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We consider a discrete–continuum model of a biomembrane with embedded particles. While the
membrane is represented by a continuous surface, embedded particles are described by rigid discrete
objects which are free to move and rotate in lateral direction. For the membrane we consider a
linearized Canham–Helfrich energy functional and height and slope boundary conditions imposed
on the particle boundaries resulting in a coupled minimization problem for the membrane shape and
particle positions.

When considering the energetically optimal membrane shape for each particle position we obtain
a reduced energy functional that models the implicitly given interaction potential for the membrane-
mediated mechanical particle–particle interactions. We show that this interaction potential is
differentiable with respect to the particle positions and orientations. Furthermore, we derive a fully
practical representation of the derivative only in terms of well defined derivatives of the membrane.
This opens the door for the application of minimization algorithms for the computation of minimizers
of the coupled system and for further investigation of the interaction potential of membrane-mediated
mechanical particle–particle interaction.

The results are illustrated with numerical examples comparing the explicit derivative formula
with difference quotient approximations. We furthermore demonstrate the application of the derived
formula to implement a gradient flow for the approximation of optimal particle configurations.
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1. Introduction

Particles embedded into membranes are commonly expected to be crucial for various biological
processes involving the shaping of the membrane. Examples of such particles are transmembrane
and bar-domain proteins. For example the latter are conjectured to play an important role in
early stages of clathrin-mediated endocytosis [15]. The reason for the importance of proteins for
membrane shaping is, that they may induce local membrane deformations in their vicinity. Since
the membrane itself consists of a lipid bilayer, which – in the lateral direction – can be seen
as a fluid, such particles are able to move easily within the membrane. As a consequence the
local particle-induced membrane deformation implicitly induces a membrane-mediated mechanical
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particle–particle interaction. Driven by the corresponding interaction potential, particles may cluster
and form energetically preferable patterns.

This observation and the fact that membrane-shaping particles seem to be crucial for biological
membrane functions stimulated various research directions on such particles and membrane-
mediated particle–particle interactions. A common approach is based on atomistic or coarse-grained
molecular dynamics (MD) models of the membrane. To overcome the severe length scale limitations
of such approaches, alternative modeling techniques representing the membrane as continuous
surface that minimizes an elastic energy have been developed [3, 16]. Using such an models it was
shown that there are long-range interactions between particles that are predominantly membrane-
mediated [10]. Since then further work has been done to investigate particle interactions within
elasticity models. Typically a flatness assumption on the membrane is made and particles are
modeled as circular disks or points and their coupling to the membrane is prescribed by radially
symmetric boundary conditions for which the interaction energy can either be computed analytically
or approximately by asymptotic expansion [6, 9, 19, 24, 26]. However, it turns out that the shape
of particles has a significant impact on their interaction [20]. More recent work is also interested
in numerical computations with pattern formation of many non-circular particles [14, 18], and
attention was also given to situations where the flatness assumption is no longer fulfilled [7, 22, 23].
Also more elaborate models for proteins in continuum elastic models have recently been considered
in [2].

To understand the pattern formation of particles it is desirable to quantify the forces exerted
on the particles by the membrane in a framework that is as widely applicable as possible. General
results in this direction have been obtained based on arguments from differential geometry [5]. The
methods derived therein give insight into the qualitative behavior of particle interactions, but – to
the best of the authors’ knowledge – they have not yet been made fully available for numerical
computations.

In this paper we consider a discrete–continuum model where the membrane is modeled as
a continuous graph minimizing a linearized Canham–Helfrich bending energy and where an
arbitrary amount of particles are embedded into the membrane. These particles are modeled as
discrete entities which are coupled to the membrane through certain boundary conditions. As
particles are free to move in the membrane, those boundary conditions depend on each particle’s
position. Consequently, the overall system’s energy given fixed boundary conditions and an optimal
membrane shape can be written as a function of the particle positions, which we call the interaction
energy.

In this setting we propose a method to prove differentiability of the interaction energy for
arbitrary shapes and boundary conditions. Furthermore, we derive an expression for the derivative
that can be evaluated numerically within a finite element scheme and where the evaluation error
is bounded in terms of the discretization error of the finite element approximation. The proof is
based on an application of the implicit function theorem and ideas from shape calculus [4, 17]. As
such, the method is rather general and hence it naturally extends to a wider class of models that for
example use nonlinear elastic energies or certain other membrane–particle couplings.

In the following we give an outline of this paper. In Section 2 we introduce the Canham–
Helfrich energy in Monge-gauge as a model for the membrane and parametric boundary conditions
for the coupling of the particles. Section 3 is then concerned with further mathematical notation
that we use in order to define the interaction energy. There we also reformulate the parametric
boundary conditions as linear constraints by using trace operators and appropriate projection
operators. Afterwards, in Section 4, we prove differentiability of the interaction energy and
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derive a numerically feasible expression for the gradient. Finally, Section 5 shows some example
computations that illustrate that the derived formula can indeed be applied in a numerical scheme.

2. Membrane and particle model

The Canham–Helfrich model of a membrane given as two-dimensional surface M � R3 is based
on the elastic bending energy

JCH.M/ WD

ˆ
M

�

2
.H � c0/

2
C �GK C � dM

where H and K denote the mean and Gaussian curvature with corresponding bending rigidities
� and �G , � is the surface tension, and c0 is the so called spontaneous curvature. Considering
membranes with fixed topology and fixed geodesic curvature the Gaussian curvature term is a
constant and can be dropped. For simplicity we will also restrict our considerations to the case
of vanishing spontaneous curvature c0 D 0.

Assuming that the membrane is given by a graph M D f.x; u.x// j x 2 ˝g which is almost flat
in the sense that jruj � 1 we consider the well-established linearized Canham–Helfrich model in
Monge-gauge: Given a two-dimensional reference domain ˝ � R2 and a function u 2 H 2.˝/,
the membrane shape is described by the graph of u. The bending energy of this membrane is
approximated by

J.˝; u/ WD
1

2

ˆ
˝

�
�
�u.x/

�2
C � kru.x/k2 dx

where � > 0 and � > 0 denote the bending rigidity and the surface tension, respectively. It is noted
that this corresponds to the geometric linearization of the full nonlinear Canham–Helfrich energy
JCH near a flat membrane with ru D 0. For more details on the model we refer to [8] and the
references therein.

In absence of particles interacting with the membrane, this model determines the stationary
shape of the membrane solely by minimizing the energy J . In the following we explain how the
embedded particles are coupled to the membrane, before we state the model problem that is central
to this paper.

For simplicity we first consider a single transmembrane protein that interacts with the
membrane. Such a protein is not merely connected to one side of the membrane surface but rather
is included in the membrane. The reason for this situation is that the protein has a hydrophobic
belt which is shielded from the surrounding water by the membrane lipids. As a consequence the
membrane preferably connects to the belt which in turn deforms the membrane according to its
shape. We assume that the particle does not undergo any deformation and denote its rigid three-
dimensional shape B � R3.

In the following we will suppose that the hydrophobic belt is approximated by a curve G. We
assume that G is a simple closed curve that can be parameterized over the twodimensional Euclidean
plane. This means that there exist a simple closed curve � D @B � R2 and a continuous function
g0W� ! R such that G D f.x; g0.x// j x 2 � g. This gives rise to the boundary condition
uj� D g0, which models that the membrane is connected to the particle at the interface G. The fact
that the membrane is connected perpendicular to the hydrophobic region is modeled by additionally
assuming that it is attached to G with a fixed slope. To this end, we impose the additional boundary
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FIG. 2.1. Side view of a particle with hydrophobic belt G, its projection to the plane � , and the height contour g0 and slope
g1 prescribed at �

condition @�uj� D g1 with a function g1W� ! R describing the slope. Here � is an oriented
unit normal on � and @�uj� denotes the normal derivative of u on � . The situation is illustrated
in Figure 2.1 showing the hydrophobic belt G, its projection to the plane � , and the boundary
conditions on � .

Those constraints do not yet account for the fact that the particle is in principle free to move in
space. To this end we parameterize the current position of the particle using translations zj along
the xj -axes and rotations j̨ around the xj -axes. More precisely, let B0 be a reference state of the
particle that is centered in the origin with hydrophobic belt G0 D f. Ox; g00. Ox// j Ox 2 �

0g for some
� 0 and let Rj . j̨ / 2 R3�3 be the j̨ -rotation matrix around the xj -axis. Then for Oy 2 B0 the rigid
body transformation 	.z; ˛/ W B0 ! R3 corresponding to .z; ˛/ is given by

	.z; ˛/. Oy/ WD 	.z; ˛I Oy/ WD R1.˛1/R2.˛2/R3.˛3/ Oy C z

and we define the parameterized particle as

B D B.z; ˛/ WD
˚
	.z; ˛/. Oy/ j Oy 2 B0

	
:

For the hydrophobic belt straight forward application of the parameterization would lead to

G D G.z; ˛/ WD
˚
	.z; ˛/. Oy/ j Oy 2 G0

	
and the corresponding projection � D f.y1; y2/ j y 2 Gg to the plane. Given the particle slope
g01 W �

0 ! R on the reference curve, the membrane–particle constraints introduced above could
be imposed to the parametrized particle by first transforming the membrane given by the graph of u
according to 	.z; ˛/�1 and then imposing constraints

Ouj� � D g
0
0 ; @ O� Ouj� 0 D g01

on the transformed graph of (if existing) Ou over the reference curve � 0 with unit normal O�. However,
this approach suffers from several drawbacks related to the rotationsR1.˛1/ andR2.˛2/. First, they
can easily exceed the regime where G can be written as a graph over � and where the transformation
of the graph of u is a graph of some Ou. Second, the shape of the projected curve � differs from � 0

and normals of � 0 do not transform to normals of � . To avoid these complications, we will simplify
the transformation assuming small rotational angles:
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On the one hand we make the assumption that the reference set B0 is oriented in such a way
that the belt G0 is ‘almost flat’, by which we mean that max Ox2� 0

ˇ̌
g00. Ox/

ˇ̌
= k Oxk is small. On the

other hand we assume that the angles ˛1 and ˛2 are small, such that the parameterized belt is still
‘almost flat’. Based on these assumptions we first replace R1.˛1/ and R2.˛2/ by first order Taylor
expansions QR1.˛1/ and QR2.˛2/ near ˛1 D 0 D ˛2 leading to

R1.˛1/R2.˛2/y � QR1.˛1/ QR2.˛2/y D

0@ 1 0 �˛2
�˛1˛2 1 �˛1
˛2 ˛1 1

1Ay D 0@ y1 � ˛2y3
y2 � ˛1˛2y1 � ˛1y3
y3 C ˛2y1 C ˛1y2

1A :
Using y D R3.˛3/ Oy for Oy D . Ox; g00. Ox// 2 G0 and dropping higher order terms in ˛1, ˛2, and
y3 D Oy3 D g

0
0. Ox/ finally leads to the approximate transformation

e	.z; ˛/. Oy/ WD 0@ 1 0 0

0 1 0

˛2 ˛1 1

1AR3.˛3/ Oy C z � 	.z; ˛/. Oy/
and the corresponding parametrized particle belt

G.z; ˛/ WD
˚e	.z; ˛/. Oy/ j Oy 2 G0

	
:

In the following we use the shortcut p D .z1; z2; ˛3/ for the in-plane translation and rotation.
Introducing

R.˛/ WD

�
cos.˛/ � sin.˛/
sin.˛/ cos.˛/

�
, (2.1)

the in-plane transformation induced by p is given by the rigid body motion

'.p/. Ox/ WD '.pI Ox/ WD R.˛3/ Ox C

�
z1
z2

�
(2.2)

with its inverse

'�1.pI x/ WD '.p/�1.x/ WD R.�˛3/

�
x �

�
z1
z2

��
:

Utilizing ', we can write e	 on G0 as

e	.z; ˛/� Ox; g00. Ox/� D � '.p/. Ox/

g00. Ox/C z3 C .˛2; ˛1/R.˛3/. Ox/

�
:

Thus G.z; ˛/ can be written as a graph over its projection to the plane

� .p/ WD � .z; ˛/ WD
˚
.y1; y2/ j y 2 G.z; ˛/

	
D
˚
'.p/ Ox j Ox 2 � 0

	
D '.pI� 0/:

Figure 2.2 illustrates the reference particle curve � 0 and the transformed particle curve � .p/ D
� .z1; z2; ˛3/. The figure shows a top view that complements the side view of Figure 2.1.

The zeroth and first order boundary condition for the parameterized particle are now obtained
by pulling back the graph of u using the approximate transformation e	.z; ˛/�1 and then imposing
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� 0

� .z1; z2; ˛3/

.z1; z2/
˛3

FIG. 2.2. Top view of reference particle � 0 and moved particle � .z1; z2; ˛3/

the conditions for g00 and g01 on � 0. Noting that � 0 D '�1.pI� .p// and defining gk.pI x/ WD
g0
k
.'�1.pI x// the boundary conditions then read

u.x/ D g0.pI x/C ˛2.x1 � z1/C ˛1.x2 � z2/C z3 on � .z1; z2; ˛3/;
@�u.x/ D g1.pI x/C ˛2�1 C ˛1�2 on � .z1; z2; ˛3/;

where �1 and �2 denote the components of an oriented unit normal on � .p/.
The dependence of these boundary conditions on the parameters .z; ˛/ can be split naturally

into the nonlinear dependence on the in-plane position p D .z1; z2; ˛3/ and the linear dependence
on variations of the height and tilt given by .z3; ˛1; ˛2/. We will exploit the latter by minimizing the
membrane energy with respect to u and .z3; ˛1; ˛2/ simultaneously. It can easily be seen, that this
can be written equivalently be factoring out .z3; ˛1; ˛2/ from the boundary condition in the sense
that they are only enforced up to an arbitrary selection of .z3; ˛1; ˛2/. Thus the boundary conditions
become parametric boundary conditions:

9 2 R3W

(
uj� .p/.x/ D g0.pI x/C 1x1 C 2x2 C 3;

@�uj� .p/.x/ D g1.pI x/C 1�1 C 2�2,
8x 2 � .p/: (2.3)

Notice that, z3, ˛1, and ˛2 are no longer relevant for describing the particle’s position and are now
rather implicit to the boundary conditions. A particle in the model is then solely determined by its
reference curve � 0, its reference boundary conditions g00 ; g

0
1 , and its position p D .z1; z2; ˛3/ in

the Euclidean plane.
Parameterized boundary conditions for particle–membrane coupling with variable height and tilt

have first been considered in [8]. They can be interpreted physically as the particles being tied only
to the membrane such that they can freely change their height and tilt angle with the membrane.
In contrast, the lateral motion of particles is an independent process. This is motivated by the fact,
that the membrane has a bending rigidity in normal direction but behaves like a viscous fluid in
tangential direction.

In the case where multiple particles are present we state the constraints analogously by imposing
the above constraints for each particle separately.

3. Interaction energy

Before we can formulate the final model problem, we need to introduce some notation. We
also augment the parametric boundary conditions by Dirichlet boundary conditions on the outer
boundary @˝ which reflects the fact that we consider a small almost flat patch of the full membrane.
For a discussion of other possible boundary conditions we refer to [8]. Particle–membrane coupling
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and outer boundary conditions will both be formulated using simple linear operators in the
following.

We consider N particles with reference curves � 0i , height profiles g0i0 and slopes g0i1. Given a
particle configuration p D .pi /iD1;:::;N 2 RN�3 we define the curves

�i .pi / WD
˚
'.pi Iy/ j y 2 �

0
i

	
and �0 WD � 00 WD @˝. Their union is � .p/ WD

SN
iD0 �i .pi / where we use p0 WD 0 and �0.p0/ WD

�0 for the sake of a consistent notation. For i > 0 we denote the set enclosed by �i .pi / by Bi .pi /
and the union of these is denoted by B.p/ WD

SN
iD1 Bi .pi /. We define the p-dependent reference

domain as ˝.p/ WD ˝ n B.p/.
Based on this we define the interior of the set of feasible particle configurations as

�ı WD
n
p 2 RN�3 j 8i; j 2 f1; : : : ; N g; i ¤ j W �i .pi / � ˝ı ^ Bi .pi / \ Bj .pj / D ;

o
,

and set � WD �ı.
Now suppose p 2 �. Then we define the trace operators

Ti .p/WH 2
�
˝.p/

�
! H 3=2.� 0i / �H

1=2.� 0i /

u 7!

�
uj�i .pi /

ı '.pi /
.@�uj�i .pi /

/ ı '.pi /

�
.

(3.1)

Here � is the unit outer normal on � .p/ with respect to the domain ˝.p/. We define the joint trace
operator by T .p/u WD .Ti .p/u/iD0;:::;N . We also define g0

0k
WD 0, g WD ..g0i0; g

0
i1//iD0;:::;N , and

gi D .g
0
i0; g

0
i1/.

In the next step we prove a useful reformulation of the parametric boundary conditions as linear
constraints. The aim is to get rid of the parameters  in conditions of the form (2.3) for the i -th
particle by writing it as PiTi .p/u D Pigi for a suitable projection operator

Pi WL
2.� 0i / � L

2.� 0i /! L2.� 0i / � L
2.� 0i /:

For the domain boundary represented by i D 0 we can simply use P0.v1; v2/ WD .v1; v2/. While all
Pi are different, the construction works exactly the same for all i 2 f1; : : : ; N g. Thus, to simplify
the notation, we will drop the index i in the following construction of Pi D P . Define for Ox 2 R2
the functions

�1. Ox/ WD Ox1; �2. Ox/ WD Ox2; �3. Ox/ WD 1,

spanning the space V WD spanf�1; �2; �3g.
We will define P such that f.v; @ O�v/ j v 2 V g � L2.� 0/ �L2.� 0/ is the kernel of P where O�

again denotes the unit normal to � 0. To this end let P W L2.� 0/ ! V be the L2.� 0/-orthogonal
projection into V . Notice that P can easily be computed using

P .v/ D �

0@G�10@hv; �1iL2.� 0/

hv; �2iL2.� 0/

hv; �3iL2.� 0/

1A1A
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whereG 2 R3�3 is the Gramian matrix withGjk D h�k ; �j iL2.� 0/ and� W R3 ! V the coordinate
isomorphism with�.�/ D �1�1C�2�2C�3�3. Now we define P WL2.� 0/�L2.� 0/! L2.� 0/�

L2.� 0/ by

P.v1; v2/ D

�
v1 � P .v1/j� 0

v2 � @ O�P .v1/j� 0

�
:

Since P is an orthogonal projection into V , we have

0 D P.v1; v2/ ” v1 2 V and v2 D @ O�v1:

Hence f.v; @ O�v/ j v 2 V g � L2.� 0/ � L2.� 0/ is indeed the kernel of P .

Lemma 3.1 (Parametric boundary conditions as linear constraint). Let i 2 f1; : : : ; N g. Then Pi is
a well-defined linear projection operator such that for all u 2 H 2.˝.p//

PiTi .p/u D Pigi (3.2)

holds if and only if

9 2 R3W

(
uj�i

.x/ D gi1
�
'.pi /

�1.x/
�
C 1x1 C 2x2 C 3;

@�uj�i
.x/ D gi2

�
'.pi /

�1.x/
�
C 1�1 C 2�2;

8x 2 �i .pi /: (3.3)

For i D 0 equation (3.2) is equivalent to uj@˝ D @�uj@˝ D 0.

Proof. The statement for i D 0 is trivial, hence we only consider i 2 f1; : : : ; N g and again drop the
index i for simplicity. Well-definedness of P directly follows from the fact that �1; �2; �3 2 L2.� 0/
are linearly independent such that P is well-defined. P is linear, because it is the composition of
linear maps.

To show that P is a projection, let .v1; v2/ 2 L2.� 0/�L2.� 0/ and set .w1; w2/ D P.v1; v2/.
Since P is an L2.� 0/-orthogonal projection we have

P .w1/ D P .v1/ � P
�
P .v1/j� 0

�
D P .v1/ � P

�
P .v1/

�
D 0

and thus P 2.v1; v2/ D P.w1; w2/ D .w1; w2/ D P.v1; v2/.
Finally, we show equivalence of (3.2) and (3.3). To this end we first note that @��1 D �1,

@��2 D �2, and @��3 D 0. Furthermore, since '.p/ is a rigid body motion in R2, the normal vectors
O� and � of � 0 and � .p/ and corresponding normal derivatives transform according to

�
�
'.p/. Ox/

�
D
�
D'.p/

�
. Ox/ O�. Ox/; @ O�

�
v ı '.p/

�
D .@�v/ ı '.p/;

where D'.p/ denotes the Jacobian of the map '.p/. Using the trace operator and the formulas for
@��k from above, we can write (3.3) compactly as

9 2 R3W
�
.T .p/u/ � g

�
ı '.p/�1 D

3X
kD1

k

�
�k
@��k

�
:

By transformation with '.p/ we find that this is equivalent to

9 2 R3W .T .p/u/ � g D
3X
kD1

k

�
�k ı '.p/

.@��k/ ı '.p/

�
D

3X
kD1

k

�
�k ı '.p/

@ O�.�k ı '.p//

�
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which can also be written as�
T .p/u

�
� g 2

˚
.v; @ O�v/ j v D w ı '.p/; w 2 V

	
D
˚
.v; @ O�v/ j v 2 V

	
:

Here we used the fact, that the transformation of the space V of affine linear functions by '.p/ is V
itself. Since the right-hand-side is the kernel of P , the last inclusion is equivalent to

P
�
T .p/u � g

�
D 0

and thus (3.2).

For notational convenience we define Pv WD .Pivi /iD0;:::;N . The set of feasible membranes
given the particle configuration p is defined by

U.p/ WD
˚
u 2 H 2

�
˝.p/

�
j P

�
T .p/u � g

�
D 0

	
.

We use the shorthand J.p; u/ WD J.˝.p/; u/ to define the interaction energy

J.p/ WD min
u2U.p/

J.p; u/

where we use the convention min.;/ WD C1. Altogether, our model problem then reads

min
p2�

J.p/.

In order to ensure well-posedness of the minimization problems on U.p/ we will from now on
assume that g is smooth enough. Then the following lemma allows to show well-posedness using
Lax–Milgram’s theorem.

Lemma 3.2. Let p 2 �. Then the affine subspace U.p/ can be written as U.p/ D U0.p/C Og for a
closed subspace U0.p/ of H 2.˝.p// and some Og 2 H 2.˝.p//. Furthermore, the bilinear form

a.u; v/ D

ˆ
˝.p/

��u�v C �ru � rx dx

is H 2.˝.p//-elliptic on U0.p/.

Proof. First let Og 2 H 2.˝.p// a function such that T .p/ Og D g. Then it is clear that

U0.p/ WD U.p/ � Og D
˚
u 2 H 2.˝.p// j PT .p/u D 0

	
is a subspace of H 2.˝.p//. Continuity of the trace operator T .p/ and the L2-projection P implies
that P ı T .p/ is continuous and hence U0.p/ and U.p/ are closed.

Continuity of a.�; �/ on U0.p/ and U.p/ is obvious. To show coercivity let u 2 U0.p/. First we
note that u D @�u D 0 on @˝. Using similar arguments as in the proof of Lemma 3.1 we find
that for each i 2 f1; : : : ; N g the trace of u on �i .pi / coincides with some affine linear function
wi 2 V . Hence, in each Bi .pi / we can extend u by the corresponding function wi to obtain a
function Qu 2 H 2

0 .˝/ which coincides with u in ˝.p/ and is affine linear in each Bi .pi /.
Using the notation k � k0;M and j � j2;M for the L2-norm and the H 2-half norm on the domain

M , respectively, we now have

k�uk20;˝.p/ D k� Quk
2
0;˝ D j Quj

2
2;˝ D juj

2
2;˝.p/:
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In the first and third step we used that all second order partial derivatives of QujBi .pi /
D wi vanish

on Bi .pi /. The second step follows from Qu 2 H 2
0 .˝/ (see, e.g., [11, Lemma 5]). Finally, we obtain

for some constant C > 0 independent of u

a.u; u/ > ��1k�uk20;˝.p/ D �
�1
juj22;˝.p/ > C��1kuk2

H2.˝.p//:

The last bound follows from the fact that U0.p/ does not contain any nontrivial affine linear
functions due to the boundary conditions on @˝ (see, e.g., [11, Corollary 2]).

4. Differentiation of the reduced interaction energy

In this section we investigate the differentiability of J on �ı. First we derive a technical result
which shows that the admissible membrane sets U.p/ are isomorphic and which allows us to pose
our problem locally over a fixed reference domain˝.p/. Afterwards we apply the implicit function
theorem to prove differentiability of the reduced interaction potential and use matrix calculus to
derive an explicit and numerically feasible expression for the first order derivatives.

4.1 Trace-preserving diffeomorphisms between the reference domains

In this part we construct a local diffeomorphism between the domains ˝.p/ that preserves the
boundary conditions. The basic setting is, that given a particle configuration p 2 �ı we want to
investigate the problem under changes of p along a given direction q 2 RN�3. To this end we
will construct a diffeomorphism X.q/ from ˝.p/ to ˝.p C q/ and show that is has the desired
properties. The construction is based on ordinary differential equations (ODEs) and in particular
requires the following result from ODE theory.

For a function F depending on multiple arguments, we denote by @F
@a

the derivative with respect
to the argument denoted by a. If one of the arguments is a spatial coordinate in R2 we denote the
m-th order derivative with respect to the spatial coordinate by Dm.

Lemma 4.1. Let B � RN�3 be an open connected set,m > 1 and let V 2 Cm.Œ0; 1��B�R2;R2/
be Lipschitz-continuous. For q 2 B and x 2 R2 let �.�; q; x/W Œ0; 1�! R2 be the unique solution of
the ordinary differential equation

@�

@t
.t; q; x/ D V

�
t; q; �.t; q; x/

�
; �.0; q; x/ D x.

Then the map X defined by X.q; x/ WD �.1; q; x/ fulfills X 2 Cm.B � R2;R2/ and is an m-
diffeomorphism onto its image for all q 2 B.

For all Oq 2 RN�3 with �Oq 2 C.Œ0; 1� � B � R2;R2/ as the unique solution of

@�Oq

@t
.t; q; x/ D

@V

@q
�
t; q; �.t; q; x/

�
OqCDV

�
t; q; �.t; q; x/

�
�Oq.t; q; x/;

�Oq.0; q; x/ D 0
(4.1)

one has @OqX.q; x/ D �Oq.1; q; x/. Also, for all y 2 R2 with �y 2 C.Œ0; 1� � B � R2;R2/ as the
unique solution of

@�y

@t
.t; q; x/ D DV

�
t; q; �.t; q; x/

�
�y.t; q; x/; �y.0; q; x/ D y (4.2)

one has @yX.q; x/ D �y.1; q; x/.
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Proof. The global existence and uniqueness of � is a consequence of the Lipschitz-continuity of V
and the well-known Picard–Lindelöf theorem. In particular, X is well-defined.

The smoothness of X and the characterization of its derivatives is a consequence of [13,
Theorem 3.1, Theorem 4.1]

Concerning the inverse of X.q/, we note thate�.t;q; x/ WD �.1 � t;q; x/ solves the equation

@e�
@t
.t;q; x/ D �V

�
1 � t;q;e�.1;q; x/�; e�.0;q; x/ D �.1;q; x/ D X.q; x/:

Sincee�.1;q; x/ D x, the inverse of X.q/ is given by X.q/�1 WDe�.1;q; �/. Again, the smoothness
of V implies m-smoothness ofe�, and consequently X is an m-diffeomorphism.

In the following we restrict ourselves to a special class of vector fields that is described in the
result below. We show afterwards that the diffeomorphisms induced by such vector fields have a
certain trace preserving property that again can be used to construct an isomorphism between the
admissible membrane sets.

Lemma 4.2. Let p 2 �ı and m > 1. Then there exist an open neighborhood B � RN�3 of
0 2 RN�3 and a Lipschitz-continuous map V 2 Cm.Œ0; 1��B�R2;R2/ such that for all t 2 Œ0; 1�,
q 2 B, and i 2 f0; : : : ; N g one has

V.t; q; �/j�i .piCtqi /
D

�
qi1
qi2

�
C qi3

�
0 �1

1 0

��
� �

�
pi1 C tqi1
pi2 C tqi2

��
;

DV.t; q; �/j�i .piCtqi /
D qi3

�
0 �1

1 0

�
.

(4.3)

Proof. This is a consequence of the Whitney extension theorem, see Appendix Theorem A.1. It
uses the fact that the �i are pairwise disjoint and that the right-hand-sides in (4.3) smoothly extend
to R2.

Next we show that X.q/ is indeed a trace preserving diffeomorphism from ˝.p/ to ˝.pC q/.

Lemma 4.3. Let V be as in Lemma 4.2 for m > 2 and let X as in Lemma 4.1 be induced by V.
Then X.0; �/ D idR2 , X.q; ˝.p// D ˝.pC q/, and for all u 2 H 2.˝.p// one has

T .p/u D T .pC q/
�
u ıX.q/�1

�
. (4.4)

Proof. From V.t; 0; �/ D 0 follows immediately that X.0; x/ D �.1; 0; x/ D x, i.e., X.0/ D idR2 .
We now prove (4.4). First we show that X preserves the boundaries. Let i 2 f1; : : : ; N g and

x 2 �i .pi / and define �.t/ WD '.pi C tqi I'�1.pi I x//. We will show that �.t;q; x/ D �.t/ solves
the ODE with right-hand-side V from Lemma 4.2. To this end we will make use of the properties

R.˛ C ˇ/ D R.˛/R.ˇ/; R.˛/�1 D R.�˛/; R0.˛/ D

�
0 �1

1 0

�
R.˛/

of the rotation matrix R. Inserting the definition of ' and '�1 into �.t/ we get

�.t/ D R.tqi3/
�
x �

�
pi1
pi2

��
C

�
pi1 C tqi1
pi2 C tqi2

�
:
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Since we have �.t/ 2 �i .pi C tqi / by construction, we can use the formula (4.3) for V on
�i .pi C tqi /. Inserting �.t/ then gives

V
�
t;q; �.t/

�
D

�
qi1
qi2

�
C qi3

�
0 �1

1 0

��
�.t/ �

�
pi1 C tqi1
pi2 C tqi2

��
D

�
qi1
qi2

�
C qi3

�
0 �1

1 0

�
R.tqi3/

�
x �

�
pi1
pi2

��
D
@�

@t
.t/:

Hence �.t;q; x/ D �.t/ solves the ODE and we have

X.q; x/ D �.1/ D '
�
pi C qi I'

�1.pi I x/
�

. (4.5)

Recalling the convention q0 WD p0 WD 0, this is also true for i D 0.
In particular X.q; �i .pi // D �i .pi C qi /. Another immediate consequence of (4.5) is – now

recalling the definition of the rotation matrix R in (2.1) – that

�j�i .piCqi /

�
X.q; x/

�
D R.qi3/�j�i .pi /

.x/ (4.6)

for x 2 �i .pi /. And, similarly, using the properties (4.3) of V also allows us to compute @X
@x
.q; x/

on �i .pi / from solving the ODE (4.2). The result is

DX.q; x/ D R.qi3/. (4.7)

Now, leteu WD u ıX.q/�1. From (4.5) we infer for x 2 �i .pi C qi / thateu.x/ D u �'.pi I'�1.pi C qi I x/
�

. (4.8)

Also, from (4.6) and (4.7) we infer for x 2 �i .pi C qi / that

@�eu.x/ D Du�X�1.qI x/�@X�1.qI x/
@x

�j�i .piCqi /
.x/

D Du
�
X�1.qI x/

�
R.�qi3/R.qi3/�j�i .pi /

�
X�1.qI x/

�
D @�u

�
X�1.qI x/

�
D @�u

�
'
�
pi I'

�1.pi C qi I x/
��

.

(4.9)

Recalling the definition of the trace operators, (3.1), we have for almost-every x 2 � 0i by (4.8)

Ti1.pC q/eu.x/ Deu�'.pi C qi I x/
�
D u

�
'.pi I x/

�
D Ti1.p/u.x/

and by (4.9)

Ti2.pC q/eu.x/ D @�eu�'.pi C qi I x/
�
D @�u

�
'.pi I x/

�
D Ti2.p/u.x/.

Altogether this proves equation (4.4).
In order to show the equality X.q; ˝.p// D ˝.pC q/ we define the set

Z D
˚�
t; �.t;q; x/

�
j x 2 @˝.p/

	
.

Now let x0 2 ˝.p/ı and assume that X.q; x0/ D �.1;q; x0/ … ˝.pC q/. By continuity of X this
would imply that there exists a Ot 2 Œ0; 1� such that �.Ot ;q; x0/ 2 Z and therefore, by definition of Z,
there would exist a x1 2 @˝.p/ such that �.Ot ;q; x0/ D �.Ot ;q; x1/. As of x0 ¤ x1 this would be a
contradiction to the uniqueness of �.
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Lemma 4.4. Let X be as in Lemma 4.3. Then for all q 2 B the map

˚.q/WU.p/! U.pC q/; u 7! u ıX.q/�1

is well-defined and an isomorphism.

Proof. From Lemma 4.3 we know for every q 2 B that the restriction X.q; �/j˝.p/ is a 2-
diffeomorphism onto˝.pCq/. Because˝.p/ is compact we can assume without loss of generality
that det @

@x
X.q; x/ is uniformly bounded, i.e., that there exists a c 2 R>0 such that for all q 2 B

and x 2 ˝.p/ we have c 6
ˇ̌
det @

@x
X.q; x/

ˇ̌
6 1

c
. Otherwise we may replace B by an appropriate

sub-neighborhood. Hence, [1, Theorem 3.35] is applicable and the mape̊.q/WH 2
�
˝.p/

�
! H 2

�
˝.pC q/

�
; u 7! u ıX.q/�1

is well-defined and an isomorphism, and in particular also the restriction ˚.q/ D e̊.q/jU.p/ is
well-defined and an isomorphism onto its image.

It remains to show that range.˚.q// D U.p C q/. Suppose u 2 U.p/ and eu 2 U.p C q/.
Because of the trace preserving property (4.4) and by definition of U.p/ and U.p C q/ it follows
that ˚.q/u D u ıX.q/ 2 U.p C q/ and ˚.q/�1eu D eu ıX.q/ 2 U.p/, and so range.˚.q// D
U.pC q/.

4.2 Differentiability

In this part we use the maps X from Lemma 4.3 and ˚ from Lemma 4.4 to transform the domain
of definition for the functions J.pC q/ from U.pC q/ to U.p/. Afterwards we apply the implicit
function theorem to derive a differentiability result.

For q 2 B and u 2 U.p/ the transformed energy is defined as

OJ .q; u/ WD J
�
pC q; ˚.q; u/

�
, (4.10)

and the transformed reduced interaction energy is

OJ.q/ WD min
v2U.p/

OJ .q; v/.

As in Lemma 3.2 we write the affine linear subspace U.p/ as U.p/ D U0 C Og where U0 �
H 2.˝.p// is a linear subspace and Og 2 H 2.˝.p// is a function such that T .p/ Og D g.

For notational convenience we defineDk WD
@k

@xk to be the differential with respect to the spatial
coordinates.

Lemma 4.5. Let q 2 B and define

A.q; x/ WD jdetDX.q; x/j
�
DX.q; x/

��1�
DX.q; x/

��T .

One has

OJ .q; u/ D
1

2

ˆ
˝.p/

�
div
�
A.q/ru

�2
jdetDX.q/j

C � kruk2A.q/ dx (4.11)

and OJu 2 Cm�2.B � U.p/; U 00/.
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Proof. Equation (4.11) is a direct application of Lemma A.3 applied to X D X.q/.
Furthermore, for all v 2 H 2.˝/ we have

OJu.q; uI v/ D
ˆ
˝.p/

�
div
�
A.q/ru

�
div
�
A.q/rv

�
jdetDX.q/j

C �A.q/ru � rv dx.

As of X 2 Cm we know that DX.q/ and D2X.q/ are both .m � 2/ times continuously
differentiable. Because the X.q/ are diffeomorphisms with X.0/ and because X is continuous
we have det.DX.q// > 0. Because ˝.p/ is compact, we can assume without loss of generality
that there exists a c 2 R>0 such that det.DX.q// > c, else we replace B by a suitable sub-
neighborhood. Consequently, the integrand of OJu is .m � 2/ times differentiable with respect to q.
Moreover, the integrand is even smooth with respect to u and hence application of the dominated
convergence theorem yields OJu 2 Cm�2.B � U.p/; U 00/.

Lemma 4.6. There exists a neighborhood OB of 0 2 RN�3 such that J 2 Cm�2. OBC p/ and for all
q 2 OB and multi-indices ˛ with j˛j 6 m � 2 one has

@˛

@p˛
J.pC q/ D

@˛

@q˛
OJ.q/.

In particular, if m > 3 and u D arg minv2U.p/ J.p; v/ then

@

@p
J.p/ D

@

@q
OJ .0; u/. (4.12)

Proof. Let OJu WD @
@u
OJ and OJuu WD @2

@u2
OJ . Define

F WB � U0 ! U 00; .q; v/ 7! OJu.q; v C Og/.

Suppose that u 2 U.p/ is the unique solution of minv2U.p/ J.p; v/, and define Ou WD u � Og. Then
by (4.10) and because of ˚.0/u D u it also follows that u is the unique minimizer of OJ .0; �/ over
U.p/ and therefore and therefore

F.0; Ou/ D OJu.0; OuC Og/ D OJu.0; u/ D 0 2 U
0
0.

Moreover, for all v;w 2 U0 we have

Fu.0; OuI v;w/ D OJuu.0; uI v;w/ D

ˆ
˝.p/

��v �w C �rv � rw dx.

This defines an elliptic bilinear form over U0 (cf. Lemma 3.2) and hence Fu.0; Ou/ is invertible in U0
by virtue of Lax–Milgram’s theorem. Application of the implicit function theorem, Theorem A.2,
yields a neighborhood OB � B of 0 and a function Ou 2 Cm�2. OB; U0/ such that Ou.0/ D Ou and
F.0; Ou.q// D 0 for all q 2 OB. In particular, OJ.q/ D OJ .q; Ou.q/C Og/ for all q 2 B. From J.pCq/ D
OJ.q/ we infer

@˛

@p˛
J.p/ D

@˛

@q˛
OJ.q/

for all multi-indices ˛ with j˛j 6 m � 2. For m > 3 this in particularly implies

@

@p
J.p/ D

@

@q
OJ
�
0; Ou.0/C Og

�
C OJu

�
0; Ou.0/C Og

� @
@q
Ou.0/ D

@

@q
OJ .0; u/.
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4.3 A numerically feasible representation of the first derivative

In the following paragraphs we discuss a way to derive a numerically feasible expression for the first
order derivative @eJ.p/ of the reduced interaction energy J in p 2 �ı in direction of an e 2 RN�3.

An important component of the integrand’s derivative is @eX.0/ and its spatial derivatives.
From (4.1) we know that this derivative can be evaluated by solving an ODE. This is not practically
feasible, however, because those computations would be too expensive. Besides, it also requires
knowledge of the vector field V, which may be hard to construct explicitly. Instead we restrict
ourselves to a subclass of vector fields in the sense of Lemma 4.2 for which @eX.0/ is can be
computed easily from information that is available a-priori.

To this end, suppose a vector field V W˝.p/! R2 such that for i 2 f0; : : : ; N g

V j�i .pi /
D

�
ei1
ei2

�
C ei3

�
0 �1

1 0

��
� �

�
pi1
pi2

��
;

DV j�i .pi /
D ei3

�
0 �1

1 0

� (4.13)

where we again use the convention e0 WD 0. Usually it is easy to construct such a V in a way that
it is also numerically accessible. Next we extend this to a vector field V such that (4.3) is fulfilled,
where we can make the simplifying assumption that B is a ball of radius r 2 R>0, and such that for
all t 2 Œ0; 1� and � 2 .0; r/ the scaling properties

V.t; �e; x/ D
�

r
V

�
�

r
t; re; x

�
;

V.0; re; x/ D rV .x/
(4.14)

hold.
In view of (4.1) and given x 2 ˝.p/, we have @eX.0; x/ D �e.1; x/ where �e.�; x/ solves the

ODE

@�e

@t
.t; x/ D @eV

�
t; 0; �.t; 0; x/

�
CDV

�
t; 0; �.t; 0; x/

�
�e.t; x/; �e.0; x/ D 0.

As of V.t; 0; �/ � 0 we have �.t; 0; x/ D x and DV.t; 0; �.t; 0; x// D 0. Furthermore, from (4.14)
we are able to conclude

@eV.t; 0; x/ D lim
�&0

V.t; � e; x/ �V.t; 0; x/

�
D lim
�&0

V
�
�
r
t; re; x

�
r

D V.x/.

Therefore, �e is the solution of the ODE

@�e

@t
.t; x/ D V.x/; �e.0; x/ D 0,

which implies �e.t; x/ D t V .x/ and hence also @eX.0/ D V .
When computing the derivative, we will make use of the following identities from matrix

calculus.
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Lemma 4.7. Suppose M 2 C 1.Rd ;Rn�n/ and that M.x/ is invertible for all x 2 Rd . Then

@

@xi
det
�
M.x/

�
D det.M/Tr

�
M.x/�1

@

@xi
M.x/

�
; (4.15)

@

@xi
M.x/�1 D �M.x/�1

@M.x/

@xi
M.x/�1; (4.16)

@

@xi
Tr
�
M.x/

�
D Tr

� @

@xi
M.x/

�
. (4.17)

Proof. See literature on matrix calculus, e.g., [21, Chapter 9].

Lemma 4.8. Let V WD @eX.0/, u WD arg minv2U.p/ J.p; u/, and

A0.0/ WD div.V /I �DV �DV T .

Then

@eJ.p/ D
ˆ
˝.p/

��u

�
A0.0/ W D2u ��V � ru �

1

2
div.V /�u

�
dx

C

ˆ
˝.p/

�

2
kruk2A0.0/ dx: (4.18)

Proof. From (4.12) we know that @eJ.p/ D @e OJ .0; u/ and hence it suffices to compute the latter. In
the following we use without further emphasis the identities DX.0; �/ � idR2 and detDX.0/ � 1.
Based on this and on the identities (4.15) and (4.16) we have

@

@e
det
�
DX.q/

�ˇ̌̌̌
qD0
D det.DX.q//Tr

�
DX.q/�1

@

@e
DX.q/

�ˇ̌̌̌
qD0

D Tr
�
@

@e
DX.q/

�
D div.V /;

(4.19)

@

@e
DX�1.q/

ˇ̌̌̌
qD0
D �DX.q/�1

@DX.q/
@e

DX.q/�1
ˇ̌̌̌
qD0

D �
@DX.0/

@e
D �DV .

(4.20)

By definition of A we have

A.q/ D det
�
DX.q/

�
DX.q/�1DX.q/�T ,

where we again used det.X.q// > 0. The product rule together with the identities (4.19) and (4.20)
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then leads us to

@

@e
A.p/

ˇ̌̌̌
qD0
D
@ det

�
DX.q/

�
@e

ˇ̌̌̌
ˇ
qD0

DX.q/�1DX.q/�T

C det
�
DX.q/

� @DX.q/�1

@e

ˇ̌̌̌
qD0

DX.q/�T

C det
�
DX.q/

�
DX.q/�1

@DX.q/�T

@e

ˇ̌̌̌
qD0

D div.V /I �DV �DV T

D A0.0/.

(4.21)

Equation (4.21) gives us, using @i WD @
@xi

,

@iA
0.0/ D

 
2X
kD1

@ikVk

!
I � @iDV � @iDV

T

and so
2X
iD1

@iA
0
ij .0/ D

2X
i;kD1

@ikVkıij �

2X
iD1

�
@ijVi C @i iVj

�
D

2X
kD1

@jkVk �

2X
iD1

�
@ijVi C @i iVj

�
D

2X
iD1

 
@j iVi � @ijVi �

2X
iD1

@i iVj

!
D ��Vj

(4.22)

for j 2 f1; 2g. Noting

div
�
A.q/ru

�
D

2X
iD1

@i

0@ 2X
jD1

A.q/ij @ju

1A
D

2X
i;jD1

�
A.q/ij @ijuC @iA.q/ij @ju

�
D A.q/ W D2uC

2X
jD1

 
2X
iD1

@iA.q/ij

!
@ju;

we therefore conclude

@

@e
div
�
A.q/ru

�ˇ̌̌̌
qD0
D A0.0/ W D2u ��V � ru (4.23)

where �V WD .�Vi /iD1;:::;n 2 R2.
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We recall

OJ .q; u/ D
1

2

ˆ
˝.p/

�
div
�
A.q/ru

�2
detDX.q/

C �A.q/ru � ru dx.

Combining (4.19), (4.21) and (4.23) yields

@

@e
OJ .q; u/

ˇ̌̌̌
qD0
D
1

2

ˆ
˝.p/

2� div
�
A.q/ru

� @
@e

div.A.q/ru/
ˇ̌̌̌
qD0

dx

�
1

2

ˆ
˝.p/

�
div
�
A.q/ru

�2�
detDX.q/

�2 @

@e
det
�
DX.q/

�ˇ̌̌̌
qD0

dx

C
1

2

ˆ
˝.p/

�
@

@e
A.q/

ˇ̌̌̌
qD0
ru � ru dx

D

ˆ
˝.p/

��u
�
A0.0/ W D2u ��V � ru �

1

2
div.V /�u

�
C
�

2
kruk2A0.0/ dx,

which proves the claim as stated.

In general, the exact minimizer for J.p/ is unknown and can only be approximated. The
following result gives an upper bound on the approximation error.

Lemma 4.9. Let u D arg minv2U.p/ J.p; v/ andeu 2 H 2.˝.p//. Then there exists a constant C > 0

such that ˇ̌̌
@e OJ .0; u/ � @e OJ .0;eu/ˇ̌̌ 6 C kV kC2.˝.p// kuCeukH2.˝.p// ku �eukH2.˝.p// :

Proof. Note from (4.18) that OJu is induced by a non-symmetric bilinear form, i.e., there exists a
bilinear form aWH 2.˝.p//�H 2.˝.p//! R such that OJu.v/ D a.v; v/. Upon investigation of the
coefficients of a it is readily seen that there exists a C 2 R>0 such that for all v;w 2 H 2.˝.p//

ja.v;w/j 6 C kV kC2.˝.p// kvkH2.˝.p// kwkH2.˝.p// .

Now, considerˇ̌̌
@e OJ .0; u/ � @e OJ .0;eu/ˇ̌̌ D ja.u; u/ � a.eu;eu/j

D

ˇ̌̌̌
1

2
a.uCeu; u �eu/C 1

2
a.u �eu; uCeu/ˇ̌̌̌

6 C kV kC2.˝.p// kuCeukH2.˝.p// ku �eukH2.˝.p// .

It is important to note that while the derivative @
@e J.p/ itself is independent of V , the actual

choice of V very well enters the approximation error. Therefore it is desirable to construct a V with
a bounded C 2-norm.
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5. Numerical examples

In this section we illustrate our formula for the derivative by numerical computations for various
particle configurations. Here we always defined the bending rigidity � D 1 and specified no
surface tension � D 0. The optimal membrane shapes u.p/ for fixed particle configurations p
were approximated by finite element discretizations uh.p/ � u.p/. A possible discretization using
a penalty approach is discussed in [12] where we also gave a proof of convergence. The vector
fields V that occur in the derivative were explicitly constructed in such a way that they both
fulfill (4.13) and can be represented as finite element functions within the used discretization.
The expressions for the discretized derivatives were evaluated exactly by using standard quadrature
methods.

5.1 Two circular particles

Let ˝ D Œ�10; 10�2 and consider two circular particles of radius one B1, B2 that each induce on
�i WD @Bi the boundary conditions

uj�i
.y/ D 0C i1y1 C i2y2 C i3; @�uj�i

.y/ D 1C i1�1.y/C i2�2.y/.

We are interested in the interaction energy as a function of the distance of these two particles and
therefore we define

Oq WD
�
�1 0 0

1 0 0

�
; q WD

Oq
kOqk

; f .r/ WD J.rq/.

In this formulation r is the distance between the particle centers and the particles touch for r D 2.
On the left picture of Figure 5.1 we depict the approximate values of f .r/ for 2:06 6 r 6 7:94

that we obtained from our discretization, and on right we show two approximations of f 0.r/. One
approximation was obtained by computing the difference quotients from the function values and the
other one was obtained from the derivative formula (4.18).

FIG. 5.1. Left: Elastic energy for two circular inclusions as a function of their distance. Right: Comparison of difference
quotients with the derivative formula (4.18) for this function.
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5.2 Two peanut shaped particles

Let ˝ D Œ�5; 5�2 and consider particles whose shape is defined by the zero level set of

1

20
� x4 C

19

20
x2 � 2x2y2 �

19

20
y2 � y4.

We assume that each particle induces the following boundary conditions:

uj�i
.y/ D 0C i1y1 C i2y2 C i3; @�uj�i

.y/ D @�g.y/C i1�1.y/C i2�2.y/

where g.y/ WD 1
2
.y21Cy

2
2/. Since the particles are not rotationally symmetric, the interaction energy

might not just depend on the particle distance, but on the distances in x- and y-direction and the
relative rotation angle. To investigate all three directions we define

p D
�
�2:5 0 0

2:5 0 0

�
; q1 D

�
1 0 0

0 0 0

�
; q2 D

�
0 1 0

0 0 0

�
; q3 D

�
0 0 1

0 0 0

�
and fi .t/ WD J.pC tqi /. Then f1; f2, and f3 represent the interaction energy along changes of the
relative distance in x- and y-direction and of the relative rotation, respectively.

In Figure 5.2 we show an example of an optimal membrane shape given the particle
configuration p as obtained from our discretization. In Figures 5.3 to 5.5 we evaluate the functions
fi .t/ for �1:4 6 t 6 1:4 and compare the approximation of f 0i .t/ by difference quotients with the
approximation obtained from evaluating the derivative formula (4.18).

Also in this setting we observe that our formula is generally in good agreement with the
approximation by difference quotients.

FIG. 5.2. Left: Level set view of the optimal membrane shape for the particle configuration p. Right: Rendered 3D view.
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FIG. 5.3. Left: Plot of f1.t/. Right: Comparison of difference quotients with the derivative formula (4.18).

FIG. 5.4. Left: Plot of f2.t/. Right: Comparison of difference quotients with the derivative formula (4.18).

FIG. 5.5. Left: Plot of f3.t/. Right: Comparison of difference quotients with the derivative formula (4.18).

5.3 Gradient flow

An immediate application of our findings is to employ a gradient flow

p0.t/ D �rJ
�
p.t/

�
; p.0/ D p0

in order to investigate stable particle configurations.
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FIG. 5.6. Time steps p0;p5;p10, and p75 of a discretized gradient flow for J with two elliptic particles (from left to right,
top to bottom).

In Figure 5.6 we illustrate some time steps of the flow for two elliptic particles of different size
on a square domain ˝. Here we assume the boundary conditions

uj�i
.y/ D i ; @�uj�i

.y/ D 1

for each particle. The computations use a discretization of the gradient flow by an explicit Euler
scheme

pkC1 WD pk � �rJ.pk/

with a fixed time step size � > 0. The gradient rJ.pk/ is approximated using the derivative
formula (4.18) for a finite element approximation of u. In fact, the time discrete gradient flow can
be viewed as gradient descent method with fixed step size for the computation of minimizers of J.
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Notice, that the simple gradient flow approach was used to simplify the presentation and that more
sophisticated iterative methods based on first order derivatives could be used.

For the given setting with initially unaligned particles, the gradient flow leads to a configuration
where the long axes of the elliptic particles are aligned. Furthermore, the distance of the particles is
initially reduced and remains unchanged in a later stage indicating that the implicit particle–particle
interaction is attractive and that this configuration is (close to) a local minimizer of J.

6. Conclusion

This paper considered a typical model for membrane-mediated particle interactions where the
membrane is described as a continuous surface and where the particles are treated as discrete entities
that couple to the membrane through certain constraints. Based on methods from shape calculus and
the implicit function theorem we were able to give a proof for the differentiability of the interaction
energy. Matrix calculus then enabled us to derive a formula for the first derivative that is numerically
feasible in the sense that it can be evaluated from a finite element approximation of the optimal
membrane shape for a fixed particle configuration and that it is possible to bound the approximation
error of the derivative in terms of the discretization error of the finite element method. Numerical
examples suggest the correctness of our results.

We emphasize that the approach chosen in this paper is rather general and we expect that it can be
used to prove similar results for other model formulations, too. Furthermore, as the differentiability
proof is based on the implicit function theorem this readily gives constructive instructions on how
to derive analogous formulas for higher order derivatives.

Our results allow the efficient differentiation of the interaction potential and may therefore be
applied in order to develop new algorithms for investigating stable particle configurations.

A. Appendix

Theorem A.1 (Whitney extension theorem). Let A � Rn be closed,m 2 N[f1g, and f˛WA! R
for all multi-indices ˛ 2 Nn with j˛j 6 m. Suppose that for all multi-indices ˛ with j˛j 6 m and
all x; x0 2 A the equality

f˛.x
0/ D

X
jˇ j6m�j˛j

f˛Cˇ .x/

ˇŠ
.x0 � x/ˇ CR˛.x

0
I x/

holds, where R˛WA�A! R is such that for all x0 2 A and all " 2 R>0 there exists ı 2 R>0 such
that

8x; x0 2 AW kx � x0k < ı ^
x0 � x0 < ı H) ˇ̌

R.x0I x/
ˇ̌

6
x � x0m�j˛j ".

Then there exists a function F 2 Cm.Rn/ such that @˛F.x/ D f˛.x/ for all x 2 A and all
multi-indices ˛ with j˛j 6 m.

Proof. See [25, Theorem I].

Theorem A.2 (Implicit function theorem). Let X , Y , Z be real Banach spaces, A � X � Y open,
F WA! Z and .x0; y0/ 2 A such that F.x0; y0/ D 0. Suppose that the partial Fréchet-derivative
Fy exists on A, and F and Fy are continuous in .x0; y0/.
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If Fy.x0; y0/ is invertible, then there exist an open neighborhood B.x0/ and a unique function
yWB.x0/ ! Y such that .x; y.x// 2 A and F.x; y.x// D 0 for all x 2 B.x0/. Furthermore, if
F 2 Cm.A;Z/ for some m 2 N, then also y 2 Cm.B; Y /.

Proof. See [17].

Lemma A.3 (Transformation of derivatives). Suppose X W˝1 ! ˝2 is a diffeomorphism and let
u 2 H 2.˝1/. Then

ˆ
˝2

�
�
�.u ıX�1/

�2
C �

r.u ıX�1/2 dx D
ˆ
˝1

�
div .Aru/2

jdetDX j
C � kruk2A dx

where
A.x/ WD jdetDX.x/j

�
DX.x/

��1�
DX.x/

��T
and

kru.x/k2A.x/ WD ru.x/
TA.x/ru.x/.

Proof. First note that for x 2 ˝2 and v 2 H 1.˝/

r.v ıX�1/.x/ D
�
D.X�1/.x/

�T
rv
�
X�1.x/

�
D

�
DX

�
X�1.x/

���T
rv
�
X�1.x/

�
(A1)

holds almost-everywhere. Equation (A1) together with the transformation formula applied to the
diffeomorphism X we obtain for all v;w 2 H 1.˝/ˆ

˝2

�
r.v ıX�1/.x/

�T
r.w ıX�1/.x/ dx

D

ˆ
˝2

rv
�
X�1.x/

�T �
DX

�
X�1.x/

���1�
DX

�
X�1.x/

���T
rw

�
X�1.x/

�
dx

D

ˆ
˝1

rv.x/TDX.x/�1DX.x/�Trw.x/ jdetDX.x/j dx

D

ˆ
˝1

hrv.x/;rw.x/iA.x/ dx.

(A2)

By integration by parts and (A2) we know that for all � 2 C10 .˝1/ it holds that
ˆ
˝2

�.u ıX�1/.x/ .� ıX�1/.x/ dx

D �

ˆ
˝2

r.u ıX�1/.x/ � r.� ıX�1/.x/ dx C
ˆ
@˝2

@�.u ıX
�1/.x/ .� ıX�1/.x/ dx

D �

ˆ
˝1

�
A.x/ru.x/

�
� r�.x/ dx

D

ˆ
˝1

div
�
A.x/ru.x/

�
�.x/ dx �

ˆ
@˝1

�
A.x/ru.x/

�
@��.x/ dx

D

ˆ
˝1

div
�
A.x/ru.x/

�
�.x/ dx

(A3)
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where the boundary terms vanish as of � ıX�1 2 C10 .˝2/ and � 2 C10 .˝1/, respectively. On the
other hand, application of the transformation formula also yields
ˆ
˝2

�.u ıX�1/.x/ .� ıX�1/.x/ dx D
ˆ
˝1

�.u ıX�1/
�
X.x/

�
�.x/ jdetDX.x/j dx. (A4)

Combining (A3) and (A4) leads to
ˆ
˝1

jdetDX.x/j�.u ıX�1/
�
X.x/

�
�.x/ dx D

ˆ
˝1

div
�
A.x/ru.x/

�
�.x/ dx

for all � 2 C10 .˝1/. The fundamental theorem of calculus of variations then readily implies that

�.u ıX�1/
�
X.x/

�
D

div
�
A.x/ru.x/

�
jdetDX.x/j

(A5)

holds for almost-every x 2 ˝1. Because X is a diffeomorphism, this expression is well-defined as
of jdetDX.x/j ¤ 0 for all x 2 ˝1. Hence, by virtue of the transformation formula and (A5) we
obtain ˆ

˝2

�
�.u ıX�1/.x/

�2 dx D
ˆ
˝1

�
�.u ıX�1/

�
X.x/

��2
jdetDX.x/j dx

D

ˆ
˝1

div
�
A.x/ru.x/

�2
jdetDX.x/j

dx.

(A6)

Finally, the desired assertion is a direct consequence of (A2) and (A6).
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