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In this paper, we study second-order and fourth-order elliptic problems which include not only a
Poisson equation in the bulk but also an inhomogeneous Laplace–Beltrami equation on the boundary
of the domain. The bulk and the surface PDE are coupled by a boundary condition that is either
of Dirichlet or Robin type. We point out that both the Dirichlet and the Robin type boundary
condition can be handled simultaneously through our formalism without having to change the
framework. Moreover, we investigate the eigenvalue problems associated with these second-order
and fourth-order elliptic systems. We further discuss the relation between these elliptic problems and
certain parabolic problems, especially the Allen–Cahn equation and the Cahn–Hilliard equation with
dynamic boundary conditions.
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1. Introduction

In this paper, ˝ denotes a bounded domain in Rd (with d 2 N, d > 2) whose boundary is denoted
by � WD @˝ and is supposed to have at least Lipschitz regularity. Moreover, n denotes the outer
unit normal vector field on � .

A second-order problem with bulk-surface coupling. We first consider the following second-order
elliptic system consisting of a Poisson equation in the bulk and an inhomogeneous Laplace–Beltrami
equation on the surface:

�!�u D f in ˝; (1.1a)
��� v C ˛!@nu D g on �; (1.1b)

K@nu D ˛v � u on �: (1.1c)

The pair .f; g/ stands for a generic pair of source terms whose exact properties will be specified in
Section 3. Moreover, !;  > 0, ˛ 2 R and K > 0 are given constants. If ˛ ¤ 0, the equation (1.1a)
in the bulk (i.e., in ˝) and the equation (1.1b) on the surface (i.e., on � ) are coupled through the
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boundary condition (1.1c). In the degenerate case ˛ D 0, the subproblems ((1.1a),(1.1c)) and (1.1b)
are completely decoupled. If K > 0, (1.1c) can be regarded as a Robin type boundary condition,
which is sometimes also referred to as a Fourier type boundary condition. (It is worth mentioning
that from a historical point of view, the term Fourier boundary condition would be more precise as
it seems that Robin never used this type of boundary condition himself. We refer to [29, 30] for a
detailed discussion of this issue.) In the case K D 0, this boundary condition is to be interpreted as
the Dirichlet type boundary condition

uj� D ˛v on �:

By our approach, both cases K > 0 and K D 0 can be handled simultaneously.
For simplicity of the notation and to provide a cleaner presentation, we will set the constants

! and  to one in the analysis. We will see that the choice ! D 1 does not even mean any loss of
generality due to a rescaling argument. We establish the existence and uniqueness of weak solutions
to (1.1) provided that the source terms belong to suitable spaces. Moreover, we develop a regularity
theory for such solutions depending on the regularity of the domain and the source terms.

A second-order eigenvalue problem. Associated with (1.1) is the following eigenvalue problem:

�!�u D �u in ˝; (1.2a)
��� v C ˛!@nu D �v on �; (1.2b)

K@nu D ˛v � u on �: (1.2c)

It can formally be regarded as a generalization of the Wentzell eigenvalue problem

��u D 0 in ˝; (1.3a)
��� uC @nu D �u on �; (1.3b)

or the Steklov eigenvalue problem

��u D 0 in ˝; (1.4a)
@nu D �u on �: (1.4b)

In contrast to classical eigenvalue problems, the eigenvalue does not appear in the equation itself but
in the boundary condition instead. After its introduction in [43], the Steklov eigenvalue problem has
already been extensively investigated in the literature from many different perspectives. We refer
the reader to [2–4, 7, 12, 18, 20, 27, 41] to name but a few. There are also several works on the
Wentzell eigenvalue problem of which we want to mention [15, 16, 33, 46].

To understand the connection of our system (1.1) to the Wentzell problem and the Steklov
problem, we choose K D 0 and ˛ D !�1=2 for any ! > 0. In particular, this means that
!1=2 uj� D v on � due to (1.1c). Multiplying (1.2a) by !�1 and (1.2b) by !�1=2 then yields

��u D �!�1u in ˝; (1.5a)
��� uC @nu D �u on �: (1.5b)

Now, by formally passing to the limit ! ! 1, we obtain the Wentzell problem (1.3) as the limit
system. Choosing first  D !�1 in (1.5) and passing to the formal limit ! ! 1 afterwards, we
arrive at the Steklov problem (1.4).



ON ELLIPTIC SYSTEMS CONSISTING OF BULK AND SURFACE PDES 509

For the analysis of the eigenvalue problem (1.2) we will set the constants ! and  to one again.
We prove that there exists a positive unbounded sequence of eigenvalues whose corresponding
eigenfunctions form an orthonormal basis of a suitable linear subspace of L2.˝/ � L2.� /.
Moreover, we conclude regularity properties for the eigenfunctions and we show that the eigenvalues
can be characterized by a variational minimax principle.

A fourth-order problem with bulk-surface coupling. We next investigate the following fourth-order
elliptic problem with bulk-surface coupling:

�2� D f in ˝; (1.6a)

�2� � ˛�� @n� � ˇ@n�� D g on �; (1.6b)
K @n� D ˛ � � on �; (1.6c)
L@n�� D ˇ�� ��� � ˛ˇ@n� on �: (1.6d)

Here, K;L > 0 and ˛; ˇ 2 R are given constants, and .f; g/ denotes a pair of generic source terms
whose properties will be specified in Section 5. We further suppose that ˛ and ˇ satisfy

˛ˇj˝j C j� j ¤ 0;

which will be crucial for the analysis. We will see that the fourth-order system (1.6) can be
decoupled into two second-order systems which are both of the type (1.1):

��� D � in ˝; (1.7a)
��� C ˛@n� D � on �; (1.7b)

K @n� D ˛ � � on �; (1.7c)

��� D f in ˝; (1.7d)
��� � C ˇ@n� D g on �; (1.7e)

L@n� D ˇ� � � on �: (1.7f)

For that reason, the theory developed for the problem (1.1) can be used to establish weak well-
posedness and higher regularity for the system (1.6).

A fourth-order eigenvalue problem. Inspired by the Steklov eigenvalue problem, also fourth-
order eigenvalue problems, in which the eigenvalue appears in the boundary condition, have been
extensively investigated in the literature. We refer the reader to [5, 8–10, 19, 26, 39, 40] just to
mention a few of them. Because of their relation to the Steklov problem, these models are sometimes
referred to as biharmonic Steklov eigenvalue problems.

In this paper, we study the following eigenvalue problem:

�2� D �� in ˝; (1.8a)

�2� � ˛�� @n� � ˇ@n�� D � on �; (1.8b)
K @n� D ˛ � �; on �; (1.8c)
L@n�� D ˇ�� ��� � ˛ˇ@n� on �: (1.8d)

As stated above, K;L > 0 and ˛; ˇ 2 R are given constants with ˛ˇj˝j C j� j ¤ 0.
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The novelty of this eigenvalue problem is that it comprises not only a boundary condition but a
fourth-order elliptic equation on the surface. It can thus be regarded as a bulk-surface biharmonic
eigenvalue problem. In contrast to the fourth-order Steklov type problems mentioned above, the
eigenvalue appears both in the Poisson equation (1.8a) in the bulk and in the Laplace–Beltrami
equation (1.8b) on the surface but not in the coupling conditions (1.8c) and (1.8d).

As in the second-order case, we prove the existence of a positive unbounded sequence of
eigenvalues whose associated eigenfunctions form an orthonormal basis of a suitable linear subspace
of .H 1.˝//� � .H 1.� //� (with the asterisk indicating the dual space). We further establish
regularity properties for the eigenfunctions and we show that the eigenvalues can be characterized
by a variational minimax principle.

Relation to elliptic and parabolic problems with dynamic boundary conditions. We further want
to mention that the problems studied in this paper are not only interesting from the perspective of
pure analysis but can also be used in the treatment of parabolic problems (especially phase-field
models) with dynamic boundary conditions.

The second order problem (1.1) is closely related to the Allen–Cahn equation subject to a
dynamic boundary condition that is also of Allen–Cahn type:

@tu ��u D F
0.u/ in ˝ � .0; T /; (1.9a)

@tv ��� v C ˛@nu D G
0.u/ on � � .0; T /; (1.9b)

K@nu D ˛v � u on � � .0; T /; (1.9c)
.u; v/jtD0 D .u0; v0/ on ˝ � �: (1.9d)

In this phase-field model, u D u.x; t/ and v D v.x; t/ (the so-called phase-field variables) describe
the difference in volume fractions of two different materials located in the bulk˝ and on the surface
� , respectively. This means that the functions u and v are expected to attain values close to 1 or �1
in the regions where only one of the materials is present. To describe phase separation processes, the
bulk potential F and the surface potential G usually exhibit a double-well structure with minima at
˙1 and a local maximum at 0.

In the Dirichlet case (K D 0), the problem was investigated, for instance, in [11, 13, 42]. The
Robin case (K > 0) was studied in [14, 37]. We further refer to [23] where a problem similar to (1.9)
was discussed.

In the analysis of models like (1.9) a deeper understanding of the elliptic system (1.1) is very
beneficial. Although different strategies have been used in the literature to prove well-posedness,
the analysis of the second order eigenvalue problem offers a new possibility to approach systems of
the type (1.9). Namely, the orthonormal basis of eigenfunctions to the problem (1.2) can be used to
approximate equations like (1.9) by means of a Faedo–Galerkin scheme.

We also want to mention some further works on second order elliptic or parabolic problems
subject to dynamic boundary conditions that are related to the elliptic problem (1.1). In [45], the
Laplace equation with dynamic boundary conditions of reaction-diffusion type was studied, and
in [24], nonlinear problems with parabolic dynamic boundary conditions were investigated. An
overview about certain classes of elliptic and parabolic problems with dynamic boundary conditions
of Wentzell type is given in [22].

Similar to the second-order case, the fourth-order elliptic problem (1.6) (or its decoupled
equivalent (1.7)) is closely related to the Cahn–Hilliard equation subject to a dynamic boundary
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condition that also exhibits a Cahn–Hilliard structure:

F 0.�/ ��� D � in ˝ � .0; T /; (1.10a)
G0. / ��� C ˛@n� D � on � � .0; T /; (1.10b)

K @n� D ˛ � � on � � .0; T /; (1.10c)

@t� ��� D 0 in ˝ � .0; T /; (1.10d)
@t ��� � C ˇ@n� D 0 on � � .0; T /; (1.10e)

L@n� D ˇ� � � on � � .0; T /; (1.10f)

.�;  /jtD0 D .�0;  0/ on ˝ � �: (1.10g)

As in the Allen–Cahn equation (1.9), the functions � D �.x; t/ and  D  .x; t/ denote phase-
field variables, and F and G denote the bulk and the surface potential, respectively. Usually both
F and G exhibit a double-well structure as described above. Moreover, � D �.x; t/ stands for the
chemical potential in the bulk whereas � D �.x; t/ denotes the chemical potential on the surface.

The system (1.10) with K D L D 0 was introduced and analyzed in [21, 28]. In [38], the
model (1.10) with K D 0 and L D 1 (meaning @n� D 0 on � � .0; T /) was derived by an
energetic variational approach. This system was further generalized in [34] by also allowingK > 0.
The asymptotic limit K ! 0 was also studied in [34]. The case K D 0 and 0 < L < 1 and its
asymptotic limits L! 0 and L!1 were investigated in [35]. A similar nonlocal Cahn–Hilliard
model was proposed and analyzed in [36].

In the analysis of these models the second-order elliptic problem (1.1) plays a crucial role. For
instance in [25, 34, 35], where well-posedness of (1.10) was established based on a gradient-flow
approach, the system (1.1) was essential to define the underlying inner product. However, we point
out that the cases K D 0 (or L D 0) and K > 0 (or L > 0) always had to be handled separately,
whereas in this paper we establish a formalism to approach all these cases simultaneously. We are
further convinced that the orthonormal basis of eigenfunctions to the second-order problem (1.2)
or the fourth-order problem (1.8) could potentially be used to discretize the system (1.10) by a
Faedo–Galerkin scheme, which would provide a new approach to tackle such problems.

2. Notation and preliminaries

In this section we introduce some notation and preliminaries that will be used throughout this paper.

.P1/ In this paper, N denotes the set of natural numbers excluding zero, and N0 D N [ f0g. In
general, ˝ will denote a bounded domain in Rd for some d 2 N with d > 2 whose boundary
� WD @˝ has at least Lipschitz regularity. The case d D 1 is excluded as the Laplace–
Beltrami operator does not make sense on a boundary consisting only of single points.

.P2/ For any Banach space X , its norm will be denoted by k � kX and its dual space is denoted
by X�. For any ' 2 X� and � 2 X , we write h' ;�iX to denote their dual pairing. If X is a
Hilbert space, its inner product is denoted by .�; �/X .

.P3/ For any 1 6 p 6 1, Lp.˝/ and Lp.� / stand for the Lebesgue spaces that are equipped
with the standard norms k � kLp.˝/ and k � kLp.� /. For s > 0 and 1 6 p 6 1, the symbols
W s;p.˝/ and W s;p.� / denote the Sobolev spaces with corresponding norms k � kW s;p.˝/
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and k � kW s;p.� /. Note thatW 0;p can be identified with Lp . All Lebesgue spaces and Sobolev
spaces are Banach spaces and if p D 2, they are even Hilbert spaces. In this case we will write
H s.˝/ D W s;2.˝/ and H s.� / D W s;2.� /.

.P4/ Let C1.˝/ and C1.� / denote the spaces of smooth functions on ˝ or � , respectively. For
brevity, we will use the notation

C1 WD C1.˝/ � C1.� /:

.P5/ For any functions � 2 H 1.˝/� and � 2 H 1.� /�, we define their generalized mean by the
duality pairings

h�i˝ WD h� ;1iH1.˝/� ; h�i� WD h� ;1iH1.� /� :

If additionally � 2 L1.˝/ or � 2 L1.� /, the mean can be expressed as

h�i˝ WD
1

j˝j

Z
˝

� dx; h�i� WD
1

j� j

Z
�

� dS;

respectively.

.P6/ For any integer k 2 N0, we introduce the space

Hk
WD H k.˝/ �H k.� /

which is endowed with the standard inner product�
.u; v/;.�; �/

�
Hk
WD
�
u;�

�
Hk.˝/

C
�
v ;�

�
Hk.� /

; .u; v/; .�; �/ 2 Hk

and the induced norm

k.u; v/kHk WD
�
.u; v/;.u; v/

�1=2
Hk
; .u; v/ 2 Hk :

This means that .Hk ; .� ; �/Hk ; k � kHk / is a Hilbert space.

.P7/ For any k 2 N0, m 2 N and K > 0, we define the closed linear subspaces

Hm
K;˛ WD

(
Hm; if K > 0;˚
.u; v/ 2 Hm

j uj� D ˛v a.e. on �
	
; if K D 0:

Vk
ˇ WD

˚
.u; v/ 2 Hm

j ˇ j˝j hui˝ C j� j hvi� D 0
	
;

Wm
K;˛;ˇ WD Hm

K;˛ \Vm
ˇ :

Note that these subspaces are Hilbert spaces with respect to the inner product .� ; �/Hr and its
induced norm k � kHr for r D k or r D m, respectively.

.P8/ Let K > 0 and ˛ 2 R be any real numbers. We set

�.K/ WD

(
K�1; if K > 0;

0; if K D 0;
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and we define a bilinear form on H1 �H1 by

�
.�;  /;.�; �/

�
K;˛
WD

Z
˝

r� � r� dx

C

Z
�

r� � r� � dS C �.K/
Z
�

.˛ � �/.˛� � �/ dS;

for all .�;  /; .�; �/ 2 H1. Moreover, we set

k.�;  /kK;˛ WD
�
.�;  /;.�;  /

�1=2
K;˛
:

Now, let ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary. Then the bilinear form .� ; �/K;˛ defines
an inner product on W1

K;˛;ˇ
, and k � kK;˛ defines a norm on W1

K;˛;ˇ
that is equivalent to the

norm k � kH1 (see Corollary A.2 in the appendix).

The space �
W1
K;˛;ˇ ; .� ; �/K;˛ ; k � kK;˛

�
is a Hilbert space. Unless stated otherwise, we understand the space W1

K;˛;ˇ
to be standardly

endowed with the inner product .� ; �/K;˛ and the norm k � kK;˛ .

.P9/ For any ˇ 2 R, we define the space

V�1ˇ WD
˚
.u; v/ 2 .H1/� j ˇ j˝j hui˝ C j� j hvi� D 0

	
:

This entails the chain of inclusions

W1
K;˛;ˇ � V1

ˇ � V�1ˇ � .H
1/� � .H1

K;˛/
�

for all K > 0 and ˛; ˇ 2 R.

3. Second-order elliptic problems with bulk-surface coupling of Robin or Dirichlet type

In this section, we want to investigate the second-order elliptic system (1.1). For simplicity of the no-
tation and to provide a cleaner presentation, we set ! D  D 1. The system (1.1) is thus restated as

��u D f in ˝; (3.1a)
��� v C ˛@nu D g on �; (3.1b)

K@nu D ˛v � u on �; (3.1c)

where ˛ 2 R and K > 0 are given constants.
In fact, the choice ! D 1 means no loss of generality due to the following rescaling argument:

Let ˛ 2 R, !;  > 0 and K > 0 be arbitrary and let .u; v/ be any solution to the system (1.1). It is
then straightforward to check that . Qu; Qv/ WD !.u; v/ is a solution to the system (1.1) with ! and 
being replaced by Q! WD 1 and Q WD !�1, respectively. Hence, if the solution .u; v/ is known, the
solution . Qu; Qv/ can directly be recovered.

Although it can not be justified by rescaling, we confine ourselves to investigate the problem for
 D 1. We point out that the case  ¤ 1 can be handled by the same analytical methods. That is, in
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the case  ¤ 1, the definition of the inner product .� ; �/K;˛ would have to be modified slightly (see
Remark 3.2 (d)).

As already pointed out in the introduction, for K > 0, the coupling equation (3.1c) can be
regarded as the Robin type boundary condition

@nuj� D
1

K

�
˛v � u

�
a.e. on � : (3.2)

For K D 0, (3.1c) is to be interpreted as the Dirichlet type boundary condition

uj� D ˛v a.e. on � : (3.3)

Our approach allows to handle both cases simultaneously.
We first consider the system (3.1) formally and we assume that the functions u, v, f and g

are sufficiently regular. After testing (3.1a) and (3.1b) with test functions � and �, respectively,
integration by parts leads to the equationZ

˝

ru � r� dx C
Z
�

r� v � r� � dS C
Z
�

@nu.˛� � �/ dS D
Z
˝

f � dx C
Z
�

g� dS: (3.4)

Invoking the boundary condition (3.1c), we find thatZ
�

@nu.˛� � �/ dS D �.K/
Z
�

.˛v � u/.˛� � �/ dS:

Hence, in view of (P8), the equation (3.4) can be expressed as�
.u; v/;.�; �/

�
K;˛
D
�
.f; g/;.�; �/

�
H0
D
˝
.f; g/;.�; �/

˛
H1
K;˛

:

This motivates the following definition.

Definition 3.1. LetK > 0 and ˛ 2 R be arbitrary, let˝ � Rd be a bounded Lipschitz domain and
let .f; g/ 2 V�1˛ be arbitrary.

Then a pair .u; v/ 2 H1
K;˛ is called a weak solution of the system (3.1) if the weak formulation�

.u; v/;.�; �/
�
K;˛
D
˝
.f; g/;.�; �/

˛
H1
K;˛

(3.5)

is satisfied for all test functions .�; �/ 2 H1
K;˛ .

Remark 3.2. (a) Suppose that the functions .u; v/ 2 H1
K;˛ and .f; g/ 2 V�1˛ satisfy the

weak formulation (3.5). Choosing the test functions .�; �/ D .˛; 1/ in (3.5), we obtain the
compatibility condition

˛ j˝j hf i˝ C j� j hgi� D 0: (3.6)

For that reason, this constraint is incorporated in the space of admissible source terms V�1˛ .
Moreover, in the case K > 0, we may choose .�; �/ D .1; 0/ and .�; �/ D .0; 1/. This leads to

� j˝j hf i˝ D
1

K

Z
�

.˛v � u/ dS; j� j hgi� D ˛
1

K

Z
�

.˛v � u/ dS (3.7)

if K > 0.
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(b) Suppose that .u; v/ 2 H1
K;˛ is a weak solution of the system (3.1) to the source terms .f; g/ 2

V�1˛ . One can easily see that then the pair

.uC ˛c; v C c/ 2 H1
K;˛

is also a weak solution to the source terms .f; g/ for any constant c 2 R. Hence, in order to
discuss unique weak solutions, this constant c needs to be fixed. This can be done, for instance,
by demanding that .u; v/ 2W1

K;˛;ˇ
for some suitable ˇ 2 R.

(c) We want to mention that a second-order elliptic equation similar to ours has been investigated
in [17]. The system studied there reads as follows:

��uC u D f in ˝; (3.8a)
��� v C v C @nu D g on �; (3.8b)

@nu D ˇv � ˛u on �; (3.8c)

where ˛ and ˇ are positive constants. Although we will use similar techniques to tackle the
problem (3.1), it is not possible to just resort to the results established in [17]. For instance,
because of the additional terms “Cu” in (3.8a) and “Cv” in (3.8b), there is no compatibility
condition (such as (3.6) for our model).

(d) To investigate the system (1.1) with  ¤ 1, the inner product .� ; �/K;˛ would have to be replaced
by

�
.�;  /;.�; �/

�
K;˛;

WD

Z
˝

r� � r� dx C 
Z
�

r� � r� � dS

C �.K/

Z
�

.˛ � �/.˛� � �/ dS;

for all .�;  /; .�; �/ 2 H1. However, as  is just a positive constant, this modification would not
have any crucial impact on the analysis. Thus, the choice  D 1 is not a real loss of generality.

We now intend to establish existence and uniqueness as well as regularity results for weak
solutions of the system (3.1). In view of Remark 3.2 (b), we require that the weak solution belongs
to W1

K;˛;ˇ
for any given ˇ 2 R with ˛ˇj˝j C j� j ¤ 0. This is stated by the following theorem.

Theorem 3.3. Let K > 0 and ˛ 2 R be arbitrary and let ˝ � Rd be a bounded Lipschitz domain.
Then the following holds:

(a) For any ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 and any pair of source terms .f; g/ 2 V�1˛ , there exists
a unique weak solution .u.f;g/; v.f;g// 2W1

K;˛;ˇ
of the system (3.1).

This means, we can define a solution operator

SK;˛;ˇ D
�
S˝K;˛;ˇ ;S

�
K;˛;ˇ

�
W V�1˛ !W1

K;˛;ˇ � V�1ˇ ;

SK;˛;ˇ .f; g/ WD .u.f;g/; v.f;g//
(3.9)

mapping any pair of source terms .f; g/ 2 V�1˛ onto the corresponding weak solution
.u.f;g/; v.f;g// 2W1

K;˛;ˇ
of the system (3.1).
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Moreover, it holds that SK;˛;ˇ is injective and continuous withSK;˛;ˇ .f; g/


H1
6 C k.f; g/k.H1

K;˛
/� (3.10)

for a constant C > 0 depending only on ˝, K, ˛ and ˇ.
(b) Suppose that ˝ is of class C kC2 and that .f; g/ 2 Vk

˛ for any k 2 N0. Then it holds that
SK;˛;ˇ .f; g/ 2 HkC2

K;˛ with SK;˛;ˇ .f; g/


HkC2
6 C k.f; g/kHk (3.11)

for a constant C > 0 depending only on ˝, K, ˛, ˇ and k.
This means that SK;˛;ˇ .f; g/ is a strong solution of the system (3.1), i.e., the equations of (3.1)
are satisfied (at least) almost everywhere in ˝ and on � , respectively.

(c) Suppose that ˝ is of class C1 and that .f; g/ 2 Vm
˛ for every m 2 N. Then it holds that

SK;˛;ˇ .f; g/ 2 C1.

Proof. In this proof, let C > 0 denote generic constants depending only on ˝, K, ˛ and ˇ.
Proof of .a/. Recall that W1

K;˛;ˇ
is standardly endowed with the inner product .� ; �/K;˛ and its

induced norm k � kK;˛ , and that

.f; g/ 2 V�1˛ � .H
1
K;˛/

�:

Invoking Corollary A.2, we obtain the estimate˝
.f; g/;. N�; N�/

˛
H1
K;˛

6 k.f; g/k.H1
K;˛

/�

. N�; N�/
H1

6 C k.f; g/k.H1
K;˛

/�

. N�; N�/
K;˛

(3.12)

for all . N�; N�/ 2W1
K;˛;ˇ

. This means that the mapping

W1
K;˛;ˇ 3 .

N�; N�/ 7!
˝
.f; g/;. N�; N�/

˛
H1
K;˛

2 R

defines a continuous linear functional which thus belongs to .W1
K;˛;ˇ

/�. Hence, the Lax–Milgram
theorem implies the existence of a unique pair .u.f;g/; v.f;g// 2W1

K;˛;ˇ
such that�

.u.f;g/; v.f;g// ;. N�; N�/
�
K;˛;ˇ

D
˝
.f; g/;. N�; N�/

˛
H1
K;˛

for all . N�; N�/ 2W1
K;˛;ˇ : (3.13)

It remains to show that (3.13) holds true for all test functions in H1
K;˛ . To this end, let .�; �/ 2 H1

K;˛

be arbitrary. We choose

N� WD � � ˇc and N� WD � � c where c WD
ˇ
R
˝
� dx C

R
�
� dS

ˇ2 j˝j C j� j
:

By this construction, we have . N�; N�/ 2 H1
K;˛ with

ˇ

Z
˝

N� dx C
Z
�

N� dS D ˇ
Z
˝

� dx C
Z
�

� dS �
�
ˇ2 j˝j C j� j

�
c D 0:
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This means that . N�; N�/ 2 W1
K;˛;ˇ

. Plugging . N�; N�/ into (3.13) we observe that the constant terms
cancel out. Hence, since .�; �/ 2 H1

K;˛ was arbitrary, we conclude that (3.13) holds true for all
test functions .�; �/ 2 H1

K;˛ . This means that .u.f;g/; v.f;g// is the unique weak solution of the
system (3.1) in the space W1

K;˛;ˇ
. In particular, the solution operator SK;˛;ˇ is well-defined.

Testing the weak formulation (3.5) with .�; �/ D .u.f;g/; v.f;g//, and using the estimate (3.12)
as well as Young’s inequality, we conclude that.u.f;g/; v.f;g//2K;˛ D ˝.f; g/;.u.f;g/; v.f;g//˛H1

K;˛

6 C k.f; g/k.H1
K;˛

/�

.u.f;g/; v.f;g//K;˛ (3.14)

which proves (3.10). Thus, (a) is established.
In the following we write .u; v/ WD SK;˛;ˇ .f; g/ for brevity. The generic constants denoted

by C may now also depend on k.
Proof of .b/ in the case K > 0. We first prove the assertion for k D 0. Fixing � D 0 the weak
formulation (3.5) reduces toZ

�

r� v � r� � dS D
Z
�

g� �
˛

K
.˛v � u/� dS; � 2 H 1.� /:

This means that v is a weak solution of the elliptic equation

��� v D G on � with G WD g �
1

K
˛.˛v � u/:

As u 2 H 1.˝/ ,! H 1=2.� /, we know that G 2 L2.� /. Hence, we can apply regularity theory
for elliptic equations on submanifolds (see, e.g., [44, Section 5, Thm. 1.3] and recall that � is a
compact submanifold of class C 2 without boundary) to infer that v 2 H 2.� / with

kvkH2.� / 6 C kGkL2.� / C C kvkH1.� / 6 C kgkL2.� / C C k.u; v/kH1 :

Proceeding as in (3.14) and using the equivalence of the norms k � kK;˛ and k � kH1 (see Corol-
lary A.2), we conclude that

k.u; v/kH1 6 C k.u; v/kK;˛ 6 C k.f; g/kH0 (3.15)

and thus,

kvkH2.� / 6 C k.f; g/kH0 : (3.16)

Now, we choose � D 0 in (3.5). This leads toZ
˝

ru � r� dx D
Z
˝

f � dx C �.K/
Z
�

.˛v � u/� dS; � 2 H 1.˝/:

This means that u is a weak solution to the Poisson–Neumann problem(
��u D f in ˝;
@nu D F on �;

with F WD
1

K
.˛v � u/:
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From u 2 H 1.˝/ ,! H 1=2.� / and (3.7), it follows that

F 2 H 1=2.� / and
Z
�

F dS D �
Z
˝

f dx:

This allows us to apply regularity theory for Poisson’s equation with inhomogeneous Neumann
boundary condition (see, e.g., [44, Section 5, Prop. 7.7]) to infer that u 2 H 2.˝/ with

kukH2.˝/ 6 C kf kL2.˝/ C C kukH1.˝/ C C kF kH1=2.� / :

Using the continuous embeddings H 1.˝/ ,! H 1=2.� / and H 1.� / ,! H 1=2.� /, we obtain

kF kH1=2.� / 6 C kukH1=2.� / C C kvkH1=2.� / 6 C kukH1.˝/ C C kvkH1.� / ;

and thus,

kukH2.˝/ 6 C kf kL2.˝/ C C kukH1.˝/ C C kvkH1.� / : (3.17)

Combining (3.15), (3.16) and (3.17), we eventually conclude that

k.u; v/kH2 6 C k.f; g/kH0 :

This proves the assertion if k D 0.
The result for k > 0 can be established inductively as the regularity results cited above hold true

for any integer k > 0. Assuming that .u; v/ 2 Vk
˛ is already established for some k > 0, we can

proceed analogously to the case k D 0 to conclude that .u; v/ 2 HkC2 with

k.u; v/kHkC2 6 C k.f; g/kHk :

This means that (b) is established if K > 0.

Proof of .b/ in the case K D 0. As in the case K > 0, we first prove the assertion for k D 0.
Choosing an arbitrary test function � 2 H 1

0 .˝/ and fixing � D 0, it obviously holds that .�; �/ 2
H1
K;˛ since �j� D 0 D ˛� is satisfied almost everywhere on � . Plugging .�; �/ into the weak

formulation (3.5), we infer that Z
˝

ru � r� dx D
Z
˝

f � dx:

In particular, as � 2 H 1
0 .˝/ was arbitrary, this holds true for all test functions � 2 C1c .˝/. This

implies that the distributional derivative �u belongs to L2.˝/ and satisfies

��u D f a.e. in ˝:

We further know that uj� D ˛v 2 H 1.� /. Hence, we can apply elliptic regularity theory for
the Poisson–Dirichlet problem (see, e.g., [32, Thm. 3.2] or [14, Thm. A.2]) to conclude that u 2
H 3=2.˝/ with

kukH3=2.˝/ 6 C
�
kf kL2.˝/ C kvkH1.� /

�
: (3.18)
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Now, since �u 2 L2.˝/ and u 2 H 3=2.˝/, we can use a variant of the elliptic trace theorem (see,
e.g., [32, Thm. 2.27] or [14, Thm. A.1]) to conclude that @nu 2 L

2.� / with

k@nukL2.� / 6 C kukH3=2.˝/ : (3.19)

Consequently, integration by parts givesZ
˝

ru � r� dx �
Z
˝

f � dx D
Z
�

@nu� dS for all � 2 H 1.˝/: (3.20)

Let now � 2 H 1.� / be arbitrary. According to the inverse trace theorem (see, e.g., [31, Thm. 4.2.3])
there exists a function N� 2 H 3=2.˝/ such that N�j� D �. We choose � D ˛�1 N� and thus,
.�; �/ 2 H1

K;˛ . Plugging this pair of test functions into the weak formulation (3.5) and using the
identity (3.20), we obtain Z

�

r� v � r� � dS D
Z
�

.g � ˛@nu/� dS:

As � 2 H 1.� / was arbitrary, this implies that v is a weak solution of the elliptic equation

��� v D G on � with G WD g � ˛@nu:

Since G 2 L2.� /, we can apply regularity theory for elliptic equations on submanifolds (see,
e.g., [44, Section 5, Thm. 1.3] and recall that � is a compact submanifold of class C 2 without
boundary) to conclude that v 2 H 2.� / with

kvkH2.� / 6 C kGkL2.� / 6 C kgkL2.� / C C k@nukL2.� / :

Using the estimate (3.15) (which obviously holds true for K D 0), (3.18) and (3.19), we thus get

kvkH2.� / 6 C k.f; g/kH0 : (3.21)

As uj� D ˛v almost everywhere on � , we further deduce that uj� 2 H 2.� /. Recalling that
��u D f almost everywhere in˝, and invoking elliptic regularity theory for the Poisson–Dirichlet
problem (see, e.g., [32, Thm. 3.2] or [14, Thm. A.2]), we eventually conclude that u 2 H 2.˝/ with

kukH2.˝/ 6 C
�
kf kL2.˝/ C kvkH2.� /

�
6 k.f; g/kH0 : (3.22)

Hence, in combination with (3.21), the estimate

k.u; v/kH2 6 C k.f; g/kH0

directly follows. This proves the assertion if k D 0.
The result for k > 0 can be established inductively as the regularity results cited above hold true

for any integer k > 0. Assuming that .u; v/ 2Wk
K;˛;ˇ

is already established for some k > 0, we
can proceed analogously to the case k D 0 to conclude that .u; v/ 2 HkC2 with

k.u; v/kHkC2 6 C k.f; g/kHk :

This means that (b) is established if K D 0.
In summary, this completes the proof of (b).

Proof of .c/. The claim follows by a simple induction exploiting Sobolev’s embedding theorem.
Hence, the proof of Theorem 3.3 is complete.
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Corollary 3.4. Let K > 0 and ˛ 2 R be arbitrary, let ˝ � Rd be a bounded Lipschitz domain,
and let SK;˛;˛ denote the solution operator that was introduced in Theorem 3.3 (a) (with ˇ WD ˛).
Then the operator

S0K;˛;˛ WD SK;˛;˛jV0˛ W V
0
˛ ! V0

˛ (3.23)

has the following properties:

(a) S0K;˛;˛ is linear, continuous and compact.
(b) S0K;˛;˛ is injective and thus, it holds that ker.S0K;˛;˛/ D f.0; 0/g.
(c) S0K;˛;˛ is self-adjoint with respect to the inner product .� ; �/H0 on V0

˛ .

Proof. Proof of .a/. It directly follows from Theorem 3.3 (a) that the operator S0K;˛;˛ is well-defined
and linear. Let now .f; g/ 2 V0

˛ be arbitrary. Testing the weak formulation (3.5) written for .u; v/ D
S0K;˛;˛.f; g/ with .�; �/ D S0K;˛;˛.f; g/, and using the Cauchy–Schwarz inequality, we obtainS0K;˛;˛.f; g/

2
K;˛
D
�
.f; g/;S0K;˛;˛.f; g/

�
H0

6 k.f; g/kH0
S0K;˛;˛.f; g/


K;˛

:

and the continuity of the operator S0K;˛;˛ follows immediately. Since

S0K;˛;˛.V
0
˛/ �W1

K;˛;˛;

and as the embedding W1
K;˛;˛ ,! V0

˛ is compact, we conclude that S0K;˛;˛ is a compact operator.

Proof of .b/. Theorem 3.3 (a) states that the operator S0K;˛;˛ is injective and thus, its kernel is trivial.

Proof of .c/. Let .f1; g1/; .f2; g2/ 2 V0
˛ be arbitrary. Recalling the definition of the operator SK;˛;˛ ,

we obtain �
SK;˛;˛.f1; g1/ ;.f2; g2/

�
H0
D
�
SK;˛;˛.f1; g1/ ;SK;˛;˛.f2; g2/

�
K;˛

D
�
.f1; g1/ ;SK;˛;˛.f2; g2/

�
H0
;

which proves the assertion of (c).
Thus, the proof is complete.

Corollary 3.5. Let K > 0 and ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary, and let ˝ � Rd be a
bounded Lipschitz domain. Then the bilinear form

.� ; �/K;˛;ˇ;� W V
�1
˛ �V�1˛ ! R;

..f1; g1/ ;.f2; g2//K;˛;ˇ;� WD
�
SK;˛;ˇ .f1; g2/ ;SK;˛;ˇ .f1; g2/

�
K;˛

defines an inner product on the space V�1˛ . The induced norm

k.f; g/kK;˛;ˇ;� WD
�
.f; g/;.f; g/

�1=2
K;˛;ˇ;�

; .f; g/ 2 V�1˛ ;

is equivalent to the norm k � k.H1
K;˛

/� on V�1˛ and thus, the space�
V�1˛ ; .� ; �/K;˛;ˇ;� ; k � kK;˛;ˇ;�

�
is a Hilbert space.
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Proof. The mapping .� ; �/K;˛;ˇ;� is obviously well-defined, bilinear and symmetric. Moreover, it
holds that �

.f; g/;.f; g/
�
K;˛;ˇ;�

> 0 for all .f; g/ 2 V�1˛ :

Recalling that .� ; �/K;˛ is an inner product on W1
K;˛;ˇ

, and that the solution operator SK;˛;ˇ is linear
and injective, we conclude that�

.f; g/;.f; g/
�
K;˛;ˇ;�

D 0 , SK;˛;ˇ .f; g/ D .0; 0/ , .f; g/ D .0; 0/:

This means that .� ; �/K;˛;ˇ;� is positive definite and thus, it defines an inner product on the space
V�1˛ .

To prove the equivalence of the norms k � kK;˛;ˇ;� and k � k.H1
K;˛

/� , let .f; g/ 2 V�1˛ be arbitrary,
and let C > 0 denote generic constants depending only on ˝, K, ˛ and ˇ. We first infer from
Theorem 3.3 (a) and Corollary A.2 that

k.f; g/kK;˛;ˇ;� D
SK;˛;ˇ .f; g/


K;˛

6 C
SK;˛;ˇ .f; g/


H1

6 C k.f; g/k.H1
K;˛

/� :

Let now .�; �/ 2 H1
K;˛ with k.�; �/kH1 6 1 be arbitrary. Recalling the definition of the operator

SK;˛;ˇ and using Lemma A.1, we get˝
.f; g/;.�; �/

˛
H1
K;˛

D
�
SK;˛;ˇ .f; g/;.�; �/

�
K;˛

6
SK;˛;ˇ .f; g/


K;˛
k.�; �/kK;˛

6 C
SK;˛;ˇ .f; g/


K;˛
k.�; �/kH1 6 C

SK;˛;ˇ .f; g/

K;˛

and thus,
k.f; g/k.H1

K;˛
/� 6 C

SK;˛;ˇ .f; g/

K;˛

:

This means that the equivalence of the norms is established. Thus, the proof is complete.

4. A second-order eigenvalue problem

For K > 0, ˛ 2 R and � 2 R, we now consider the following second-order eigenvalue problem
with bulk-surface coupling of Robin/Dirichlet type:

��u D �u in ˝; (4.1a)
��� v C ˛@nu D �v on �; (4.1b)

K@nu D ˛v � u on �: (4.1c)

We immediately notice that for all � 2 R there exists at least one weak solution of the system (4.1)
in the space W1

K;˛;˛ , as the pair of null functions .u; v/ D .0; 0/ 2 W1
K;˛;˛ trivially solves the

equations. However, weak solutions of (4.1) are generally not unique. In the following we will
of course be interested in nontrivial solutions. The following proposition provides some important
properties of weak solutions to the problem (4.1).

Proposition 4.1. Let K > 0, ˛ 2 R and � 2 R be arbitrary, and let ˝ � Rd be a bounded
Lipschitz domain. Then the following holds:
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(a) Let .u; v/ 2 W1
K;˛;˛ be any weak solution of (4.1) in the sense of Definition 3.1. Then .u; v/

satisfies the relation
.u; v/ D SK;˛;˛.�u; �v/ a.e. in ˝, (4.2)

as well as the identity
k.u; v/k2K;˛ D � k.u; v/k

2
H0 : (4.3)

(b) Suppose that ˝ is of class C kC2 for any k 2 N0, and let .u; v/ be any weak solution of (4.1).
Then it holds that .u; v/ 2WkC2

K;˛;˛ with

k.u; v/kHkC2 6 C� k.u; v/kHk

for a constant C > 0 depending only on ˝, K, ˛ and k.
This means that .u; v/ is a strong solution of the eigenvalue problem (4.1).

(c) Suppose that ˝ is of class C1, and let .u; v/ be any weak solution. Then it holds that .u; v/ 2
C1.

Proof. Let .u; v/ 2 W1
K;˛;˛ be any weak solution of the system (4.1), and let us fix .f; g/ WD

.�u; �v/ 2 V�1˛ . This means that .u; v/ is a weak solution of the system (3.1) to the source terms

.f; g/. However, according to Theorem 3.3 (a), SK;˛;˛.f; g/ is the unique weak solution of the
problem (3.1) in the space W1

K;˛;˛ to the source terms .f; g/. We thus conclude that

SK;˛;˛.�u; �v/ D SK;˛;˛.f; g/ D .u; v/ a.e. in ˝;

which proves (4.2). In particular, this means that the theory developed in Theorem 3.3 can be applied
on .u; v/. Choosing the test functions .�; �/ D .u; v/ in the weak formulation (3.5) written for
.f; g/ D .�u; �v/, we directly conclude the identity (4.3). Moreover, the regularity assertions (b)
and (c) are a direct consequence of the corresponding results stated in Theorem 3.3.

An eigenvalue of (4.1) and its corresponding eigenfunctions are defined as follows:

Definition 4.2. Let K > 0, ˛ 2 R and � 2 R be arbitrary, and let ˝ � Rd be a bounded Lipschitz
domain.

We call � 2 R an eigenvalue if the system (4.1) possesses at least one nontrivial weak solution
.u; v/ 2W1

K;˛;˛ . In this case, the pair .u; v/ is referred to as an eigenfunction to the eigenvalue �.

We can easily see that eigenvalues must be strictly positive.

Corollary 4.3. Let K > 0, ˛ 2 R and � 2 R be arbitrary, let ˝ � Rd be a bounded Lipschitz
domain, and let � 2 R be an eigenvalue. Then it holds that � > 0.

Proof. We argue by contradiction and assume that � 6 0. Let .u; v/ be a corresponding
eigenfunction. It then follows from (4.3) that

k.u; v/k2K;˛ D 0

which directly implies that .u; v/ D .0; 0/. However, this is a contradiction since eigenfunctions are
nontrivial by definition.

The eigenvalues of the problem (4.1) and their corresponding eigenfunctions can be character-
ized as follows:
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Theorem 4.4. LetK > 0 and ˛ 2 R be arbitrary, and let˝ � Rd be a bounded Lipschitz domain.
Then the following holds:

(a) The problem (4.1) has countably many eigenvalues and each of them has a finite-dimensional
eigenspace. Repeating each eigenvalue according to its multiplicity, we can write them as a
sequence .�k/k2N � R with

0 < �1 6 �2 6 �3 6 � � � and �k !1 as k !1:

(b) There exists an orthonormal basis ..uk ; vk//k2N of V0
˛ with respect to the inner product .� ; �/H0

where for every k 2 N, the pair .uk ; vk/ is an eigenfunction to the eigenvalue �k .
In particular, any pair .u; v/ 2 V0

˛ can be expressed as

.u; v/ D

1X
kD1

ck .uk ; vk/ with ck WD
�
.u; v/;.uk ; vk/

�
H0
; k 2 N:

Proof. As the solution operator S0K;˛;˛ W V0
˛ ! V0

˛ to the problem (3.1) satisfies the properties
established in Corollary 3.4, the spectral theorem for compact normal operators (see, e.g., [1,
Section 12.12]) can be applied and proves all assertions. Note that the sequence of eigenvalues
is strictly positive due to Corollary 4.3.

Furthermore, the eigenvalues and the corresponding eigenfunctions can be characterized by the
following variational principle.

Proposition 4.5. Let K > 0 and ˛ 2 R be arbitrary, and let ˝ � Rd be a bounded Lipschitz
domain. Moreover, let .�k/k2N denote the sequence of eigenvalues from Theorem 4.4. For any
k 2 N, let Sk�1 denote the collection of all .k � 1/-dimensional linear subspaces of V0

˛ .
Then, for any k 2 N, the eigenvalue �k can be represented by the variational principle

�k D max
V 2Sk�1

min
.�;�/2V?;
k.�;�/k

H0
D1

S0K;˛;˛.�; �/
2
K;˛

The assertion follows immediately from the minimax principle for self-adjoint operators (see,
e.g., [6, Thm. 6.1.2]).

5. Fourth-order elliptic problems with bulk-surface coupling of Robin or Dirichlet type

We now consider the following fourth-order elliptic system with bulk-surface coupling of Robin/
Dirichlet type and general source terms .f; g/:

�2� D f in ˝; (5.1a)

�2� � ˛�� @n� � ˇ@n�� D g on �; (5.1b)
K @n� D ˛ � � on �; (5.1c)
L@n�� D ˇ�� ��� � ˛ˇ@n� on �: (5.1d)

Here K;L > 0 and ˛; ˇ 2 R are given constants with ˛ˇj˝j C j� j ¤ 0.
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Let us first make some formal considerations. Assuming that the solution is sufficiently regular,
we can introduce the auxiliary variables

� WD ��� in ˝; (5.2)
� WD ��� C ˛@n� on �: (5.3)

Then the system (5.1) can be equivalently formulated as

��� D � in ˝; (5.4a)
��� C ˛@n� D � on �; (5.4b)

K @n� D ˛ � � on �; (5.4c)

��� D f in ˝; (5.4d)
��� � C ˇ@n� D g on �; (5.4e)

L@n� D ˇ� � � on �: (5.4f)

We observe that the subsystem (5.4d)–(5.4f) decouples and that both subsystems (5.4a)–(5.4c)
and (5.4d)–(5.4f) are of the same type as the second-order system (3.1). Recalling the solution
operator of the second order problem (3.1) that was introduced in Theorem 3.3, we can express the
pair .�; �/ as

.�; �/ D SL;ˇ;˛.f; g/ 2W1
L;ˇ;˛ � V�1˛ : (5.5)

Consequently, since the pair .�;  / satisfies the subsystem (5.4a)–(5.4c), we infer that�
.�;  /;.�; �/

�
K;˛
D
�
.�; �/;.�; �/

�
H0
D
�
SL;ˇ;˛.f; g/;.�; �/

�
H0

(5.6)

for all .�; �/ 2 H1
K;˛ .

This motivates the following definition.

Definition 5.1. Let K;L > 0 and ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary, let ˝ � Rd be a
bounded Lipschitz domain, and let .f; g/ 2 V�1

ˇ
be arbitrary.

Then a pair .�;  / 2 W1
K;˛;ˇ

is called a weak solution of the system (5.1) if the weak
formulation �

.�;  /;.�; �/
�
K;˛
D
�
SL;ˇ;˛.f; g/;.�; �/

�
H0

(5.7)

is satisfied for all test functions .�; �/ 2 H1
K;˛ .

In view of (5.5) and (5.6), the theory developed in Section 3 can now be used to prove well-
posedness and regularity results for solutions of the system (5.1).

Theorem 5.2. Let K;L > 0 and ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary and let ˝ � Rd be
a bounded Lipschitz domain. Then the following holds:

(a) For any pair of source terms .f; g/ 2 V�1
ˇ

there exists a unique weak solution .�.f;g/;  .f;g// 2
W1
K;˛;ˇ

of the system (5.1).
This means, we can define a solution operator

FK;˛;L;ˇ D .F
˝
K;˛;L;ˇ ; F

�
K;˛;L;ˇ / W V

�1
ˇ ! V�1ˇ ;

FK;˛;L;ˇ .f; g/ WD .�.f;g/;  .f;g//
(5.8)
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mapping any pair of source terms .f; g/ 2 V�1
ˇ

onto the corresponding weak solution
.�.f;g/;  .f;g// 2W1

K;˛;ˇ
of (5.1). In particular, it holds that

FK;˛;L;ˇ D SK;˛;ˇ ı SL;ˇ;˛:

Moreover, we obtain the estimateFK;˛;L;ˇ .f; g/


H1
6 C k.f; g/k.H1

K;˛
/� ; (5.9)

for a constant C > 0 depending only on ˝, K, L, ˛ and ˇ.
(b) Suppose that ˝ is of class C kC2 for any k 2 f0; 1g, and that .f; g/ 2 V�1

ˇ
. Then it even holds

that FK;˛;L;ˇ .f; g/ 2WkC2
K;˛;ˇ

withFK;˛;L;ˇ .f; g/


HkC2
6 C k.f; g/k.H1

K;˛
/� ;

for a constant C > 0 depending only on ˝, K, L, ˛, ˇ and k.
(c) Suppose that ˝ is of class C kC4, and that .f; g/ 2 Vk

ˇ
for any k 2 N0. Then it even holds that

FK;˛;L;ˇ .f; g/ 2WkC4
K;˛;ˇ

withFK;˛;L;ˇ .f; g/


HkC4
6 C k.f; g/kHk ;

for a constant C > 0 depending only on ˝, K, L, ˛, ˇ and k.
This means that the pair .�;  / is a strong solution of the system (5.1), i.e., all equations of (5.1)
are satisfied (at least) almost everywhere in ˝ or on � , respectively.

(d) Suppose that ˝ is of class C1 and that .f; g/ 2 Vm
ˇ

for every m 2 N. Then it additionally
holds that FK;˛;L;ˇ .f; g/ 2 C1.

Proof. In this proof, let C > 0 denote generic constants depending only on ˝, K, L, ˛ and ˇ.
Proof of .a/. Let .f; g/ 2 V�1

ˇ
be arbitrary. We set

.�.f;g/;  .f;g// WD
�
SK;˛;ˇ ı SL;ˇ;˛

�
.f; g/ 2W1

K;˛;ˇ :

Then, recalling the definition of the operator SK;˛;ˇ , as well as the computations (5.5) and (5.6), we
obtain �

.�.f;g/;  .f;g// ;.�; �/
�
K;˛
D
�
SK;˛;ˇ

�
SL;ˇ;˛.f; g/

�
; .�; �/

�
K;˛

D
�
SL;ˇ;˛.f; g/;.�; �/

�
H0

for all .�; �/ 2 HK;˛ . Hence, .�.f;g/;  .f;g// is a weak solution of the system (5.1) to the source
terms .f; g/ in the sense of Definition 5.1. In particular, this means that .�.f;g/;  .f;g// is a weak
solution of the subsystem (5.4a)–(5.4c) where the source terms are uniquely determined as

.�; �/ D SL;ˇ;˛.f; g/ 2W1
L;ˇ;˛:

Hence, we conclude from Theorem 3.3 (a) that the pair .�.f;g/;  .f;g// 2 W1
K;˛;ˇ

is uniquely
determined. This means that the operator FK;˛;L;ˇ is well defined and exhibits the decomposition

FK;˛;L;ˇ D SK;˛;ˇ ı SL;ˇ;˛:
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Testing the weak formulation (5.7) written for .�;  / D FK;˛;L;ˇ .f; g/ with .�; �/ D

FK;˛;L;ˇ .f; g/, and using the Cauchy–Schwarz inequality and Corollary A.2, we obtain the estimateFK;˛;L;ˇ .f; g/
2
K;˛
D
�
SL;ˇ;˛.f; g/;FK;˛;L;ˇ .f; g/

�2
H0

6
SL;ˇ;˛.f; g/


H0

SL;ˇ;˛.f; g/


H0

6
SL;ˇ;˛.f; g/


H1

FK;˛;L;ˇ .f; g/

K;˛

:

Invoking the estimate from Theorem 3.3 (a), we thus getFK;˛;L;ˇ .f; g/

K;˛

6
SL;ˇ;˛.f; g/


H1

6 C k.f; g/k.H1
K;˛

/�

which completes the proof of (a).
In the following we write .�;  / WD FK;˛;L;ˇ .f; g/ and .�; �/ WD SL;ˇ;˛.f; g/ for brevity. The

generic constants denoted by C may now also depend on k.
Proof of .b/. Since ˝ is at least of class C 2 and .f; g/ 2 V�1

ˇ
, we infer from Theorem 3.3 (a) that

.�; �/ 2W1
L;ˇ;˛ with k.�; �/kH1 6 C k.f; g/k.H1

K;˛
/� :

Since k C 2 6 3, Theorem 3.3 (b) further implies that

.�;  / 2WkC2
K;˛;ˇ

with k.�;  /kHkC2 6 C k.�; �/kH1 6 C k.f; g/k.H1
K;˛

/� :

This proves (b).
Proof of .c/. Since ˝ is now of class C kC4 and .f; g/ 2 Vk

ˇ
, Theorem 3.3 (b) implies that

.�; �/ 2WkC2
L;ˇ;˛

with k.�; �/kHkC2 6 C k.f; g/kHk :

and consequently,

.�;  / 2WkC4
K;˛;ˇ

with k.�;  /kHkC4 6 C k.�; �/kHkC2 6 C k.f; g/kHk :

This proves (c).
Proof of .d/. The assertion follows by a simple induction by means of Sobolev’s embedding
theorem. This completes the proof of Theorem 5.2.

Hence, the proof is complete.

We can show that the solution operator FK;˛;L;ˇ satisfies important properties which will be
essential in the next section where a fourth-order eigenvalue problem based on the system (5.1) is
investigated.

Corollary 5.3. Let K;L > 0 and ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary, and let ˝ � Rd be
a bounded Lipschitz domain. Then the operator

FK;˛;L;ˇ W V
�1
ˇ ! V�1ˇ (5.10)

introduced in Theorem 5.2 (a) has the following properties:
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(a) FK;˛;L;ˇ is linear, continuous and compact.
(b) FK;˛;L;ˇ is injective and thus, it holds that ker.FK;˛;L;ˇ / D f.0; 0/g.
(c) FK;˛;L;ˇ is self-adjoint with respect to the inner product .� ; �/L;ˇ;˛;� on V�1

ˇ
.

Proof. Proof of .a/. We already know from Theorem 5.2 that the operator FK;˛;L;ˇ is well-defined,
linear and continuous. Since

FK;˛;L;ˇ .V
�1
ˇ / �W1

K;˛;ˇ ;

and as the embedding W1
K;˛;ˇ

,! V�1
ˇ

is compact, we conclude that FK;˛;L;ˇ is a compact operator.

Proof of .b/. Since SK;˛;ˇ and SL;ˇ;˛ are injective according to Theorem 3.3 (a), and FK;˛;L;ˇ D
SK;˛;ˇ ıSL;ˇ;˛ , we conclude that FK;˛;L;ˇ is injective. Thus, it is a direct consequence that FK;˛;L;ˇ
has a trivial kernel.

Proof of .c/. Let now .f1; g1/; .f2; g2/ 2 V�1
ˇ

be arbitrary. We set

.�i ;  i / WD FK;˛;L;ˇ .fi ; gi / 2W1
K;˛;ˇ � H1

K;˛; i 2 f1; 2g:

Recalling the definitions of SK;˛;ˇ and SL;ˇ;˛ , and using that SK;˛;ˇ is self-adjoint with respect to
the inner product .� ; �/H0 , we conclude that�

FK;˛;L;ˇ .f1; g1/ ;.f2; g2/
�
L;ˇ;˛;�

D
�
SL;ˇ;˛.�1;  1/ ;SL;ˇ;˛.f2; g2/

�
L;ˇ

D
�
.�1;  1/ ;SL;ˇ;˛.f2; g2/

�
H0
D
�
SK;˛;ˇ

�
SL;ˇ;˛.f1; g1/

�
;SL;ˇ;˛.f2; g2/

�
H0

D
�
SL;ˇ;˛.f1; g1/ ;SK;˛;ˇ

�
SL;ˇ;˛.f2; g2/

��
H0
D
�
SL;ˇ;˛.f1; g1/ ;.�2;  2/

�
H0

D
�
SL;ˇ;˛.f1; g1/ ;SK;˛;ˇ .�2;  2/

�
L;ˇ
D
�
.f1; g1/ ;FK;˛;L;ˇ .f2; g2/

�
L;ˇ;˛;�

:

This proves that FK;˛;L;ˇ is self-adjoint with respect to the inner product .� ; �/L;ˇ;˛;� on V�1
ˇ

.
Thus, the proof is complete.

6. A fourth-order eigenvalue problem

For K;L > 0, ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 and � 2 R, we now consider the following
fourth-order eigenvalue problem with bulk-surface coupling of Robin/Dirichlet type:

�2� D �� in ˝; (6.1a)

�2� � ˛�� @n� � ˇ@n�� D � on �; (6.1b)
K @n� D ˛ � �; on �; (6.1c)
L@n�� D ˇ�� ��� � ˛ˇ@n� on �: (6.1d)

The existence of at least one weak solution in W1
K;˛;ˇ

is trivial, as the pair of null functions .�;  / D
.0; 0/ 2W1

K;˛;ˇ
obviously solves the equations. In general, weak solutions of (6.1) are not unique,

and we are of course interested in nontrivial solutions. The following proposition provides some
important properties of weak solutions.

Proposition 6.1. Let K;L > 0, ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 and � 2 R be arbitrary, and let
˝ � Rd be a bounded Lipschitz domain. Then the following holds:
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(a) Let .�;  / 2 W1
K;˛;ˇ

be any weak solution of (6.1) in the sense of Definition 5.1. Then .�;  /
satisfies the relation

.�;  / D FK;˛;L;ˇ .��; � / a.e. in ˝, (6.2)

as well as the identity
k.�;  /kK;˛ D �

SL;ˇ;˛.�;  /

L;ˇ

: (6.3)

(b) Suppose that˝ is of class C kC2 for any k 2 f0; 1g, and let .�;  / be any weak solution of (6.1).
Then it holds that .�;  / 2WkC2

K;˛;ˇ
with

k.�;  /kHkC2 6 C� k.�;  /k.H1
K;˛

/� ;

for a constant C > 0 depending only on ˝, K, L, ˛, ˇ and k.
(c) Suppose that ˝ is of class C kC4 for any k 2 N0, and let .�;  / be any weak solution of (6.1).

Then it holds that .�;  / 2WkC2
K;˛;ˇ

with

k.�;  /kHkC4 6 C� k.�;  /kHk :

for a constant C > 0 depending only on ˝, K, L, ˛, ˇ and k.
(d) Suppose that ˝ is of class C1, and let .�;  / be any weak solution of (6.1). Then it holds that

.�;  / 2 C1.

Proof. Let .�;  / 2 W1
K;˛;ˇ

be an arbitrary weak solution of the system (6.1), and let us fix
.f; g/ WD .��; � / 2 V�1

ˇ
. This means that .�;  / is a weak solution of the system (5.1) to the

source terms .f; g/. According to Theorem 5.2 (a), FK;˛;L;ˇ .f; g/ is the unique weak solution of
the problem (5.1) in the space W1

K;˛;ˇ
to the source terms .f; g/. We thus infer that

FK;˛;L;ˇ
�
��; � 

�
D FK;˛;L;ˇ

�
f; g

�
D .�;  / a.e. in ˝;

which verifies (6.2). This means that the theory developed in Theorem 5.2 is applicable for the weak
solution .�;  /. Testing the weak formulation (5.7) written for .f; g/ D .��; � / with .�; �/ D
.�;  / and recalling the definition of the solution operator SL;ˇ;˛ , we conclude that�

.�;  /;.�;  /
�
K;˛
D �

�
SL;ˇ;˛.�;  /;.�;  /

�
H0

D �
�
SL;ˇ;˛.�;  /;SL;ˇ;˛.�;  /

�
L;ˇ
;

which proves (6.3). Moreover, the regularity assertions in (b), (c) and (d) are direct consequences of
Theorem 5.2 (b), (c) and (d), respectively.

An eigenvalue of (6.1) and its corresponding eigenfunctions are defined as follows:

Definition 6.2. Let K;L > 0, ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 and � 2 R be arbitrary, and let
˝ � Rd be a bounded Lipschitz domain.

We call � 2 R an eigenvalue if the system (6.1) possesses at least one nontrivial weak solution
.�;  / 2W1

K;˛;ˇ
. In this case, the pair .�;  / is referred to as an eigenfunction to the eigenvalue �.

We immediately observe that eigenvalues must be strictly positive.

Corollary 6.3. LetK;L > 0, ˛; ˇ 2 R with ˛ˇj˝jC j� j ¤ 0 and � 2 R be arbitrary, let˝ � Rd
be a bounded Lipschitz domain, and let � 2 R be an eigenvalue. Then it holds that � > 0.
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Proof. We argue by contradiction and assume that � 6 0. Let .�;  / be a corresponding
eigenfunction. It then follows from (6.3) that

k.�;  /k2K;˛ D 0

which directly yields .�;  / D .0; 0/. Since eigenfunctions are nontrivial this is a contradiction and
thus, the assertion is established.

The eigenvalues of the problem (6.1) and their corresponding eigenfunctions can be character-
ized as follows:

Theorem 6.4. Let K;L > 0 and ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary, and let ˝ � Rd be
a bounded Lipschitz domain. Then the following holds:

(a) The problem (6.1) has countably many eigenvalues and each of them has a finite-dimensional
eigenspace. Repeating each eigenvalue according to its multiplicity, we can write them as a
sequence .�k/k2N � R with

0 < �1 6 �2 6 �3 6 � � � and �k !1 as k !1:

(b) There exists an orthonormal basis ..�k ;  k//k2N of V�1
ˇ

with respect to the inner product
.� ; �/L;ˇ;˛;� where for each k 2 N, the pair .�k ;  k/ is an eigenfunction to the eigenvalue
�k .

In particular, any pair .�;  / 2 V�1
ˇ

can be expressed as

.�;  / D

1X
kD1

ck .�k ;  k/ with ck WD
�
.�;  /;.�k ;  k/

�
L;ˇ;˛;�

; k 2 N:

Proof. We recall the solution operator FK;˛;L;ˇ W V
�1
ˇ
! V�1

ˇ
to the problem (5.1) for source terms

in V�1
ˇ

. Due to its properties established in Corollary 5.3, the spectral theorem for compact normal
operators (see, e.g., [1, Section 12.12]) can be applied and proves all assertions. We point out that
the sequence of eigenvalues is strictly positive according to Corollary 6.3.

Furthermore, the eigenvalues and the corresponding eigenfunctions can be characterized by the
following variational principle.

Proposition 6.5. Let K;L > 0 and ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary and let ˝ � Rd
be a bounded Lipschitz domain. Moreover, let .�k/k2N and ..�k ;  k//k2N denote the sequences
from Theorem 6.4. For any k 2 N, let Sk�1 denote the collection of all .k � 1/-dimensional linear
subspaces of V�1

ˇ
.

Then, for any k 2 N, the eigenvalue �k can be represented by the variational principle

�k D max
V 2Sk�1

min
.�;�/2V?;

k.�;�/kL;ˇ;˛;�D1

FK;˛;L;ˇ .�; �/
2
K;˛

The claim follows directly from the minimax principle for self-adjoint operators (see, e.g., [6,
Thm. 6.1.2]).
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A. Appendix

We present a Poincaré type inequality with respect to the norm k � kK;˛ for functions in W1
K;˛;ˇ

.

Lemma A.1. Let K > 0 and ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary, and let ˝ � Rd be
a bounded Lipschitz domain ˝ with boundary � . Then there exists a constant cP > 0 depending
only on K, ˛, ˇ and ˝ such that

k.u; v/kH0 6 cP k.u; v/kK;˛ (A1)

for all pairs .u; v/ 2W1
K;˛;ˇ

.

Proof. We prove the assertion by contradiction. Therefore, we assume that the estimate is false.
Consequently, for every k 2 N there exists a pair .uk ; vk/ 2W1

K;˛;ˇ
such that

k.uk ; vk/kH0 > k k.uk ; vk/kK;˛ (A2)

Thus, the sequence . Quk ; Qvk/k2N defined by

Quk WD
uk

k.uk ; vk/kH0
; Qvk WD

vk

k.uk ; vk/kH0
; k 2 N

satisfies
. Quk ; Qvk/ 2W1

K;˛;ˇ ; k. Quk ; Qvk/kH0 D 1; k 2 N: (A3)

Moreover, (A2) implies that

kr Qukk
2
L2.˝/ C kr� Qvkk

2
L2.� / C �.K/ k˛ Qvk � Qukk

2
L2.� / D k. Quk ; Qvk/k

2
K;˛ <

1

k2
; (A4)

for all k 2 N. In particular, (A3) and (A4) imply that the sequence . Quk ; Qvk/k2N is bounded in
H1. Hence, according to the Banach–Alaoglu theorem, there exists a pair .u; v/ 2 H1 such that
. Quk ; Qvk/ * .u; v/ in H1 after extraction of a subsequence. It thus follows that

ˇ j˝j hui˝ C j� j hvi� D 0:

From the compact embedding H1 ,! H0, we deduce that

. Quk ; Qvk/! .u; v/ in H0;

after another subsequence extraction. In particular, this implies that k.u; v/kH0 D 1.
If K > 0, we infer from (A4) that

˛ Qvk � Quk ! 0 in L2.� / and thus, ˛v � u D 0 a.e. on �: (A5)

This obviously holds true for K D 0, since then ˛ Qvk � Quk D 0 for all k 2 N. Hence, we conclude
that .u; v/ 2W1

K;˛;ˇ
.

As the H0-norm is weakly lower semicontinuous, we deduce that

k.ru;r� v/kH0 6 lim inf
k!1

k.r Quk ;r� Qvk/kH0 6 0:
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This implies that there exist constants A;B 2 R such that u D A almost everywhere in ˝ and
v D B almost everywhere on � . It then follows from .u; v/ 2W1

K;˛;ˇ
and (A5) that

ˇ j˝jAC j� jB D ˇ j˝j hui˝ C j� j hvi� D 0 and ˛B � A D 0:

Since ˛ˇj˝j C j� j ¤ 0, we conclude that A D B D 0 which means that u D 0 almost everywhere
in ˝ and v D 0 almost everywhere on � . However, this is a contradiction to k.u; v/kH0 D 1. This
proves the assertion.

The following result is a direct consequence of Lemma A.1.

Corollary A.2. Let K > 0 and ˛; ˇ 2 R with ˛ˇj˝j C j� j ¤ 0 be arbitrary, and let ˝ � Rd be
a bounded Lipschitz domain ˝ with boundary � . Then there exist constants A;B > 0 depending
only on K, ˛, ˇ and ˝ such that for all .u; v/ 2W1

K;˛;ˇ
,

k.u; v/kH1 6 A k.u; v/kK;˛ and k.u; v/kK;˛ 6 B k.u; v/kH1 : (A6)

This means that both norms are equivalent.
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Problems 21 (2005), 1915–1936. Zbl1112.35054 MR2183659

5. Berchio, E., Gazzola, F., & Weth, T., Critical growth biharmonic elliptic problems under Steklov-type
boundary conditions. Adv. Differential Equations 12 (2007), 381–406. Zbl1155.35018 MR2305873
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