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Finite element error analysis for a system coupling
surface evolution to diffusion on the surface

Klaus Deckelnick and Vanessa Styles

Abstract. We consider a numerical scheme for the approximation of a system that couples the
evolution of a two-dimensional hypersurface to a reaction–diffusion equation on the surface. The
surfaces are assumed to be graphs and evolve according to forced mean curvature flow. The method
uses continuous, piecewise linear finite elements in space and a backward Euler scheme in time.
Assuming the existence of a smooth solution, we prove optimal error bounds both in L1.L2/ and
in L2.H1/. We present several numerical experiments that confirm our theoretical findings and
apply the method in order to simulate diffusion induced grain boundary motion.

1. Introduction

In this paper, we analyse a finite element scheme for approximating a system which
couples diffusion on a surface to an equation that determines the evolution of the surface.
More precisely, we want to find a family of surfaces .�.t//t2Œ0;T � � R3 and a function
w W

S
t2Œ0;T �.�.t/ � ¹tº/! R such that

V D H C f .w/ on �.t/; t 2 .0; T �; (1.1a)

@�w D ��w CH V w C g.V;w/ on �.t/; t 2 .0; T �: (1.1b)

Here, V and H are the normal velocity and the mean curvature of �.t/ corresponding
to the choice � of a unit normal, while �� denotes the Laplace–Beltrami operator on
�.t/. Furthermore, @�w D wt C V

@w
@�

is the material derivative of w and f W R! R
and g W R2 ! R are given functions. We are interested in surfaces �.t/ which can be
represented as the graph of a function u W � � Œ0; T �! R, i.e.,

�.t/ D
®
.x; u.x; t// 2 R3 j x 2 �

¯
; (1.2)

where � � R2 is a bounded domain with a smooth boundary. Thus, .�.t//t2Œ0;T � is a
family of surfaces with boundary, which evolves according to forced mean curvature flow
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in the cylindrical set A D � � R. In what follows, we consider the following boundary
conditions:

� � �@A D 0 on @�.t/; t 2 .0; T �; (1.3a)

w D 0 on @�.t/; t 2 .0; T �: (1.3b)

Here, �@A is the unit outward normal to @A, so that we assume that the evolving surfaces
meet the boundary of the cylinder at a right angle. Finally, we impose the initial conditions

�.0/ D �0; w.�; 0/ D w0 on �0; (1.4)

where �0 D ¹.x; u0.x// j x 2 �º, and u0 W �! R, w0 W �0 ! R are given functions.
The system (1.1) occurs, for example, in the modelling of diffusion induced grain bound-
ary motion – see [8], [5], and Section 5.3. Further examples of systems that arise by
coupling a geometric evolution equation to a PDE on the evolving surface can be found in
[7, Section 10].

A semi-discrete finite element scheme for the approximation of (1.1) in the case that
�.t/ is a closed curve was first analysed by Pozzi and Stinner in [12]. Using a tangentially
modified parametrisation of the evolving curves, [1] obtains error bounds for a corres-
ponding fully discrete scheme. In [13], this idea is applied to the case of open curves
�.t/meeting a given boundary orthogonally. In each of these papers, the error bounds are
optimal in H 1. A first error analysis involving the evolution of two-dimensional closed
(i.e., compact without boundary) surfaces was obtained in [11] for a regularized version
of (1.1a). Extending ideas used in the error analysis for pure mean curvature flow in [9],
Kovács, Li, and Lubich obtain in [10] a convergence proof for the system (1.1) in the case
of closed surfaces. The scheme uses polynomials of degree at least two and is based on
a system coupling the variable w in (1.1b) with the velocity, the normal, and the mean
curvature of �.t/. The error estimates are optimal in H 1, while the restriction on the
polynomial degree is essentially used to guarantee, via inverse estimates, that the discrete
surfaces are non-degenerate.

The purpose of our paper is to derive and analyse a simple, fully discrete finite element
scheme for the system (1.1) when the evolving surfaces are of the form (1.2). In order to
translate (1.1) into problems which are posed on � � Œ0; T �, we introduce

Q.u/ D
p
1C jruj2:

Then, the upward pointing unit normal �.u/, the normal velocity V and the mean curvature
H of �.t/ are given by

�.u/ D
1

Q.u/
.�ru; 1/; V D

ut

Q.u/
; H D r �

�
ru

Q.u/

�
; (1.5)

respectively. Furthermore, if we denote by n the outward unit normal to @�, then
�@A D .n; 0/ and hence

�.u/ � �@A D �
ru � n

Q.u/
:
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If we let zw W�� Œ0; T �!R; zw.x; t/ WD w.x;u.x; t/; t/, then we may write (1.1a), (1.3a)
as

ut

Q.u/
� r �

�
ru

Q.u/

�
C f . zw/ D 0 in � � .0; T �I (1.6)

ru � n

Q.u/
D 0 on @� � .0; T �: (1.7)

Let us next rewrite (1.1b) in terms of zw. To do so, we make use of the formulae (2.1) and
(2.2) in [7], which yield (temporarily suppressing the dependence on t )

.r�w/.ˆ.x// D

2X
i;jD1

gij .x/ zwxj .x/ˆxi .x/; (1.8)

.��w/.ˆ.x// D
1p
q.x/

2X
i;jD1

@

@xj

�
gij .x/

p
q.x/ zwxi .x/

�
: (1.9)

In the above, ˆ.x/ D .x; u.x// and .gij / is the inverse matrix of .gij /, where gij D
ˆxi �ˆxj D ıij C uxiuxj ; i; j D 1; 2. Furthermore, q D det.gij /D 1C jruj2 DQ.u/2.
A simple calculation shows that

.gij / D I �
ru˝ru

Q.u/2
:

We can expand the velocity vector .0; ut / for the evolving family of graphs in terms of
ˆx1 ; ˆx2 and �.u/ as follows:

.0; ut / D V�.u/C

2X
kD1

utuxk
Q.u/2

ˆxk :

Combining this relation with (1.8), we find

zwt D wt Crw � .0; ut / D wt C V
@w

@�
Cr�w �

2X
kD1

utuxk
Q.u/2

ˆxk

D @�w C

2X
i;j;kD1

gij zwxj
utuxk
Q.u/2

ˆxi �ˆxk D @
�w C

ut

Q.u/2
r zw � ru:

Recalling (1.5), we deduce that

@�w �H V w D zwt �
ut

Q.u/

ru

Q.u/
� r zw �

ut

Q.u/
r �

�
ru

Q.u/

�
zw

D zwt �
ut

Q.u/
r �

�
zw
ru

Q.u/

�
:
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Hence, (1.1b), (1.3b) take the form

zwt �
1

Q.u/

2X
i;jD1

�
gijQ.u/ zwxi

�
xj
D

ut

Q.u/
r �

�
zw
ru

Q.u/

�
C g.V; zw/ in � � .0; T �;

(1.10)

zw D 0 on @� � .0; T �:
(1.11)

For ease of notation, from now on we will write again w instead of zw. Our discretisa-
tion will be based on a weak formulation of the system (1.6, 1.10) and uses continuous,
piecewise linear finite elements in space and a backward Euler scheme in time (see Sec-
tion 2). A crucial point in the error analysis is the uniform control of the gradient of
the discrete height function. This control is achieved with the help of a superconvergence
estimate between the discrete height and a nonlinear projection previously employed in [3]
for the numerical analysis of the mean curvature flow of graphs. The properties of this pro-
jection and a suitable projection for the function w are collected in Section 3. As our main
results, we obtain an O.� C h/-error bound in H 1 and an O.� C h2j log hj2/-estimate in
L2 both for u andw, provided that the time step � is appropriately related to the mesh size
h. To the best of our knowledge, a quasioptimal L2-bound is new for coupled systems of
the form (1.1). The proof of the error bounds is presented in Section 4 and split into two
parts: for the analysis of the graph part, we shall refer whenever possible to [3] in order
to keep the presentation short. The analysis of the surface PDE requires much more work
since the estimates have to be carried out in such a way as not to lose the optimal order.
Finally, in Section 5 we present several numerical tests that confirm our error estimates
and apply the method in order to simulate diffusion induced grain boundary motion. In
some tests we will also consider boundary conditions that are not covered by the theory.

Let us finish the introduction with a few comments on our notation. We shall denote
the norm of the Sobolev space W m;p.�/ .m 2 N0; 1 � p � 1/ by k � km;p . For p D 2,
W m;2.�/ will be denoted by Hm.�/ with norm k � km, where we simply write k � k D
k � k0.

2. Weak formulation and finite element approximation

In what follows, we make the following assumptions on the data and the solution .u;w/:
(A1) We have f 2 C 0;1loc .R/ and g W R2 ! R has the form

g.r; s/ D ˛.r/ ˇ.s/C Q̌.s/; (2.1)

where ˇ; Q̌ 2 C 0;1loc .R/ and

˛.r/ D

´
˛1jr j; r � 0;

˛2jr j; r < 0

for some ˛1; ˛2 2 R.
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(A2) The solution .u;w/ solves (1.6), (1.7), (1.10), and (1.11) and satisfies

u 2 L1..0; T /IH 4.�// \ L2..0; T /IH 5.�//;

ut 2 L
1..0; T /IH 2.�// \ L2..0; T /IH 3.�//I

(2.2)

rut 2 L
1.� � .0; T //; ut t 2 L

1..0; T /IH 1.�//I (2.3)

w 2 C 0.Œ0; T �IW 2;1.�//;

wt 2 C
0.Œ0; T �IW 1;1.�/ \H 2.�//;

wt t 2 L
1..0; T /IL2.�//:

(2.4)

Multiplying (1.6) by ' 2 H 1.�/ and integrating by parts yields the weak formulationZ
�

ut '

Q.u/
dx C

Z
�

ru � r'

Q.u/
dx D

Z
�

f .w/ ' dx 8' 2 H 1.�/: (2.5)

In order to derive a weak formulation for (1.10), we proceed as in [7, Section 5] and
calculate for a test function � 2 H 1

0 .�/,

d

dt

Z
�

w �Q.u/dx D

Z
�

wt �Q.u/dx C

Z
�

w � ŒQ.u/�tdx

D

2X
i;jD1

Z
�

�
gijwxi Q.u/

�
xj
� dx C

Z
�

utr �
�
w
ru

Q.u/

�
� dx

C

Z
�

w �
ru � rut

Q.u/
dx C

Z
�

g.V;w/�Q.u/ dx

D �

2X
i;jD1

Z
�

gijwxi �xjQ.u/dx �

Z
�

ut
ru � r�

Q.u/
wdx

C

Z
�

g.V;w/ �Q.u/ dx

D �

Z
�

E.ru/rw � r�dx �

Z
�

ru � r� V wdx

C

Z
�

g.V;w/ �Q.u/ dx; (2.6)

where V is given by (1.5) and

E.p/ D
p
1C jpj2

�
I �

p ˝ p

1C jpj2

�
; p 2 R2: (2.7)

Note that for all p; � 2 R2,

E.p/� � � D
p
1C jpj2

�
j�j2 �

.� � p/2

1C jpj2

�
�

p
1C jpj2 j�j2

�
1 �

jpj2

1C jpj2

�
D

j�j2p
1C jpj2

: (2.8)
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Next, let .Th/0<h�h0 be a family of triangulations of �, where we allow boundary ele-
ments to have one curved face in order to avoid the analysis of domain approximation. We
denote by h WD maxS2Th diam.S/ the maximum mesh size and assume that the triangula-
tion is quasiuniform in the sense that there exists � > 0 which is independent of h, such
that each S 2 Th is contained in a ball of radius ��1h and contains a ball of radius �h.
Our finite element spaces are given by

Xh D
®
'h 2 C

0.�/ j'h is a linear polynomial on each S 2 Th
¯
; Xh0 D Xh \H

1
0 .�/;

where we note that in the curved elements 'h is a composition of a linear polynomial with
a suitably defined nonlinear mapping from S to the unit triangle. We refer to [14] for a
detailed construction of Xh. The following well-known estimates will be useful:

kr'hk � ch
�1
k'hk 8'h 2 XhI (2.9)

kr'hk0;1 � ch
�1
kr'hk 8'h 2 XhI (2.10)

k'hk0;1 � cj log hj
1
2 k'hk1 8'h 2 Xh: (2.11)

Finally, let � > 0 be a time step and tm D m�; m D 0; : : : ;M , where M D T
�

. In what
follows, an upper index m will refer to the time level m.

Our discretisation reads: Given um
h
2 Xh; w

m
h
2 Xh0, first find umC1

h
2 Xh such that

1

�

Z
�

.umC1
h
� um

h
/ 'h

Q.um
h
/

dx C

Z
�

rumC1
h
� r'h

Q.um
h
/

dx D

Z
�

f .wmh / 'h dx (2.12)

for all 'h 2 Xh. Afterwards, find wmC1
h
2 Xh0 such that

1

�

�Z
�

wmC1
h

�hQ.u
mC1
h

/dx �

Z
�

wmh �hQ.u
m
h /dx

�
C

Z
�

E.rumC1
h

/rwmC1
h
� r�hdx

D �

Z
�

rumC1
h
� r�h V

mC1
h

wmh dx C

Z
�

g.V mC1
h

; wmh / �hQ.u
mC1
h

/ dx (2.13)

for all �h 2 Xh0. Here,

V mC1
h

D
1

�

umC1
h
� um

h

Q.umC1
h

/
:

We note that each time step requires the consecutive solution of two linear systems. In
view of (2.8), it is easily seen that umC1

h
2 Xh and wmC1

h
2 Xh0 exist and are uniquely

determined. The algorithm is initialised by u0
h
Dbu0

h
; w0

h
D bw0

h
, given by (3.1) and (3.6)

defined in the next section. Our main result reads as follows:



Finite element error analysis for a system coupling surface evolution to diffusion 69

Theorem 2.1. There exist h0 > 0 and ı0 > 0 such that for all 0 < h � h0 and all � > 0
satisfying � � ı0hj log hj�

1
2 , the following error bounds hold:

max
0�m�M

�
kum � umh k

2
C kwm � wmh k

2
�
C

M�1X
mD0

�
umt � umC1h

� um
h

�

2
� c

�
�2 C h4j log hj4

�
;

max
0�m�M

kr.um � umh /k
2
C

MX
mD0

�kr.wm � wmh /k
2
� c

�
�2 C h2

�
:

3. Projections

Our error analysis relies on the use of suitable Ritz projections of the solutions u and w.
Omitting the time dependence for a moment, we define for a given function u 2 H 1.�/

the minimal surface type projectionbuh 2 Xh byZ
�

rbuh � r'h
Q.buh/ dx C

Z
�

buh 'h dx D Z
�

ru � r'h

Q.u/
dx C

Z
�

u'h dx 8'h 2 Xh: (3.1)

Note that we have added the zero order term in order to ensure the H 1.�/-coercivity of
the problem. For functions that also depend on t we have the following error bounds:

Lemma 3.1. Assume that u satisfies (2.2) and (2.3). Then,

sup
0�t�T

k.u �buh/.t/k C h sup
0�t�T

kr.u �buh/.t/k � ch2; (3.2)

sup
0�t�T

k.u �buh/.t/k0;1 C h sup
0�t�T

kr.u �buh/.t/k0;1 � ch2j log hj; (3.3)

sup
0�t�T

k.ut �buh;t /.t/k � ch2j log hj2; (3.4)

sup
0�t�T

kr.ut �buh;t /.t/k � ch: (3.5)

Proof. The proofs of (3.2) and (3.3) follow from [6, p. 160] using that u.�; t / 2H 4.�/ �

W 2;1.�/ for every t 2 Œ0; T �. The arguments required to show (3.4) and (3.5) can be
found in [2, Section 4] for the case of homogeneous Dirichlet boundary conditions. In
order to prove (3.5) for (3.1), one proceeds in the same way as in [2, p. 202] to obtain

kr.ut �buh;t /k2 � chkr.ut �buh;t /k�krutk0;1 C kutk2�C ch2krutk0;1kutk2;
which yields (3.5) when taking (2.2) and (2.3) into account. The bound (3.4) can be shown
for the Neumann case by modifying the dual problem in [2, p. 203] as follows:

�r �
�
F 0.ru/rv

�
C v D ut �buh;t in �; F 0.ru/rv � n D 0 on @�;

where F.p/ D p=
p
1C jpj2; p 2 R2.
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Let us next usebuh in order to define a projection bwh 2 Xh0 of w as follows:Z
�

E.rbuh/rbwh � r�h dx D Z
�

E.ru/rw � r�h dx 8�h 2 Xh0: (3.6)

Lemma 3.2. Assume that w satisfies (2.4). Then,

sup
0�t�T

kr.w � bwh/.t/k � ch; (3.7)

sup
0�t�T

k.w � bwh/.t/k � ch2j log hj; (3.8)

sup
0�t�T

kr.wt � bwh;t /.t/k � ch; (3.9)

sup
0�t�T

k.wt � bwh;t /.t/k � ch2j log hj2: (3.10)

Proof. Using (3.2)–(3.5), these bounds have been obtained in [4, Appendix] for a slightly
more complicated projection, see (2.22) in that paper. The same arguments can be applied
to our case where we note that the matrix valued function E.p/ used in [4] differs from
(2.7) by a factor of 1C jpj2. However, since ru and rbuh vary in a bounded set that is
independent of h, the analysis in [4] also applies to (3.6).

We set
�u D u �buh; (3.11)

and for later use, we record the following estimates which will be helpful in retaining the
optimality of the error bounds:

Lemma 3.3. Suppose that F W R2 ! R is twice continuously differentiable and that u 2
W 2;1.�/. Then, we have for f 2 W 1;1

0 .�/ˇ̌̌Z
�

�
F.ru/ � F.rbuh/�f dx ˇ̌̌ � ch2j log hj kf k1;1:

Proof. Noting (3.11), we haveZ
�

�
F.ru/ � F.rbuh/�f dx D Z

�

F 0.ru/ � r�u f dx CR;

where

jRj D
ˇ̌̌ Z
�

Z 1

0

�
F 0.ru � sr�u/ � F

0.ru/
�
ds � r�u f dx

ˇ̌̌
� ckr�uk0;1kr�ukkf k

� ch2j log hjkf k1;1;

in view of (3.2), (3.3), and the embedding W 1;1.�/ ,! L2.�/. Integration by parts
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together with (3.3) yieldsˇ̌̌ Z
�

F 0.ru/ � r�u f dx
ˇ̌̌
D

ˇ̌̌
�

Z
�

r �
�
F 0.ru/ f

�
�u dx

ˇ̌̌
� ck�uk0;1kf k1;1

� ch2j log hjkf k1;1;

and the result follows.

Lemma 3.4. Suppose that f 2 H 1
0 .�/ \ C

0.�/ with f 2 H 2.T / for all T 2 Th. Then,ˇ̌̌ Z
�

f
�
ru

Q.u/
�
rbuh
Q.buh/� � r'h dx

ˇ̌̌
� chj log hjk'hk

�X
T2Th

kf k2
H2.T /

� 1
2
8'h 2 Xh:

If in addition, f 2 H 2.�/, thenˇ̌̌ Z
�

f
�
ru

Q.u/
�
rbuh
Q.buh/� � r'h dx

ˇ̌̌
� ch2j log hjk'hk1kf k2 8'h 2 Xh:

Proof. In view of definition (3.1) ofbuh, we obtainZ
�

f
�
ru

Q.u/
�
rbuh
Q.buh/� � r'h dx D

Z
�

�
ru

Q.u/
�
rbuh
Q.buh/� � r.f 'h/ dx

�

Z
�

'h

�
ru

Q.u/
�
rbuh
Q.buh/� � rf dx

D

Z
�

�
ru

Q.u/
�
rbuh
Q.buh/� � r�f 'h � Ih.f 'h/� dx �

Z
�

�uIh.f 'h/ dx

�

Z
�

'h

�
ru

Q.u/
�
rbuh
Q.buh/� � rf dx DW I C II C III:

Here, Ih denotes the Lagrange interpolation operator. An interpolation estimate implies

jI j � kr�uk0;1kr
�
f 'h � Ih.f 'h/

�
k0;1

� ch2j log hj
X
T2Th

kD2.f 'h/kL1.T /

� ch2j log hjk'hk1
�X
T2Th

kf k2
H2.T /

� 1
2
:

Next,

jII j � k�uk0;1kIh.f 'h/k0;1

� ch2j log hj
�
kf 'hk0;1 C kf 'h � Ih.f 'h/k0;1

�
� ch2j log hjk'hk1

�X
T2Th

kf k2
H2.T /

� 1
2
:
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Finally,
jIII j � kr�uk0;1k'hk kf k1 � chj log hjk'hk kf k1;

while applying Lemma 3.3 with Fi .p/ D pip
1Cjpj2

, yields

jIII j �

2X
iD1

ˇ̌̌Z
�

�
Fi .ru/ � Fi .rbu/�'hfxi dx ˇ̌̌

� ch2j log hjk'hrf k1;1 � ch2j log hjk'hk1kf k2;

in the case that f 2 H 2.�/. The result now follows from the above bounds together with
(2.9).

4. Error analysis

Let us begin with two useful estimates involving the quantities Q and �.

Lemma 4.1. Let u; v 2 W 1;1.�/. Then, we have almost everywhere in �

jr.v � u/j �
�
1C sup

�

jrvj
�
Q.u/j�.v/ � �.u/j; (4.1)

Q.v/ �Q.u/ D
ru

Q.u/
� r.v � u/C

jr.v � u/j2

2Q.u/
�
.Q.v/ �Q.u//2

2Q.u/
: (4.2)

Proof. Estimate (4.1) is a consequence of the relation

rv � ru D Q.u/
�
rv

Q.v/
�
ru

Q.u/

�
CQ.u/

� 1

Q.u/
�

1

Q.v/

�
rv

and the fact that �.u/ D
�
�ru
Q.u/

; 1
Q.u/

�
, while (4.2) follows from a straightforward

calculation.

Let us decompose the errors emu D u
m � um

h
; emw D w

m � wm
h

as follows:

emu D .u
m
�bumh /C .bumh � umh / DW �mu C emh;u; (4.3)

emw D .w
m
� bwmh /C .bwmh � wmh / DW �mw C emh;w (4.4)

and note that em
h;u
2 Xh; e

m
h;w
2 Xh0. It will be convenient to introduce the quantities

Am
WD

Z
�

j�.umh / � �.bumh /j2Q.umh / dx; (4.5)

Bm
WD

1

2
Am
�

Z
�

dm � remh;u �
m
u dx; (4.6)

where

dm D �
umt ru

mp
1C jrumj

3
: (4.7)
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We shall use an induction argument and claim that

Bm
C
�2

2

Z
�

.emh;w/
2Q.umh / dx �

�
�2 C h4j log hj4

�
e�tm ; m D 0; 1; : : : ;M; (4.8)

provided that � � ı0hj loghj�
1
2 . The constants ı0; 0 < � � 1, and � > 0 are independent

of h and � , and will be chosen a posteriori. To begin, choose h0 > 0 small enough so that

h2j log hj5e�T �
1

2
and j log hj �

1

�2
for all 0 < h � h0: (4.9)

Clearly, (4.8) holds for m D 0 since e0
h;u
D e0

h;w
D 0 by the choice of our initial data for

the scheme. Let us assume that it is true for some m 2 ¹0; : : : ;M � 1º. Then, we have for
0 < h � h0 that

Bm
C
�2

2

Z
�

.emh;w/
2Q.umh / dx �

�
ı20h

2
j log hj�1 C h4j log hj4

�
e�T

� h2j log hj�1; (4.10)

provided that ı0 and � satisfy

ı20e
�T
�
1

2
: (4.11)

In what follows, we shall denote by c a generic constant that is independent of ı0; � ,
and �. We infer from an inverse estimate, (4.10), the fact that Q.um

h
/ � 1 and from (4.9)

that

kwmh k0;1 � kbwmh k0;1 C kemh;wk0;1 � c C ch�1kemh;wk � c C c

�
j loghj�

1
2 � c: (4.12)

Next, we deduce with the help of krbum
h
k0;1 � c and (2.10) that

sup
�

Q.umh / � 1C sup
�

jrumh j

� 1C krbumh k0;1 C kremh;uk0;1 � c C ch�1kremh;uk: (4.13)

It follows from (4.1) that

jremh;uj D jr.u
m
h �bumh /j

� .1C sup
�

jrbumh j/Q.umh /j�.umh / � �.bumh /j � cj�.umh / � �.bumh /jQ.umh /:
Thus,

kremh;uk
2
� c

Z
�

j�.umh / � �.bumh /j2Q.umh /2 dx � c sup
�

Q.umh /A
m

� c sup
�

Q.umh /
�
Bm
C k�mu kkre

m
h;uk

�
� c sup

�

Q.umh /
�
Bm
C h2kremh;uk

�
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and hence,
kremh;uk

2
� c sup

�

Q.umh /B
m
C ch4.sup

�

Q.umh //
2: (4.14)

If we insert this bound into (4.13) and recall (4.10), we obtain

sup
�

Q.umh / � c C c
�
j log hj�1 sup

�

Q.umh /
� 1
2 C ch sup

�

Q.umh /

and therefore,
sup
�

Q.umh / � c; (4.15)

provided that 0 < h � h1 for some sufficiently small 0 < h1 � h0. Furthermore, we infer
from (4.10), (4.14), and (4.15) that

kremh;uk
2
� cBm

C ch4 � ch2j log hj�1; (4.16)
1

2
Am
� Bm

C ckremh;ukk�
m
u k � ch

2
j log hj�1: (4.17)

4.1. The graph equation

Evaluating (2.5) at t D tm and using the definition (3.1) ofbuh, we derive for 'h 2 XhZ
�

umt 'h

Q.um/
dx C

Z
�

rbum
h
� r'h

Q.bum
h
/

dx D

Z
�

f .wm/ 'h dx C

Z
�

�mu 'h dx

and hence,

1

�

Z
�

.umC1 � um/'h

Q.um/
dx C

Z
�

rbumC1
h
� r'h

Q.bum
h
/

dx (4.18)

D

Z
�

f .wm/ 'h dx C

Z
�

r.bumC1
h
�bum

h
/ � r'h

Q.bum
h
/

dx C

Z
�

Rm 'h dx:

Here, Rm D 1
Q.um/

.u
mC1�um

�
� umt /C �

m
u , so that in view of (3.2),

kRmk �

Z tmC1

tm

kut tk dt C k�
m
u k � c.� C h

2/: (4.19)

Combining (4.18) with (2.12) we obtain the error relation

1

�

Z
�

.emC1u � emu /'h

Q.um
h
/

dx C

Z
�

�rbumC1
h

Q.bum
h
/
�
rumC1

h

Q.um
h
/

�
� r'h dx

D

Z
�

�
f .wm/ � f .wmh /

�
'h dx C

1

�

Z
�

.umC1 � um/
� 1

Q.um
h
/
�

1

Q.um/

�
'h dx

C

Z
�

Rm'h dx C

Z
�

r.bumC1
h
�bum

h
/ � r'h

Q.bum
h
/

dx: (4.20)
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If we insert 'h D 1
�
.emC1
h;u
� em

h;u
/ into (4.20), we derive

1

�2

Z
�

.emC1u � emu /
2

Q.um
h
/

dx C
1

�

Z
�

�rbumC1
h

Q.bum
h
/
�
rumC1

h

Q.um
h
/

�
� r.emC1

h;u
� emh;u/ dx

D
1

�2

Z
�

.emC1u � emu /.�
mC1
u � �mu /

Q.um
h
/

dx

C
1

�

Z
�

r.bumC1
h
�bum

h
/ � r.emC1

h;u
� em

h;u
/

Q.bum
h
/

dx

C
1

�2

Z
�

.umC1 � um/ .emC1
h;u
� emh;u/

� 1

Q.um
h
/
�

1

Q.um/

�
dx

C
1

�

Z
�

Rm.emC1
h;u
� emh;u/ dx C

1

�

Z
�

�
f .wm/ � f .wmh /

�
.emC1
h;u
� emh;u/ dx

DW

5X
iD1

Ai : (4.21)

In order to proceed, we make use of the analysis in [3] for the mean curvature flow of
graphs subject to Dirichlet boundary conditions. The relation (4.21) corresponds to [3,
(3.12)] where we use emu ; e

m
h;u
; �mu instead of em; em

h
; "m, respectively. Furthermore, our

remainder term Rm is defined in a different way and the term A5 is not present in [3]. We
shall refer to the calculations in [3] whenever possible and focus on the changes due to the
differences mentioned above and the use of a Neumann boundary condition. To begin, it
follows from [3, Lemma 2] that

1

�

Z
�

�rbumC1
h

Q.bum
h
/
�
rumC1

h

Q.um
h
/

�
� r.emC1

h;u
� emh;u/ dx �

1

2�
.AmC1

�Am/

C
1

4�

Z
�

jr.emC1
h;u
� em

h;u
/j2

Q.bum
h
/

dx � c.Am
CAmC1/ � c�2: (4.22)

The lemma holds under the conditions that h�2Am �  and  > 0 is sufficiently small,
which can be achieved in view of (4.17) if 0 < h � h2 and h2 � h1 is small enough.

Let us consider the terms on the right hand side of (4.21). The term S1 is estimated
in (i) at the bottom of [3, p. 352], so that

jA1j �
ı

�2

Z
�

.emC1u � emu /
2

Q.um
h
/

dx C
c

ı
h4j log hj4: (4.23)

The integral A2 is treated in (ii) of [3, p. 353] and uses integration by parts for the termZ
�

r.umC1 � um/ � r.emC1
h;u
� em

h;u
/

Q.um/
dx:
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Since r.umC1 � um/ � n D 0 on @� in view of (1.7), the boundary integral vanishes and
we obtain in the same way as in [3] that

jA2j �
ı

�

Z
�

jr.emC1
h;u
� em

h;u
/j2

Q.bum
h
/

dx C
ı

�2

Z
�

.emC1u � emu /
2

Q.um
h
/

dx

C
c

ı

�
�2 C h4j log hj4

�
: (4.24)

The term A3 is handled in (iii) in [3, pp. 353–356]. It again involves integration by parts,
namely for the term

�
1

�2

Z
�

.umC1 � um/.emC1
h;u
� emh;u/b

m
� r�mu dx;

which is II at the top of [3, p. 354]. Here, bm D B.rum/ with

Bi .p/ D
@

@pi

� 1p
1C jpj2

�
D �

pip
1C jpj2

3
:

As a result, the boundary integral reads

�
1

�2

Z
@�

.umC1 � um/.emC1
h;u
� emh;u/ b

m
� n �mu do D 0;

since

bm � n D �
rum � np
1C jrumj2

3
D 0

on @� again by (1.7). Thus, we obtain from the top of [3, p. 356] that

jA3j �
1

�

Z
�

dmC1 � remC1
h;u

�mC1u dx �
1

�

Z
�

dm � remh;u �
m
u dx

C
6ı

�2

Z
�

.emC1u � emu /
2

Q.um
h
/

dx C
2ı

�

Z
�

jr.emC1
h;u
� em

h;u
/j2

Q.bum
h
/

dx

C
c

ı
h4j log hj4 C

c

ı

�
Am
CAmC1

�
(4.25)

with dm as in (4.7) (see top of [3, p. 355]). Next, (4.19) implies that

jA4j �
1

�
kRmkkemC1

h;u
� emh;uk �

c

�

�
� C h2

��
kemC1u � emu k C k�

mC1
u � �mu k

�
�

ı

�2

Z
�

.emC1u � emu /
2

Q.um
h
/

dx C
c

ı

�
�2 C h4j log hj4

�
; (4.26)

since
k�mC1u � �mu k � c� sup

tm�t�tmC1

kut .�; t / �buh;t .�; t /k � c�h2j log hj2
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by (3.4). Recalling (4.12) and the assumption that f 2 C 0;1loc .R/, we obtain in a similar
way

jA5j �
c

�

Z
�

jemw j je
mC1
h;u
� emh;uj dx

�
ı

�2

Z
�

.emC1u � emu /
2

Q.um
h
/

dx C
c

ı

�
kemwk

2
C h4j log hj4

�
: (4.27)

If we insert (4.22)–(4.27) into (4.21), we obtain after multiplying by � and choosing ı > 0
sufficiently small

1

2�

Z
�

.emC1u � emu /
2

Q.um
h
/

dx C
1

8

Z
�

jr.emC1
h;u
� em

h;u
/j2

Q.bum
h
/

dx C .
1

2
� c�/AmC1

�

Z
�

dmC1 � remC1
h;u

�mC1u dx

� .
1

2
C c�/Am

�

Z
�

dm � remh;u �
m
u dx C c�.�

2
C h4j log hj4/C c�kemwk

2:

Recalling the definition of Bm (see (4.6)), and noting (4.17) and (3.2), we deduce that

1

2�

Z
�

.emC1u � emu /
2

Q.um
h
/

dx C
1

8

Z
�

jr.emC1
h;u
� em

h;u
/j2

Q.bum
h
/

dx C .1 � c�/BmC1

� .1C c�/Bm
C c�h2

�
kremC1

h;u
k C kremh;uk

�
C c�.�2 C h4j log hj4/C c�kemwk

2: (4.28)

The second term on the right hand side of (4.28) is estimated by

�h2
�
kremC1

h;u
k C kremh;uk

�
� �h2

�
kr.emC1

h;u
� emh;u/k C 2kre

m
h;uk

�
�
1

16

Z
�

jr.emC1
h;u
� em

h;u
/j2

Q.bum
h
/

dx C c�kremh;uk
2
C c�h4

�
1

16

Z
�

jr.emC1
h;u
� em

h;u
/j2

Q.bum
h
/

dx C c�Bm
C c�h4;

where we have used (4.16) in the last step. Inserting this estimate into (4.28), we infer that

1

2�

Z
�

.emC1u � emu /
2

Q.um
h
/

dx CBmC1
C

1

16

Z
�

jr.emC1
h;u
� em

h;u
/j2

Q.bum
h
/

dx

� .1C c�/Bm
C c�.�2 C h4j log hj4/C c�

Z
�

.emh;w/
2Q.umh / dx: (4.29)

We deduce from (4.29) and the induction hypothesis (4.8) together with (4.15) that

1

2c

1

�
kemC1u � emu k

2
CBmC1

�
�
�2 C h4j log hj4

�
e�tm

�
1C c�

�
1C

1

�2

��
�
�
�2 C h4j log hj4

�
e�tmC1 � h2j log hj�1; (4.30)



K. Deckelnick and V. Styles 78

provided that

� � c
�
1C

1

�2

�
: (4.31)

Note that for the last inequality in (4.30), we have used again (4.9), (4.11), and the fact
that � � ı0hj log hj�

1
2 . In particular, we can repeat the arguments leading to (4.15) and

(4.16) and obtain

sup
�

Q.umC1
h

/ � c and kremC1
h;u
k
2
� ch2j log hj�1: (4.32)

4.2. The surface PDE

As already mentioned in the introduction, the error analysis of the surface equation is
laborious. Much of this work is related to the handling of differences of the form
Q.umC1/ � Q.umC1

h
/, which are typically split into terms Q.umC1/ � Q.bumC1

h
/ and

Q.bumC1
h

/ �Q.umC1
h

/. The second term can be bounded in terms of remC1
h;u

, which is
naturally controlled within our induction. On the other hand, simply estimating the first
term by r�mC1u will frequently lead to sub-optimal error bounds, which are not sufficient
to control the gradient of the discrete height function uniformly. Instead, we will try to
exploit the structure of Q.u/ and frequently apply integration by parts to take advantage
of the quadratic convergence of �mC1u .

Evaluating (2.6) at t D tmC1 and using definition (3.6), we obtain for �h 2 Xh0Z
�

.wQ.u//t .�; tmC1/�h dx C

Z
�

E.rbumC1
h

/rbwmC1
h
� r�h dx

D �

Z
�

rumC1 � r�h V
mC1wmC1 dx C

Z
�

g.V mC1; wmC1/ �hQ.u
mC1/ dx:

If we combine this relation with (2.13), we deduce thatZ
�

emC1
h;w

�hQ.u
mC1
h

/ dx �

Z
�

emh;w�hQ.u
m
h / dx C �

Z
�

E.rumC1
h

/remC1
h;w
� r�h dx

D

Z
�

�bwmC1
h

Q.umC1
h

/ � bwmhQ.umh / � �.wQ.u//t .�; tmC1/��h dx
C �

Z
�

�
E.rumC1

h
/ �E.rbumC1

h
/
�
rbwmC1

h
� r�h dx

C �

Z
�

�
V mC1
h

wmC1
h
rumC1

h
� V mC1wmC1rumC1

�
� r�h dx

C �

Z
�

�
g.V mC1; wmC1/Q.umC1/ � g.V mC1

h
; wmh /Q.u

mC1
h

/
�
�h dx: (4.33)

Inserting �h D emC1h;w
, we derive after some straightforward manipulations

1

2

Z
�

.emC1
h;w

/2Q.umC1
h

/ dx C �

Z
�

E.rumC1
h

/remC1
h;w
� remC1

h;w
dx

C
1

2

Z
�

.emC1
h;w
� emh;w/

2Q.umh / dx
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D
1

2

Z
�

.emh;w/
2Q.umh / dx C

1

2

Z
�

.emC1
h;w

/2
�
Q.umh / �Q.u

mC1
h

/
�
dx

C

Z
�

�bwmC1
h

Q.umC1
h

/ � bwmhQ.umh / � �.wQ.u//t .�; tmC1/�emC1h;w
dx

C �

Z
�

�
E.rumC1

h
/ �E.rbumC1

h
/
�
rbwmC1

h
� remC1

h;w
dx

C �

Z
�

�
V mC1
h

wmC1
h
rumC1

h
� V mC1wmC1rumC1

�
� remC1

h;w
dx

C �

Z
�

�
g.V mC1; wmC1/Q.umC1/ � g.V mC1

h
; wmh /Q.u

mC1
h

/
�
emC1
h;w

dx

DW
1

2

Z
�

.emh;w/
2Q.umh / dx C

5X
iD1

Bi : (4.34)

(i) Rearranging the estimate

rum
h
� rumC1

h
C 1

Q.um
h
/Q.umC1

h
/
D �.umh / � �.u

mC1
h

/ � 1

implies that

Q.umh / �Q.u
mC1
h

/ �
rum

h

Q.um
h
/
� r.umh � u

mC1
h

/;

so that

B1 �
1

2

Z
�

.emC1
h;w

/2
rum

h

Q.um
h
/
� r.umh � u

mC1
h

/ dx

D
1

2

Z
�

.emC1
h;w

/2
rum

Q.um/
� r.umh � u
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h

/ dx

C
1

2

Z
�

.emC1
h;w

/2
� rum

h

Q.um
h
/
�
rum

Q.um/

�
� r.umh � u

mC1
h

/ dx

DW B1;1 C B1;2:

Integration by parts along with an inverse estimate yields
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Z
�
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h;w

remC1
h;w
� rum
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.umC1
h
� umh / dx

C
1

2

Z
�
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/2r �
�
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�
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h
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� c

Z
�

�
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j C jemC1
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j
2
��
jemC1u � emu j C ju

mC1
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� ckemC1
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mC1
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k1ke

mC1
u � emu k C c� sup
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mC1
h;w
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k1
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k1ke

mC1
u � emu k C c�ke

mC1
h;w
kkemC1

h;w
k1:
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Next, we deduce from (2.10), (4.16), and (3.3) that

kremu k0;1 � kre
m
h;uk0;1 C kr�

m
u k0;1 � ch

�1
kremh;uk C chj log hj � cj log hj�

1
2

and therefore, by (2.11), (2.9), and (3.4),

B1;2 � ckre
m
u k0;1

Z
�

.emC1
h;w

/2
�
jr.emC1

h;u
� emh;u/j C jr.bumC1h

�bumh /j� dx
� cj log hj�

1
2 kemC1

h;w
k0;1ke

mC1
h;w
k
�
kr.emC1

h;u
� emh;u/k C �

�
� ch�1kemC1

h;w
k1ke

mC1
h;w
kkemC1
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� emh;uk C c�ke
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k:

Combining the above bounds, we find that
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k
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1 C c"�ke
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2
C c"h
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kemC1
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2 1
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kemC1u � emu k

2: (4.35)

(ii) Let us write
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h
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DW

6X
jD1

B2;j : (4.36)

Recalling (2.3), (2.4), (4.32), and (3.10), we have

jB2;1j C jB2;2j � c
�
�2 C � sup

tm�t�tmC1

k�w;tk
�
kemC1
h;w
k � c�

�
� C h2j log hj2

�
kemC1
h;w
k:

Next, since jQ.umC1
h

/ �Q.um
h
/j � jr.umC1

h
� um

h
/j, we obtain with the help of (3.8),

(2.11), (3.2), (2.9), and (3.4) that
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k1 C c�h

2
j log hj

3
2 kemC1
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k1

� ckemC1
h;w
k1

�
kemC1u � emu k C �h

2
j log hj

3
2
�
:
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Applying Lemma 3.3 to f D .wmC1 � wm/emC1
h;w

yields

B2;4 D

Z
�

.wmC1 � wm/
�
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h
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h
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C
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h
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� c�kemC1
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k1

�
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h;u
k C h2j log hj

�
:

Since .Q.buh/ �Q.u//�t D rbuh;t � rbuhQ.buh/ �
rut � ru

Q.u/
, we obtain

B2;5 D

Z tmC1

tm

Z
�

wm
�
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Q.buh/ �

rut � ru

Q.u/

�
emC1
h;w

dx dt

D

Z tmC1
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Z
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�
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Q.buh/ � ruQ.u/

�
emC1
h;w

dx dt

C

Z tmC1
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Z
�
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ru

Q.u/
� r.buh;t � ut /emC1h;w

dx dt

C

Z tmC1

tm

Z
�

wmr.buh;t � ut / � � rbuh
Q.buh/ � ruQ.u/

�
emC1
h;w

dx dt

DW I C II C III: (4.37)

Another application of Lemma 3.3 yields

I � ch2j log hj
Z tmC1

tm

kwmemC1
h;w
rutk1;1dt � c�h

2
j log hjkemC1

h;w
k1:

After integration by parts, we obtain

II D

Z tmC1

tm

Z
�

r �

�
wm
ru

Q.u/

�
� �u;t e

mC1
h;w

dx dt

C

Z tmC1

tm

Z
�

wm�u;t
ru

Q.u/
� remC1

h;w
dx dt

� c� sup
tm�t�tmC1

k�u;tk ke
mC1
h;w
k1 � c�h

2
j log hj2kemC1

h;w
k1;

by (3.4). Next, (3.3) and (3.5) imply

III � c

Z tmC1

tm

kr�u;tk kr�uk0;1ke
mC1
h;w
kdt � c�h2j log hjkemC1

h;w
k:

If we insert the above estimates into (4.37) we obtain

B2;5 � c�h
2
j log hj2kemC1

h;w
k1:
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In order to treat B2;6, we write with the help of (4.2)�
Q.umC1

h
/ �Q.bumC1

h
/
�
�
�
Q.umh / �Q.bumh /�

D �
rbumC1

h
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C
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h

Q.bum
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/
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h
/ �Q.bumC1

h
/
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/

C
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h
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h
/
�2
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D �
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/
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�
�
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h
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h

/
�
rbum

h

Q.bum
h
/

�
� remh;u

C
1

2

� 1

Q.bumC1
h

/
�

1

Q.bum
h
/

��
jremh;uj

2
�
�
Q.umh / �Q.bumh /�2�

C
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h;u
� em

h;u
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h;u
/

2Q.bumC1
h

/

� ıh¹
�
Q.umC1

h
/ �Q.bumC1

h
/
�
�
�
Q.umh / �Q.bumh /�º; (4.38)

where

ıh D

�
Q.umC1

h
/ �Q.bumC1

h
/
�
C
�
Q.um

h
/ �Q.bum

h
/
�

2Q.bumC1
h

/
:

We remark that (2.10), (4.16), and (4.32) imply that

jıhj �
1

2

�
jremC1

h;u
j C jremh;uj

�
� ch�1

�
kremC1

h;u
kC kremh;uk

�
� cj loghj�

1
2 �

1

2
; (4.39)

provided that 0 < h � h3 and h3 � h2 is small enough. Thus, if we move the last term on
the right hand side of (4.38) to the left hand side and divide by 1C ıh � 1

2
, we obtain�
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h

/
�
�
�
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Q.umh / �Q.bumh /�2�

�
1

1C ıh
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/
�
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h
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h
/

�
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DW S1 C S2 C S3 C S4:
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Note that in order to derive the form of S1 and S2, we have split� 1
1Cıh

D�1C
ıh
1Cıh

. The
fact that S1 does not contain ıh will allow us to apply integration by parts to the integral
involving this term. From the above calculations, we now have

B2;6 D

4X
iD1

Z
�

wmSie
mC1
h;w

dx:

To begin, integration by parts together with (1.7) yieldsZ
�
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Z
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r �
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�
.emC1
h;u
� emh;u/ dx:

Using Lemma 3.4 and (3.4) for the first term, we obtainZ
�

wmS1e
mC1
h;w

dx � chj log hjkemC1
h;u
� emh;uk

�X
T2Th

kwmemC1
h;w
k
2
H2.T /

� 1
2

C ckemC1
h;u
� emh;ukke
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h;w
k1

� chj log hjkemC1
h;w
k1ke

mC1
h;u
� emh;uk � cke

mC1
h;w
k1ke

mC1
h;u
� emh;uk;

where we also exploited the fact that the second derivatives of emC1
h;w

vanish. Since 1C
ıh �

1
2

and jıhj � 1
2
.jremC1

h;u
j C jrem

h;u
j/, we derive with the help of (4.16), (4.32), (2.9),

and (2.11)Z
�

wmS2e
mC1
h;w

dx � ckr.emC1
h;u
� emh;u/k

�
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� emh;ukke
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Finally, we deduce with the help of (4.39), (2.11), and (4.16)Z
�

wm.S3 C S4/e
mC1
h;w

dx

� c

Z
�

jr.bumC1
h
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Collecting the above estimates and recalling (3.4), we obtain

B2;6 � cke
mC1
h;w
k1

�
kemC1u � emu k C �h

2
j log hj2 C �kremh;uk

�
:

If we insert the bounds for B2;j ; j D 1; : : : ; 6 into (4.36), we obtain

B2 � cke
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�
�2 C �h2j log hj2 C kemC1u � emu k C �kre
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2

C c"�
�
�2 C h4j log hj4 C kremC1

h;u
k
2
C kremh;uk

2
�
: (4.40)

(iii) Recalling (2.7), it is not difficult to verify that jE.p/ � E.q/j � cjp � qj, and
hence
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h;u
kkremC1

h;w
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C c"�kre

mC1
h;u
k
2: (4.41)

(iv) In view of the definition of V mC1 and V mC1
h

, we have
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It follows from (4.12) and (4.19) thatX
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while Lemma 3.4 implies
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In conclusion,
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(v) Finally, in order to treat B5 we recall (2.1) and note that ˛.�r/ D �˛.r/; r 2 R;
� > 0. As a consequence,
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so that
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Since ˇ; Q̌ 2 C 0;1loc .R/ we obtain from (4.12), (4.32), and (3.8)
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Next, we deduce with the help of the global Lipschitz continuity of r 7! ˛.r/ and (4.19)
that
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Applying Lemma 3.3 with f D Q̌.wmC1/emC1
h;w

, we infer that

jB5;3j � c�h
2
j log hjk Q̌.wmC1/emC1

h;w
k1;1 � c�h

2
j log hjkemC1

h;w
k1:

After collecting the above estimates, we obtain
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If we insert (4.35), (4.40), (4.41), (4.42), and (4.43) into (4.34), use Poincaré’s inequality,
and observe (2.8) together with (4.32), we derive
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(4.44)

In view of (4.10), (4.30), and (4.9), we have
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Using this bound in (4.44) and choosing " and h0 sufficiently small, we obtain
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where we used (4.16) and the fact that Q.bum
h
/; Q.um

h
/ � c in order to derive the last

estimate. Multiplying (4.45) by �2 (0 < � � 1) and adding the result to (4.29), we obtain
with the help of our induction hypothesis (4.8)
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�
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1C c�
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���
�2 C h4j log hj4
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�
�
�2 C h4j log hj4

�
e�tmC1 ; (4.46)

provided that

� � c
�
1C

1

�2

�
: (4.47)

We are now in position to specify the choice of the constants �; �; ı0, and h0. To begin,
choose 0 < � � 1 such that 1� c�2 � 1

2
in the second line of (4.46). Next, choose � > 0

to satisfy (4.31) and (4.47) and then ı0 > 0 to satisfy (4.11). Finally, h0 > 0 is fixed by
(4.9) and additional smallness conditions on h that were required in the course of the
calculations.

5. Numerical results

We begin this section by investigating the experimental order of convergence (EOC) of our
scheme and then display some simulations of diffusion induced grain boundary motion.
Throughout the computations in this section, we choose a uniform time step � D h2.

5.1. Experimental order of convergence

We set� WD ¹x 2R2 j jxj<1º; T D 0:1 and choose f .w/Dw2 as well as g.V;w/D Vw.
We consider u;w W � � Œ0; T �! R given by

Example 1. u.x; t/ D 5 sin.t/.1 � jxj2/; w.x; t/ D e�t .1C jxj2/I

Example 2. u.x; t/ D 5 sin.t/
�
1C .1 � jxj2/2

�
; w.x; t/ D e�t .1C jxj2/;

and include additional right hand sides in order for .u; w/ to be solutions of the cor-
responding PDEs, while the boundary conditions are u.x; t/ D 0; w.x; t/ D 2e�t in
Example 1 and @u

@n
.x; t/ D 0; w.x; t/ D 2e�t in Example 2. Let us point out that the

Dirichlet condition for u in Example 1 is not covered by our theory. We commence our
numerical results with Figure 1, in which we display the solutionwm

h
plotted on the surface

�m
h
D ¹.x; um

h
.x// jx 2 �º, at tm D 0 and tm D 0:1, for Example 2. When investigating

the experimental order of convergence, we monitor the following errors:

E1 WD max
0�m�M

kemwk
2; E2 WD

MX
mD1

� kremwk
2; E3 WD max

0�m�M
kemu k

2;

E4 WD max
0�m�M

kremu k
2; E5 WD

M�1X
mD0

�k
emC1u � emu

�
k
2:

In Tables 1 and 2, we display the values of Ei , i D 1; : : : ; 5, evaluated using a quadrature
rule of degree 4, for Example 1 and Example 2, respectively. For both examples we see
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Figure 1. Example 2, wm
h

plotted on �m
h

at tm D 0:0 and tm D 0:1.

the expected order of convergence, with EOCs close to four for E1, E3 and E5, and EOCs
close to two for E2 and E3. In particular, the results of Example 2 confirm the bounds
obtained in Theorem 2.1.

5.2. Non-orthogonal boundary contact

Even though we have restricted our error analysis to the case where the evolving surface
meets the boundary of the cylinder at a right angle, it is not difficult to apply our approach
to the case where it meets the boundary of the cylinder at a given angle ˛. In order to do
this, we replace boundary condition (1.3a) with

� � �@A D cos.˛/ on @�.t/; t 2 .0; T �;

leading to the following boundary condition for the height function u:

ru � n

Q.u/
D � cos.˛/ on @� � .0; T �:

The weak formulation for u then takes the formZ
�

ut '

Q.u/
dx C

Z
�

ru � r'

Q.u/
dx D

Z
�

f .w/ ' dx �

Z
@�

cos.˛/' dx 8' 2 H 1.�/;

from which we derive the corresponding finite element approximation replacing (2.12).
We set � WD ¹x 2 R2 j jxj < 1º, f .w/ D w, and g.V; w/ D jV jw and specify the

following boundary conditions for u and w:

ru � n

Q.u/
D � cos.2�t � �=2/ and w D 1 on @� � .0; T �:

As initial data we choose u0.x/ D 0 and w0.x/ D 1
2
.1C jxj2/. In Figure 2, we display

wm
h

on the surface �m
h
D ¹.x; um

h
.x// j x 2 �º at tm D 0; 0:25; 0:35; 0:5; 0:65; 0:75. As

j cos.2�t � �=2/j D 1 for t D 0:25; 0:75, the gradient of u will blow up on the boundary.
However, for the mesh sizes we chose, the discrete solution was able to flow through these
singularities without problems.
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(a) t D 0 (b) t D 0:25 (c) t D 0:35

(d) t D 0:5 (e) t D 0:65 (f) t D 0:75

Figure 2. wm
h

plotted on the surface �m
h

at tm D 0; 0:25; 0:35; 0:5; 0:65; 0:75.

5.3. Simulations of diffusion induced grain boundary motion

We conclude our numerical results with two simulations of diffusion induced grain bound-
ary motion. We consider the physical set up of a film of metal, containing a single grain
boundary. We denote the film by AD�� Œ0; 5� � R3, with�D .�2; 2/2, and we model
the grain boundary by the surface �.t/ D ¹.x; u.x; t// jx 2 �º. We impose the boundary
condition

@u

@n
.x; t/ D 0 8 .x; t/ 2 @� � .0; T �

such that the grain boundary meets the boundaries of the film orthogonally.
The film is immersed in a solute that diffuses into the grain boundary at the surfaces

x1 D ˙2. We denote the concentration of the solute on the grain boundary by w.x; t/ 2
Œ0; 1�, for x 2 �, and we assume that the solute concentration is set to one on the surfaces
x1 D ˙2 and satisfies zero flux boundary conditions at the surfaces x2 D ˙2, i.e.,

w.x; t/ D 1 for x1 D ˙2;
@w

@n
.x; t/ D 0 for x2 D ˙2:

We consider two initial configurations for the grain boundary: in the first configuration we
take the grain boundary to be the planar surface x3 D 1 such that u0.x/ D 1, while in the
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(a) t D 0 (b) t D 0:1

(c) t D 0:2 (d) t D 0:3

Figure 3. Travelling wave solution showing the grain boundary with the solute concentration at
tm D 0; 0:1; 0:2; 0:3, with u0

h
� 1 and w0

h
� 0.

(a) t D 0 (b) t D 0:2

(c) t D 0:4 (d) t D 0:6

Figure 4. Evolving grain boundary with the solute concentration at tm D 0; 0:2; 0:4; 0:6, with the
initial surface defined by (5.1) and w0

h
� 0.
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second we take

u0.x1; x2/ D

8̂̂<̂
:̂
1C " if x1 > �"

2
;

" sin
�
x1
"

�
if jx1j � �"

2
;

1 � " if x1 < ��"2

(5.1)

with " D 0:4.
For both configurations, we assume that the concentration of solute on the grain bound-

ary is initially zero, such that w0.x/ D 0 for x 2 �. In this set up, physically meaningful
choices for f .w/ and g.V;w/ are f .w/D w2 and g.V;w/D jV jw. Figure 3 displays the
solute concentration, wm

h
.x/, plotted on the grain boundary, �m

h
D ¹.x; um

h
.x// j x 2 �º,

at times tm D 0; 0:1; 0:2; 0:3. Additionally, in each plot we display the initial grain bound-
ary, depicted by the blue surface, and the outline of the metallic film A D � � Œ0; 5�. The
symmetry of this set up makes it equatable to the two-dimensional configurations studied
in [5] and [13]. In particular, we see a travelling wave solution comparable to the ones
displayed in [5, Figures 9 and 10] and [13, Figure 4.4]. In Figure 4 the initial surface is
defined by (5.1), which gives rise to a fully three-dimensional simulation. We display the
solute concentration, wm

h
.x/, plotted on the grain boundary, at times tm D 0; 0:2; 0:4; 0:6,

together with the initial grain boundary and the outline of the film.
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