, := v¢ — (V€ + W§ + W5).

1. There is a constant C(K) > 0 such that
V5 =0 ey < CENM foratie € 0.0,

2. Forevery B € (0, %) there are constants C1(8), C2(B), C(K) > 0 such that

varrHHl(_Q) < Cl (”I‘&_DVCE ” (H(}(Q))' +e€ ||VR||;;E§Q(§)) ”)’VR”}_IJ’;z(g_Q(g)))

5+8

+ Caé? “VR”L2(8.Q( )) ”VVR”I_“(BQ(%))

(3.53)

for almost every t € (0, T¢) and

||vaL1(0 a2y S C(K)C (T, €)M (3.54)

forall e € (0,€1), where C (T,€) — 0as (T,e) — 0.
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Proof. Ad 1. By definition, v§ — v€ satisfies

—ANg — V) + V(p§ — pf) =1 in 27,
div(vg —vé) = r§, in Qr.,
(=2Ds(vq —v€) + (p§ — P)D)my = ag(v§ — v€)  on I7, £2.

Thus, we have by Theorem 2.1 and since r§;, = 0 on 07, $2
v _V_€”L2(0,T€;H1(.Q)) < C(Hr§ HLZ(O,Te;(Hl(.Q))/) + 76 “L2(.QT€))

and the claim follows from (3.8).

Ad 2. First of all we have for ¢ € H}(£2)

/ 2Dy (V¢ — V) : Dy dx + oe()/ (V¢ — V&) -y dH' (s) = / (1€Ves — pqVvey) - ¥ dx.
2 82 2

(3.55)
Plugging in (1.4), (3.4) and using integration by parts we get

/Q (uVes —pgVes) - ¥ dx

= e[g (Vef ® Ve — Vg ® Ve§) : Vi dx — /g rémVes - v dx

+e /a.(z ((ch ® Ve — Ve @ Ve ) myg + % <|Vce|2 _ }Vc§|2) nm) Y dH(s). (3.56)
Here we used ¢¢ = c¢§ = —1 on d7$2 together with f(—1) = 0 and div(Ve ® Vc) = AcVe +
1V(|Ve]?) for sufficiently smooth ¢: 2 — R.

So, defining v, as in (3.50) and taking into account (3.55), (3.56), and the definitions of W
and w§ (cf. (3.14), (3.46)) as weak solutions we find that v¢ . solves

/ 2DvE, : Dy dx + aO/ ve -y dH!(s)
2 082
1
= e/ ((ch ® Ve — Ve @ Ve ) myg + §(|Vc€|2 - |ch|2)nag)- Y dH ' (s)
a2
- fﬂ ré&pVes - vdx =: FE () (3.57)

for all v € H!(£2). Due to (3.9) we have

Te
A

Te
dr < [0 ||réH2ch ” (H @) dr 1Y g o)

< C(K)C (T.,e) €M, (3.58)

[ révves - vwax
2
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where C (T,€) — 0 as (T,€) — 0. Thus, we only need to estimate the appearing boundary terms
in (3.57). To this end, let B € (0, ) and we compute

Te
ef / ](|ch|2 - |vc;|2) w’ dH (s) dt
0 082
Te
< 6/0 /m (|we|2 +2|VR| |vc§|) ly| dH(s) dr
Te
< [ (VR Ly 4 IR g ) Wy
Te
< [ (IVRIE gy, TR ) 1 o
Te
4o [ (@IVRIE gy IPVRIG G, ) 19110y o (.59
<G (IVRIEE gy WIRIZE 1oy ) Wl o

1 1+8
+ C2T€2 (E ”VR”Lz(a Q( )) ”)/VR“Lzz(O,TE;HI(Q))) ||1/f||H1((2) 5 (360)

where we used in the second inequality that Vc§ = O(e) in L>(d7,2(2)) and that H?(02) —
L*(382) forall s € [1,00). and H? (32) — L™ (0Q2), since p — 1 = —2+ﬂ Now we may
estimate

[YVRIg1 (o) < CII(YAR,|VR], R)lle(a_g(g)) (3.61)

due to elliptic regularity theory and the definition of y. Using this in (3.60) together with (1.27a)
and (1.27d), we find

e/oTe [ag)(wc Ve P) v| a1 ) dr < 191 @) CK) (e 248 o 7 i)
< ”‘/’”HI(Q)C(K)(gE + Tg)eM

as M = 4 and B > 0 can be chosen sufficiently small.
For the remaining, not estimated term in (3.57), we note that

Te
6/ / [(=Ve€ @ Vo + Ve @ V) mpg - v dH' (s) dr

Te
s/ / (lVR|2+2|VR||ch|>|1//|dHl(s)dz
0 082

and may then proceed as in (3.60). This proves (3.54) and also (3.53) if we use (3.58) and (3.59)
without the integration in time. [
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Corollary 3.13 Let the assumptions of Theorem 3.12 hold true and let ¢ € L (0, T,; H'(£2)).
Then

Te . 1
/0 /9 (VZ—V‘“)-chigodx dt < CORVTZ M g oo o101 ) - (3.62)
Te
/0 /_QV:" -Vegedx| dt < C(K)Cle, T.)eM ||¢||LOO(O,T€;H1(9)) , (3.63)
Te
/ / RvE_ - VRy?dx| dt < C(K)C(e, To)e*M ™1, (3.64)
0 2
Te
/0 /9 v¢. - VRpdx| dt < C(K)C(e, To)eM 101l oo (0,751 (2) (3.65)

foralle € (0,e1) and C(e,T) — 0if (,T) — O.

Proof. Ad (3.62): We have Vc§ € O(e) in L= (£27,\I"(28; T¢)) and thus get the estimate in 27, \
I’ (26; Te) by simply using Holder’s inequality and Theorem 3.12.1. It remains to give an estimate
inside I"(25; Te): We have Vcp g € O(¢) in L* and the term involving (¢; — co ) in Vc§ can be
handled by using (3.36), Holder’s inequality and Theorem 3.12.1) as before. Moreover, we estimate

/ |(v§ — V) EV (Bo 0 p) | d(x.1)
(28:T¢)

Te L
<[ 105 =¥ el aran [

1
< CKTEEM 19l oo 0,111 (2)) -

0, (n+ V7 hg)|dpdsdt

where we used H(I7(28)) < L?*°(I;(28)) together with Theorem 3.12.1) in the last step. For
k =1 we can use €KV (¢ (p(.),.)) € L® (I'(28; T)) uniformly in €. This proves (3.62).
Furthermore, (3.63) follows in the same way by using (3.54) and noting that we may not generate

1
aterm 7.2 as we only control | V.||, , (0.T:H'(2))"

Ad (3.64): Since H'(2) < L*(2) forall s € [1, c0), we have

Te
/(;

for k > 0. Regarding (3.53), we need to show three estimates:
Firstly, we have

Te
dr < C(K)[O Vel i1 2y 17RII L2442y 1YV RII L2y dE (3.66)

/ RVE - VRy?dx
2

Te
/0 [r&nVeil (@ 1VRIL24x(2) 1YV Rl 2 dt
< ”réHZVCZ ”LZ(O,Te;(H(}(Q))/) ||J/R||L°°(0,T€;L2+K(Q)) ”)/VR”Lz(QTG)
< C(K)C (Te,€) M (M—3=5M) < C(K)C (T, €) M1, (3.67)

where we used (3.9), (1.27d) and Lemma 3.8 3) and the fact that M > 4 and x > 0 can be chosen
arbitrarily.
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Secondly, we estimate for B € (0, 1)

2
Te
1-2 1+2
/0 € IVRI 0y 17V R () 1R I L2ty 1Y VRl L2 ) d

1-28 1428
< Ce ||VR||L2(3T€Q(%)) ”)/VR”Lz(O,TG;Hl(.Q)) ||yR||LOO((),T€;L2+K(Q)) ”VR”Loo(O,Te;Lz(Q))
< C(K) (M= 3BeM—3—51 M =3y < C(K)eM 3, (3.68)

where we used (3.61), (1.27a), (1.27d), Lemma 3.8 3) and (3.38), M = 4, and that 8 > O,k > 0
can be chosen arbitrarily small.
Similarly we obtain

Te
/0 & ||VR||L2(39( ) IV R 17 RN 24wy 17 T Rl o

1+8
<Cé ||VR||L2(3 .2(3)) ||VVR||22(0,T€;H1(Q)) ||yR||LOO(0,T€;L2+K(_Q)) ||)/VR||L2(0’T€;L2(9))
< C(K)(eMﬁ—zeM—z—zﬁMeM—%) < C(K)eM—2, (3.69)

Now (3.66)—(3.69) together with (3.53) yield (3.64).
Concerning (3.65) we note that

< Vel 1y IV RIL2(2) 9l 24(2) -

’/ Ve, - VRpdx
2

Regarding (3.53), we again consider three different terms: Firstly,

T.
[ 185l 1y 19 Rl ol
< ||r(€:H2VCf4 ||L2(O,T€;H1(.Q)’) ”VR”LZ(QTE) ”‘p”Loo((),TG;Hl(g))

where we may now use (3.9) and (1.27) and M = 4 to gain the estimate by the right-hand side
of (3.65). Secondly,

Te

1-2 1+2

/0 € IVRI 200y 17 VR Gy 1V Rl 22) [9lLs() Ao
1-28 1+28

< Ce ||VR||L2(3TEQ(%)) ||)’VR||L2(O,T€;H1(Q)) IVRIlLoo (0,7.:22(2)) 1€l oo (0.7 171 (02))

for B € ( ) where (1.27) and (3.38) together with M = 4 imply the desired estimate. Thirdly,

T. |
s+8
/0 EIVRI s ) 17V Rl 1V RIL2(2) 193y d

C€ ”VR”Lz(B _Q( )) ”VVR”Lv(OT Hl(.Q)) ”VR”LZ(,QTé) ”(p”LOO(O,Te;Hl(Q))

for B € (0, %), where finally (1.27) and M = 4 imply the claim. O
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Lemma 3.14 Let ¢ € L™ (0, Te; Hl(.Q)) and (Wﬁ)r = W] — Wﬂp. Then

Te
J

Te
J

~e\I n 1
/rw) (W¢) '(Z = VIR ) edperp dx| dr < COKY(T) P €M gl oo (0,7, )
t
(3.72)

1 ~ I 1
/;“(8) < (wi) -n0)(p)p dx| dr < C(K)(Tf)zeM||‘P||L00(0,T5;H1(9))’ (3.70)
1

~e\I 1
/1*(8) (W9)" - VI hg65(p)e dx| di < CKYN(T) €M @l oo 0,11 (2))
t
3.71)

Te
/(;

forall € € (0,¢y).

Proof. Proceeding as in [4, proof of Lemma 5.1] we find, using 0,W{ = —div, W5,

1, .
/F(S) p; (W§ — Wil ) - m6y(p)g dx
t

§ pr 1
=/ f / —Wi (0. p.1) -V (p (r. p.0)0g (0 (r. p.D))@ (r. p.1) J (1. p.1) dH' (p) do dr
-sJo Jr; €
) r 1
+ [8[) /;_‘t gwi (O-, p,l) VT(gl) (r,p,[).] (r, p,[))@(/)(lo(r7 p,[)) dHl(p)do_dr

8 r 1.
[ ] 500 mn oo 0 p.0)0 .0 T ) @3 ) do
! t
=hLh+1Lh+Is,

because of Lemma 2.8. To estimate the occurring integrals, we note that

S Wi G Dlipeoss) < Crlwg G Dllgi s (3.73)

,
/ # (0, p1) do
0

holds for all p € I'y and r € (-6, §). After a change of variables, we get

2l < Ce [ 95 G0l
t

4
/_g_he ((VTW )(elo+ 1) p. t))(p +h§)6(p)| dpdH' (p)

1. 1
< C(K)e2 WS GOl 2y .8 10+ D 0]l Loy (1011 (2) + €2 I9llL2.00(r, 57y

where we used (3.73),

\hz ”CO([O,T];C‘ (11)) < C(K) as in (3.35). Employing Lemma 2.9 and the

exponential decay of 6}, we find

Te 11
[ 10 < 00 T} 15510 mion) Wlieqo o e
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As V. (p(r, p.t)) = Vo (h§ (S (p.1).1)) we may estimate /; in a similar manner, and |k (p)| < C
for all p € I}, implies the equivalent estimate for /3. Lemma 3.4 together with the estimates on [,
I, and I3 completes the proof for (3.70).

To show (3.71), we calculate

‘/ (W5 — W5lp)) - VIRG(S(x. 1), 1) 05 (p)g dx
I ()

C /Tl /_8 /r |(3nW1)(X(U,s,t))| do ‘VFhZ(S,t)%(p(X(r,s,t)))go‘ dr ds.

8 €

A 3 /
<€) [ 5 o ol [, ed o+ 1116660 dpas

A

since

/r (0nWY) (X(r,5.1)) do
0

< WS (XC5.0) 1 sy VIrl Vre(=5.8)

and s € T', ¢t € [0, T.]. Integration from 0 to T, and Lemma 3.4 yield the assertion. The proof
of (3.72) follows analogously to the proof of (3.71) since d,c1 € Rq. L]

Lemma 3.15 Let ¢ € L™ (0, Te; H'(£2)) and w§ = 7 L. Then it holds

c 1
Te
[)

foralle € (0,¢€1), where C (T,€) — 0as (T,e) — 0.

K\-)

_1
/QGM 2 (Wi — wi| &) Veqedx| dt < C(K)C (Te,€) M ||(p||Loo(0,T€;H1(Q)),

Proof. In £27,\I"(26) we have Vc§ € O (e) in L, thus the estimate in this region is a direct
consequence of Lemma 3.4. Inside I" (26:T,) we have Vc§ = &Ver + En(c; —cop) +
(1 —&) Vco,. The term involving Vcp p can be treated as in the outer region and the estimate
for the term (c; — co,) is a consequence of (3.36). Now by definition

M+1

Ver(x,t) = Z € <3pci(p(x,t),x,t)(w — Vrhj(x,t)) + Vyci (,o(x,t),x,t))

i=0

for (x,t) € I' (26;T;). Since Vxco = 0, we have ZIM?)FI €'Vyc; € O(e) in L*® (R x I'(26)),
allowing for a suitable estimate with the help of Lemma 3.4. Choosing € > 0 small enough, we

have |“L —h§| = 5 S inr (28; T)\I" (8; Te) and as d,c; € Ry, this leads to

_1 n
/ Md e we| k| ’apc,- (o0 x1) (2 - Vrhj,)’ lo| d(x, 1)
I'(28;T\T (8;T¢) €

- 1, c,8
< C(K) Wil 2 o.1e:m1 (2)) 19122 (0,711 (2)) che €23
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foralli € {0,..., M + 1}, where we have used Hh < C(K) due to (3.35).

M-1 Hco(o Te;Cl(Tl)) =
So we only need to show

Jram ™
I5:Te)

fori € {0,...,M + 1}, where C (T,e¢) — 0 as (T,e) — 0. Fori € {0, 1} this is a consequence
of Lemma 3 14 and for i > 2 this is a consequence of dpc; € L™ (R x I'(2§)). This shows the
claim. O

(S

(WS — e[ ) - (e"apc,( (x, 1), x, r)(— —vfhe))q)‘ d(x, 1)

< C(T.€) CKIM 119l oo (0,71 (2)

3.3 The proof of the main result

Let the assumptions of Theorem 1.1 hold true. Moreover, let c§, i, v, p§. h§ be given as in [5,
Definition 4.1], which implies in particular that the properties discussed in Section 3.1 hold. Let w§
and w5 be weak solutions to (3.14)—(3. 16) and (3.46)—(3.48), resp., and let V€ be a strong solution

to (3.43)-(3.45). We denote w{ = M— Additionally, let (v€, p€, c€, 1) be smooth solutions

to (1.1)—(1.6) such that (1.22) is satlsﬁed. Note that Proposition 3.7 implies that Lemma 1.3 is
applicable in this situation. We define R := ¢€ — ¢§ in §27, and let ¢ (., 1) € H?(2) N Hy ($2) for
t € [0, Tp] be the unique solution of the problem

—Ap(.,t) =R(.,t) in$2,
0(,t)=0 on 952.
Then ¢ is smooth and we have [[¢ (,0)[|g1) < CIR(.,0) (122 < CyoeMfor all € € (0,1).

This implies the existence of some family (ze)ce(o,1) C (0, To] and K = 1 such that Assumption 1.2
is satisfied (and in particular (1.27) holds for 7¢) and such that

K
le Oz (@) < IR G O)L2) < €. (3.74)

Moreover, we may choose €y € (0, 1) small enough, such that (3.6)—(3.10), Lemma 3.5, (3.28) and
(3.36) hold. This implies in particular that Assumption 3.6 is satisfied and that we may use all the
results shown in Section 3.2. Now let T € (0, Ty] and for € € (0, €9) we set

Te .= sup{t € (0, T] | (1.27) holds true for t}. (3.75)

We will show in the following that we may choose 7" € (0, Tp] (independent of €) and € small
enough, such that T, = T for all € € (0, €¢).

Now let T/ € (0, Ty] be fixed. Multiplying the difference of the differential equations (1.3)
and (3.3) by ¢ and integrating the result over £2 yields

OZ/ 00: (~A0) + ¢ (v VR) = (v —v) VCE+(V~V?-V~V§IFE(dr))'VCZ) dx
ko)

+ / P (Ve Ve§ + W5 - Ve — A — 1)) + oréy dx - (3.76)
2
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forall t € (0, T) . Here we used the definition of ¢ and the identity
Ve Ve — v Ve = v VR + (W] + W5) - Ve — (v — V) - Ve + v, - Vey,  (3T7)

which is a consequence of the definition of v¢, (cf. (3.50)). In order to shorten the notation, we now
write

ER, T = /Q €|VRP> + €1 f" (cg) R*d(x,1),
-
N(e§. R) = f' (i + R) = f'(c§) — " (c§) R=f"(ca ) f(4)(CA)_ (3.78)
RE = <6M7% (—w§ + wilré (dr)) - ch)
which leads us to
=53 / |Vo|* dx 4+ (R, T) +/ @ (V- VR) + ¢ 'N(c§, R)Rdx
- /Q <p((vj1 — V) . Ve — WS - Ve§ — Ve Vs — rém + Re) + Rrégp dx (3.79)

forall¢ € (0, T’) because of (1.4) and (3.4). We obtained this equality by using integration by parts
in (3.76) and noting that the boundary integrals vanish due to the Dirichlet boundary conditions
satisfied by @, u§ and u€.

Using Theorem 2.13, we obtain

/ €|VR> + €1 f" (cg) R*dx
2

L2(F,<8>))
+C2 (€ IVRI 20 + € IVRIZ 2001y ) — C3 IVl 20)  (3:80)

2
Cr (€ 1R I )+ IRz + [V R

and due to the assumptions on f', [9, Lemma 2.2] yields

1 C
—/ N(c;,R)Rdxa——/ |R|? dx.
€ Jo € Je

Plugging these observations into (3.79) enables us to get

AV d
2dl/|¢| x

2 _ 2
ta (” (R.VR)[[2(g) + | (7 R.€VR)| 2 ) +€ | V| Lzm(s»)

<G |Voliaggy + RS, (381)
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where

RS =

/Q((vj — ) VS ry — Ws - Ve§ + RS —vE- VR —VE, - chl)<p dx

C
+—3f IR dx—i—'/ Rr&y, dx
€ Jo 2

Integrating (3.81) over (0, T”) and using Gronwall’s inequality, we get

sup ||V€0||i2(:2) + [ (eR. € |VR|)||§,2(.Q7—/) + ('R € |VR|)||§,2(.Q\F(8;T’))

0<t<T’

+6HV

2 T’

r 2

R‘ < T Vo (., .82
ey < € (0 (|| ¢ OlEa + [ RSdt) (3.82)

for some positive constant C (Tp) > 0. On the other hand, (3.79) together with Gronwall’s
inequality and (3.74) also implies

E(R.T') < C (Ty) (||V(p 0320 +/0 RSdt). (3.83)

The idea now is to show that we may choose €g > 0 and T € (0, Tp] in the definition of T, so small,
that

Te
0

holds for all € € (0, €p). To this end we have to estimate RS in the following.
Due to (3.6)—(3.7) and since (1.27) holds true for T¢, we get

Te Te
/ / Rréy, dx dt—l—/ / Fém e dx
0 2 0 2

Moreover, we immediately get

Te
/(-)

as a consequence of Corollary 3.13 and Lemmata 3.15 and 3.11. Here C (T,¢) — 0 as (T,¢) — 0.
Moreover, as a consequence of Lemma 3.9 and Hélder’s inequality we have

dt < C(K)C (T, €) M.

dt < C(K)C (T;€)e*M,

/Q<(Vj1 — i) . VS 4 V- Ve§ + RS+ WS- Vci)go dx

2
L2(0,Te; L2 (I (8))))

1

2 2
‘ (”R lz2(0,sL2cr o) + ||anR||L2(0,T6;L2(Ft(8)))) IRILs 0,102 syy) - B89

.
/0 IRIZs sy At < € (||R||L2(0,T6;L2m(8))) + HVFR‘
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. 2
Since |R|72(0) < Vellz2(@) IVRIL2(2), we deduce

IR 01020 < 390 1V6li) VRl (3.85)

Because of (1.27) and the definition of T, this implies

1 [T 1 lpf_1l 173 _3 _z 1
-[ IR 5,6y df < —CK?e2Mae3M=2eMM=5 — CR3M ™2 < CKPe2M 2
€ Jo €

since M = 4. On the other hand, we have, for ¢ > 0 small enough,

1

1T 3 2
gfo IRIZ3@vr @y 9 < ZC IR L2 0,11t @\rion) IRILs (0, 7052220 1 69)

—

< —CK3eM-32M—3 (3.86)

Y

where we used the Gagliardo—Nirenberg interpolation theorem, (3.85) and (1.27). As M = 4, the
estimate follows.
For the last term in RS we have

Te Te
/ /VG-VRQDdX dt=/
0 Q 0

Te
<,
0

Before we continue with the estimates, we introduce ijl = qu —€

of all we have
Te
-
0

s
+/OT€/Q|V((1—)/)€'§):(V¢®V§0)|+

/ve-VwRdx dr
2

+

/ v§ - VeRdx / (v =v4) - VeRdx| dr.  (3.87)
fe 2

M-1 e 00 ;
2V -1 € L (.QTO).Flrst

[Nl

dr
Vol?

where we used —Ag = R. We note that we introduced y since ¥§ does not satisfy Dirichlet
boundary conditions (nor does ¢ satisfy Neumann boundary conditions).

Now |V€ff4(x, t)| < |§(dp(x, 1))0ovo (p(x,t),x,1) %| + C(K), which is a consequence of the
uniform boundedness of the terms v, vo, and of || h§ HCO(O,TG;CI(F; 25))) < C(K) (see (3.35)).

Moreover, by (3.12), and since dp (x,1) = € (p(x, 1) + h§(x,1)) for (x,1) € I'(28), we have

/ yVs - VR dx
2

/ VS - VoR dx
2

dxdf, (3.88)

+ _ -
va(pe.0)x.0)] < € i (o) oty + )| LD o)

for all (x,1) € I"(29).
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Due to ||/ (p)p| < C forall p € R and v = v~ on I' this results in

Te
/(.)

by (1.27b) and the facts that V§ € L (£27,) and y, y are bounded.
Concerning the second term on the right-hand side of (3.88), we note that H div (\Aj) || Loo(2r,) <
C(K) as a consequence of (3.89) and (3.35). Thus

/OTG [ (@=»35)-v(51veP) ax

For the third term on the right-hand side of (3.88), we calculate

Te
/ / YV - VoR dx
0 2

so (1.27) implies a suitable estimate. Regarding (3.87), we have

Te
/(;

M-1 2M+1
Sen 2 HVZ,M—% ||L2(0,T€;L°°(.Q)) IV@llLoo(o.1.:2202)) “ 1R L2 (0,72 12(2)) < C(K)e™™ T2

/;2 V((1=p)¥)) : (Ve ® Vo) dx

dr < CR)T V0l oo(o,1:12(2y) S CEDTee®™

dr < C(K)TG ”V(p”IZJX’(O,TE;Lz(.Q)) < C(K)T662M.

1
dt < CTE Vol oo (o,1.:2(2)) 1R L2 (@r \r28:10)) -

dr

—1
/;2€M 2VZ’M_%-V<,0Rdx

as M > 4. Here we used that ”V;’il||L2(0,T6;L°<>(.Qi(z)u1"t(28))) < C(K) due to (3.34) and
H?(2) < L*®(£2). Hence 8

Te
/(; fﬂ (v¢ =v§) - VeRdx

S (||V~Vi ||L2(0,T€;L4(.Q)) + ”?_ le HL2(0,T€;L4(.Q))> ”V(p”LOO(O,Te;LZ(Q)) ||R||L2(O,T€;L4(Q))

dr

Te Te
+/ /WZ'VRwdx dt—i—/ /Vgrr~VR<pdx dr
0 2 0 2
2M+1 2M+1 oM Te ~c
< C(K) (e 5L 2MAS L O (T e)e )+ | W VRpdx| (3.90)
0

because of V&, = v¢ — (v€ + W + W5), Theorem 3.12.1), (3.28), (1.27), (3.65), and M > 4.

err
Regarding the w5 term we first note that for ¥ > 0 we have

l_K

IVRI 2 (0.7,:22++@y) < € (||VR||L2§;;€) IARIZ,, )+ ||VR||L2(QT€))

< C(K) (eM—%e—(M“)zﬁ) (3.91)

where we used || R|| 72y < € [[AR|2() and AR 12(q,, ) < C(K)e™3 as in (3.40). Thus, we

may estimate for k > 0 and ¢ € (Fe=7,2)

Te
/(;

/_QW; VR dx| dr < W3l 20,7 ;10 (2)) IV RIL2 (0, 72522+ 0 (02)) 191l oo (0,711 (2))

< C(K)63M_%67(M+2)2-'ﬁ7'< < C(K)EZM-i—a



SHARP INTERFACE LIMIT OF A STOKES/CAHN—HILLIARD SYSTEM I 395

for some o > 0, where we used (3.51), (1.27b), (3.91), M = 4 and that « > 0 can be chosen
arbitrarily small.

Because of (3.90), we get fOTe Jo (V¢ =v4) - VoRdx| dr < C(K)C (T,€)e*M, which
concludes the estimates for RS. Since (3.82) and (3.83) do not imply estimates of the kind (1.23¢)
and (1.23f), we need to apply another strategy and test with 2 R in the following.

Let again T’ € (0, Tp]. Multiplying the difference of the differential equations (1.3) and (3.3)
by 2R and integrating the result over 2 yields

0:1/ i(Rz)yzdx—i—/ Y2R(V - VR + v, - Ve + (V€ — v§ + W5 + W5) - V) dx
2 Jo dt Qr

1
+ / y?Rréy — A(y°R) (—EAR + g(f// (ch) R+ N (4. R)) - réHZ) dr, (3.92)
2
where we used suppy N suppé o dr, = @ for all ¢t € [0, Tp], (3.77), integration by parts and
R = p¢ = pu§ =0ondr,$2.

As ¢§ = —1 + O(e) in L=(d7,92(%)), we have f"(c§(x.1)) = f"(=1) + ef(x,t) for
(x,1) € BTOQ(%) by a Taylor expansion, where f € Lw(aTOQ(%)). Moreover,

V (y*R) =2yRVy + y>VR, A(y*R)=A(y*) R+4yVy VR +y*AR

and we find

1
—/ —A(Y*R) f" (c§) Rdx
€Jo
1 1 -
= Ef” (-1 ||yVR||iz(9) + < /Q f"(-1) RV (yz) -VRdx — /;2 A (yzR) fRdx, (3.93)
where we used R = 0 on d7,,§2. Moreover, we have
VA (5 R) = ky Ves R + (£ (c§) R+ ky R?) VR,

due to (3.78) and k; = LX) This yields

/ ~A(2R) TN (c§. R) d(x1) = 1/ ky <|V(VR)R|2+V()/2) R3-VR) dx
2 € € Jo
+ l/ V (¥*R) - (kva;RZ + /() RVR) dx
€Je
k 1
=L |y |VR| R|72(0) + —/ NV (¢, R) dx, (3.94)
€ € 0

where the boundary terms due to integration by parts vanish since f’ (—1) = R(x,t) = 0 and
cq(x,t) = —1for (x,1) € 01,$2. Here we used the notation

NV (¢S R) :=ksV (y?) R*- VR + V (y*R) - (kfvchz + () RVR) . (3.95)
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Additionally, we compute
/ —A (yzR) (—€AR) dx = ¢ ||yAR||iz(m + e/ 4yVy -VRAR + A (yz) RARdx. (3.96)
Q Q

Plugging (3.93), (3.94) and (3.96) (noting that ks, f” (—1) > 0) into (3.92) and integrating in time
yields

2 2 k 2
| [YR (.0 722 + €l¥AR 20, + L O VRVRVR) [72(q,,)

T/
< ||)/R(.,O)||22(9) +C [ / YPR(VE - VR + (V& + V€ — v§ + W5 + W5) - Ve§) dx| dr
0 2

T 1
+ CZ/O /9 Y2 Rréy +€(A(y*)R +4yVy - VR)AR + ZNV (c§. R) dx| dr

r 2 r € 2 1 "
+C;3 ; AY*R)(fR—r&p) + RV(Y?) - VRZf (=1) dx/| dr. (3.97)

0

If we may now give suitable estimates for the right-hand side of (3.97), replacing T’ by T, we
get (1.23e) and (1.23f).
Now we estimate the right-hand side of (3.97). Starting from the last term in (3.97), we have

/OTE =) ‘

€
due to (1.27a) and (1.27d). For the next term, we note that r&y, = réHZ,B in dr, $2 (%) and use (3.13)
to conclude

/TE / A(y*R) réy dx
0 2

+ CreM—3 Vi, ||L2(Q;E) | GVRRB 125, 03y < C(K)eM-z,
where we used integration by parts, /,L;l_% = 0on d7, 2, (1.27a), (1.27d) and (3.34). Moreover,
Te
J

Skipping 'V (c§, R) for now, we next estimate

/Te
0

due to (1.27a) and (1.27d). Additionally,

Te Te
J -
0 0

< Ce (IR12ar, a(8) IV Rz .28 * IV R 1205, 2(2)) = 0

C -1
V(y®)RVR dr < ?||yVR||L2(QT€)HV)/R”LZ(_QTG) < C(K)eM~2

LI(2)

dt < C| AR VR B) | 12y, (3™

/ A(y?R) fRdx
2

dt < C| AR VR R) 123, a(3)) IR 2207, 22

< C(K)eM—z,

1

dr < Ce||yAR||L2(QTE)||VR||L2(3T€9(%)) < C M3

/ €4(Vy - VR) yAR dx
2

dr

/ eA(y*)RAR dx
2

/ e(VA(y*)R + A(y*)VR) - VR dx
2
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because of Ry = 0 and (1.27b). Now

Te
/ / yeréHl dx
0 2

due to (1.27a) and (3.10), and

Te
/O

2M+1
At < ClIRNz2(ay, 2()) Il 2oy gy < CHOSH

dr

/QyzR (V€ —v§ + WS + W5) - Vg dx

< Ce ”R”LZ(BTG.Q(%)) (”$—le HLZ(O,TE;H‘(Q)) + H‘i'i ||L2(0,T€;H1(9)))
+ Ce Rl 20,100 (22(3))) W5 ||L2(0,T6;L‘1(Q))
where ¢ € (1,2), % + é = 1 and we used Vc§ = O(e) in L®(d7,2(%)). Now (3.28),
Theorem 3.12.1 and (3.51) together with HI(B.Q(‘%)) — Lq/(aﬂ(%)) and (1.27a) imply that
the term is of order O (2™ +%). Next,

Te
./(;

where we again used V¢ = O(e) in Lm(aTOQ(%)) in the first line and (3.54), (1.27d) in

the second line. In view of the above considerations, ||yR (., O)HZZ(QT ) S KTzezM (cf. (3.74))
and (3.97), we have two more estimates to show:
Using the explicit form of A’V given in (3.95), we calculate

1 [T
—/ ‘/ NV (e, R) dx
€Jo Q2

1 [T
-/ [ keV(y*)R? - VR dx
€Jo Q

2M+%
’

L yzRvgrr . VCZ dx| dt <€ ||yR||Loo(O’T€;L2(_Q)) ”VgrrHLl(O,Té;Hl(.Q)) < C(K)e

dr

/A

dr + Cl ||R||13,3(9T6\r(25;n))
Te
+C2/ / ly2VRR?| dx dt
0 2
1 [T
+C32/ / IV(y?R)RVR|dx df, (3.98)
0 2

where we again used Vc§ = O(¢) in Lm(aTOQ(%)) in the last step. Now we have
LT 2 p3
- |k V(y*)R® - VR|dx dt
€Jo J@

1
< —CyR|VR[[ 120, ) IRllLos o, res2c) IRlL2 0,701 (52(3)))

< C(K)E_IEME%_%EM_%
1 1
||i2(9)||u||1211(9) and (1.27) together with Lemma 3.8 4). The

where we used [[u][ 4oy < Cllu
= 4. Next we have || R||.3(g, \rs:70)) < C(K)e2M+1 due to (3.86)

estimate follows since M
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and
Te
1
/0 [9 \J/2VRR2 dxdt < C ||yRVR||L2(QT€) ”R”LZ(BTGQ(%)) < C(K)e2M+3

due to (1.27). Regarding the last term in (3.98) we have on the one hand

1

1 7T - | .
Z/o /9 | (Vy*) R°VR|dx dr < Cz IYRVRIL2 (@, ) IR 25y, 2(3)) < CK)EM ™2
as before and on the other hand
LT 2 2 1
E/o /9 |¥> (VR)® R|dx dr < C - IRl oo (0,7.:22(20) 1YV R 12 (7 ) 1YV R 20,7501 2))
S C(K)G%_%EMGM_IG_I = C(K)egM—Z—%
where we use Lemma 3.8 4) and (1.27). Altogether we have éfOTG Ug Nv(cj, R) dx| dr <

1
€2M—7.

Finally, we estimate

Te
/0

dr

/ ¥?R (v¢ - VR) dx
2

Te Te
<), ol
0 0

1
< CKIC (@ T M 3 [ = v 3 +35) - Vo) |
Te

/ Y?R (Ve - VR) dx / (V¢ —v&) lV()/Z)R2 dx| dr
2 2 2

+ v - V(¥ R?| d(x, 1)

1
< C(K)C (e, T) M~ 4 —/ |(VE = v§ + W + W5) - V(y*) R?| d(x.1)
Qr,

2
+ ‘51/T6
6 p—
2Jo Jo

where we used that v¢ — v¢ . is divergence free and R|y = 0, as well as (3.64) and the definition

dr,

vl VOOR

. M—1 .
of V&, in (3.50). Furthermore, we used v§ — € 2VZ’M_% € L™ (£27,) and (1.27a). Note that
€ — v € : 1 . . .
VA’M_% =V, 1 in 8T09(§)~ ‘We may continue estimating

(S

|(v€ — v + W) - V(¥ R?| d(x,1)
S (”‘?_ va ||L2(0,T6;H1((2)) + 1w ”LZ(O,TG;HI(.Q))) : ||VR||L°°(0,T6;L2+K(.Q)) ||R||L2(3T€g(g))
< C(K)(eM + eM_%)eM_%_ﬁMeM”L%

where we used H1(£2) < L5(2) forall 1 < s < oo in the first inequality, Theorem 3.12.1,
Lemma 3.4 (in particular (3.28)), Lemma 3.8 3) and (1.27a) in the second inequality. A suitable



SHARP INTERFACE LIMIT OF A STOKES/CAHN—HILLIARD SYSTEM I 399

estimate follows since M = 4 and we may choose ¥ > 0 arbitrarily small. Regarding w5, we
choose k > 0and g = ﬁ and estimate

/9 |V~V§ : V(VZ)R2| d(x,1) < ||‘7V2||L2(0,T6;Lq(9)) ”VR”LOO(O,TG;LZ"FK(,Q)) ||R||L2(0,TE;L°°(.Q))
T

< C(K,w) M-I M=~ M M—3 ~(M+2)
foroe > 0, where we used (3.51), (1.27d) and Lemma 3.8 1). Again M > 4 and a suitable choice of

o > 0 and k > 0 yield the final estimate by C(7T, €)e> 1. For the term involving v;; , we obtain
-3

1
eM—2

V;;_% -V (yz) R? d(x,1)

1

M—3 || g€ 3IM—1
SCem2 ”VM,% | 200702002 1V R oo 0,72 22¢2)) * IR L2 (a7, 2(3)) < CK)e 2

where we used (3.34) (together with H? (27 (¢)) < L% (227(t))) and (1.27) in the second
estimate.
Thus, we have shown

Te
/(;

and with that may conclude using (3.97) that

dt < C(K)C (T.,e) M1

/ y>R (v¢ - VR) dx
2

2 2
(e0ur) [YR (1) |20y + €lvAR|12gy,)

1
4 E” (yVR,yRVR) sz(%) < C(K)C (T, e)2M-1 (3.99)

where C(T, €) = (T,e)—0 0.

Altogether we may now choose €g > 0 and T € (0, Tp] so small that (1.27a)—(1.27c) follow
for Te = T from (3.82) and (3.83) as a consequence of the estimates for RS. (1.27d) follows for
Te = T from (3.99). This shows (1.23). Regarding (1.24), we have by the definition of v¢, in (3.50)
forq € (1,2)

IV =val L1 o.rLaay = IVer + W8 + W] L1 o 72002y + C IV = Vi HL1(0,T;L2<9>)
<C(K,q) eM_%

by (3.28), (3.51) and Theorem 3.12. The convergence results (1.25) and (1.26) are then due to the
construction of cfl and Vfi, more precisely to the discussed form of the zero-th order terms, where it

is important to note (3.34) for V;::/[’e . - This finishes the proof of Theorem 1.1.
-2

REMARK 3.16 In this final remark, we want to discuss the consequences of considering Neumann
boundary conditions dp,,u¢ = 0 on d7,§2 instead of u¢ = 0. Of course, in this case we would
construct u§ such that dp,, 1§ = 0 is satisfied on d7,£2. To gain (3.79), which is a vital point of
the proof, we need to ensure that

/qu(ug—ui) dx=/ Ag (1€ — pg) dx
2 2
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holds, which is satisfied if we choose Neumann boundary conditions for ¢. In particular, ¢ should
be the solution to
—Ap (., t) =R(.,t) in 2, Ony,¢ = 0o0n a2, (3.100)

together with fg ¢ (.,t) dx = 0. However, in order for (3.100) to be well-posed, fg R(,t)dx=0
needs to be satisfied, where

t
/R(x,t)dx:/ / 3 (¢ —cy) dxdr—i—/ ¢y — Cqli=o dx
2 0o Je 2
t
:/ / div(vfi)cj—i—W§|F~ch§—rémdxdt+/ ¢ — c§li=o dx
0o Je 2

in the case of no-slip boundary conditions for v¢. This expression does not vanish and we are not
able to estimate it to a high enough power of €. A similar problem arises in the case of periodic
boundary conditions. To circumvent this difficulty, we decided to stick to Dirichlet boundary values

for w.

List of notation

D Jacobian matrix

v Gradient

Dy symmetrized gradient

al vl'.al cf. (2.20) and (2.25)

divl (2.21)

Dir,.Vr,Ar Remark 2.6, (2.24)

[an,vf] (2.32)

a (bold letter) Element in R2 or RZ-valued function
Euclidean scalar product on R2, e.g.,a-b

® a@b=alb= (aibj)i,j=1,

Qs a®sb:=a®b+b®a

2 smooth domain in R?

7,078 r =02 x(0,7T),0r2:=02x(0,T)

Q*@).ef domains for the different phases, cf. Section 1

Iy, I’ Interface separating the different phases, cf. Section |

It(a), I (;T), I (26)
082 (), 07 2 (o)

neighborhoods of the interface, cf. Section 1
neighborhoods of the boundary 052, cf. Section |

nr,,nyo normals of I'(¢) and 052, resp.

n,t parametrized normal and tangential vector, cf. (2.14)

Vr,, Hr, normal velocity and (mean) curvature of I

Prr,,Pryo orthogonal projections onto I"(z) and 052, resp.

dr.,ds signed distance functions to I'; and 952, resp.

1] small positive constant such that d: I'(35) — R is smooth

S:(28) — T!

cf. (2.19)
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Xo

X5. Xo°
X

Ra
LP-2° (It (@)
LY(0,T;L? (It ()))
Xr

HS,s >0

g1

(Xo, X1)g,p

‘Ir

S

to

o

4.V, p

Ce’#e’ve’pe

o Mg Vg Py

-1

€ €
M 1V 1
AM—L AM-1

P, p(x, 1)
co,-Ho-Yo,Po
CIM1,V1,PI
Cls Mk Vi Pk
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parametrization of Iy, cf. (2.13)

pull-back and push-forward with Xg, cf. (2.15),(2.16)
diffeomorphism onto neighborhood of I"(28), cf. (2.17)
function space for remainders, cf. Definition 2.10

cf. Section 2.3

cf. Section 2.3

function space for “height-functions” 4, cf. (3.21)

H?* := WJ, Sobolev—Slobodeckij space

HY = (1)

Real interpolation space of (X, X1) with exponents 6, p
glr (x,1) =g (Prr, (x),1)

double-well potential, cf. (1.19)

optimal profile determined by (1.18)

surface tension constant, cf. (1.17)

solutions of the sharp interface limit (1.7)—(1.16)
solutions of the diffuse interface model (1.1)—(1.6)
approximate solution, cf. Theorem 3.1

highest order terms of approx. sol., cf. Section 3.1

stretched coordinate, cf. (2.27), (3.11)

outer expansion, cf. Section 3.1

inner expansion, cf. Section 3.1

integer order coeff. of inner exp., cf. Section 3.1
highest order coeff. of inner exp., cf. Section 3.1

boundary expansion, cf. Section 3.1
height function of approx. sol., cf. Section 3.1
coefficients of height function, cf. Section 3.1

error of velocity, cf. (3.50)
leading errors, cf. (3.14)—(3.16)
o€

w{ =
lower order errors (3.48)

auxiliary solutions, cf. (3.43)—(3.45)
remainders from approx. sol., cf. (3.1)—(3.4)
auxilliary function, cf. (3.17)
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