A free boundary problem for binary fluids

ROBERTO BENZI

Dipartimento di Fisica, Universita di Roma "Tor Vergata", ` Via della Ricerca Scientifica, 00133 Roma, Italy E-mail: roberto.benzi@roma2.infn.it

MICHIEL BERTSCH

Dipartimento di Matematica, Universita di Roma "Tor Vergata", ` Via della Ricerca Scientifica, 00133 Roma, Italy, and Istituto per le Applicazioni del Calcolo "M. Picone", CNR, Roma, Italy E-mail: bertsch@mat.uniroma2.it

FRANCESCO DEANGELIS

Dipartimento di Matematica, Universita di Roma "Tor Vergata", ` Via della Ricerca Scientifica, 00133 Roma, Italy, and Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L'Aquila, Italy E-mail: francesco.deangelis@gssi.it

[Received 1 July 2020 and in revised form 16 September 2020]

A free boundary problem for the dynamics of a glasslike binary fluid naturally leads to a singular perturbation problem for a strongly degenerate parabolic partial differential equation in 1D. We present a conjecture for an asymptotic formula for the velocity of the free boundary and prove a weak version of the conjecture. The results are based on the analysis of a family of local travelling wave solutions.

2020 Mathematics Subject Classification: Primary 35K10; Secondary 35K59, 35K65, 35R35.

Keywords: Degenerate parabolic equation, interface, singular perturbation, binary fluid.

1. Introduction

In [\[3\]](#page-21-1), Benzi, Sbragaglia, Bernaschi and Succi propose a new phase-field model for binary fluid mixtures. The fluid mixture is described by an order parameter ϕ which, in 1D, satisfies the partial differential equation (PDE)

$$
\phi_t = ((D_0 + D_2 \phi^2) \phi_x)_x - D_2 \phi \phi_x^2 + \phi (1 - \phi^2)
$$

= $(D_0 + D_2 \phi^2) \phi_{xx} + D_2 \phi \phi_x^2 + \phi (1 - \phi^2)$ in $Q = (a, b) \times (0, T],$ (1.1)

where D_0 and D_2 are positive constants and $a < b$. The parabolic PDE [\(1.1\)](#page-0-0) corresponds to a gradient flow in L^2 for the energy functional

$$
F[\phi] = \int_a^b \left(V(\phi) + \frac{1}{2} D(\phi)(\phi')^2 \right) dx, \qquad V(\phi) = -\frac{1}{2} \phi^2 + \frac{1}{4} \phi^4, \quad D(\phi) = D_0 + D_2 \phi^2.
$$

The double-well potential $V(\phi)$ is the bulk free-energy density and favours the two bulk phases, $\phi = \pm 1$. Identifying the two phases $\phi > 0$ and $\phi < 0$ with two fluids, the stiffness function $D(\phi)$ controls the cost of building and maintaining the interface, $\phi = 0$, between the two fluids. Since the interface is a priori unknown, the interface is the free boundary of the binary fluid problem.

The model is a variant of the standard Ginzburg–Landau equation, in which the stiffness function is constant. The stiffness function determines the value of the surface tension γ . Positive values of γ , corresponding to $D(\phi) > 0$, promote coarsening. Negative values of γ , corresponding to $D(\phi) < 0$, trigger an unstable growth of the interface.

The model is characterised by the choice of $D(\phi) = D_0 + D_2 \phi^2$. Other variants of the Ginzburg–Landau model have been proposed, with different choices of $D(\phi)$. Piecewise constant stiffness functions have been used to study microemulsions [\[9\]](#page-21-2). A second degree polynomial $D(\phi)$ was proposed by Gompper et al. in $[10]$, with a crucial difference compared to the model that we study in this paper. In $[10]$ D_0 is negative, triggering local interface instabilities, and the higher order term $\kappa(\phi'')^2$, with $\kappa > 0$ known as rigidity, was added to the energy functional to guarantee thermodynamic stability. In [\[3\]](#page-21-1), on the other hand, D_0 is strictly positive, and this guarantees the surface tension γ to be positive and, hence, thermodynamic stability is reached even with $\kappa = 0$.

The idea of Benzi et al. is to take the limit $D_0 \rightarrow 0$ since, for $D_0 = 0$, a local zero-cost condition is achieved, $D(\phi)$ being zero only at the interface ($\phi = 0$). Local zero-cost, in turn, is responsible for the peculiar features of this model, that exhibits long-time relaxation, ageing and long-term *dynamical arrest*, typical signatures of self-glassiness. This makes the model suitable for the description of coarsening in soft-glassy materials, in which domain growth is subject to longterm slow-down and, possibly, dynamical arrest. In fact, using suitable approximations, the model can also be derived from the continuous equation of the mesoscopic Lattice Boltzmann equation of soft-glassy system described in [\[2\]](#page-21-4).

Computational evidence in [\[3\]](#page-21-1) suggests that the two-fluid interface $\phi = 0$ becomes almost immobile for small values of $\varepsilon = D_0/D_2$. The main purpose of the present paper is to prove this phenomenon analytically and possibly quantify it in terms of the smallness of ε .

Rescaling x by a factor $\sqrt{2/D_2}$ (and changing the interval (a, b) accordingly) and t by a factor 2, equation (1.1) (1.1) (1.1) becomes

$$
\phi_t = (\varepsilon + \phi^2)\phi_{xx} + \phi\phi_x^2 + \frac{1}{2}\phi(1 - \phi^2) \quad \text{in } Q. \tag{1.2}
$$

To understand its mathematical structure for small values of ε it is convenient to replace ϕ by

$$
u(x,t) = U_{\varepsilon}(\phi(x,t)), \quad U_{\varepsilon}(\phi) = 2 \int_0^{\phi} \sqrt{\varepsilon + s^2} \, \mathrm{d}s. \tag{1.3}
$$

Since the map U_{ε} is strictly increasing, odd and onto in R, its inverse Φ_{ε} is well defined and odd. This change of variable transforms (1.2) into

$$
u_t = \left(\varepsilon + \Phi_\varepsilon^2(u)\right)u_{xx} + \Phi_\varepsilon(u)\left(1 - \Phi_\varepsilon^2(u)\right)\sqrt{\varepsilon + \Phi_\varepsilon^2(u)} \quad \text{in } Q. \tag{1.4}
$$

In the formal limit $\varepsilon \to 0$, $U_{\varepsilon}(\phi) \to |\phi|\phi$ and $\Phi_{\varepsilon}(u) \to u/\sqrt{|u|}$. The limit equation is

$$
u_t = |u|u_{xx} + u(1 - |u|) \quad \text{in } Q. \tag{1.5}
$$

The parabolicity of equation (1.5) is strongly degenerate. A few decades ago it was studied, mostly without reaction term, in the context of *nonnegative* solutions [\[4–](#page-21-5)[7,](#page-21-6) [12\]](#page-21-7). Several singular phenomena were identified which indicate that its degeneracy is indeed much stronger than that of, for example, the well-known porous medium and p-laplacian equations $[8, 13]$ $[8, 13]$ $[8, 13]$. We mention a few of them: solutions are not always uniquely determined by their initial-boundary data and the support of nonnegative solutions is non-expanding in time and may also shrink. In higher spatial dimension solutions of a slightly different but similar equation may even be discontinuous.

As far as we are aware of, sign-changing solutions of (1.5) were never studied analytically. In this paper we consider a class of classical solutions u_{ε} of the uniformly parabolic equation [\(1.4\)](#page-1-2) which initially have a finite number of interfaces, and we show that for vanishing ε they converge to a well-defined solution u of the degenerate parabolic limit equation [\(1.5\)](#page-1-1) and the interfaces of u are constant in time. In particular, we prove the phenomenon which was numerically observed in [\[3\]](#page-21-1), namely that for positive but small values of ε the interfaces of u_{ε} are almost immobile.

To quantify the latter result we analyse the existence of a family of local *travelling wave solutions* of [\(1.4\)](#page-1-2). As we shall see, this naturally leads to the following conjecture for an asymptotic formula of the velocity of the interface $x = \zeta_{\varepsilon}(t)$ (here for simplicity we consider the case that $u_{\varepsilon}(x, t)$ is monotonic in x, so the interface is unique):

$$
\zeta'_{\varepsilon}(t) = \frac{u_x(x_1^+, t) - u_x(x_1^-, t)}{2 \log \varepsilon} \left(1 + o(1)\right) \quad \text{as } \varepsilon \to 0. \tag{1.6}
$$

Here x_1 is the position of the constant interface of the limit solution u. The travelling wave solutions do satisfy [\(1.6\)](#page-2-0), and in that case the wave velocity and the right-hand side are independent of time. We also prove that the one-sided spatial derivatives of u at x_1 exist and are continuous with respect to t (with the possible exception of at most two values of t, see Theorem [3.2\)](#page-4-0); generically they do not coincide, as was already observed in [\[3\]](#page-21-1) in the case of stationary solutions (in [\[3\]](#page-21-1) they were referred to as *compactons*). For the moment being we are not able to prove the conjecture, but we do prove a weaker version of [\(1.6\)](#page-2-0) (see Theorem [3.3](#page-5-0) and the discussion in Section [7\)](#page-14-0).

The paper is organised as follows. In Section [2](#page-2-1) we collect some preliminary results on the limit problem which will be proved in Section [8.](#page-17-0) In Section [3](#page-4-1) we present the main results and in Section [4](#page-5-1) we analyse the family of travelling wave solutions. In Section [5](#page-9-0) we characterise the limit of solutions of [\(1.4\)](#page-1-2) for vanishing ε and show that asymptotically, for vanishing ε , interfaces do not move. In Section [6](#page-11-0) we prove the regularity result for the one-sided spatial derivatives of the limit solution, and in Section [7](#page-14-0) we prove the weak version of the interface condition [\(1.6\)](#page-2-0).

2. The limit problem

We consider the problem for equation [\(1.5\)](#page-1-1) in a bounded interval (a, b) , and impose that u is in one of phases $u = \pm 1$ at a and b:

$$
\begin{cases}\nu_t = |u|u_{xx} + u(1 - |u|) & \text{in } Q = (a, b) \times (0, T], \\
u(a, t) = -1, u(b, t) = 1 & \text{for } t \in (0, T], \\
u(x, 0) = u_0(x) & \text{for } x \in (a, b).\n\end{cases}
$$
\n(2.1)

Here $u_0 : [a, b] \to \mathbb{R}$ is a given initial function which satisfies

$$
\begin{cases}\nu_0 \in C([a, b]); \ u_0(a) = -1, \ u_0(b) = 1; \\
\text{the number of zeros of } u_0 \text{ in } (a, b) \text{ is finite;} \\
u_0 \text{ changes sign at each of its zeros.} \n\end{cases}
$$
\n(2.2)

Definition 2.1. Let $u \in L^{\infty}(Q) \cap L^2(0,T; H^1(a,b))$; u is called a *weak solution* of problem [\(2.1\)](#page-2-2) if $u(a, t) = -1$ and $u(b, t) = 1$ for a.e. $t \in (0, T)$, and

$$
\int_{a}^{b} u_0(x)\psi(x,0)dx + \iint_{Q} (u\psi_t - |u|u_x\psi_x - u_x^2 \operatorname{sgn}(u)\psi + u(1 - |u|)\psi) dxdt = 0
$$

for all $\psi \in C_c^{1,1}((a, b) \times [0, T)).$

The strong degeneracy of the parabolicity causes singular phenomena which, since a few decades, are known for nonnegative solutions. In particular, nonnegative weak solutions have nonexpanding spatial supports and suffer various nonuniqueness phenomena $([5, 7, 12])$ $([5, 7, 12])$ $([5, 7, 12])$ $([5, 7, 12])$ $([5, 7, 12])$ $([5, 7, 12])$ $([5, 7, 12])$. There do exist nonnegative weak solutions with spatial supports which are independent of time.

To understand the case of sign-changing solutions we consider initial data which satisfy [\(2.2\)](#page-2-3). To be more specific, let $x_1 < x_2 < \cdots < x_k$ be the finite number of zeros of u_0 in (a, b) :

$$
\mathfrak{n}_0 := \{x_1, x_2, \dots, x_k\}, \qquad \begin{cases} u_0 > 0 \text{ in } (x_i, x_{i+1}) \text{ if } i \text{ is odd,} \\ u_0 < 0 \text{ in } (x_i, x_{i+1}) \text{ if } i \text{ is even} \end{cases} \tag{2.3}
$$

(obviously $u_0 < 0$ in $[a, x_1]$ and $u_0 > 0$ in $(x_k, b]$). The idea is that we can solve the problem for u independently in each interval (x_i, x_{i+1}) with homogeneous Dirichlet data at x_i and x_{i+1} , without creating zeros of u at the interior of the interval. This naturally leads to the concept of "classical" solution of the equation.

Definition 2.2. Let (2.2) and (2.3) be satisfied, and set

$$
\mathfrak{N} := \mathfrak{N}_0 \times [0, T]. \tag{2.4}
$$

A function $u \in C(\overline{Q})$ is called a *classical solution* of problem [\(2.1\)](#page-2-2) if

- $-u(x, t) = 0$ if and only if $(x, t) \in \mathfrak{N}$,
- $-u \in C^{2,1}(Q \setminus \mathfrak{N}),$
- the second and third equation of (2.1) are satisfied,
- the first equation of [\(2.1\)](#page-2-2) is satisfied in $Q \setminus \mathfrak{N}$.

Observe that the continuity of u and hypothesis [\(2.2\)](#page-2-3) on u_0 imply that, for all $t \in (0, T]$, $u(\cdot,t) \neq 0$ in (x_i, x_{i+1}) , and $u(\cdot,t)$ has the same sign as u_0 in (x_i, x_{i+1}) . The same observation applies to (a, x_1) and (x_k, b) .

Problem [\(2.1\)](#page-2-2) is well-posed in the class of classical solutions, and the class of classical solutions is a uniqueness class in the set of weak solutions:

Theorem 2.3. *Let* u_0 *satisfy* [\(2.2\)](#page-2-3) *and* [\(2.3\)](#page-3-0)*. Then problem* [\(2.1\)](#page-2-2) *admits a unique classical solution* u *in the sense of Definition* [2.2](#page-3-1)*. In addition* u *is also a weak solution of problem* [\(2.1\)](#page-2-2)*.*

The proof of Theorem [2.3](#page-3-2) is based on standard techniques (such as maximum principle, a priori estimates, regularity theory and integral estimates for parabolic equations) and in Section [8](#page-17-0) we sketch its main lines. Below (Theorem [3.2](#page-4-0) and Section [6\)](#page-11-0) we shall establish additional regularity properties of u.

3. Main results

The main results of the paper concern the behaviour of the unique solution $u_{\varepsilon} \in C^{2,1}(Q) \cap C(\overline{Q})$ of the problem

$$
\begin{cases}\nu_t = (\varepsilon + \Phi_\varepsilon^2(u))u_{xx} + \Phi_\varepsilon(u)(1 - \Phi_\varepsilon^2(u))\sqrt{\varepsilon + \Phi_\varepsilon^2(u)} & \text{in } Q, \\
u(a, t) = -u_{1\varepsilon}, u(b, t) = u_{1\varepsilon} & \text{for } t \in (0, T], \\
u(x, 0) = u_{0\varepsilon}(x) & \text{for } x \in (a, b)\n\end{cases}
$$
\n(3.1)

for small values of $\varepsilon > 0$. Here Φ_{ε} is defined as in the Introduction, $a < b$, $T > 0$ and $u_{1\varepsilon} > 0$ are constants such that

$$
\Phi_{\varepsilon}(u_{1\varepsilon}) = 1 \quad (\Rightarrow \Phi_{\varepsilon}(-u_{1\varepsilon}) = -1, \text{ and } u_{1\varepsilon} \to 1 \text{ as } \varepsilon \to 0), \tag{3.2}
$$

and the initial functions $u_{0\varepsilon}$ satisfy

$$
\begin{cases} u_{0\varepsilon} \in C^{\infty}([a,b]), & u_{0\varepsilon}(a) = -u_{1\varepsilon}, \quad u_{0\varepsilon}(b) = u_{1\varepsilon};\\ u_{0\varepsilon}(x) = 0 \Leftrightarrow x \in \mathfrak{N}_0, & u_{0\varepsilon} \to u_0 \text{ in } C([a,b]) \text{ as } \varepsilon \to 0. \end{cases}
$$
(3.3)

The first result shows that u_{ε} converges uniformly to the solution of the limit problem for vanishing ε , which implies that away from the set \mathcal{R} , defined by [\(2.4\)](#page-3-3), $u_{\varepsilon}(x, t)$ has the same sign as $u_0(x)$ if ε is small enough. More precisely we have:

Theorem 3.1. Let u_0 satisfy [\(2.2\)](#page-2-3) and [\(2.3\)](#page-3-0), let $\varepsilon > 0$ and let $u_{0\varepsilon}$ satisfy [\(3.3\)](#page-4-2). Let $u_{\varepsilon} \in C^{2,1}(Q) \cap C$ $C(\overline{Q})$ be the solution of problem [\(3.1\)](#page-4-3), u the unique classical solution of the limit problem [\(2.1\)](#page-2-2) *defined by Theorem* [2.3](#page-3-2)*, and* \mathcal{N} *the set defined by* (2.4*). Then* $u_{\varepsilon} \to u$ *uniformly in* Q *and in* $C^{2,1}_{\text{loc}}(Q\setminus\mathfrak{N})$, and

$$
\sup_{\{(x,t)\in Q;\,u_{\varepsilon}(x,t)=0\}}\text{dist}\left((x,t),\,\mathfrak{N}\right)\to 0 \quad as\,\varepsilon\to 0. \tag{3.4}
$$

To state the asymptotic result on the free boundary condition (1.6) we need the following regularity result for the one-sided spatial derivatives of the limit problem.

Theorem 3.2. Let u_0 satisfy [\(2.2\)](#page-2-3) and let u be the unique classical solution of the limit *problem* [\(2.1\)](#page-2-2)*, defined by Theorem* [2.3](#page-3-2)*. Then*

- (i) $u_x \in L^{\infty}((a, b) \setminus \mathfrak{n}_0) \times (t_0, T)$ *for all* $t_0 \in (0, T)$ *, and, for all* $t \in (0, T]$ *, the function* $x \mapsto u_x(x, t)$ has at most a jump discontinuity at $x_i \in \mathbb{R}_0$ $(i = 1, \ldots, k)$;
- (ii) *for all* $i = 1, ..., k$ *there exist* $\tau_i^{\pm} \in [0, \infty]$ (*independent of* T) *such that*

$$
u_x(x_i^{\pm}, t) \begin{cases} = 0 & \text{if } 0 < t < \tau_i^{\pm}, \\ \neq 0 & \text{if } t > \tau_i^{\pm}; \end{cases}
$$

in addition the functions $t \mapsto u_x(x_i^{\pm}, t)$ are continuous in $(0, T] \setminus \{\tau_i^{\pm}$ i g*.*

Concerning the asymptotic expansion (1.6) we limit ourselves, for the sake of simplicity (see Remark [7.2\)](#page-17-1), to the case of a strictly increasing initial function:

 $u_0 \in C([a, b]), \quad u_0$ is strictly increasing in [a, b], $u_0(a) = -1, u_0(b) = 1.$ (3.5)

The condition on the approximating initial data $u_{0\varepsilon}$ ($\varepsilon > 0$) is changed accordingly:

$$
\begin{cases} u_{0\varepsilon} \in C^{\infty}([a,b]), \quad u'_{0\varepsilon} > 0 \text{ in } [a,b], \quad u_{0\varepsilon}(a) = -u_{1\varepsilon}, \ u_{0\varepsilon}(b) = u_{1\varepsilon}, \\ u_0(x_1) = 0 \Rightarrow u_{0\varepsilon}(x_1) = 0, \quad u_{0\varepsilon} \to u_0 \text{ in } C([a,b]) \text{ as } \varepsilon \to 0. \end{cases}
$$
(3.6)

Theorem 3.3. Let u_0 satisfy [\(3.5\)](#page-4-4), let $\varepsilon > 0$ and let $u_{0\varepsilon}$ satisfy [\(3.6\)](#page-5-2). Let $u_{\varepsilon} \in C^{2,1}(Q) \cap C(\overline{Q})$ *be the solution of problem* [\(3.1\)](#page-4-3) *and let* u *be the unique classical solution of the limit problem* [\(2.1\)](#page-2-2)*, defined by Theorem* [2.3](#page-3-2)*. Then* $u_{\varepsilon x} > 0$ *in* Q*. Let* $x = X_{\varepsilon}(u,t)$ *be defined by* $u_{\varepsilon}(X_{\varepsilon}(u,t),t) = u$. *Then there exists* $0 < \delta_{\varepsilon} \to 0$ *as* $\varepsilon \to 0$ *such that for all* $t \in [0, T]$

$$
\left(\int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{du}{\varepsilon + \Phi_{\varepsilon}^{2}(u)}\right)^{-1} \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{X_{\varepsilon t}(u,t)}{\varepsilon + \Phi_{\varepsilon}^{2}(u)} du = \frac{u_{x}(x_{1}^{+},t) - u_{x}(x_{1}^{-},t)}{2\log \varepsilon} \left(1 + o(1)\right) \quad \text{as } \varepsilon \to 0. \tag{3.7}
$$

The interpretation is immediate: let $x = \zeta_{\varepsilon}(t)$ be the interface of $u_{\varepsilon}(x, t)$; then $\zeta_{\varepsilon}'(t) =$ $X_{\text{st}}(0, t)$, so [\(3.7\)](#page-5-3) is nothing else than the interface condition [\(1.6\)](#page-2-0) with the left-hand side, $\zeta'_\varepsilon(t)$, replaced by a weighted average of $X_{\varepsilon t}(u,t)$ in a neighbourhood $(-\delta_{\varepsilon}, \delta_{\varepsilon})$ of $u = 0$, a neighbourhood which shrinks to a single point as $\varepsilon \to 0$.

In Section [7](#page-14-0) (see Remark [7.1\)](#page-16-0) we shall briefly discuss a different weak version of [\(1.6\)](#page-2-0).

4. Travelling waves

In this section we analyse a family of travelling wave solutions (TWs) which play a key role in the proof of Theorem [3.1](#page-4-5) and the formulation of the conjecture [\(1.6\)](#page-2-0).

Let $u(x, t) = w(x - ct)$ be a travelling wave solution of [\(1.4\)](#page-1-2) with velocity $c \in \mathbb{R}$:

$$
-cw' = (\varepsilon + \Phi_{\varepsilon}^{2}(w))w'' + \Phi_{\varepsilon}(w)\left(1 - \Phi_{\varepsilon}^{2}(w)\right)\sqrt{\varepsilon + \Phi_{\varepsilon}^{2}(w)}.
$$
\n(4.1)

Assuming monotonicity of $w(z)$ in an interval, we use w as independent variable to reduce the order of this autonomous ODE: the function $p(w)$, defined by

$$
p(w(z)) = w'(z),
$$

satisfies

$$
\frac{dp}{dw} = -\frac{c}{\varepsilon + \Phi_\varepsilon^2(w)} - \frac{\Phi_\varepsilon(w)(1 - \Phi_\varepsilon^2(w))}{p\sqrt{\varepsilon + \Phi_\varepsilon^2(w)}}.\tag{4.2}
$$

We are interested in solutions of equation [\(4.2\)](#page-5-4) in a neighbourhood of $w = 0$ with $p > 0$, solutions which in the original variables can be viewed as "local TWs" $w(z)$, with $w'(z) > 0$, which are defined in a neighbourhood of the interface. If p is strictly positive, the second term on the right hand side of [\(4.2\)](#page-5-4) is bounded. Therefore we focus on the first term on the right-hand side which becomes singular at $w = 0$ for vanishing ε . Given $\delta > 0$, we have that

$$
I_{\delta} := -c \int_0^{\delta} \frac{1}{\varepsilon + \Phi_{\varepsilon}^2(w)} dw = -2c \int_0^{\Phi_{\varepsilon}(\delta)} \frac{1}{\sqrt{\varepsilon + \phi^2}} d\phi.
$$

We set $\phi = \sqrt{\varepsilon} \sinh y$. Since $d\phi = \sqrt{\varepsilon}$ $\overline{\varepsilon}$ cosh y dy, we obtain that

$$
\int \frac{1}{\sqrt{\varepsilon + \phi^2}} d\phi = \int \frac{\cosh y}{\sqrt{1 + \sinh^2 y}} dy = y = \log \left(\frac{1}{\sqrt{\varepsilon}} \left(\phi + \sqrt{\varepsilon + \phi^2} \right) \right),
$$

 λ

and

$$
I_{\delta} = -2c \log \left(\frac{1}{\sqrt{\varepsilon}} \Big(\Phi_{\varepsilon}(\delta) + \sqrt{\varepsilon + \Phi_{\varepsilon}^2(\delta)} \Big) \right). \tag{4.3}
$$

If $\frac{\Phi_{\varepsilon}(\delta)}{\sqrt{\varepsilon}}$ is large, then

$$
I_{\delta} \approx -2c \log \left(\frac{2\Phi_{\varepsilon}(\delta)}{\sqrt{\varepsilon}} \right) = -2c \left(\log \left(2\Phi_{\varepsilon}(\delta) \right) - \frac{1}{2} \log \varepsilon \right) \approx c \log \varepsilon.
$$

So if I_δ is bounded away from zero, c vanishes as $\varepsilon \to 0$, and since I_δ represents a variation in p, this simple calculation suggests the following result. Before stating it we observe that, given $B > 0$, the function $w_B \in C([0,\infty))$ defined by

$$
w_B(x) = \max\{B \sinh x - \cosh x + 1, 0\} \text{ for } x \ge 0,
$$
 (4.4)

is a nonnegative steady state of the limit equation [\(1.5\)](#page-1-1) in [0, ∞) which satisfies $w_B(0) = 0$, $w'_B(0) = \overline{B}$ and

$$
w_B(x) > 0
$$
 if
$$
\begin{cases} 0 < x < \log \frac{1+B}{1-B} & \text{if } 0 < B < 1, \\ x > 0 & \text{if } B \ge 1. \end{cases}
$$

Lemma 4.1. Let B and B₀ be positive constants. Let $w_B \in C([0,\infty))$ be the steady state defined *by* [\(4.4\)](#page-6-0)*. Let* $\varepsilon > 0$ *and set*

$$
c_{\varepsilon} = \frac{B - B_0}{\log \varepsilon}.
$$
\n(4.5)

Let $w_{B,\varepsilon}$ be the local solution of the shooting problem

$$
\begin{cases}\n-c_{\varepsilon}w' = (\varepsilon + \Phi_{\varepsilon}^2(w))w'' + \Phi_{\varepsilon}(w)(1 - \Phi_{\varepsilon}^2(w))\sqrt{\varepsilon + \Phi_{\varepsilon}^2(w)} & \text{for } x > 0, \\
w(0) = 0, \ w'(0) = B_0,\n\end{cases}
$$

which can be continued as long as it stays bounded. Then

$$
w_{B,\varepsilon} \to w_B \quad \text{in} \quad \begin{cases} C_{\text{loc}}^1([0, \log \frac{1+B}{1-B})) & \text{if } 0 < B < 1, \\ C_{\text{loc}}^1([0, \infty)) & \text{if } B > 1. \end{cases} \tag{4.6}
$$

Proof. Since $B_0 > 0$, $w'_{B,\varepsilon} > 0$ near $x = 0$. As long as $w_{B,\varepsilon}$ remains increasing and bounded, we argue as above and introduce $p_{\varepsilon}(w)$, which locally is a solution of

$$
\begin{cases}\n\frac{dp}{dw} = -\frac{c_{\varepsilon}}{\varepsilon + \Phi_{\varepsilon}^2(w)} - \frac{\Phi_{\varepsilon}(w)(1 - \Phi_{\varepsilon}^2(w))}{p\sqrt{\varepsilon + \Phi_{\varepsilon}^2(w)}} & \text{for } w > 0, \\
p(0) = B_0.\n\end{cases}
$$
\n(4.7)

To understand the behaviour of p_{ε} near $w = 0$ we change variable and set

$$
q_{\varepsilon}(w) = p_{\varepsilon}(w) + \int_0^w \frac{c_{\varepsilon}}{\varepsilon + \Phi_{\varepsilon}^2(s)} ds
$$

= $p_{\varepsilon}(w) + \frac{2(B - B_0)}{\log \varepsilon} \log \left[\frac{\Phi_{\varepsilon}(w) + \sqrt{\varepsilon + \Phi_{\varepsilon}^2(w)}}{\sqrt{\varepsilon}} \right],$

where we have used [\(4.3\)](#page-6-1). The equation for q_{ε} is

$$
\frac{dq_{\varepsilon}}{dw} = -\frac{\Phi_{\varepsilon}(w)\left(1-\Phi_{\varepsilon}^{2}(w)\right)}{\left(q_{\varepsilon}(w)-\frac{2(B-B_{0})}{\log \varepsilon}\log\left[\frac{\Phi_{\varepsilon}(w)+\sqrt{\varepsilon+\Phi_{\varepsilon}^{2}(w)}}{\sqrt{\varepsilon}}\right]\right)\sqrt{\varepsilon+\Phi_{\varepsilon}^{2}(w)}}.
$$

Let $w_0 > 0$ be a small number to be chosen below. If $0 \le w \le w_0$, then

$$
1 \leq \frac{\Phi_{\varepsilon}(w) + \sqrt{\varepsilon + \Phi_{\varepsilon}^{2}(w)}}{\sqrt{\varepsilon}} \leq \frac{\Phi_{\varepsilon}(w_{0}) + \sqrt{\varepsilon + \Phi_{\varepsilon}^{2}(w_{0})}}{\sqrt{\varepsilon}} = \frac{2\sqrt{w_{0}}}{\sqrt{\varepsilon}} \big(1 + o(1)\big)
$$

as $\varepsilon \to 0$, whence

$$
-1 + o(1) \le \frac{2}{\log \varepsilon} \log \left[\frac{\Phi_{\varepsilon}(w) + \sqrt{\varepsilon + \Phi_{\varepsilon}^2(w)}}{\sqrt{\varepsilon}} \right] \le 0 \quad \text{as } \varepsilon \to 0.
$$

Since the factor $\Phi_{\varepsilon}(w)(1-\Phi_{\varepsilon}^2(w))/\sqrt{\varepsilon+\Phi_{\varepsilon}^2(w)}$ in the equation for q_{ε} is uniformly bounded, this implies that q_{ε} can be made arbitrarily near to $B_0 > 0$ in the interval $(0, w_0)$ by choosing w_0 and ε small enough.

If $B \ge B_0$ this means that $p_{\varepsilon} \ge q_{\varepsilon}$ is bounded away from 0 in $(0, w_0)$ if w_0 and ε are chosen small enough. If instead $B < B_0$, it is enough to slightly refine this argument and use that

$$
(B - B_0)(1 + o(1)) \le -\frac{2(B - B_0)}{\log \varepsilon} \log \left[\frac{\Phi_{\varepsilon}(w) + \sqrt{\varepsilon + \Phi_{\varepsilon}^2(w)}}{\sqrt{\varepsilon}} \right] \le 0 \quad \text{as } \varepsilon \to 0
$$

uniformly in $(0, w_0)$, which implies that we can choose w_0 and ε so small that in $(0, w_0)$ the solution p_{ε} is contained in an interval which is only slightly larger than [B, B₀] (and in particular bounded away from 0).

We check that p_{ε} changes by the "right" amount in the interval $(0, w_0)$, namely that $p_{\varepsilon}(w_0)$ can be made arbitrarily close to B by choosing w_0 and ε small enough. Since q_{ε} can be made arbitrarily close to B_0 in $(0, w_0)$, it is enough to observe that, as $\varepsilon \to 0$,

$$
-\int_0^{w_0} \frac{c_{\varepsilon}}{\varepsilon + \Phi_{\varepsilon}^2(w)} dw = -\frac{2(B - B_0)}{\log \varepsilon} \log \left[\frac{\Phi_{\varepsilon}(w_0) + \sqrt{\varepsilon + \Phi_{\varepsilon}^2(w_0)}}{\sqrt{\varepsilon}} \right] \to B - B_0.
$$

Turning to the original variables $w_{B,\varepsilon}(x)$, it follows that the slope $w'_{B,\varepsilon}(x)$ changes in a small right neighbourhood of the origin from B_0 to approximately B. For larger values of x we then use that $w_{B,\varepsilon}$ depends continuously on ε as long as it stays bounded and positive. This easily leads to [\(4.6\)](#page-6-2). П

The above result has its natural counterpart for *nonpositive* steady states \tilde{w}_A of the limit equation with support in $(-\infty, 0]$,

$$
\tilde{w}_A(x) = \min\{A\sinh x + \cosh x - 1, 0\} \quad \text{for } x \le 0.
$$
\n(4.8)

Corollary 4.2. Let A and A_0 be positive constants. Let $\tilde{w}_A \in C((-\infty,0])$ be the steady state *defined by* [\(4.8\)](#page-7-0)*. Let* $\varepsilon > 0$ *and set*

$$
\tilde{c}_{\varepsilon} = -\frac{A - A_0}{\log \varepsilon}.
$$
\n(4.9)

Let $\tilde{w}_{A,\varepsilon}$ be the local solution of the shooting problem

$$
\begin{cases}\n-\tilde{c}_{\varepsilon}w' = (\varepsilon + \Phi_{\varepsilon}^2(w))w'' + \Phi_{\varepsilon}(w)\left(1 - \Phi_{\varepsilon}^2(w)\right)\sqrt{\varepsilon + \Phi_{\varepsilon}^2(w)} & \text{for } x < 0, \\
w(0) = 0, \ w'(0) = A_0,\n\end{cases}
$$

which can be continued as long as it stays bounded. Then

$$
\tilde{w}_{A,\varepsilon} \to \tilde{w}_A \quad \text{in} \quad \begin{cases}\nC_{\text{loc}}\left((-\log\frac{1+A}{1-A},0\right) & \text{if } 0 < A < 1, \\
C_{\text{loc}}\left((-\infty,0\right)) & \text{if } A > 1.\n\end{cases}\n\tag{4.10}
$$

We can easily merge the approximations of a nonnegative steady state in $[0,\infty)$ and a nonpositive one in $(-\infty, 0]$ to construct an approximation $w_{AB,\varepsilon}$ of the following steady state with changing sign:

$$
w_{AB}(x) = \begin{cases} \tilde{w}_A(x) = \min\{A \sinh x + \cosh x - 1, 0\} & \text{if } x \le 0, \\ w_B(x) = \max\{B \sinh x - \cosh x + 1, 0\} & \text{if } x > 0. \end{cases}
$$
(4.11)

To do so we require that the two wave velocities coincide, $c_{\varepsilon} = \tilde{c}_{\varepsilon}$, as well as the two shooting parameters, $A_0 = B_0$. This means that

$$
A_0 = B_0 = \frac{1}{2}(A+B), \qquad c_{\varepsilon} = \tilde{c}_{\varepsilon} = \frac{B-A}{2\log \varepsilon}.
$$

Combining Lemma [4.1](#page-6-3) and Corollary [4.2,](#page-7-1) we obtain the following result.

Theorem 4.3. Let A and B be positive constants and let $\varepsilon \in (0,1]$. Let $w_{AB} \in C(\mathbb{R})$ be the *steady state of the limit equation* [\(1.5\)](#page-1-1) *defined by* [\(4.11\)](#page-8-0)*. Then there exists a travelling wave solution* $w_{AB,\varepsilon}(x - c_{\varepsilon}t)$ of equation [\(1.4\)](#page-1-2) with velocity

$$
c_{\varepsilon} = \frac{B - A}{2 \log \varepsilon} \tag{4.12}
$$

such that $w_{AB,\varepsilon}(0) = 0$ and $w_{AB,\varepsilon} \to w_{AB}$ in $C_{\text{loc}}(J_{AB})$ as $\varepsilon \to 0$, where

$$
J_{AB} = \begin{cases} \mathbb{R} & \text{if } A, B \ge 1, \\ \left(-\log \frac{1+A}{1-A}, \log \frac{1+B}{1-B} \right) & \text{if } A, B \in (0,1), \\ \left(-\infty, \log \frac{1+B}{1-B} \right) & \text{if } A \ge 1, 0 < B < 1, \\ \left(-\log \frac{1+A}{1-A}, \infty \right) & \text{if } 0 < A < 1, B \ge 1. \end{cases}
$$

For later use we observe that if $A > 1$, the steady state $\tilde{w}_A \in C^1((-\infty, 0])$, defined by [\(4.8\)](#page-7-0), has an inflection point at $-\frac{1}{2} \log \frac{A+1}{A-1}$ and

$$
\tilde{w}'_A \ge \tilde{w}'_A \left(-\frac{1}{2} \log \frac{A+1}{A-1}\right) = \sqrt{A^2 - 1}
$$
 in $(-\infty, 0]$. (4.13)

5. Convergence to the limit problem

In this section we prove Theorem [3.1.](#page-4-5) Let u_0 satisfy [\(2.2\)](#page-2-3) and [\(2.3\)](#page-3-0), let $u_{0_ε}$ satisfy [\(3.3\)](#page-4-2), let $u_{\varepsilon} \in$ $C(\overline{Q}) \cap C^{2,1}(Q)$ be the unique smooth solution of problem [\(3.1\)](#page-4-3) and let $u \in C(\overline{Q}) \cap C^{2,1}(Q \setminus \mathfrak{N})$ be the unique classical solution of the limit problem [\(2.1\)](#page-2-2). We recall that $\mathfrak{n}_0 \subset (a, b)$ is the set containing the k zeros x_i of u_0 and that $\mathfrak{N} = \mathfrak{N}_0 \times [0, T]$.

We choose one of the intervals (x_i, x_{i+1}) . We assume that

$$
u_0 > 0 \quad \text{in } (x_i, x_{i+1}).
$$

The case that $u_0 < 0$ in (x_i, x_{i+1}) can be treated similarly, and also the intervals (a, x_1) and (x_k, b) are treated in a similar way.

We claim that it is enough to prove the following:

For all $n \in \mathbb{N}$, $n > 2(x_{i+1} - x_i)^{-1}$, there exists $\varepsilon_n \in (0, \varepsilon_{n-1})$ such that $u_{\varepsilon}(x_i + \frac{1}{n}, t) \ge 0$ and $u_{\varepsilon}(x_{i+1} - \frac{1}{n}, t) \ge 0$ for $0 < t < T$ and for all $0 < \varepsilon < \varepsilon_n$. (5.1)

Indeed, [\(5.1\)](#page-9-1) and the Comparison Principle in $(x_i + \frac{1}{n}, x_{i+1} - \frac{1}{n}) \times (0, T)$ imply that

$$
u_{\varepsilon} \geq \underline{v}_{\varepsilon,n}
$$
 in $(x_i + \frac{1}{n}, x_{i+1} - \frac{1}{n}) \times (0, T)$ if $\varepsilon < \varepsilon_n$,

where $v_{\varepsilon,n}$ is the unique smooth solution of the problem

$$
\begin{cases}\nv_t = (\varepsilon + \Phi_\varepsilon^2(v))v_{xx} + \Phi_\varepsilon(v)(1 - \Phi_\varepsilon^2(v))\sqrt{\varepsilon + \Phi_\varepsilon^2(v)} & \text{in } (x_i + \frac{1}{n}, x_{i+1} - \frac{1}{n}) \times (0, T], \\
v(x_i + \frac{1}{n}, t) = v(x_{i+1} - \frac{1}{n}, t) = 0 & \text{for } t \in (0, T], \\
v(x, 0) = u_{0\varepsilon}(x) & \text{for } x \in (x_i + \frac{1}{n}, x_{i+1} - \frac{1}{n}), \\
v > 0 & \text{in } (x_i + \frac{1}{n}, x_{i+1} - \frac{1}{n}) \times (0, T].\n\end{cases}
$$
\n(5.2)

Since $\underline{v}_{\varepsilon,n+1} \ge \underline{v}_{\varepsilon,n} > 0$ in $(x_i + \frac{1}{n}, x_{i+1} - \frac{1}{n}) \times (0, T]$, this implies that there exists

$$
\underline{v}_{\varepsilon}(x,t) = \lim_{n \to \infty} \underline{v}_{\varepsilon,n}(x,t) \quad \text{for } (x,t) \in (x_i, x_{i+1}) \times [0,T].
$$

On the other hand we use the properties in the intervals (x_{i-1}, x_i) and (x_{i+1}, x_{i+2}) which are analogous to (5.1) and which, put together, imply that

for all sufficiently large $n \in \mathbb{N}$ there exists $\tilde{\varepsilon}_n \in (0, \varepsilon_{n-1})$ such that

$$
u_{\varepsilon}(x_i-\frac{1}{n},t) < 0 \text{ and } u_{\varepsilon}(x_{i+1}+\frac{1}{n},t) < 0 \text{ for } 0 < t < T \text{ and for all } 0 < \varepsilon < \tilde{\varepsilon}_n.
$$

Let $\overline{v}_{\varepsilon,n}$ be the unique smooth solution of problem [\(5.2\)](#page-9-2) with $x_i + \frac{1}{n}$ and $x_{i+1} - \frac{1}{n}$ replaced by, respectively, $x_i - \frac{1}{n}$ and $x_{i+1} + \frac{1}{n}$. Then

$$
u_{\varepsilon} \leq \overline{v}_{\varepsilon,n}
$$
 in $(x_i - \frac{1}{n}, x_{i+1} + \frac{1}{n}) \times (0,T)$ if $\varepsilon < \tilde{\varepsilon}_n$,

and since $\overline{v}_{\varepsilon,n+1} \leq \overline{v}_{\varepsilon,n}$ in $(x_i - \frac{1}{n+1}, x_{i+1} + \frac{1}{n+1}) \times (0, T]$ we may define

$$
\overline{v}_{\varepsilon}(x,t) = \lim_{n \to \infty} \overline{v}_{\varepsilon,n}(x,t) \quad \text{for } (x,t) \in [x_i, x_{i+1}] \times [0,T].
$$

Hence $0 < u_{\varepsilon} \le \overline{v}_{\varepsilon}$ in $(x_i, x_{i+1}) \times [0, T]$ and $\overline{v}_{\varepsilon}(x_i, t) = \overline{v}_{\varepsilon}(x_{i+1}, t) = 0$. By local Schauder type estimates (see [\[11,](#page-21-11) Chapter 5, Theorem 5.4]), in $(x_i, x_{i+1}) \times (0, T]$ we may pass to the limit $n \to \infty$ in the equation for $\underline{v}_{\varepsilon,n}$ and $\overline{v}_{\varepsilon,n}$, whence both $\underline{v}_{\varepsilon}$ and $\overline{v}_{\varepsilon}$ coincide with the unique solution of the problem

$$
\begin{cases}\nu_t = (\varepsilon + \Phi_{\varepsilon}^2(u))u_{xx} + \Phi_{\varepsilon}(u)(1 - \Phi_{\varepsilon}^2(u))\sqrt{\varepsilon + \Phi_{\varepsilon}^2(u)} & \text{in } (x_i, x_{i+1}) \times (0, T], \\
u(x_i, t) = u(x_{i+1}, t) = 0 & \text{for } t \in (0, T], \\
u(x, 0) = u_{0\varepsilon}(x) & \text{for } x \in (x_i, x_{i+1}), \\
u > 0 & \text{in } (x_i, x_{i+1}) \times (0, T].\n\end{cases}
$$

Now Theorem [3.1](#page-4-5) would follow from a standard diagonal procedure if we could use again local Schauder type estimates in order to pass to the limit $\varepsilon \to 0$ and conclude that $\underline{v}_\varepsilon = \overline{v}_\varepsilon$ converges to the unique (by Theorem [2.3\)](#page-3-2) solution of the problem

$$
\begin{cases}\nu_t = u u_{xx} + u(1 - u) & \text{in } (x_i, x_{i+1}) \times (0, T], \\
u(x_i, t) = u(x_{i+1}, t) = 0 & \text{for } t \in (0, T], \\
u(x, 0) = u_0(x) & \text{for } x \in (x_i, x_{i+1}), \\
u > 0 & \text{in } (x_i, x_{i+1}) \times (0, T].\n\end{cases}
$$

To justify this, we only need to prove that locally in $(x_i + \frac{1}{n}, x_{i+1} - \frac{1}{n}) \times [0, T]$ the solution $\underline{v}_{\varepsilon,n}$ is uniformly bounded away from 0, which makes the equation for $v_{\varepsilon,n}$ locally uniformly parabolic. But establishing such uniform lower bound is easy: given $x_0 \in (x_i, x_{i+1})$ there exists a "small" steady state solution $\tilde{u}(x)$ of the limit equation which is strictly positive in a "small" neighbourhood U of x_0 , where "small" means that $\tilde{u} \le \frac{1}{2}u_0$ in U and supp $\tilde{u} \subset (x_i, x_{i+1})$. Arguing as in Section [4](#page-5-1) it easily follows that \tilde{u} can be approximated by a family of steady state solutions of the equation with ε which can be used as subsolutions of the problem for $\underline{v}_{\varepsilon,n}$, and since x_0 is arbitrary we obtain the uniform lower bound for $\underline{v}_{\varepsilon,n}$, and thus for $\underline{v}_{\varepsilon}$. We leave the details to the reader.

It remains to prove (5.1) .

Proof of [\(5.1\)](#page-9-1). Since $u_{0g} \to u_0$ uniformly in (a, b) , for all $n \in \mathbb{N}$ there exist $m_n > 0$ and $\varepsilon_{1n} > 0$ such that $\Phi_{\varepsilon}^2(y) < 1$ if $y \in (0, m_n]$ and

$$
u_{0\varepsilon} > m_n
$$
 in $(x_i + \frac{1}{2n}, x_{i+1} - \frac{1}{2n})$ for all $0 < \varepsilon < \varepsilon_{1n}$.

Let the steady state w_{AB} be defined by [\(4.11\)](#page-8-0). Observe that u_{ε} is uniformly bounded in Q: it follows from the definition of $u_{1\epsilon} \in \mathbb{R}$ in [\(3.2\)](#page-4-6) that the constant $C_{1\epsilon} = \max\{u_{1\epsilon}, \sup_{(a,b)} u_{0\epsilon}\}\$ is a supersolution of problem [\(3.1\)](#page-4-3) and, similarly, $C_{2\varepsilon} = \min\{-u_{1\varepsilon},\inf_{(a,b)} u_{0\varepsilon}\}\$ a subsolution, whence the result follows from the Comparison Principle for parabolic equations and the uniform boundedness of the constants $C_{1_{\epsilon}}$ and $C_{2_{\epsilon}}$. Hence there exists $M > 0$ such that $u_{\epsilon} > -M$ in Q for all $\varepsilon \in (0, 1]$. It follows from (4.13) that for all $n \in \mathbb{N}$ there exists $A_n > 1$ such that, independently of the choice of $B > 0$,

$$
w_{A_nB}(y) < -M - 1 \quad \text{for all } y \le -\frac{1}{2n}.
$$

On the other hand there exist $y_n \in (\frac{1}{2n}, \frac{1}{n})$ and $B_n \in (0, 1)$ such that

$$
\frac{1}{n} - y_n < \frac{1}{2} \log \frac{1 + B_n}{1 - B_n} < \frac{1}{2} \left(\frac{1}{2} (x_i + x_{i+1}) - \frac{1}{n} \right), \qquad w_{A_n B_n} \left(\frac{1}{2} \log \frac{1 + B_n}{1 - B_n} \right) < m_n
$$

(we recall that $\frac{1}{2} \log \frac{1+B_n}{1-B_n}$ is the point where $w_{A_nB_n}$ attains its maximal value). Finally, we choose a point $z_n \in (\frac{1}{2} \log \frac{1+B_n}{1-B_n}, \log \frac{1+B_n}{1-B_n})$, which implies that $w_{A_nB_n} > 0$ and $w'_{A_nB_n} < 0$ at z_n .

Let $w_{A_nB_n,s}$ be defined by Theorem [4.3.](#page-8-2) By the choice of A_n , B_n and z_n and by Theorem [4.3,](#page-8-2) there exists $\varepsilon_{2n} \leq \varepsilon_{1n}$ such that for all $\varepsilon \in (0, \varepsilon_{2n})$

$$
w_{A_nB_n,\varepsilon}(y) < -M
$$
 for $y \le -\frac{1}{2n}$, $0 < w_{A_nB_n,\varepsilon} < m_n$ in $(0, z_n]$, $w'_{A_nB_n,\varepsilon}(z_n) < 0$,

and

$$
c_{\varepsilon}T = \frac{(B_n - A_n)T}{2\log \varepsilon} < \frac{1}{n} - y_n.
$$

We define $\underline{u}_{\varepsilon,n} \in C([x_i, x_{i+1}] \times [0, T])$ by

$$
\underline{u}_{\varepsilon,n}(x,t) = \begin{cases} w_{A_n B_n,\varepsilon}(x-x_i - y_n - c_{\varepsilon}t) & \text{if } x_i \le x \le x_i + y_n + c_{\varepsilon}t + z_n, \ 0 \le t \le T, \\ w_{A_n B_n,\varepsilon}(x_{i+1} - y_n - c_{\varepsilon}t - x) & \text{if } x_{i+1} - y_n - c_{\varepsilon}t - z_n \le x \le x_{i+1}, \ 0 \le t \le T, \\ w_{A_n B_n,\varepsilon}(z_n) & \text{otherwise.} \end{cases}
$$

By construction $\underline{u}_{\varepsilon,n}$ is a (weak) subsolution of the parabolic equation for u_{ε} in $(x_i, x_{i+1}) \times (0, T]$. In addition $\underline{u}_{\varepsilon,n} < -M \leq u_{\varepsilon}$ at $\{x_i, x_{i+1}\} \times (0,T)$ and $\underline{u}_{\varepsilon,n}(x,0) \leq u_{0\varepsilon}(x)$ for $x \in (x_i, x_{i+1})$. Hence $u_{\varepsilon} \ge \underline{u}_{\varepsilon,n}$ in $[x_i, x_{i+1}] \times (0, T]$. Since

$$
x_i + y_n + c_{\varepsilon} T < x_i + \frac{1}{n}
$$
 and $x_{i+1} - \frac{1}{n} < x_{i+1} - y_n - c_{\varepsilon} T$

and $u_{\varepsilon,n}(x,t) > 0$ if $x_i + y_n + c_{\varepsilon}T < x < x_{i+1} - y_n - c_{\varepsilon}T$, this implies that $u_{\varepsilon}(x,t) > 0$ if $x = x_i + \frac{1}{n}$ or $x = x_{i+1} - \frac{1}{n}$. \Box

6. Boundary regularity of the solution of the limit problem

In this section we prove Theorem [3.2,](#page-4-0) which exclusively concerns the unique solution u of the limit problem (2.1) .

6.1 *Proof of Theorem* [3.2](#page-4-0) (i)

We show first that it is sufficient to prove the following lemma, which reminds the well-known estimate by Aronson and Benilan [\[1\]](#page-21-12) for nonnegative solutions of the porous medium equation $u_t = \Delta(u^m)$ if $m > 1$ (see also [\[4\]](#page-21-5) in the case of nonnegative solutions of $u_t = u \Delta u - \gamma |\nabla u|^2$).

Lemma 6.1. Let $x_i, x_{i+1} \in \mathcal{R}_0$ and let u_i be the restriction of u to \overline{Q}_i , where we have set $Q_i =$ $(x_i, x_{i+1}) \times (0, T]$. Then

$$
u_i > 0 \text{ in } Q_i \Rightarrow u_{it} \ge -\frac{u_i}{t} \quad \text{and} \quad u_{ixx} \ge - (1 - u_i) - \frac{1}{t} \quad \text{in } Q_i,
$$
\n
$$
u_i < 0 \text{ in } Q_i \Rightarrow u_{it} \le -\frac{u_i}{t} \quad \text{and} \quad u_{ixx} \le - (1 - u_i) - \frac{1}{t} \quad \text{in } Q_i.
$$

Consider for example the case that $u_i > 0$. We recall that u_{ix} is continuous in Q_i . By Lemma [6.1,](#page-11-1) u_{ixx} is bounded from below in $(x_i, x_{i+1}) \times [t_0, T]$ for all $t_0 \in (0, T]$. Since u_i is bounded, this implies that the following one-sided limits are well defined:

$$
u_{ix}(x_i^+, t) \in [-\infty, \infty), \quad u_{ix}(x_{i+1}^-, t) \in (-\infty, +\infty].
$$

Since the function $x \mapsto u_i(x, t)$ attains a minimum (=0) at x_i and x_{i+1} , we conclude that the limits $u_{ix}(x_i^+, t)$ and $u_{ix}(x_{i+1}^-, t)$ are bounded in [t_0 , T] for $t_0 \in (0, T)$. If $u_i < 0$ one argues similarly to arrive at the same conclusion. To complete the proof of part (i) it remains to prove Lemma [6.1.](#page-11-1)

Proof of Lemma [6.1](#page-11-1). The inequalities for u_{it} and u_{ixx} in Lemma 6.1 are equivalent. Below we prove the inequality for u_{it} in the case that $u_i > 0$ in Q_i .

As we shall see in Section [8,](#page-17-0) u_i can be approximated from above by smooth solutions $u_{i,n} \ge \frac{1}{n}$ of the uniformly parabolic problem

$$
\begin{cases}\nu_t = u(u_{xx} + 1 - u) & \text{in } Q_i, \\
u(x_i, t) = u(x_{i+1}, t) = \frac{1}{n} & \text{for } t \in (0, T], \\
u(x, 0) = u_0(x) + \frac{1}{n} & \text{for } x \in (x_i, x_{i+1}),\n\end{cases}
$$
\n(6.1)

where $n \in \mathbb{N}$. We set

$$
p = \frac{(u_{i,n})_t}{u_{i,n}} \quad \text{in } Q_i.
$$

Then $(u_{i,n})_t = p u_{i,n}$ and $p = (u_{i,n})_{xx} + 1 - u_{i,n}$, whence

$$
p_t = (u_{i,n})_{txx} - (u_{i,n})_t = (pu_{i,n})_{xx} - pu_{i,n} = u_{i,n}p_{xx} + 2(u_{i,n})_x p_x + ((u_{i,n})_{xx} - u_{i,n})p
$$

= $u_{i,n}p_{xx} + 2(u_{i,n})_x p_x + (p-1)p$ in Q_i .

Let $t_0 \in (0, T)$ Since $p = 0$ at x_i and x_{i+1} and since $p = -(t - t_0)^{-1}$ is a subsolution of the equation in $(x_i, x_{i+1}) \times (t_0, T)$ which tends to $-\infty$ as $t \to t_0^+$ $_0^+$, it follows easily from the Comparison Principle that $p \geq p$, i.e., $(t - t_0)(u_{i,n})_t \geq -u_{i,n}$, in $(x_i, x_{i+1}) \times (t_0, T)$. Since $u_{i,n} \to u_i$ in $C^{2,1}_{loc}(Q_i)$ as $n \to \infty$, this implies that $(t-t_0)u_{it} \ge -u_i$ in $(x_i, x_{i+1}) \times (t_0, T)$. Since $t_0 > 0$ is arbitrary, we have proved that $tu_{it} \ge -u_i$ in Q_i . \Box

6.2 *Proof of Theorem* [3.2](#page-4-0) (ii)*(ii)*

Let u_i and Q_i be as above. We only consider the limit $u_i(x_i^+, t)$ in the case that $u_i > 0$ in Q_i . We define the difference quotient

$$
q(x,t) = \frac{u_i(x,t) - u_i(x_i,t)}{x - x_i} = \frac{u_i(x,t)}{x - x_i} \quad \text{for } t \in (t_0, T].
$$

Since, by part (i), $u_{it} \ge -u_i/t$ in Q_i , it follows at once that also $q_t \ge -q/t$ in Q_i . Integration with respect to t yields that

$$
q(x,t) \ge \frac{t_0}{t} q(x,t_0) \quad \text{if } 0 < t_0 < t \le T,
$$
 (6.2)

whence also

$$
u_{ix}(x_i^+, t) \ge \frac{t_0}{t} u_{ix}(x_i^+, t_0) \quad \text{for } t \in (t_0, T].
$$

In particular, $u_{ix}(x_i^+, t) > 0$ if $u_{ix}(x_i^+, t_0) > 0$ and $t > t_0$, and we have proved the existence of $\tau_i^+ \in [0,\infty].$

The function $t \mapsto u_{ix}(x_i^+, t)$ is continuous in $(0, \tau_i^+)$ since $u_{ix}(x_i^+, t) = 0$ if $t \in (0, \tau_i^+)$. To prove the continuity in $(\tau_i^+, T]$ we shall show that

$$
q: (x_i, x_{i+1}) \times (\tau_i^+, T] \to \mathbb{R} \text{ can be extended by continuity to } [x_i, x_{i+1}) \times (\tau_i^+, T]. \tag{6.3}
$$

The function q satisfies

$$
q_t = \frac{u_{it}}{x - x_i} = qu_{ixx} + q(1 - u_i) = q((x - x_i)q_{xx} + 2q_x) + q(1 - (x - x_i)q) \text{ in } (x_i, x_{i+1}) \times (\tau_i^+, T].
$$

Setting $y = \sqrt{x - x_i}$ and $h(y, t) = q(x_i + y^2, t)$, we obtain that

$$
h_t = \frac{h}{4} \left(h_{yy} + 3 \frac{h_y}{y} \right) + h(1 - y^2 h) \quad \text{in } (0, \sqrt{x_{i+1} - x_i}) \times (\tau_i^+, T].
$$

Let B be the open ball in \mathbb{R}^4 centered at the origin with radius $\sqrt{x_{i+1} - x_i}$. Setting $y = |z|$ for $z \in B$ and $v(z, t) = h(|z|, t)$ for $(z, t) \in B \times (\tau_i^+, T]$, this means that

$$
v_t = \frac{v}{4}\Delta v + v(1 - |z|^2 v) \text{ in } B \times (\tau_i^+, T].
$$

It follows from [\(6.2\)](#page-12-0) and the definition of τ_i^+ ⁺ that, locally in $B \times (\tau_i^+, T]$, v is bounded away from zero, whence locally in $B \times (\tau_i^+, T]$ the equation for v is uniformly parabolic. This implies the continuity of v and we have proved (6.3) . This completes the proof of Theorem [3.2.](#page-4-0)

Remark 6.2. It is not difficult to show that not only the functions $t \mapsto u_x(x_i^{\pm}, t)$ are continuous in $(0, T] \setminus {\{\tau_i^\pm}$ $\frac{1}{i}$, but also the restriction of u_x to $(x_i, x_{i+1}) \times (0, T]$ can be extended with continuity to the set $[x_i, x_{i+1}] \times (0, T] \setminus \{(x_i, \tau_i^+), (x_{i+1}, \tau_{i+1}^-)\}.$

Remark 6.3. The number τ_i^{\pm} i_i ^{\pm} reminds the concept of *waiting time* for the interfaces of the porous medium equation, which is always a finite number (see Theorem 15.15, equation (15.61) and Corollary 15.23 in [\[13\]](#page-21-9)). It is natural to ask whether also in our case τ_i^{\pm} i^{\pm} is always finite. The answer is negative, as the following example shows.

Let u_0 be strictly increasing in (a, b) , let $u_0(x_1) = 0$ and let $\log u_0 \notin L^1(x_1, b)$. Let $\psi \in$ $C_c^1([x_1, b))$ be such that $\psi(x_1) = 1$ and $\psi' \le 0$ in (x_1, b) and set

$$
\chi_n(x) = \begin{cases}\n0 & \text{if } x_1 \leq x \leq x_1 + \frac{1}{n}, \\
n(x - x_i - \frac{1}{n}) & \text{if } x_1 + \frac{1}{n} < x < x_1 + \frac{2}{n}, \\
1 & \text{if } x_1 + \frac{2}{n} \leq x \leq b.\n\end{cases}
$$

Then $u_x > 0$ in $(x_1, b) \times (0, T)$ and

$$
\int_{x_1}^{b} \log u(x, t) \psi(x) \chi_n(x) dx
$$
\n
$$
= \int_{x_1}^{b} \log u_0(x) \psi(x) \chi_n(x) dx + \iint_{(x_1, b) \times (0, t)} (-u_x(\psi' \chi_n + \psi \chi'_n) + (1 - u)\psi \chi_n)
$$
\n
$$
\leq \int_{x_i}^{b} \log u_0(x) \psi(x) \chi_n(x) dx + \iint_{(x_1, b) \times (0, t)} (-u_x \psi' \chi_n + (1 - u)\psi \chi_n).
$$

Letting $n \to \infty$ we obtain that

$$
\int_{x_1}^b \log u(x, t)\psi(x)dx = -\infty \quad \text{for all } t \in (0, T],
$$

and since T is arbitrary this implies that $\tau_1^+ = \infty$.

7. The interface condition

This section is devoted to the proof of Theorem [3.3](#page-5-0) concerning the asymptotic formula for the interface condition [\(1.6\)](#page-2-0).

The fact that $u_{\varepsilon x} > 0$ in Q follows from the strong maximum principle applied to the equation for $u_{\varepsilon x}$. Hence the interface $x = \zeta_{\varepsilon}(t)$ is well-defined by $u_{\varepsilon}(\zeta_{\varepsilon}(t), t) = 0$ and, by the implicit function theorem, $\zeta_{\varepsilon} \in C([0, T]) \cap C^1((0, T])$. By Theorem [3.1,](#page-4-5) in particular by [\(3.4\)](#page-4-7),

$$
\zeta_{\varepsilon} \to x_1 \quad \text{in } C([0,T]) \text{ as } \varepsilon \to 0.
$$

For the limit function u we have a similar positivity result of u_x , but we must exclude the point x_1 where the parabolic equation degenerates:

$$
u_x > 0 \quad \text{in } Q \setminus \{(x_1, t); \ t \in (0, T]\}. \tag{7.1}
$$

We begin with some preliminary calculations. Let $X_{\varepsilon}: [-u_{1\varepsilon}, u_{1\varepsilon}] \times [0, T] \to [a, b]$ be defined by

$$
u_{\varepsilon}(X_{\varepsilon}(u,t),t) = u \quad \text{(and so } \zeta_{\varepsilon}(t) = X_{\varepsilon}(0,t)\text{)}.
$$

Differentiating $x = X_{\varepsilon}(u, t)$ with respect to x and t we find that

$$
X_{\varepsilon u}(u,t)=\frac{1}{u_{\varepsilon x}(X_{\varepsilon}(u,t),t)},\quad X_{\varepsilon t}(u,t)=-\frac{u_{\varepsilon t}(X_{\varepsilon}(u,t),t)}{u_{\varepsilon x}(X_{\varepsilon}(u,t),t)},
$$

and it follows from the equation for u_{ε} that X_{ε} satisfies the parabolic equation

$$
X_t = -(\varepsilon + \Phi_\varepsilon^2(u)) \left(\frac{1}{X_u}\right)_u - \Phi_\varepsilon(u) \left(1 - \Phi_\varepsilon^2(u)\right) \sqrt{\varepsilon + \Phi_\varepsilon^2(u)} X_u. \tag{7.2}
$$

We define $X_0 : [-1, 1] \times [0, T] \rightarrow [a, b]$ by

$$
u(X_0(u, t), t) = u
$$
 (and so $X_0(0, t) = x_1$),

and one shows in a similar way that X_0 satisfies

$$
X_t = -|u| \left(\frac{1}{X_u}\right)_u - u(1-|u|)X_u \quad \text{in } \left([-1,0) \cup (0,1]\right) \times (0,T]. \tag{7.3}
$$

It easily follows from Theorem [3.1](#page-4-5) and [\(7.1\)](#page-14-1) that

 $X_{\varepsilon} \to X_0 \quad \text{in } C([-1, 1] \times [0, T]) \cap C_{\text{loc}}^{2,1}(([-1, 0) \cup (0, 1]) \times (0, T]).$

Since, by Theorem [3.1,](#page-4-5) $u_{\varepsilon x} \to u_x$ locally in $([a, b] \setminus \{x_1\}) \times (0, T]$, for all $\varepsilon \in (0, 1]$ there exists $0 < y_{\varepsilon} \to 0$ such that

$$
\sup_{y \in [y_{\varepsilon},1]} \left(\frac{1}{X_{\varepsilon u}(|y|,\cdot)} - \frac{1}{X_{0u}(|y|,\cdot)} \right) \to 0 \quad \text{in } C_{\text{loc}}((0,T]) \text{ as } \varepsilon \to 0.
$$

In particular, since $y_{\varepsilon} \to 0$, there exists $0 < y_{\varepsilon} \le \delta_{\varepsilon} \to 0$ such that $\varepsilon/\delta_{\varepsilon} \to 0$ as $\varepsilon \to 0$ and

$$
\frac{1}{X_{\varepsilon u}(\pm \delta_{\varepsilon},\cdot)} - \frac{1}{X_{0u}(\pm \delta_{\varepsilon},\cdot)} \to 0 \quad \text{in } C_{\text{loc}}((0,T]) \text{ as } \varepsilon \to 0.
$$

Hence it follows from the continuity properties of u_x (see Remark [6.2\)](#page-13-1) that

$$
\frac{1}{X_{\varepsilon u}(\pm \delta_{\varepsilon}, \cdot)} \to u_x(x_1^{\pm}, \cdot)
$$
 pointwise in (0, T] and in $C_{\text{loc}}((0, T] \setminus \{\tau_1^{\pm}\})$ as $\varepsilon \to 0$. (7.4)

We fix $t \in (0, T]$. The idea of the proof is to integrate the equation for X_{ε} with respect to u in a neighbourhood of $u = 0$, but to do so we change variable and set

$$
p = A_{\varepsilon}(u) := \int_0^u \frac{1}{\varepsilon + \Phi_{\varepsilon}^2(s)} ds.
$$

Then the second order term in (7.2) becomes a partial derivative with respect to p and integrating [\(7.2\)](#page-14-2) with respect to p from $-A_\varepsilon(\delta_\varepsilon)$ to $A_\varepsilon(\delta_\varepsilon)$ we obtain that

$$
\int_{-A_{\varepsilon}(\delta_{\varepsilon})}^{A_{\varepsilon}(\delta_{\varepsilon})} X_{\varepsilon t} (A_{\varepsilon}^{-1}(p), t) d p + \frac{1}{X_{\varepsilon u}(\delta_{\varepsilon}, t)} - \frac{1}{X_{\varepsilon u}(-\delta_{\varepsilon}, t)}
$$

=
$$
-B_{\varepsilon, \delta_{\varepsilon}}(t) := -\int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{\Phi_{\varepsilon}(u)(1 - \Phi_{\varepsilon}^{2}(u))}{\sqrt{\varepsilon + \Phi_{\varepsilon}^{2}(u)}} X_{\varepsilon u}(u, t) du. \quad (7.5)
$$

Observe that, as $\varepsilon \to 0$,

$$
|B_{\varepsilon,\delta_{\varepsilon}}(t)| \leq \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} X_{\varepsilon u}(u,t) du = X_{\varepsilon}(\delta_{\varepsilon},t) - X_{\varepsilon}(-\delta_{\varepsilon},t) \to 0
$$

uniformly with respect to t; here we have used the (uniform) continuity of the map $[0, 1] \times [-\frac{1}{2}, \frac{1}{2}] \times$ $[0, T] \ni (\varepsilon, u, t) \mapsto X_{\varepsilon}(u, t)$. In view of [\(7.4\)](#page-15-0) and [\(7.5\)](#page-15-1) this implies that

$$
-\int_{-A_{\varepsilon}(\delta_{\varepsilon})}^{A_{\varepsilon}(\delta_{\varepsilon})} X_{\varepsilon t}\big(A_{\varepsilon}^{-1}(p),t\big) dp \to u_{x}(x_{1}^{+},t) - u_{x}(x_{1}^{-},t) \quad \text{as } \varepsilon \to 0. \tag{7.6}
$$

We claim that

$$
A_{\varepsilon}(\delta_{\varepsilon}) = -\log \varepsilon (1 + o(1)) \quad \text{if } \delta_{\varepsilon} \to 0 \text{ and } \varepsilon = o(\delta_{\varepsilon}) \text{ as } \varepsilon \to 0. \tag{7.7}
$$

By the definition of Φ_{ε} ,

$$
u = 2 \int_0^{\Phi_{\varepsilon}(u)} \sqrt{\varepsilon + s^2} \, ds \implies 1 = 2 \sqrt{\varepsilon + \Phi_{\varepsilon}^2(u)} \Phi_{\varepsilon}'(u),
$$

whence, setting $\phi = \Phi_{\varepsilon}(s)$,

$$
A_{\varepsilon}(\delta_{\varepsilon}) = \int_0^{\delta_{\varepsilon}} \frac{1}{\varepsilon + \Phi_{\varepsilon}^2(s)} ds = 2 \int_0^{\Phi_{\varepsilon}(\delta_{\varepsilon})} \frac{1}{\sqrt{\varepsilon + \phi^2}} d\phi = 2 \log \left(\frac{\Phi_{\varepsilon}(\delta_{\varepsilon})}{\sqrt{\varepsilon}} + \sqrt{1 + \left(\frac{\Phi_{\varepsilon}(\delta_{\varepsilon})}{\sqrt{\varepsilon}} \right)^2} \right).
$$

Recall that $\Phi_{\varepsilon} = U_{\varepsilon}^{-1}$ with U_{ε} defined in [\(1.3\)](#page-1-3):

$$
U_{\varepsilon}(\phi) = 2 \int_0^{\phi} \sqrt{\varepsilon + s^2} \, ds = \phi \sqrt{\varepsilon + \phi^2} + \varepsilon \log \left(\frac{\phi}{\sqrt{\varepsilon}} + \sqrt{1 + \frac{\phi^2}{\varepsilon}} \right),
$$

and observe that U_{ε} ($\sqrt{\varepsilon}$ = ($\sqrt{2} + \log(1 +$ $(\overline{2}))\varepsilon$. Setting $\phi_{\varepsilon} = \Phi_{\varepsilon}(\delta_{\varepsilon})$ and $\xi_{\varepsilon} = \frac{\phi_{\varepsilon}}{\sqrt{\varepsilon}}$ $\frac{\varepsilon}{\varepsilon},$ p

$$
\frac{\delta_{\varepsilon}}{\varepsilon} = \frac{U_{\varepsilon}(\phi_{\varepsilon})}{\varepsilon} = \frac{U_{\varepsilon}(\xi_{\varepsilon}\sqrt{\varepsilon})}{\varepsilon} = \xi_{\varepsilon}\sqrt{1 + \xi_{\varepsilon}^2} + \log\left(\xi_{\varepsilon} + \sqrt{1 + \xi_{\varepsilon}^2}\right),
$$

and since $\delta_{\varepsilon}/\varepsilon \to \infty$ as $\varepsilon \to 0$ this implies that $\xi_{\varepsilon} \to \infty$ as $\varepsilon \to 0$. Hence

$$
\frac{\Phi_{\varepsilon}(\delta_{\varepsilon})}{\sqrt{\delta_{\varepsilon}}} = \frac{\phi_{\varepsilon}}{\sqrt{U_{\varepsilon}(\phi_{\varepsilon})}} = \frac{\xi_{\varepsilon}}{\sqrt{\xi_{\varepsilon}\sqrt{1+\xi_{\varepsilon}^2} + \log\left(\xi_{\varepsilon} + \sqrt{1+\xi_{\varepsilon}^2}\right)}} \to 1 \text{ as } \varepsilon \to 0
$$

and we obtain [\(7.7\)](#page-15-2): as $\varepsilon \to 0$

$$
A_{\varepsilon}(\delta_{\varepsilon}) = 2 \log \left(2 \frac{\sqrt{\delta_{\varepsilon}}}{\sqrt{\varepsilon}} \left(1 + o(1) \right) \right) = 2 \log(2 \sqrt{\delta_{\varepsilon}}) - \log \varepsilon + o(1) = -\log \varepsilon \left(1 + o(1) \right).
$$

It follows from (7.6) and (7.7) that

$$
\left(\int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{du}{\varepsilon + \Phi_{\varepsilon}^{2}(u)}\right)^{-1} \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{2\log \varepsilon X_{\varepsilon t}(u,t)}{\varepsilon + \Phi_{\varepsilon}^{2}(u)} du = \frac{\log \varepsilon}{A_{\varepsilon}(\delta_{\varepsilon})} \int_{-A_{\varepsilon}(\delta_{\varepsilon})}^{A_{\varepsilon}(\delta_{\varepsilon})} X_{\varepsilon t}(A_{\varepsilon}^{-1}(p),t) dp
$$

$$
\to u_{x}(x_{1}^{+},t) - u_{x}(x_{1}^{-},t) \quad \text{as } \varepsilon \to 0.
$$

This completes the proof of Theorem [3.3.](#page-5-0)

Remark 7.1. The weak formulation of (1.6) , which is given by Theorem [3.3](#page-5-0) and proved in this Section, is not the only possible weak version of the asymptotic formula for the velocity of the interface, $\zeta'_{\varepsilon}(t)$. For example, if

$$
\tau_1=\max\{\tau_1^+,\tau_1^-\}<\infty,
$$

one can show that

$$
2\log \varepsilon \zeta'_{\varepsilon} \text{ converges weakly in } L^2_{loc}(\tau_1, T) \text{ to } u_x(x_1^+, \cdot) - u_x(x_1^-, \cdot) \text{ as } \varepsilon \to 0. \tag{7.8}
$$

Indeed, in view of Theorem [3.3](#page-5-0) we obtain [\(7.8\)](#page-16-1) if we prove that, given $\varphi \in C_c^{\infty}((\tau, T))$,

$$
\lim_{\varepsilon \to 0} 2 \log \varepsilon \left(\int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{du}{\varepsilon + \Phi_{\varepsilon}^2(u)} \right)^{-1} \int_0^T \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{X_{\varepsilon t}(u, t) \varphi(t)}{\varepsilon + \Phi_{\varepsilon}^2(u)} du dt
$$
\n
$$
= \lim_{\varepsilon \to 0} 2 \log \varepsilon \int_0^T X_{\varepsilon t}(0, t) \varphi(t) dt.
$$

Due to (7.7) , this is equivalent to proving that

$$
\lim_{\varepsilon \to 0} \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{1}{\varepsilon + \Phi_{\varepsilon}^2(u)} \left(\int_0^T \big(X_{\varepsilon t}(u,t) - X_{\varepsilon t}(0,t) \big) \varphi(t) dt \right) du = 0.
$$

By the definition of τ_1^{\pm} , there exists $C > 0$ which does not depend on ε such that $|X_{\varepsilon u}(x,t)| < C$ for $x \in (a, b)$ and $t \in \text{supp }\varphi$. Hence

$$
\left| \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{1}{\varepsilon + \Phi_{\varepsilon}^{2}(u)} \left(\int_{0}^{T} \left(X_{\varepsilon t}(u, t) - X_{\varepsilon t}(0, t) \right) \varphi(t) dt \right) du \right|
$$

\n
$$
= \left| \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{1}{\varepsilon + \Phi_{\varepsilon}^{2}(u)} \left(\int_{0}^{T} \left(\int_{0}^{u} X_{\varepsilon u}(s, t) ds \right) \varphi'(t) dt \right) du \right|
$$

\n
$$
\leq C T \|\varphi'\|_{\infty} \int_{-\delta_{\varepsilon}}^{\delta_{\varepsilon}} \frac{|u|}{\varepsilon + \Phi_{\varepsilon}^{2}(u)} du \to 0 \quad \text{as } \varepsilon \to 0,
$$

since

$$
\frac{|u|}{\varepsilon + \Phi_{\varepsilon}^2(u)} \le \frac{|u|}{\Phi_{\varepsilon}^2(u)} \to 1 \quad \text{as } \varepsilon \to 0.
$$

Remark 7.2. We have imposed condition [\(3.5\)](#page-4-4) to simplify the proof of Theorem [3.3](#page-5-0) and it can be relaxed considerably. For example, if u_0 satisfies the weaker condition [\(2.2\)](#page-2-3), it is enough to require that u_0 (and hence u_{0s}) is strictly monotonic in a neighbourhood of each of its zero's. More precisely, it is possible to use the maximum principle to show that, for small enough ε , this monotonicity property persists for positive times $t \in (0, T]$, which makes it possible to "localize" the proof of Theorem [3.3.](#page-5-0) To keep the proof as transparent as possible, we have preferred to avoid technical complications and require the more restrictive condition [\(3.5\)](#page-4-4).

8. The limit problem: Proof of Theorem [2.3](#page-3-2)

Consider the Dirichlet problem in $(x_i, x_{i+1}) \times (0, T]$:

$$
\begin{cases}\nu_t = |u|u_{xx} + u(1 - |u|) & \text{in } Q_i := (x_i, x_{i+1}) \times (0, T], \\
u(x_i, t) = u(x_{i+1}, t) = 0 & \text{for } t \in (0, T], \\
u(x, 0) = u_0(x) & \text{for } x \in (x_i, x_{i+1}).\n\end{cases}
$$
\n(8.1)

We assume that $u_0 > 0$ in (x_i, x_{i+1}) (the case that $u_0 < 0$ is completely similar) and approximate problem (8.1) by

$$
\begin{cases}\nu_t = u(u_{xx} + 1 - u) & \text{in } Q_i, \\
u(x_i, t) = u(x_{i+1}, t) = \frac{1}{n} & \text{for } t \in (0, T], \\
u(x, 0) = u_0(x) + \frac{1}{n} & \text{for } x \in (x_i, x_{i+1}),\n\end{cases}
$$
\n(8.2)

where $n \in \mathbb{N}$. We collect various basic results on problems [\(8.1\)](#page-17-2) and [\(8.2\)](#page-17-3) in:

Lemma 8.1. Let u_0 satisfy [\(2.2\)](#page-2-3) and let $u_0 > 0$ in (x_i, x_{i+1}) . Then problem [\(8.2\)](#page-17-3) has, for all $n \in \mathbb{N}$, a unique solution $u_{i,n}\in C(\overline{Q}_i)\cap C^{2,1}([x_i,x_{i+1}]\times (0,T]),$ $\underline{u_{i,n}}$ is pointwise decreasing with respect to *n*, and its pointwise limit u_i is the unique solution in $C(\overline{Q}_i) \cap C^{2,1}(Q_i)$ of problem [\(8.1\)](#page-17-2) which is positive in Q_i .

Proof. By the Comparison Principle for uniformly parabolic equations, each smooth solution u of [\(8.2\)](#page-17-3) satisfies $\frac{1}{n} \le u \le \max\{1, \|u_0\|_{\infty} + \frac{1}{n}\}$, whence, by standard theory of quasilinear parabolic equations, problem [\(8.2\)](#page-17-3) has a unique solution $u_{i,n}$ in $C(\overline{Q}_i) \cap C^{2,1}([x_i, x_{i+1}] \times (0,T])$. In addition $u_{i,n}$ is pointwise decreasing with respect to n and there exists

$$
u_i(x,t) = \lim_{n \to \infty} u_{i,n}(x,t) \ge 0 \quad \text{for } (x,t) \in \overline{Q}_i.
$$

It follows easily from the construction of explicit positive subsolutions (not depending on t and n) in subintervals of (x_i, x_{i+1}) that $u_{i,n}(x, t) \ge g_i(x) > 0$ in Q_i for some continuous function g, whence also $u_i(x, t) \ge g(x) > 0$. Hence, by standard a priori local Schauder type bounds ([\[11,](#page-21-11) Chapter 5, Theorem 5.4]) for solutions of quasilinear parabolic equations,

$$
u_{i,n} \to u_i
$$
 in $C_{loc}^{2,1}(Q_i)$, (8.3)

and u_i satisfies the PDE pointwise in Q_i . Since $u_{i,n} = \frac{1}{n}$ at x_i and x_{i+1} and since $u_{i,n}$ is decreasing in *n*, u_i vanishes and is continuous on the lateral boundary $\{x_i, x_{i+1}\} \times [0, T]$ of Q_i . In addition, by local Hölder estimates ([[11,](#page-21-11) Chapter 5, Theorem 1.1]) in $(x_i, x_{i+1}) \times [0, T]$ and the Lipschitz continuity of u_0, u_i is continuous in $(x_i, x_{i+1}) \times \{0\}$. Hence $u_i \in C(\overline{Q}_i) \cap C^{2,1}(Q_i)$ is a solution of problem (8.1) which is strictly positive in Q_i .

It remains to prove the uniqueness claim of Lemma 8.1 . Let v be another classical solution such that $v > 0$ in Q_i . First we show that

$$
0 < v \le u_i \quad \text{in } Q_i. \tag{8.4}
$$

Let $n \in \mathbb{N}$ and let $\delta_n > 0$ be so small that $v(x_i + \delta_n, t) < \frac{1}{n}$ and $v(x_{i+1} - \delta_n, t) < \frac{1}{n}$ for $t \in [0, T]$. Then it follows from the Comparison Principle for uniformly parabolic equations that $v < u_{i,n}$ in $(x_i + \delta_n, x_{i+1} - \delta_n) \times [0, T]$. Since *n* is arbitrary and $\delta_n \to 0$ as $n \to \infty$, this implies [\(8.4\)](#page-18-1).

To show that $v = u_i$ in \dot{Q}_i we observe that, by the equations for u_i and v ,

$$
(\log u_i - \log v)_t = (u_i - v)_{xx} - (u_i - v) \text{ in } Q_i. \tag{8.5}
$$

We would like to test this equation with the first eigenfunction φ_0 of the laplacian in (x_i, x_{i+1}) with homogeneous Dirichlet data such that max $\varphi_0 = 1$. But since [\(8.5\)](#page-18-2) is singular at the lateral boundaries we slightly shrink the interval: let $\delta > 0$ be sufficiently small and let φ_{δ} be the first eigenfunction of the laplacian in $(x_i + \delta, x_{i+1} - \delta)$ with homogeneous Dirichlet data such that max $\varphi_{\delta} = 1$. We denote the first eigenvalue by λ_{δ} :

$$
\lambda_{\delta} = -\frac{\pi^2}{(x_{i+1} - x_i - 2\delta)^2} \to \lambda_0 := -\frac{\pi^2}{(x_{i+1} - x_i)^2} \text{ as } \delta \downarrow 0.
$$

In addition $\varphi_{\delta} \uparrow \varphi$ locally in (x_i, x_{i+1}) as $\delta \downarrow 0$.

Let $t \in (0, T]$ and $\delta > 0$. Multiplying [\(8.5\)](#page-18-2) by φ_{δ} and integrating, we obtain

$$
\int_{x_i+\delta}^{x_{i+1}-\delta} (\log u_i(t) - \log v(t)) \varphi_\delta dx + (1-\lambda_\delta) \int_0^t \int_{x_i+\delta}^{x_{i+1}-\delta} (u_i-v) \varphi_\delta dx dt
$$

= $\sqrt{|\lambda_\delta|} \left(\int_0^t (u_i(x_{i+1}-\delta,t) - v(x_{i+1}-\delta,t)) dt + \int_0^t (u_i(x_i+\delta,t) - v(x_i+\delta,t)) dt \right).$

Since the integrals on the right-hand side vanish as $\delta \rightarrow 0$, it follows from [\(8.4\)](#page-18-1) and the monotone convergence theorem that

$$
0 \leqslant \int_{x_i}^{x_{i+1}} \bigl(\log u_i(t) - \log v(t)\bigr) \varphi_0 \mathrm{d}x = -(1 - \lambda_0) \int_0^t \int_{x_i}^{x_{i+1}} (u_i - v) \varphi_0 \, \mathrm{d}x \mathrm{d}t \leqslant 0.
$$

Hence, by [\(8.4\)](#page-18-1), the continuity of u_i and v and the arbitrariness of t, we conclude that $u_i = v$ in Q_i . \Box

Lemma [8.1](#page-18-0) concerns the sets Q_i for $i = 1 ... , k - 1$, but a similar result can be easily proved in $(a, x_1) \times (0, T]$ and $(x_k, b) \times (0, T]$. At this point the solutions in the $(k + 1)$ single intervals can be "merged together" to define a function u in all of Q , i.e., the restriction of u to one of the sets Q_i coincides with the smooth solution of problem [\(8.1\)](#page-17-2) in Q_i . By construction, u is a classical solution of problem (2.1) .

Vice versa, the restriction of any classical solution of problem (2.1) to one of the sets Q_i is a smooth solution of problem (8.1) in Q_i , so the uniqueness statement in Lemma [8.1](#page-18-0) implies the uniqueness of the classical solution of problem (8.1) .

To complete the proof of Theorem [2.3](#page-3-2) we must show that u is a weak solution of problem (2.1) . This is an immediate consequence of the integral equality [\(8.8\)](#page-19-0) in the following result.

Lemma 8.2. Let $u_{i,n}$ and u_i be defined by Lemma [8.1](#page-18-0) and let $\alpha > -1$. Then there exists a positive *constant* K *which does not depend on* n *such that*

$$
\frac{4(\alpha+1)}{(\alpha+2)^2} \iint_{Q_i} \left(u_{i,n}^{\frac{\alpha+2}{2}} \right)_x^2 dxdt + \int_0^T n^{-(\alpha+1)} \left(|(u_{i,n})_x(x_{i+1},t)| + |(u_{i,n})_x(x_i,t)| \right) dt \le K. \tag{8.6}
$$

In addition $u_i^{\frac{\alpha+2}{2}} \in L^2(0, T; H^1((x_i, x_{i+1}))),$ $\alpha+2$

$$
\frac{\partial}{\partial x}\left(u_{i,n}^{\frac{\alpha+2}{2}}\right) \rightharpoonup \frac{\partial}{\partial x}\left(u_i^{\frac{\alpha+2}{2}}\right) \quad \text{in } L^2(Q_i) \text{ as } n \to \infty,
$$
\n(8.7)

and, for all $\psi \in C_c^{1,1}([x_i, x_{i+1}] \times [0, T)),$

$$
\int_{x_i}^{x_{i+1}} u_0(x)\psi(x,0)dx + \iint_{Q_i} \left(u_i\psi_t - u_i u_{ix}\psi_x - u_{ix}^2\psi + u_i(1-u_i)\psi \right) dxdt = 0.
$$
 (8.8)

Proof. Let $\tau \in (0, T)$. Integration by parts over $Q_i^{\tau} := (x_i, x_{i+1}) \times (\tau, T)$ yields

$$
\frac{4(\alpha+1)}{(\alpha+2)^2} \iint_{Q_i^{\tau}} \left(u_{i,n}^{\frac{\alpha+2}{2}} \right)_x^2 dxdt - \int_{\tau}^T n^{-(\alpha+1)} \left((u_{i,n})_x (x_{i+1}, t) - (u_{i,n})_x (x_i, t) \right) dt
$$

=
$$
\frac{1}{\alpha+1} \int_{x_i}^{x_{i+1}} \left(u_{i,n}^{\alpha+1} (x, \tau) - u_{i,n}^{\alpha+1} (x, \tau) \right) dx + \iint_{Q_{\tau,T}} u_{i,n}^{\alpha+1} (1 - u_{i,n}) dxdt.
$$

Since $u_{i,n} = \frac{1}{n}$ at x_i and x_{i+1} and $u_{i,n} \ge \frac{1}{n}$ in Q_i , we have that $(u_{i,n})_x(x_{i+1}, t) \le 0$ and $(u_{i,n})_x(x_i,t) \geq 0$ for $t \in (0,T]$. Letting $\tau \to 0$, the existence of the constant K follows from the uniform boundedness of $u_{i,n}$ in Q_i .

It remains to prove [\(8.8\)](#page-19-0). Let $\psi \in C_c^{1,1}([x_i, x_{i+1}] \times [0, T))$ and let $\tau \in (0, T)$. Integration by parts over Q_i^{τ} yields

$$
\int_{x_i}^{x_{i+1}} u_{i,n}(x,\tau)\psi(x,\tau)dx + \frac{1}{n} \int_{\tau}^{T} (u_{i,n})_x \psi\Big|_{(x_i,t)}^{(x_{i+1},t)} dt + \iint_{Q_i^{\tau}} (u_{i,n}\psi_t - \frac{1}{2}(u_{i,n}^2)_x \psi_x - (u_{i,n})_x^2 \psi + u_{i,n}(1-u_{i,n})\psi) dx dt = 0.
$$
 (8.9)

We first pass to the limit $n \to \infty$ inside the integrals, for fixed τ . By the Dominated Convergence Theorem, the only nontrivial terms are those containing $(u_{i,n})_x$. In the term with $(u_{i,n}^2)_x$ it is enough to use [\(8.7\)](#page-19-1) with $\alpha = 2$ to pass to the limit. In addition, we obtain from [\(8.6\)](#page-19-2) with $\alpha \in (-1, 0)$ that the integral

$$
\frac{1}{n} \left| \int_{\tau}^{T} (u_{i,n})_x \psi \Big|_{(x_i,t)}^{(x_{i+1},t)} dt \right| \leq C n^{\alpha} \int_{\tau}^{T} n^{-(\alpha+1)} \left(|(u_{i,n})_x (x_{i+1},t) + |(u_{i,n})_x (x_i,t) | \right)
$$

vanishes as $n \to \infty$. It remains to consider the term containing $(u_{i,n})_x^2$. By [\(8.3\)](#page-18-3), for each $\delta > 0$

$$
\iint_{(x_i+\delta,x_{i+1}-\delta)\times(\tau,T)} (u_{i,n})_x^2 \psi \, \mathrm{d}x \mathrm{d}t \to \iint_{(x_i+\delta,x_{i+1}-\delta)\times(\tau,T)} (u_i)_x^2 \psi \, \mathrm{d}x \mathrm{d}t \quad \text{as } n \to \infty.
$$

On the other hand, by the pointwise monotonicity of $u_{i,n}$ with respect to n and the lateral boundary condition $u_{i,n} = \frac{1}{n}$, for all $\eta > 0$ there exist $\delta_{\eta} > 0$ and $n_{\eta} \in \mathbb{N}$ such that $u_{i,n}(x,t) < \eta$ if $n > n_{\eta}$ and if $x < x_i + \delta_n$ or $x > x_{i+1} - \delta_n$. Hence, by [\(8.6\)](#page-19-2) with $\alpha = -1/2$,

$$
\left| \iint_{(x_i, x_i + \delta_\eta) \times (\tau, T)} (u_{i,n})_x^2 \psi \, dxdt \right| \leq \left(\sup_{(x_i, x_i + \delta_\eta) \times (\tau, T)} \sqrt{u_{i,n}} \right) \iint_{(x_i, x_i + \delta_\eta) \times (\tau, T)} u_{i,n}^{-1/2} (u_{i,n})_x^2 |\psi| \, dxdt
$$

 $\leq C_1 \sup_{(x_i, x_i + \delta_\eta) \times (\tau, T)} \sqrt{u_{i,n}} \leq C_1 \sqrt{\eta} \quad \text{for all } n > n_\eta.$

Since *n* is arbitrary this implies that we can let $n \to \infty$ in [\(8.9\)](#page-20-0):

$$
\int_{x_i}^{x_{i+1}} u_i(x,\tau)\psi(x,\tau)dx + \iint_{Q_i^{\tau}} (u_i\psi_t - u_i u_{ix}\psi_x - u_{ix}^2\psi + u_i(1-u_i)\psi) dxdt = 0.
$$

Since $u_{ix} \in L^2(Q_i)$ we can let $\tau \to 0$ and obtain [\(8.8\)](#page-19-0).

Acknowledgement. MB acknowledges the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome "Tor Vergata", CUP E83C18000100006.

 \Box

References

- 1. Aronson, D. G. & Bénilan, P., Régularité des solutions de l'équation des milieux poreux dans \mathbb{R}^N . *C. R. Acad. Sci. Paris Ser. A–B ´ 288* (1979), A103–A105. [Zbl0397.35034](http://www.emis.de/MATH-item?0397.35034) [MR524760](http://www.ams.org/mathscinet-getitem?mr=524760)
- 2. Benzi R., Sbragaglia M., Succi S., Bernaschi M. & Chibbaro S., Mesoscopic lattice Boltzmann modeling of soft-glassy systems: Theory and simulations. *J. Chem. Phys.* 131 (2009), 104903.
- 3. Benzi R., Sbragaglia M., Bernaschi M. & Succi S., Phase-field model of long-time glasslike relaxation in binary fluid mixtures. *Phys. Rev. Lett.* 106 (2011), 164501.
- 4. Bertsch, M., Dal Passo, R., & Ughi, M., Discontinuous "viscosity" solutions of a degenerate parabolic equation. *Trans. Amer. Math. Soc.* 320 (1990), 779–798. [Zbl0714.35039](http://www.emis.de/MATH-item?0714.35039) [MR965742](http://www.ams.org/mathscinet-getitem?mr=965742)
- 5. Bertsch, M., Dal Passo, R., & Ughi, M., Nonuniqueness of solutions of a degenerate parabolic equation. *Ann. Mat. Pura Appl. (4)* 161 (1992), 57–81. [Zbl0796.35083](http://www.emis.de/MATH-item?0796.35083) [MR1174811](http://www.ams.org/mathscinet-getitem?mr=1174811)
- 6. Bertsch, M. & Ughi, M., Positivity properties of viscosity solutions of a degenerate parabolic equation. *Nonlinear Anal.* 14 (1990), 571–592. [Zbl0702.35044](http://www.emis.de/MATH-item?0702.35044) [MR1044287](http://www.ams.org/mathscinet-getitem?mr=1044287)
- 7. Dal Passo, R. & Luckhaus, S., A degenerate diffusion problem not in divergence form. *J. Differential Equations* 69 (1987), 1–14. [Zbl0688.35045](http://www.emis.de/MATH-item?0688.35045) [MR897437](http://www.ams.org/mathscinet-getitem?mr=897437)
- 8. DiBenedetto, E., *Degenerate Parabolic Equations*. Universitext. Springer, New York, 1993. [Zbl0794.](http://www.emis.de/MATH-item?0794.35090) [35090](http://www.emis.de/MATH-item?0794.35090) [MR1230384](http://www.ams.org/mathscinet-getitem?mr=1230384)
- 9. Gompper, G. & Schick, M., Correlation between structural and interfacial properties of amphiphilic systems. *Phys. Rev. Lett.* 65 (1990), 1116.
- 10. Gompper, G. & Zshocke, S., Ginzburg–Landau theory of oil-water-surfactant mixtures. *Phys. Rev. A* 46 (1992), 4836.
- 11. Ladyženskaja, O. A., Solonnikov, V. A., & Ural'ceva, N. N., *Linear and Quasilinear Equations of Parabolic Type*. Trans. Math. Monogr. 23. American Mathematical Society, Providence, RI, 1968. Translated from the Russian by S. Smith. [MR0241822](http://www.ams.org/mathscinet-getitem?mr=0241822)
- 12. Ughi, M., A degenerate parabolic equation modelling the spread of an epidemic. *Ann. Mat. Pura Appl. (4)* 143 (1986), 385–400. [Zbl0617.35066](http://www.emis.de/MATH-item?0617.35066) [MR859613](http://www.ams.org/mathscinet-getitem?mr=859613)
- 13. Vazquez, J. L., ´ *The Porous Medium Equation. Mathematical Theory.* Oxford Math. Monogr. The Clarendon Press, Oxford University Press, Oxford, 2007. [MR2286292](http://www.ams.org/mathscinet-getitem?mr=2286292)