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We consider the sharp interface limit of a coupled Stokes/Cahn–Hilliard system in a two-dimensional,
bounded and smooth domain, i.e., we consider the limiting behavior of solutions when a parameter
� > 0 corresponding to the thickness of the diffuse interface tends to zero. We show that for
sufficiently short times the solutions to the Stokes/Cahn–Hilliard system converge to solutions of a
sharp interface model, where the evolution of the interface is governed by a Mullins–Sekerka system
with an additional convection term coupled to a two–phase stationary Stokes system with the Young–
Laplace law for the jump of an extra contribution to the stress tensor, representing capillary stresses.
We prove the convergence result by estimating the difference between the exact and an approximate
solutions. To this end we make use of modifications of spectral estimates shown by X. Chen for the
linearized Cahn–Hilliard operator. The treatment of the coupling terms requires careful estimates,
the use of the refinements of the latter spectral estimate and a suitable structure of the approximate
solutions, which will be constructed in the second part of this contribution.
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1. Introduction and overview

Classically, the transition between two immiscible fluids was considered to be sharp, in the sense of
an appearance of a lower-dimensional surface separating the phases. The behavior of a multiphase
system is then governed by the intricate interactions between the bulk regions and the interface,
mathematically expressed as equations of motion, which hold in each fluid, complemented by
boundary conditions at the (free) surface. Models incorporating these ideas – often called sharp
interface models – and the corresponding free-boundary problems have been widely studied and
used to great success in describing a multitude of physical and biological phenomena. However,
fundamental problems arise in the analysis and numerical simulation of such problems, whenever
the considered interfaces develop singularities. In fluid dynamics, topological changes such as the
pinch off of droplets or collisions are non-negligible features of many systems, having a significant
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impact on the flow. Conversely, diffuse interface models turn out to provide a promising, alternative
approach to describe such phenomena and overcome the associated difficulties. In these diffuse
interface (or phase field) methods, a partial mixing of the two phases throughout a thin interfacial
layer, heuristically viewed to have a thickness proportional to a length scale parameter � > 0, is
taken into account. Naturally, the question of the behavior for the limit � ! 0 arises. This so-called
sharp interface limit is in fact a question about the connection of sharp and diffuse interface models.
Concerning the flow of two macroscopically immiscible, viscous, incompressible Newtonian fluids
with matched densities, a fundamental and broadly accepted diffuse interface model is the so-called
model H. This model consists of a Navier–Stokes system coupled with the Cahn–Hilliard equation
and was derived in [15, 16]. The sharp interface limit was studied with the method of formally
matched asymptotics in [2] and the existence of solutions for the model H was shown in [1, 10].
Regarding the formal sharp interface limit, short time existence of strong solutions was shown in [7]
and existence of weak solutions for long times in [6]. Despite these analytic results and the formal
findings for the sharp interface limit, there are only few attempts at rigorously discussing the sharp
interface limit for the model H. Using the notion of varifold solutions as discussed in [12] such
results for large times were shown in [6] for the model H and in [3] also for the more general
situation of fluids with different densities. But the notion of solution for the latter contributions
is rather weak and no rates of convergence were obtained and convergence was only shown for a
suitable subsequence.

For the Allen–Cahn and Cahn–Hilliard equation another approach is based on the works [18]
and [9], where the method of formally matched asymptotics is made rigorous. However, in view
of two-phase flow models in fluid mechanics and the arising difficulties therein, the first and so far
only convergence result with convergence rates in strong norms is [4]. More precisely, considering
a coupled Stokes/Allen–Cahn system in two dimensions, it is shown that smooth solutions of the
diffuse interface system converge for short times to solutions of a sharp interface model, where
the evolution of the free surface is governed by a convective mean curvature flow coupled to a
two-phase Stokes system together with the Young-Laplace law for the jump of the stress tensor,
accounting for capillary forces. This contribution builds upon the ideas introduced in [4] and aims
to establish the first rigorous result in strong norms for a sharp interface limit of a two phase flow
model involving the Cahn–Hilliard equation with convergence rates. In doing so, we hope to build
another cornerstone on the way to rigorously showing the sharp interface limit for model H.

More precisely we consider the Stokes/Cahn–Hilliard system

��v� Crp� D ��rc� in ˝T ; (1.1)
div v� D 0 in ˝T ; (1.2)

@tc
�
C v� � rc� D ��� in ˝T ; (1.3)

�� D ���c� C
1

�
f 0 .c�/ in ˝T ; (1.4)

c�jtD0 D c
�
0 in ˝; (1.5)

.�2Dsv� C p�I/ � n@˝ D ˛0v�; �� D 0; c� D �1 on @˝ � .0; T /: (1.6)

Here T > 0, ˝ � R2 is a bounded and smooth domain, ˝T WD ˝ � .0; T / and ˛0 > 0

is fixed. v�W˝T ! R2 and p�W˝T ! R represent the mean velocity and pressure, Dsv� WD
1
2

�
rv� C .rv�/T

�
, c�W˝ ! R is an order parameter representing the concentration difference

of the fluids and ��W˝T ! R is the chemical potential of the mixture. Moreover, c�0W˝ ! R is a
suitable initial value, specified in Theorem 1.1 and f WR! R is a double well potential. The system
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corresponds to the model H if one would add the convection term @tv�Cv� �rv� on the left-hand side
to (1.1).

Existence of smooth solutions to (1.1)–(1.6) can be shown with similar methods as in [1]. A word
is in order about the choice of boundary conditions (1.6). The reason we prescribe such boundary
conditions for v� instead of periodic, no-slip or Navier boundary conditions, are major difficulties
which arise in the construction of the approximate solutions for v� . A more detailed account is given
in [5, Remark 3.9]. Classically, the Cahn–Hilliard system is complemented with Neumann boundary
conditions for c� and �� . While it is rather unproblematic to adapt the present work to Neumann
boundary conditions for c� , major issues arise when considering @n@˝�

� D 0 instead of �� D 0,
see Remark 3.16 below. To circumvent these problems and as the focus of our interest and analysis
lies in the obstacles and difficulties occurring close to the interface �t , we decided on the present
choice of boundary conditions. We will show that the sharp interface limit of (1.1)–(1.6) is given by
the system

��vCrp D 0 in ˝˙.t/; t 2 Œ0; T0� ; (1.7)

div v D 0 in ˝˙.t/; t 2 Œ0; T0� ; (1.8)

�� D 0 in ˝˙.t/; t 2 Œ0; T0� ; (1.9)
.�2DsvC pI/n@˝ D ˛0v on @T0˝; (1.10)

� D 0 on @T0˝; (1.11)
Œ2Dsv � pI�n�t D �2�H�tn�t on �t ; t 2 Œ0; T0� ; (1.12)

� D �H�t on �t ; t 2 Œ0; T0� ; (1.13)

�V�t C n�t � v D
1

2
Œn�t � r�� on �t ; t 2 Œ0; T0� ; (1.14)

Œv� D 0 on �t ; t 2 Œ0; T0� ; (1.15)
� .0/ D �0: (1.16)

Here T0 > 0, ˝ is the disjoint union of smooth domains ˝C.t/, ˝�.t/ and a curve �t � ˝

for every t 2 Œ0; T0�, where �t D @˝C.t/, n�t is the exterior normal with respect to ˝�.t/,
and H�t and V�t denote the mean curvature and normal velocity of the interface �t . Furthermore,
@T0˝ WD @˝ � .0; T0/, �0 is a given initial surface and we use the definitions

Œg� .p; t/ WD lim
h&0

�
g
�
p C n�t .p/h

�
� g.p � n�t .p/h/

�
for p 2 �t ;

� WD
1

2

Z 1
�1

� 00.s/
2 ds; (1.17)

where �0WR! R is the so-called optimal profile, i.e., the unique solution to the ordinary differential
equation

� � 000 C f
0 .�0/ D 0 in R; �0 .0/ D 0; lim

�!˙1
�0.�/ D ˙1: (1.18)

Regarding the existence of local strong solutions of (1.7)–(1.16), the proof in [7] may be
adapted, where a coupled Navier–Stokes/Mullins–Sekerka system was treated. Regularity theory for
parabolic equations and the Stokes equation may then be used to show smoothness of the solution
for smooth initial values.
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Assuming that suitable approximate solutions
�
c�A; �

�
A; v

�
A; p

�
A

�
�>0

to (1.1)–(1.6) are constructed
we show the existence of some T1 > 0 such that the difference between c� and c�A goes to zero in
L1

�
0; T1IH

�1.˝/
�

with H�1.˝/ WD
�
H 1
0 .˝/

�0, L2.˝T1/, L2 �0; T1IH 1.˝/
�

and many other
norms as � ! 0 with explicit convergence rates, for some small T1 > 0. These rates will depend
on the order up to which the approximate solutions have been constructed. Moreover, we will also
present convergence rates for the error v� � v�A in L1 .0; T1ILq.˝// for q 2 .1; 2/. This result is
stated in Theorem 1.1. The key to this endeavors will be a modification of the spectral estimate
for the linearized Cahn–Hilliard operator as given in [11], see Theorem 2.13 below. As in [4], the
main difficulties which arise in the treatment of the Stokes/Cahn–Hilliard system are due to the
appearance of the capillary term ��rc� in (1.1) and the convective term vffl �rc� in (1.3). Although
we may build upon the insights gained in the cited article, several new and severe obstacles arise
in the context of system (1.1)–(1.6) which have to be overcome. A novelty in this context is the
introduction of terms of fractional order in the asymptotic expansions. The necessity of such terms
is at its core a consequence of our treatment of the convective term v� � rc� . Where [4] relied
on the intricate analysis of a second order, parabolic, degenerate partial differential equation in
the construction of the highest order terms, the introduction of fractional order terms renders such
considerations unnecessary. The caveat being, that while the produced fractional order terms are
smooth, they may not be estimated uniformly in � in arbitrarily strong norms. This is the cause for
many technical subtleties in [5], where the construction is discussed and where estimates for the
remainder are shown. See also the second author’s PhD-thesis [17], which contains the results of
this contribution and [5].

Throughout this work we make the following assumptions: Let ˝ � R2 be a smooth domain,
�0 �� ˝ be a given, smooth, non-intersecting, closed initial curve. Let moreover .v; p; �; � / be
a smooth solution to (1.7)–(1.16) and .c�; ��; v�; p�/ be a smooth solution to (1.1)–(1.6) for some
T0 > 0. We assume that � D [t2Œ0;T0��t � ftg is a smoothly evolving hypersurface in R2, where
.�t /t2Œ0;T0� are compact, non-intersecting, closed curves in ˝. We define ˝C.t/ to be the inside of
�t and set ˝�.t/ such that ˝ is the disjoint union of ˝C.t/, ˝�.t/ and �t . Moreover we define
˝˙T D [t2Œ0;T �˝

˙.t/ � ftg, ˝T WD ˝ � .0; T / and also @T˝ WD @˝ � .0; T / for T 2 Œ0; T0�.
We define n�t .p/ for p 2 �t as the exterior normal with respect to ˝�.t/ and V�t , and H�t as the
normal velocity and mean curvature of �t with respect to n�t , t 2 Œ0; T0�. Let

d� W ˝T0 ! R; .x; t/ 7!

(
dist

�
˝�.t/; x

�
if x … ˝�.t/;

�dist
�
˝C.t/; x

�
if x 2 ˝�.t/

denote the signed distance function to � such that d� is positive inside ˝CT0 . We write

�t .˛/ WD
˚
x 2 ˝j jd� .x; t/j < ˛

	
for ˛ > 0 and set � .˛IT / WD

S
t2Œ0;T � �t .˛/ � ftg for T 2 Œ0; T0�. Moreover, we assume that

ı > 0 is a small positive constant such that dist .�t ; @˝/ > 5ı for all t 2 Œ0; T0� and such that the
orthogonal projection Pr�t W �t .3ı/ ! �t is well-defined and smooth for all t 2 Œ0; T0�. In the
following we often use the notation � .˛/ WD � .˛IT0/ as a simplification. We also define a tubular
neighborhood around @˝: For this let dBW˝ ! R be the signed distance function to @˝ such that
dB < 0 in˝. As for �t we define a tubular neighborhood by @˝.˛/ WD fx 2 ˝j � ˛ < dB.x/ < 0g

and @T˝ .˛/ WD f .x; t/ 2 ˝T j dB.x/ 2 .�˛; 0/g for ˛ > 0 and T 2 .0; T0�. Moreover, we denote
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the outer unit normal to ˝ by n@˝ and denote the normalized tangent by τ@˝ , which is fixed by the
relation

n@˝.p/ D
�
0 �1

1 0

�
τ@˝.p/

for p 2 @˝. Finally, we assume that ı > 0 is chosen small enough such that the orthogonal
projection Pr@˝ W @˝.ı/! @˝ along the normal n@˝ is also well-defined and smooth.

Concerning the potential f , we assume that it is a fourth order polynomial, satisfying

f .˙1/ D f 0 .˙1/ D 0; f 00 .˙1/ > 0; f .s/ D f .�s/ > 0 for all s 2 R (1.19)

and fulfilling f .4/ > 0. Then the ordinary differential equation (1.18) allows for a unique,
monotonically increasing solution �0 W R ! .�1; 1/. This solution furthermore satisfies the decay
estimate ˇ̌

�20 .�/ � 1
ˇ̌
C j�

.n/
0 .�/j 6 Cne

�˛j�j for all � 2 R; n 2 Nn f0g (1.20)

for constants Cn > 0, n 2 Nnf0g, and fixed ˛ 2
�
0;minf

p
f 00.�1/;

p
f 00.1/g

�
. We denote by

� 2 C1 .R/ a cut-off function such that

�.s/ D 1 if jsj 6 ı; �.s/ D 0 if jsj > 2ı; and 0 > s� 0.s/ > �4 if ı 6 jsj 6 2ı: (1.21)

The following theorem is the main theorem of this article (for an explanation of the used
notations see the preliminaries section):

Theorem 1.1 LetM 2 N withM > 4, � be a cut-off function satisfying (1.21), .x/ WD � .4dB.x//

for all x 2 ˝ and let for � 2 .0; 1/ a smooth function  �0 W˝ ! R be given, which satisfies �0C1.˝/ 6 C 0�
M for some C 0 > 0 independent of �. Then there are smooth functions c�AW˝�

Œ0; T0�! R, v�AW˝ � Œ0; T0�! R2 for � 2 .0; 1/ such that the following holds:
Let .v�; p�; c�; ��/ be smooth solutions to (1.1)–(1.6) with initial value

c�0.x/ D c
�
A .x; 0/C  

�
0.x/ (1.22)

for all x 2 ˝. Then there are some �0 2 .0; 1�, K > 0, T 2 .0; T0� such thatc� � c�AL2.˝T / C r� �c� � c�A�L2.� .ı;T // 6 K�M�
1
2 ; (1.23a)

�
r �c� � c�A�L2.˝T n� .ı;T // C c� � c�AL2.˝T n� .ı;T // 6 K�MC

1
2 ; (1.23b)

�
3
2

@n
�
c� � c�A

�
L2.� .ı;T //

C
c� � c�AL1.0;T IH�1.˝// 6 K�M ; (1.23c)Z

˝T

�
ˇ̌
r
�
c� � c�A

�ˇ̌2
C ��1f 00

�
c�A
� �
c� � c�A

�2 d .x; t/ 6 K2�2M ; (1.23d) �c� � c�A�L1.0;T IL2.˝// C � 12 � �c� � c�A�L2.˝T / 6 K�M�
1
2 ; (1.23e)r �c� � c�A�L2.˝T / C  �c� � c�A�r �c� � c�A�L2.˝T / 6 K�M ; (1.23f)

and for q 2 .1; 2/ v� � v�A

L1.0;T ILq.˝//

6 C .K; q/ �M�
1
2 ; (1.24)
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hold for all � 2 .0; �0/ and some C .K; q/ > 0. Moreover, we have

lim
�!0

c�A D ˙1 in L1
�
˝ 0T

�
(1.25)

and
lim
�!0

v�A D v˙ in L6
�
.s; t/IH 2

�
˝ 0
�2� (1.26)

for every ˝ 0 � .s; t/ �� ˝˙T .

Throughout this work we will often consider the following assumptions.

ASSUMPTION 1.2 Let M 2 N with M > 4 and .x/ WD �.4dB.x// for all x 2 ˝. We assume
that cAW˝ � Œ0; T0� ! R is a smooth function and that there are �0 2 .0; 1/, K > 1 and a family
.T�/�2.0;�0/ � .0; T0� such that the following holds: If c� is given as in Theorem 1.1 with c�0.x/ D
cA .x; 0/, then it holds for R WD c� � c�A

kRkL2.˝T� /
C kr

�RkL2.� .T� ;ı// C
�1
�
R;rR

�
L2.˝T� n� .T� ;ı//

6 K�M�
1
2 ; (1.27a)

�
3
2 k@nRkL2.� .T� ;ı// C kRkL1.0;T� IH�1.˝// 6 K�M ; (1.27b)Z

˝T�

� jrRj2 C 1
�
f 00.c�A/R

2 d .x; t/ 6 K2�2M ; (1.27c)

�
1
2 kRkL1.0;T� IL2.˝// C

���R; rR; R .rR/�
L2.˝T� /

6 K�M (1.27d)

for all � 2 .0; �0/. Moreover, we assume that there exist �0 > 0 and a constant C0 > 0 independent
of �, such that

E�
�
c�0
�
C kc�0kL1.˝/ 6 C0 (1.28)

for all � 2 .0; �0/.

As a first result, we give an energy estimate for (1.1)–(1.6). We consider for � > 0 the free
energy

E� .c�/ .t/ D
�

2

Z
˝

jrc� .x; t/j
2 dx C

1

�

Z
˝

f .c� .x; t// dx for t 2 Œ0; T0� : (1.29)

Then one derives

sup
06t6T

E�.c�.t//C

Z T

0

Z
˝

�
jrv�j2 C jr��j2

�
dx dt C ˛0

Z t

0

Z
@˝

jvj2 d� dt 6 C0: (1.30)

in a standard manner from testing (1.1) with v� , (1.3) with �� and (1.4) with @tc� and integration
by parts. As a corollary we obtain:

Lemma 1.3 Let .c�; ��; v�; p�/ be a classical solution to (1.1)–(1.6) and let �0 > 0 and C0 > 0

be given such that (1.27) and (1.28) hold true. Then there is some �1 2 .0; �0/ and some constant
C > 0, depending only on T0; C0 and �0, such that

�7 k�c�k
2
L2.˝t /

C � sup
�2Œ0;t�

krc� .:; �/k
2
L2.˝/ C k.r�

�;rv�/k2L2.˝t / C ˛0 kv
�
k
2
L2.@t˝/

6 C

for all t 2 Œ0; T�� and � 2 .0; �1/.
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Proof. All estimates apart from the one for �7 k�c�k2L2.˝t / follow directly from (1.30). Because of
the Dirichlet boundary condition of �� we get

k�c�kL2.˝t / 6
1

�
k��kL2.˝t / C

1

�2

f 0 .c�/
L2.˝t /

6
1

�
C kr��kL2.˝t / C

1

�2

f 0 .c�/
L2.˝t /

6
C

�2

�
1C kc�k

3
L6.˝t /

�
6
C

�2

�
1C krc�k

3

L1.0;t IL2.˝//

�
6
C

�2

�
1C ��

3
2

�
for � small enough, where we used Poincaré’s inequality in the second inequality, and the fact that
f is a polynomial of fourth order in the third inequality.

The contribution is organized as follows: Section 2 summarizes the needed mathematical tools,
in particular existence results for stationary Stokes equations with relevant boundary conditions
and we discuss a modified spectral estimate, which is key for the proof of Theorem 1.1. Section 3
is then devoted to showing Theorem 1.1. First we will state a result on existence of approximate
solutions, cf. Theorem 3.1 below. This result and all subsequently discussed properties of the
approximate solutions which are needed in this work, are shown in [5], see also [17]. A key result
in Subsection 3.1 is Lemma 3.4, which provides an estimate for the leading term of the error in
the velocity v�A � v� . In order to show this, a spectral decomposition of c� � c�A is needed. In
Subsection 3.2, we collect many important statements which are essential to the proof of Theorem
1.1, many of which are concerned with dealing with the aforementioned error in the velocity.
These results enable us to effectively deal with the problems arising due to the presence of the
convective term in the Cahn–Hilliard equation. Finally, a list of notation can be found at the end of
the manuscript.

2. Preliminaries

2.1 Stationary stokes equation in one phase

We consider the one-phase stationary Stokes equation

��vCrp D f in ˝; (2.1)
div v D g in ˝; (2.2)

.�2DsvC pI/n@˝ D ˛0v on @˝ (2.3)

for given f 2 V 0g.˝/ and g 2 L2.˝/. We denote C1� .˝/ WD
˚
u 2 C1

�
˝
�2 ˇ̌

div u D 0
	
,

H 1
� .˝/ WD C

1
� .˝/

H1.˝/

and set

Vg.˝/ WD

(
H 1
� .˝/ if g D 0;

H 1.˝/2 else,
Hg.˝/ WD

(
L2� .˝/ if g � 0;
L2.˝/2 else

(2.4)

and let V 0g.˝/ denote the dual space of Vg.˝/.
We call v 2 Vg.˝/ a weak solution of (2.1)–(2.3) if

2

Z
˝

Dsv W Ds dx C ˛0

Z
@˝

v �  dH1.s/ D hf;  iV 0g ;Vg (2.5)
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holds for all  2 C1�
�
˝
�

and
div v D g in L2.˝/: (2.6)

Note that in the case g D 0 the condition (2.6) is already included in the definition of the space V0
and can thus be omitted. Moreover, a classical solution to (2.1)–(2.3) is a weak solution.

Theorem 2.1 For each g 2 L2.˝/ and f 2 V 0g.˝/ there is a unique weak solution v 2 Vg.˝/
of (2.1)–(2.3). Moreover there exists a constant C .˝; ˛0/ > 0, which is independent of f, such that

kvkH1.˝/ 6 C.˝; ˛0/
�
kfkV 0g.˝/ C kgkL2.˝/

�
: (2.7)

Proof. In the case g D 0 the result is a direct consequence of the Lax–Milgram Lemma. The
case g ¤ 0 can be easily reduced to the latter case by considering Qv D v � rq, where q 2
H 2.˝/ \H 1

0 .˝/ is such that �q D g.

The following corollary yields existence of a pressure term.

Corollary 2.2 Let g 2 L2.˝/ and f 2 L2.˝/2. Then there is a unique .v; p/ 2 Vg � L2.˝/
of (2.1)–(2.3) such that

2

Z
˝

Dsv W Dsψ � pdivψ dx C ˛0

Z
@˝

v �ψ dH1.s/ D

Z
˝

f �ψ dx for all ψ 2 H 1.˝/

and (2.6) holds. Moreover, there is a constant C > 0, independent of v and p, such that

k.v; p/kH1.˝/�L2.˝/ 6 C
�
kfkL2.˝/ C kgkL2.˝/

�
:

Proof. Let v be the weak solution to (2.5)–(2.6) as given by Theorem 2.1. Elliptic theory implies
that

�D WD.�D/ WD H 2.˝/ \H 1
0 .˝/! L2.˝/Wu 7! �u

is bijective. Thus, the adjoint operator .�D/0 WL2.˝/0 ! .H 2.˝/ \ H 1
0 .˝//

0 is also bijective.
Using the continuity of the trace operator and Hölder’s inequality we find that the functional
F WD.�D/! R

F.'/ WD

Z
˝

.2Dsv W Ds .r'/ � f � r'/ dx C ˛0

Z
@˝

v � r' dH1.s/ 8' 2 D.�D/

is bounded and linear. Thus the Riesz representation theorem yields the existence of p 2 L2.˝/
such that

.p;�'/L2 D
˝
�0D

�
.p; :/L2

�
; '
˛
D.�D/0;D.�D/

D F.'/ (2.8)

for all ' 2 D.�D/. Since the operator
�
.�D/

0
��1 is bounded, we find

kpkL2.˝/ 6 C kF k.H2.˝/\H1
0
.˝//0 6 C

�
kvkH1.˝/ C kfkL2.˝/

�
6 C

�
kfkL2.˝/ C kgkL2.˝/

�
;

where we used (2.7) in the last line.
Now let  2 H 1.˝/2 be arbitrary and let q 2 D.�D/ be such that �q D div . Moreover set

 0 WD  � rq. Then div 0 D 0 andZ
˝

2Dsv W Dsψ � pdivψ dx C ˛0

Z
@˝

v �ψ dH1.s/

D

Z
˝

f �ψ0 dx C
Z
˝

.2Dsv W Ds .rq/ � p�q/ dx C ˛0

Z
@˝

v � rq dH1.s/ D

Z
˝

f �ψ dx;

where we used (2.5) and (2.8). As  2 H 1.˝/2 was arbitrary, this yields the claim.
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Theorem 2.3 (Existence of strong solutions) Let g � 0 and f 2 L2.˝/2. Then there exists a unique
solution .v; p/ 2 H 2.˝/2 �H 1.˝/ to (2.1)–(2.3), which satisfies the estimate

kvkH2.˝/ C kpkH1.˝/ 6 C kfkL2.˝/ :

Moreover, if f is smooth, then v and p are smooth as well.

Proof. For q 2 .1;1/, Theorem 3.1 in [20] implies that there is � > 0 such that for every g 2
Lq.˝/2 and a 2 W 1

q .˝/
2 the problem

�u ��uCrq D g in ˝;
div u D 0 in ˝;

.�2DsuC qI/n@˝ D aj@˝ on @˝ (2.9)

admits for a unique solution .u; q/ 2 W 2
q .˝/

2 �W 1
q .˝/. Additionally, the estimate

kukW 2
q .˝/

C kqkW 1
q .˝/

6 C
�
kgkLq.˝/ C kakW 1

q .˝/

�
(2.10)

holds. Considering a weak solution .v; p/ 2 V0 � L2.˝/ of (2.1)–(2.3) as given in Corollary 2.2
and defining g WD f C �v 2 L2.˝/2 and a WD ˛0v 2 H 1.˝/2, we now introduce .u; q/ 2
H 2.˝/ � H 1.˝/ as the strong solution to (2.9) regarding these data. Writing w WD u � v and
r WD q � p we easily find that .w; r/ 2 H 1.˝/2 � L2.˝/ is a weak solution to

�w ��wCrr D 0 in ˝;
div w D 0 in ˝;

.�2DswC rI/n@˝ D 0 on @˝:

Testing with D w we immediately find that w � 0 a.e. and thus u D v, in particular v 2 H 2.˝/2.
Furthermore, w D 0 implies rr D 0 in ˝ and r D 0 on @˝, so that we can conclude r � 0 a.e.
in ˝ leading to p D q and p 2 H 1.˝/. The estimate follows from (2.10) and (2.7). For higher
regularity one may use results on existence of solutions with higher regularity, e.g., due to Grubb
and Solonnikov [14] in a similar manner to obtain smoothness of the solution for smooth boundaries
and smooth data.

Lemma 2.4 Let g � 0 and f 2 V 00, and let v 2 H 1
� .˝/ be the weak solution to (2.1)–(2.3). Then

for all q0 2 .1; 2/

kvkLq0 .˝/ 6 Cq sup
 2W 2

q .˝/
2; ¤0

jf . /j
k kW 2

q .˝/

;

where 1
q
C

1
q0
D 1 and Cq > 0 is independent of v and f .

Proof. For this we introduce T .u; p/ WD �2DsuC pI for u 2 W 1
q .˝/, p 2 L

2.˝/ and set

D.AS / D
˚

u 2 W 2
q .˝/

ˇ̌
div u D 0; 9p 2 W 1

q .˝/ W T .u; p/nj@˝ D ˛0uj@˝
	
:

We define the operator

AS WD.AS / � L
q
� .˝/! Lq� .˝/; u 7! P� .��uCrp/ ;
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for p as in the definition of D.AS / and where P� denotes the Helmholtz projection given by

P� W L
q.˝/2 ! Lq� .˝/;  7! P� . / D  � rr;

where r 2 W 1
q;0.˝/ is the unique weak solution to

�r D div in ˝;
r D 0 on @˝:

One can verify in a straight-forward manner that AS is well defined. Moreover,Z
˝

.ASu/ � u dx D
Z
˝

2 jDsuj2 dx C ˛0

Z
@˝

u2 dH1.s/ > C kuk2L2.˝/ (2.11)

for some C > 0 and u 2 D .AS /, where we used [8, Corollary 5.8] in the last line. This immediately
shows the injectivity of AS . Concerning surjectivity, let Qf 2 Lq� .˝/. As q > 2, Theorem 2.3 implies
that there is a unique strong solution .Qv; p/ 2 H 2.˝/ �H 1.˝/ to (2.1)–(2.3) (with f replaced by Qf
and g � 0). Choosing � > 0 as in the proof of Theorem 2.3, we find that g WD QfC�Qv and a WD ˛0 Qv
satisfy g 2 Lq.˝/ and a 2 W 1

q .˝/ as a consequence of the Sobolev embedding theorem. Thus,
Theorem 3.1. in [20] implies the existence of a unique solution .u; r/ 2 W 2

q .˝/ �W
1
q .˝/ to (2.9)

and an analogous argumentation as in the proof of Theorem 2.3 leads to Qv D u and p D r along
with the estimate

kQvkW 2
q .˝/

C kpkW 1
q .˝/

6 CkQfkLq.˝/: (2.12)

In particular, T .Qv; p/nj@˝ D ˛0 Qvj@˝ is satisfied. So Qv 2 D .As/ and, since ��QvC rp D Qf holds
in Lq.˝/, we have As .Qv/ D Qf. In fact, this not only implies surjectivity, but also the existence
of a bounded inverse A�1S as a result of (2.12). Consequently,

�
D .As/ ; k:kAs

�
is a Banach space,

where k:kAs denotes the graph norm. All these considerations result in the fact that the adjoint
A0S W

�
L
q
� .˝/

�0
! .D .AS //0 is an invertible and bounded operator.

Let now v 2 H 1
� .˝/ be the given weak solution to (2.1)–(2.3) and fix q > 2. Then v 2

L
q0

� .˝/ Š
�
L
q
� .˝/

�0 and we have for  2 D .AS /˝
A0Sv;  

˛
.D.AS //0;D.AS /

D 2

Z
˝

Dsv W Ds dx C ˛0

Z
@˝

 � v dx D hf;  i.D.AS //0;D.AS / :

As a result A0Sv D f in .D .AS //0 and thus v D
�
A0S
��1 f in

�
L
q
� .˝/

�0 which enables us to estimate

kvkLq0 .˝/ D
.A0S /�1f


.Lq� .˝//

0 6 C kfk.D.AS //0 6 C kfk.W 2
q .˝//

0 :

2.2 Differential-geometric background

We use a similar notation as in [4]. We parameterize the curves .�t /t2Œ0;T0� by choosing a family of
smooth diffeomorphisms

X0WT1 � Œ0; T0�! ˝ (2.13)

such that @sX0 .s; t/ ¤ 0 for all s 2 T1, t 2 Œ0; T0�. In particular,
S
t2Œ0;T0�

X0.T1�ftg/�ftg D � .
Moreover, we define the tangent and normal vectors on �t at X0.s; t/ as

τ .s; t/ WD
@sX0.s; t/

j@sX0.s; t/j
and n.s; t/ WD

�
0 �1

1 0

�
τ .s; t/ (2.14)
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for all .s; t/ 2 T1 � Œ0; T0�. We choose X0 (and thereby the orientation of �t ) such that n.:; t/ is
the exterior normal with respect to ˝�.t/. Thus, for a point p 2 �t with p D X0.s; t/ it holds
n�t .p/ D n.s; t/

Furthermore, we define V.s; t/ WD V�t .X0.s; t// and H.s; t/ WD H�t .X0.s; t// and note that
V.s; t/ D @tX0.s; t/ � n.s; t/ for all .s; t/ 2 T1 � Œ0; T0� by definition of the normal velocity. We
also introduce the pull-back and write for a function vW� ! Rd , d 2 N�

X�0 v
�
.s; t/ WD v

�
X0.s; t/; t

�
for all .s; t/ 2 T1 � Œ0; T0�: (2.15)

On the other hand, we define for a function hWT1 � Œ0; T0��
X
�;�1
0 h

�
.p/ WD h

�
X�10 .p/

�
for all p 2 �t ; t 2 Œ0; T0�: (2.16)

Choosing ı > 0 small enough, the orthogonal projection Pr�t W�t .3ı/ ! �t is well defined and
smooth for all t 2 Œ0; T0� and the mapping

�t W�t .3ı/! .�3ı; 3ı/ � �t ; x 7!
�
d� .x; t/;Pr�t .x/

�
is a diffeomorphism. Its inverse is given by ��1t .r; p/ D p C rn�t .p/. Although Pr�t and �t are
well defined in �t .3ı/, almost all computations later on are performed in �t .2ı/, which is why, for
the sake of readability, we work on �t .2ı/ in the following.

Combining ��1t and X0 we may define a diffeomorphism

X W .�2ı; 2ı/ � T1 � Œ0; T0�! � .2ı/;

.r; s; t/ 7!
�
��1t

�
r; X0.s; t/

�
; t
�
D
�
X0.s; t/C rn.s; t/; t

�
(2.17)

with inverse given by

X�1W� .2ı/! .�2ı; 2ı/ � T1 � Œ0; T0� ; .x; t/ 7!
�
d� .x; t/; S.x; t/; t

�
; (2.18)

where we define
S.x; t/ WD

�
X�10

�
Pr�t .x/

��
1

(2.19)

for .x; t/ 2 � .2ı/ and where .:/1 signifies that we take the first component. In particular it holds
S.x; t/ D S.Pr�t .x/; t/. In the following we will write n.x; t/ WD n .S.x; t/; t/ and τ .x; t/ WD
τ .S.x; t/; t/ for .x; t/ 2 � .3ı/.

Proposition 2.5 For every t 2 Œ0; T0�, x 2 �t .2ı/, s 2 T1, r 2 .�2ı; 2ı/ it holds

jrd� .x; t/j D 1; �d�
�
X0.s; t/; t

�
D �H.s; t/;

�@td�
�
X.r; s; t/

�
D V.s; t/; rd�

�
X.r; s; t/

�
D n.s; t/;

rS.x; t/ � rd� .x; t/ D 0:

Proof. We refer to [19, Chapter 2.3] and [13, Chapter 4.1] for the proofs.

For a function �W� .2ı/ ! R we define Q�.r; s; t/ WD � .X.r; s; t// and often write �.r; s; t/
instead of Q�.r; s; t/. In the case that � is twice continuously differentiable, we introduce the
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notations

@�t
Q�.r; s; t/ WD

�
@t C @tS

�
X.r; s; t/

�
@s
�
Q�.r; s; t/;

r
� Q�.r; s; t/ WD rS

�
X.r; s; t/

�
@s Q�.r; s; t/;

�� Q�.r; s; t/ WD
�
�S

�
X.r; s; t/

�
@s C .rS � rS/

�
X.r; s; t/

�
@ss

�
Q�.r; s; t/: (2.20)

Similarly, if vW� .2ı/ ! R2 is continuously differentiable, we will also write Qv .r; st/ WD
v .X.r; s; t// and introduce

div� Qv.r; s; t/ D rS
�
X.r; s; t/

�
� @s Qv.r; s; t/: (2.21)

For later use we introduce

r
� �.x; t/ WD rS.x; t/@s Q�

�
d� .x; t/; S.x; t/; t

�
;

div� v.x; t/ WD rS.x; t/@s Qv
�
d� .x; t/; S.x; t/; t

�
for .x; t/ 2 � .2ı/. With these notations we have the decompositions

r�.x; t/ D @n�.x; t/nCr� �.x; t/; (2.22)

div v.x; t/ D @nv.x; t/ � nC div� v.x; t/ (2.23)

for all .x; t/ 2 � .2ı/, as

d

dr
.� ıX/

ˇ̌
.r;s;t/D.d� .x;t/;S.x;t/;t/

D @n�.x; t/:

REMARK 2.6 If hWT1�Œ0; T0�! R is a function that is independent of r 2 .�2ı; 2ı/, the functions
@�t h;r

� h and�� hwill nevertheless depend on r via the derivatives of S . To connect the presented
concepts with the classical surface operators we introduce the following notations:

Dt;� h.s; t/ WD @
�
t h.0; s; t/; r� h.s; t/ WD r

� h.0; s; t/; �� h.s; t/ WD �
� h.0; s; t/: (2.24)

Later in this work, we will often consider a concatenation h .S.x; t/; t/ and thus will write for
simplicity

@�t h.x; t/ WD
�
@t C @tS.x; t/@s

�
h
�
S.x; t/; t

�
;

r
� h.x; t/ WD

�
rS.x; t/@s

�
h
�
S.x; t/; t

�
;

�� h.x; t/ WD
�
�S.x; t/@s CrS.x; t/ � rS.x; t/@ss

�
h
�
S.x; t/; t

�
(2.25)

for .x; t/ 2 � .2ı/. As a consequence we obtain the identity

@�t h.x; t/ D X
�
0

�
@�t h

�
.s; t/ D @�t h.0; s; t/ D Dt;� h.s; t/ (2.26)

for .s; t/ 2 T1 � Œ0; T0� and .X0.s; t/; t/ D .x; t/ 2 � . This might seem cumbersome but turns out
to be convenient throughout this work.
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In later parts of this article, we will introduce stretched coordinates of the form

��.x; t/ D
d� .x; t/ � �h

�
S.x; t/; t

�
�

(2.27)

for .x; t/ 2 � .2ı/, � 2 .0; 1/ and for some smooth function hWT1 � Œ0; T0� ! R (which will later
on also depend on �). Writing � D �� , the relation between the regular and the stretched variables
can be expressed as

OX.�; s; t/ WD X
�
�
�
�C h.s; t/

�
; s; t

�
D

�
X0.s; t/C �

�
�C h.s; t/

�
n.s; t/; t

�
: (2.28)

Lemma 2.7 Let �WR � � .2ı/ ! R be twice continuously differentiable and let � be given as
in (2.27). Then the following formulas hold for .x; t/ 2 � .2ı/ and � 2 .0; 1/

@t
�
� .�.x; t/; x; t/

�
D
�
�
1
�
V.s; t/ � @�t h.x; t/

�
@�� .�; x; t/C @t� .�; x; t/ ;

r
�
� .�.x; t/; x; t/

�
D
�
1
�

n.s; t/ � r� h.x; t/
�
@�� .�; x; t/Crx� .�; x; t/ ;

�
�
� .�.x; t/; x; t/

�
D
�
1
�2
C jr

� h.x; t/j2
�
@��� .�; x; t/

C
�
��1�d� .x; t/ ��

� h.x; t/
�
@�� .�; x; t/

C 2
�
��1n.s; t/ � r� h.x; t/

�
� rx@�� .�; x; t/C�x� .�.x; t/; x; t/ ;

where s D S.x; t/ and � D �.x; t/. Here rx and �x operate solely on the x-variable of �.

Proof. This follows from the chain rule, Proposition 2.5 and the notations introduced in Remark 2.6.

By (2.22) and (2.23) we have

r
� u.x; t/ D

�
I � n

�
S.x; t/; t

�
˝ n .S.x; t/; t/

�
ru.x; t/ and (2.29)

div� v.x; t/ D
�

I � n
�
S.x; t/; t

�
˝ n .S.x; t/; t/

�
W rv.x; t/ (2.30)

for suitable uW� .2ı/! R, vW� .2ı/! R2. A consequence is:

Lemma 2.8 Let t 2 Œ0; T0� and v 2 H 1 .�t .ı//
2, u 2 H 1 .�t .ı//. Then it holdsZ

�t .ı/

udiv� v dx D �
Z
�t .ı/

r
� u �v dx�

Z
�t .ı/

uv �n� dxC
Z
@.�t .ı//

u
�
.I � n˝ n/ �v

�
�� dH1.s/;

where � WD �div .n .S.x; t/; t// and �.s/ is the outer unit normal to �t .ı/ for s 2 @ .�t .ı//.

Proof. This is a consequence of (2.29), (2.30), and the divergence theorem.

For later use we define�
@n;r

�
�
u WD @n

�
.I � n˝ n/ru

�
� .I � n˝ n/r .@nu/ (2.31)

and compute �
@n;r

�
�
u D �rS

�
@sn � r� u

�
: (2.32)
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2.3 Remainder terms

We introduce the following function spaces. For t 2 Œ0; T0� and 1 6 p <1 we define

Lp;1 .�t .2ı// WD
˚
f W �t .2ı/! R measurablej kf kLp;1.�t .2ı// <1

	
;

where

kf kLp;1.�t .2ı// WD

�Z
T1

esssupjrj62ı jf ..X.r; s; t//1/j
p ds

� 1
p

:

Here X1.r; s; t/ WD X0.s; t/C rn.s; t/ denotes the first component of X . The following embedding
was already remarked in [4, Subsection 2.5].

Lemma 2.9 We have H 1 .�t .2ı// ,! L4;1 .�t .2ı// with operator norm uniformly bounded with
respect to t 2 Œ0; T0�.

Proof. This is a consequence of the Gagliardo–Nirenberg interpolation and the fact that �t is one-
dimensional.

For T 2 Œ0; T0�, 1 6 p; q <1 and ˛ 2 .0; 3ı/ we set

Lq
�
0; T ILp

�
�t .˛/

��
WD
˚
f W� .˛; T /! R measurablej kf kLq.0;T ILp.�t .˛/// <1

	
;

kf kLq.0;T ILp.�t .˛/// WD

 Z T

0

�Z
�t .˛/

jf .x; t/jp dx
� q
p

dt

! 1
q

:

In a similar way, we define Lq .0; T ILp .˝n�t .˛/// and Lq
�
0; T ILp

�
˝˙.t//

��
and the

corresponding norms. Moreover, for m 2 N0 we denote for U.t/ D ˝˙.t/ or U.t/ D �t .˛/

Lp
�
0; T IHm

�
U.t/

��
WD

n
f 2 Lp

�
0; T IL2

�
˝˙.t/

��
W @˛xf 2 L

p
�
0; T IL2

�
U.t/

��
8j˛j 6 m

o
;

kf kLp.0;T IHm.U.t/// WD
X
j˛j6m

k@˛xf kLp.0;T IL2.U.t///:

For future use, we introduce a concept of remainder terms, similar to [4, Definition 2.5].

DEFINITION 2.10 Let n 2 N, �0 > 0. For ˛ > 0 let R˛ denote the vector space of all families
. Or�/�2.0;�0/ of continuous functions Or� W R � � .2ı/! Rn which satisfy

j Or� .�; x; t/j 6 Ce�˛j�j for all � 2 R; .x; t/ 2 � .2ı/; � 2 .0; 1/ :

Moreover, let R0
˛ be the subspace of all . Or�/�2.0;�0/ 2 R˛ such that

Or� .�; x; t/ D 0 for all � 2 R; .x; t/ 2 �:

2.4 Spectral theory

The results in this chapter are adapted from [11]. For detailed proofs concerning the changed
stretched variable see [17, Chapter 3]. Moreover, we define

J.r; s; t/ WD det
�
D.r;s/X.r; s; t/

�
(2.33)

The statements in this section are made under the following assumptions:



SHARP INTERFACE LIMIT OF A STOKES/CAHN–HILLIARD SYSTEM I 367

ASSUMPTION 2.11 Let � 2 .0; �0/, T 2 .0; T0� and � be a cut-off function satisfying (1.21). We
assume that c�A W ˝T ! R is a smooth function, which has the structure

c�A.x; t/ D �
�
d� .x; t/

��
�0
�
�.x; t/

�
C �p�

�
Pr�t .x/; t

�
�1
�
�.x; t/

��
C �

�
d� .x; t/

�
�2q�.x; t/

C

�
1 � �

�
d� .x; t/

���
c
�;C
A .x; t/�

˝
C

T0

.x; t/C c
�;�
A .x; t/�˝�

T0
.x; t/

�
(2.34)

for all .x; t/ 2 ˝T , where �.x; t/ WD d� .x;t/
�
�h�.S.x; t/; t/. The occurring functions are supposed

to be smooth and satisfy for some C � > 0 the following properties:
�1WR! R is a bounded function satisfyingZ

R
�1.�/�

0
0.�/

2f .3/
�
�0.�/

�
d� D 0: (2.35)

Furthermore, p�W� ! R, q�W� .2ı/! R satisfy

sup
�2.0;�0/

sup
.x;t/2� .2ıIT /

 
jp�.Pr�t .x/; t/j C

�

� C
ˇ̌
d� .x; t/ � �h�

�
S.x; t/; t

�ˇ̌ jq�.x; t/j! 6 C �;

(2.36)
h�WT1 � Œ0; T �! R fulfills

sup
�2.0;�0/

sup
.s;t/2T1�Œ0;T �

�
jh�.s; t/j C j@sh

�.s; t/j
�

6 C � (2.37)

and c�;˙A W˝
˙
T ! R satisfy

˙ c
�;˙
A > 0 in ˝˙T : (2.38)

Additionally, we suppose that there is some C � such that

sup
�2.0;�0/

 
sup

.x;t/2˝T

ˇ̌
c�A.x; t/

ˇ̌
C sup
x2� .ı/

ˇ̌̌
r
� c�A.x; t/

ˇ̌̌!
6 C �; (2.39)

inf
�2.0;�0/

inf
.x;t/2˝T n� .ıIT /

f 00
�
c�A.x; t/

�
>

1

C �
: (2.40)

Corollary 2.12 Let Assumptions 2.11 hold true and let t 2 Œ0; T �, let  2 H 1.�t .ı// and �� 2 R
be such that Z

�t .ı/

� jr .x/j2 C ��1f 00
�
c�A.x; t/

�
 .x/2 dx 6 ��

and denote I s;t� WD
�
�
ı
�
�h�.s; t/; ı

�
�h�.s; t/

�
. Then, for � > 0 small enough, there exist functions

Z 2 H 1.T1/,  R 2 H 1.�t .ı// and smooth 	 W I s;t� � T1 ! R such that

 .r; s/ D ��
1
2Z.s/

�
ˇ.s/� 00

�
�.r; s/

�
C 	

�
�.r; s/; s

��
C  R .r; s/ (2.41)

for almost all .r; s/ 2 .�ı; ı/�T1, where � .r; s/ D r
�
�h�.s; t/ and ˇ.s/ D

�R
I
s;t
�

�
� 00.�/

�2 d�
�� 12

.
Moreover,  R2

L2.�t .ı//
6 C

�
��� C �

2
k k2L2.�t .ı//

�
; (2.42)
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kZk2
H1.T1/ C

r� 2
L2.�t .ı//

C
 R2

H1.�t .ı//
6 C

�
k k2L2.�t .ı// C

��

�

�
; (2.43)

and

sup
s2T1

�Z
I
s;t
�

�
	 .�; s/2 C 	� .�; s/

2
�
J
�
�
�
�C h�.s; t/

�
; s
�

d�
�

6 C�2: (2.44)

Proof. We define Q WD  
k k

L2.�t .ı//
: Then we haveZ

�t .ı/

�
ˇ̌
r Q 

ˇ̌2
C ��1f 00

�
c�A
�
Q 2 dx 6

��

k k2L2.�t .ı//

and may use Lemma 2.2 and Lemma 2.4 in [11] adapted to the case of the stretched variable � D
r
�
� h�.s; t/ instead of z D r

�
, where r 2 I1, s 2 T1, see [17, Chapter 3] for the details. This yields

existence of some functions QZ 2 H 1.T1/, Q R 2 H 1.�t .ı// and 	 such that

Q .r; s/ D ��
1
2 QZ.s/

�
ˇ.s/� 00

�
�.r; s/

�
C 	

�
�.r; s/; s

��
C Q R.r; s/ (2.45)

with

k QZk2
H1.T1/ C kr

� Q k2
L2.�t .ı//

C k Q R
k
2
H1.�t .ı//

6 C

 
1C

��

�k k2
L2.�t .ı//

!
; (2.46)

k Q R
k
2
L2.�t .ı//

6 C

 
�

��

k k2L2.�t .ı//

C �2

!
; (2.47)

and such that 	 satisfies (2.44). Furthermore, if we define

 1 .r; s/ WD �
� 12

�
ˇ.s/� 00

�
�.r; s/

�
C 	

�
�.r; s/; s

��
;

Z.s/ WD . 1;  /J and  R.r; s/ WD  .r; s/ �Z.s/ 1.r; s/;

we have the identities

Z.s/ D . 1;  /J D
�
 1; Q k kL2.�t .ı//

�
D QZ.s/ k kL2.�t .ı//

and

 R .r; s/ D Q .r; s/ k kL2.�t .ı// C
QZ.s/ k kL2.�t .ı// ;  1.r; s/ D

Q R.r; s/ k kL2.�t .ı//

for almost all .r; s/ 2 .�ı; ı/ � T1. Thus, (2.41), (2.42), (2.43) follow immediately.

In the following we considerH 1
0 .˝/ equipped with the scalar product .u; v/1 D

R
˝
ru �rv dx.

The induced norm j:j1 is equivalent to the usual H 1-norm by Poincaré’s inequality.

Theorem 2.13 (Spectral estimate) Let Assumption 2.11 hold true and let t 2 Œ0; T �. There exist
constants C1 > 0, C2 > 0 and �1 > 0, independent of t , such that for all  2 H 1

0 .˝/ it holdsZ
˝

�
ˇ̌
r 

ˇ̌2
C��1f 00.c�A/ 

2 dx > C1

�
�
 2

L2.˝/
C��1

 
L2
�
˝n�t .ı/

�C�r� 2
L2
�
�t .ı/

��
C C1

�
�3
r 2

L2.˝/
C �

r 2
L2
�
˝n�t .ı/

�� � C2 2H�1.˝/: (2.48)

for all � 2 .0; �1/.
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Proof. Due to (2.40) we may estimateZ
˝

� jr j2 C ��1f 00
�
c�A
�
 2 dx

>
Z
˝n�t .ı/

� jr j2 C C��1 j j2 dx C
Z
T1

Z ı

�ı

�
� j r j

2
C � jrτ j

2
C ��1f 00

�
c�A
�
 2
�
J dr ds

>
Z
˝n�t .ı/

� jr j2 C C1�
�1
j j2 dx C �

Z
�t .ı/

jrτ j
2 dx � C2�

Z
˝

 2 dx; (2.49)

where the last inequality is a consequence of [11, Lemma 2.2], adapted to the case of the stretched
variable � D r

�
� h�.s; t/ instead of z D r

�
, where r 2 .�ı; ı/, s 2 � , cf. [17, Proof of

Theorem 3.12] for more details. We observe that we may now use (2.49) to deriveZ
˝

� jr j2 C ��1f 00
�
c�A
�
 2 dx

> C1

�
�
r� 2

L2.�t .ı//
C ��1

 2
L2.˝n�t .ı//

C �
r 2

L2.˝n�t .ı//

�
C C1�

3
r 2

L2.˝/
� C2�

 2
L2.˝/

(2.50)

for C1; C2 > 0 and all � 2 .0; �1/, after choosing �1 so small that �1 6 1
2

is fulfilled. Now, in order
to prove (2.48) we fix a constant c > C2 and � 2 .0; �0/ and consider two different cases: First, we
assume Z

˝

� jr j2 C ��1f 00
�
c�A
�
 2 dx > c� k k2L2.˝/

which leads to the claim immediately, with C2 D 0: In the caseZ
˝

� jr j2 C ��1f 00
�
c�A
�
 2 dx 6 c� k k2L2.˝/

let w 2 H 2.˝/ \H 1
0 .˝/ be the unique solution to ��w D  . Then [11, Theorem 3.1] implies

QC� k k2L2.˝/ 6 krwk2L2.˝/ : (2.51)

Moreover, k k2H�1.˝/ D krwk
2
L2.˝/ and thus we getZ

˝

�
ˇ̌
r 

ˇ̌2
C��1f 0

�
c�A
�
 2 dx > C

�
�
 2

L2.˝/
C ��1

 
L2.˝n�t .ı//

C �
r� 2

L2.�t .ı//

�
C C

�
�
r 2

L2.˝n�t .ı//
C �3

r 2
L2.˝/

�
� QC

 2
H�1.˝/

:

This proves the assertion.

3. Proof of Theorem 1.1

3.1 The approximate solutions

A major ingredient of this work is the construction of an approximate solution, which satisfies
(1.1)–(1.6) up to a sufficiently high order. In the following we present a collection of properties of the
approximations, which are necessary to prove Theorem 1.1 and are constructed in [5], alternatively
see [17].
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Theorem 3.1 For every � 2 .0; 1/ there are v�A;w
�
1W˝T0 ! R2 c�A; �

�
A; p

�
AW˝T0 ! R and

r�SW˝T0 ! R2, r�div; r
�
CH1; r

�
CH2W˝T0 ! R such that

��v�A Crp
�
A D �

�
Arc

�
A C r�S; (3.1)

divv�A D r
�
div; (3.2)

@tc
�
A C

�
v�A C �

M� 12 w�1j� � .d� /
�
� rc�A D ��

�
A C r

�
CH1; (3.3)

��A D ���c
�
A C �

�1f 0
�
c�A
�
C r�CH2; (3.4)

in ˝T0 and

c�A D �1; ��A D 0;
�
�2Dsv�A C p

�
AI
�
n@˝ D ˛0v�A; r�div D 0 (3.5)

are satisfied on @T0˝. If additionally Assumption 1.2 holds for �0 2 .0; 1/, K > 1 and a family
.T�/�2.0;�0/ � .0; T0�, then there are some �1 2 .0; �0�, C.K/ > 0 depending on K and CK W
.0; T0�� .0; 1�! .0;1/ (also dependent onK), which satisfies CK .T; �/! 0 as .T; �/! 0, such
that Z T�

0

ˇ̌̌̌Z
˝

r�CH1.x; t/'.x; t/ dx
ˇ̌̌̌

dt 6 CK .T�; �/ �
M
k'kL1.0;T� IH1.˝// ; (3.6)Z T�

0

ˇ̌̌̌Z
˝

r�CH2.x; t/
�
c�.x; t/ � c�A.x; t/

�
dx
ˇ̌̌̌

dt 6 CK .T�; �/ �
2M ; (3.7)r�S


L2

�
0;T� I.H1.˝//

0
� C r�div


L2.˝T� /

6 C.K/�M ; (3.8)r�CH2rc
�
A


L2

�
0;T� I.H1.˝/2/

0
� 6 C.K/C .T�; �/ �

M (3.9)r�CH1


L2.@T�˝.

ı
2 //

6 C.K/�M (3.10)

for all � 2 .0; �1/ and ' 2 L1
�
0; T�IH

1.˝/
�
.

In the following we will need a more intricate knowledge of the approximate solutions. Let �
be a cut-off function satisfying (1.21), and we denote v˙ WD vj

˝˙
T0

, �˙ WD �j
˝˙
T0

for solutions

�; v of (1.7)–(1.16). We assume that v˙, �˙ are smoothly extended to ˝˙T0 [ � .2ıIT0/, where
v˙ is moreover divergence free in that region. We refer to [5, Remark 3.1], for more details on this
extension and [5, Remark 4.3] for more information on the structural details discussed below. We
have

c�A.x; t/ D �
�
d� .x; t/

�
cI .x; t/C

�
1 � �

�
d� .x; t/

��
cO;B.x; t/;

��A.x; t/ D �
�
d� .x; t/

�
�I .x; t/C

�
1 � �

�
d� .x; t/

��
�O;B.x; t/C �

M� 12��
A;M� 12

.x; t/;

v�A.x; t/ D �
�
d� .x; t/

�
vI .x; t/C

�
1 � �

�
d� .x; t/

��
vO;B.x; t/C �M�

1
2 v�
A;M� 12

.x; t/

for .x; t/ 2 ˝T0 . Here cO;B D ˙1CO .�/ in C 1
�
˝˙T0

�
as � ! 0, with kcO;BkC2

�
˝˙
T0

� 6 C and
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�O;B D �
˙ CO .�/ and vO;B D v˙ CO .�/ in L1

�
˝˙T0

�
as � ! 0. Moreover,

cI .x; t/ D

MC1X
kD0

�kck
�
�.x; t/; x; t

�
8.x; t/ 2 � .2ıIT0/ ;

where ck W R � � .2ıIT0/ ! R , k 2 f0; : : : ;M C 1g, are smooth and bounded functions, which
do not depend on � and have bounded derivatives. Here

�.x; t/ D
d� .x; t/

�
� h�A .S.x; t/; t/ 8.x; t/ 2 � .2ıIT0/ ; (3.11)

where h�A.s; t/ D
PM
kD0 �

khkC1.s; t/ C �M�
3
2 h�
M� 12

.s; t/ for .s; t/ 2 T1 � Œ0; T0� and hk are

smooth and bounded functions independent of � with bounded derivatives, for k 2 f1; : : : ;M C 1g.
Moreover, �I and vI have the same kind of expansion with coefficients �k and vk , k 2
f0; : : : ;M C 1g. In particular, we have

c0.�; x; t/ D �0.�/; v0.�; x; t/ D vC.x; t/�.�/ � v�.x; t/
�
1 � �.�/

�
�0.�; x; t/ D �

C.x; t/�.�/ � ��.x; t/
�
1 � �.�/

�
(3.12)

for .�; x; t/ 2 R � � .2ıIT0/, where � W R ! Œ0; 1� is smooth and satisfies � D 0 in .�1;�1�,
� D 1 in Œ1;1/ and �0 > 0 in R. The so-called inner terms satisfy moreover rlx@

m
t @

i
�u 2 R˛ for

some ˛ > 0, where i > 1;m; l > 0 and u D ck ; �k ; vk for k 2 f0; : : : ;M C 1g. Additionally, we
note for later use h�A .s; 0/ D 0 for all s 2 T1.

Regarding the structure of the fractional order terms, we have

��
A;M� 12

D � .d� / �
�

M� 12
C
�
1 � � .d� /

��
�
C;�

M� 12
�
˝
C

T0

C �
�;�

M� 12
��˝T0

�
;

v�
A;M� 12

.x; t/ D � .d� / v�
M� 12

C
�
1 � � .d� /

��
vC;�
M� 12

�
˝
C

T0

C v�;�
M� 12

��˝T0

�
in ˝T0 , where �˙;�

M� 12
; v˙;�
M� 12

are functions defined on ˝˙T0 [ � .2ıIT0/ and ��
M� 12

WD �
C;�

M� 12
� �

�
�;�

M� 12
.1 � �/ and v�

M� 12
WD vC;�

M� 12
��v�;�

M� 12
.1 � �/ in � .2ıIT0/. As technical details, we remark

that
r�CH2 D �

M� 12��
M� 12

CO
�
�MC1

�
in L1

�
˝T0n� .2ı/

�
as � ! 0; (3.13)

which is a direct consequence of [5, Remark 4.4] and that ��
M� 12

D 0 on @T0˝, which is discussed

in [5, Remark 4.3].
A key element in the proof of Theorem 1.1 is an understanding of the term w�1 mentioned in

Theorem 3.1 and also of the appearing fractional order terms, which are in the end a consequence
of the appearance of w�1. This motivates the following analysis: For T 2 .0; T0� we consider weak
solutions Qw�1 W ˝T ! R2 and q�1 W ˝T ! R of

�� Qw�1 Crq
�
1 D �� div

�
.rc�A � h/˝s rR

�
in ˝T ; (3.14)

div Qw�1 D 0 in ˝T ; (3.15)�
�2Ds Qw�1 C q

�
1I
�
� n@˝ D ˛0 Qw�1 on @T˝ (3.16)



372 H. ABELS AND A. MARQUARDT

in the sense of (2.5). Here we denote R WD c� � c�A and we define h by

h.x; t/ WD ��
�
d� .x; t/

�MC1X
kD0

�k@�ck
�
�.x; t/; x; t

�
�M�

3
2r

� h�
M� 12

.x; t/ (3.17)

and˝s as a˝s b WD a˝ bC b˝ a for a;b 2 Rn. We calculate

�
rc�A � h

�
.x; t/ D � 0

�
d� .x; t/

�
rd� .x; t/cI .x; t/C �

�
d� .x; t/

�  MC1X
kD0

�krxck
�
�.x; t/; x; t

�!

C �
�
d� .x; t/

�  MC1X
kD0

�k@�ck
�
�.x; t/; x; t

�
.�.x; t/; x; t/�1

�
rd� .x; t/ �

MX
iD0

�ir� hiC1.x; t/
�!

Cr

��
1 � �

�
d� .x; t/

��
cO;B.x; t/

�
(3.18)

for .x; t/ 2 ˝T0 . We understand the right-hand side of (3.14) as a functional in .V0/0 given by

f�. / WD
Z
˝

�
�
.rc�A � h/˝rRCrR˝ .rc�A � h/

�
W r dx (3.19)

for  2 V0 and fixed t 2 Œ0; T �. w�1 as introduced in Theorem 3.1 is just a rescaling of Qw�1, i.e.,

w�1 D
Qw�1

�M�
1
2

(3.20)

holds. Furthermore, we introduce

XT D L
2
�
0; T IH

7
2 .T1/

�
\H 1

�
0; T IH

1
2 .T1/

�
(3.21)

for T 2 RC [ f1g, where we equip XT with the norm

khkXT D khkL2.0;T IH
7
2 .T1//

C khk
H1.0;T IH

1
2 .T1//

C khjtD0kH2.T1/ :

Note thatXT ,! C 0
�
Œ0; T � IH 2

�
T1
��

, where the operator norm of the embedding can be bounded
independently of T .

The following lemma is shown in [5, Lemma 3.13] and enables us to access the results obtained
in Subsection 2.4.

Lemma 3.2 Let �0 > 0, T 2 .0; T0� and .T�/�2.0;�0/ � .0; T � be given. We assume that there is
some NC > 0 such that

sup
�2.0;�0/

h�
M� 12


XT�

6 NC

holds. Then there is �1 2 .0; �0� such that c�A .:; t/ satisfies Assumption 2.11 for all t 2 Œ0; T�� and
� 2 .0; �1/, where the appearing constant C � does not depend on �, T� , h�

M� 12
or NC .
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The following technical proposition is an essential ingredient for many estimates. Essentially it
states that an error R can be split into a multiple of � 00 plus perturbation terms that is of higher order
in �.

Proposition 3.3 Let �0 > 0, T 2 .0; T0� and a family .T�/�2.0;�0/ � .0; T � be given. Let
Assumption 1.2 hold true for cA D c�A and we assume that there is some NC > 1 such that

sup
�2.0;�0/

h�
M� 12


XT�

6 NC :

We denote

I s;t� WD

�
�
ı

�
� h�A.s; t/;

ı

�
� h�A.s; t/

�
and ˇ.s; t/ WD

� 00�1L2.I s;t� /
for � 2 .0; �0/, s 2 T1 and t 2 Œ0; T��. Then there is some �1 2 .0; �0� and there exist Z 2
L2
�
0; T�IH

1
�
T1
��

, F R
2 2 L

2
�
0; T�IH

1 .�t .ı//
�

and smooth F R
1 W� .ıIT�/! R such that

R.x; t/ D ��
1
2Z
�
S.x; t/; t

��
ˇ.S.x; t/; t/� 00

�
�.x; t/

�
C F R

1 .x; t/
�
C F R

2 .x; t/ (3.22)

for almost all .x; t/ 2 � .ıIT�/ and all � 2 .0; �1/. Furthermore, there exist C.K/, C > 0

independent of �, T� , h�
M� 12

and NC such that kˇkL1.T1�.0;T�// 6 C and

F R
2

2
L2.� .ıIT�//

6 C.K/�2MC1; (3.23)

kZk2
L2.0;T� IH1.T1//

C
F R

2

2
L2.0;T� IH1.�t .ı///

6 C.K/�2M�1 (3.24)

for all � 2 .0; �1/ as well as

sup
t2Œ0;T� �

sup
s2T1

Z
I
s;t
�

�ˇ̌
F R
1 .�; s; t/

ˇ̌2
C
ˇ̌
@�F

R
1 .�; s; t/

ˇ̌2�
J � .�; s; t/ d� 6 C.K/�2 (3.25)

for all � 2 .0; �1/, where

F R
1 .�; s; t/ WD F

R
1

�
X
�
�
�
�C h�A.s; t/

�
; s; t

��
forX as in (2.17) and J �.�; s; t/ WD J.�.�Ch�A.s; t//; s; t/ with J.r; s; t/ WD det

�
D.r;s/X

�
.r; s; t/.

Proof. Let �1 be chosen as in Lemma 3.2. Then c�A satisfies Assumption 2.11 for all � 2 .0; �1/. Let

��.t/ WD

Z
�t .ı/

� jrRj2 C ��1f 00
�
c�A
�
.R/ 2 dx:

Then (1.27c) and (2.40) implyZ T�

0

��.t/ 6 CK2�2M for all � 2 .0; �1/: (3.26)
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Hence for each t 2 Œ0; T��, Lemma 2.12 implies the existence of functions Z .:; t/ 2 H 1
�
T1
�
,

F R
1 .:; t/ W �t .ı/ ! R and F R

2 .:; t/ 2 H
1 .�t .ı// such that (3.22) holds for almost all x 2 �t .ı/

and all � 2 .0; �1/. Moreover,F R
2 .:; t/

2
L2.�t .ı//

6 C
�
���.t/C �

2
kR .:; t/k2L2.�t .ı//

�
kZ .:; t/k2

H1.T1/ C
F R

2 .:; t/
2
H1.�t .ı//

6 C

�
kR .:; t/k2L2.�t .ı// C

��.t/

�

�
for all � 2 .0; �2/. Note that C > 0 is independent of �, T� and NC since C � in Lemma 3.2 is
independent of these quantities as well. Since kRk2

L2.˝T� /
6 CK2�2M�1 and (3.26) hold true due

to (1.27), integration over .0; T�/ yields (3.23) and (3.24). Finally, (3.25) is a direct consequence of
(2.44).

Now we show the main estimate for Qw�1 :

Lemma 3.4 Let �0 > 0, T 0 2 .0; T0� and a family .T�/�2.0;�0/ � .0; T 0� be given. Let
Assumption 1.2 hold true for cA D c�A and we assume that there is NC > 1 such that

sup
�2.0;�0/

h�
M� 12


XT�

6 NC : (3.27)

Then there exists a constant C.K/ > 0, which is independent of �, T� , h�
M� 12

and NC , and some

�1 2 .0; �0/ such that

k Qw�1kL2.0;T IH1.˝// 6 C.K/�M�
1
2 for all � 2 .0; �1/ ; T 2 .0; T�� : (3.28)

Proof. First of all, we note that there exists �1 2 .0; �0�, which depends on NC , such thatˇ̌̌̌
d� .x; t/

�
� h�A .S.x; t/; t/

ˇ̌̌̌
>
ı

2�
(3.29)

for all .x; t/ 2 � .2ıIT�/ n� .ıIT�/ and � 2 .0; �1/ because of XT ,! C 0
�
Œ0; T � IC 1

�
T1
��

and
(3.27). After possibly choosing �1 > 0 smaller, we may ensure thatˇ̌

�0
�
�.x; t/

�
� �˝C.x; t/C �˝�.x; t/

ˇ̌
C
ˇ̌
� 00
�
�.x; t/

�ˇ̌
6 C1e

�C2
ı
2� (3.30)

holds true for all .x; t/ 2 � .2ıIT�/ n� .ıIT�/ and � 2 .0; �1/, as a consequence of (1.20), where

C1; C2 > 0 can be chosen independently of �1. As a last condition on �1 we impose that �
M� 32
1 6 1

NC
,

which yields
�M�

3
2

h�
M� 12


XT�

6 1 (3.31)

for all � 2 .0; �1/.
Since Qw�1 is a weak solution to (3.14)–(3.16) in ˝T� , we have due to Theorem 2.1

k Qw�1kL2.0;T IH1.˝// 6 C kf�kL2.0;T IV 00.˝//
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for all T 2 .0; T�/, where f� is given as in (3.19). Let in the following T 2 .0; T�� and  2
L2 .0; T�IV0.˝//,  ¤ 0. As a starting point, we decomposeZ

˝T

�
�
rc�A � h

�
˝rR W r d.x; t/

D

Z
� .ı;T /

�
�
rc�A � h

�
˝rR W r d.x; t/

C

Z
˝T n� .ıIT /

�
�
rc�A � h

�
˝rR W r d.x; t/ (3.32)

and estimate the two integrals on the right-hand side separately. The second summand in f� may be
treated analogously.

To estimate the second integral in (3.32), note that cI ;rxck ; @�ck ;r� hi 2 L1 .� .2ı// ; i 2
f1; : : : ;M C 1g, k 2 f0; : : : ;M C 1g, cO;B;rcO;B 2 L1

�
˝˙T0

�
and that we may employ (3.30).

Thus,
ˇ̌
rc�A.x; t/ � h.x; t/

ˇ̌
6 C1

�
1C 1

�
e�C2

ı
2�

�
for all .x; t/ 2 ˝T�n� .ıIT�/ and � 2 .0; �1/ and

we may estimateZ T

0

Z
˝n�t .ı/

ˇ̌
�
�
rc�A � h

�
˝rR W r 

ˇ̌
dx dt 6 C� krRkL2.0;T IL2.˝n�t .ı/// k kL2.0;T IH1.˝//

6 C.K/�MC
1
2 k kL2.0;T IH1.˝//

for T 2 .0; T�/, where we used (1.27a) in the last inequality. Dealing with the first integral on the
right-hand side of (3.32) is more complicated. We computeZ

� .ıIT /

�
�
rc�A � h

�
˝rR W r d.x; t/

D

Z
� .ıIT /

� 00.�/

 
n � �

� MX
iD0

�ir� hiC1

�!
˝rR W r d.x; t/

C

Z
� .ıIT /

�

�
r
�
c�A � �0.�/

�
�

�
hC � 00.�/�

M� 32r
� h�

M� 12

��
˝rR W r d.x; t/; (3.33)

where we employ the shortened notations � D �.x; t/ and n D n .S.x; t/; t/. As�
c�A � �0 ı �

�
.x; t/ D

MC1X
iD1

�ici
�
�.x; t/; x; t

�
for all .x; t/ 2 � .ıIT�/ we find that there exists some C > 0 independent of K and � such thatˇ̌̌

r
�
c�A � �0.�/

�
�

�
hC � 00.�/�

M� 32r
� h�

M� 12

�ˇ̌̌
6 C

for all .x; t/ 2 � .ıIT�/. ThusZ T

0

Z
�t .ı/

ˇ̌̌̌
�

�
r
�
c�A � �0.�/

�
�

�
hC � 00.�/�

M� 32r
� h�

M� 12

��
˝rR W r 

ˇ̌̌̌
dx dt

6 C� krRkL2.� .ı;T // k kL2.0;T IH1.˝// 6 C.K/�M�
1
2 k kL2.0;T IH1.˝//

for T 2 .0; T�� and � 2 .0; �1/, by (1.27).
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Using the boundedness of � 00 in L1 .R/ and that of r� hi in L1 .� .2ı//, i 2 f1; : : : ;M C 1g,
we also findZ T

0

Z
�t .ı/

ˇ̌̌
� 00.�/n˝r

�R W r 
ˇ̌̌

dx dt

6 C
r�R

L2.� .ı;T //
k kL2.0;T IH1.˝// 6 C.K/�M�

1
2 k kL2.0;T IH1.˝// ;Z T

0

Z
�t .ı/

ˇ̌̌̌
ˇ�� 00.�/

 
MX
iD0

�ir� hiC1

!
˝rR W r 

ˇ̌̌̌
ˇ dx dt

6 C� krRkL2.� .ı;T // k kL2.0;T IH1.˝// 6 C.K/�M�
1
2 k kL2.0;T IH1.˝//

by (1.27). Hence, plugging these results into (3.33), we obtainˇ̌̌̌ Z
� .ıIT /

�
�
rc�A � h

�
˝rR W r d.x; t/

ˇ̌̌̌
6 I C C.K/�M�

1
2 k kL2.0;T IH1.˝//

for T 2 .0; T�/ and � 2 .0; �1/, where

I WD
ˇ̌̌̌ Z
� .ıIT /

� 00.�/n˝ n@nR W r d.x; t/
ˇ̌̌̌
:

Since  2 V0, we have div D 0, which implies by (2.23) that div�  D �n˝ n W r holds. As
the assumptions of Proposition 3.3 are satisfied, we may estimate I using (3.22) and obtain

I D
ˇ̌̌̌ Z
� .ıIT /

� 00.�/@n

�
��

1
2Z.S.x; t/; t/

�
ˇ.S.x; t/; t/� 00.�/C F

R
1

�
C F R

2

�
div�  d.x; t/

ˇ̌̌̌
6

ˇ̌̌̌
ˇ Z T

0

Z
�t .ı/

1

2
@n
�
� 00.�/

2
�
��

1
2Z.S.x; t/; t/ˇ.S.x; t/; t/div� dx dt

ˇ̌̌̌
ˇ

C C1

ˇ̌̌̌
ˇ Z T

0

Z
T1

Z ı
��h

�
A
.s;t/

� ı��h
�
A
.s;t/

� 00.�/�
� 12Z.s; t/@�F

R
1 .�; s; t/div� J �.�; s; t/ d� ds dt

ˇ̌̌̌
ˇ

C C2
F R

2


L2.0;T IH1.�t .ı///

k kL2.0;T IH1.�t .ı///

DW J1 C J2 C J3:

Here we used the same notations as in Proposition 3.3 and in the first lines the short notation � D
�.x; t/. Now (3.24) implies

J3 6 C.K/�M�
1
2 k kL2.0;T IH1.�t .ı///

and we may estimate J2 by

J2 6 C��1 k kL2.0;T IH1.�t .ı///

 Z T

0

Z
T1
Z.s; t/2

Z ı
��h

�
A
.s;t/

� ı��h
�
A
.s;t/

�
@�F

R
1 .�; s; t/

�2
J � d� ds dt

! 1
2

6 C.K/�M�
1
2 k kL2.0;T IH1.�t .ı/// ;
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where we used (3.25) in the last line. To treat the remaining integral, we may use Lemma 2.8 to get

J1 6

ˇ̌̌̌
ˇZ T

0

Z
�t .ı/

1

2
r
�
�
@n
�
� 00.�/

2
�
��

1
2Z
�
S.x; t/; t

�
ˇ
�
S.x; t/; t

��
�  dx dt

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇZ T

0

Z
�t .ı/

@n
�
� 00.�/

2
�
��

1
2Z .S.x; t/; t/ ˇ

�
S.x; t/; t

�
 � n�.x; t/ dx dt

ˇ̌̌̌
ˇ

C C
X
˙

Z T

0

Z
T1

ˇ̌̌̌
ˇ@�

 
� 00

�
˙ı

�
� h�A.s; t/

�2!
��

3
2Z.s; t/ˇ.s; t/ .˙ı; s; t/

ˇ̌̌̌
ˇ ds dt

WD J 1
1 C J 2

1 C J 3;C
1 C J 3;�

1 :

Now

J 3;˙
1 6 C1�

� 32 e�C2
ı
2�

Z T

0

Z
T1
jZ.s; t/j sup

r2Œ�ı;ı�

j .r; s; t/j ds dt

6 C.K/�M�
1
2 k kL2.0;T IH1.�t .ı/// ;

where we used (3.30) and the uniform bound on ˇ in the first step andH 1 .�t .ı// ,! L2;1 .�t .ı//

(cf. Lemma 2.9) in the second step. For J 2
1 , we use integration by parts and get

J 2
1 6

ˇ̌̌̌
ˇZ T

0

Z
�t .ı/

�
� 00.�/

�2
��

1
2Z
�
S.x; t/; t

�
ˇ
�
S.x; t/; t

�
@n � n

�
S.x; t/; t

�
�.x; t/ dx dt

ˇ̌̌̌
ˇ

C C

Z T

0

Z
�t .ı/

ˇ̌̌�
� 00.�/

�2
��

1
2Z .S.x; t/; t/ ˇ

�
S.x; t/; t

�
 
ˇ̌̌

dx dt

C C.K/e�C2
ı
2� k kL2.0;T IH1.�t .ı///

6 C��
1
2 kZkL2.0;T IH1.T1// k kL2.0;T IH1.�t .ı/// �

1
2

�� 00�2
L2.R/

C C.K/e�C2
ı
2� k kL2.0;T IH1.�t .ı///

6 C.K/�M�
1
2 k kL2.0;T IH1.�t .ı/// ;

where the exponential decaying term in the first inequality is a consequence of the appearing
boundary integral, which may be estimated as in the case of J 3;˙

1 . Moreover, we used a change
of variables r 7! r

�
� h�A in the second step and (3.24) in the last step.

Now we discuss J 1
1 – the last term we need to estimate. Note that by the definition of ˇ in

Proposition 3.3, we have

r
� ˇ.s; t/ D �

1� 002L2.I s;t� /

Z ı
��h

�
A
.s;t/

� ı��h
�
A
.s;t/

1

2

d

d�

�
� 00.�/

2
�

d�
�
�r

� h�A
�

6 C1e
�C2

ı
2�
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for all � 2 .0; �1/, due to (3.30) and �M�
3
2

h�M� 12

XT�

6 1, cf. (3.31). Thus, we compute

J 1
1 6

ˇ̌̌̌
ˇZ T

0

Z
�t .ı/

1

2
@nr

�
�
� 00
�
�.x; t/

�2�
��

1
2Z .S.x; t/; t/ ˇ

�
S.x; t/; t

�
�  dx dt

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇZ T

0

Z
�t .ı/

1

2

�
@n;r

�
� �
� 00
�
�.x; t/

�2�
��

1
2Z
�
S.x; t/; t

�
ˇ
�
S.x; t/; t

�
�  dx dt

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇZ T

0

Z
�t .ı/

1

2
@n

�
� 00
�
�.x; t/

�2�
��

1
2r

�
�
Z
�
S.x; t/; t

�
ˇ .S.x; t/; t/

�
�  dx dt

ˇ̌̌̌
ˇ

6 C1

Z T

0

Z
�t .ı/

ˇ̌̌
@�

�
� 00
�
�.x; t/

�2�
r
� h�A�

� 12Z
�
S.x; t/; t

�
ˇ .S.x; t/; t/ � @n 

ˇ̌̌
dx dt

C C2

Z T

0

Z
�t .ı/

ˇ̌̌
@�

�
� 00
�
�.x; t/

�2�
r
� h�A�

� 12Z
�
S.x; t/; t

�
ˇ .S.x; t/; t/ �  

ˇ̌̌
dx dt

C C3

Z T

0

Z
�t .ı/

ˇ̌̌�
� 00
�
�.x; t/

�2�
��

1
2r

�Z .S.x; t/; t/ ˇ
�
S.x; t/; t

�
� @n 

ˇ̌̌
dx dt

C C4

Z T

0

Z
�t .ı/

ˇ̌̌�
� 00
�
�.x; t/

�2�
��

1
2 @sZ .S.x; t/; t/ ˇ

�
S.x; t/; t

�
 
ˇ̌̌

dx dt

C C5e
�C6

ı
2� k kL2.0;T IH1.�t .ı/// kZkL2.0;T IH1.T1//

6 C.K/�M�
1
2 k kL2.0;T IH1.�t .ı/// :

Here we used the definition of
�
@n;r

�
�

in the first estimate (cf. (2.31)), integration by parts, (2.32)
and the exponential decay of r� ˇ and the boundary terms in the second step. In the third step we
again used �M�

3
2

h�
M� 12


XT�

6 1. This concludes the proof.

Regarding the fractional order terms, we have the following bounds, which are a result of [5],
Theorem 3.15. This enables us to use (3.28), whenever Assumption 1.2 is satisfied.

Lemma 3.5 Let �0 2 .0; 1/. If Assumption 1.2 holds for cA D c�A, then there exist �1 2 .0; �0� and
a constant C.K/ > 0 independent of � such thath�

M� 12


XT�
C
�˙;�

M� 12


ZT�
C
v˙;�
M� 12


L6.0;T� IH2.˝˙.t///

6 C.K/ (3.34)

for all � 2 .0; �1/, where ZT� WD L
2
�
0; T�IH

2.˝˙.t//
�
\ L6

�
0; T�IH

1.˝˙.t//
�
.

As a direct consequence of (3.34) and XT ,! C 0.Œ0; T � IC 1.T1//, we remarkh�AC0.0;T� IC1.T1// 6 C.K/ (3.35)

for all � 2 .0; �1/. Finally, concerning the relation between cI and cO;B, we have in the case that
�0 2 .0; 1/ and Assumption 1.2 holds for cA D c�A thatDl

x .cI � cO;B/

L1.� .2ıIT�/n� .ıIT�//

6 C.K/e�
C
� (3.36)

for l 2 f0; 1g and constants C.K/; C > 0. This is discussed in [5, Corollary 4.9].
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3.2 Auxiliary results

Without repeating it, we will consider the following assumptions throughout this section.

ASSUMPTION 3.6 We assume that Assumption 1.2 holds true holds for cA D c�A, �0 2 .0; 1/,
K > 1 and a family .T�/�2.0;�0/ � .0; T0�. Moreover, we assume that �1 2 .0; �0� is chosen small
enough, such that (3.6)–(3.10), the statement of Lemma 3.5, (3.28) and (3.36) hold true.

Finally, we denote R WD c� � c�A.

The following proposition guarantees that Lemma 1.3 may be used.

Proposition 3.7 Let �0 2 .0; 1/ and  �0 W ˝ ! R be a smooth function satisfying the inequality �0C1.˝/ 6 C 0�
M for � 2 .0; �0/. Moreover, let c�0.x/ WD c�A .x; 0/ C  �0.x/ for all x 2

˝. Then there is some Q� 2 .0; �0� and a constant C0 > 0 which only depends on Q�, C 0 and
sup�2.0;�0/

c�A .x; 0/L1.˝/, such that

E�
�
c�0
�

6 C0; kc
�
0kL1.˝/ 6 C0 for all � 2 .0; Q�/ ;

where E� is given as in (1.29).

Proof. For simplicity we consider c�0.x/ D c�A .x; 0/ and highlight the situations where  �0 would
play a role. The estimate for

c�0L1.˝/ follows immediately by the construction of c�A. Considering
�
2

R
˝

ˇ̌
rc�A .x; 0/

ˇ̌2 dx we note that
rc�AL1.˝T0n� .2ı// 6 C� and estimate

�

2

Z
�0.2ı/

ˇ̌
rc�A.x; 0/

ˇ̌2 dx 6
�

2

Z
�0.2ı/

j� .d� /rcI .x; 0/j
2 dx

C
�

2

Z
�0.2ı/

ˇ̌�
1 � � .d� /

�
rcO;B.x; 0/Cr

�
� .d� /

�
.cI � cO;B/ .x; 0/

ˇ̌2 dx: (3.37)

Now we have rcO;B .:; 0/ 2 O .�/ in L1
�
˝˙ .0/

�
and cI ; cO;B 2 O .1/ in L1 .�0.2ı/n�0.ı//.

Moreover, � .x; 0/ D d� .x;0/
�

, as h�A .x; 0/ D 0, and thus

r
�
c0.�.x; 0/; x; 0/

�
D
1

�
� 00
�
�.x; 0/

�
� n.x; 0/:

In particular

�

2

Z
�0.2ı/

ˇ̌̌
� .d� /r

�
c0
�
�.x; 0/; x; 0

��ˇ̌̌2
dx 6 C

Z
T1

Z 2ı
�

� 2ı�

� 00.�/
2 d� ds 6 C:

As �kr .ck .� .:; 0/ ; :; 0// 2 O .1/ in L1 .�0.2ı// for k > 1, we find �
2

R
�0.2ı/

ˇ̌
rc�A .x; 0/

ˇ̌2 dx 6
C1 due to (3.37). Note that  �0 can be estimated uniformly in C 1.˝/ and is multiplied by �M , so
would cause no troubles in these estimates. For the second term in E�

�
c�0
�
, we compute

1

�

Z
˝C.0/

f
�
c�0
�

dx D
1

�

Z
˝C.0/

f 0
�
ˇ.x/

��
c�A.x; 0/ � 1

�
dx 6 C
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for some suitable ˇ.x/ 2
�
1; c�A .x; 0/

�
, where we used a Taylor expansion and the explicit structure

of c�A. In particular, in � C0 .ı/ WD ˝
C .0/ \ �0.ı/ a change of variables yields

1

�

Z
˝C.0/

f 0 .ˇ.x//
�
c�A .x; 0/ � 1

�
dx 6 C1 C C2

Z
T1

Z ı
�

0

j�0.�/ � 1j d� ds 6 C:

The appearance of  �0 would have changed nothing in this argumentation. This proves the claim.

Lemma 3.8 Let ˛; � 2 .0; 1/. There are some C.K/; C.K; ˛/ such that for all � 2 .0; �1/

kRkL2.0;T� IL1.˝// 6 C.K; ˛/�M�
3
2 ��.MC2/˛;

krRkL1.0;T� IL2.˝// 6 C.K/��
1
2 ; (3.38)

kRkL1.0;T� IL2C�.˝// 6 C.K/�M�
1
2�

�
2C�

M ;

kRkL1.0;T� IL2.˝// 6 C.K/�
1
2 .M�

1
2 /:

Proof. For ˛ 2 .0; 1/ it holds

kRkL1.˝/ 6 C .˛/ kRkH1C˛.˝/ 6 C .˛/ kRk1�˛H1.˝/ kRk
˛
H2.˝/ : (3.39)

Due to the construction and since h�A is uniformly bounded in XT� (cf. (3.34)). It can be easily
verified by direct calculations and the properties of c�A given in Section 3.1 that

�c�AL2.˝T� / 6
C.K/ 1

�2
. Because of Lemma 1.3 and Rj@˝ D 0, we get

kRkH2.˝/ 6 C 0 k�RkL2.˝T� /
6 C.K/��

7
2 ; (3.40)

where C.K/ depends only on K, T0, and C0 (where C0 is the constant from (1.28)). Using this and
(1.27) in (3.39), we find

kRkL2.0;T� IL1.˝// 6 C.K/
�
�M�

3
2

�1�˛�
��

7
2

�˛
D C.K/�M�

3
2 ��.MC2/˛:

In order to prove the second inequality, we employ Lemma 1.3, which yields

�
1
2 krRkL1.0;T� IL2.˝// 6 �

1
2

�
krc�kL1.0;T� IL2.˝// C

rc�AL1.0;T� IL2.˝//� 6 C.K/:

Here we used �
1
2

rc�AL1.0;T� IL2.˝// 6 C.K/, which is a consequence of the uniform bound
on ck ; cO;B and their derivatives for k 2 f0; : : : ;M C 1g and the boundedness of h�

M� 12
in XT� ,

combined with a change of variables.
For the proof of the third inequality we note that for � > 0 we have for any u 2 H 1

0 .˝/

kukL2C�.˝/ 6 C1 kuk
1� �

2C�

L2.˝/
kruk

�
2C�

L2.˝/
(3.41)
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for some C1 > 0 due to the Gagliardo–Nirenberg interpolation inequality. Moreover, (3.41) together
with by (3.38) and (1.27d) we obtain

kRkL1.0;T� IL2C�.˝// 6 C1 kRk
1� �

2C�

L1.0;T� IL2.˝//
krRk

�
2C�

L1.0;T� IL2.@˝.
ı
2 ///

6 C.K/�M�
1
2�

�
2C�

M : (3.42)

because of Poincaré’s inequality, kRk2L2.˝/ 6 kRkH�1.˝/ krRkL2.˝/, (1.27b) and (3.38).

The following lemma is an adapted version of [4, Lemma 5.4].

Lemma 3.9 Let u 2 H 1.˝/: Then there is some constant C > 0 such that

kuk3L3.�t .ı// 6 C
�
kukL2.�t .ı// C

r� u
L2.�t .ı//

� 1
2
�
kukL2.�t .ı// C k@nukL2.�t .ı//

� 1
2

�
�
kukL2.�t .ı//

�2
holds for all t 2 Œ0; T0�.

Proof. Note

kuk3L3.�t .ı// 6 C

Z ı

�ı

Z
�t

ju .p; r/j3 dH1.p/ dr D C
kukL3.�t /3L3.�ı;ı/

and kukL3.�t / 6 C kuk
1
6

H1.�t /
kuk

5
6

L2.�t /
as �t is one-dimensional. Now Hölder’s inequality leads

to

kuk3L3.�t .ı// 6 C

kuk 16H1.�t / kuk 56L2.�t /3
L3.�ı;ı/

6 C
kukH1.�t / 12L2.�ı;ı/ kukL 103 .�ı;ı/

 52
L2.�t /

6 C
kukH1.�t / 12L2.�ı;ı/ kukH1.�ı;ı/ 12L2.�t / kukL2.�ı;ı/2L2.�t / ;

where we used kuk
L
10
3 .�ı;ı/

6 C kuk
1
5

H1.�ı;ı/
kuk

4
5

L2.�ı;ı/
.

3.2.1 The error in the velocity. For � 2 .0; �0/ we consider strong solutions v� W ˝T0 ! R2 and
p� W ˝T0 ! R of the system

��v� Crp� D ��Arc
�
A in ˝T0 ; (3.43)

div v� D 0 in ˝T0 ; (3.44)�
�2Dsv� C p�I

�
n@˝ D ˛0v� on @T0˝ (3.45)
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(cf. Theorem 2.3) and weak solutions Qw�2 W ˝T0 ! R2 and q�2 W ˝T0 ! R of

�� Qw�2 Crq
�
2 D ��

�
div .h˝s rR/C div .rR˝rR/

�
in ˝T0 ; (3.46)

div Qw�2 D 0 in ˝T0 ; (3.47)�
�2Ds Qw�2 C q

�
2I
�

n@˝ D ˛0 Qw�2 in @T0˝; (3.48)

where h is defined as in (3.17). We consider the right-hand side of (3.46) as a functional in V 00 given
by

g� . / WD �
Z
˝

�
.h˝s rR/C .rR˝rR/

�
W r dx for all  2 V0: (3.49)

Introducing
v�err WD v� �

�
v� C Qw�1 C Qw

�
2

�
(3.50)

we have v� � v� D v�err C Qw�1 C Qw
�
2. Hence, if we control v�err, Qw�1, and Qw�2, we will control the

error v� � v� .

Lemma 3.10 Let Qw�2 be the unique weak solution to (3.46)–(3.48) in ˝T0 for � 2 .0; �1/. Then it
holds for all r 2 Œ1; 2� and q 2 .1; 2/

k Qw�2kLr .0;T� ILq.˝// 6 C.K; r; q/�
2.M�1/

r (3.51)

for all � 2 .0; �1/.

Proof. Since ˝ � R2, we have W 1
q0.˝/ ,! C 0.˝/, where 1

q0
C

1
q
D 1. Thus Lemma 2.4 implies

k Qw�2kLr .0;T� ILq.˝// 6 C.q/�
�
krR˝ hkLr.0;T� IL1.˝// C krR˝rRkLr.0;T� IL1.˝//

�
:

We use XT� ,! C 0.Œ0; T�� IC
1.T1// and @�ck 2 R˛ for k 2 f0; : : : ;M C 1g and get

� krR˝ hkLr.0;T� IL1.˝//

6 C�M�
1
2 �

1
2

MC1X
kD0

�k@�ck


L1.� .2ıIT0/IL2.R//

h�
M� 12


C0.Œ0;T� �IC1.T1//

krRkL2.0;T� IL2.˝//

6 C.K/�2M�
3
2

for all � 2 .0; �1/ due to (3.34) and (1.27). Moreover,

� krR˝rRkLr.0;T� IL1.˝// 6 � krRk
2
r

L2.0;T� IL2.˝//
krRk

2� 2r

L1.0;T� IL2.˝//
6 C.K/�

2M
r �

2
r

for � 2 .0; �1/, by (1.27) and (3.38). Combining the above estimates and using r > 1 the claim
follows.

Lemma 3.11 Let ' 2 L1
�
0; T�IH

1.˝/
�

and let the assumptions of Lemma 3.10 hold. Then there
is some r 0 > 0 such thatZ T�

0

ˇ̌̌̌Z
˝

�
Qw�2 � rc

�
A

�
' dx

ˇ̌̌̌
dt 6 C.K/T r

0

� �
M
k'kL1.0;T� IH1.˝// for all � 2 .0; �1/ :
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Proof. Let r 2 .1; 2/. As rc�A 2 O .�/ in L1
�
˝T0n� .2ı/

�
it immediately followsZ T�

0

ˇ̌̌̌ Z
˝n�t .2ı/

�
Qw�2 � rc

�
A

�
' dx

ˇ̌̌̌
dt 6 C� k'kL1.0;T� IH1.˝//

Z T�

0

k Qw�2kLq.˝/ dt

6 C.K/T
1
r0

� k'kL1.0;T� IH1.˝// �
2.M�1/

r C1 (3.52)

by (3.51) for q 2 .1; 2/ and due to H 1.˝/ ,! Ls.˝/ for all s > 1. The same estimate holds for
.r� .d� / .cI � cO;B/C .1 � � .d� //rcO;B/ in �t .2ı/n�t .ı/ by (3.36).

In � .2ıIT�/ we consider r .c0 .�.x; t/; x; t// D r .�0 .�.x; t/// and computeZ T�

0

ˇ̌̌̌ Z
�t .2ı/

�
Qw�2 � r

�
�0
�
�.x; t/

���
� .d� / ' dx

ˇ̌̌̌
dt

6
Z T�

0

Z
�t .2ı/

ˇ̌̌̌�
Qw�2 �

�
n � �r� h�A.x; t/

� 1
�
� 00
�
�.x; t/

��
'

ˇ̌̌̌
dx dt

6 C.K/ k'kL1.0;T� IH1.˝// �
�1

Z T�

0

k Qw�2kLq.˝/ dt
� 00L1.R/

6 C.K/T
1
r0

� k'kL1.0;T� IH1.˝// �
2.M�1/

r �1:

Since r .cI � c0 .� .:/ ; :// 2 O .1/ in L1 .� .2ıIT�//, we immediately getZ T�

0

ˇ̌̌̌ Z
�t .2ı/

�
Qw�2 � r

�
cI � c0

�
�.:/; :

���
' dx

ˇ̌̌̌
dt 6 C.K/T

1
r0

� k'kL1.0;T� IH1.˝// �
2.M�1/

r

by similar arguments as in (3.52).
As M > 4 there always exists r 2 .1; 2/ (and with it r 0 2 .2;1/) such that �

2.M�1/
r �1 < �M

which concludes the proof.

Theorem 3.12 (Error in the velocity) Let v� be a strong solution to (3.43)–(3.45), let the
assumptions of Lemma 3.10 hold true and let v�err WD v� �

�
v� C Qw�1 C Qw

�
2

�
.

1. There is a constant C.K/ > 0 such thatv�A � v�

L2.0;T� IH1.˝//

6 C.K/�M for all � 2 .0; �1/ :

2. For every ˇ 2
�
0; 1
2

�
there are constants C1.ˇ/; C2.ˇ/; C.K/ > 0 such that

v�err


H1.˝/

6 C1

�r�CH2rc
�
A


.H1� .˝//

0 C � krRk
1�2ˇ

L2.@˝. ı2 //
krRk

1C2ˇ

H1.@˝. ı2 //

�
C C2�

2
krRk

1
2�ˇ

L2.@˝. ı2 //
krRk

1
2Cˇ

H1.@˝. ı2 //
(3.53)

for almost every t 2 .0; T�/ andv�err


L1.0;T� IH1.˝//

6 C.K/C .T�; �/ �
M (3.54)

for all � 2 .0; �1/, where C .T; �/! 0 as .T; �/! 0.
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Proof. Ad 1. By definition, v�A � v� satisfies

��.v�A � v�/Cr.p�A � p�/ D r�S in ˝T� ;

div.v�A � v�/ D r�div in ˝T� ;�
�2Ds.v�A � v�/C .p�A � p�/I

�
n@˝ D ˛0.v�A � v�/ on @T�˝:

Thus, we have by Theorem 2.1 and since r�div D 0 on @T0˝v�A � v�

L2.0;T� IH1.˝//

6 C
�r�S


L2

�
0;T� I.H1.˝//

0
� C r�div


L2.˝T� /

�
and the claim follows from (3.8).

Ad 2. First of all we have for  2 H 1
� .˝/Z

˝

2Ds
�
v� � v�

�
W Ds dx C ˛0

Z
@˝

�
v� � v�

�
�  dH1.s/ D

Z
˝

�
��rc� � ��Arc

�
A

�
�  dx:

(3.55)
Plugging in (1.4), (3.4) and using integration by parts we getZ

˝

�
��rc� � ��Arc

�
A

�
�  dx

D �

Z
˝

�
rc� ˝rc� � rc�A ˝rc

�
A

�
W r dx �

Z
˝

r�CH2rc
�
A �  dx

C �

Z
@˝

��
rc�A ˝rc

�
A � rc

�
˝rc�

�
n@˝ C

1

2

�
jrc�j

2
�
ˇ̌
rc�A

ˇ̌2�n@˝
�
�  dH1.s/: (3.56)

Here we used c� D c�A D �1 on @T˝ together with f .�1/ D 0 and div.rc ˝ rc/ D �crc C
1
2
r
�
jrcj2

�
for sufficiently smooth cW˝ ! R.

So, defining v�err as in (3.50) and taking into account (3.55), (3.56), and the definitions of Qw�1
and Qw�2 (cf. (3.14), (3.46)) as weak solutions we find that v�err solvesZ

˝

2Dsv�err W Ds dx C ˛0

Z
@˝

v�err �  dH1.s/

D �

Z
@˝

��
rc�A ˝rc

�
A � rc

�
˝rc�

�
n@˝ C

1

2

�
jrc�j

2
�
ˇ̌
rc�A

ˇ̌2�n@˝��  dH1.s/

�

Z
˝

r�CH2rc
�
A �  dx DW F� . / (3.57)

for all  2 H 1
� .˝/. Due to (3.9) we haveZ T�

0

ˇ̌̌̌Z
˝

r�CH2rc
�
A �  dx

ˇ̌̌̌
dt 6

Z T�

0

r�CH2rc
�
A


.H1� .˝//

0 dt k kH1.˝/

6 C.K/C .T�; �/ �
M ; (3.58)
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where C .T; �/ ! 0 as .T; �/ ! 0. Thus, we only need to estimate the appearing boundary terms
in (3.57). To this end, let ˇ 2

�
0; 1
2

�
and we compute

�

Z T�

0

Z
@˝

ˇ̌̌�
jrc�j

2
�
ˇ̌
rc�A

ˇ̌2�
 
ˇ̌̌

dH1.s/ dt

6 �

Z T�

0

Z
@˝

�
jrRj2 C 2 jrRj

ˇ̌
rc�A

ˇ̌�
j j dH1.s/ dt

6 C

Z T�

0

�
� krRk2

H
1
2
Cˇ
.˝/
C �2 krRk

H
1
2
Cˇ
.˝/

�
k kH1.˝/ dt

6 C1

Z T�

0

�
� krRk

1�2ˇ

L2.@˝. ı2 //
krRk

1C2ˇ

H1.˝/

�
k kH1.˝/ dt

C C2

Z T�

0

�
�2 krRk

1
2�ˇ

L2.@˝. ı2 //
krRk

1
2Cˇ

H1.˝/

�
k kH1.˝/ dt (3.59)

6 C1

�
� krRk

1�2ˇ

L2.@T�˝.
ı
2 //
krRk

1C2ˇ

L2.0;T� IH1.˝//

�
k kH1.˝/

C C2T
1
2
�

�
�2 krRk

1
2�ˇ

L2.@T�˝.
ı
2 //
krRk

1
2Cˇ

L2.0;T� IH1.˝//

�
k kH1.˝/ ; (3.60)

where we used in the second inequality that rc�A D O.�/ in L1
�
@T0˝

�
ı
2

��
and that H

1
2 .@˝/ ,!

Ls .@˝/ for all s 2 Œ1;1/. and Hˇ .@˝/ ,! L2Cˇ .@˝/, since ˇ � 1
2

> � 1
2Cˇ

. Now we may
estimate

krRkH1.˝/ 6 C k.�R; jrRj ; R/kL2.@˝. ı2 //
(3.61)

due to elliptic regularity theory and the definition of  . Using this in (3.60) together with (1.27a)
and (1.27d), we find

�

Z T�

0

Z
@˝

ˇ̌̌�
jrc�j

2
�
ˇ̌
rc�A

ˇ̌2�
 
ˇ̌̌

dH1.s/ dt 6 k kH1.˝/ C.K/
�
�2M�

1
2�ˇ C T

1
2
� �

MC 54�
1
2ˇ
�

6 k kH1.˝/ C.K/
�
�
1
2 C T

1
2
�

�
�M

as M > 4 and ˇ > 0 can be chosen sufficiently small.
For the remaining, not estimated term in (3.57), we note that

�

Z T�

0

Z
@˝

ˇ̌�
�rc� ˝rc� Crc�A ˝rc

�
A

�
n@˝ �  

ˇ̌
dH1.s/ dt

6
Z T�

0

Z
@˝

�
jrRj2 C 2 jrRj

ˇ̌
rc�A

ˇ̌�
j j dH1.s/ dt

and may then proceed as in (3.60). This proves (3.54) and also (3.53) if we use (3.58) and (3.59)
without the integration in time.
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Corollary 3.13 Let the assumptions of Theorem 3.12 hold true and let ' 2 L1.0; T�IH 1.˝//.
Then Z T�

0

ˇ̌̌̌Z
˝

�
v�A � vffl

�
� rc�A' dx

ˇ̌̌̌
dt 6 C.K/T

1
2
� �

M
k'kL1.0;T� IH1.˝// ; (3.62)Z T�

0

ˇ̌̌̌Z
˝

v�err � rc
�
A' dx

ˇ̌̌̌
dt 6 C.K/C.�; T�/�

M
k'kL1.0;T� IH1.˝// ; (3.63)Z T�

0

ˇ̌̌̌Z
˝

Rv�err � rR
2 dx

ˇ̌̌̌
dt 6 C.K/C.�; T�/�

2M�1; (3.64)Z T�

0

ˇ̌̌̌Z
˝

v�err � rR' dx
ˇ̌̌̌

dt 6 C.K/C.�; T�/�
M
k'kL1.0;T� IH1.˝// (3.65)

for all � 2 .0; �1/ and C.�; T /! 0 if .�; T /! 0.

Proof. Ad (3.62): We have rc�A 2 O.�/ in L1 .˝T�n� .2ıIT�// and thus get the estimate in˝T� n
� .2ıIT�/ by simply using Hölder’s inequality and Theorem 3.12.1. It remains to give an estimate
inside � .2ıIT�/: We have rcO;B 2 O.�/ in L1 and the term involving .cI � cO;B/ in rc�A can be
handled by using (3.36), Hölder’s inequality and Theorem 3.12.1) as before. Moreover, we estimateZ

� .2ıIT�/

ˇ̌�
v�A � v�

�
�r .�0 ı �/ '

ˇ̌
d.x; t/

6 C

Z T�

0

Z
T1

�v�A � v�
�
'

L1.�2ı;2ı/

Z
R

ˇ̌̌
� 00
�
nCr� h�A

�ˇ̌̌
d� ds dt

6 C.K/T
1
2
� �

M
k'kL1.0;T� IH1.˝// ;

where we used H 1.�t .2ı// ,! L2;1.�t .2ı// together with Theorem 3.12.1) in the last step. For
k > 1 we can use �kr .ck .�.:/; :// 2 L1 .� .2ıIT�// uniformly in �. This proves (3.62).

Furthermore, (3.63) follows in the same way by using (3.54) and noting that we may not generate

a term T
1
2
� as we only control

v�err


L1.0;T� IH1.˝//

.

Ad (3.64): Since H 1.˝/ ,! Ls.˝/ for all s 2 Œ1;1/, we haveZ T�

0

ˇ̌̌̌Z
˝

Rv�err � rR
2 dx

ˇ̌̌̌
dt 6 C.K/

Z T�

0

v�err


H1.˝/

kRkL2C�.˝/ krRkL2.˝/ dt (3.66)

for � > 0. Regarding (3.53), we need to show three estimates:
Firstly, we haveZ T�

0

r�CH2rc
�
A


.H1.˝//

0 kRkL2C�.˝/ krRkL2.˝/ dt

6
r�CH2rc

�
A


L2

�
0;T� I.H1� .˝//

0
� kRkL1.0;T� IL2C�.˝// krRkL2.˝T� /

6 C.K/C .T�; �/ �
2M
�
�M�

1
2�

�
2C�

M
�

6 C.K/C .T�; �/ �
2M�1; (3.67)

where we used (3.9), (1.27d) and Lemma 3.8 3) and the fact that M > 4 and � > 0 can be chosen
arbitrarily.
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Secondly, we estimate for ˇ 2
�
0; 1
2

�
Z T�

0

� krRk
1�2ˇ

L2.@˝. ı2 //
krRk

1C2ˇ

H1.˝/
kRkL2C�.˝/ krRkL2.˝/ dt

6 C� krRk
1�2ˇ

L2.@T�˝.
ı
2 //
krRk

1C2ˇ

L2.0;T� IH1.˝//
kRkL1.0;T� IL2C�.˝// krRkL1.0;T� IL2.˝//

6 C.K/
�
�2M�

1
2�ˇ �M�

1
2�

�
2C�

M ��
1
2

�
6 C.K/�2M�

1
2 ; (3.68)

where we used (3.61), (1.27a), (1.27d), Lemma 3.8 3) and (3.38), M > 4, and that ˇ > 0,� > 0

can be chosen arbitrarily small.
Similarly we obtainZ T�

0

�2 krRk
1
2�ˇ

L2.@˝. ı2 //
krRk

1
2Cˇ

H1.˝/
kRkL2C�.˝/ krRkL2.˝/ dt

6 C�2 krRk
1
2�ˇ

L2.@T�˝.
ı
2 //
krRk

1
2Cˇ

L2.0;T� IH1.˝//
kRkL1.0;T� IL2C�.˝// krRkL2.0;T� IL2.˝//

6 C.K/
�
�MC

5
4�

ˇ
2 �M�

1
2�

�
2C�

M �M�
1
2

�
6 C.K/�2M�

1
2 : (3.69)

Now (3.66)–(3.69) together with (3.53) yield (3.64).
Concerning (3.65) we note thatˇ̌̌̌Z

˝

v�err � rR' dx
ˇ̌̌̌

6
v�err


H1.˝/

krRkL2.˝/ k'kL4.˝/ :

Regarding (3.53), we again consider three different terms: Firstly,Z T�

0

r�CH2rc
�
A


.H1.˝//

0 krRkL2.˝/ k'kL4.˝/ dt

6
r�CH2rc

�
A


L2.0;T� IH1.˝/0/

krRkL2.˝T� /
k'kL1.0;T� IH1.˝//

where we may now use (3.9) and (1.27) and M > 4 to gain the estimate by the right-hand side
of (3.65). Secondly,Z T�

0

� krRk
1�2ˇ

L2.@˝. ı2 //
krRk

1C2ˇ

H1.˝/
krRkL2.˝/ k'kL4.˝/ dt

6 C� krRk
1�2ˇ

L2.@T�˝.
ı
2 //
krRk

1C2ˇ

L2.0;T� IH1.˝//
krRkL1.0;T� IL2.˝// k'kL1.0;T� IH1.˝//

for ˇ 2
�
0; 1
2

�
, where (1.27) and (3.38) together with M > 4 imply the desired estimate. Thirdly,Z T�

0

�2 krRk
1
2�ˇ

L2.@˝. ı2 //
krRk

1
2Cˇ

H1.˝/
krRkL2.˝/ k'kL4.˝/ dt

6 C�2 krRk
1
2�ˇ

L2.@T�˝.
ı
2 //
krRk

1
2Cˇ

L2.0;T� IH1.˝//
krRkL2.˝T� /

k'kL1.0;T� IH1.˝//

for ˇ 2
�
0; 1
2

�
, where finally (1.27) and M > 4 imply the claim.
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Lemma 3.14 Let ' 2 L1
�
0; T�IH

1.˝/
�

and . Qw�1/
� D Qw�1 � Qw

�
1

ˇ̌
�

. ThenZ T�

0

ˇ̌̌̌ Z
�t .ı/

1

�

�
Qw�1
��
� n� 00.�/' dx

ˇ̌̌̌
dt 6 C.K/.T�/

1
2 �Mk'kL1.0;T� IH1.˝//; (3.70)

Z T�

0

ˇ̌̌̌ Z
�t .ı/

�
Qw�1
��
� r

� h�A�
0
0.�/' dx

ˇ̌̌̌
dt 6 C.K/.T�/

1
2 �MC1k'kL1.0;T� IH1.˝//;

(3.71)Z T�

0

ˇ̌̌̌ Z
�t .ı/

�
Qw�1
��
�

�n
�
� r

� h�A

�
�@�c1' dx

ˇ̌̌̌
dt 6 C.K/.T�/

1
2 �MC1k'kL1.0;T� IH1.˝//

(3.72)

for all � 2 .0; �1/.

Proof. Proceeding as in [4, proof of Lemma 5.1] we find, using @n Qw�1 D � divτ Qw�1,Z
�t .ı/

1

�

�
Qw�1 � Qw

�
1j�

�
� n� 00.�/' dx

D

Z ı

�ı

Z r

0

Z
�t

1

�
Qw�1 .�; p; t/ � rτ

�
� .r; p; t/

�
� 000
�
� .r; p; t/

�
' .r; p; t/ J .r; p; t/ dH1.p/ d� dr

C

Z ı

�ı

Z r

0

Z
�t

1

�
Qw�1 .�; p; t/ � rτ

�
' .r; p; t/ J .r; p; t/

�
� 00
�
� .r; p; t/

�
dH1.p/ d� dr

C

Z ı

�ı

Z r

0

Z
�t

1

�
Qw�1 .�; p; t/ � n�t .p/�.p/�

0
0

�
� .r; p; t/

�
' .r; p; t/ J .r; p; t/ dH1.p/ d� dr

DW I1 C I2 C I3;

because of Lemma 2.8. To estimate the occurring integrals, we note thatˇ̌̌̌Z r

0

Qw�1 .�; p; t/ d�
ˇ̌̌̌

6 r k Qw�1 .:; p; t/kL1.�ı;ı/ 6 Cr k Qw�1 .:; p; t/kH1.�ı;ı/ (3.73)

holds for all p 2 �t and r 2 .�ı; ı/. After a change of variables, we get

jI2j 6 C�

Z
�t

k Qw�1 .:; p; t/kH1.�ı;ı/Z ı
��h

�
A

� ı��h
�
A

ˇ̌̌�
rτ .'J /

�
�.�C h�A/; p; t

��
.�C h�A/�

0
0.�/

ˇ̌̌
d� dH1.p/

6 C.K/�
1
2 k Qw�1 .:; t/kL2.�t IH1.�ı;ı//

.�C 1/ � 00L2.R/ �k'kH1.˝/ C � 12 k'kL2;1.�t .ı//�
where we used (3.73),

h�AC0.Œ0;T �IC1.T1// 6 C.K/ as in (3.35). Employing Lemma 2.9 and the
exponential decay of � 00, we findZ T�

0

jI2j dt 6 C.K/ .T�/
1
2 �

1
2 k Qw�1kL2.0;T� IH1.˝// k'kL1.0;T� IH1.˝// :
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As rτ .� .r; p; t// D rτ

�
h�A .S .p; t/ ; t/

�
we may estimate I1 in a similar manner, and j�.p/j 6 C

for all p 2 �t , implies the equivalent estimate for I3. Lemma 3.4 together with the estimates on I1,
I2 and I3 completes the proof for (3.70).

To show (3.71), we calculateˇ̌̌̌ Z
�t .ı/

�
. Qw�1 � Qw

�
1j�t

/
�
� r

� h�A
�
S.x; t/; t

�
� 00.�/' dx

ˇ̌̌̌
6 C

Z
T1

Z ı

�ı

Z r

0

ˇ̌
.@n Qw�1/

�
X.�; s; t/

�ˇ̌
d�
ˇ̌̌
r
� h�A.s; t/�

0
0

�
�
�
X.r; s; t/

��
'
ˇ̌̌

dr ds:

6 C.K/

Z
T1

 Qw�1�X.:; s; t/�H1.�ı;ı/ k'kL1.�ı;ı/ Z ı
��h

�
A

� ı��h
�
A

�
3
2 j�C 1j

ˇ̌
� 00.�/

ˇ̌
d� ds

since ˇ̌̌̌Z r

0

�
@n Qw�1

� �
X.r; s; t/

�
d�
ˇ̌̌̌

6
 Qw�1�X.:; s; t/�H1.�ı;ı/pjr j 8r 2 .�ı; ı/

and s 2 T1, t 2 Œ0; T��. Integration from 0 to T� and Lemma 3.4 yield the assertion. The proof
of (3.72) follows analogously to the proof of (3.71) since @�c1 2 R˛ .

Lemma 3.15 Let ' 2 L1
�
0; T�IH

1.˝/
�

and w�1 D
Qw�
1

�
M� 1

2

. Then it holds

Z T�

0

ˇ̌̌̌Z
˝

�M�
1
2

�
w�1 � w�1j� �

�
� rc�A' dx

ˇ̌̌̌
dt 6 C.K/C .T�; �/ �

M
k'kL1.0;T� IH1.˝// ;

for all � 2 .0; �1/, where C .T; �/! 0 as .T; �/! 0.

Proof. In ˝T0n� .2ı/ we have rc�A 2 O .�/ in L1, thus the estimate in this region is a direct
consequence of Lemma 3.4. Inside � .2ıIT�/ we have rc�A D �rcI C � 0n .cI � cO;B/ C
.1 � �/rcO;B. The term involving rcO;B can be treated as in the outer region and the estimate
for the term .cI � cO;B/ is a consequence of (3.36). Now by definition

rcI .x; t/ D

MC1X
iD0

�i

 
@�ci

�
�.x; t/; x; t

��n
�
S.x; t/; t

�
�

� r
� h�A.x; t/

�
Crxci

�
�.x; t/; x; t

�!

for .x; t/ 2 � .2ıIT�/. Since rxc0 � 0, we have
PMC1
iD0 �irxci 2 O .�/ in L1 .R � � .2ı//,

allowing for a suitable estimate with the help of Lemma 3.4. Choosing � > 0 small enough, we
have

ˇ̌̌
d�
�
� h�A

ˇ̌̌
> ı

2�
in � .2ıIT�/ n� .ıIT�/ and as @�ci 2 R˛ , this leads to

Z
� .2ıIT�/n� .ıIT�/

�M�
1
2

ˇ̌
w�1 � w�1j� �

ˇ̌ ˇ̌̌
@�ci

�
�.x; t/; x; t

� �n
�
� r

� h�A

�ˇ̌̌
j'j d.x; t/

6 C.K/ k Qw�1kL2.0;T� IH1.˝// k'kL2.0;T� IH1.˝//
1

�
C1e

�C2
ı
2�
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for all i 2 f0; : : : ;M C 1g, where we have used
h�
M� 12


C0.0;T� IC1.T1//

6 C.K/ due to (3.35).

So we only need to showZ
� .ıIT�/

�M�
1
2

ˇ̌̌̌�
w�1 � w�1j�

�
�

�
�i@�ci

�
�.x; t/; x; t

��n
�
� r

� h�A

��
'

ˇ̌̌̌
d.x; t/

6 C .T; �/ C.K/�M k'kL1.0;T� IH1.˝//

for i 2 f0; : : : ;M C 1g, where C .T; �/ ! 0 as .T; �/ ! 0. For i 2 f0; 1g this is a consequence
of Lemma 3.14 and for i > 2 this is a consequence of @�ci 2 L1 .R � � .2ı//. This shows the
claim.

3.3 The proof of the main result

Let the assumptions of Theorem 1.1 hold true. Moreover, let c�A; �
�
A; v

�
A; p

�
A; h

�
A be given as in [5,

Definition 4.1], which implies in particular that the properties discussed in Section 3.1 hold. Let Qw�1
and Qw�2 be weak solutions to (3.14)–(3.16) and (3.46)–(3.48), resp., and let v� be a strong solution

to (3.43)–(3.45). We denote w�1 D
Qw�
1

�
M� 1

2

. Additionally, let .v�; p�; c�; ��/ be smooth solutions

to (1.1)–(1.6) such that (1.22) is satisfied. Note that Proposition 3.7 implies that Lemma 1.3 is
applicable in this situation. We define R WD c� � c�A in ˝T0 and let ' .:; t/ 2 H 2.˝/ \H 1

0 .˝/ for
t 2 Œ0; T0� be the unique solution of the problem

��' .:; t/ D R .:; t/ in ˝;
' .:; t/ D 0 on @˝:

Then ' is smooth and we have k' .:; 0/kH1.˝/ 6 CkR .:; 0/ kL2.˝/ 6 C 0�
M for all � 2 .0; 1/.

This implies the existence of some family .��/�2.0;1/ � .0; T0� andK > 1 such that Assumption 1.2
is satisfied (and in particular (1.27) holds for ��) and such that

k' .:; 0/kH1.˝/ 6 kR .:; 0/kL2.˝/ 6
K

2
�M : (3.74)

Moreover, we may choose �0 2 .0; 1/ small enough, such that (3.6)–(3.10), Lemma 3.5, (3.28) and
(3.36) hold. This implies in particular that Assumption 3.6 is satisfied and that we may use all the
results shown in Section 3.2. Now let T 2 .0; T0� and for � 2 .0; �0/ we set

T� WD sup
˚
t 2 .0; T � j .1.27/ holds true for t

	
: (3.75)

We will show in the following that we may choose T 2 .0; T0� (independent of �) and �0 small
enough, such that T� D T for all � 2 .0; �0/.

Now let T 0 2 .0; T0� be fixed. Multiplying the difference of the differential equations (1.3)
and (3.3) by ' and integrating the result over ˝ yields

0 D

Z
˝

'@t .��'/C '
�
.v� � rR/ �

�
v�A � vffl

�
� rc�A C

�
Qw�1 � Qw

�
1j� � .d� /

�
� rc�A

�
dx

C

Z
˝

'
�
v�err � rc

�
A C Qw

�
2 � rc

�
A ��.�

�
� ��A/

�
C 'r�CH1 dx (3.76)



SHARP INTERFACE LIMIT OF A STOKES/CAHN–HILLIARD SYSTEM I 391

for all t 2 .0; T / : Here we used the definition of ' and the identity

v� � rc� � v�A � rc
�
A D v� � rRC

�
Qw�1 C Qw

�
2

�
� rc�A �

�
v�A � v�

�
� rc�A C v�err � rc

�
A; (3.77)

which is a consequence of the definition of v�err (cf. (3.50)). In order to shorten the notation, we now
write

E.R; T 0/ WD
Z
˝T 0

� jrRj2 C ��1f 00
�
c�A
�
R2 d.x; t/;

N .c�A; R/ WD f
0
�
c�A CR

�
� f 0

�
c�A
�
� f 00

�
c�A
�
R D f 000.cA/

R2

2
C f .4/.cA/

R3

6
; (3.78)

R�
WD

�
�M�

1
2

�
�w�1 C w�1j� � .d� /

�
� rc�A

�
which leads us to

0 D
1

2

d
dt

Z
˝

jr'j2 dx C E.R; T 0/C
Z
˝

' .v� � rR/C ��1N .c�A; R/R dx

�

Z
˝

'
��

v�A � vffl
�
� rc�A � Qw

�
2 � rc

�
A � v�err � rc

�
A � r

�
CH1 CR�

�
CRr�CH2 dx (3.79)

for all t 2 .0; T 0/ because of (1.4) and (3.4). We obtained this equality by using integration by parts
in (3.76) and noting that the boundary integrals vanish due to the Dirichlet boundary conditions
satisfied by ', ��A and �� .

Using Theorem 2.13, we obtainZ
˝

� jrRj2 C ��1f 00
�
c�A
�
R2 dx

> C1

�
� kRk2L2.˝/ C �

�1
kRkL2.˝n�t .ı// C �

r�R2
L2.�t .ı//

�
C C2

�
�3 krRk2L2.˝/ C � krRk

2
L2.˝n�t .ı//

�
� C3 kr'k

2
L2.˝/ (3.80)

and due to the assumptions on f , [9, Lemma 2.2] yields

1

�

Z
˝

N
�
c�A; R

�
R dx > �

C

�

Z
˝

jRj3 dx:

Plugging these observations into (3.79) enables us to get

1

2

d
dt

Z
˝

jr'j2 dx

C C1

���R; �3rR�2
L2.˝/

C
���1R; �rR�

L2.˝n�t .ı//
C �

r�R2
L2.�t .ı//

�
6 C2 kr'k

2
L2.˝/ CRS; (3.81)
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where

RS WD
ˇ̌̌̌Z
˝

��
v�A � vffl

�
� rc�A C r

�
CH1 � Qw

�
2 � rc

�
A CR�

� v� � rR � v�err � rc
�
A

�
' dx

ˇ̌̌̌
:

C
C3

�

Z
˝

jRj3 dx C
ˇ̌̌̌Z
˝

Rr�CH2 dx
ˇ̌̌̌
:

Integrating (3.81) over .0; T 0/ and using Gronwall’s inequality, we get

sup
06�6T 0

kr'k2L2.˝/ C
��R; �3 jrRj�2

L2.˝T 0/
C
���1R; � jrRj�2

L2.˝n� .ıIT 0//

C �
r�R2

L2.� .ıIT 0//
6 C .T0/

 
kr' .:; 0/k2L2.˝/ C

Z T 0

0

RS dt

!
(3.82)

for some positive constant C .T0/ > 0. On the other hand, (3.79) together with Gronwall’s
inequality and (3.74) also implies

E
�
R; T 0

�
6 C .T0/

 
kr' .:; 0/k2L2.˝/ C

Z T 0

0

RS dt

!
: (3.83)

The idea now is to show that we may choose �0 > 0 and T 2 .0; T0� in the definition of T� so small,
that

C .T0/

 
kr' .:; 0/k2L2.˝/ C

Z T�

0

RS dt

!
< K2�2M :

holds for all � 2 .0; �0/. To this end we have to estimate RS in the following.
Due to (3.6)–(3.7) and since (1.27) holds true for T� , we getZ T�

0

ˇ̌̌̌Z
˝

Rr�CH2 dx
ˇ̌̌̌

dt C
Z T�

0

ˇ̌̌̌Z
˝

r�CH1' dx
ˇ̌̌̌

dt 6 C.K/C .T; �/ �2M :

Moreover, we immediately getZ T�

0

ˇ̌̌̌Z
˝

��
v�A � vffl

�
� rc�A C v�err � rc

�
A CR�

C Qw�2 � rc
�
A

�
' dx

ˇ̌̌̌
dt 6 C.K/C .T I �/ �2M ;

as a consequence of Corollary 3.13 and Lemmata 3.15 and 3.11. Here C .T; �/! 0 as .T; �/! 0.
Moreover, as a consequence of Lemma 3.9 and Hölder’s inequality we have

Z T�

0

kRk3L3.�t .ı// dt 6 C

�
kRkL2.0;T� IL2.�t .ı/// C

r�R
L2.0;T� IL2.�t .ı///

� 1
2

�

�
kRkL2.0;T� IL2.�t .ı/// C k@nRkL2.0;T� IL2.�t .ı///

� 1
2

kRk2
L4.0;T� IL2.�t .ı///

: (3.84)
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Since kRk2L2.˝/ 6 kr'kL2.˝/ krRkL2.˝/, we deduce

kRk2
L4.0;T� IL2.˝//

6 sup
�2.0;T�/

kr'kL2.˝/ krRkL2.˝T� /
: (3.85)

Because of (1.27) and the definition of T� , this implies

1

�

Z T�

0

kRk3L3.�t .ı// dt <
1

�
CK3�

1
2M�

1
4 �

1
2M�

3
4 �M �M�

3
2 D CK3�3M�

7
2 6 CK3�2MC

1
2

since M > 4. On the other hand, we have, for � > 0 small enough,

1

�

Z T�

0

kRk3L3.˝n�t .ı// dt 6
1

�
C kRkL2.0;T� IH1.˝n�t .ı/// kRk

2

L4.0;T� IL2.˝n�t .ı///

6
1

�
CK3�M�

1
2 �2M�

3
2 ; (3.86)

where we used the Gagliardo–Nirenberg interpolation theorem, (3.85) and (1.27). As M > 4, the
estimate follows.

For the last term in RS we haveZ T�

0

ˇ̌̌̌Z
˝

v� � rR' dx
ˇ̌̌̌

dt D
Z T�

0

ˇ̌̌̌Z
˝

v� � r'R dx
ˇ̌̌̌

dt

6
Z T�

0

ˇ̌̌̌Z
˝

v�A � r'R dx
ˇ̌̌̌
C

ˇ̌̌̌Z
˝

�
v� � v�A

�
� r'R dx

ˇ̌̌̌
dt: (3.87)

Before we continue with the estimates, we introduce Ov�A WD v�A � �
M� 12 v�

A;M� 12
2 L1

�
˝T0

�
. First

of all we haveZ T�

0

ˇ̌̌̌Z
˝

Ov�A � r'R dx
ˇ̌̌̌

dt 6
Z T�

0

ˇ̌̌̌Z
˝

 Ov�A � r'R dx
ˇ̌̌̌

dt

C

Z T�

0

Z
˝

ˇ̌
r
�
.1 � / Ov�A

�
W .r' ˝r'/

ˇ̌
C

ˇ̌̌̌
ˇ.1 � / Ov�A � r

 
jr'j2

2

!ˇ̌̌̌
ˇ dx dt; (3.88)

where we used ��' D R. We note that we introduced  since Ov�A does not satisfy Dirichlet
boundary conditions (nor does ' satisfy Neumann boundary conditions).

Now
ˇ̌
rOv�A.x; t/

ˇ̌
6
ˇ̌
�.d� .x; t//@�v0 .�.x; t/; x; t/ 1�

ˇ̌
C C.K/, which is a consequence of the

uniform boundedness of the terms vk , vO;B and of
h�AC0.0;T� IC1.�t .2ı/// 6 C.K/ (see (3.35)).

Moreover, by (3.12), and since d� .x; t/ D �
�
�.x; t/C h�A.x; t/

�
for .x; t/ 2 � .2ı/, we have

ˇ̌
@�v0

�
�.x; t/; x; t

�ˇ̌
6 �

ˇ̌
�0
�
�.x; t/

�ˇ̌ ˇ̌
�.x; t/C h�A.x; t/

ˇ̌ ˇ̌̌̌vC.x; t/ � v�.x; t/
d� .x; t/

ˇ̌̌̌
(3.89)

for all .x; t/ 2 � .2ı/.
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Due to k�0.�/�j < C for all � 2 R and vC D v� on � this results inZ T�

0

ˇ̌̌̌Z
˝

r
�
.1 � / Ov�A

�
W .r' ˝r'/ dx

ˇ̌̌̌
dt 6 C.K/T� kr'k

2

L1.0;T� IL2.˝//
6 C.K/T��

2M

by (1.27b) and the facts that Ov�A 2 L
1
�
˝T0

�
and  ,  0 are bounded.

Concerning the second term on the right-hand side of (3.88), we note that
div

�
Ov�A
�
L1.˝T� /

6
C.K/ as a consequence of (3.89) and (3.35). ThusZ T�

0

ˇ̌̌̌Z
˝

�
.1 � / Ov�A

�
� r

�1
2
jr'j2

�
dx
ˇ̌̌̌

dt 6 C.K/T� kr'k
2

L1.0;T� IL2.˝//
6 C.K/T��

2M :

For the third term on the right-hand side of (3.88), we calculateZ T�

0

ˇ̌̌̌Z
˝

 Ov�A � r'R dx
ˇ̌̌̌

dt 6 CT
1
2
� kr'kL1.0;T� IL2.˝// kRkL2.˝T� n� .2ıIT�//

;

so (1.27) implies a suitable estimate. Regarding (3.87), we haveZ T�

0

ˇ̌̌̌Z
˝

�M�
1
2 v�
A;M� 12

� r'R dx
ˇ̌̌̌

dt

6 �M�
1
2

v�
A;M� 12


L2.0;T� IL1.˝//

kr'kL1.0;T� IL2.˝// � kRkL2.0;T� IL2.˝// < C.K/�
2MC 12

as M > 4. Here we used that kv˙;�
M� 12
kL2.0;T� IL1.˝˙.t/[�t .2ı/// 6 C.K/ due to (3.34) and

H 2.˝/ ,! L1.˝/. HenceZ T�

0

ˇ̌̌̌Z
˝

�
v� � v�A

�
� r'R dx

ˇ̌̌̌
dt

6
�
k Qw�1kL2.0;T� IL4.˝// C

v� � v�A

L2.0;T� IL4.˝//

�
kr'kL1.0;T� IL2.˝// kRkL2.0;T� IL4.˝//

C

Z T�

0

ˇ̌̌̌Z
˝

Qw�2 � rR' dx
ˇ̌̌̌

dt C
Z T�

0

ˇ̌̌̌Z
˝

v�err � rR' dx
ˇ̌̌̌

dt

6 C.K/
�
�2MC

1
2 C �2MC

1
2 C C .T; �/ �2M

�
C

Z T�

0

ˇ̌̌̌Z
˝

Qw�2 � rR' dx
ˇ̌̌̌

dt (3.90)

because of v�err D v� �
�
v� C Qw�1 C Qw

�
2

�
, Theorem 3.12.1), (3.28), (1.27), (3.65), and M > 4.

Regarding the Qw�2 term we first note that for � > 0 we have

krRkL2.0;T� IL2C�.˝// 6 C

�
krRk

1� �
2C�

L2.˝T� /
k�Rk

�
2C�

L2.˝T� /
C krRkL2.˝T� /

�
6 C.K/

�
�M�

3
2 ��.MC2/

�
2C�

�
(3.91)

where we used kRkH2.˝/ 6 C k�RkL2.˝/ and k�RkL2.˝T� / 6 C.K/��
7
2 as in (3.40). Thus, we

may estimate for � > 0 and q 2 . 2C�
.2C�/�1

; 2/Z T�

0

ˇ̌̌̌Z
˝

Qw�2 � rR' dx
ˇ̌̌̌

dt 6 k Qw�2kL2.0;T� ILq.˝// krRkL2.0;T� IL2C�.˝// k'kL1.0;T� IH1.˝//

6 C.K/�3M�
5
2 ��.MC2/

�
2C� 6 C.K/�2MC˛
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for some ˛ > 0, where we used (3.51), (1.27b), (3.91), M > 4 and that � > 0 can be chosen
arbitrarily small.

Because of (3.90), we get
R T�
0

ˇ̌R
˝

�
v� � v�A

�
� r'R dx

ˇ̌
dt 6 C.K/C .T; �/ �2M , which

concludes the estimates for RS . Since (3.82) and (3.83) do not imply estimates of the kind (1.23e)
and (1.23f), we need to apply another strategy and test with 2R in the following.

Let again T 0 2 .0; T0�. Multiplying the difference of the differential equations (1.3) and (3.3)
by 2R and integrating the result over ˝ yields

0 D
1

2

Z
˝

d

dt

�
R2
�
2 dx C

Z
˝T

2R
�
v� � rRC v�err � rc

�
A C

�
v� � v�A C Qw

�
1 C Qw

�
2

�
� rc�A

�
dx

C

Z
˝

2Rr�CH1 ��
�
2R

� �
���RC

1

�

�
f 00

�
c�A
�
RCN

�
c�A; R

��
� r�CH2

�
dx; (3.92)

where we used supp \ supp� ı d�t D ; for all t 2 Œ0; T0�, (3.77), integration by parts and
R D �� D ��A D 0 on @T0˝.

As c�A D �1 C O.�/ in L1
�
@T0˝

�
ı
2

��
, we have f 00

�
c�A.x; t/

�
D f 00 .�1/ C � Qf .x; t/ for

.x; t/ 2 @T0˝
�
ı
2

�
by a Taylor expansion, where Qf 2 L1

�
@T0˝

�
ı
2

��
. Moreover,

r
�
2R

�
D 2Rr C 2rR; �

�
2R

�
D �

�
2
�
RC 4r � rRC 2�R

and we find

1

�

Z
˝

��
�
2R

�
f 00

�
c�A
�
R dx

D
1

�
f 00 .�1/ krRk2L2.˝/ C

1

�

Z
˝

f 00 .�1/Rr
�
2
�
� rR dx �

Z
˝

�
�
2R

�
Qf R dx; (3.93)

where we used R D 0 on @T0˝. Moreover, we have

rN
�
c�A; R

�
D kf rc

�
AR

2
C

�
f .3/

�
c�A
�
RC kfR

2
�
rR;

due to (3.78) and kf D
f .4/.cA/

2
. This yieldsZ

˝

��
�
2R

� 1
�
N
�
c�A; R

�
d.x; t/ D

1

�

Z
˝

kf

�
j .rR/Rj2 Cr

�
2
�
R3 � rR

�
dx

C
1

�

Z
˝

r
�
2R

�
�

�
kf rc

�
AR

2
C f .3/

�
c�A
�
RrR

�
dx

D
kf

�
k jrRjRk2L2.˝/ C

1

�

Z
˝

Nr
�
c�A; R

�
dx; (3.94)

where the boundary terms due to integration by parts vanish since f 0 .�1/ D R.x; t/ D 0 and
c�A.x; t/ D �1 for .x; t/ 2 @T0˝. Here we used the notation

Nr
�
c�A; R

�
WD kf r

�
2
�
R3 � rRCr

�
2R

�
�

�
kf rc

�
AR

2
C f .3/

�
c�A
�
RrR

�
: (3.95)
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Additionally, we computeZ
˝

��
�
2R

�
.���R/ dx D � k�Rk2L2.˝/ C �

Z
˝

4r � rR�RC�
�
2
�
R�R dx: (3.96)

Plugging (3.93), (3.94) and (3.96) (noting that kf ; f 00 .�1/ > 0) into (3.92) and integrating in time
yields

sup
t2.0;T 0/

R .:; t/ 2
L2.˝/

C �
�R2

L2.˝T 0/
C
kf

�

 .rR; RrR/ 2
L2.˝T 0/

6
R.:; 0/2

L2.˝/
C C1

Z T 0

0

ˇ̌̌̌Z
˝

2R
�
v� � rRC .v�err C v� � v�A C Qw

�
1 C Qw

�
2/ � rc

�
A

�
dx
ˇ̌̌̌

dt

C C2

Z T 0

0

ˇ̌̌̌Z
˝

2Rr�CH1 C �
�
�.2/RC 4r � rR

�
�RC

1

�
Nr

�
c�A; R

�
dx
ˇ̌̌̌

dt

C C3

Z T 0

0

ˇ̌̌̌Z
˝

�.2R/
�
Qf R � r�CH2

�
CRr.2/ � rR

1

�
f 00 .�1/ dx

ˇ̌̌̌
dt: (3.97)

If we may now give suitable estimates for the right-hand side of (3.97), replacing T 0 by T� , we
get (1.23e) and (1.23f).

Now we estimate the right-hand side of (3.97). Starting from the last term in (3.97), we haveZ T�

0

r.2/RrRf 00.�1/�


L1.˝/

dt 6
C

�

rR
L2.˝T� /

rR
L2.˝T� /

6 C.K/�2M�
1
2

due to (1.27a) and (1.27d). For the next term, we note that r�CH2 D r
�
CH2;B in @T0˝

�
ı
2

�
and use (3.13)

to concludeZ T�

0

ˇ̌̌̌Z
˝

�
�
2R

�
r�CH2 dx

ˇ̌̌̌
dt 6 C

 .�R;rR;R/ 
L2.@T�˝.

ı
2 //
�MC1

C C2�
M� 12

r��
M� 12


L2

�
˝�
T�

� .rR;R/ 
L2.@T�˝.

ı
2 //

6 C.K/�2M�
1
2 ;

where we used integration by parts, ��
M� 12

D 0 on @T�˝, (1.27a), (1.27d) and (3.34). Moreover,Z T�

0

ˇ̌̌̌Z
˝

�.2R/ Qf R dx
ˇ̌̌̌

dt 6 C
 .�R;rR;R/ 

L2.@T�˝.
ı
2 //

R
L2.@T�˝.

ı
2 //

6 C.K/�2M�
1
2 :

Skipping Nr
�
c�A; R

�
for now, we next estimateZ T�

0

ˇ̌̌̌Z
˝

�4 .r � rR/ �R dx
ˇ̌̌̌

dt 6 C�
�R

L2.˝T� /

rR
L2.@T�˝.

ı
2 //

6 C1�
2M� 12

due to (1.27a) and (1.27d). Additionally,Z T�

0

ˇ̌̌̌Z
˝

��.2/R�R dx
ˇ̌̌̌

dt D
Z T�

0

ˇ̌̌̌Z
˝

�
�
r�.2/RC�.2/rR

�
� rR dx

ˇ̌̌̌
dt

6 C�
�
kRkL2.@T�˝.

ı
2 //
krRkL2.@T�˝.

ı
2 //
C krRk2

L2.@T�˝.
ı
2 //

�
D O.�2M /
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because of Rj@˝ D 0 and (1.27b). NowZ T�

0

ˇ̌̌̌Z
˝

2Rr�CH1 dx
ˇ̌̌̌

dt 6 C kRkL2.@T�˝.
ı
2 //

r�CH1


L2.@T�˝.

ı
2 //

6 C.K/�2MC
1
2

due to (1.27a) and (3.10), andZ T�

0

ˇ̌̌̌Z
˝

2R
�
v� � v�A C Qw

�
1 C Qw

�
2

�
� rc�A dx

ˇ̌̌̌
dt

6 C� kRkL2.@T�˝.
ı
2 //

�v� � v�A

L2.0;T� IH1.˝//

C
 Qw�1L2.0;T� IH1.˝//�

C C� kRkL2.0;T� ILq
0.@˝. ı2 ///

 Qw�2L2.0;T� ILq.˝//
where q 2 .1; 2/, 1

q0
C

1
q
D 1 and we used rc�A D O.�/ in L1

�
@T0˝

�
ı
2

��
. Now (3.28),

Theorem 3.12.1 and (3.51) together with H 1
�
@˝

�
ı
2

��
,! Lq

0�
@˝

�
ı
2

��
and (1.27a) imply that

the term is of order O.�2MC
1
2 /. Next,Z T�

0

ˇ̌̌̌Z
˝

2Rv�err � rc
�
A dx

ˇ̌̌̌
dt 6 � kRkL1.0;T� IL2.˝//

v�err


L1.0;T� IH1.˝//

6 C.K/�2MC
1
2 ;

where we again used rc�A D O.�/ in L1
�
@T0˝

�
ı
2

��
in the first line and (3.54), (1.27d) in

the second line. In view of the above considerations, kR .:; 0/k2L2.˝T� / 6 K2

4
�2M (cf. (3.74))

and (3.97), we have two more estimates to show:
Using the explicit form of Nr given in (3.95), we calculate

1

�

Z T�

0

ˇ̌̌̌Z
˝

Nr
�
c�A; R

�
dx
ˇ̌̌̌

dt

6
1

�

Z T�

0

ˇ̌̌̌Z
˝

kf r.
2/R3 � rR dx

ˇ̌̌̌
dt C C1 kRk

3

L3.˝T� n� .2ıIT�//

C C2

Z T�

0

Z
˝

j2rRR2j dx dt

C C3
1

�

Z T�

0

Z
˝

jr.2R/RrRj dx dt; (3.98)

where we again used rc�A D O.�/ in L1
�
@T0˝

�
ı
2

��
in the last step. Now we have

1

�

Z T�

0

Z
˝

ˇ̌
kf r.

2/R3 � rR
ˇ̌
dx dt

6
1

�
C
R ˇ̌rRˇ̌

L2.˝T� /
kRkL1.0;T� IL2.˝// kRkL2.0;T� IH1.@˝. ı2 ///

6 C.K/��1�M �
M
2 �

1
4 �M�

1
2

where we used kukL4.˝/ 6 Ckuk
1
2

L2.˝/
kuk

1
2

H1.˝/
and (1.27) together with Lemma 3.8 4). The

estimate follows since M > 4. Next we have kRkL3.˝T� n� .2ıIT�// 6 C.K/�2MC1 due to (3.86)
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and Z T�

0

Z
˝

ˇ̌
2rRR2

ˇ̌
dx dt 6 C kRrRkL2.˝T� /

kRkL2.@T�˝.
ı
2 //

6 C.K/�2MC
1
2

due to (1.27). Regarding the last term in (3.98) we have on the one hand

1

�

Z T�

0

Z
˝

ˇ̌ �
r2

�
R2rR

ˇ̌
dx dt 6 C

1

�
kRrRkL2.˝T� /

kRkL2.@T�˝.
ı
2 //

6 C.K/�2M�
1
2

as before and on the other hand

1

�

Z T�

0

Z
˝

ˇ̌
2 .rR/2R

ˇ̌
dx dt 6 C

1

�
kRkL1.0;T� IL2.˝// krRkL2.˝T� /

krRkL2.0;T� IH1.˝//

6 C.K/�
M
2 �

1
4 �M �M�1��1 D C.K/�

5
2M�2�

1
4

where we use Lemma 3.8 4) and (1.27). Altogether we have 1
�

R T�
0

ˇ̌R
˝
Nr.c�A; R/ dx

ˇ̌
dt 6

�2M�
1
2 .

Finally, we estimateZ T�

0

ˇ̌̌̌Z
˝

2R .v� � rR/ dx
ˇ̌̌̌

dt

6
Z T�

0

ˇ̌̌̌Z
˝

2R
�
v�err � rR

�
dx
ˇ̌̌̌
C

Z T�

0

ˇ̌̌̌Z
˝

�
v� � v�err

�
�
1

2
r.2/R2 dx

ˇ̌̌̌
dt

6 C.K/C .�; T�/ �
2M�1

C
1

2

Z
˝T�

ˇ̌�
v� � v�A C Qw

�
1 C Qw

�
2

�
� r.2/R2

ˇ̌
C
ˇ̌
v�A � r.

2/R2
ˇ̌
d.x; t/

6 C.K/C .�; T�/ �
2M�1

C
1

2

Z
˝T�

ˇ̌�
v� � v�A C Qw

�
1 C Qw

�
2

�
� r.2/R2

ˇ̌
d.x; t/

C �M�
1
2
1

2

Z T�

0

Z
˝

ˇ̌̌̌
v�;�
M� 12

� r.2/R2
ˇ̌̌̌

dt;

where we used that v� � v�err is divergence free and Rj@˝ D 0, as well as (3.64) and the definition
of v�err in (3.50). Furthermore, we used v�A � �

M� 12 v�
A;M� 12

2 L1
�
˝T0

�
and (1.27a). Note that

v�
A;M� 12

D v�;�
M� 12

in @T0˝
�
ı
2

�
. We may continue estimatingZ

˝T�

ˇ̌�
v� � v�A C Qw

�
1

�
� r.2/R2

ˇ̌
d.x; t/

6
�v� � v�A


L2.0;T� IH1.˝//

C k Qw�1kL2.0;T� IH1.˝//
�
� kRkL1.0;T� IL2C�.˝// kRkL2.@T�˝.

ı
2 //

6 C.K/
�
�M C �M�

1
2

�
�M�

1
2�

�
2C�

M �MC
1
2

where we used H 1.˝/ ,! Ls.˝/ for all 1 6 s < 1 in the first inequality, Theorem 3.12.1,
Lemma 3.4 (in particular (3.28)), Lemma 3.8 3) and (1.27a) in the second inequality. A suitable
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estimate follows since M > 4 and we may choose � > 0 arbitrarily small. Regarding Qw�2, we
choose � > 0 and q D 2C�

.2C�/�1
and estimateZ

˝T�

ˇ̌
Qw�2 � r.

2/R2
ˇ̌

d.x; t/ 6 k Qw�2kL2.0;T� ILq.˝// kRkL1.0;T� IL2C�.˝// kRkL2.0;T� IL1.˝//

6 C .K; ˛/ �M�1�M�
1
2 ��

�
2C�

M �M�
3
2 ��.MC2/˛

for ˛ > 0 , where we used (3.51), (1.27d) and Lemma 3.8 1). AgainM > 4 and a suitable choice of
˛ > 0 and � > 0 yield the final estimate by C.T; �/�2M�1. For the term involving v�;�

M� 12
we obtain

�M�
1
2

Z
˝T�

ˇ̌̌̌
v�;�
M� 12

� r
�
2
�
R2
ˇ̌̌̌

d.x; t/

6 C�M�
1
2

v�;�
M� 12


L2.0;T� IL1.˝�.t///

kRkL1.0;T� IL2.˝// � kRkL2.@T�˝.
ı
2 //

6 C.K/�3M�
1
2

where we used (3.34) (together with H 2 .˝�.t// ,! L1 .˝�.t//) and (1.27) in the second
estimate.

Thus, we have shownZ T�

0

ˇ̌̌̌Z
˝

2R .v� � rR/ dx
ˇ̌̌̌

dt 6 C.K/C .T�; �/ �
2M�1

and with that may conclude using (3.97) that

sup
t2.0;T�/

R .:; t/ 2
L2.˝/

C �
�R2

L2.˝T� /

C
1

�

 .rR; RrR/ 2
L2.˝T� /

6 C.K/C .T; �/ �2M�1: (3.99)

where C.T; �/!.T;�/!0 0.
Altogether we may now choose �0 > 0 and T 2 .0; T0� so small that (1.27a)–(1.27c) follow

for T� D T from (3.82) and (3.83) as a consequence of the estimates for RS. (1.27d) follows for
T� D T from (3.99). This shows (1.23). Regarding (1.24), we have by the definition of v�err in (3.50)
for q 2 .1; 2/v� � v�A


L1.0;T ILq.˝//

6
v�err C Qw

�
1 C Qw

�
2


L1.0;T ILq.˝//

C C
v� � v�A


L1.0;T IL2.˝//

6 C .K; q/ �M�
1
2

by (3.28), (3.51) and Theorem 3.12. The convergence results (1.25) and (1.26) are then due to the
construction of c�A and v�A, more precisely to the discussed form of the zero-th order terms, where it
is important to note (3.34) for v˙;�

M� 12
. This finishes the proof of Theorem 1.1.

REMARK 3.16 In this final remark, we want to discuss the consequences of considering Neumann
boundary conditions @n@˝�

� D 0 on @T0˝ instead of �� D 0. Of course, in this case we would
construct ��A such that @n@˝�

�
A D 0 is satisfied on @T0˝. To gain (3.79), which is a vital point of

the proof, we need to ensure thatZ
˝

'�
�
�� � ��A

�
dx D

Z
˝

�'
�
�� � ��A

�
dx



400 H. ABELS AND A. MARQUARDT

holds, which is satisfied if we choose Neumann boundary conditions for '. In particular, ' should
be the solution to

��' .:; t/ D R .:; t/ in ˝; @n@˝' D 0 on @˝; (3.100)

together with
R
˝
' .:; t/ dx D 0. However, in order for (3.100) to be well-posed,

R
˝
R .:; t/ dx D 0

needs to be satisfied, whereZ
˝

R.x; t/ dx D
Z t

0

Z
˝

@t
�
c� � c�A

�
dx d� C

Z
˝

c�0 � c
�
AjtD0 dx

D

Z t

0

Z
˝

div
�
v�A
�
c�A C Qw

�
1j� � rc

�
A� � r

�
CH1 dx d� C

Z
˝

c�0 � c
�
AjtD0 dx

in the case of no-slip boundary conditions for v� . This expression does not vanish and we are not
able to estimate it to a high enough power of �. A similar problem arises in the case of periodic
boundary conditions. To circumvent this difficulty, we decided to stick to Dirichlet boundary values
for �.

List of notation

D Jacobian matrix
r Gradient
Ds symmetrized gradient
@�t ,r� ,�� cf. (2.20) and (2.25)
div� (2.21)
Dt;� , r� , �� Remark 2.6, (2.24)h
@n;r

�
i

(2.32)

a (bold letter) Element in R2 or R2-valued function
� Euclidean scalar product on R2, e.g., a � b
˝ a˝ b D aT b D .aibj /i;jD1;2
˝s a˝s b WD a˝ bC b˝ a
˝ smooth domain in R2

˝T , @T˝ ˝T WD ˝ � .0; T /, @T˝ WD @˝ � .0; T /
˝˙ .t/,˝˙

T
domains for the different phases, cf. Section 1

�t ,� Interface separating the different phases, cf. Section 1
�t .˛/ ; � .˛IT / ; � .2ı/ neighborhoods of the interface, cf. Section 1
@˝ .˛/ ; @T˝ .˛/ neighborhoods of the boundary @˝, cf. Section 1
n�t , n@˝ normals of � .t/ and @˝, resp.
n; � parametrized normal and tangential vector, cf. (2.14)
V�t , H�t normal velocity and (mean) curvature of �t
P r�t ; P r@˝ orthogonal projections onto � .t/ and @˝, resp.
d� ; dB signed distance functions to �t and @˝, resp.
ı small positive constant such that d� W� .3ı/! R is smooth
S W� .2ı/! T1 cf. (2.19)
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X0 parametrization of �t , cf. (2.13)
X�0 , X�;�10 pull-back and push-forward with X0, cf. (2.15),(2.16)
X diffeomorphism onto neighborhood of � .2ı/, cf. (2.17)
R˛ function space for remainders, cf. Definition 2.10
Lp;1 .�t .˛// cf. Section 2.3
Lq .0; T ILp .�t .˛/// cf. Section 2.3
XT function space for “height-functions” h, cf. (3.21)
H s ; s > 0 H s WD W s

2 , Sobolev–Slobodeckij space
H�1 H�1 D

�
H1
0

�0
.X0; X1/�;p Real interpolation space of .X0; X1/ with exponents �; p
�j� gj� .x; t/ D g

�
P r�t .x/ ; t

�
f double-well potential, cf. (1.19)
�0 optimal profile determined by (1.18)
� surface tension constant, cf. (1.17)
�; v; p solutions of the sharp interface limit (1.7)–(1.16)
c� ; �� ; v� ; p� solutions of the diffuse interface model (1.1)–(1.6)
c�
A
; ��
A
; v�
A
; p�
A

approximate solution, cf. Theorem 3.1
��
A;M� 12

; v�
A;M� 12

highest order terms of approx. sol., cf. Section 3.1

�� , �.x; t/ stretched coordinate, cf. (2.27), (3.11)
cO ; �O ; vO ; pO outer expansion, cf. Section 3.1
cI ; �I ; vI ; pI inner expansion, cf. Section 3.1
ck ; �k ; vk ; pk integer order coeff. of inner exp., cf. Section 3.1
c�
M� 12

; ��
M� 12

:v�
M� 12

; p�
M� 12

highest order coeff. of inner exp., cf. Section 3.1

cO;B; �O;B; vO;B; pO;B boundary expansion, cf. Section 3.1
h�
A

height function of approx. sol., cf. Section 3.1
hk ; h

�

M� 12
coefficients of height function, cf. Section 3.1

v�err error of velocity, cf. (3.50)
Qw�1; q

�
1 leading errors, cf. (3.14)–(3.16)

w�1 w�1 WD
Qw�
1

�
M� 1

2

Qw�2; q
�
2 lower order errors (3.48)

v� ; p� auxiliary solutions, cf. (3.43)–(3.45)
r�CH1; r

�
CH2; r

�
S; r

�
div remainders from approx. sol., cf. (3.1)–(3.4)

h auxilliary function, cf. (3.17)
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