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K -mean convex and K -outward minimizing sets

Annalisa Cesaroni and Matteo Novaga

Abstract. We consider the evolution of sets by nonlocal mean curvature and we discuss the preser-
vation along the flow of two geometric properties, which are the mean convexity and the outward
minimality. The main tools in our analysis are the level set formulation and the minimizing move-
ment scheme for the nonlocal flow. When the initial set is outward minimizing, we also show the
convergence of the (time integrated) nonlocal perimeters of the discrete evolutions to the nonlocal
perimeter of the limit flow.

1. Introduction

Given an initial set E � Rn, we consider its evolution Et for t > 0 according to the
nonlocal curvature flow

@tx � � D �H
K
Et
.x/; (1.1)

where � is the outer normal at x 2 @Et . The quantityHK
E .x/ is theK-curvature ofE at x,

which is defined in (1.3) below. More precisely, we take a kernelK WRn n ¹0º ! Œ0;C1/

such that
min

®
1; jxj

¯
K.x/ 2 L1.Rn/ and K.x/ D K.�x/; (1.2)

and we define the K-curvature of a set E of class C 1;1, at x 2 @E, as

HK
E .x/ WD lim

"&0

Z
RnnB.x;"/

�
�RnnE .y/ � �E .y/

�
K.x � y/ dy; (1.3)

where, as usual,

�E .y/ WD

²
1; if y 2 E;
0; if y 62 E:

Notice that, under assumption (1.2), the singular integral in (1.3) is always a well-defined
real number. For more general sets, the K-curvature will be understood in the viscosity
sense (see Definition 2.1 below).

We point out that (1.2) is a very mild integrability assumption, which fits the require-
ments in [9, 24] in order to have existence and uniqueness for the level set flow associ-
ated to (1.1). Furthermore, when K.x/ D 1

jxjnCs
for some s 2 .0; 1/, we will denote the
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K-curvature of a set E at a point x as H s
E .x/, and we indicate it as the fractional mean

curvature of E at x. We also observe that the K-curvature is the first variation of the
following nonlocal perimeter functional (see [9]),

PerK.E/ WD
Z
E

Z
RnnE

K.x � y/ dx dy; (1.4)

and the geometric evolution law (1.1) can be interpreted as the L2 gradient flow of this
perimeter functional, as shown in [9].

TheK-curvature flow has been recently studied from different perspectives, mainly in
the case of the fractional mean curvature, taking into account several geometric features.
In particular, we recall the results about small time existence of a classical solutions [25],
existence and uniqueness of level set solutions [9, 24], preservation of convexity [11, 14],
formation of singularities [13], classification of symmetric self-shrinkers [7], fattening
phenomena [5] and stability results for nonlocal curvature flows [4, 8].

In this paper, we are interested in the analysis of the flows starting from K-mean
convex sets, that is, sets with positive K-curvature, and from sets which are one-side
minimizers of the nonlocal perimeter functional, the so called K-outward minimizing
set. This second property can be interpreted as the variational analogue of the K-mean
convexity, as we will see in Theorem 2.9. In the case of the fractional curvature, the
preservation of the K-mean convexity for smooth sets has been studied in [30]. Here
we consider more general flows, and also nonsmooth initial data. We show that K-mean
convexity is a too weak condition to be conserved during the evolution; as a consequence,
we introduce the notions of regular K-mean convexity and strong K-mean convexity (see
Definition 2.2). We introduce the notion of K-outward minimality and strong K-outward
minimality (see Definition 2.6). The main results are contained in Theorem 4.5, about the
preservation of regularK-mean convexity and strongK-mean convexity, and Theorem 6.3
about preservation ofK-outward minimality. Our main tools are the level set approach for
geometric nonlocal curvature flows, developed in [9,24], that we review in Section 3, and
the variational scheme, called minimizing movements or Almgren–Taylor–Wang scheme,
introduced in [1, 26] for the classical mean curvature flow, and extended to the nonlocal
setting in [9].

We conclude by recalling that, in the local case, there is a vast literature on the anal-
ysis of the mean curvature flow starting from convex sets (see [2, 17–19, 31]) and more
generally from mean-convex sets (see [10, 29, 32, 33] and the references therein). In par-
ticular, these geometric properties are preserved by the flow, both in the isotropic and in
the anisotropic case, and the singularity formation is well understood (see for instance
[20–23]).

The paper is organized as follows: Section 2 contains the definition ofK-mean convex-
ity and K-outward minimality, some examples, and the analysis of the relation between
the two notions. Section 3 is essentially a review of the level set formulation of nonlocal
curvature flows, and contains the comparison results between level set flows and classical
strict subflows and superflows. Section 4 is devoted to the analysis of the flows start-
ing from K-mean convex sets. Section 5 provides a review of the minimizing movement
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scheme in the nonlocal setting. Finally, Section 6 contains the analysis of the flows starting
from K-outward minimizing sets.

2. Main definitions and properties

In this section, we introduce the notions ofK-mean convexity andK-outward minimality,
we give some examples and characterizations of these properties, and we analyze their
relation.

We now recall the definition of constant K-mean curvature in the viscosity sense; for
more details we refer to [9, 24] and [3, Section 5].

Definition 2.1. Let c 2 R, E � Rn and x 2 @E. Then,

(1) HK
E .x/6 c if for all sets F with compact boundary of class C 1;1 such thatE � F

and x 2 @F , one has HK
F .x/ 6 c;

(2) HK
E .x/> c if for all sets F with compact boundary of class C 1;1 such thatE � F

and x 2 @F , one has HK
F .x/ > c;

(3) HK
E .x/ D c if both HK

E .x/ > c and HK
E .x/ 6 c.

From (1.3), it follows that the K-mean curvature satisfies the following monotonicity
property: ifE �F and x 2 @E \ @F is a point where bothHK

E .x/ andHK
F .x/ are defined,

thenHK
E .x/>HK

F .x/. As a consequence, the inequalities in Definition 2.1 are consistent
with the definition of HK

E in (1.3).
We observe that the viscosity inequality HK

E .x/ 6 c can be checked only at points
x 2 @E where E satisfies an exterior ball condition, that is, there exist y0; r0 such that
B.y0; r0/�Rn nE and x 2 @B.x0; r0/. Analogously, the viscosity inequalityHK

E .x/> c

can be checked only at points x 2 @E where E satisfies an interior ball condition, that is,
there exist y0; r0 such that B.y0; r0/ � E and x 2 @B.x0; r0/. In particular, if E is a
closed set with empty interior, then the viscosity inequalityHK

E .x/ > k is always verified
for every k 2 R.

As usual, we will denote the distance between a point x and a set E by d.x; E/ WD
infy2E jy � xj, and we define the signed distance from E as follows:

dE .x/ WD d.x;R
n
nE/ � d.x;E/:

For � > 0, we define

E� WD
®
x 2 Rn W dE .x/ > ��

¯
D
®
x 2 Rn W d.x;E/ 6 �

¯
: (2.1)

Observe that if E is a closed set, then E D
T
�>0E

�.
Finally, we define the distance between two sets A;B � Rn as follows:

d.A;B/ WD inf
a2@A; b2@B

ja � bj:
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Definition 2.2 (K-mean convexity and regular/strong K-mean convexity).

(1) A closed set E � Rn is K-mean convex if HK
E .x/ > 0 for all x 2 @E.

(2) A closed setE �Rn is regularlyK-mean convex if there exist �E > 0 and cE > 0
such that for all � 2 Œ0; �E �,

HK
E�
.x/ > �cE� for any x 2 @E�,

where E0 D E.

(3) A closed set E � Rn is strongly K-mean convex if there exist ı > 0 and �E > 0
such that

HK
E�
.x/ > ı for any x 2 @E�,

for every � 2 Œ0; �E �.
To keep track of the constant ı, in the following we will say that E � Rn is a
strongly K-mean convex set with associated constant ı.

Note that if E is strongly K-mean convex, then E is also regularly K-mean convex.

Remark 2.3 (Sets with C 1;1 boundary). Let E be a compact set with C 1;1 boundary.
If HK

E .x/ > ı for all x 2 @E, then for all ı0 < ı, there exists �E .ı0/ such that

HK
E� .x/ > ı0 for all � 2 Œ0; �E .ı0/� and x 2 @E� ,

due to the continuity of HK with respect to C 1;1 convergence of sets (see [9]), and there-
fore, E is strongly K-mean convex with constant ı0.

If HK
E .x/ > 0 for all x 2 @E, and K.x/ D 1

jxjnCs
, then

E is regularly K-mean convex,

due to the result about the variation of fractional curvature with respect to C 1;1 diffeomor-
phisms of sets proved in [15].

Remark 2.4 (Convex sets). Let C be a convex closed set. Then,

C is strongly K-mean convex with associated constant 0,

since it is easy to show that HK
C .x/ > 0 for every x 2 @C in the viscosity sense and,

moreover, C � are convex sets. Moreover, if C is compact and suppK is not compact,
then there exists ıC > 0, depending on K and C , such that

C is strongly K-mean convex with associated constant ıC .

Indeed, it is easy to check that if C � Rn is a convex set of diameter R, then

HK
C .x/ >

Z
RnnB.0;R/

K.y/ dy WD ıC for every x 2 @C .
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Remark 2.5. If the kernel K 2 L1.Rn/, then HK is continuous with respect to L1

convergence of sets, see [27], that is, if jEn�Ej ! 0 and xn 2 @En ! x 2 @E, then
HK
En
.xn/! HK

E .x/. In this case, K-mean convexity and strong K-mean convexity are
equivalent in the following sense. Let E be a compact set such that HK

E .x/ > ı in the
viscosity sense for every x 2 @E, then for all ı0 < ı, there exists �E .ı0/ such that

HK
E� .x/ > ı0 for all � 2 Œ0; �E .ı0/� and x 2 @E� ,

due to the continuity of HK with respect to L1 convergence. Therefore, E is strongly
K-mean convex with constant ı0.

On the other hand, we point out that if K is not L1, and E is a compact set such that
HK
E .x/ > ı > 0 for all x 2 @E, but @E 62 C 1;1, then in general it is not true that E is

strongly K-mean convex or even regularly K-mean convex.
We recall the following example, studied in [5]. We consider the fractional kernel in

dimension 2, that is, K.x/ D 1
jxj2Cs

. We define the set E as follows:

E WD GC [ G� � R2;

where GC is the convex hull of B..�1; 1/; 1/ with the origin, and G� is the convex hull
of B..1;�1/; 1/ with the origin.

Note that @E n .0; 0/ is C 1;1 and in .0; 0/ the viscosity supersolution condition
HK
E .0; 0/ > ı is true for every ı since there is no interior ball in E containing .0; 0/, that

is, there are no regular sets F such that F � E and .0; 0/ 2 @F . It is an easy computation
to check, using the radial symmetry of K, that for all x ¤ 0, x 2 @E,

H s
E .x/ >

Z
R2nB.0;1C

p
2/

1

jyj2Cs
dy D

2�

.1C
p
2/s
:

Let Qr D ¹.x1; x2/ 2 R2 W x2 2 Œ�r; r�; �jx2j 6 x1 6 jx2jº. It has been proven in
[5, Lemma 7.1] that there exists a constant c > 0, depending on s, such that for all r < c,

H s
E[Qr

.t; r/; H s
E[Qr

.t;�r/ 6 �
c

rs
for all t 2 .�r; r/:

Note that for every point .t;�r/ and .t; r/ with t 2 .�r; r/, there exists a neighborhood
where @.E [Qr / is C 1;1; therefore, the previous inequality holds in the classical sense.
Consider now Er D ¹x 2 Rn W d.x; E/ 6 rº and note that .0; r/ 2 @Er . Let F be a set
with boundary C 1;1 such that F � Er , .0; r/ 2 @F and such that there exists ı � r for
which @F \ B..0; r/; ı/ D @.E [ qr / \ B..0; r/; ı/. Then, H s

F .0; r/ 6 � c
rs

.
If E was regularly K-mean convex, there would exist cE > 0 such that H s

F .0; r/ >
�cE r for every r 2 Œ0; �E �. Therefore, we would get � c

rs
> ��E r for every r 2 Œ0; �E �,

which is not possible. We conclude that E is not regularly K-mean convex.

Given a measurable set E � Rn and an open set � � Rn we let

PerK.E;�/ WD
Z
E

Z
�nE

K.x � y/ dx dy C

Z
E\�

Z
Rnn.�[E/

K.x � y/ dx dy:
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Notice that ifE ��, then PerK.E;�/D PerK.E/; in particular, PerK.E;Rn/D PerK.E/
for all sets E.

Definition 2.6 (K-outward minimizing set and strongly K-outward minimizing set). Let
� � Rn be an open set. E � Rn is aK-outward minimizing set in� if for every F � Rn

such that E � F and F nE b �,

PerK.E;�/ 6 PerK.F;�/:

E � Rn is a strongly K-outward minimizing set in � if there exists ı > 0 for which
for every F � Rn such that E � F and F nE b �,

PerK.E;�/ 6 PerK.F;�/ � ıjF nEj:

To keep track of the constant ı, we will say in the following that E � Rn is a strongly
K-outward minimizing set with associated constant ı.

We now provide some equivalent characterizations of K-outward minimality and
strong K-outward minimality, which imply in particular the stability under L1 conver-
gence of K-outward minimizing sets.

Proposition 2.7. Let � � Rn be a domain. The following assertions are equivalent:

(1) E is a K-outward minimizing set in � (resp. strongly K-outward minimizing set
with associated constant ı > 0).

(2) For every G � Rn such that G nE b �,

PerK.E \G;�/ 6 PerK.G;�/ (2.2)�
resp. PerK.E \G;�/ 6 PerK.G;�/ � ıjG nEj

�
:

(3) For all A � � nE, A b �,Z
A

Z
E

K.x � y/ dx dy 6
Z
A

Z
Rnn.A[E/

K.x � y/ dx dy (2.3)�
resp.

Z
A

Z
E

K.x � y/ dx dy 6
Z
A

Z
Rnn.A[E/

K.x � y/ dx dy � ıjAj

�
:

In particular, ifEn is a sequence ofK-outward minimizing sets (resp. stronglyK-outward
minimizing sets with associated constant ı) in � such that En ! E in L1.�/, then E is
a K-outward minimizing set (resp. strongly K-outward minimizing set with associated
constant ı) in �.

Proof. We only prove the characterization for K-outward minimizers, since the case of
stronglyK-outward minimizers is completely analogous. We recall that for allA;B �Rn,
the following submodularity property holds:

PerK.A;�/C PerK.B;�/ > PerK.A \ B;�/C PerK.A [ B;�/I (2.4)

see e.g. [6].
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If (2.2) holds, then it is immediate to check Definition 2.6: we fix F � E, with
F nE b � and we apply (2.2) to G D F . On the other hand, if E is a K-outward
minimizing set in � and G is such that G n E b �, letting F D G [ E and using the
submodularity for the first inequality and Definition 2.6 for the second one, we get

PerK.E;�/C PerK.G;�/ > PerK.F;�/C PerK.G \E;�/

> PerK.E;�/C PerK.E \G;�/:

We now assume that E is a K-outward minimizing set in � and we fix A � � n E,
with A b �. Let F WD E [ A, so that E � F and F n E b �. By Definition 2.6, we
know that

0 6 PerK.F;�/ � PerK.E;�/ D
Z
A

Z
RnnF

K.x � y/ dx dy �

Z
A

Z
E

K.x � y/ dx dy;

which gives (2.3). On the other hand, if we assume that (2.3) holds and fix F such that
E � F and A WD F nE b �, then (2.3) gives

PerK.F;�/ � PerK.E;�/ D
Z
A

Z
RnnF

K.x � y/ dx dy �

Z
A

Z
E

K.x � y/ dx dy > 0;

which implies that E is K-outward minimizing.
Finally, the stability under L1 convergence is a direct consequence of (2.2) and of

the lower semicontinuity of PerK . Indeed, fix F such that E � F and F n E b �. Since
En!E in L1.�/, we get that for n sufficiently large, F nEn b�. Then, by the fact that
En are K-outward minimizers in �, PerK.En \ F;�/ 6 PerK.F;�/, and we conclude
that PerK.E \ F;�/ 6 PerK.F;�/ by the lower semicontinuity of PerK.�; �/.

Remark 2.8 (Hyperplanes and convex sets). Let � 2 Rn with j�j D 1 and define the
hyperplane H D ¹x 2 Rn W x � � > 0º. Then H is a K-outward minimizer in every ball
B.0;R/ for R > 0, since H is a local minimizer of PerK in every ball B.0;R/; see [28].

Moreover, every convex set C is a K-outward minimizer in every ball B.0; R/ for
R > 0. Indeed, C D

T
j2J Hj with Hj being hyperplanes. Let E such that E n C b

B.0;R/. Then, E nHi b B.0;R/ for every i 2 J and, by the minimality of Hi , we get

PerK
�
C \E;B.0;R/

�
D PerK

�\
j

Hj \E;B.0;R/

�
6 PerK

�\
j¤i

Hj \E;B.0;R/

�
:

By repeating the same argument for every j 2 J , we conclude that

PerK.C \E;B.0;R// 6 PerK.E;B.0;R//:

We now analyze the relation between K-outward minimality and K-mean convexity
for compact sets. In some sense, (strong) K-outward minimality is the variational ana-
logue of (strong) K-mean convexity.
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Theorem 2.9.
(1) LetE b� be aK-outward minimizing set in�. ThenHK

E .x/> 0 for all x 2 @E.
If, moreover, E is a strongly K-outward minimizing set with associated constant
ı > 0, then HK

E .x/ > ı > 0 for all x 2 @E.

(2) LetE �Rn be a bounded set withHK
E .x/> ı > 0 for all x 2 @E, and assume that

the boundary of E is of class C 1;1 or that K 2 L1.Rn/. Then, for every ı0 < ı,
there exists an open set� such that E b� and E is aK-outward minimizer in�
with associated constant ı0.

Proof. (1) For the case of fractional perimeters, this result has been proved in [3, Propo-
sition 5.1]. Let ı > 0. If E is a K-outward minimizer, we choose ı D 0; if E is a
stronglyK-outward minimizer, we choose ı > 0 to be the constant associated toE accord-
ing to Definition 2.6. We proceed by contradiction and we assume there exist x0 2 @E,
F � E with @F 2 C 1;1, x0 2 @E \ @F , and HK

F .x0/ 6 ı � 2� < ı for some � > 0.
Then, by the continuity of HK , there exists r > 0 such that HK

F .x/ 6 ı � � for every
x 2 @E \B.x0; r/. We construct a 1-parameter familyˆ" of C 1;1 diffeomorphisms, such
that F D ˆ0.F / � ˆ".F / � � and ˆ".F / n F b B.x0; r/ b � for every " 2 .0; "0/.
Again, by continuity, HK

ˆ".F /
.x/ 6 ı � �=2 for all x 2 @ˆ".F / n F . Using the fact that

HK is the first variation of PerK with respect to C 1;1 diffeomorphisms, we get

PerK.ˆ".F // D PerK.F /C
Z
ˆ".F /nF

HK
ˆ".x/.F /

.x/ dx; (2.5)

where ".x/ WD sup¹� 2 .0; "/ W x 2 ˆ�.F /º and

PerK.E \ˆ".F // > PerK.F /C
Z
.E\ˆ".F //nF

HK
ˆ".x/.F /

.x/ dxI (2.6)

see [9, Proposition 5.2]. From (2.5) and (2.6), recalling that HK
ˆ".F /

.x/ 6 ı � �=2 in
ˆ".F / nE � ˆ".F / n F , we conclude that

PerK.E \ˆ".F // > PerK.ˆ".F // �
Z
ˆ".F /nE

HK
ˆ".x/.F /

.x/ dx

> PerK.ˆ".F //C
�
�ı C

�

2

�
jˆ".F / nEj

> PerK.ˆ".F // � ıjˆ".F / nEj;

in contradiction with the fact that E is a K-outward minimizing set in �, if ı D 0, or a
strong K-outward minimizing set, if ı > 0.

(2) First of all, we observe that for every ı0 < ı, there exists �E .ı0/ such that
HK
E� .x/ > ı0 for all x 2 @E� and all � 2 Œ0; �E .ı0/�; see Remarks 2.3 and 2.5. We let

� WD E�E .ı
0/, so E b � and, by [9, Proposition 5.2], for every F with PerK.F / < C1

such that E � F � E�E .ı
0/,

PerK.F / > PerK.E/C
Z
F nE

HK
¹y WdE .y/>dE .x/º

.x/ dx:
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Note that ifK 62 L1.Rn/, this formula is meaningful only if dE 2 C 1;1 in a neighborhood
ofE. Now, using the fact that ��E .ı0/ < dE .x/ < 0 for x 2 F nE, and thatHK

E�
.x/ > ı

for all � 2 Œ0; �E .ı0/�, we conclude

PerK.F / > PerK.E/C
Z
F nE

HK
¹y WdE .y/>dE .x/º

.x/ dx > PerK.E/C ı0jF nEj;

which implies that E is K-outward minimizing in � with associated constant ı0.

Remark 2.10. We point out that, in general, K-mean convexity does not imply K-out-
ward minimality. We consider the example described in Remark 2.5 of a compact set
E 2 R2 which satisfies @E n ¹.0; 0/º 2 C 1;1 and H s

E .x/ > 2�

.1C
p
2/2

for all x 2 @E, and

we show that E is not K-outward minimizing, for K.x/ D jxj�2�s , in any open set �
such that E � �. We recall that

H s
E[Qr

.t; r/;H s
E[Qr

.t;�r/ 6 �
c.n/

rs
for all t 2 .�r; r/;

whereQr D¹.x1;x2/2R2 W x2 2 Œ�r; r�; �jx2j6 x1 6 jx2jº; see Remark 2.5. Then, argu-
ing exactly as in [5, Proposition 1.8], it is possible to show that Pers.E [Qr / < Pers.E/
for all r > 0 sufficiently small, which implies that E is not a K-outward minimizing set
in any open set � which contains E.

3. Level set formulation

In this section, we recall the level set formulation of the geometric flow (1.1) in the setting
of viscosity solutions for nonlocal equations, and we collect some results that will be
useful in the sequel.

The viscosity theory for the classical mean curvature flow is contained in [12,16]; see
also [18] for a comprehensive presentation of the level set approach for classical geometric
flows. The existence and uniqueness of solutions for the fractional curvature flow in (1.1)
in the viscosity sense have been investigated in [24] by introducing the level set formu-
lation of the geometric evolution problem (1.1) and a proper notion of viscosity solution.
The paper [9] is the main reference where it is introduced a general framework for the
analysis via the level set formulation of a wide class of local and nonlocal translation-
invariant geometric flows.

Proposition 3.1. Given a closed set E � Rn and a uniformly continuous function
uE .x/ W Rn ! R such that

E D
®
x 2 Rn W uE .x/ > 0

¯
and @E D

®
x 2 Rn W uE .x/ D 0

¯
; (3.1)

there exists a unique uniformly continuous function uE .x; t/ WRn � Œ0C1/ which solves,
in the viscosity sense, the nonlocal parabolic problem´

@tu.x; t/C jDu.x; t/jH
K
¹y Wu.y;t/>u.x;t/º

.x/ D 0;

u.x; 0/ D uE .x/:
(3.2)
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Moreover, if uE .x/ is Lipschitz continuous, then uE .�; t / is also Lipschitz continuous for
all t > 0, with the same Lipschitz constant.

For the precise definition of viscosity solution, we refer to [9]; see also [24]. The
existence and uniqueness of a uniformly continuous solution follows from the comparison
principle proven in full generality in [9]. We observe that the inequalityHK

E .x/ 6 c (resp.
HK
E .x/ > c) for x 2 @E can be shown to be equivalent to HK

¹y WuE .y/>0º
.x/ 6 c (resp.

HK
¹y WuE .y/>0º

.x/ > c/ for x with uE .x/ D 0, in the viscosity sense.

Remark 3.2 (Outer and inner flows). We define the outer and inner flows as follows:

EC.t/ WD
®
x 2 Rn W uE .x; t/ > 0

¯
and E�.t/ WD

®
x 2 Rn W uE .x; t/ > 0

¯
; (3.3)

where uE .x; t/ is the unique viscosity solution to (3.2) with initial data uE as defined
in (3.1). The level set flow of @E is given by

†E .t/ WD
®
x 2 Rn W uE .x; t/ D 0

¯
: (3.4)

We observe that since the equation in (3.2) is geometric, if we replace the initial condition
uE with any function u0 with the same level sets ¹u0 > 0º and ¹u0 > 0º; the evolutions
†E .t/, EC.t/ and E�.t/ remain the same. For more details, we refer to [9, 24].

Finally, we observe that if int.E/ D ;, then uE .x/ 6 0 for every x 2 Rn, by (3.1).
Therefore, by the comparison principle proved in [9], we get that uE .x; t/ 6 0 for every
t > 0. In particular, this implies that

if E has empty interior, then E�.t/ D ; for all t > 0. (3.5)

Finally, we recall some results about the comparison between the level set flow and
the geometric regular subsolutions and supersolutions to (1.1), which have been proven in
[5, Appendix] (see also [9]).

We start with a geometric comparison principle proven in [5, Corollary A.8].

Proposition 3.3.
(1) Let F � E be two closed sets in Rn such that d.F;E/ D ı > 0. Then, FC.t/ �

E�.t/ for all t > 0, and the map t 7! d.FC.t/; E�.t// is nondecreasing.

(2) Let v W Rn � Œ0; T /! R be a bounded uniformly continuous viscosity supersolu-
tion to (3.2), and assume that F � ¹x 2 Rn W v.x; 0/ > 0º: Then,

FC.t/ �
®
x 2 Rn W v.x; t/ > 0

¯
for all t 2 .0; T /.

Moreover, if d.F; ¹x 2 Rn W v.x; 0/ > 0º/ D ı > 0; then

FC.t/ �
®
x 2 Rn W v.x; t/ > 0

¯
for all t 2 .0; T /,

and
d
�
FC.t/;

®
x 2 Rn W v.x; t/ > 0

¯�
> ı:



K mean-convex and K-outward minimizing sets 45

(3) Letw WRn � Œ0;T /!R be a bounded uniformly continuous viscosity subsolution
to (3.2), and assume that E � ¹x 2 Rn W w.x; 0/ > 0º/: Then,

EC.t/ �
®
x 2 Rn W w.x; t/ > 0

¯
for all t 2 .0; T /.

Moreover, if d.E; ¹x 2 Rn W w.x; 0/ > 0º/ D ı > 0; then

E�.t/ �
®
x 2 Rn W w.x; t/ > 0

¯
for all t 2 .0; T /,

and
d
�
E�.t/;

®
x 2 Rn W w.x; t/ > 0

¯�
> ı:

We now state a comparison result between the level set flow and the geometric sub-
solutions or supersolutions to (1.1). We omit its proof since it follows exactly as in [5,
Proposition A.10].

Proposition 3.4. Let C.t/ � Rn, for t 2 Œ0; T �, be a continuous family of closed sets with
compact boundaries, and let E � Rn be a closed set.

(1) Assume that C.t/ satisfies a uniform interior ball condition at every point of its
boundary, and that there exists ı > 0 such that at every x 2 @C.t/,

@tx � �.x/CH
K
C.t/.x/ > ı: (3.6)

If E � C.0/, with d.E;C.0//D k > 0, then EC.t/� C.t/ for all t 2 Œ0; T �, with
d.EC.t/; C.t// > k.

(2) Assume that C.t/ satisfies a uniform exterior ball condition at every point of its
boundary, and that there exists ı > 0 such that at every x 2 @C.t/,

@tx � �.x/CH
K
C.t/.x/ 6 �ı: (3.7)

If E � C.0/, then EC.t/ � C.t/ for all t 2 Œ0; T �.
If d.C.0/; ¹x 2 Rn W uE .x/ > 0º/ D k > 0, then E�.t/ � C.t/ for all t 2 Œ0; T �,
with d.E�.t/; C.t// > k.

4. K -flow of K -mean convex sets

In this section, we discuss some properties of the K-flow (1.1) starting from a regularly
or strongly K-mean convex set. We first show that the flow is monotone in the following
sense.

Proposition 4.1.
(1) Let E � Rn be a strongly K-mean convex set with associated constant ı > 0.

If int.E/ D ;, then E�.t/ D ; and int.EC.t// D ; for every t > 0, whereas if
int.E/ ¤ ;, then

EC.t C s/ � E�.t/ with d.EC.t C s/; E�.t// > ıs

for every t > 0; s 2 Œ0; �E=ı/; (4.1)



A. Cesaroni and M. Novaga 46

where E�.0/ D int.E/. In particular, EC.t/ n E�.t/ has empty interior for all
t > 0.

(2) Let E � Rn be a regularly K-mean convex set. Then,

EC.t/ � E and EC.t C s/ � EC.t/ for every t; s > 0. (4.2)

Proof. (1) Let ı > 0 and �E be the constants associated to E, according to Definition 2.2.
Let � 6 �E . For 0 < h < min.ı; �/ and s 2 Œ0; 1�,

C.s/ WD E��hs :

We observe that C.s/ is a supersolution to (1.1), in the sense that it satisfies

@sx � � CH
K
C.s/.x/ D �hCH

K
C.s/.x/ > 0:

Since E � E� D C.0/, by Proposition 3.4, we get that for all s 2 .0; 1�, for every � 6 �E ,

EC.s/ � C.s/ D E��hs � E� and d.EC.s/; E��hs/ > d.E;E�/ D �:

This implies that for all s 2 Œ0; 1�,

EC.s/ �
\

0<�6�E

E� D E:

Therefore, if int.E/ D ;, then we conclude that int.EC.t// D ; and we recall that
E�.t/ D ; for all t > 0 by (3.5).

Assume now that E has nonempty interior. Arguing as above, we define C.s/ D
E�E�ıs and we get that C.s/ is a supersolution to (1.1) for every s 2 Œ0; �E=ı/. Therefore,
as above, by Proposition 3.4, we get that EC.s/ � E�E�ıs for every s 2 Œ0; �E=ı/ and
d.EC.s/; E�E�ıs/ > d.E;E�E / D �E .

Let x 2 @EC.s/. Then, d.x; @E�E�ıs/ > d.EC.s/; E�E�ıs/ > �E . Therefore, for
every y 2 @E, we get

�E 6 d.x; @E�E�ıs/ D min
z2@E�E�ıs

jx � zj 6 jx � yj C min
z2@E��ıs

jy � zj

D jx � yj C �E � ıs;

which, in turn, gives that for all x 2 @EC.s/ with s 2 Œ0; �E=ı/ and all y 2 @E,

jx � yj > ıs:

This implies that for all s 2 Œ0; �E=ı/

d.EC.s/; E/ > ıs > 0: (4.3)

In particular, it follows that EC.s/ � int.E/.
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By the comparison principle in Proposition 3.3, we get that

EC.t C s/ � E�.t/ with d.EC.t C s/; E�.t// > ıs for all t > 0; s 2 .0; �E=ı/:

Finally, we recall the following lower semicontinuity result for the outer evolution proved
in [5, Proposition A.12]: lim inf�!0 jEC.t C �/j > jint.EC.t//j.

Then, since EC.t C s/ � E�.t/ for s 2 .0; �E=ı/, we getˇ̌
int.EC.t/ nE�.t//

ˇ̌
6 lim sup

s!0C

ˇ̌
int.EC.t//

ˇ̌
�
ˇ̌
EC.t C s/

ˇ̌
6 0;

which gives the conclusion.
(2) Now, we consider the case of a regularly K-mean convex set E. Fix � 6 �E and

T < 1
cE

and define the flow C.t/ D EcE�t for t 2 Œ0; T �. Note that since cE�t 6 �E ,
HK
C.t/

.x/ > �c2E�t > �c2E�T > �cE� for all t 2 Œ0; T �, which implies that C.t/ is a
strict supersolution to (1.1). Therefore, by Proposition 3.4, we get that

EC.t/ � EcE�t for all 0 6 t 6 T <
1

cE
and every � 2 .0; �E �.

This implies that for t 2 Œ0; 1
cE
/,EC.t/�

T
�2.0;�E �

EcE�t DE, sinceE is closed. Then,
by the comparison principle in Proposition 3.3, we get that

EC.t C s/ � EC.t/ for all t > 0; s 2
h
0;
1

cE

�
:

Remark 4.2. Observe that if E is K-mean convex and HK
E .x/ > ı > 0 for all x 2 @E

in the viscosity sense, but E is not regularly or strongly K-mean convex, then, in general,
it is not true that EC.t/ � E for t > 0 and, moreover, in general, the flow may develop
fattening. The fattening phenomenon is related to the non-uniqueness of the geometric
flow; for an analysis of this phenomenon, mainly in dimension 2, for geometric equations
as (1.1), we refer to [5].

As an example, we consider the set E described in Remark 2.5. In [5, Theorem 1.10],
it is proved that there exists t > 0 and c > 0 such that E�.t/ � B.0; r.�// � EC.�/ for
all � 2 Œ0; t/, where r.�/ D c.n/�1=.1Cs/, which implies that (4.2) cannot hold.

Moreover, we show that the monotonicity of the flow implies K-mean convexity.

Proposition 4.3. Let E be a closed set. Assume that there exists h > 0 such that

EC.t/ � E for every 0 6 t 6 h, (4.4)

then HK
E .x/ > 0 in the viscosity sense for every x 2 @E.

If, moreover, there exists ı > 0 such that

EC.t/ � E with d.E;EC.t// > ıt for every 0 6 t 6 h,

then HK
E .x/ > ı in the viscosity sense for every x 2 @E.
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Proof. We prove directly the second statement, since the first can be proved in a similar
way, just putting ı D 0. Assume that it is not true that HK

E .x/ > ı in the viscosity sense
for every x 2 @E. Therefore, there exists x 2 @E and a set F with C 1;1 boundary such
that F � E, x 2 @F \ @E and HK

F .x/ 6 ı � 4� < ı. By the continuity of the curvature
on regular sets (see [9]), there exists r > 0 such that for all y 2 @F \B.x; 4r/,HK

F .y/ 6
ı � 3�.

Now, we construct a strict subsolution C.t/ to (1.1) with C.0/ D F as follows. Let
c D maxy2@F HK

F .y/ > 0 and let  r ; �r W Rn! Œ0; 1� be two smooth functions such that
 r .y/D 1, for y 2 B.x; r/, and  r .y/D 0, for y 2 Rn nB.x; 2r/, and on the other hand
�r .y/D 0, for y 2B.x;3r/, and �r .y/D 1, for y 2Rn nB.x;4r/. We construct a family
of regular sets as follows: C.0/ D F and C.t/ is the set whose boundary is

@C.t/ D
®
y C .�ı C �/t r .y/�@F .y/ � .c C 2�/t�r .y/�@F .y/ W y 2 @F

¯
;

where �F .y/ is the outer normal of F at x 2 @F . For t > 0 sufficiently small, C.t/ is of
class C 1;1 and moreover, by the continuity of the curvature on regular sets,

HK
C.t/.y/ 6 ı � 2� for y 2 @C.t/ \ B.x; 4r/ and c C � > max

y2@C.t/
HK
C.t/.y/:

(4.5)
Finally, observe that at every y 2 @C.t/,

@ty � �.y/ D .�ı C �/ r .y/ � .c C 2�/�r .y/ 6 �HK
C.t/.y/ � �;

where the last inequality is obtained by recalling the definition of �r ;  r and (4.5). We
conclude, by Proposition 3.4, that since C.0/ D F � E, then C.t/ � EC.t/ for all t > 0
sufficiently small.

Note that d.xC .�ıC �/t�F .x/;x/D .ı � �/t and then d.C.t/;E/6 .ı � �/t < ıt ,
in contradiction with the fact that d.EC.t/; E/ > ıt and C.t/ � EC.t/ � E.

Remark 4.4. Note that, arguing exactly as in the proof of Proposition 4.3, we may prove
the following result: if E is a closed set such that there exist ı > 0 and h > 0 for which

sup
x2EC.t/

d.x;E/ 6 ıt for all t 6 h;

then
HK
E .x/ > �ı in the viscosity sense for all x 2 @E:

Indeed, we argue by contradiction and we choose F as in the proof of Proposition 4.3,
with C 1;1 boundary such that F � E, x 2 @F \ @E and HK

F .y/ 6 �ı � 2� for all
y 2 @F \ B.x; r/. We now construct a strict subsolution to (1.1) as

@C.t/ D
®
y C .ı C �/t r .y/�@F .y/ � .c C 2�/t�r .y/�@F .y/ W y 2 @F

¯
;

where c D maxy2@F HK
F .y/ > 0 (since F is compact). Therefore, by comparison,

C.t/ � EC.t/ and supx2C.t/ d.x;E/ > .ı C �/t , which gives a contradiction.
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We collect the previous results about flows of regularly and strongly K-mean convex
sets.

Theorem 4.5.
(1) Let E be a strongly K-mean convex set with associated constant ı > 0. Then, for

all � 2 Œ0; �E /, the outer flow .E�/C.t/ is monotone according to (4.1), if ı > 0,
or to (4.2), if ı D 0, and, moreover,

HK
.E�/C.t/

.x/ > ı for all t > 0.

(2) Let E be a regularly K-mean convex set. Then, the outer flow EC.t/ is monotone
according to (4.2), and

HK
EC.t/

.x/ > 0 for all t > 0:

Proof. (1) Note that by definition if K is strongly K-mean convex with associated con-
stant ı > 0, then for any � 2 .0; �E /, E� is also strongly K-mean convex with associated
constant ı > 0, and �E� D �E � �. Therefore, we may apply Proposition 4.1 to every E�

and deduce that if ı D 0, then (4.2) holds for .E�/C.t/ for every t > 0 and if ı > 0, then
(4.1) holds for s 2 Œ0; �E��

ı
� and for every t > 0. Now, by Proposition 4.3, we get that

HK
.E�/C.t/

.x/ > ı for all t > 0.

(2) The fact that HK
EC.t/

.x/ > 0 is a consequence of (4.1) and Proposition 4.3.

5. Minimizing movements

We now recall the variational scheme, sometimes called minimizing movements, intro-
duced in [1] for the classical mean curvature flow, and later extended to the nonlocal
setting in [9].

Given a nonempty set E � Rn with compact boundary and a time step h > 0, if E is
bounded, we define the set Th.E/ as a solution of the minimization problem

min
F�Rn

PerK.F / �
1

h

Z
F

dE .x/ dx: (5.1)

If E is unbounded, then we define Th.E/ WD Rn n Th.R
n nE/. We also let Th.;/ WD ;.

We iterate the scheme to obtain T .k/
h
.E/ D Th.T

.k�1/

h
.E//, where we put T .1/

h
.E/ D

Th.E/, and we define the following piecewise constant flows as follows:

Eh.t/ D T
.k/

h
.E/ for t 2

�
kh; .k C 1/h

�
: (5.2)

In the sequel, we will identify a minimizer Th.E/, and a time discrete flowEh.t/, with
the representative given by the set of Lebesgue points of the characteristic function.

We recall some results about this scheme from [9].
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Theorem 5.1.
(1) For any set E, the minimization problem (5.1) admits a maximal solution TC

h
.E/

and a minimal solution T �
h
.E/ (with respect to inclusion). We will denote the

flow obtained in (5.2) by interpolating the minimal and the maximal solution
as E�

h
.t/ and EC

h
.t/, respectively. Every flow constructed as in (5.2) satisfies

E�
h
.t/ � Eh.t/ � E

C.t/.

(2) If E � F , then T˙
h
.E/ � T˙

h
.F /. Moreover, if d.E; F / > r , then d.Th.E/;

Th.F // > r .

(3) There exists a constant C > 1 depending only on the dimension, such that for
every fixed R > 0 and every h > 0 such that

R � h min
x2@B.0;CR/

HK
B.0;CR/.x/ > 0;

one has
T˙h .B.0;R// � B

�
0;R � h min

x2@B.0;CR/
HK
B.0;CR/.x/

�
:

(4) For every R0 > 0 and � > 1, there exists h0 > 0 depending on R0; � and C such
that if h 6 h0, then for any R > R0 and h 6 h0,

B
�
0;R � h max

x2@B.0;R=�/
HK
B.0;R=�/.x/

�
� T˙h .B.0;R//:

(5) Let E � F be a nonempty bounded set with r D d.E; F / > 0. Then, there exists
h0 > 0 depending on r and the dimension such that for all h 6 h0, T˙

h
.E/ � F

and, moreover,

d.TC
h
.E/; F / > r � h max

x2@B.0;r=2/
HK
B.0;r=2/.x/ > 0:

Proof. For the proof of items (1)–(4), we refer to Proposition 7.1, Lemma 7.2, Lemma
7.4, Lemma 7.5, Lemma 7.6 and Lemma 7.10 in [9].

We now show item (5). We fix x 2 @F and observe that by assumption, for every
r 0 < r , E � Rn n B.x; r 0/ and then, by monotonicity,

T˙.E/ � T˙.Rn n B.x; r 0// D Rn n T�.B.x; r 0//: (5.3)

Now, we apply item (4), choosing R0 D r=2 and � D 2: there exists h0 depending on r
such that for all r 0 > r=2 and h 6 h0,

B
�
x; r 0 � h max

y2@B.0;r 0=2/
HK
B.0;r 0=2/.y/

�
� T˙h .B.x; r

0//:

Substituting in (5.3), we get that for all x 2 @F ,

T˙h .E/ � Rn n B
�
x; r 0 � h max

y2@B.0;r 0=2/
HK
B.0;r 0=2/.y/

�
for all r 0 2 .r=2; r/; h 6 h0:
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This implies that for all h 6 h0, either T˙
h
.E/ � F or T˙

h
.E/ � Rn n F , and in both

cases
d.F; T˙h .E// > r � h max

y2@B.0;r=2/
HK
B.0;r=2/.y/ > 0: (5.4)

Finally, we observe that necessarily T˙
h
.E/ � F . Assume by contradiction that

T˙
h
.E/ � Rn n F . Then, recalling that E � F with d.E; F / D r , from (5.4) we would

get that dE .x/ 6 �2r C hmaxy2@B.0;r=2/HK
B.0;r=2/

.y/ < 0 for every x 2 TC
h
.E/. So, it

would be possible, just by translating TC
h
.E/, to construct a competitor with strictly less

energy, and so to prove that TC
h
.E/ could not be a solution to the minimization problem

(5.1).

Finally, we recall the convergence of the scheme to the K-mean curvature flow, as
proved in [9, Proposition 7.12 and Theorem 7.16].

Theorem 5.2. Let u0 be a Lipschitz continuous function. We define

Thu0.x/ WD sup
®
� W x 2 Th

�
¹x W u0.x/ > �º

�¯
;

and iteratively, for k 2 N,

T
.k/

h
u0.x/ WD Th

�
T
.k�1/

h
u0.x/

�
: (5.5)

Let
uh.x; t/ WD T

Œt=h�

h
u0.x/;

then ´
T �
h

�®
x W uh.x; .k � 1/h/ > �

¯�
D
®
x W uh.x; kh/ > �

¯
;

TC
h

�®
x W uh.x; .k � 1/h/ > �

¯�
D
®
x W uh.x; kh/ > �

¯
;

where the second equality holds up to a negligible set and, moreover,

uh.x; t/! u.x; t/ as h! 0, locally uniformly in Rn � Œ0;C1/,

where u.x; t/ is the unique solution to (3.2) with initial datum u0.

6. K -flow of K -outward minimizing sets

In this section, we show that the level set flow preserves theK-outward minimality. In the
case of the classical mean curvature flow, we refer to [29] for an analysis of the outward
minimizing sets. In particular, in that paper, it is shown that these sets provide a class of
initial data for which the minimizing movement scheme converges to the level set flow.
For the generalization of this result to the anisotropic case and the crystalline case, we
refer to [10].

First of all, we show that the minimizing movement scheme (5.2) starting from a
K-outward minimizer is monotone (see [29, Lemma 2.7] for the case of the classical
perimeter, and [10, Lemma 2.3] for the anisotropic perimeter).
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Proposition 6.1. Let� be an open set and letE be a nonempty bounded set withE b �.
If E is a K-outward minimizing set in �, then there exists h0 depending on r D d.E;�/
> 0 such that for all h 6 h0, every piecewise constant flow Eh.t/D T

.k/

h
.E/, for t 2 Œkh;

.k C 1/h/ defined in (5.2) satisfies

Eh.t/ � Eh.s/ and PerK.Eh.t// 6 PerK.Eh.s// for all t > s > 0;

where Eh.0/ D E. Moreover, Eh.t/ is a K-outward minimizing set in �, so that
HK
Eh.t/

.x/ > 0 in the viscosity sense at every x 2 @Eh.t/.

Proof. First of all, we observe that by Theorem 5.1, sinceE b�, then there exists h0 such
that TC

h
.E/ b � for all h 6 h0. Now, we proceed by induction on k > 0 and, to avoid

long notation, we define Ek WD T
.k/

h
.E/. Since Th.Ek/ is a minimizer of (5.1), choosing

Ek \ Th.Ek/ as a competitor, we get

PerK.Th.Ek// � PerK.Ek \ Th.Ek//

6
1

h

Z
Th.Ek/

dEk .x/ dx �
1

h

Z
Ek\Th.Ek/

dEk .x/ dx

D
1

h

Z
Th.Ek/nEk

dEk .x/ dx 6 0;

since dEk 6 0 on Rn nEk . Since Ek is a K-outward minimizer, we get that

PerK.Ek \ Th.Ek// 6 PerK.Th.Ek// and
1

h

Z
Th.Ek/nEk

dEk .x/ dx D 0;

which implies that Th.Ek/�Ek , up to a negligible set, recalling that dEk < 0 on Rn nEk .
Now, using Ek as a competitor, we observe that, since Th.Ek/ � Ek and dEk > 0 in Ek ,

PerK.Th.Ek// 6 PerK.Ek/ �
1

h

Z
Ek

dEk .x/ dx C
1

h

Z
Th.Ek/

dEk .x/ dx 6 PerK.Ek/:

Let G � Th.Ek/ be such that G n Th.Ek/ b�. Our aim is to prove that PerK.Th.Ek// 6
PerK.G/. Using the minimality of Th.Ek/ and G \ Ek as competitor we get, recalling
that Th.Ek/ � Ek \G and that dEk D 0 on Ek nEk ,

PerK.Th.Ek// 6 PerK.G \Ek/ �
1

h

Z
G\Ek

dEk .x/ dx C
1

h

Z
Th.Ek/

dEk .x/ dx

6 PerK.G \Ek/:

We conclude by recalling that Ek is a K-outward minimizer, so that PerK.G \ Ek/ 6
PerK.G/.

Proposition 6.2. Under the same assumptions of Proposition 6.1, if E is also strongly
K-outward minimizing set in� with constant ı > 0, for all h 6 min.h0;

d.E;�/
ı

/, one has
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• if E has empty interior, then Th.E/ D ;;

• if E has nonempty interior, then the discrete flow Eh.t/ satisfies

d.Eh.t/; Eh.t C h// > ıh and HK
Eh.t/

.x/ > ı for all t > 0 and x 2 @Eh.t/.

Proof. Observe that, by the definition of the piecewise constant flow Eh.t/, it is sufficient
to prove the second statement forEk WD T

.k/

h
.E/ for every k > 1. We start by considering

the case k D 1. In this case, E1 D Th.E/. By Proposition 6.1, we know that E1 � E. We
fix z 2 Rn with jzj < hı and observe that E1 C z � E C z � � since hı 6 d.E; �/.
Now, E1 C z is a solution to the minimization problem

min
F

�
PerK.F / �

1

h

Z
F

dE .x � z/ dx
�
:

We choose E \ .E1 C z/ as a competitor and we get

PerK.E1 C z/ �
1

h

Z
E1Cz

dE .x � z/ dx

6 PerK.E \ .E1 C z// �
1

h

Z
E\.E1Cz/

dE .x � z/ dx:

Since E is a strongly K-outward minimizer, we get

PerK.E \ .E1 C z// 6 PerK.E1 C z/ � ı
ˇ̌
.E1 C z/ nE

ˇ̌
:

Substituting in the previous inequality, we get

ı
ˇ̌
.E1 C z/ nE

ˇ̌
6
1

h

Z
.E1Cz/nE

dE .x � z/ dx:

Finally, for x 62 E, by definition,

dE .x � z/ D d.x � z;R
n
nE/� d.x � z;E/ 6 d.x � z;Rn nE/ 6 d.x � z; x/ D jzj:

Therefore, in the previous inequality, we get

ı
ˇ̌
.E1 C z/ nE

ˇ̌
6
1

h
jzj
ˇ̌
.E1 C z/ nE

ˇ̌
< ı

ˇ̌
.E1 C z/ nE

ˇ̌
;

which implies that j.E1 C z/ nEj D 0 for every z with jzj < ıh, that is,

E1 C B.0; ıh/ � E:

Note that if int.E/ D ;, then by the previous inclusion, we get that necessarily E1 D ;.
If int.E/ 6D ;, one has that

E1 � E and d.E1; E/ > hı:
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By Theorem 5.1, we then get

E2 D Th.E1/ � Th.E/ D E1 and d.E2; E1/ > hı:

So, by iteration, we obtain

Ek � Ek�1 and d.Ek ; Ek�1/ > hı:

Finally, we fix k > 1 and we claim that for any � 2 .0; 1/,

HK
Ek
.x/ > ı.1 � �/ in the viscosity sense for all x 2 @Ek :

So, sending �! 0, we get the statement.
The minimality of Ek D Th.Ek�1/ and the submodularity of the perimeter (2.4) give

that for all G,

PerK.G \Ek/ 6 PerK.G/C PerK.Ek/ � PerK.Ek [G/

6 PerK.G/ �
1

h

Z
GnEk

dEk�1.x/ dx: (6.1)

We proceed as in the proof of Theorem 2.9 (1). We fix � 2 .0; 1/ and we assume,
by contradiction, that there exists F � Ek with @F 2 C 1;1, x0 2 @Ek \ @F , such that
HK
F .x0/ 6 ı.1 � �/ � 2� for some � > 0 small. Then, by the continuity of HK , there

exists r0 > 0 such that HK
F .x/ 6 ı.1 � �/ � � for every x 2 @F \ B.x0; r0/. We fix

r < min
�
r0;

hı�

2

�
; (6.2)

so that B.x0; r/bEk�1 (since d.Ek ;Ek�1/> ıh) and we construct a 1-parameter family
ˆ" of C 1;1 diffeomorphisms, such that F Dˆ0.F /�ˆ".F /�E, jˆ".F / nEkj> 0 and
ˆ".F / nEk �ˆ".F / n F b B.x0; r/b Ek�1 for every " 2 .0; "0/. Again, by continuity,
HK
ˆ".F /

.x/ 6 ı.1 � �/ � �=2 for all x 2 @ˆ".F / n F . Using the fact that HK is the first
variation of PerK with respect to C 1;1 diffeomorphisms, as in the proof of Theorem 2.9
(see (2.5) and (2.6)), we get

PerK.Ek \ˆ".F // > PerK.ˆ".F //C
�
�ı.1 � �/C

�

2

� ˇ̌
ˆ".F / nEk

ˇ̌
:

By the previous inequality and (6.1) applied to G D ˆ".F /, we get

PerK.ˆ".F // �
1

h

Z
ˆ".F /nEk

dEk�1.x/ dx

> PerK.ˆ".F //C
�
�ı.1 � �/C

�

2

�ˇ̌
ˆ".F / nEk

ˇ̌
;

from which we deduce

1

h

Z
ˆ".F /nEk

dEk�1.x/ dx 6
�
ı.1 � �/ �

�

2

� ˇ̌
ˆ".F / nEk

ˇ̌
:
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Observe that ˆ".F / n Ek � B.x0; r/ and then, dEk�1.x/ > hı � r > h.ı � ı�
2
/ for all

x 2 ˆ".F / nEk , by (6.2). Therefore, we get�
ı �

ı�

2

�ˇ̌
ˆ".F / nEk

ˇ̌
<
�
ı � ı� �

�

2

� ˇ̌
ˆ".F / nEk

ˇ̌
;

which implies ˆ".F / � Ek , in contradiction with our construction.

We now prove the main result of this section, about the flow ofK-outward minimizing
sets.

Theorem 6.3. Let � be an open set, E a bounded set with E b �. Assume that E is a
strongly K-outward minimizing set in � with constant ı > 0. Then, for every t > 0 up to
a countable set, one has

Eh.t/! E�.t/ in L1.�/, as h! 0.

Moreover, E�.t/ is a K-outward minimizing set in � for every t > 0, and

E�.t C s/ � E�.t/ with d
�
E�.t C s/; E�.t/

�
> ıs for every t; s > 0:

Moreover,
T
s<t E

�.s/ n E�.t/ has empty interior for all t > 0, j
T
s<t E

�.s/ nE�.t/j

D 0 for every t > 0, up to a countable set, and

HK
E�.t/.x/ > ı for all x 2 @E�.t/ and t > 0.

Finally, if E has boundary of class C 1;1 or if K 2 L1.Rn/, the same results hold also
for the outer flow EC.t/, EC.t/ nE�.t/ has empty interior for all t > 0, and

HK
EC.t/

.x/ > ı for all x 2 @EC.t/ and t > 0.

Proof. Note that by Proposition 6.2 and Remark 3.2, we may assume int.E/ 6D ;; other-
wise the statement is trivial. We divide the proof into six steps.

Step 1: Definition of a continuous minimal time function u. We recall that Eh.t/ D
T
.k/

h
.E/ for t 2 Œkh; .k C 1/h/. We define the discrete arrival time function as follows:

uh.x/ WD

8̂<̂
:
h
X
k>0

�Ek .x/ D

Z C1
0

�Eh.t/ dt; if x 2 E;

0; if x 2 Rn nE:

(6.3)

Note that by Proposition 6.2, uh is well defined and®
x W uh.x/ > t

¯
D Eh.t/:

By its very definition, we get that

T
.k/

h
uh.x/ D uh.x/ � hk; (6.4)

where T .k/
h
uh.x/ is defined as in (5.5).
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Moreover, by Proposition 6.2, we get that d.T .k/
h
.E/; T

.k0/

h
.E// > ıh.jk � k0j � 1/.

Let x 2 T .k/
h
.E/ and y 2 T .k

0/

h
.E/,

juh.x/ � uh.y/j D hjk
0
� kj 6

d
�
T
.k/

h
.E/; T

.k0/

h
.E/

�
ı

C h 6
jx � yj

ı
C h:

This implies that, up to a subsequence, uh ! u uniformly as h! 0, where u W Rn ! R
is a Lipschitz continuous function such that u D 0 in Rn nE and ju.x/ � u.y/j 6 jx�yj

ı
.

Step 2: For all t > 0,E�.t/D¹x W u.x/ > tº. Note that since uh! u uniformly, then it
is also true that kThuh � Thuk1! 0 as h!C1 and then also kT .k/

h
u� T

.k/

h
uhk1! 0

as h! 0 for all k > 1, where Thu; T
.k/

h
u are defined as in (5.5). Therefore, by Theo-

rem 5.2, we conclude that

T
Œ th �
h
uh.x/! u.x; t/

locally uniformly in Rn � Œ0;C1/ as h! 0, where u.x; t/ is the unique viscosity solution
to (3.2) with initial datum u.

On the other hand, by (6.4), we get that

T
Œ th �
h
uh.x/! u.x/ � t

locally uniformly. This implies that u.x/ � t is the unique viscosity solution to (3.2)
with initial datum u and, in particular, since the operator is geometric and the level set
¹u.x/ > 0º coincide with the level set ¹dE .x/ > 0º, we conclude that

E�.t/ D
®
x W u.x/ > t

¯
for all t > 0:

Note that by this equality, we also deduce that\
s<t

E�.s/ D
®
x W u.x/ > t

¯
;

and that the limit u of uh is unique, so the whole family uh converges to u uniformly as
h! 0. By its characterization, we get also that E�.t C s/ � ¹x W u.x/ > t C sº � E�.t/

for all s > 0.
Step 3: L1 convergence andK-outward minimality property ofE�.t/. By the uniform

convergence of uh ! u, we get that for all t > 0, one has

E�.t/ D
®
x W u.x/ > t

¯
� lim
h!0

Eh.t/ �
®
x W u.x/ > t

¯
D

\
s<t

E�.s/;

where the limit is taken in the L1 sense. Since u is Lipschitz continuous, we know that
j¹x W u.x/D tºj D 0 for almost every t > 0, which implies thatEh.t/!E�.t/ inL1.Rn/
for almost every t > 0. Moreover, by the stability with respect to L1 convergence of the
K-outward minimizing sets (see Proposition 2.7), since Eh.t/ are K-outward minimizers
in �, by Proposition 6.1, we conclude that E�.t/ and

T
s<t E

�.s/ are also K-outward
minimizer sets in � for almost every t > 0.
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Now, we observe that E�.t/ is a K-outward minimizer set in � for every t > 0,
again, by the stability under L1 convergence, since E�.t/ D

S
s>0 E

�.t C s/ D

lims!0C E
�.t C s/. Then,

T
s<t E

�.s/D lims!t� E
�.s/ is also aK-outward minimizer

set in � for every t > 0.
Step 4: K-curvature of E�.t/. Since E is strongly K-outward minimizer with ı > 0,

then, by Proposition 6.2, we get that

d
�
Eh.t/; Eh.t C s/

�
> ı

�
h
h t C s
h

i
� h

h t
h

i
� h

�
> sı � 2hı:

Then,
Eh.t C s/C B.0; ıs � 2hı/ � Eh.t/:

Passing to the limit as h! 0, we get that for almost every t; s > 0,

d
�®
u.x/ > t C s

¯
;
®
u.x/ > t

¯�
> ıs: (6.5)

Arguing as before, we get that this inequality holds for all s; t > 0.
Now, we apply Theorem 4.3, choosing as initial set ¹u.x/ > tº and observing that the

outer flow at time s > 0 of ¹u.x/ > tº is given by ¹u.x/ > t C sº. So we get that

HK
¹u.y/>tº.x/ > ı in the viscosity sense for all x 2 @¹u.y/ > tº and for all t > 0.

(6.6)
Step 5: The set ¹x W u.x/ D tº. We show that for all t > 0,

int
�®
x W u.x/ > t

¯
n
®
x W u.x/ > t

¯�
D int

�®
x W u.x/ D t

¯�
D ;:

We assume by contradiction that there exist z and r > 0 such thatB.z; r/ b ¹x W u.x/ D tº
� ¹x W u.x/ > tº. Let

˛ WD max
k2Œr=2;r�

�
max

y2@B.0;k/
HK
B.0;k/.y/

�
:

Note that by the definition of curvature, then ˛ D maxy2@B.0;r=2/HK
B.0;r=2/

.y/ > 0. Let
s0 > 0 be such that r � ˛s0 > r=2, and define the flow B.s/DB.z; r � ˛s/ for s 2 Œ0; s0�.
Then, we get that B.s/ is a strict subsolution to (1.1) since HK

B.s/
.y/ 6 2˛ for every

s 2 Œ0; s0�. Recalling that u.x/� t is a viscosity solution to (3.2), we conclude by Proposi-
tion 3.4, thatB.z; r � ˛s/DB.s/� ¹x W u.x/> t C sº. This implies that t D u.z/> t C s

for all s 2 Œ0; s0�, which is not possible.
Moreover, observe that by (6.5), the set of t > 0 where j¹x W u.x/ D tºj > 0 coincides

with the set of jumps of the strictly decreasing function t 7! jE�.t/j. Therefore, such set
is countable.

Step 6: Case of E with C 1;1 boundary or K 2 L1.Rn/. Note that if E is strongly
K-outward minimizing, then by Theorem 2.9, HK

E .x/ > ı for all x 2 @E, so that, by
Remarks 2.3 and 2.5, for any � 2 .0; ı/, there exists an open set �� � �, with E b �� ,
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such that E it is strongly K-mean convex in �� with associated constant �. Therefore, by
Proposition 4.1 (1), we get that EC.t/ � E�.t � s/ for every t > s > 0, and so

EC.t/ �
\
0<s<t

E�.t � s/ D
\
0<s<t

®
x W u.x/ > t � s

¯
D
®
x W u.x/ > t

¯
� EC.t/;

which implies that for all t > 0,®
x W u.x/ > t

¯
D EC.t/ and

®
x W u.x/ D t

¯
D EC.t/ nE�.t/:

Therefore, by Step 5, we get that EC.t/ n E�.t/ has empty interior for all t > 0 and has
measure zero for all t > 0, except from a countable set. By Step 3, we get that for almost
every t , Eh.t/! EC.t/ in L1. Then, by the stability with respect to L1 convergence,
EC.t/ is aK-outward minimizing set for almost every t , and then for all t , observing that
EC.t/ D lims!0C E

�.t � s/. Finally, the same argument of Step 4 gives that

HK
EC.t/

> ı for all t > 0.

Remark 6.4. If the outer flow satisfies EC.t/ b E for t > 0, then the same results
as in Theorem 6.3 hold also for the outer flow EC.t/, since we may prove that
¹x W u.x/ > tº D EC.t/, arguing exactly as in Step 5 of the proof. In particular, we would
get that EC.t/ nE�.t/ has empty interior for all t .

We expect this monotonicity property to hold true for the flow starting from a strongly
K-outward minimizer.

Remark 6.5. In Theorem 6.3, we show that the volume function

t 7! jE�.t/j

is strictly decreasing. We expect that this function is also continuous, as it happens in the
local case.

We conclude with a corollary about the convergence of theK-perimeter of the discrete
flow to theK-perimeter of the limit level set flow (we refer to [10,29] for analogous results
in the local case).

Corollary 6.6. Let � be a domain and E b � be a strongly K-outward minimizing set
in � with constant ı > 0. Then, for every T > 0,Z T

0

PerK.Eh.t// dt !
Z T

0

PerK.E�.t// dt as h! 0,

where Eh.t/ is any piecewise constant flow as defined in (5.2) and E�.t/ is the viscosity
inner flow as defined in (3.3).

Proof. By Theorem 6.3, Eh.t/! E�.t/ in L1.�/ for almost every t ; therefore, by the
lower semicontinuity of PerK with respect to the L1 convergence and Fatou’s lemma, we
get that for every T > 0,

lim inf
h!0

Z T

0

PerK.Eh.t// dt >
Z T

0

PerK.E�.t// dt: (6.7)
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We now introduce the functional

JK.v/ WD
1

2

Z
Rn

Z
Rn

ˇ̌
v.x/ � v.y/

ˇ̌
K.x � y/ dx dy for v 2 L1loc.R

n/: (6.8)

Note that JK.�E /D PerK.E/ for all measurable E � Rn. The coarea formula [6, Propo-
sition 2.3] states that

JK.v/ D

Z C1
�1

PerK
�®
v > s

¯�
ds (6.9)

for all v 2 L1loc.R
n/.

Let uh be as defined in (6.3). We claim that

JK.uh/ 6 JK.v/ for all v 2 L1loc.R
n/, v > uh and supp v b �. (6.10)

The proof of this claim is a direct consequence of the coarea formula and the fact that
Eh.t/ is K-outward minimizer for every t , by Proposition 6.1. Indeed, since uh 6 v, for
every s > 0,

Eh.s/ D
®
x W uh.x/ > s

¯
�
®
x W v.x/ > s

¯
b �;

which implies, since Eh.t/ is a K-outward minimizing set, that

PerK.Eh.s// D PerK
�®
x W uh > s

¯�
6 PerK

�®
x W v > s

¯�
:

Integrating for s 2 .0;C1/, and recalling (6.9), we get the conclusion.
Now, we use the same argument as in [29, Proposition 5.1]. We recall that by The-

orem 6.3, uh ! u uniformly as h! 0, where u is Lipschitz continuous and u D 0 in
Rn n E. By the uniform convergence, we get that for any " > 0, there exists h0 such that
uh 6 uC " for all h < h0. Let v.x/ WD .u.x/C "/�E .x/, so v.x/> uh.x/ by construction
and, moreover, supp v D E b �.

Therefore, by (6.10),

JK.uh/ 6 JK.v/ D JK..uC "/�E /

6 JK.u/C JK."�E / D JK.u/C "PerK.E/:

Sending "! 0, we conclude that

JK.uh/ 6 JK.u/: (6.11)

Recalling that Eh.t/D ¹x W uh.x/ > tº and E�.t/D ¹x W u.x/ > tº, (6.11), by the coarea
formula, coincides withZ C1

0

PerK.Eh.t// dt 6
Z C1
0

PerK.E�.t// dt for all h 6 h0.

This inequality, together with (6.7), gives the claim.
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