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A formula for membrane mediated point particle
interactions on near spherical biomembranes

Charles M. Elliott and Philip J. Herbert

Abstract. We consider a model of a biomembrane with attached proteins. The membrane is rep-
resented by a near spherical continuous surface and attached proteins are described as discrete rigid
structures which attach to the membrane at a finite number of points. The resulting surface minimises
a quadratic elastic energy (obtained by a perturbation of the Canham–Helfrich energy) subject to the
point constraints which are imposed by the attachment of the proteins. We calculate the derivative of
the energy with respect to protein configurations. The proteins are constrained to move tangentially
by translation and by rotation in the axis normal to a reference point. Previous studies have typically
restricted themselves to a nearly flat membrane and circular inclusions. A numerically accessible
representation of this derivative is derived and employed in some numerical experiments.

1. Introduction

The morphology of cell membranes and a variety of functions are well known to be
regulated by the interplay between surface proteins and the curvature of the membrane.
Biological membranes are composed of a lipid bilayer which is believed to act like a fluid
in the lateral direction and elastically in the normal direction. This means that in principle,
any proteins which may be embedded into or attached to the surface of the membrane may
move freely; thus, not only can the proteins influence the shape of the membrane, but also
the protein interaction will be membrane mediated.

Indeed, although direct protein-protein interactions are important, [20] demonstrated
that the long range interactions are predominantly membrane mediated. An overview of
membrane mediated interactions is given in [4]. An assumption of symmetry of the pro-
tein inclusion allows for either analytic representation or approximation by an asymptotic
expansion of the interactions [10,19,29,37,39]. Frequently the studies of these interactions
have been restricted to a nearly flat membrane with circular or single point inclusions. It
is known that the shape of the inclusion has a significant impact on the interaction [30]. In
the recent work of [35], a near spherical membrane which is deformed by particles which
attach along segments of an ellipsoid or hyperbolid is considered; and in [23] arbitrary,
sufficiently regular particle inclusions on a flat membrane are considered. Recent work
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has looked at shape formation of multiple smaller particles into larger structures [21, 36].
In [9], generic elastic energies on a manifold with embedded point particles which have
a given interaction potential are considered. A variational formulation for equilibria of
the surface and particle system is presented, along a discretisation. Numerical validations
are given, and in particular, a Helfrich problem is presented. We further note the work of
[5] which considers point constraints in a Kirchhoff plate—this bears a striking similarity
to the biological problems of optimising the locations of constraints with respect to the
elastic membrane energy.

It is widely accepted in the literature that the near stationary state of lipid membranes
are minimisers of the Canham–Helfrich energy [6, 25],Z

M

��
2
.H � c0/

2
C � C �GK

�
dM; (1.1)

where the membrane is assumed to be thin and well modelled by a two-dimensional sur-
face M. The quantities � > 0, �G 2R are the bending rigidities associated to the mean and
Gauss curvature respectively, and � � 0 is the surface tension. For the principle curvatures
of M, �1, �2, we takeH WD �1C �2 to be two times the usual value of the mean curvature
and K WD �1�2 to be the typical Gauss curvature. The value c0 2 R is the spontaneous
curvature, which corresponds to a mismatch between the inner and outer layers of the
membrane, for example, due to differing lipid composition.

We make some simplifying assumptions. The first is to set c0 D 0, corresponding
to a physical assumption that the mismatch between the layers is rather small. Another
assumption is to neglect the Gauss curvature term. This may be justified by taking the
rigidity �G to be constant and applying the Gauss–Bonnet theorem, which states that when
M is closed, the quantity

R
M
K depends only on the Euler characteristic of M. As we are

considering a fixed topology of near spherical membranes, we may ignore this constant.
Thus, the energy (1.1) can be written asZ

M

��
2
H 2
C �

�
dM: (1.2)

It is natural to introduce a volume constraint corresponding to the membrane being
impermeable and the fluid contained within the membrane being incompressible. Indeed,
without the volume constraint, it is known that (1.2) is bounded below by 8�� [38], and
the degenerate sequence S2.0; 1

n
/ for n!1 is a minimising sequence. Further to this,

we are interested in constraining M to contain a set of points, as this corresponds to a
protein in a fixed location being attached to the membrane.

We assume that the attached proteins are rigid, that is to say, they do not bend and can
only move by translations or rotations. It is of clear interest to consider the force that the
membrane exerts on these attached proteins. This is relevant to, say, calculating locally
minimising configuration of multiple proteins via a gradient flow, to estimate statistical
quantities using over-damped Langevin Dynamics [32, Section 2.2.2], or as a step for a
full model for the problem of particles in membranes. For further details on estimation of
the free energy of a particle membrane, see [28].
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The derivative of the energy with respect to particle location is calculated as a shape
derivative in [14], and appears by use of a pull back method in [23], both in the case of
large particles on a nearly flat membrane. We will follow many of the ideas of this second
work, making use of methods from [7] to deal with the fact we are on a surface, rather
than a flat domain.

One motivation for constructing a formula for the membrane mediated particle inter-
actions may be seen from the following example. For NE.p/, the total energy of the particle
system (the membrane energy with electrostatic interaction) in configuration p, one might
be interested in finding p� such that NE.p�/ is minimal. One may choose to do this with a
gradient descent algorithm in which an update step might be

pnC1 D pn � ˛nrp NE.pn/;

for some ˛n > 0 which may depend on n. Clearly one may approximate the derivative
rp
NE.pn/ by taking a difference quotient. However, this will be expensive, as one would

require solving 3N C 1 linear systems—the system associated to the state pn and the 3N
directions that rp corresponds to. With the explicit formula we find, the algorithm to con-
struct the gradient would require solving one linear system and evaluating 3N functionals,
where these functionals are relatively cheap to evaluate compared to a linear solve for a
fourth order PDE.

1.1. Outline

The quadratic energy approximating the general Canham–Helfrich energy (1.2) is presen-
ted in Section 2 along with precise definitions and notation for the attachments of particles
to the membrane. The formula for the derivative of the minimising energy with respect to
the location of the particles is derived in Section 3. Some numerical examples are presen-
ted in Section 4. In a finite element setting, we calculate and compare derivatives using
the formula and a difference quotient of the energies for comparison.

1.2. Surface PDE preliminaries

For completion, we now provide several definitions and results on the topic of surface
PDEs which we will later need. The results may be found in [11]. For � , a closed, suf-
ficiently smooth, bounded, orientable hypersurface in R3 without boundary, there is a
bounded domain � � R3 such that � D @�. The unit normal to � , �, that points away
from � is called the outwards unit normal. Define P� WD I � � ˝ � on � to be, at each
point x 2 � , the projection onto the tangent space at that point, Tx� , where I is the identity
matrix and we define a˝ b WD abT , for a; b 2 Rn. For a differentiable function f on � ,
we define the tangential gradient

r�f WD P�r Qf ;

where Qf is a differentiable extension of f to an open neighbourhood of � in R3. Here r
is the standard derivative on R3. Lemma 2.4 of [11] shows this definition is independent
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of the choice of extension Qf . We denote the components of the tangential gradient by

Dif WD .r�f /i :

The map H WD r�� is called the extended Weingarten map, and is symmetric with eigen-
value zero in the normal direction. The mean curvature H is given as the trace of H . For
a twice differentiable function, the Laplace–Beltrami operator is defined to be

��f WD r� � r�f D

3X
iD1

DiDif:

We write D2
�f to be the surface Hessian, and Lemma 2.6 in [11] shows that the surface

Hessian is, in general, not symmetric with the relation

DiDjf �DjDif D .Hr�f /j �i � .Hr�f /i�j : (1.3)

It is well known [11, Lemma 2.8] that there is a small neighbourhood around � of width
ı > 0, Nı , and maps d WNı ! R (the oriented distance function) and � WNı ! � (the
closest point projection), such that for any zX 2 Nı , we have the unique decomposition

zX D �. zX/C d. zX/�.�. zX//: (1.4)

2. Membrane and particle model

We begin with models for the deformation of the membrane and for the particles together
with their attachment to the membrane.

2.1. Membrane model

We now fix � WD S2.0; R/ to be the 2-sphere of radius R, for a given R > 0. In light of
this, we see that for X 2 R3 n ¹0º, we have �.X/ D R X

jX j
and d.X/ D jX j � R. We are

interested in finding a surface which is a near spherical membrane of the form

M.v/ WD ¹x C �v.x/�.x/ W x 2 �º ;

where � is small and v is sufficiently smooth. Thus, M.v/ is a graph over � . We use the
energy

J.v/ WD
1

2

Z
�

�.��v/
2
C

�
� �

2�

R2

�
jr�vj

2
�
2�

R2
v2 (2.1)

derived in [12]. It is seen for
R
�
v D 0 that J.v/ is the first non-trivial term of the Taylor

expansion in � of the Lagrangian induced by the Canham–Helfrich energy, for surfaces
with enclosed volume constrained to be 4

3
�R3 around the critical point .�;� �

R
/. This

energy is analogous to the Monge gauge for a nearly flat membrane [14], which is formally
obtained by taking the limit R!1.
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Definition 2.1. We define the bilinear form aWH 2.�/ �H 2.�/! R to be

a.�; v/ WD

Z
�

������v C
�
� �

2�

R2

�
r�� � r�v �

2�

R2
�v 8�; v 2 H 2.�/; (2.2)

which is the bilinear form given by the first variation of (2.1). Furthermore, we define the
space

U WD

²
v 2 H 2.�/ W

Z
�

v D 0

³
:

Remark 2.2. We note that under the small deformation methodology of [12], one may
deal with appropriately small spontaneous curvature, denoted by c0 in (1.1), as considered
in [15, 17].

2.2. An energy minimising membrane subject to point constraints

With the above definitions, one may now write the following problem:

Problem 2.3. Given Z 2 RK and C D ¹Xj 2 � W j D 1; : : : ; Kº, find u 2 U such that
J.u/ is minimised subject to u.Xj / D Zj for j D 1; : : : ; K.

This defines K point constraints on u and is admissible for u 2 H 2.�/ because of the
well-known embedding for two dimensions, H 2.�/ � C.�/ (see [1]).

We have the following well-posedness and regularity result. The well-posedness fol-
lows from [16, Theorem 5.1], while the regularity result may be found in Appendix C.

Theorem 2.4. SupposeK � 4 and the points of C do not lie in a single plane. Then, there
is a unique u 2 U which solves Problem 2.3. Moreover, for any p 2 .1; 2/, it holds that
u 2 W 3;p.�/.

Remark 2.5.
• The fact the solution of Problem 2.3 has three weak derivatives will be used to give a

more convenient representation of the derivative we calculate.

• A related problem has been considered in [12], where the authors consider the minim-
isation over a smaller space which enforces a fixed centre of mass for the membrane.

• The works [14, 22, 23] consider a larger solution space whereby the particles may,
in some sense, tilt. The problem for this tilting on a sphere, or general domain, is of
interest and may be studied in future work.

• An example of non-uniqueness forK > 4 would be to consider C � ¹x 2 � W x1 D 0º.
Then, for a solution u of Problem 2.3, we see that uC ˛�1 2 U and J.uC ˛�1/ D
J.u/ for any ˛ 2 R.

2.3. A single particle model

We wish to model the attachment of proteins to a biomembrane. A protein is considered
to be a rigid discrete structure which is attached to the membrane at a finite number of
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fixed points. An example would be a protein such as FCHo2 F-BAR domains, where it
is understood that a small number of atoms are more likely to attach to the membrane
[26, 27]. This is in contrast to the case mainly considered in [22], where the protein is
modelled as being embedded in the membrane and attached along a curved boundary. The
protein-biomembrane interaction is modelled by attachment at these points.

To begin, we restrict ourselves to a single protein in order to establish notation. We
describe the protein by a finite set of distinct points G WD ¹ zXi 2 R3 W i D 1; : : : ;M º. The
points of G correspond to charged ends of the protein which attach to the membrane. The
attachment constraint is the requirement that G is contained in the graph M.u/, which we
write as

G �M.u/: (2.3)

It follows that any zX 2 G may be uniquely decomposed into

zX D �. zX/C d. zX/�.�. zX// D R
zX

j zX j
C
�
j zX j �R

� zX
j zX j

;

and condition (2.3) becomes

u.�. zX// D d. zX/ 8 zX 2 G : (2.4)

For ease of notation, we write X WD �. zX/, z WD d. zX/ and index the points of G so that
¹ zXiº

M
iD1 D G , hence we may write (2.4) as

u.Xi / D zi 8i D 1; : : : ;M: (2.5)

Definition 2.6. We write C WD ¹�. zX/ W zX 2 G º D ¹Xiº
M
iD1 to be the reference points on

� to the sites of attachment. Furthermore, we write

ujC D Z

as shorthand for (2.5).

2.4. Parameterisation of a single particle

We now parameterise the movement of a single particle. We attempt to keep our notation
as similar as possible to that of [23], which deals with the movement of curves in a flat
domain, in contrast to our points which move on a sphere.

The assumption that the protein is rigid is meant in the sense that any movement of G

should preserve the orientation and the distance between points. There are six degrees of
freedom by which G can be moved—this is translation and rotation. We further restrict to
lateral (i.e. tangential) movement of G over the membrane. This means that the height of
attachment above � , the valuesZ, will be independent of any movement. In the flat setting
these lateral movements correspond to rotation perpendicular to the plane and translation
within the plane. Although this is a strong restriction to make to the full model, it is
important in this setting to avoid the particle moving out of the graph-like description.
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The configuration of a single particle G is defined by a rigid transformation from
a fixed position. We associate one point XG 2 � with G . We call XG the centre of G .
The configuration of the particle is defined by a rotation about the axis, which is defined
by �.XG / together with a tangential translation of XG along the surface of � . A rotation
around �.XG / is characterised by an angle, ˛ 2R. A tangential translation is characterised
by a tangent vector � 2 TXG

� Š R2. For this tangent vector, the idea is to consider the
transport of XG along the geodesic defined by � and that the other points should follow
with a rigid transformation. In the setting of a sphere, this corresponds to rotating the
points by angle j� j in the axis perpendicular to both �.XG / and � . Thus, for a particle with
centre XG , this leads to the following definition of a particle configuration:

Definition 2.7. Given a particle G � R3 with centre XG and p D .˛; �/ 2 R� TXG
� , we

write
G .p/ WD ¹�.p; zX/ W zX 2 G º;

with
�.p; x/ WD RT .�/Rn.˛/x 8x 2 R3; (2.6)

where Rn.˛/ is given by

Rn.˛/x WD .�.XG /˝ �.XG //x C cos.˛/.�.XG / � x/ � �.XG /C sin.˛/.�.XG / � x/;

and for � ¤ 0, define Q� WD �.XG / �
�
j� j

. Then, RT .�/ is given by

RT .�/x WD . Q� ˝ Q�/x C cos.j� j/. Q� � x/ � Q� C sin.j� j/. Q� � x/;

and RT .0/x D x. A diagram showing the transformations Rn and RT may be found in
Figure 1. Furthermore, write

C.p/ WD ¹�.p;X/ W X 2 Cº;

which coincides with the projection of G .p/ onto � .

Remark 2.8. The choice that �.p; x/ WD RT .�/Rn.˛/x rather than Rn.˛/RT .�/x is
arbitrary. It is clear that they will both generate the same family of configurations. In this
setting, due to the symmetry of the surface, we see that the map �.p; �/D RT .�/Rn.˛/ is
linear and has a matrix representation which lies in SO.3/.

We will, with an abuse of notation, identify G with G .0/ and similarly C with C.0/.
Also note that p is periodic in the sense that, for p D .˛; �/, Np D .˛ C 2�; �/ and Qp D
.˛; � C 2� �

j� j
/, it holds that

�.p; �/ � �. Np; �/ � �. Qp; �/:

We note further that if G contains only one point, zX1, and one sets XG D X1, it is seen
that ˛ becomes a redundant parameter.
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(a) Diagram for Rn. (b) Diagram for RT .

Figure 1. Diagrams demonstrating the transformations Rn and RT , both with �.XG / coming out
of the page.

2.5. Configuration of particles

We now make the extension to multiple groups of particles.

Definition 2.9. Given discrete sets with finite number of points,

G1; : : : ;GN � Nı � R3;

we write
Ci WD ¹�. zX/ W zX 2 Giº for i D 1; : : : ; N;

which is the projection of Gi onto � . Let the G1; : : : ;GN have centres XG1 ; : : : ; XGN , and
let p D .p1; : : : ; pN / 2

QN
iD1.R� TXGi

�/, where pi D .˛i ; �i / 2 R� TXGi
� . We define

�i .p; x/ WD RTi .�i /Rni .˛i /x 8x 2 R3;

where the operators RTi .�i /; Rni .˛i / are defined relative to the centres XGi , as in Defini-
tion 2.7.

Further define

Gi .p/ WD ¹�i .p; zX/ W zX 2 Giº for i D 1; : : : ; N;

Ci .p/ WD ¹�i .p;X/ W X 2 Ciº for i D 1; : : : ; N;

the latter of which is the projection of Gi .p/ onto � . Observe that

Gi .0/ D Gi and Ci .0/ D Ci ; i D 1; : : : ; N:
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Figure 2. Diagram indicating the different areas which might be excluded from having part of
another particle in for two identical particles. The left is the radius approach, on the right the area is
given by the interior of a curve passing through all the points.

Definition 2.10. We define the set of feasible particle configurations to be

ƒı WD

´
p 2

NY
iD1

.R � TXGi
�/ W 8i; j D 1; : : : ; N; i ¤ j; Ci .p/ \ Cj .p/ D ;

µ
:

We define the closure of the set of feasible particle configuration by ƒ WD ƒı. Further-
more, for p 2 ƒ we define

�.p/ WD � n

N[
iD1

Ci .p/:

We first note that 0 2
QN
iD1.R � TXGi

/ is not a distinguished configuration. Given
any non-overlapping initial configuration of particles ¹CiºNiD1, it is clear that ƒı is the set
of all possible configurations of particles which have been moved by the rigid motions
parameterised by p described at the start of Section 2.4.

Remark 2.11. Notice that for p 2ƒı, it may hold that the ‘interiors’ of particles overlap.
As such, one might want to consider a subset of ƒı whereby one defines an appropriate
interior of particles and assumes that the intersection of these is empty, or perhaps one may
also assign a ‘radius’ to each particle and consider the set where there are no points from
another particle which lie within this radius. Two ideas of these exclusion areas are shown
in Figure 2. In this diagram, the clear dot is the centre of a particle and the black dots are
the points of the particle. The exclusion area is signified by the hatched lines. The choice
of this subset is of no importance when constructing the derivative, but is important when
considering which particle configurations are admissible. Requiring that the particles do
not overlap could be included as part of a Lennard-Jones potential, see (4.18) in [14],
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where it could be seen that this discussion pertains to a choice of the distance function in
their formula.

For each p 2ƒı we have a set of point constraints on elements ofH 2.�/. This motiv-
ates of the parameterised trace operators which follow.

Definition 2.12. Let p 2 ƒı be given.

• For i D 1; : : : ; N , define the maps 
i .p/WH 2.�/! RjCi j by


i .p/W v 7! .v ı �i .p; �// jCi ;

where �i .p; �/jCi is meant as in Definition 2.6.

• For v 2 H 2.�/; Z 2
QN
iD1 RjCi j; we say 
.p/v D Z when


i .p/v D Zi 2 RjCi j for i D 1; : : : ; N;

where Z is given by the particles G1; : : : ;GN .

• Define the following subsets of H 2.�/ by

U.p/ WD ¹v 2 U W 
.p/v D Zº;

U0.p/ WD ¹v 2 U W 
.p/v D 0º:

Assumption 2.13. Henceforth, we assume that there is l with 1 � l � N such that Cl is
not coplanar.

Definition 2.14 (Membrane configurational energy). Given p 2 ƒı, we define u.p/ 2
U.p/ by

u.p/ WD arg min
v2U.p/

J.v/

and we define the membrane configurational energy EWƒı ! R by

E.p/ WD J.u.p//:

By a trivial extension to Theorem 2.4, it is clear that u.p/ exists, is unique, and satisfies
u.p/ 2W 3;2�ı.�/ for any ı 2 .0; 1/. For p 2 @ƒı we do not necessarily have that a u.p/
exists—this is due to U.p/ possibly being empty.

Remark 2.15. Notice that E may not be the total energy associated to the particle-
membrane configuration. For example, E may be augmented with a pairwise interaction
between particles modelling direct forces between different particles.

3. Gradient of the energy with respect to configuration changes

In this section we find a formula for the derivative of E.p/ with respect to changes in the
configuration p.
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Definition 3.1 (Derivative of the configurational energy). The configurational energy is
differentiable at p 2 ƒı in the direction e 2

QN
iD1.R � TXGi

�/ if the derivative

d
dt

E.p C te/jtD0

exists. We denote this derivative by @eE.p/.

The difficulty lies in the implicit definition of the energy E.p/ in terms of the minim-
isation of the quadratic energy J.v/ over the configurational space U.p/. This is because
it requires the evaluation of the evaluation of d

dt J.u.pC te//jtD0 which involves the min-
imisation of J.�/ over U.p C te/. In order to achieve this, we fix p and employ suitable
local isomorphisms on the vector spaces U.p/ via appropriate diffeomorphisms of the
domain �.p/. This is applied locally to transform the energy (2.1) and the related minim-
isation problems over a reference function space.

We begin with the existence of a sufficiently regular family of diffeomorphisms.

Lemma 3.2. Let k � 3. For each p 2ƒı there exists an open ball B �
QN
iD1.R� TXGi

�/

containing 0 and a family of C k-diffeomorphisms �WB � � ! � such that

�.0; �/ is the identity on �I

and for all q 2 B, p C q 2 ƒı and

v ı �.q; �/�1 2 U.p C q/ ” v 2 U.p/: (3.1)

The proof of this lemma is given in Section 3.3, where we give an explicit construction
of the maps. We note that it is possible to construct the family to be infinitely differentiable.

We now define what we mean by the derivative of � with respect to e.

Definition 3.3. Given q 2 B and e 2
QN
iD1.R � TXGi

�/, for each x 2 � , the derivative
of �.�; x/ at q in direction e is defined to be

@e�.q; x/ WD
d
dt
�.q C te; x/jtD0:

Remark 3.4. Notice that:

• The dependence on p of B and � has been suppressed.

• For our purposes, we will not require full knowledge of the diffeomorphism �, only of
the derivative @e�.0; �/.

• The fact that ƒ may be identified as a subset of the finite dimensional space R3�N

will be exploited to reduce the problem of differentiability of E to be an application of
the Implicit Function Theorem applied to a reformulated interaction energy.

• The condition (3.1) may be decomposed into three parts: 
.pC q/
�
v ı ��1

�
D 
.p/v

for all v 2 H 2.�/,
R
�
v ı ��1 D

R
�
v for all v 2 H 2.�/ and v 2 H 2.�/ ” v ı

��1 2 H 2.�/.
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• The condition on � that
R
�
v ı �.q; �/�1 D

R
�
v for all v 2 H 2.�/ is equivalent to

requiring that det .r��.q; �/C �.�/ ı �.q; �/˝ �.�//D 1 on � . As such, it is sufficient
to have @e det.r��.q; �/C �.�/ ı �.q; �/˝ �.�// D 0 for any e 2

QN
iD1.R � TXGi

�/.
We will later see that, for q D 0, this is the same as requiring div�@e�.0; �/ vanishes.

3.1. The transformed functional and its derivative

Using the � in Lemma 3.2, we have the following functional.

Definition 3.5. Let J �WB � U.p/! R be given by

J �W .q; v/ 7! J.v ı ��1.q; �//; J �.0; v/ D J.v/ 8v 2 U.p/:

We call J �.�; v/ the transformed membrane energy. Given e 2
QN
iD1.R � TXGi

/, if, for
any v 2 U.p/, the derivative

d
dt
J �.te; v/jtD0

exists, then we denote the derivative by @eJ �.0; v/.

We now define some terms which appear in [7] which are useful to give an explicit
representation of J �.

Definition 3.6. Given q 2 B, we define on � the matrices and determinant

B D B.q; �/ WD r��.q; �/C �.�/ ı �.q; �/˝ �.�/;

G D G.q; �/ WD B.q; �/TB.q; �/;

b D b.q; �/ WD det.B.q; �//:

The following convenient representation of J � is immediate from Lemmas A.1 and
A.2 in the appendix.

Lemma 3.7. Given v 2 U.p/, q 2 B, it holds that

J �.q; v/ D
�

2

Z
�

1

b

�
div�.bG�1r�v/

�2
C

��
2
�
�

R2

� Z
�

br�v �G
�1
r�v �

�

R2

Z
�

bv2:

(3.2)

Note that we wish to differentiate J � with respect to q and that the q-dependence is
located in the coefficients B.q/.

Lemma 3.8. Suppose B �
QN
iD1.R � TXGi

�/ is sufficiently small with 0 2 B and � 2
C k.B � �I�/. Then, J � 2 C k�2.B � U.p/IR/.

Proof. It is clear from the expression for J � that it depends on B , the derivative of B
and smoothly (in H 2.�/) on v. Since B.0/ D I, the identity matrix, B depends con-
tinuously on q and det is a continuous map, thus for a sufficiently small neighbourhood
B 3 0, det.B.q// > c > 0, and it holds that B is non-singular. Thus, by smoothness of the
integrand, we may apply the dominated convergence theorem to obtain J � 2 C k�2.B �
U.p/IR/.
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Theorem 3.9. There exists an open neighbourhood OB of 0 in
QN
iD1.R � TXGi

�/ such
that E.p C �/ 2 C k�2. OBIR/. In particular, for k � 3 and u D arg minv2U.p/ J.v/,

@eE.p/ D @eJ
�.0; u/:

Proof. In what follows, we suppress the dependence on p and write u D u.p/; U0 D

U0.p/. Define J 2 C k�2.B � U0IR/ by J.q; v/ WD J �.q; uC v/ for .q; v/ 2 B � U0:

For fixed q, J.q; �/ is a quadratic functional and by the definition of u, we have that the
minimiser of the functional J.0; v/ over U0 is given by v D 0. Define F 2 C k�2.B �
U0IU

�
0 / by F.q; v/ WD DvJ.q; v/ where, for fixed q, DvJ is the first variation of J.q; �/

over U0. For each .q; v/, F.q; v/ is a linear functional. Since J.0; v/ attains minima at
v D 0, it follows that F.0; 0/ D DvJ.0; 0/ D 0 2 U �0 . Furthermore, the first variation of
F at .0; 0/,

DvF.0; 0/W .�; �/ 2 U0 � U0 7! DvF.0; 0/Œ�; �� D DvvJ.0; 0/Œ�; �� Da.�; �/;

is a strictly coercive bilinear form over U0 �U0. As a consequence, it follows that the map
U0 3 v 7! DvF.0; v/ 2 U

�
0 is invertible.

It therefore holds that we may apply the Implicit Function Theorem, Theorem B.1, to
f D F , with .a; b/D .0; 0/, X D

QN
iD1.R� TXGi

�/, Y D U0, ZD Y� and�DB � Y.
As such, there is a neighbourhood of 0, OB D V � B and a function Ov 2 C k�2. OBIU0.p//
such that Ov.0/ D 0 and F.q; Ov.q// D 0, that is to say J �v .q; Ov.q/C u/ D 0, so Ov.q/C u
is a critical point of J �.q; �/. By coercivity of J �.q; �/ over U.p/, Ou.q/ WD Ov.q/C u is the
unique minimiser. Hence,

E.p C q/ D min
�2U.pCq/

J.�/ D min
�2U.p/

J �.q; �/ D J �.q; Ou.q//:

Since Ou 2 C k�2. OBIU.p//, J � 2 C k�2.B � U.p/IR/, and it follows that E.p C �/ 2

C k�2. OBIR/. Taking the derivative of E gives

@eE.p/ D
d
dt

E.p C te/jtD0 D
d
dt
J �.te; u/jtD0 C

d
dt
J �.0; Ou.te//jtD0 D @eJ

�.0; u/;

where d
dt J
�.0; Ou.te//jtD0 D DvJ

�.0; u/Œ d
dt Ou.te/jtD0� vanishes since DvJ �.0; u/ D 0.

Remark 3.10. Although J � depends on the choice of �, the derivative @eE.p/ is inde-
pendent of the choice of �. One may consider a different diffeomorphism, say, Q� with
energy zJ �. One would then have that

min
�2U.pCq/

J �.q; �/ D min
Q�2U.pCq/

zJ �.q; Q�/;

and arrive at @eE.p/ D @e zJ �.0; u/ D @eJ �.0; u/.
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3.2. An explicit formula for the derivative

It is convenient to define the following.

Definition 3.11. Define the tangential vector field V W
QN
iD1.R � TXGi

�/ � � ! R3 by

V.e; x/ WD @e�.0; x/;

which is tangential in the sense that V.e;x/ 2 Tx� for all .e;x/ 2
QN
iD1.R� TXGi

�/�� .

Proposition 3.12. Given e 2
QN
iD1.R� TXGi

�/, set A WD .div�V /I � .r�V Cr�V T /.
Then, for � 2 H 2.�/ it holds that

@eJ
�.0; �/ D �

Z
�

.A W D2
�� ���V � r��/���

�
�

R2

Z
�

.V � r��C
1

2
div�V���/���

C

��
2
�
�

R2

� Z
�

r�� �Ar�� �
�

R2

Z
�

div�V�2:

Proof. We will make use of the fact thatB.0/D I and det.B.0//D 1. To simplify notation
when taking the derivative @e , we assume that we are evaluating at q D 0, if there is no
argument given. The product rule gives

@eJ
�.0; �/ D

�

2

Z
�

2div�
d
dt
.det.B.te//G.te/�1r��/jtD0���

� .���/
2 d

dt
det.B.te//jtD0

C

��
2
�
�

R2

� Z
�

r�� �
d
dt
.det.B.te//G.te/�1/jtD0r��

�
�

R2

Z
�

d
dt

det.B.te//jtD0�2; (3.3)

where we calculate

@eB D r�V C .HV /˝ �;

@e det.B/ D div�V;

@eB
�1
D �r�V � .HV /˝ �:

Since G WD BTB , one has

d
dt
.det.B.te//G.te/�1/jtD0 D .div�V / I � r�V � .HV /˝ � � r�V

T
� � ˝ .HV /:

We are also required to calculate the surface divergence of the above quantity:

div�@e.det.B/G�1/

D div�
�
.div�V / I � r�V � .HV /˝ � � r�V

T
� � ˝ .HV /

�
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D

nC1X
kD1

.r�Dk �Dkr�/Vk ���V � div�..HV /˝ � C � ˝ .HV //

D ���V �HHV C

nC1X
kD1

.Hr�Vk/k� � .Hr�Vk/�k �Dk.�.HV /k/:

It can be seen that
nC1X
kD1

.Hr�Vk/k D H W r�V;

similarly,
nC1X
kD1

.Hr�Vk/j �k D �.H
2V /j :

Moreover,

nC1X
kD1

Dk.�.HV /k/ D H2V C .H W r�V C .r� �H / � V /�:

Together, this gives

div�.@e.det.B/G�1// D ���V � �.r� �H / � V �HHV;

where the middle term will vanish when multiplied against a tangential vector field. We
are left with

@e.det.B.q//G�1/ W D2
�� D A W D2

�� � .HV /˝ � W D2
��

� � ˝ .HV / W D2
��;

where one may recall that for vectors b; c and matrix A, A W .b ˝ c/ D bTAc. Thus,

@e.det.B/G�1/ W D2
�� D A W D2

��CH2
r�� � V;

which gives the desired result when evaluating H and H for a sphere.

By Theorem 3.9, when evaluating this at the solution of Problem 2.3, we will obtain
the derivative we seek. Notice that it might be convenient to integrate by parts to remove
the surface Hessian. This will give an alternate formula which is better suited for the
numerical methods considered in [13, 16].

Corollary 3.13. Under the assumptions of Proposition 3.12 it may be seen that, for p < 2
and � 2 W 3;p.�/,

@eJ
�.q; �/jqD0 D ��

Z
�

1

2
.div�V / .���/

2
Cr���� �Ar��

C
1

2

�
� �

2�

R2

� Z
�

r�� �Ar�� �
�

R2

Z
�

.div�V / �2: (3.4)
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Proof. This follows from integration by parts in (3.3) and following through with the
above proof. The integration by parts is admissible by the regularity of �.

By the additional regularity shown in Theorem 2.4, we see that we may pick � D
arg minv2U.p/ J.v/ in the above. This gives the main result of the work which follows
from the previous results.

Theorem 3.14. Let p 2 ƒı, u D arg minv2U.p/ J.v/ and A WD .div�V /I � r�V �
r�V

T . Then,

@eE.p/ D ��

Z
�

1

2
.div�V / .��u/

2
Cr���u �Ar�u

C
1

2

�
� �

2�

R2

� Z
�

r�u �Ar�u �
�

R2

Z
�

.div�V / u2: (3.5)

Proof. This is an application of Theorem 3.9 and Corollary 3.13.

Example 3.15. LetN D 1. Then @eE.p/D 0 for all p 2ƒı and directions e 2R� TXG
� .

This follows from the symmetry of the sphere and the invariance of J under rotations and
translations.

3.3. Proof of Lemma 3.2 by construction

Here, we prove Lemma 3.2 by constructing �.

3.3.1. Rotation of a single particle. This example pertains to a simple rotation. The
example we consider is rotating a single particle whose centreXG is taken to be the North
pole N WD .0; 0; R/T , without loss of generality. The points of the particle are contained
in the set Br .N / WD ¹x W x3 > R � rº around the North pole, and all other points are
contained in the set BrC".N /C WD ¹x W x3 < R � r � "º.

Since this is a one-parameter family of transformations, we write, with an abuse of
notation, �.˛; �/ D �.q; �/ for the diffeomorphism.

We may then explicitly write

�.˛; x/ D �.x/
�
.0; 0; x3/

T
C cos.˛/

�N
R
� x

�
�
N

R
C sin.˛/

�N
R
� x

��
C .1 � �.x//x;

where �W � ! R is a C k-smooth cut off function such that � D 1 on Br .N /, � D 0 on
BrC".N /

C , and depends only on x3.
It is clear that this � is C k-smooth with �.˛; �/ having inverse �.�˛; �/, and that it

moves the points of the particle based at the North pole as required, while others remain
stationary. Furthermore, for each fixed x3 it is essentially a two-dimensional rotation about
.0; 0; 1/T , so the volume element induced by � is constantly equal to 1.

It is convenient to calculate the derivative @e�.0; x/ for e D .1; 0/:

@e�.0; x/ D @s.�.s; x//jsD0 D �.x/
�N
R
� x

�
:
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One may also verify that div�@e�.0; �/ D 0. This follows by calculating

div�@e�.0; x/ D
1

R
.r��.x/ � .N � x/C �.x/div�.N � x//:

Since � depends only on x3, one sees that the first term is some scalar function multiplied
by P�.x/N � .N � x/, which vanishes. For the second term, one calculates, by extending
to a small neighbourhood of the surface (as in the definition of surface derivatives),

div�.N � x/ D
3X
iD1

Di .N � x/i D

3X
i;jD1

�
ıij �

xixj

R2

�
@j .N � x/i :

We see that this vanishes, since ıij @j .N � x/i D 0 for any i; j D 1; 2; 3, and

3X
iD1

xixj

R2
@j .N � x/i D

3X
iD1

xj

R2
@j .xi .N � x/i / D 0

for any j D 1; 2; 3.

3.3.2. A general �. Since the set
SN
iD1 Ci .p/ is a finite union of points, we know there

is a strictly positive distance separating each pair of points. It follows that we may assume
that the family of sets

SN
iD1 Ci .p C tq/ for .t; q/ 2 Œ0; 1� �B also satisfy this condition,

and set " > 0 to be the smallest separation between the points of
SN
iD1 Ci .p C tq/ DW K,

that is,
" D inf

.t;q/2Œ0;1��B
inf
x2K

inf
y2K;
y¤x

jx � yj:

Definition 3.16 ([34, equation (2.6)]). We define the vector surface curl of a C 1 function
 W� ! R by

curl� WD � � r� :

Definition 3.17. Given ı 2 .0; "/, define V W Œ0; 1� �B � � ! R3 by

V WD curl� ;

where for each .t; q/ 2 Œ0; 1� �B and x 2
SN
iD1 Ci .pC tq/, the function  W Œ0; 1� �B �

� ! R is locally given by

 .t; q; y/ D �.jx � yj/y � .@s
�
�i .p C sq; �/ ı �i .p C tq; �/

�1.y/
�
jsDt � �.x//

for y 2 � \B"=2.x/, otherwise D 0, where �WR!R is aC kC1-smooth cut off function
such that ´

�.s/ D 1 jsj � ı=4;

�.s/ D 0 jsj � ı=2:

Example 3.18. We now give a calculation of @s.�i .p C sq; �/ ı �i .p C tq; �/�1.y//jsDt .
For simplicity, we set p D 0 and t D 0 and neglect any i subscripts.
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Let q D .˛; �/ 2 R � TXG
. We then have

�.sq; x/ D RT .s�/Rn.s˛/x;

therefore
@s .�.sq; x// jsD0 D .�.XG / � �/ � x C ˛ .�.XG / � x/ :

It is clear that the first term corresponds to the translation and the second term, the rotation.

Lemma 3.19. The function V given in Definition 3.17 satisfies

• V 2 C k;

• div�V D 0;

• V.t; 0; x/ D 0 for all .t; x/ 2 Œ0; 1� � �;

• For each i D 1; : : : ; N ,

V.t; q; �/ D @s
�
�i .p C tq; �/ ı �i .p C sq; �/

�1
�
jsDt

on Ci .p C tq/, for each .t; q/ 2 Œ0; 1� �B; and

• @eV.t; 0; x/ D V.0; e; x/ for all t 2 Œ0; 1�, e 2
QN
iD1.TXGi

�R/, and x 2 � .

Proof. Smoothness and that V.�; 0; �/ vanishes is clear by construction, divergence-free
follows from V being the curl of another function [34, Lemma 2.1]. For the point condi-
tions, we evaluate at y 2 � such that jx � yj < ı

4
for some x 2 Ci .p C tq/,

curl� .t; q; y/ D curl�
�
y � .@s

�
�i .p C sq; �/ ı �i .p C tq; �/

�1.y/
�
jsDt / � �.x/

�
D �.y/ �

�
r�y �

�
@s
�
�i .p C sq; �/ ı �i .p C tq; �/

�1.y/
�
jsDt � �.x/

��
for each .t; q/ 2 Œ0; 1� �B, i D 1; : : : ; N . This, upon evaluation at x 2 Ci .p C tq/ for
any .t; q/ 2 Œ0; 1� �B and i D 1; : : : ; N , leaves us with

curl� .t; q; x/ D @s
�
�i .p C sq; �/ ı �i .p C tq; �/

�1
�
jsDt .x/:

The final condition takes a little bit of work. We show the condition holds near the
‘special points’ of

SN
iD1 Ci .p/. Given i D 1; : : : ; N , for x 2 Ci .p/ and y near x, we see

that

@eV.t; 0; y/ D @sV.t; se; y/jsD0

D @s
�
V.t; se; �i .p C se; �/ ı �i .p; �/

�1.y//
�
jsD0

C @s
�
V.t; se; x/ � V.t; se; �i .p C se; �/ ı �i .p; �/

�1.y//
�
jsD0

D @s
�
V.t; se; �i .p C se; �/ ı �i .p; �/

�1.y//
�
jsD0

C @s
�
V.t; se; y/ � V.t; se; �i .p C se; �/ ı �i .p; �/

�1.y//
�
jsD0:

This first term we may see is equal to V.0; e; x/. For the remaining terms,

@s
�
V.t; se; �i .p C se; �/ ı �i .p; �/

�1.y//V.t; se; y/
�
jsD0

D @s
�
r�V.t; se; y/ �

�
�i .p C se; �/ ı �i .p; �/

�1.y/
�
� y

�
jsD0;
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which we see vanishes due to the fact that r�V.�; se; �/! 0 as s ! 0 on Œ0; 1� � � and
also �i .p C se; �/ ı �i .p; �/�1.y/ � y ! 0 as s ! 0.

We will construct � in the following way.

Definition 3.20.
(1) Let �W Œ0; 1� �B � � ! � be the solution of the family of ODEs

@t�.t; q; x/ D V.t; q; �.t; q; x//; �.0; q; x/ D x

for all .q; x/ 2 B � � .

(2) Let �WB � � ! � be defined by �.q; x/ D �.1; q; x/ for all .q; x/ 2 B � � .

It is clear by standard ODE theory [24] that � exists and is smooth. Moreover, �.1; q; �/
is a diffeomorphism.

Proposition 3.21. The map �WB � � ! � , .q; x/ 7! �.1; q; x/ satisfies the conditions in
Lemma 3.2.

Proof. This follows from the properties of V in Lemma 3.19. The smoothness of � fol-
lows from the smoothness of V and standard ODE theory [24], as does the existence and
smoothness of an inverse. The condition that V.�; 0; �/D 0 gives that �.0; �/ is the identity.

The condition v ı �.q; �/�1 2 U.p C q/ if and only if v 2 U.p/ has three parts:

• v ı �.q; �/ 2 H 2.�/ if and only if v 2 H 2.�/,

•
R
�
v D

R
�
v ı �.q; �/ for all v 2 H 2.�/, and

• 
.p C q/
�
v ı ��1

�
D 
.p/v for all v 2 H 2.�/.

The first condition follows from two applications of Lemma A.2 with X D �.q; �/ and
X D �.q; �/�1, and the smoothness of these maps. The second condition follows from
the fact that div�V D 0. The final condition follows from the point conditions on V . By
considering the ODE that � solves, we see that � satisfies

�.q; �/ D �i .p C q; �/ ı �i .p; �/
�1 on Ci .p/;

for each i D 1; : : : ; N , which gives, recalling the definition of 
 in Definition 2.12,


i .p C q/v D v ı �i .p C q; �/jCi

D v ı �i .p C q; �/ ı �i .p; �/
�1
ı �i .p; �/jCi

D 
i .p/.v ı �.q; �//:

Hence, the desired result follows.

We now wish to calculate @e�.0; �/ on � .

Proposition 3.22. For each e 2
QN
iD1.TXGi

�R/, the following holds:

@e�.0; �/ D V.0; e; �/ on �:
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Proof. It is clear that @e�.0; �/ D @e�.1; 0; �/. From the ODE solved by �, one may see
that �e.t; x/ WD @e�.t; 0; x/ for .t; x/ 2 Œ0; 1� � � satisfies

@t�e.t; x/ D @eV.t; 0; �.t; 0; x//Cr�V.t; 0; �.t; 0; x//�e.t; x/;

for all .t; x/ 2 Œ0; 1�� � . Recall that V.t; 0; x/D 0 for all .t; x/ 2 Œ0; 1�� � , so the second
term in the above ODE vanishes and one has that �.t; 0; x/ D x for all .t; x/ 2 Œ0; 1� � � .
By applying the final condition of Lemma 3.19, one has that

@t�e.t; x/ D V.0; e; x/;

hence, @e�.0; �/ D �e.1; �/ D V.0; e; �/ on � .

4. Numerical experiments

To begin, we discuss the approximation errors which arise in numerical simulations.

Proposition 4.1. Let Qu 2 W 1;1.�/ with ��� Qu 2 W 1;2�ı.�/ for any ı > 0. Then, for
any " 2 .0; 1/; p 2 .1; 2/, and q D p� there is C > 0 such that

j@eJ
�.0; Qu/ � @eE.p/j � Ckr�V k0;1

�
k��.u � Qu/k1;pkr�uk1;q

C k��.u � Qu/k0;2 .k�� Quk0;2 C k��uk0;2/

C kr�.u � Qu/k0; 2�"1�"
k�� Quk1;2�"

C kr�.u � Qu/k1;2.kr�uk1;2 C kr� Qu/k1;2/
�
:

Proof. This follows from the form @eJ
� takes in (3.5) and making use of Hölder inequal-

ities.

The particular form for the estimate above is chosen so that one may apply the error
estimates of [16], making use of a split formulation to approximate u and ���u C u
with linear finite elements. There may be different estimates one wishes to show which
relate to the formula of Proposition 3.12, for example, if one were to use a higher order
discretisation of the membrane problem such as the method of [31], which deals with a
biharmonic problem on surfaces.

4.1. Experiments

The numerical experiments are chosen to illustrate the formula and that the method of
difference quotients may be unreliable. It is clear that the difference quotient will be
slower—one would have to solve (at least) two algebraic systems, whereas when using
the formula, a single algebraic system is solved and a functional evaluated.

For all of the experiments, the values �D � DRD 1 are taken. The optimal membrane
shape, u.p/, is approximated by solving a penalised finite element problem denoted by
uh.p/. The penalisation weakly enforces the point constraints and is done in order to ease
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the linear algebra. Second order splitting is used and linear finite elements are employed
following [16], where the error due to using a penalty formulation is shown to be well
controlled. All of the experiments have been implemented under the Distributed and Uni-
fied Numerics Environment (DUNE) [2, 3]. The finite element discretisation is defined as
follows.

Definition 4.2. Let �h be a connected, polygonal surface approximating � and �h be the
space of linear finite element functions on �h. Given vh 2 �h, a finite element function,
let wh 2 �h satisfy Z

�h

r�hvh � r�h�h C vh�h D

Z
�h

wh�h

for all �h 2 �h. We define

Jh.vh/ WD
1

2

Z
�h

�.wh � vh/
2
C

�
� �

2�

R2

�
jr�hvhj

2
�
2�

R2
v2h;

which is the discrete analogue of (2.1). Define

Eh.p/ WD Jh.uh.p//;

which is the discrete analogue of Definition 2.14, where uh.p/ is the minimiser of Jh over
�h such that

R
�h
uh.p/ D 0 and 
.p/.ul

h
.p// D Z.

Let Vh D IhV , where V is as in Definition 3.11 and IhWC.�/! �h is the interpolation
map. Then define Ah WD I.div�hVh/ � r�hVh � r�hV

T
h

and

.@eJ
�/h.vh/ WD ��

Z
�h

1

2
.div�hV /.vh � wh/

2
Cr�h.vh � wh/ �Ahr�hvh

C
1

2

�
� �

2�

R2

� Z
�h

r�hvh �Ahr�hvh �
�

R2

Z
�h

.div�hV /v
2
h;

which is the discrete analogue of (3.4).

Remark 4.3. Note that .@eJ �/h is not necessarily the derivative of Eh. The difference
quotients with respect to particle configurations will be approximations of the derivative
of Eh.

The first experiment is for a fixed particle configuration and a sequence of refined
meshes. This is followed by some experiments on a fixed grid and varying the particle con-
figurations. The experiments demonstrate that applying the formula to the finite element
approximation is superior to using difference quotients. Since exact values of approxim-
ated quantities are unknown, the error at level h is estimated by the difference between the
value at level h and the value on the most refined grid. Thus, for quantity Fh and smallest
grid size h�, we say the error Eh is given by jFh � Fh� j. For two grids with size h1 and
h2, we say the EOC of Fh is given by log.Eh1=Eh2/= log.h1=h2/, and we take h1 and h2
to be from successively refined grids.
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For the first three experiments, V.�; �/ D V.0; �; �/, as in the construction in Definition
3.17; and ı is taken to be roughly h, so that the interpolation of V has support on a small,
fixed number of vertices. This makes the evaluation of the functional very quick. For the
remaining experiments, V is constructed as in Section 3.3.1, where the r and " we use for
the cut off function are taken to be r D 0:75 and " D 0:15.

4.1.1. Convergence experiment. In this experiment we consider a fixed configuration
that has six particles each consisting of a single point with locations and constraints given
by

X1 D .0; 0; 1/
T ; Z1 D 1I

X3 D .0; 1; 0/
T ; Z3 D 0I

X5 D .1; 0; 0/
T ; Z5 D 0:1I

X2 D .0; 0;�1/
T ; Z2 D 0I

X4 D .0;�1; 0/
T ; Z4 D 0I

X6 D .�1; 0; 0/
T ; Z6 D 0:

Approximate evaluations of the energy together with the derivative in the direction e D
.1; 0; 0/T 2 TX1� are computed. For each finite element mesh size h, we calculate

Eh.0/; Eh.�.ıh//; Eh.��.ıh//; .@eJ
�/h.uh/:

Here, Eh.�.ı// denotes the energy where the point X1 is replaced by the point

X1.�.ı// WD .sin.�.ı//; 0; cos.�.ı///T ; with �.ı/ WD arcsin
�

ıp
ı2 C .ı � 1/2

�
:

Another approximation to @eE.0/ is given by the difference quotient

DQh WD
.Eh.�.ıh// � Eh.��.ıh///

.�.ıh/ � �.�ıh//

of the energies. The function � and the values of ıh are chosen so that X1.˙�.ıh// lie on
a vertex of the grid. The results are tabulated in Table 1. Observe that they indicate conver-
gence of the energy Eh.0/, the difference quotient DQh, and the derivative .@eJ �/h.uh/
as h! 0. The experimental order of convergence of the derivative quantities are displayed
in Table 2.

4.1.2. Experiment for simple particles lying on vertices. For this experiment, approx-
imations of the energy and the derivative are calculated on a sequence of configurations
parameterised by the location of one point, X1.t/. The configuration is defined for each t
by

X1.t/ D .sin.�.t//; 0; cos.�.t///T ; Z1 D 0:1;

and

X2 D .0; 0;�1/
T ; Z2 D 0I

X4 D .0;�1; 0/
T ; Z4 D 0I

X3 D .0; 1; 0/
T ; Z3 D 0I

X5 D .�1; 0; 0/
T ; Z5 D 0;



Membrane mediated point particle interactions on near spherical biomembranes 23

h ıh Eh.��.ıh// Eh.0/ Eh.�.ıh// .@eJ
�/h.uh/ DQh

0.301511 0.25 16.7958 17.199 16.3577 �1:2195 �1:5438

0.152499 0.125 15.524 15.5781 15.3318 �1:33257 �1:4439

0.0764719 0.0625 15.0356 15.0309 14.945 �1:37356 �1:40516

0.0382639 0.03125 14.8615 14.8509 14.8174 �1:38244 �1:39168

0.0191355 0.0078125 14.8006 14.7929 14.7788 �1:38464 �1:38720

Table 1. Calculated quantities for experiment in Section 4.1.1.

h E@eJ �h
EDQh EOC@eJ �h EOCDQh

0.301511 0.165134 0.156597 – –
0.152499 0.0520672 0.0567013 1.69327 1.49032
0.0764719 0.0110707 0.0179647 2.24306 1.66523
0.0382639 0.00219195 0.00448579 2.33893 2.00384
0.0191355 – – – –

Table 2. Derived quantities for experiment in Section 4.1.1.

where � is again defined by

�.t/ WD arcsin
�

tp
t2 C .t � 1/2

�
:

With this choice of � , the points X1; : : : ; X5 lie on vertices of our chosen grid for each
evaluation of t . We calculate Eh.t/ and .@eJ �/h.uh.t// for t 2

®
m
26
W m 2 N0; m � 2

6
¯
.

Figure 3 displays Eh.t/ whilst the values .@eJ �/h.uh.t// with the difference quotient of
Eh.t/, and the difference between them, are shown in Figure 4. One may calculate that the
relative error has a maximum of 2% at the boundary and is below 1% for the interior.

4.1.3. Experiment for simple particles not lying on vertices of the grid. This experi-
ment demonstrates that when the constraint points do not lie on the vertices of the grid,
the difference quotient becomes a less reliable method. We choose t 2 ¹ m

100
W m 2 N0;

m � 100º. The plot of the resulting Eh.t/ in Figure 5 has the same characteristic shape
as the plot in the previous experiment. For Figure 6, we plot .@eJ �/h.uh.t// with the
difference quotient of Eh.t/, and the difference between them. We notice that here, the
difference quotient does not match the formula as well as it did in the previous experi-
ment.

4.1.4. Experiment for non-trivial particles. This experiment concerns two non-trivial
particles for which there is little chance of the points lying on vertices unless, one tailors
the grid to the points. The base of the particle C1 has centre XG1 D .0; 0; 1/

T and C1 D

¹Xiº
8
iD1, where

X1 D .0:5; 0;
p

1 � 0:52/T ;
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Figure 3. Energy Eh.t/ for experiment in Section 4.1.2.

0.0 0.2 0.4 0.6 0.8 1.0

t

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5
Difference quotient DQh

Formula (∂eJ
∗)h

(a) .@eJ �/h and DQh

0.0 0.2 0.4 0.6 0.8 1.0

t

0.00

0.02

0.04

0.06

0.08

0.10

D
iff

er
en

ce

(b) j.@eJ �/h �DQhj

Figure 4. Graphs of quantities from experiment in Section 4.1.2.
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Figure 5. Energy Eh.t/ for experiment in Section 4.1.3.
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X2 D .�0:5; 0;
p

1 � 0:52/T ;

X3 D .0:25; 0:25;
p

1 � 0:252 � 0:252/T ;

X4 D .�0:25; 0:25;
p

1 � 0:252 � 0:252/T ;

X5 D .0:25;�0:25;
p

1 � 0:252 � 0:252/T ;

X6 D .�0:25;�0:25;
p

1 � 0:252 � 0:252/T ;

X7 D .0; 0:125;
p

1 � 0:1252/T ;

X8 D .0;�0:125;
p

1 � 0:1252/T ;

and .Z1/i D 1 � 1
5
.Xi /

2
1, for i D 1; : : : ; 8. The second particle is

C2 WD ¹x D .x1; x2; x3/
T
2 � W .x1; x3;�x2/

T
2 C1º;

with .Z2/i D 1 � 1
5
.Xi /

2
1 for i D 1; : : : ; 8.

Particle C1 is rotated about the North pole so that we consider the particle config-
uration in the state ..�

2
t; 0/; .0; 0//, recalling Definition 2.9. The quantities Eh.t/ and

.@eJ
�/h.uh.t// are calculated for t 2 ¹ m

25
W m 2 N0; m � 2

6º. The quantities E.t/,
.@eJ

�/h.uh.t//, and the central difference quotient for Eh.t/ are plotted in Figure 7 and
Figure 8. The results show that the difference quotients become highly unreliable.

4.1.5. Experiment to observe the numerical error of a trivial system. The differ-
ence quotient in the previous experiment is extremely noisy. In this experiment, we con-
sider a perturbation of the above experiment, where we remove C2 so that, in light of
Example 3.15, we are approximating zero. The quantities from this experiment are plot-
ted in Figure 9, where the exact values are independent of t and equal to zero. Note that
the oscillations in Figure 9(a) indicate that using a difference quotient will be an unreliable
way of calculating the derivative. On the other hand, one sees in Figure 9(b) that the error
in the discrete formula for the derivative is bounded by 10�4.

4.1.6. Application of formula. In this experiment we consider two particles which are
not axi-symmetric. The idea of the experiment is to show how orientation may affect the
membrane mediated forces. We consider a particle based at a pole and a particle based
at the equator and calculate the derivative of the energy for a displacement of the particle
at the pole in the direction of the particle at the equator. A negative derivative implies
that the energy decreases and indicates an attractive force, whereas a positive derivative
indicates the opposite. This calculation is repeated after rotating the particle at the pole by
�
2

. The particle C1 D ¹Xiº
8
iD1 is defined by

X1 D .0:3; 0;
p

1 � 0:32/T ;

X2 D .�0:3; 0;
p

1 � 0:32/T ;

X3 D .0:15; 0:15;
p

1 � 0:152 � 0:152/T ;

X4 D .�0:15; 0:15;
p

1 � 0:152 � 0:152/T ;



C. M. Elliott and P. J. Herbert 26

0.0 0.2 0.4 0.6 0.8 1.0

t

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Difference quotient DQh

Formula (∂eJ
∗)h

(a) .@eJ �/h and DQh

0.0 0.2 0.4 0.6 0.8 1.0

t

0.0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce

(b) j.@eJ �/h �DQhj

Figure 6. Graphs of quantities from experiment in Section 4.1.3.
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Figure 7. Energy Eh.t/ for experiment in Section 4.1.4.
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Figure 8. Graphs of quantities from experiment in experiment in Section 4.1.4.
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Figure 9. Graphs for experiment in Section 4.1.5.

X5 D .0:15;�0:15;
p

1 � 0:152 � 0:152/T ;

X6 D .�0:15;�0:15;
p

1 � 0:152 � 0:152/T ;

X7 D .0; 0:075;
p

1 � 0:0752/T ;

X8 D .0;�0:075;
p

1 � 0:0752/T ;

and .Z1/i D 1 � 10.Xi /21, for i D 1; : : : ; 8, and centre XG1 WD .0; 0; 1/
T . We define C2

by
C2 WD ¹x D .x1; x2; x3/

T
2 � W .x1; x3;�x2/

T
2 C1º;

with .Z2/i D 1 � 10.Xi /
2
1, for i D 1; : : : ; 8, and centre XG2 D .0; 1; 0/T . We let � D

.0; 1; 0/T 2 TXG1
. The derivative at 0 2

Q2
iD1.R� TXGi

�/ in direction e D ..0; �/; .0; 0//
is calculated. We recall that the direction e represents a translation of C1 in the direction � .
We then rotate the particle at the pole by �

2
, so that the particle system is in configuration

p D ..�
2
; 0/; .0; 0//, and calculate the derivative in the same direction e.

The calculated values are

.@eJ
�/h.0/ � �10:6729 and .@eJ

�/h.p/ � 18.5636;

which show that different orientations may have different signs of the derivative so that
one orientation is attractive and the other repulsive. The discrete displacements, uh.0/ and
uh.p/, of the membrane are displayed in Figure 10.

5. Conclusion

In this article we have shown the differentiability of E.p/, the membrane mediated interac-
tion energy for a near spherical membrane with particles attached at points which depend
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Figure 10. The rescaled graphs of the membranes from experiment in Section 4.1.6, left 0:1 u.0/,
right 0:1 u.p/, both with .0; 1; 0/T coming out of the page and .0; 0; 1/T pointing up. The colours
represent the magnitude of the deformation.

smoothly on p. Further to showing the differentiability, we have given an explicit formula
to calculate the derivative and given numerical examples which show that this formula
is more robust than a difference quotient approach. It would be of interest to extend this
analysis for particles which are able to move more generally, tilting and moving out from
the surface. Furthermore, it is desirable to consider the problem for inequality constraints
on the ‘interior’ of a particle. Finally, one could analyse higher order derivatives of the
energy so that one could determine the stability of a given configuration.

A. The pullback to a reference domain

We give some general results on the calculation of the composition of pullbacks and deriv-
atives, where we consider that the image and domain of the diffeomorphism need not be
the same. As we are working with different surfaces, it is necessary to make clear to
which surface geometric quantities belong to. This is achieved by using a superscript of
the surface, e.g. H�1 is the mean curvature of �1, and H�0 the mean curvature of �0.
Consider the case of �0 and �1 being C k , compact surfaces, with XW �0 ! �1 a C k-
diffeomorphism, where we require k � 2.

Given some function uW�1 ! R, we wish to obtain expressions for .r�1u/ ı X and
.D2

�1
u/ ı X. The first part of this is developed in [7], where also the trace of the second

quantity, the Laplace–Beltrami, is calculated. Although the surface Hessian is not required
for the model we consider in this work, we compute it for completion as it may arise in
other elastic type models, where the Hessian regularly arises. This is carried out using a
method which avoids integration by parts, so that surfaces with boundary may be con-
sidered.
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Lemma A.1. Let u 2 H 1.�1/. Then u ı X 2 H 1.�0/ and

.r�1u/ ı X D
�
r�0XC ��1 ı X˝ ��0

��T
r�0.u ı X/ D r�0XG�1�0 r�0.u ı X/;

where G�0 WD r�0XTr�0XC ��0 ˝ ��0 .

The proof is shown in Lemma 3.2 of [7]. We write B WD r�0X C ��1 ı X ˝ ��0 ,
which satisfies

BTB D G�0 :

This gives a simpler form of the above lemma, where

.r�1u/ ı X D B�Tr�0.u ı X/:

Lemma A.2. Let u 2 H 2.�1/. Then, u ı X 2 H 2.�0/ and for i; j D 1; : : : ; nC 1, we
have

.D
�1
i D

�1
j u/ ı X D

1

b
div�0

�
bB�1.B�Tr�0 Ou/j

�
i

C .H�1 ı X �H�0/.�
�1
i ı X/.B�Tr�0 Ou/j ;

where b D det.B/; bij D Bij and bij D .B�1/ij .

Proof. We write Ou WD u ı X and where indices are repeated in a product, summation is
assumed. We now make use of the preceding lemma to obtain

D
�1
i D

�1
j u ı X D bliD�0

l

�
bkjD

�0
k
Ou
�
:

Then, we write this as something similar to a divergence form:

D
�1
i D

�1
j u ı X D

1

b
D
�0
l

�
bblibkjD

�0
k
Ou
�
�
1

b
D
�0
l

�
b
�
blibkjD

�0
k
Ou

�D
�0
l

�
bli
�
bkjD

�0
k
Ou:

In [7], it is shown that

D
�0
l
bli D �blmD

�0
l
bmf b

f i ;
1

b
D
�0
l
b D bfmD

�0
l
bmf :

Inserting these into the above gives

D
�1
i D

�1
j u ı X D

1

b
D
�0
l

�
bblibkjD

�0
k
Ou
�
� bfmD

�0
l
bmf b

libkjD
�0
k
Ou

C blmD
�0
l
bmf b

f ibkjD
�0
k
Ou:

Since we are summing over f; k; l and m in the above, it is possible to swap the indices,
in particular we swap f and l in the second term. We now consider the terms

blmD
�0
l
bmf b

f ibkjD
�0
k
Ou � blmD

�0
f
bmlb

f ibkjD
�0
k
Ou

D blmbf i
�
bkjD

�0
k
Ou
��
D
�0
l
bmf �D

�0
f
bml

�
: (A.1)
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We now wish to use the definition of B in order to simplify equation A.1. To this end, we
want to swap the order of the derivatives. As in [7], one calculates

D
�0
l
bmf �D

�0
f
bml D

�
D
�0
l
.��1m ı X/ � .H�0r�0Xm/l

�
�
�0
f

C
�
.H�0r�0Xm/f �D

�0
f
.��1m ı X/

�
�
�0
l
:

We now use this to simplify (A.1). We make use of the relation bki��0
k
D �

�1
i ı X to

calculate each part:

blmbf iD
�0
l
.��1m ı X/��0

f
D .�

�1
i ı X/.B�T .r�1�m/ ı X/m

D .H�1�
�1
i / ı X;

blmbf i .H�0r�0Xm/l�
�0
f
D blmbf iH�0

lk
D
�0
k

Xm�
�0
f

D blmbf iH�0
lk
bmk�

�0
f

D H�0.�
�1
i ı X/;

blmbf i .H�0r�0Xm/f �
�0
l
D blmbf iH�0

f k
D
�0
k

Xm�
�0
l

D blmbf iH�0
f k
bmk�

�0
l

D bf iH�0
f l
�
�0
l

D 0;

blmbf i .��1m ı X/��1
l
D .��1m ı X/.B�Tr�0.�

�1 ı X//i

D .��1m ı X/H�1
mi ı X

D 0:

This then gives

blmbf i
�
bkjD

�0
k
Ou
��
D
�0
l
bmf �D

�0
f
bml

�
D ..H�1 ı X/ �H�0/

�
�
�1
i ı X

��
B�Tr�0 Ou

�
j
;

which completes the result.

Remark A.3. By taking the trace of D2
�1
u ı X, one obtains

.��1u/ ı X D
1

b
div�0.bG

�1
�0
r�0.u ı X//:

B. Implicit function theorem

We give the version of the implicit function theorem we use in Theorem 3.9, which is
taken from [8, Theorem 7.13-1].
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Theorem B.1. Let X be a normed vector space and Y and Z Banach spaces with � �
X � Y open and .a; b/ 2 �. Let f 2 C.�IZ/ such that f .a; b/ D 0; the derivative
@f
@y
.x; y/ 2 L.YIZ/ exists at all points .x; y/ 2 �; @f

@y
2 C.�IL.YIZ//; and @f

@y
.a; b/

is a bijection, so that . @f
@y
.a; b//�1 2 L.ZIY/.

(1) Then, there is an open neighbourhood V of a in X, a neighbourhood W of b in
Y, and g 2 C.V IW / such that V �W � � and ¹.x; y/ 2 V �W W f .x; y/ D
0º D ¹.x; y/ 2 V �W W y D g.x/º.

(2) Assume in addition that f is differentiable at .a; b/ 2�. Then, f is differentiable
at a and

g0.a/ D

�
@f

@y
.a; b/

��1
@f

@x
.a; b/ 2 L.XIY/:

(3) Assume in addition that f 2 C k.�IZ/ for some k � 1. Then, there is an open
neighbourhood eV � V of a in X and neighbourhood eW � W of b in Y such
that @f

@y
.x; y/ 2 L.YIZ/ is a bijection, so that . @f

@y
.x; y//�1 2 L.ZIY/ at each

.x; y/ 2 eV � eW , g 2 C k.eV I Y/ and g0.x/ D �. @f
@y
.x; g.x///�1 @f

@x
.x; g.x// 2

L.XIY/ for each x 2 eV .

C. Elliptic regularity

We first show, for arbitrary surfaces, that ��u 2 W 1;p.�/ for p � 2 gives u 2 W 3;p.�/.

Proposition C.1. Suppose u 2 H 1.�/ with ��u 2 W 1;p.�/ for some p 2 .1; 2� and �
is a C 3 surface. Then, there is a constant C > 0 independent of u such that for each
i; j D 1; 2; 3,

kDiDjuk1;p � C
�
kDj��uk0;p C k��uk0;2 C kr�uk0;2

�
:

Proof. We make use of the following inf-sup condition, shown in [13]:

9
 > 0 W 
k�k1;p � sup
�2W 1;q.�/

R
�
r�� � r�� C ��

k�k1;q
8� 2 W 1;p.�/:

Since � has finite measure, it holds that kDiDjuk0;p �CkDiDjuk0;2, which we know is
controlled by k��uk0;2 C

p
kHH � 2H2k0;1kr�uk0;2 (see [11]). It is then sufficient

to show that
R
�
r�DiDju � r�� is bounded appropriately.Z

�

r�DiDju � r�� D

Z
�

Dj��uDi�

C
�
.Hr�Dku/j �k � .Hr�Dku/k�i �Dk

�
.Hr�u/k�j

� �
Di�

�DkDju.Hr��/k�i � .Hr�Dju/k�iDk�:

This follows from repeatedly applying integration by parts and swapping the order of
derivatives. Applying Hölder’s inequality, we immediately obtain the result.
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Proposition C.2. Let u 2 H 2.�/ be the unique solution of Problem 2.3. Then, it holds
that for any p < 2, u 2 W 3;p.�/.

Proof. By [18, Theorem 2.34] and the arguments presented in [16, Section 5], it is clear
that there is Np 2 R and � 2 RK such that

a.u; v/C Np

Z
�

v C � � vjC D 0 8v 2 H 2.�/:

Let � WD ���u � 2
R2
u 2 L2.�/. Then, for any v 2 H 2.�/,

a.u; v/ D

Z
�

.����v C �v/� D �� � vjC � Np

Z
�

v:

Let � 2 C1.�/ and consider the inverse Laplace type mapGWL2.�/!H 2.�/ such that
GW � 7! v, where ����v C �v D �. Via a local argument, it may be seen that for any
q > 2, kvk0;1 � Ck�k�1;q (see [33]). Hence,

h�; �i D

Z
�

�� D

Z
�

.����v C �v/�

D �� � vjC � Np

Z
�

v

� k�kRM kvk0;1 C j Npjkvk0;1

� Ck�k�1;q :

Thus, we have shown that � represents a bounded linear operator on W �1;q.�/, and in
turn we have shown that ���u � 2

R2
u 2 W 1;q�.�/. In particular, by Proposition C.1, it

holds that u 2 W 3;q�.�/. Since q� < 2 is arbitrary, the result is complete.
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