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Finite element error analysis for a system coupling
surface evolution to diffusion on the surface

Klaus Deckelnick and Vanessa Styles

Abstract. We consider a numerical scheme for the approximation of a system that couples the
evolution of a two-dimensional hypersurface to a reaction—diffusion equation on the surface. The
surfaces are assumed to be graphs and evolve according to forced mean curvature flow. The method
uses continuous, piecewise linear finite elements in space and a backward Euler scheme in time.
Assuming the existence of a smooth solution, we prove optimal error bounds both in L% (L?) and
in L2(H1). We present several numerical experiments that confirm our theoretical findings and
apply the method in order to simulate diffusion induced grain boundary motion.

1. Introduction

In this paper, we analyse a finite element scheme for approximating a system which
couples diffusion on a surface to an equation that determines the evolution of the surface.
More precisely, we want to find a family of surfaces (I'(7));ejo,7] C R® and a function
W Ureqo,r(T(#) x {#}) — R such that

V=H+ f(w) onT'(¢), te(0,T], (1.1a)
°w=Arw+ HVw+ g(V,w) onT'(t), te(0,T] (1.1b)

Here, V and H are the normal velocity and the mean curvature of I'(¢) corresponding
to the choice v of a unit normal, while Ar denotes the Laplace—Beltrami operator on
I'(¢). Furthermore, 0°w = w; + V %—f is the material derivative of w and f : R — R
and g : R? — R are given functions. We are interested in surfaces I'(¢) which can be
represented as the graph of a function u : Q x [0, T] — R, i.e.,

[(t) = {(x.u(x.1) e R?|x € Q}, (1.2)

where @ C R? is a bounded domain with a smooth boundary. Thus, (T'(#))tefo,r is a
family of surfaces with boundary, which evolves according to forced mean curvature flow
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in the cylindrical set A = Q x R. In what follows, we consider the following boundary
conditions:

V-vgy =0 ondl'(¢), te(0,T], (1.3a)
w=0 ondl'(z), t€(0,T]. (1.3b)

Here, vy4 is the unit outward normal to dA, so that we assume that the evolving surfaces
meet the boundary of the cylinder at a right angle. Finally, we impose the initial conditions

o) =r°, w(-,0) = w® on I'?, (1.4)

where T = {(x,u%(x)) | x € Q},and u® : @ - R, w® : I'® — R are given functions.
The system (1.1) occurs, for example, in the modelling of diffusion induced grain bound-
ary motion — see [8], [5], and Section 5.3. Further examples of systems that arise by
coupling a geometric evolution equation to a PDE on the evolving surface can be found in
[7, Section 10].

A semi-discrete finite element scheme for the approximation of (1.1) in the case that
I'(¢) is a closed curve was first analysed by Pozzi and Stinner in [12]. Using a tangentially
modified parametrisation of the evolving curves, [1] obtains error bounds for a corres-
ponding fully discrete scheme. In [13], this idea is applied to the case of open curves
I'(¢) meeting a given boundary orthogonally. In each of these papers, the error bounds are
optimal in H!. A first error analysis involving the evolution of two-dimensional closed
(i.e., compact without boundary) surfaces was obtained in [11] for a regularized version
of (1.1a). Extending ideas used in the error analysis for pure mean curvature flow in [9],
Kovécs, Li, and Lubich obtain in [10] a convergence proof for the system (1.1) in the case
of closed surfaces. The scheme uses polynomials of degree at least two and is based on
a system coupling the variable w in (1.1b) with the velocity, the normal, and the mean
curvature of I'(z). The error estimates are optimal in H!, while the restriction on the
polynomial degree is essentially used to guarantee, via inverse estimates, that the discrete
surfaces are non-degenerate.

The purpose of our paper is to derive and analyse a simple, fully discrete finite element
scheme for the system (1.1) when the evolving surfaces are of the form (1.2). In order to
translate (1.1) into problems which are posed on Q x [0, T'], we introduce

o) =1+ |Vul?

Then, the upward pointing unit normal v(u), the normal velocity V' and the mean curvature
H of T'(¢) are given by

1 Uy Vu

viu) = ——(=Vu,1), V=—- H=V-(—), (1.5)
O(u) O (u) (Q(u)>

respectively. Furthermore, if we denote by n the outward unit normal to 9€2, then

vya = (n,0) and hence
Vu-n

Q(u)

v(u) - vy = —
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Ifwelet: Q x[0,T] = R, @(x,t) :=w(x,u(x,t),t), then we may write (1.1a), (1.3a)
as

) v _ .
Q”(u) _v. <Q(Z)) +f@)=0 inQx(0,T); (1.6)
% =0 ondQ x(0,T]. (1.7

Let us next rewrite (1.1b) in terms of w. To do so, we make use of the formulae (2.1) and
(2.2) in [7], which yield (temporarily suppressing the dependence on ¢)

2
(Vrw)(@(x)) = Y " (x)iy; (x)Px, (), (1.8)
i,j=1
(Arw)(@(x) = Z (g‘f (VA By, () ). (1.9)
z]—l J

In the above, ®(x) = (x, u(x)) and (g") is the inverse matrix of (g;;), where g;; =
@y, - Oy, = 8ij + ux;uy;, i, j = 1,2. Furthermore, ¢ = det(g;;) = 1 + |Vu|* = Q(u)>.
A simple calculation shows that
Vu ® Vu

O(u)?
We can expand the velocity vector (0, u;) for the evolving family of graphs in terms of
Dy, Py, and v(u) as follows:

(") =1-

Uiy o
0,u;) = Vv(u) + Z o )2
Combining this relation with (1.8), we find
- ow 2 Uiy,
Wy =w,+Vw-(0,u,)=w,+V¥+er kX:l e )2d>
—Pw+ Y gk By By, = 0w + VT - V.

0wy Q( )2

i,j,k=1

Recalling (1.5), we deduce that

u; Vu - Uy Vu \ -
Vi — .
0w 0w) " Q) <Q(u))w

- ¢ _ 'V
=%~ 56" (7 5a)

'w—HVw=w,—
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Hence, (1.1b), (1.3b) take the form

- 1 2 i ~ U - Vu _ .
wt—wiél(g]Q(u)wxi)xj = Q(u)v'(w W)+g(V,w) in €2 x(0,T].

(1.10)

w=0 ond2x(0,T].
(1.11)

For ease of notation, from now on we will write again w instead of w. Our discretisa-
tion will be based on a weak formulation of the system (1.6, 1.10) and uses continuous,
piecewise linear finite elements in space and a backward Euler scheme in time (see Sec-
tion 2). A crucial point in the error analysis is the uniform control of the gradient of
the discrete height function. This control is achieved with the help of a superconvergence
estimate between the discrete height and a nonlinear projection previously employed in [3]
for the numerical analysis of the mean curvature flow of graphs. The properties of this pro-
jection and a suitable projection for the function w are collected in Section 3. As our main
results, we obtain an O(t + h)-error bound in H'! and an O(t + h?|log h|?)-estimate in
L? both for u and w, provided that the time step t is appropriately related to the mesh size
h. To the best of our knowledge, a quasioptimal L2-bound is new for coupled systems of
the form (1.1). The proof of the error bounds is presented in Section 4 and split into two
parts: for the analysis of the graph part, we shall refer whenever possible to [3] in order
to keep the presentation short. The analysis of the surface PDE requires much more work
since the estimates have to be carried out in such a way as not to lose the optimal order.
Finally, in Section 5 we present several numerical tests that confirm our error estimates
and apply the method in order to simulate diffusion induced grain boundary motion. In
some tests we will also consider boundary conditions that are not covered by the theory.

Let us finish the introduction with a few comments on our notation. We shall denote
the norm of the Sobolev space W™ (2) (m € No,1 < p < 00) by |+ |lm,p. For p =2,
Wm2(2) will be denoted by H™(2) with norm || - ||, where we simply write || - || =

I~ Tlo-

2. Weak formulation and finite element approximation

In what follows, we make the following assumptions on the data and the solution (1, w):
(A1) We have f € Cl(:)’cl (R) and g : R? — R has the form
g(r.s) = a(r) B(s) + B(s), 2.1)
where 3, ,5 € Cl?)’cl (R) and

., r=0,
= {21 2

alr], r<o0

for some oy, a5 € R.
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(A2) The solution (u, w) solves (1.6), (1.7), (1.10), and (1.11) and satisfies
u € L=((0,T); H*(R) N L*((0,T); H*(Q)),

ur € L®((0,T): HX(R)) N L2((0, T): H3(Q)): (2.2)

Vi € L@ x (0.1)). uy € L¥(0.7): H'@)): 03
w e CO0. T W>(Q)),

we € CO0, T W'=(2) N H(), 2.4

wee € L=((0, T); L*(Q)).
Multiplying (1.6) by ¢ € H'(RQ) and integrating by parts yields the weak formulation

49 4 Vu- Ve =/Qf(w)(pdx Voe HI(Q). (25

X

o Q) o QW)
In order to derive a weak formulation for (1.10), we proceed as in [7, Section 5] and
calculate for a test function n € Hy (),

i/szan(u)dX=/sznQ(u)dX+/ w [0 dx

dt
Z/ s, Q) ndx + [ w V- (w gy nd

i,j=1

+/ wnde+/ gV, w)n Q(u)dx
Q Q

O(u)
== Z / g wy, nx,-Q(u)dx—/ uzvu'vn wdx
= 2" 0w
+ [ 0wy n 0w ax
——/ E(Vu)Vw-Vndx—/ Vu-VnVwdx
Q Q
+/Qg(V, w)n Q(u)dx, (2.6)
where V' is given by (1.5) and
_ 2 _ p®p 2
E(p) =T+ IpP(1 1+|p|2), peR2. @.7)

Note that for all p, £ € R2,

N2
Ept-& = VT pP(1g2 - £

I+ pl?
Pl
= VTP R (1- 20 )

o lgP
N

(2.8)
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Next, let (77)o<h<h, be a family of triangulations of 2, where we allow boundary ele-
ments to have one curved face in order to avoid the analysis of domain approximation. We
denote by /& := maxgeg;, diam(S) the maximum mesh size and assume that the triangula-
tion is quasiuniform in the sense that there exists k > 0 which is independent of %, such
that each S € 73, is contained in a ball of radius k~'/ and contains a ball of radius k.
Our finite element spaces are given by

Xp = {@n € C°(Q) | gy is a linear polynomial on each S € T3},  Xpo = X5 N Hy ().

where we note that in the curved elements @y, is a composition of a linear polynomial with
a suitably defined nonlinear mapping from S to the unit triangle. We refer to [14] for a
detailed construction of X},. The following well-known estimates will be useful:

IVenll < ch™ |l Vo € Xp: (2.9)
IV@nlloco < ch™ |Vl Yo € Xp: (2.10)
1
ll¢nllo,0 < cllogh|2|gnlli You € Xn. (2.11)
Finally, let ¢ > 0 be a time step and t,, = mt, m =0,..., M, where M = % In what

follows, an upper index m will refer to the time level m.

Our discretisation reads: Given uf € Xy, w}’:’ € Xpo, first find MZ‘H € X}, such that

1 m+1 _ .m \v/ m+1 | \v/
_/ (uh Zh)QDh dx +/ U, _ 23
TJQ Q(uh) Q Q(uh)

for all ¢ € Xj. Afterwards, find w,’l”Jrl € Xjo such that

dxzf Sy ondx (2.12)
Q

%(/ﬂ W, QM dx — /Q wy nhQ(uZ’)dx>

+/ E(Vu;l""'l)VwZ’H - Vnpdx
Q
= —/Q Vuf“ -V th+1 wy'dx + /Q g(thH, wy') Np Q(uf“)dx (2.13)

for all ny € Xpo. Here,

m+1 m
pym+l luy ™ —uy

h 7 mF1y

O(u h )
We note that each time step requires the consecutive solution of two linear systems. In
view of (2.8), it is easily seen that uhm+1 € Xj, and w,’f’“ € Xp exist and are uniquely
determined. The algorithm is initialised by ug = ﬁg wg = @2, given by (3.1) and (3.6)
defined in the next section. Our main result reads as follows:
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Theorem 2.1. There exist hy > 0 and 8o > 0 such that for all 0 < h < hg and all T > 0
satisfying T < §oh|logh |_%, the following error bounds hold.:
M-1 m+1

u —u
Jmax [l P = P+ 3 el

<c(z? + h*|logh|*),

m=0

M
\v/ m __ my2 \V4 m __,.m 2< 2 h2.
omnax V@™ —up)| +m§=0fll (W™ —wiH|* < c(z? + h?)

3. Projections

Our error analysis relies on the use of suitable Ritz projections of the solutions u and w.
Omitting the time dependence for a moment, we define for a given function u € H'(Q)
the minimal surface type projection #;, € Xy, by

Viip, - Vo Vu - Vo
o Q) o Q@)

Note that we have added the zero order term in order to ensure the H !()-coercivity of
the problem. For functions that also depend on ¢ we have the following error bounds:

dx-l—/ﬁhgohdx: dx—l—/ uppdx Yop € Xp. (3.1)
Q Q

Lemma 3.1. Assume that u satisfies (2.2) and (2.3). Then,

sup [[u =) @) +h sup [|V(u—up)@)| < ch®, (3.2)

0<t<T 0<t<T
sup [|(u —p) ()00 +h sup [[V(u =) (1)]l0,00 < ch®|loghl, (3.3)

0<t<T 0<t<T

sup [ (ur =) (@) < ch?|logh?,  (3.4)

0<t<T
sup ||V (uy —up, ) @) < ch. (3.5)

0<t<T

Proof. The proofs of (3.2) and (3.3) follow from [6, p. 160] using that u(-,¢) € H*(Q) C
W?2:>2(Q) for every t € [0, T]. The arguments required to show (3.4) and (3.5) can be
found in [2, Section 4] for the case of homogeneous Dirichlet boundary conditions. In
order to prove (3.5) for (3.1), one proceeds in the same way as in [2, p. 202] to obtain

IV e =) < chlIV e =)l (IVitrllo,oo + lluell2) + k([ Vuro,colluell2,

which yields (3.5) when taking (2.2) and (2.3) into account. The bound (3.4) can be shown
for the Neumann case by modifying the dual problem in [2, p. 203] as follows:

=V (F'(Vu)Vv) + v =u; — Uy, inQ, F'(Vu)Vv-n=0 ond<,

where F(p) = p/+/1+ |p2, p € R% [
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Let us next use Uy, in order to define a projection Wy, € Xpg of w as follows:
/ E(NVup)Vwy -V dx = / E(Vu)Vw -V dx VY, € Xpo. (3.6)
Q Q

Lemma 3.2. Assume that w satisfies (2.4). Then,

sup [[V(w —wp) ()| < ch, (3.7)
0<t<T
sup ||(w — wy)(@)|| < ch®|loghl, (3.8)
0<t<T
sup [|V(w; — Wp, ) (@) < ch, (3.9)
0<t<T
sup |[(wy — W, )(@)|| < ch?|logh|?. (3.10)
0<t<T

Proof. Using (3.2)—(3.5), these bounds have been obtained in [4, Appendix] for a slightly
more complicated projection, see (2.22) in that paper. The same arguments can be applied
to our case where we note that the matrix valued function E(p) used in [4] differs from
(2.7) by a factor of 1 + |p|?. However, since Vu and Vi, vary in a bounded set that is
independent of 4, the analysis in [4] also applies to (3.6). [

We set

and for later use, we record the following estimates which will be helpful in retaining the
optimality of the error bounds:

Lemma 3.3. Suppose that F : R? — R is twice continuously differentiable and that u €
W?2:2(Q). Then, we have for f € WOI’I(Q)

|| (E )= ) f da| < ch?ltoghl 1.

Proof. Noting (3.11), we have
/ (F(Vu) - F(Vﬁh))fdx = / F'(Vu)-Vp, fdx + R,
Q Q
where

1
|R| = )/Q/o (F'(Vu —sVpy) — F'(Vu))ds - Vpy f dx

= clVoullo,oolVoullll £
< ch?|logh|l fllv1.

in view of (3.2), (3.3), and the embedding W11 (Q) < L2?(RQ). Integration by parts
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together with (3.3) yields

‘/ F/(Vu) - V,o,,fdx’ = ‘—/ F(Vu)f)pudx‘

< cllpullocoll f 11,1
< ch?|loghl|| f 1.1,

and the result follows. [

Lemma 3.4. Suppose that f € HJ(Q) N CO%Q) with f € HX(T) forall T € Ty,. Then,

Vu Vuh %
— Vo, dx| <ch|logh 2 v X,
| f 0w (uh)) o dx| = chllog |||<ph||(TEZTh 1 12ery)” You € X

If in addition, f € H?*(R), then

Vu Vi,
[ (G~ aas) - Vendx| = cilioghllnlilf s ¥or € X
0w~ QG

Proof. In view of definition (3.1) of 7}, we obtain
Vu Vi, Vu Vi,
- . dx = — . d
/szf(Q(u) Q(ﬁh)) Véndx /Q(Q(u) Q(ﬁh)) VS ) dx
Vu Vﬁh
- - -Vfd
Joo (G~ o) v
- / (o ) (fn — I fn) dix [ puln(fon) dx
@ Q

Q@)  Q(up)

Vu Vil\h .
—fgwh(Q(u) —m)wfdx — T+ 1I+1II.

Here, I; denotes the Lagrange interpolation operator. An interpolation estimate implies

1] < 1Voullo,eolV(fen — In(for)llo.1
< ch?|logh] Y ID*(feom)llLrcry
TeTy,

1
< ch?toghllgnlli (Y- 1/ W)

TeTy,

Next,

1| < llpullo.coll 7n(f@r) 0,1
< ch*llog h|(Il fenllo + Il fon — In(fen)llo,r)

1
< cn?toghlllgnl (3 1/ 1))

TeT,
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Finally,
HIT] < [[Vpullo.collenll L llr < chllog Afll@nll | £ 1.

Di
1+|p|?

while applying Lemma 3.3 with F;(p) = , yields

2
1111 = Y| [ (R = FiTi)on i, dx|

i=1
< ch®|loghllgnV flli1 < ch®|loghlllgnll |l f 2,

in the case that € H?(2). The result now follows from the above bounds together with
(2.9). (]
4. Error analysis

Let us begin with two useful estimates involving the quantities Q and v.

Lemma 4.1. Letu,v € WH®(Q). Then, we have almost everywhere in Q

V(v —u)| < (1 +S;12P|Vv|)Q(u)lv(v)—V(u)l, (4.1)
Vu Vv —u)>  (Q() — Qm))?
0(W)— Q) = ——-V(—u) + - . (4.2)
Q(u) 20(u) 20(u)
Proof. Estimate (4.1) is a consequence of the relation
Vv Vu 1 1
Vv —Vu = Q(u) — + O(u) — Vv
(Q(v) Q(u)) (Q(M) Q(v))
and the fact that v(u) = (é(u"), Q}u)), while (4.2) follows from a straightforward
calculation. -
Let us decompose the errors e’ = u™ —u}?, ey = w™ — wj’ as follows:
e = (" =)+ @ ) =+ e (43)
ey = (W™ — W) + @ —wy') = pyy +ej, (4.4)

and note that e}’ € Xp, €}’ € Xpo. It will be convenient to introduce the quantities

AT = /Q W) — @O dx. 4.5)
1
B = EA’” —/ d™-Vey', py dx, (4.6
. :
where myyy,m
am = Y (4.7)

JIF Vumn
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We shall use an induction argument and claim that
B8m 92 m \2 my dy < 2 h4 log h 4\ M, _ 1 M 4
5 | () Q0 x < (2 + hHlogh*) e, m=0,1,....M, (4.8)

provided that T < §ph| loghl_%. The constants §p, 0 < 8 < 1, and p > 0 are independent
of h and t, and will be chosen a posteriori. To begin, choose 4y > 0 small enough so that

1 1
h?|logh|>e*T < 5 and |logh| > 7 forall 0 < h < hy. 4.9)

Clearly, (4.8) holds for m = 0 since eg = eg w = 0 by the choice of our initial data for
the scheme. Let us assume that it is true for some m € {0, ..., M — 1}. Then, we have for
0 < h < hg that

92
B" + 7/ (e ,)? Q) dx < (85h|logh|™" + h*[log h|*)e""
Q
< h?|logh|™t, (4.10)

provided that 8o and p satisfy
1
8gett < 5. (4.11)

In what follows, we shall denote by ¢ a generic constant that is independent of §g, 6,
and p. We infer from an inverse estimate, (4.10), the fact that Q (4}’) > 1 and from (4.9)
that

~ _ ¢ _1
lwillo.co < 1@} llo,c0 + ey llo,00 < ¢ +ch™Hlep!, Il < ¢ + glloghl™2 <c. (4.12)

Next, we deduce with the help of || Vi7" [lo,co < ¢ and (2.10) that

sup Q(uy') < 1+ sup [Vu}'|
Q Q
< 1+ |V oo + Ve llo.00 < ¢ 4+ ch™ Ve, |- (4.13)
It follows from (4.1) that
IVer, | = [V (uy —up)
< (1+ sup [V ) Q () [v () — v(@y)| < elvuy) — v(@y)| Q).
Q

Thus,

IVl < [ 100 = v@RE QG2 dx < esup Qi) A”
Q
< csup Q) (B + 7 119 1) < ¢ sup Q@) (B™ + K2 (Ve )
Q Q
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and hence,
Ve, [ < csup Q) B™ + ch*(sup Q(u}))>. (4.14)
Q Q

If we insert this bound into (4.13) and recall (4.10), we obtain
1
sup Q(u})') < ¢ +c(|logh|™" sup Q(u}))? + chsup Q(u}y
Q Q Q

and therefore,
sup Q(uy') <c, (4.15)
Q

provided that 0 < & < hy for some sufficiently small 0 < h; < hg. Furthermore, we infer
from (4.10), (4.14), and (4.15) that

||Ve,'l'fu||2 < cB™ + ch* < ch?|logh|™, (4.16)
1
FA" = 8" + Ve, eIl < ch*logh™". (4.17)

4.1. The graph equation

Evaluating (2.5) at t = #,, and using the definition (3.1) of %y, we derive for ¢; € X},

vu™ . v
Uy (ph h P / m / m
dx + _ = w™) op dx + " op dx
o 06 P o "o A R
and hence,
m+1 _ g m vty
/ W = u)en / ML/REERL L (4.18)
Q™) o Oy
\V4 =m+1 _ =my | \V/
=/ fw™) ep dx+/ (W ,\I:nh) on dx+/ R™ ¢ dx.
Q Q Oy Q

m+1__

Here, R™ = Q(um) (¥ —uf') + pi?, so that in view of (3.2),

tm+1
IR < / el de + 0] < ez + h2). 4.19)
tm

Combining (4.18) with (2.12) we obtain the error relation

(e’”J“1 —eMopp V'IZZ’H Vuf“
d Vo, d
/ oG ”fg<Q(ﬁ;f> 0 ,,)) on@x

= [ = sapds+ 1 [ @t -G - o)

O(uy ou™)
~m+1 _ =m .
v / R™gp dx + / v ffnh) Veh (4.20)
Q Q O (uy
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If we insert ¢, = l(em‘"1

m+1 _ oM 2 VAm+l Vum+1
2/ (e —e)? de + + /( 3 ) V(e e ) dx
T ,

— e}'l'fu) into (4.20), we derive

Q(uh’”) o@h QW
_ 1 (em-i-l m)(pm+1 ,O,T) ix
B T2 Q O (uy
V@t -y Vit — e,
z - — dx
T /Q Quy)
m+1 _ u™ m+1 _ m 1 1 d
f(u ) ey )(Q(uh) o m)) x
1
s /Q R™ (el — ejty) dx + — / (f ™) = F) (e — ef,) dx
5
i=1

In order to proceed, we make use of the analysis in [3] for the mean curvature flow of
graphs subject to Dirichlet boundary conditions. The relation (4.21) corresponds to [3,
(3.12)] where we use e}, e}’;f w oy instead of ™, e,’:’, &™, respectively. Furthermore, our
remainder term R™ is defined in a different way and the term As is not present in [3]. We
shall refer to the calculations in [3] whenever possible and focus on the changes due to the
differences mentioned above and the use of a Neumann boundary condition. To begin, it
follows from [3, Lemma 2] that

l v/u\hm+1 B VuZ'Jrl
/(Q(%”) O (uy')
|V(em+l _eh u)|2

4r/ o(@uy)

1
) (em+1 _e}r:tu) dx > _((A)m+1 _ CA)m)
’ 27

dx —c(A™ + AT — e (4.22)

The lemma holds under the conditions that A=2A™ < y and y > 0 is sufficiently small,
which can be achieved in view of (4.17) if 0 < h < h, and hy < hy is small enough.

Let us consider the terms on the right hand side of (4.21). The term S is estimated
in (i) at the bottom of [3, p. 352], so that

m+1 __ e 2
14, < / Gl dx+§h4|logh|4. (4.23)
The integral A, is treated in (ii) of [3, p. 353] and uses integration by parts for the term

dx.

V(um—i-l _ um) V(em+1 _ e}rzrfu)
/sz Q™)
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Since V(u™*! —u™).n = 0 on Q in view of (1.7), the boundary integral vanishes and
we obtain in the same way as in [3] that

\Y% (emH e;tnu)|2 (em—l-l m)Z
|A2| / —~m 2 / m
T Ja O (uy') T O uy')
+ S(2 + h*|log h[*). (4.24)

)

The term A3 is handled in (iii) in [3, pp. 353-356]. It again involves integration by parts,
namely for the term

/ (um+1 m)(em-i-l _ e}rln’u)bm . V,O;n dx,

which is 77 at the top of [3, p. 354]. Here, b = B(Vu™) with

Bi(p) = aa( : )=-—"

I+ 1pP JT+ P

As aresult, the boundary integral reads

/ (um+l m)(em+1 _ e;‘lrtu) bm np:{” do = O’

since —_—
u™-n

T+ Va2

on €2 again by (1.7). Thus, we obtain from the top of [3, p. 356] that

1 1
|A3| < —/ amtt. Vem+1 omt dx — —/ d™-Vey', pi dx
T ,
/ (em+1 m)2 gt 2 / |V(em+l e;zu)|2 "
O (up) T Jo oy
+ - h4| log h|* + (A’" + AT (4.25)

with d™ as in (4.7) (see top of [3, p. 355]). Next, (4.19) implies that
|Aa] < —IIR’”IIIIe'”+1 —epll == (f + 12 (lleg ™ = eIl + lloy ' = o)

(em+1 m)z 5 . )
- ,2/ oWy dx + (& + 'l 1oghl*). (4.26)

since

W =pll et sup e r) =py (0| < cth®|loghf?

tm<t<tmy1

o
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by (3.4). Recalling (4.12) and the assumption that f € Cl?)’cl (R), we obtain in a similar
way

|As]

I/\

/ |em||em+1 _e;;'fu|dx
em+l em 2 ¢
= Tz/ Ll 0k IR Ay dx + 2 (legI* + h*[log h*). (4.27)
h

If we insert (4.22)—(4.27) into (4.21), we obtain after multiplying by t and choosing § > 0
sufficiently small

1 (e'"“ W’ L 3 Ve — )l
2t Q (uy’ 8 Ja o uy)
[dm+1 V€m+1 m+1dx
Q

1
dx + (5 —cT)AMT!

< (E +cT)A™ — /Q d™ Ve, pi dx + ct(c? + h*|logh|*) + czllel|?.

Recalling the definition of B™ (see (4.6)), and noting (4.17) and (3.2), we deduce that

(em+l m)2 |V(em+1 ,u)|2 it
e R R R T RIS

< (L+en) 8™ + cth?(| Ve | + [ Ve, Il)
+ ct(z® + h*|logh|*) + ctllel||>. (428)

The second term on the right hand side of (4.28) is estimated by

th?(|Ve il + IVer, ) < ch?(IV eyt = ep )l + 21 Ver, )

|V(em+l u)|2 5 .
< 16/ oG dx +ct||Vey' |I” +cth

Vet — e )2
<3 0@y
where we have used (4.16) in the last step. Inserting this estimate into (4.28), we infer that
gy Ve —ep )P

_ ~u  uZ gy £m+l d
e IO R o, oGy g

< (14 ct)B™ + ct(e? + h*|logh|*) + cr[ (e ) Qp)dx. (429
Q

dx + ctB™ + cth*,

We deduce from (4.29) and the induction hypothesis (4.8) together with (4.15) that

11
Z—Hem+l —el||> + 8" < («* + h*|logh* )e’”’"(l +ct(1 + 02))

< (t> + h*|logh|*)e!+1 < h?|logh|™",  (4.30)
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provided that
1
ze(1+55): “31)

Note that for the last inequality in (4.30), we have used again (4.9), (4.11), and the fact
that t < §ph| log h|_%. In particular, we can repeat the arguments leading to (4.15) and
(4.16) and obtain

sup oy 1y <c¢ and ||Ve}'l"+1||2 < ch?|logh|™!. (4.32)

4.2. The surface PDE

As already mentioned in the introduction, the error analysis of the surface equation is
laborious. Much of this work is related to the handling of differences of the form
Qumtly — Q(u;l""'l) which are typically split into terms Q (u™*1!) — Q(ﬁmﬂ) and
Q(ﬁhmﬂ) - Quy *1). The second term can be bounded in terms of Vem'H which is
naturally controlled within our induction. On the other hand, simply estlmatlng the first
term by Vp*! will frequently lead to sub-optimal error bounds, which are not sufficient
to control the gradient of the discrete height function uniformly. Instead, we will try to

exploit the structure of Q(u) and frequently apply integration by parts to take advantage

of the quadratic convergence of p™*1.

Evaluating (2.6) at t = t,,+; and using definition (3.6), we obtain for n, € Xpg
|0 Q@ tmsrymadx + [ EVTVELH Oy d
—[Q V"tV VI x4 /Q gV w™ Yy ny Q) dix.
If we combine this relation with (2.13), we deduce that
/Q eifl’tl,7 Q(“ZnH) dx — /Q e;l':wnhQ(uZ) dx + r/ E(Vuhm+1)vem+l Vi dx
= [ @ 0a ) ~ B 00 = rw Q) ts)) s d
/Q(E(Vu;l"“) — E(Vath)vaptt . vy, dx
+ T/S;(Vf:nﬂ h+1vum+1 Vm+lwm+lvum+1) Vi dx
1 [ (0O — gV ) QG n d. (433
Inserting 1y, = erIl , we derive after some straightforward manipulations

/( 2 Q(u’”“)dx—i—r/ E(Vup Vet . vepth dx

/(e'"“ — e )20y dx
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= %/s;(e}'zw)zQ(uh)dx—}- [(em+1) Q) — Quth)) dx
/( PO — Wi Q) — t(wQ W) (- tmt1)) et dx
/E(Vu;l"“) E(Vapth) Vgt . veptt dx
/Vm“ PV — Ly Ly L Vet dx

‘L'/ (g(Vm+1,wm+l)Q(Mm+1)—g(th+l )Q(u +l))e}rzn$1 dx

/(ehw) Q™) dx + ZB (4.34)

i=1
(i) Rearranging the estimate
Vult - Vul 1
Q) Q™)

=v(uy)- v(uh+1) <1

implies that

m

Quy) — Quy™h) < o0 hm) P,

“V(uy —up

so that

=
| /\

/(’"“ Q("m) YV —urt) dx
Up,

— /( m+1)2Q(um) V(M;ln _uh +1)dx

m+12 Vuy Vu™ _ o, m+1
/(,, ?( o —Q(um)) VO —upt) dx

=: B1,1 + Bi2.

Integration by parts along with an inverse estimate yields

Vem+1 -Vu™
Bl,l =/ e}T$IW(um+l

f( (AR Q( m))(u'"+1 —u)dx

< [ et Vet + et P) (e = el -+ i+ =) dx

—up)dx

1 1 1 1 1
< clley' s o.colley’ s llley ™ — el + et sup  Jlurllo.colley’s e I

Im<t=<fm+1

1 1 1 1 1 1
< ch™Hep s e uller ™ — el + celiey ey s -
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Next, we deduce from (2.10), (4.16), and (3.3) that
IVel o0 < Vel oo + V00 0.0 < ch™ Ve, Il + chllogh| < c|logh| ™3
and therefore, by (2.11), (2.9), and (3.4),
B2 = clIVey o, oo/ (e D2 (IV eyt — et )1+ [Var™! —ap|) dx

1 1 1
< clloghl et oo lleft I(IV (e = e, )l + 7)
1 1 1 1 1
< ch et e eyt — et + cele s e

< e et nllep s Mley " = el + cxlleprs I lleprs .
Combining the above bounds, we find that
Bi <etlley T + cetllef s I? + ceh 2IIehHII2 e+t — e 11> (4.35)
(i1) Let us write
By = / (W™ Q) — W Q™) — TWOW)): s sr)) et dx
/(pm+l )Q(uZH_l)eZH_I dx—/ pw(Q(uhm+1)_ Q(uzn)) +1 dx
+ f ™ —w™) Q@) — Q) et dx
Q ,
+ [ um (@ - 06 ) ~ (0@ — 0™ e dx
Q
+ [ (e = 0@ ) - (i) — Q@) efrs !

6
=Y B, (4.36)

Recalling (2.3), (2.4), (4.32), and (3.10), we have

B2l + [Bapl <c(z>+ 1 sup  pwell)lepntll < ct(z + h?[loghl?) e t]l.

tm <t <tm+1

Next, since |Q (u} Ty Q| < IV(uerl — u}")|, we obtain with the help of (3.8),
(2.11), (3.2), (2.9), and (3.4) that

1Boal < omlV ™™ —u)[llep i lo.00
< ch?[logh|(|V (e[t — e ) + [V @+t =i [log bl ef+ 1
< chllogh|? [lef 't — et ety + cth?[loghl2 lef' 1y

<clleg it (ller ™t — el + th?|loghl?).
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m+1 __ m)em-‘rl

Applying Lemma 3.3 to f = (w yields

= [ @ —wm QU — 0@ )y d
/(wm+1 m)(Q(ﬁm-i-l) Q(um+1))e;lrf$l dx

< cllw”* —w" o.co Ve ey s Il + ch?[log hlll(w™ ! —w™)ep o114

< ctlleg s (IVe il + h?[log k).

_ Vﬁh,t . Vﬁh Vu, -Vu
Q (1) o)

B =/tm+1/ w”™ Vilha Vil _ Vut.vu)em“abca’t
R O () Oy /hw

tm+1 Vuh Vu
= w"Vu e™tldx dt
/ / “ N0 Q(u)) w

tm+1
+ wm—-V(ﬁh, —u)e™  dx dt
/,m /gz 0(u) f ke
tm+1 Vi \v}
+/ / me('u\h,t—ut)-( ¥h_ _ YU ) mHL dx di
tm Q

, we obtain

Since (Q(@h) — Q(u))),

Qup) Q)
=1+ 11+1II. (4.37)

Another application of Lemma 3.3 yields
2 il 1 2 1
I <ch |10gh|/t ||wmeZ1:; Vuy|1,1dt < cth |10gh|||em+ II1.

After integration by parts, we obtain

II—/th/ mQ( )) Putehw Vdx dt

1 m+1
w™p Ve dx dt
/ / o) Q( )

<ct  sup lpusll lley st <crh2|10gh| lleg sl
Im<t=<tm+1

by (3.4). Next, (3.3) and (3.5) imply
Im+1
111 < C/ Vol IVoullo.oolley st lide < cth®|loghlef+ 1.
tm

If we insert the above estimates into (4.37) we obtain

By s < cth?|logh|? len .
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In order to treat B, ¢, we write with the help of (4.2)

(Q@Ir™) — o@rth) — (Qi) — o@)
VAm-H m+1+ vit\hm m

Q(Am+1) Veh,u Q(ﬁzn) : Veh,u
|V€m+l|2 |Ve;lrtu|2 (Q(uh+1) Q(ﬁm+1))2

+2Q<ﬁ 2@y T 20a@
. (oag —o@m)?
20@D)
V’\m+l V’\m-i-l vun

m

(€m+1 _ e}rln’u) _ (

Ve
0w Sk
1 1 1 N .
+§(Q("‘m+l) - Q(’\m))(|V |2 (Q(uh)—Q(uh)) )
V(em+1 —ep u) V(eerl + Ve;zu)
20t
— 5 {(Q@MTy — Q@Y — (QM) — QM) 4.38)

_Q(VAZ’“)

where

Q@™ —o@y™h) + (Qui) — o@y)
20@@y*) '

We remark that (2.10), (4.16), and (4.32) imply that

o =

16nl = 5 (IW,',"+1|+|VeZ’u|)<ch HIVeR I+ Ve, ll) < clloghl 2<— (4.39)

provided that 0 < & < h3 and h3 < h, is small enough. Thus, if we move the last term on
the right hand side of (4.38) to the left hand side and divide by 1 + 85 > =, we obtain

(Quy*h — 0@p™h) — (Quy) — Q@)
V’\m+1

1
oy VR~
Up

V’\m“ V(em+1 + Vet
ot a0 )
(Ve 1* — (0 — 0@m)?)

1 m+1 m
+ m (e — eh’u) . (5},

1 o@m — @yt
L+8, 20@y*h 0@y
1 vaptt o ovar
1+ 8 (Q(ﬁ’”“) B Q(ﬁ;g))'
=8+ 8+ 83+ Ss.
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Note that in order to derive the form of Sy and S5, we have split —; + 55, =—1+7 + 8
fact that S; does not contain §; will allow us to apply integration by parts to the 1ntegral
involving this term. From the above calculations, we now have

BQG—Zf mSeZ’de

i=1

To begin, integration by parts together with (1.7) yields

/ mS €m+1 dx
Q

m vaptt m+1
:/SZ m m+1[<QV(Zm+1) Q(Am_,_l)) - Qv(Zerl):I Vel m+1

vyumtl vintl
_ +1 h +1
_/mee;lnw (Q(um—i-l) Q(Am-i-l)) V(em _e}’l'fu)dx

whemt1l yym+1
h,w +1
+/QV.( O (um+1) )(e"f = ) A

Using Lemma 3.4 and (3.4) for the first term, we obtain

—epn,)dx

D=

/ w"Sieptt dx < chlloghllleyst = et I( - Iw™elrt I3 )
Q@ TeT,

+ c||em+1 _eh y m+l”

< chlloghlllef* 1 lep st —ept, Il < cllepslillept — eI,
where we also exploited the fact that the second derivatives of em"H vanish. Since 1 +
8y > and [6n] < 2(|Ve,'1"+1| + |Ve}’2”u|) we derive with the help of (4.16), (4.32), (2.9),
and (2 11)

1 1 1 1
/Q w"Saep i dx < | Ve i — e MIVeR T+ 11Ver, 1) leg s Hlo,oo

< chllogh|"2h™" e’ — et Il [ log h|= e

<C|I€m+1 -l-l”1

_ehu

Finally, we deduce with the help of (4.39), (2.11), and (4.16)
/ w™(S3 + S4)e}’l":;1 dx
o ,

cf V@ —ﬁz")|(|Vez’ful2 + Ve, e dx
< c|v@antt - IVer I(IVer, ey s oo + llefd )

1 1 1
<Cf||V€hu||(hlleh$ ||1 + llepto i) <CTIIW;,MIIII€;,Jr ll1-
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Collecting the above estimates and recalling (3.4), we obtain

By < cllep i (lle ™! — e | + th®|log h|* + || Vey, ).

w u
If we insert the bounds for B> j, j = 1,..., 6 into (4.36), we obtain
By < cllep (2 + th?|logh? + [lef ™! — et | + <[ Vet + 2| Vey, 1)
1
< erllepn I + ce—lle ! — eI
+ cet(2® + hY|logh|* + [|Vep 12 + Ve, I1%). (4.40)

(iii) Recalling (2.7), it is not difficult to verify that |E(p) — E(q)| < ¢|p — q|, and
hence
By = Ct||[Ve Ve il < etl| Ve U2 + et Ve 2. (44D

(iv) In view of the definition of V" *! and V;"*!, we have

um-i-l Vymtl
By = / ((uhm+1 —uMwpn —A Ty Hym ! ) Vet dx
o .

+1
=— [ (emt! —e”‘)wmi Vet gx
= o u u h Q(uzn-H) haw
Vum+1
o (Mm+1 _um)em# 'V€m+] dx
/Q w Q(uhm+1) h,w
vum+1 vﬁm-ﬁ-l
+1 h h +1
—i—/;z(um —um)wm(Q(um+1) - Q(ﬁmH))-Verw dx
h h
\Vrias' vym+1
+1 h +1
—i—/g(um _um)wm<Q(ﬁhm+1) - Q(umH))-Verw dx
| @t — vt .Vemtl g
A u u T Hw —Q(um+1) ey dx
+ m+1( m __ m+1) Vutl .V m+ld
Qru, w w —Q(um+1) ey dx

6
= 234,1"

i=1

It follows from (4.12) and (4.19) that

1 1 1 2
z By <c||[ Vet (ley ™! —en'll + zllew | + el Veps I + 72),
i#4

while Lemma 3.4 implies

By = ch?loghlllep S 1™ * 1 —u™yw™ |12 < cth?|loghlllej’ S .
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In conclusion,
1
Ba < ecllefis I3 + oyt — el
+cet(llep, I + Ve 11?4+ 72 + i log h[?). (4.42)

(v) Finally, in order to treat Bs we recall (2.1) and note that ¢ (Ar) = Aa(r), r € R,
A > 0. As a consequence,

g(Vm+l, wm+1)Q(um+1) _ g(V}:n+l, w}rln)Q(u;ln+l)
m+1

= (B = By + () — a( k) g
+ A" (QM ) — 00t h) + (Bw™ ) — Bwi)) Q™

so that

4
BS_Z /s, pildx =) Bs.

i=1 i=1

Since B, B € Cy! (R) we obtain from (4.12), (4.32), and (3.8)

|Bs,1| + | Bsal < ctw™ —wp|[ley i
1 1
<cr(flw™ = w™| + g1 + llefy, I lef sl
2 1
< ct(v + h*[logh| + [lef’, ) llef -

Next, we deduce with the help of the global Lipschitz continuity of r + «(r) and (4.19)
that

m+1

|Bs.o| <ct||um+1 ”—hH” m1)

2 1 1 1
< ct?lleg it +clle ™ — e lllepts -

Applying Lemma 3.3 with f = B(w™1)e*!, we infer that

haw °
|Bs,a| < cth?|logh|[|B(w™ eyt 1.1 < cth®|loghley it 1.

After collecting the above estimates, we obtain

1
Bs < ecllefis I3 + colle ! — el

+ cet(llej', I + T2 + h*|log h|?). (4.43)
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If we insert (4.35), (4.40), (4.41), (4.42), and (4.43) into (4.34), use Poincaré’s inequality,
and observe (2.8) together with (4.32), we derive

1
/ (e PO dx + weol eI 4 Sl — eftl?

_/ (e )2 Q) dx + ex|| Vet |2
+cet(2® + h*|logh|* + [|Vep 12 + Ve, 11%)
1
+ cetllep', I7 + coh™ -2l IIe,, PP llept —e” + ca;IIe;"“ — eI
(4.44)
In view of (4.10), (4.30), and (4.9), we have

1 1
-2 12 1 2 - 2 1 2 1 2
lep s —IIeer —en 12 =202 (llegty 112 + et — ety | );IIE,’,”Jr —e,

4|logh| 11|| mil
=4— ¢

1
=< C;IIeZ’Jrl e I> + cllogh| ™ leg st —eft 112

e I+ cllogh| " ey st —eft, I

Using this bound in (4.44) and choosing ¢ and h¢ sufficiently small, we obtain

1
/ (s dx + Ve < 5 /Q e 200 dx + ctlel’, P

+ ct(z® + h*|logh| ) + cr||V(em+1 — e,'l'fu)H2 + cr||Ve,’l",u||2

+ e+t — el
T
1 m 2 m 2 4 4 m
§(l+cr)— (eh,w) Q(uh)dx+cr(t + h”|logh| )+ct£
|V(eerl e;L”u)|2 (em+1 m)2
+ cr/ — / dx, (4.45)
Q 0 uy') ‘27 O (uy

where we used (4.16) and the fact that Q(u}'), Q(u}') < c in order to derive the last
estimate. Multiplying (4.45) by 62 (0 < 8 < 1) and adding the result to (4.29), we obtain
with the help of our induction hypothesis (4.8)

:Bm+1 f(e;lnil) Q(u;l"+1)dx+ Q—HV m+1“2
2 1 (em+1 m)2
e o 0Ge})

1 V(e —ep I
- — LA
+ (16 ”)/Q o@r ~

92
_ m . m 2 m 2 4 4
(1 + 921)(58 + 3 /Q(eh,w) Q(uh)dx)—i-cr(t + th*|logh|*)
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1
< (1 + cr(l + ﬁ))(r2 + h*|log h|*)e!™m
< (v + h*|log h|*)ettm+1, (4.46)
provided that
1
nze(l+ ﬁ). (4.47)

We are now in position to specify the choice of the constants 8, , 8, and hg. To begin,
choose 0 < < 1 such that 1 — c6% > % in the second line of (4.46). Next, choose u > 0
to satisfy (4.31) and (4.47) and then §¢ > O to satisfy (4.11). Finally, &y > 0 is fixed by
(4.9) and additional smallness conditions on / that were required in the course of the
calculations.

5. Numerical results

We begin this section by investigating the experimental order of convergence (EOC) of our
scheme and then display some simulations of diffusion induced grain boundary motion.
Throughout the computations in this section, we choose a uniform time step t = h2.

5.1. Experimental order of convergence

We set Q :={x ¢ R?||x| < 1}, T =0.1 and choose f(w) = w?aswellas g(V,w) = Vw.
We consider u, w : Q x [0, T] — R given by

Example 1. u(x,?) = 5sin(?)(1 — |x]?), w(x, 1) =e (1 + |x]?);
Example 2. u(x,t) = 5sin(t)(1 + (1 — [x|*)?), w(x,?) = e "(1 + |x]?),

and include additional right hand sides in order for (1, w) to be solutions of the cor-
responding PDEs, while the boundary conditions are u(x,t) = 0, w(x,t) = 2¢”" in
Example 1 and S—Z(x, t) = 0, w(x,7) = 2¢~" in Example 2. Let us point out that the
Dirichlet condition for u in Example 1 is not covered by our theory. We commence our
numerical results with Figure 1, in which we display the solution w}" plotted on the surface
I ={(x,uj(x)) | x € Q},att™ = 0 and ™ = 0.1, for Example 2. When investigating
the experimental order of convergence, we monitor the following errors:

M
& = m 2 8:=Z Ve |2, &3 := m |2
1 Osrglnenglewll, 2 lrll enl®. &3 Osrglnengleull,
P

) M-1 em+1 —em )
= m = ‘u T Cu
Eai= max [Vel'l’, 6s:= ) o =——|".
m=0
In Tables 1 and 2, we display the values of &;,7 = 1,...,5, evaluated using a quadrature
rule of degree 4, for Example 1 and Example 2, respectively. For both examples we see
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 1.808e+00
:1.58
:1.36

|

9.047e-01

Figure 1. Example 2, w}" plotted on I';" at /" = 0.0 and ¢ = 0.1.

the expected order of convergence, with EOCs close to four for &1, &3 and &5, and EOCs
close to two for &, and &3. In particular, the results of Example 2 confirm the bounds
obtained in Theorem 2.1.

5.2. Non-orthogonal boundary contact

Even though we have restricted our error analysis to the case where the evolving surface
meets the boundary of the cylinder at a right angle, it is not difficult to apply our approach
to the case where it meets the boundary of the cylinder at a given angle «. In order to do
this, we replace boundary condition (1.3a) with

v-vyq = cos(a) ondl'(z), t €(0,7T],

leading to the following boundary condition for the height function u:

Vu-n
O(u)

The weak formulation for u then takes the form

= —cos(e) onad2 x (0,T].

U @ Vu -V
X
o Q) o QW)
from which we derive the corresponding finite element approximation replacing (2.12).
We set Q := {x € R?||x| < 1}, f(w) = w, and g(V, w) = |V |w and specify the
following boundary conditions for # and w:

dx:/ f(w)(pdx—/ cos(@)pdx Vo e HY(Q),
Q Q2

Vu-n =—cos2nt —m/2) and w =1 on dQ2 x (0, T].
0(u)
As initial data we choose u°(x) = 0 and w®(x) = 1 (1 + |x|?). In Figure 2, we display
w,’f on the surface F;l" = {(x, u;l”(x)) |x € Q}att™ =0,0.25,0.35,0.5,0.65,0.75. As
|cos(2mt — w/2)| = 1 fort = 0.25,0.75, the gradient of u will blow up on the boundary.
However, for the mesh sizes we chose, the discrete solution was able to flow through these
singularities without problems.
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Figure 2. w,’l” plotted on the surface F}’l” at 1™ = 0,0.25,0.35,0.5,0.65,0.75.

5.3. Simulations of diffusion induced grain boundary motion

We conclude our numerical results with two simulations of diffusion induced grain bound-
ary motion. We consider the physical set up of a film of metal, containing a single grain
boundary. We denote the filmby 4 = Q x [0, 5] C R3, with Q = (—2,2)?2, and we model
the grain boundary by the surface I'(t) = {(x, u(x,?)) | x € Q}. We impose the boundary
condition

g—u(x,t) =0 V(x,t)edx(0,T]
n

such that the grain boundary meets the boundaries of the film orthogonally.

The film is immersed in a solute that diffuses into the grain boundary at the surfaces
x1 = £2. We denote the concentration of the solute on the grain boundary by w(x,t) €
[0, 1], for x € 2, and we assume that the solute concentration is set to one on the surfaces
x1 = %2 and satisfies zero flux boundary conditions at the surfaces x, = 2, i.e.,

ow
w(x,t) =1 forx; = +£2, a—(x,t) =0 forx, = £2.
n

We consider two initial configurations for the grain boundary: in the first configuration we
take the grain boundary to be the planar surface x3 = 1 such that u°(x) = 1, while in the
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Figure 3. Travelling wave solution showing the grain boundary with the solute concentration at
™ =0,0.1,0.2,0.3, with u) = 1 and w)) =
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Figure 4. Evolving grain boundary with the solute concentration at t"* = 0,0.2, 0.4, 0.6, with the
initial surface defined by (5.1) and wj) = 0.
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second we take

1 +e ifxl > %6’
u®(x1,x2) = { esin () if|xq| < Z2, (5.1)
1—c¢ ifx; <%

with ¢ = 0.4.

For both configurations, we assume that the concentration of solute on the grain bound-
ary is initially zero, such that w®(x) = 0 for x € Q. In this set up, physically meaningful
choices for f(w) and g(V,w) are f(w) = w? and g(V,w) = |V| w. Figure 3 displays the
solute concentration, wy'(x), plotted on the grain boundary, I';" = {(x,u}’ (x)) | x € Q},
at times ™ = 0,0.1,0.2,0.3. Additionally, in each plot we display the initial grain bound-
ary, depicted by the blue surface, and the outline of the metallic film A = Q x [0, 5]. The
symmetry of this set up makes it equatable to the two-dimensional configurations studied
in [5] and [13]. In particular, we see a travelling wave solution comparable to the ones
displayed in [5, Figures 9 and 10] and [13, Figure 4.4]. In Figure 4 the initial surface is
defined by (5.1), which gives rise to a fully three-dimensional simulation. We display the
solute concentration, w,’l" (x), plotted on the grain boundary, at times ™ = 0,0.2,0.4,0.6,
together with the initial grain boundary and the outline of the film.
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