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Longest minimal length partitions
Beniamin Bogosel and Edouard Oudet

Abstract. This article provides numerical evidence that under volume constraint the ball is the
set which maximizes the perimeter of the least-perimeter partition into cells with prescribed areas.
We introduce a numerical maximization algorithm which performs multiple optimization steps at
each iteration to approximate minimal partitions. Using these partitions we compute perturbations
of the domain which increase the minimal perimeter. The initialization of the optimal partitioning
algorithm uses capacity-constrained Voronoi diagrams. A new algorithm is proposed to identify such
diagrams, by computing the gradients of areas and perimeters for the Voronoi cells with respect to
the Voronoi points.

1. Introduction

In [18], the authors answer a question raised by Polya in [38] and prove that among planar
convex sets of given area, the disk maximizes the length of the shortest area-bisecting
curve. Denote by © C R an open, connected region with Lipschitz boundary. Consider
¢ € (0,1) and denote by | - | the usual Lebesgue measure (area in 2D, volume in 3D).
Given 2 and c, define the shortest fence set to be

SF(S2,c¢) = argmin{Perq(w) : © C Q, |w| = ¢|Q|}. (1)

In other words, SF(€2, ¢) is one subset @ C 2 which minimizes the relative perimeter
Perg (w) when the measure |w| is fixed to ¢|€2|. Examples of solutions to problem (1) are
illustrated in Figure 1 for various shapes €2 and constraint values c. In the following, the
relative perimeter of SF (2, ¢) is denoted by

1(Q.¢) = Perg(SF(22,¢)) = min{Perg(w) : @ C Q. |o| = c|Q[}. (2)

In the literature, the mapping ¢ — 1(£2, ¢) is sometimes called the isoperimetric profile
of the set 2. The paper [18] cited above solves the problem of maximizing /(£2, ¢) with
respect to €2,

max I(L2,c), 3
onax. (2,¢) (3)

in dimension two for ¢ = 1/2. In the following, v; denotes the volume of the unit ball in
R?. The choice of the volume constraint |Q2| = v, does not reduce the generality of the
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Figure 1. Examples of minimizers of problem (1) for various shapes 2 and various constraints.

problem, since changing this constant only rescales the solution via a homothety. Classi-
cal details regarding the existence of the sets SF(€2, ¢) and the definition of the relative
perimeter Perg (-) are recalled in the next section.

This work was initiated by the note [29] published on the French CNRS website
Images des mathématiques, where it is asked what happens to the solution of (3) when
the parameter c varies in (0, 1). This conjecture is attributed to Wichiramala [45] and arti-
cle [36] on F. Morgan’s blog presents an extensive discussion regarding the history of the
problem. The conjecture was partially solved in dimension two in the following works:

* In[5], the authors prove the conjecture in the plane for small fraction areas. The article
contains many interesting results related to relative isoperimetric sets.

* In [44], the authors prove the conjecture in the plane for domains symmetric with
respect to both coordinate axes and perturbations of the unit disk.

Therefore, the conjecture remains unanswered for large fraction areas, except for the
case where ¢ = 1/2. Moreover, other generalizations of this problem can be investigated.
It is possible, for instance, to consider the analogue problem in the case of partitions of
shortest total boundary measure. Given 2 C RY andn > 1, consider (w1, ...,wy) tobe a
partition of €2, in the sense that the union of w;, i = 1,...,nis Q and w; N w; = @. Given
a vector ¢ = (cq,...,cn) € R with }7_, ¢; = 1, consider the shortest partition of ||
with volume constraints ¢ to be

n
SP(2,c¢) = argmin { ZPerQ(a)i) : (w;) a partition of Q, |w;| = ci|Q|}. 4
i=1

We define the isoperimetric profile of a partition given by the constraints ¢ by

n
PI(22,¢) = min { ZPerg(a)i) : (wi)?—, apartition of Q, |w;| = ¢; |Q|}. (5)
i=1
In other words, PI(£2, c) is the minimal total relative perimeter of a partition with volume
constraints given by ¢. Now it is possible to formulate the following problem:
max PI(S2,c), (6)
IQ]=vq
where the total relative perimeter of the shortest partition with constraints ¢ is maximized
when 2 has fixed volume. It is obvious that (3) is a particular case of (6) by considering
the case wheren =2 and ¢ = (¢, 1 —¢).
In this paper, problems (3) and (6) are investigated from both numerical and theoretical
points of view. In order to approximate solutions of these problems, multiple issues need
to be addressed:
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* Reliable computation of a numerical approximation of the shortest partition SP (€2, ¢)
once the domain €2 and the constraints vector ¢ are given. It is important to avoid local
minimizers at this stage, since the objective is to maximize the shortest perimeter.
Any local minimizer may give a false candidate for the solutions of (3) or (6). There
are many works in the literature which deal with the investigation of minimal length
partitions. In [14], Cox and Flikkema use the surface Evolver software to approximate
minimal partitions. In this work the approach presented in [37] is used, where the
perimeter is approximated using a I"-convergence result of Modica and Mortola [34].
This allows us to work with density functions rather than sets of finite perimeter and
simplifies the handling of the partition condition. Moreover, working with densities
directly allows changes in the topology of the partitions.

Given a domain €2, a mesh is constructed and finite elements are used in FreeFEM

[25] in order to approximate SF (€2, c) or SP(2, ¢). When dealing with partitions, in

order to accelerate the convergence, an initialization based on Voronoi diagrams with

prescribed areas is used.

e Once the shortest partition SP(£2, ¢) is identified, the bounding set Q2 needs to be
modified in order to increase the objective function PI(£2, ¢). To find a suitable ascent
direction, classical results related to the shape derivative are used [16, 26].

* The family of star-shaped domains (which includes convex shapes) is parametrized
using radial functions. Moreover, radial functions are discretized by considering trun-
cations of the associated Fourier series. Using the shape derivative it is possible to
compute the gradient of the objective function with respect to the discretization param-
eters. Once the gradient is known, an optimization algorithm is used in order to search
for solutions of (3) and (6). The choice of the optimization algorithm is also an impor-
tant factor, since the computation of SP (€2, ¢) is highly sensitive to local minima.
Moreover, when changing 2 following a perturbation field found using a shape deriva-
tive argument, the configuration of the optimal partition might change. The chosen
algorithm is a gradient flow with variable step size.

Minimal length partitioning algorithms presented in [37] or [6] use random initial-
izations. While this illustrates the flexibility of Modica—Mortola type algorithms and the
ability of the algorithm to avoid many local minima, choosing random initializations leads
to longer computation times required for the optimization algorithm. A classical idea is
to use Voronoi diagrams as initializations. However, these Voronoi diagrams should con-
sist of cells which satisfy the area constraints |w;| = ¢;. In the literature, the notion of
capacity-constrained Voronoi diagrams is employed and results in this direction can be
found in [3,4,46]. In this work, we propose a new way of computing capacity-constrained
Voronoi diagrams by explicitly computing the gradients of the areas of the Voronoi cells
with respect to variations in the Voronoi points. The gradient of the perimeters of the
Voronoi cells is also computed, which allows the search of capacity-constrained Voronoi
diagrams with minimal length.
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The numerical simulations give rise to the following conjectures:

* The result of the convex isoperimetric conjecture seems to generalize to every volume
fraction ¢ € (0, 1) in dimensions two and three.

* The same result seems to hold in the case of partitions. Forn > l and ¢ = (¢;)7_, € R”
with Z?:l ¢; = 1 arbitrary, the solution of (6) is the disk in 2D and the ball in 3D. It
is surprising that this result seems to hold even when the area constraints of the cells
of the partition are not the same.

Outline and summary of results. Section 2 presents classical theoretical results regard-
ing approximations of minimal perimeter partitions by I"-convergence.

Section 3.1 recalls basic aspects regarding the numerical computation of minimal
length partitions. Section 3.3 presents the computation of the gradients of the areas and
perimeters of Voronoi cells and shows how to use prescribed-area Voronoi cells in order to
construct initializations for our optimization algorithm. Section 3.4 presents the computa-
tion of an ascent direction for the shape optimization algorithm using the notion of shape
derivative. The choice of the discretization and the optimization algorithm for approximat-
ing solutions of problems (3) and (6) are presented in Section 3.5. We emphasize that the
maximization algorithm approximates solutions to a max-min problem, and the optimal
partitioning algorithm presented in Section 3.1 is run at every iteration.

Finally, results of the optimization algorithm in dimensions two and three are pre-
sented in Section 4. The numerical results suggest that the solution of problems (3) and
(6) is the disk in dimension two and the ball in dimension three. A brief discussion of the
optimality conditions is presented in Section 5.

2. Theoretical aspects

2.1. Minimal relative perimeter sets and partitions

The appropriate framework to work with sets of finite relative perimeter in €2 is to consider
the space of functions with bounded variation on €2,

BV(Q)={ue L (Q):TV(u) < oo},

where
TV() = sup{/gudivg g e C@). gl < 1).

As usual, C, (£2) represents the space of C*° functions defined on €2 with compact support
in Q. Using the divergence theorem, it is easy to observe that if u is of class C'!, then

TV(u):[Q|Vu|.

If w is a subset of €, its generalized perimeter is defined by Per(w) = TV (x,), where
X represents the characteristic function of w. All of these aspects are classical and can
be found, for example, in [2, 8].
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The fact that problems (1) and (4) have solutions is classical and is a consequence
of the fact that the generalized perimeter defined above is lower-semicontinuous for the
L' convergence of characteristic functions. For more aspects related to solutions of these
problems, see [32, Chapter 17]. The book previously referenced also presents aspects
related to the regularity of optimal partitions in Part Four. Aspects of optimal partitions in
the smooth case are presented in [35], where qualitative properties of minimal partitions
in the plane and on surfaces are presented.

Proving existence of solutions for problems (3) and (6) is more difficult, since these are
maximum problems and the perimeter is lower-semicontinuous. We recall that problem (3)
was solved in [18] in the case where d = 2, ¢ = 1/2. In particular, existence was proved by
exploiting results in [13], which show that in this case the minimal relative perimeter sets
are convex. In the following, we prove that solutions exist in the class of convex domains
for arbitrary area constraints.

Theorem 2.1. Problem (3) has solutions in the class of convex sets, i.e., given ¢ € (0, 1)

there exist convex sets Q* which maximize 1(2, ¢) among convex sets with fixed volume
2] = vg.

Proof. We divide the proof into steps which allow us to apply classical methods in calcu-
lus of variations.

Step 1: Upper bounds. In what follows, denote by w(£2) the minimal ¢~ measure
of the projection of €2 on a hyperplane (in dimension two, this corresponds to the minimal
width). For convex bodies, the following reverse Loomis—Whitney inequality holds true:

d

: d—1 1 d-1
{211331gd}i1:[1 HOTN(Kle) < Aal K197
where the minimum is taken over all orthonormal bases of R?, and K |eil represents the
projection of K onto a hyperplane orthogonal to e;. In [30], it is shown that there exists a
constant ¢o such that Ay < (cov/d)?. In particular, this shows that the minimal projection
w() satisfies w(R)? < Ag|Q|?1. As a direct consequence, w(£2) is bounded above in
the class of convex sets €2 which satisfy || = vg.

Immediately, we see that the quantity w(£2) gives an upper bound for /(£2, c¢). To jus-
tify this, choose eg, the direction for which 41 (§2|e0l) is minimal, and slice 2 with a
hyperplane orthogonal to eq which divides €2 into two regions, w and Q \ w, with vol-
ume |w| = c. The relative perimeter of the set w in Q is at most equal to w(2), the
F?~1 measure of the projection. Therefore, we may conclude that in the class of convex
sets with measure |Q2| = v, the quantity 7(€2, ¢) is bounded from above, and the upper
bound only depends on d and v,. This implies the existence of a maximizing sequence
(§21)n>1 which satisfies (25, ¢) < 1(2p41,¢) and (82, ¢) = sup|g|—, 1(£2,¢), where
the supremum is taken in the class of convex sets.

Step 2: Compactness. When dealing with a sequence of convex sets, we may extract
a subsequence converging in the Hausdorff distance, provided the sets are uniformly
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bounded. For classical aspects related to the Hausdorff distance we refer to [26, Chap-
ter 2]. Therefore, in what follows we show that the diameters diam(£2j) of convex sets
2, forming the maximizing sequence are uniformly bounded.

First, let us note that since (£2;) is a maximizing sequence for /(€2, ¢), there exists a
positive constant pg > 0 such that I(2,¢) > po. Since w(2) > I(£2, c¢), we also have
w(2y) > po > 0forn > 1. The results in [20] show that the minimal perimeter projection,
the diameter, and the volume of a convex set €2 satisfy

w(2) diam(Q) < |R2]/d.

It is now immediate to see that diam(2;) < |Q|/(dw(2)) < vz /(dpo), and therefore
the diameters of (£2;) are bounded. Without loss of generality, we may assume that (£2)
is contained in a large enough ball. Applying the classical Blaschke selection theorem, we
find that there exists a maximizing sequence, denoted for simplicity by (£27), such that
Qy, converges with respect to the Hausdorff distance to the convex set 2. Moreover, the
volume is continuous for the Hausdorff distance among bounded convex sets, so 2 also
satisfies the volume constraint |Q2| = vg.

Step 3. Continuity. The last step is to prove that /(£2, ¢) is indeed equal to the limit
of the maximizing sequence, lim sup,_, ., I(25, ¢). This is a direct consequence of [40,
Theorem 4.1], which states that if (£2,) is a sequence of convex bodies in R and Qj, — Q
in the Hausdorff distance, then 1(2y,,c) — (€2, ¢) for every ¢ € [0, 1]. This finishes the
proof, as the limit €2 is indeed a maximizer for (3). [

Remark 2.2. Removing the convexity assumption is not straightforward. Nevertheless,

using the regularity results regarding solutions of (1), it is possible that this result could

be partially extended in the general case. There are multiple difficulties which follow the
structure of the proof above:

* Proving there exists an upper bound in (3).

* Proving that a maximizing sequence is bounded: long tails may not intersect the min-
imizing set in (1), therefore cutting them may increase 7(2, ¢).

* Obtaining compactness results of a maximizing sequence: classically, this should be
possible when working in the class of sets of finite perimeter.

* Proving that the maximizing sequence converges to an actual maximizer: this would
involve obtaining some continuity properties regarding the perimeter of a sequence
of sets. This is not straightforward, as the perimeter is only lower-semicontinuous for
the L' convergence of characteristic functions. Nevertheless, using the regularity of
minimal relative perimeter sets might help obtain the desired results.

The case of partitions can be handled using a similar strategy in the class of convex
sets. The missing ingredient is the convergence of minimal perimeter partitions, which
will be proved following the results of [40].

Theorem 2.3. Problem (6) has solutions in the class of convex sets, i.e., given ¢ = (c;)7_,
e R”, Z?:l ¢; = 1, there exist convex sets Q* which maximize PI1(S2,¢) among convex
sets with fixed volume |Q2| = vg.
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Proof. As in the proof of Theorem 2.1, it is straightforward to give upper bounds for
PI(Q,¢) in terms of w(S2) (the minimal #¢~! measure of the projection on a hyper-
plane). A maximizing sequence (£2;) would have a positive lower bound 0 < py < w(2y,)
for the sequence of minimal projections on hyperplanes. Therefore, the diameters of (£2,)
are bounded from above and we may assume that the convex sets €2 converge to a con-
vex set 2 (with respect to the Hausdorff distance). The set 2 also satisfies the volume
constraint |Q2| = vg.

It only remains to prove the continuity of the minimal partition perimeters P1(£2j, c)
for the convergence with respect to the Hausdorff distance. In order to do this, the same
tools as in the proof of [40, Theorem 4.1] can be used.

(1) Lower-semicontinuity. Theorem 3.4 in [40] shows that there exist bilipschitz
maps fp : Q@ — Q with Lipschitz constants Lip( f) converging to 1, and the Lipschitz
constants of the inverse maps Lip( fh_l) also converging to 1. The volumes and perimeters
of the images of finite perimeter sets E;, C €25, have upper and lower bounds as follows:

<|f < Li A
WU’?H < |/a(En)| < Lip(fn)*|Enl,

W Perq, (En) < Pera(fy(En) < Lip(fi)*~" Perq, (En).

Let (a)z);’zl be a minimal perimeter partition for 2 with constraint ¢ € R”. Then
(fn(®y,)) is a partition of Q with limj—e |fr(w},)| = ¢;|2]. Extracting a diagonal
sequence, we may assume that (w})7_; converges with respect to the Hausdorff distance
to a partition (w;)?_, of Q as h — oo. Using the estimates above and the fact that the
perimeter is lower semi-continuous with respect to the convergence of finite perimeter
sets, we have

PI(Q.c) <) Perg(wi) < liniiogfz Perg (f; (w}))

i=1 i=1

n
= liminf y P 1) = liminf P1(Qy, ¢).
jmint ) Pera, (@) = minf P10

(2) Upper-semicontinuity. It remains to prove that the inequality PI(£2,c) >
limsupy,_, ., PI1(2, ¢) holds. Reasoning by contradiction, suppose that PI(2, ¢) <
lim supy,_, o, P1(225, ¢). Up to a subsequence, we may assume that P7(£2j, ¢) converges.
Choose (w;)?_, a minimal partition in  with constraints |w;| = ¢;|$2|. As in [40], using
these sets it is possible to construct better competitors on some 2y, for large /4 than those of
the corresponding optimal partition. This leads to a contradiction. Indeed, ( fh_1 (wfl))?zl
forms a partition of 2, which may fail to satisfy the volume constraints. Optimality
conditions imply that common boundaries of the sets in the partition are regular hypersur-
faces. Therefore, it is possible to perturb these boundaries around regular points in order
to attain the desired volume constraints. Moreover, for & large enough this will produce



B. Bogosel and E. Oudet 102

partitions which satisfy

Z Perg, (f; ' (wn) < PI(Qp.c¢),

i=1

which contradicts the optimality of P1(€2y, ¢).
This concludes the proof of the existence of solutions for the given problem. ]

Remark 2.4. Existence results obtained in this section may also be generalized to the case
of manifolds, particularly when € is the boundary of a convex set in R¢. There exist sets
Q which are surfaces of co-dimension one that are boundaries of some convex set in R¥
and have fixed #9~! measure which maximize the minimal relative geodesic perimeter
of a subset or partition with given #¢~! measure constraints.

2.2. Relaxation of the perimeter: Gamma-convergence

A key point in our approach is to approximate minimal length partitions SP (€2, ¢). In order
to avoid difficulties related to the treatment of the partition constraint, it is convenient to
represent each set in the partition w; as a density u; : 2 — [0, 1]. Then, the partition
constraint can be simply expressed by the algebraic equality Y ;_, u; = 1 on Q. The
next aspect is to approximate the perimeter of a set represented via its density function.
A well-known technique is to use a I'-convergence relaxation for the perimeter inspired
by a result of Modica and Mortola [34]. The main idea is to replace the perimeter with a
functional that, when minimized, yields minimizers converging to those that minimize the
perimeter.

Let us briefly recall the concept of I'-convergence and the property that motivates its
use when dealing with numerical optimization.

Remark 2.5. Let X be a metric space. For ¢ > 0, consider theF functionals F,, F : X —
[0, +00]. We say that F, ["-converges to F, and we write F, —> F, if the following two
properties hold:

(LI) Forevery x € X and every (x,) C X with (x;) — x, we have
F(x) <lim i(l)’lf Fe(x,). @)
E—>
(LS) For every x € X, there exists (x;) C X such that (x;) — x and

F(x) > limsup Fg(x;). 8)

e—0

An important consequence is the following classical result concerning the convergence
of minimizers of a sequence of functionals that I"-converge.

r
Proposition 2.6. Suppose that F, —> F and x. minimizes F, on X. Then, every limit
point of (x.) is a minimizer for F on X.
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Therefore, in practice, in order to approximate the minimizers of F it is possible to
search for minimizers of Fg, for & small enough.

Let us now state the two theoretical results that are used in this work concerning the
I"-convergence relaxation of the perimeter and of the total perimeter of a partition, with
integral constraints on the densities. The first result is the classical Modica—Mortola the-
orem [34]. Various proofs can be found in [1, 8, 11]. In what follows, 2 is a bounded,
Lipschitz open set. Consider a double-well potential W : R — [0, co) which satisfies the
following assumptions: W is of class C', W(z) = 0 if and only if z € {0, 1}, and W
has exactly three critical points. For such a double-well potential W described previously,
denote y = 2 fol v/ W(s)ds. Throughout, ¢ € [0, 1] represents the fraction used for the
volume constraint.

Theorem 2.7 (Modica—Mortola). Define Fy, F : L1(Q) — [0, +00] by

21 1 )
rw = | L (#1504 W) e @), fyu=cio)

+00 otherwise

and
yPerq({u =1}) wu e BV(Q:{0,1}), [qu = ¢|Q].

+00 otherwise.

F(u) ={

r
Then, F;, — F in the L'(Q) topology.

In [37], this result was generalized to the case of partitions and was used to compute
approximations for SP(2,¢). For ¢ € R” with ) ;_, ¢; = 1, in order to simplify notation,
denote by X (€2, ¢) the space of admissible densities which satisfy the integral constraints
and the algebraic non-overlapping constraint:

X(Q,¢) = {u = (u;)'_, € L'(Q)" : /Qu,- — ci|sz|,i:u,- — 1}.
i=1

The I'-convergence result in the case of partitions is recalled below.

Theorem 2.8. Define G, G : L' () — [0, +0o0] by

. 1
G (u) — Z/Q(8|Vui|2 + EW(MZ)) ifu e (HI(Q))n n X(Q,c),
e\l = Y i=1
oo otherwise

and

Glu) = Y 2ieq Perg({u; = 1)) ifu e (BV(R.{0,1}))" N X(Q,¢).
B 00 otherwise.

Then, G, i) G in the (L1(Q))" topology.
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A proof of this result can be found in [37]. In the numerical simulations the double-
well potential is chosen to be W(s) = s2(1 — s)2, which gives the factor y = 1/3 in the
results shown above.

Remark 2.9. It can be seen that SF (2, ¢) corresponds to a density that is a minimizer
of F in Theorem 2.7. Moreover, SP(£2, ¢) corresponds to a family of densities which
minimizes G in Theorem 2.8. Using the result recalled in Proposition 2.6, it is possible
to approximate these minimizers by those of F; and G, respectively, for ¢ small enough.
From a numerical point of view, dealing with the minimization of F; and G, is easier
since the variable densities are H! regular.

Remark 2.10. The structures of minimizers of F; was widely studied in the literature, as
can be seen in papers [23,31,42]. It can immediately be seen that, assuming W is at least
of class C'!, minimizers u of F; satisfy an optimality condition of the form

1
/ (ZSVM Vo + -W (e + /up) =0 foreveryp € H (Q), )
Q &

where 1 € R is a Lagrange multiplier for the volume constraint. Classical regularity theory
results that can be found in [21] allow us to employ a bootstrap argument and conclude
that u is of class C*° in the interior of €2, and u has the regularity of €2 up to the boundary.
For example, for smooth domains €2 the optimizer u is also smooth up to the boundary of
Q2. Moreover, it can be proved that the minimizer u takes values in [0, 1]. In the case where
Q is convex, results found in [22, Chapter 3] show that solutions of the above problem are
in H2(Q).

The same type of results hold for minimizers of G, in the case of partitions, with
eventual singularities at junction points between three or more phases in the partition. Nev-
ertheless, the contact between the optimal partition and the boundary d€2 has the desired
regularity.

Remark 2.11. The results in [31] show that the Lagrange multiplier  for the volume
constraint in (9) has a geometric interpretation. Given a volume fraction ¢ € (0, 1), as
& — 0, the Lagrange multiplier i converges to y times the mean curvature of the shortest
fence set SF (€2, ¢), where y was defined above Theorem 2.7. Recall that this minimal set
SF(£2,c), being optimal for the relative perimeter under a volume constraint, has constant
mean curvature inside $2. Moreover, as shown in [42], taking ¢ = 1 as a test function in
(9) gives the following explicit formula for the Lagrange multiplier:

1 /

Since in the numerical section we deal with the minimization of F,, G, for fixed €2,
we briefly recall existence results related to these problems. Suppose that the double-
well potential W is Lipschitz continuous on R. This is not restrictive, since minimizers
of Fg, G, are densities which take values in [0, 1], thus values of W far away from this
interval do not matter in the analysis.
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Theorem 2.12. Denote by 1.(2, ¢) and PI,(2,c) the optimal values obtained when
minimizing Fg and G, respectively.

(1) Problems
min  Fy.(u) and min  Gg(u)
uell(Q) ue L1 (Q)"
admit solutions for Q2 a Lipschitz domain with finite volume,; and

(2) Givenc € (0,1)andc = (¢;) € R", Y7, ¢; = 1 problems

max [.(2,c¢) and sIznaX PI.(22,¢)

1Q2|=vyq 1Q2|=vy4

admit solutions in the class of convex sets.

Proof. The proof of (1) is classical. Note that the constraints on the density functions are
embedded in the definition of the functionals F,, G, to be minimized. We give the ideas
for G, as F; is just a particular case. The existence proof goes as follows:

* The functional G; is obviously bounded from below by zero. Moreover, truncating the
density functions (u;) to take values in [0, 1] does not increase the value of G,. This
allows us to assume from now on that the densities have values in this interval.

+ Minimizing sequences exist and they are bounded in H!(2)", which allows us to
extract a subsequence weakly converging in H!. The constraints are stable under the
L? convergence. Moreover, the lower-semicontinuity of the H'! norm and Fatou’s
lemma allow us to see that any weak H ! limit point of the minimizing sequence is a
minimizer.

The proof of (2) follows the same lines as the proofs of Theorems 2.1 and 2.3. As in
the proof of these theorems, we start by noticing that the minimal #?~! measure w($2)
of the projection of €2 on a hyperplane is bounded from above. We detail the proof for /,,
while the proof in the case of partitions follows the same argument. In order to emphasize
the dependence of F, on 2, we write Fo(u) = F.(2,u).

Upper bound. Choose ¢y the direction for which #¢~1(Q |eol) is minimal and equal
to w(2). Given a hyperplane ¢ orthogonal to e, consider the function u, = ¢.(d(x)),
where d(x) is the signed distance to the hyperplane ¢ (choosing an orientation) and ¥, @,
are given by

0 t<0
! & '
1{,5 — —d , Qe = 1 0< < e s

This type of construction is standard when proving the limsup part of the I"-convergence
proof for the Modica—Mortola type results in Theorems 2.7, 2.8 (see, for example, [33]).
The coarea formula and the fact that |[Vd(x)| = 1 allows us to write

/uzf/ @e()d H471dt.
Q R J{d(x)=t}
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The definition of ¢, and a continuity argument allow us to deduce that there is a position
of the hyperplane for which the constraint fQ us = ¢|2| is satisfied.
Using the coarea formula to evaluate F,(2,u,), we obtain

F@.u) = [ (elgi@@nP + S Wig@w)

=[] (el P + S Wgaten)d
R J{d(x)=t} &
Ye(1)
<w@ [ (b + W)

The last inequality comes from the fact that {d(x) = ¢} is a slice of Q2 orthogonal to
eo and its H¢~! measure is at most w(§2). Moreover, we can restrict the bounds in the
one-dimensional integral to 0 and (1), since for values of ¢ outside of this interval, the
integrand is zero. A simple computation gives

1
—ve+ W(pe).

’ _ 1 _
0=y T e

Thus, we obtain

2w

I.(2,¢) < F(Q,ug) <
£

Ye(1) 1
) [ (e + W(pe))dt = 2w(§2)/ ve+ W(s)ds,
0 0

where the last equality comes from the change of variables s = ¢.(¢). This quantity
depends only on W and w(f2), and is bounded from above independently of 2.

Compactness. The same argument used in the proof of Theorem 2.1 can be applied in
order to conclude that there exists a maximizing sequence (£25) converging with respect
to the Hausdorff distance to a convex set 2 with non-empty interior and volume |Q2| = vy .
Moreover, we may assume that there exists a bounded open set D such that (27)5>1, 2
are contained in D.

Following the ideas in [26, Chapter 2] we may assume that (2;) and Q2 satisfy an
e-cone condition, or equivalently that they are Lipschitz regular with a uniform Lipschitz
constant. In this case, the convergence with respect to the Hausdorff distance implies that
€25\ Q] + [\ Q4| — 0.

Continuity. It now remains to prove that 1.(25,¢) — I.(2,¢) as h — oo. Let us
note first that since 2, is a maximizing sequence, we have 1.(2,¢) < limp_, o 1c(2p, ).
Consider a minimizer u € H () such that F,(Q,u) = I(Q,¢).

Since (2) and €2 have a uniform Lipschitz constant L (as recalled above), using the
extension theorems recalled in [10, Theorem 3.4], there exists an extension & € W1:P (D)
of u which satisfies ||u[|1.»(py < Const(L)u|lw1.r(g,)- This, together with the results
recalled in Remark 2.10, implies that

1
e|Vi|* + gW(ﬁ) e L>®(D).
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Combining this with the fact that |Q2 \ Q| 4+ |25 \ 2| — 0 implies that
Fo(Qp, 1) = Fe(2,u).

We cannot conclude the proof yet, since # may not satisfy the integral constraints on 2.

In order to fix this, let xo be a point in the interior of Q2. For 4 large enough, there
exists a ball Bs of radius § > 0 such that B C Q2 N Q. Denote by ds the function which
is equal to the distance to dBjy inside By and zero outside. We use this function to construct
functions uy = u + xpds, for x; € R, which satisfy the integral constraints th up =

C|Qh |. SI.IICC
/ /

KA

we necessarily have x;, — 0. This immediately shows that

= + = 0(|Q\ Q] + 2, \ 2]) = 0,

| Fe(Qp,up) — Fo(Qp, 1) — 0

as h — oo.

Since 1.(R2p, ¢) < Fe(2, up), we find that limsupy,_, . I.(Qp, ¢) < Fe(Q2,u) =
I:(S2, ¢). This concludes the proof of the existence result. The case of partitions can be
handled in a similar manner with the additional difficulty that the area constraints and
sum constraints need to be handled simultaneously. This can be achieved by modifying
the candidate densities in a finite family of balls. |

3. Numerical modeling

3.1. Numerical framework for approximating minimal perimeter partitions

In this section, the numerical minimization of F; and G, is discussed. Since €2 is a general
domain in this work, we choose to work with finite element discretizations. Given 77, a tri-
angulation of 2, denote by (x; j-v:l the set of the nodes. Working with IP; Lagrange finite

elements, a piecewise affine function u defined on the mesh 73, is written as Z]N=1 ujp;j.
As usual, ¢; are the piecewise linear functions on each triangle, characterized by ¢; (xx) =
djk. For a P finite element function, the values u; are given by u(x;) and we denote
u= (u;) = (u(x;)) € RY. With these notations, it is classical to introduce the mass
matrix M and the rigidity matrix K defined by

MZ(/ ¢i¢j) and KZ(/ V¢IV¢]) .
Th 1<i,j<N Th 1<i,j<N

As an immediate consequence of the linearity of the decompositions u = Z]N=1 u;jd;,

v = Z,N=1 v;j¢;, we have that

/MUIUTMV and /Vu-szuTKV.
Th Th
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This immediately shows that the functionals F; and G, can be expressed in terms of the
mass and rigidity matrices M and K using the expression

1 1
/ (5|Vu|2+—u2(l—u)2) =eu’ Ku+ —vI Mv =: F (u), (11)
T & &

where v = (u;(1 —u j))]]-vzl. The gradient of this expression with respect to u can be
computed, and it is given by

2
VF () =2eKu+ -Mv O (1 -2u), (12)
e

where © denotes pointwise multiplication of two vectors: u © v = (u;v; );Vzl.

It is obvious that with (11) and (12) it is possible to implement a gradient-based opti-
mization algorithm in order to minimize F, and G.. The software FreeFEM [25] is used
for constructing the finite element framework, and the algorithm LBFGS from the pack-
age Nlopt [28] is used for the minimization of (11). We address the question of handling

the constraints in the next section.

3.2. Area constraints and projections

The area or volume constraint can be expressed with the aid of the vector m = Me with
e=(1,1,...,1) e R¥ . Indeed, with this notation, for a finite element function u we have

fThuzm-u.

Projection for one phase. Let us start with the projection of one function onto the integral
constraint. Given a IP; finite element function u and its values u at the nodes, we seek a
function uo with values at nodes up = u + am satisfying the constraint m - ug = ¢ by
solving

(u+aom)-m = c,

which leads to @ = (¢ —u-m)/(m - m).

An alternative way of handling the constraint during the optimization process is to
project the initial vector on the constraint and project the gradient onto the hyperplane
x -m = 0 at each iteration. This can be done simply by using ¢ = 0 in the relation
above. Such a modification of the gradient allows us to use efficient black-box optimiza-
tion toolboxes, since quasi-Newton algorithms like LBFGS will perform updates based on
a number of gradients stored in memory. If these gradients satisfy x - m = 0, the integral
constraint will be preserved throughout the optimization process.

Projection for multiple phases. In the case of partitions, projections on the integral con-
straints were already proposed in [37] (when using finite differences) and in [6] (when
using finite elements). A drawback of using orthogonal projections parallel to the vector
m is the fact that the vector u is modified almost everywhere in the domain €2, which also
includes the regions where it is 0 or 1. As observed in [9], this can cause resulting optimal
densities to be non-zero at interfaces between two cells and at triple points. The solution
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proposed was to instead use projections parallel to /2W(u;). We note that, using this
method, the functions u; are modified only at the interface of transition between O or 1.
Let us now describe the construction of the projection algorithm on the constraints

n
/ui=ci|§2|, Zui=1
§ i=1

with the compatibility condition Y_ ¢; = 1. Consider A € H!(2) and (u;) € R” and
perform the transformation

Ui + AV2W (i) + pi v 2W(u;)

in order to satisfy the constraints

/ui—i-/)u/ZW(ui)—i—m/ V2Wwui) =¢l|, i=1,...,n (13)
Q Q Q

and
n n n
Doui + A V2W) + Y iV 2W (i) = 1. (14)
i=1 i=1 i=1

It is easy to note that:

* Inview of (14), given u; we can find A. In particular,

L LY = Y 2 )
Zl—l Vv ZW(u )

* Inview of (13), given A we can find w; using the relations above.

In the following, we introduce the quantities )L = fQ A+/2W (u;). Again, in view of (13),
if )L are known, then u; are known and so is A. In order to obtain a system for )L,, notice
that

ol = fpui— A

= Jp V2W(u;)

With this in mind, we get

1— n_1”1 Z?:l /,Lj,/ZW(uj)) :
Ai —/)L\/ZW(u)—/‘ ( Zj=1\/m V2W(u;)

1- Z/—l Uj — Z;L=1 (%)VZWW”)
- /sz ( Yot V2W())

In order to further simplify the above expression, we introduce the following notation:

o V2W(u;) = w;;

« 13" _ju;=E;and

Vv 2W(ul~).
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 ¢lQl-fpuj=F,j=1....n

This gives
7 / E- Z’_l<fnw/)wj
Ai = wj
Q Zj:l Wj

E-Y"_Fiw;/ [ow, " w; W wj
/ ZJL.I]ISZ ]wi+Z/ iw;i/ Jg witi/ Ja¥is
Q D j=1Wj YW

which can be written in the form (I — A)A = b with A = (A4, ..., A,) and

4 ( wiw;/ [ w.i) b (/ E—3 i Fjw;/ Jqw; )
= —~n ’ = 7] Wi
Q Zj:] wj i,j=1,..,n Q Zj:l Wy j=1l,..,n

One may note that the above system (I — A))_k = b is singular, since the sum on the
columns of A is equal to 1 and therefore

(I-4Te=0,

where e = (1,...,1) € R”. This is due to the fact that one of the constraints is redundant,
in view of the compatibility condition. In practice, we simply discard one unknown and
set it to zero.

As noted previously, the same procedure can be applied to the gradients g; associated
to each u; in order to satisfy at every iteration the conditions

n
/Qgi=Q Z&':O-

i=1

This allows us to preserve the constraints when using a black-box LBFGS optimizer when-
ever initial parameters satisfy the integral and sum constraints.

3.3. Initializations for 2D partitions: Voronoi diagrams

The optimization algorithm for approximating /.(€2, c) and PI.(2, c) is ready to be
implemented, following the ideas shown in the previous sections. There is, however, the
choice of the initialization to consider, which is non-trivial and which has an impact on
the performance of the optimization algorithm. It was already noted in [37] and [6] that
starting from random initializations is possible, but some additional work needs to be done
in order to avoid constant phases, which are encountered at some local minimizers. Keep-
ing in mind that the optimal partition problem needs to be solved multiple times during
the optimization algorithm, we propose below a different initialization strategy, based on
Voronoi diagrams. The use of Voronoi diagrams for generating initializations is a rather
natural idea when dealing with partitions and was already mentioned in [14]. In this sec-
tion, 2 is assumed to be a polygon.
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Using random Voronoi diagrams is not very helpful, since area constraints are not
satisfied in general. This led us to consider Voronoi diagrams which satisfy the area
constraints, which in the literature are called capacity-constrained Voronoi diagrams.
Algorithms for computing such diagrams were proposed in [4] for the discrete case and
in [3] for the continuous case. In the continuous case, the method employed in [3] was
to optimize the position of one Voronoi point at a time using the gradient-free Nelder—
Mead method. In [46], the authors propose efficient ways of generating such diagrams, but
for weighted Voronoi diagrams only. In the following, we propose an alternative method
for constructing capacity-constrained Voronoi diagrams by computing the sensitivity of
the areas of the Voronoi cells with respect to the position of the points generating the
respective Voronoi diagram. Since we are also interested in minimizing the perimeter, the
computation of the sensitivity of the perimeter of Voronoi cells is also described.

Terminology related to Voronoi diagrams. Given a set of points py,. .., p, € R%, which
are called Voronoi points, the associated Voronoi diagram consists of n Voronoi cells
Vi,...,Vy defined fori = 1,...,n by

Vi={x€R2:|x—pi|§|x—pj|,j=1,...,n,j751‘}.

Each Voronoi cell V; is a polygonal region (possibly unbounded). The vertices of V;
are simply called vertices in the following (please observe the difference between the
Voronoi points and the Voronoi vertices). The edges of V; are called ridges, some of
which can be unbounded. Each ridge connects two Voronoi vertices (possibly at infin-
ity, for unbounded ridges), called ridge vertices. Moreover, each ridge separates two of
the initial points, called ridge points. All structure information of a Voronoi diagram asso-
ciated to a set of points can be recovered as an output to some freely available software
like scipy.spatial.Voronoi. The Voronoi diagrams are not restricted to a bounded
domain. It is possible, however, to consider restrictions of a Voronoi diagram to a bounded
set © by simply intersecting the regions V; with the set Q. In our implementation, the
intersection of polygons is handled using the Shapely Python package for computational
geometry.

In the following, given the points p;,i = 1,...,n, we consider the Voronoi regions
restricted to a finite domain 2 re-defined by V; = V; N Q. Note that in some cases, some
V; may be void if € does not contain the associated point p;. We explain below how to
compute the gradients of the areas and perimeters of V; with respect to positions of the
points p;.

Gradient of the areas of the Voronoi cells. The derivative of a functional that can be
represented as an integral over the Voronoi cell V; with respect to the Voronoi points can
be computed if the normal displacement of the cell is known. This fact was recalled in
[17] and [27], and is classical in shape derivative theory. However, since the functionals
considered there were sums over all Voronoi cells V;, the contributions coming from the
variations of the boundary cancelled themselves, and only the variation of the integrand
mattered.
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This is no longer the case in our situation. The area of the Voronoi cell V; is 4; =
fVi ldx and its directional derivative when perturbing a point p; in direction d is given
by the integral on the boundary of the normal variation of V;: A} (d) = /. v 0.n, where 6 is
the infinitesimal displacement of the boundary of V; when moving p; in the direction d;.
More explicitly, if V;(¢) is the Voronoi cell for p; + td, then 6 = lim;_¢ # where the
vector field v(¢) is defined by V; + v(¢t) = V;(¢) on the boundary of V;.

For a given ridge v v; with associated ridge points p;, p;, we perturb the point p; —
pi + 6 and investigate the derivative of the normal perturbation of v;v; as § — 0. The two
main perturbations are the following:

(1) 6 is collinear with p; p;: in this case, the perturbation induced on the ridge is just
38/2 (see Figure 2 (left)). The associated infinitesimal normal perturbation is constant. In
particular, it is equal to 1/2.

(2) 6 is orthogonal to p; pj: in this case, the infinitesimal perturbation induced on
the ridge is a rotation around the intersection m;; of p; p; and vgv;. The associated
infinitesimal normal perturbation varies linearly on viv; from —|v; — m;;|/|pi — pj| to

|vk —m;j|/|pi — p;| (the signs vary with respect to the orientation of the orthogonal per-
turbation) — see Figure 2 (middle). In order to prove this, it is enough to consider the
normal perturbation v(¢) of the ridge vy v; illustrated in Figure 2 (right) and take the limit

v(t)/tast — 0.

<

Pi

EEEEEREEREEEEEERE
\“HHHHHH.‘

1

<

Figure 2. Normal perturbation of the Voronoi ridge when moving one of the points in the normal

and tangent directions.

For a general perturbation § of p;, we denote by n the normal vector to v v; pointing
outwards from V; and by t the unit vector collinear with m Furthermore, consider
the following notation for the normal and tangential contributions (computed as one-
dimensional integrals on vz v; of the infinitesimal perturbations described above):

(15)

1
Zn = (8-m)/2ve — vyl z = (5‘t)—2|p, — p~|(|vk —mij[> — v — myj|?).
i j

By symmetry, these contributions will be similar, but with changed signs when perturbing
p; with 8. The contributions to the gradients of the areas of the cells V; and V; when
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perturbing p; or p; are described in the table below.

% v,
Di ZIntZI; —ZIn—1I (16)
Pi Zn—Zt —Zn+tZ:

The algorithm for computing the gradient of the areas of the cells simply iterates over all
the Voronoi ridges that intersect €2 and for each ridge adds the contributions described in
(16).

Algorithm | describes the computation of the gradient of the areas of the cells. The
coordinates of the 7 input points are given in the vector x € R?” and the output is the real
matrix M of size 2n X n containing as columns the gradients of the areas of the n cells
with respect to the 21 coordinates.

The explicit formulas for the gradients of the areas allow us to easily find capacity-
constrained Voronoi diagrams as the results of an optimization algorithm. For given

Algorithm 1 Compute gradients of areas of Voronoi cells.

Require: x = (x1, ¥1,...,Xn, Yn), coordinates of points pq, ..., p,, bounding polygon
Q.
1: Initialize M = 0 (of size 2n x n).
2: Compute the Voronoi diagram associated to the points (p;)7_, and the intersections
of the Voronoi cells with the polygon 2.
3: Set Voronoi_ridges as the set of Voronoi ridges that intersect the bounding polygon
Q.
4: for r in Voronoi_ridges do
For the Voronoi ridge r find the associated Voronoi points p; and p; and the
Voronoi vertices v, v;.
Set § = (1,0) and compute the contributions z,, z; as above.
7: Perform the updates using (16):

A

My 1 <~ Myi1; +2zn+2s, Maj1,j < Maj1,j —zn — 2y,

Myj_1; < Myj_1i+zp—2¢, Maj_q)j < Maj_1,j —Zp + 2.

8: Set § = (0, 1) and compute the contributions z,, z; as above.
9: Perform the updates using (16):

Myii < Myi; +zp + z¢, Mo j < My j —zp — 24,

M2j,i <« MZj,i + zn — 2y, sz,j <~ sz’j — Zn + 2.

10: end for
return M
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constraints |V;| = ¢;|€2| with }_7_; ¢; = 1, it is enough to minimize the functional

(Pro---s pa) = ) (Area(Vi) — ;). (17)

i=1

In order to obtain more regular structures it is also possible to minimize the energy

(pl,---,pn)HZ/V x — pil? (18)

i=1

under the capacity constraints |V;| = ¢;. The energy (18) is employed for characterizing
centroidal Voronoi diagrams where each Voronoi point p; coincides with the centroid of
the cell V;. In particular, centroidal Voronoi diagrams are critical points for (18). See [46]
for more details regarding this functional. Examples in this sense are shown in Figure 3.
The constrained minimization is done using the MMA algorithm [43] from the Nlopt
library [28]. Note that all constraints are coded as inequality constraints in this algorithm:
|Vi| < ci. Since {V;} forms a partition of €2, we immediately see that if the sets satisfy the
inequality constraints, they also satisfy the equality constraints |V;| = ¢;.

Remark 3.1. It is also possible to generalize the gradient formulas when a density is
involved, when dealing with quantities of the type fVi p, where p € L1(Q) is a given
density. The shape derivative of fVi pis [; v, pb6.n, where 6 is the perturbation of the
boundary dV;. The boundary perturbations are obviously the same, but the computations
in (15) are no longer explicit, and a one-dimensional numerical integration needs to be
performed for each Voronoi ridge.

Figure 3. Top: Voronoi diagrams with more than 100 cells with equal areas obtained when mini-
mizing (17). Bottom: Voronoi diagrams obtained when minimizing (18) under capacity constraints.
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Gradient of the perimeter of the Voronoi cells. We saw that in order to compute the
gradient of the areas of the Voronoi cells, the normal displacement of the Voronoi ridges
needed to be understood, when moving the Voronoi points. On the other hand, the variation
of the perimeter of a Voronoi region depends on the tangential perturbation of the Voronoi
ridges. In order to understand this perturbation, one needs to see how the Voronoi vertices
move when perturbing the Voronoi points. Moreover, it can be observed that when two
Voronoi vertices merge, i.e., a Voronoi ridge collapses, the total perimeter of the cells is
not smooth. This behavior is illustrated by an example shown in Figure 4.

Therefore, we suppose in the following that each Voronoi vertex is in contact with
at most three Voronoi ridges. Moreover, the definition of the Voronoi cells allows us to
conclude that in this situation, each Voronoi vertex is the circumcenter of the triangle
determined by the three points associated to the neighboring Voronoi regions. This allows
us to transform perturbations of the Voronoi points into perturbations of the Voronoi ver-
tices, by looking at the following well-known formulas for the circumcenter of a triangle

58.0

57.5 1

57.0

56.5 1

56.0 1

-2.4 -2.2 -2.0 -1.8 -1.6

Figure 4. Variation of the perimeter corresponding to a four point singularity in a square. The
Voronoi points are (—t, 0), (0, —2), (¢, 0), (0, 2) for ¢ € [1.5,2.5]. Top, from left to right: starting
configuration, singular configuration, final configuration. Bottom: graphical representation of the
total perimeter.
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with vertices (Ax, Ay), (Bx, By), and (Cx, C,):
1
Ox = 5[(/@ + A7)(By — Cy) + (B + BY)(Cy — Ay) + (CF + C)(A4y — By)],

Oy = (4% + A(Cx = Bo) + (B + B (Ax = Co) + (CF + CH(Bx — 4],
19)
where D = 2[Ax (B, — Cy) + Bx(C, — Ay) + Cx(A, — B,)]. The formulas above are
well defined as long as the three points A, B, and C are not colinear. Moreover, it is easy to
see that in this case, the circumcenter varies smoothly with respect to the coordinates of the
vertices of the triangle. The infinitesimal perturbation of the circumcenter when moving
(Ax, Ay) can be computed by simply differentiating the above formulas with respect to A,
and A,. Once the derivative of the circumcenter is known, in order to find the gradient of
the perimeter it is enough to project this derivative on all the Voronoi ridges going through
the respective circumcenter, and add the contribution to the gradient of the perimeter of
each cell with respect to the corresponding coordinates. See Figure 5 for more details.

Variations induced by the Voronoi nodes are enough to compute the gradient of
perimeters of Voronoi cells that do not intersect the boundary of the bounding polygon.
For the boundary cells, it is necessary to describe the perturbation of intersections between
Voronoi ridges and the bounding polygon. Fortunately, this can also be done using varia-
tions of circumcenters for some particular triangles.

Indeed, let vi v; be a Voronoi ridge intersecting a side £ of the bounding polygon €2 at
the point ¢ and let p;, p; be the associated Voronoi points. Consider now pj’., the reflection
of the point p; with respect to the line supporting £. Then, obviously ¢ is the circumcen-
ter of the triangle p; p; p]/- and the variation of g with respect to perturbations of p; can

* Pk

B

/\ . ' !
pj *Pj

Figure 5. Left: Perturbation of the circumcenter when moving one point and projections on the
Voronoi ridges. Right: Computing the perturbation of a boundary point by transforming it into a
circumcenter.
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be found using the same procedure as above. See Figure 5 for more details. The algo-
rithm for computing the gradients for the perimeters of the Voronoi cells is presented in
Algorithm 2, assuming that every Voronoi vertex is a circumcenter of exactly one triangle
determined by the Voronoi points.

Using the gradients for the area and perimeters of Voronoi cells, it is possible to
perform a constrained minimization of the perimeter under area constraint starting from
random Voronoi initializations. The optimization is performed with Nlopt [28] optimiza-
tion toolbox in Python using the MMA [43] algorithm. Some examples of initializations
obtained are shown in Figure 6. The initial Voronoi points are chosen randomly inside the
polygon 2. In order to accelerate the convergence of the optimization algorithm, a few
iterations of Lloyd’s algorithm are performed before starting the optimization process.
Recall that Lloyd’s algorithm consists in replacing the Voronoi points by the centroids of
the respective cells iteratively (see, for example, [46] for more details). In order to deal
with local minima, multiple optimizations (typically 10) are performed for every polygon
2, and the one with the partition having the least perimeter is retained as a valid initial-
ization. Note that the algorithm gives similar topologies with the best-known ones shown
in [14] for the case of equal areas and in [24] for the case of cells with two different areas.

Figure 6. Initializations obtained when minimizing the perimeter of Voronoi cells under area con-
straints. The areas are equal except in the third case, where two cells have areas three times smaller
than the other three.
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Algorithm 2 Compute gradients of perimeters of Voronoi cells.

Require: x = (x1, ¥1,...,Xn, Yn), coordinates of points py, ..., p,, bounding polygon

Q.

1: Initialize M = 0 (of size 2n x n).

Compute the Voronoi diagram associated to the points (p;)?_, and the intersections
of the Voronoi cells with the polygon 2.

Set Voronoi_vertices as the set of Voronoi ridges that intersect the bounding poly-
gon 2.

4: for v in Voronoi_vertices do

Let p;, p;, px be the three Voronoi points which are associated to ridges going
through v.

Compute the derivative d of the circumcenter of Di pj Pk when moving p; in the
direction § = (1,0). See Figure 5.

For all ridges r going through v, project d on r and add this to the gradient with
respect to the x coordinate of the perimeter of the cells {17, V>} neighbors to the
ridge r (determined by the ridge points associated to the ridge r): these are elements
M2i—1,V1 s MZi—l,Vz in matrix M.

Repeat the above with § = (0, 1) in order to get the gradients with respect to the
y coordinates.

Repeat these instructions for p; and py.

: end for

Set Voronoi_ridges as the set of Voronoi ridges that intersect the boundary polygon
Q.

: for r in Voronoi_ridges do

Denote by p;, p; the associated ridge points and by £ the edge of the boundary
polygon €2 cut by r.
Let p]’- be the reflection of p; with respect to £.

For § = (1, 0), compute the derivative d of the circumcenter of DiDj p} when
moving p; in the direction 8. See Figure 5.

Project d on the ridge r and add this projection to the gradient of the cells i and
J with respect to the x coordinate: M5;_;; and M»;_; ; in matrix M.

Project d on £ and add this to the gradient of the cells i and j (with the proper
sign).

Repeat the above with § = (0, 1) in order to get the gradients with respect to the
y coordinates.

Do the same instructions for p;.

: end for

return M
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Initialization of a partition. Having at our disposal the gradients of areas and perimeters
of Voronoi cells, we are now ready to propose initialization algorithms for the optimal
partitioning algorithm. In practice, we use one of the options below:

(1) Compute minimizers of (17) starting from random Voronoi points (p;). Repeat
the procedure a number of times and keep the configuration having the smallest
total perimeter. This works well when the areas of the cells are the same.

(2) Optimize the total perimeter of the Voronoi cells under capacity constraints start-
ing from random Voronoi points (p;). Repeat the procedure a number of times and
keep the configuration having the smallest total perimeter. This approach gives
good results when the areas of the cells are different and the optimization process
is more difficult, since more local minima are present.

(3) When n < 4, random initializations work very well.

(4) In dimension three, random initializations were used whenever n < 4, and random
Voronoi initializations were used whenever n > 5.

3.4. Shape derivative

In order to find perturbations of the domain 2 that decrease the value of a functional
J(£2), the concept of shape derivative is used. For a Lipschitz domain €2, the functional J
is said to be shape differentiable at S if there exists a linear form 0 +— J’(£2)(0) such that
for every vector field, 6 € W1’°°(Rd, R4 ) we have

J((I +6)(Q) = J(Q) + J'(2)(0) + o(0]lw1.),

where I denotes the identity mapping. Classical results from [41, Section 2.31] and [26,
Section 5.2] show that for a function fo € H!(Q) that varies smoothly with respect to
perturbations of €2, the functional J(2) = o fq is shape differentiable with

J'()(0) = /Q 160) + /asz Jab.n. (20)

A nice overview of the basic notions regarding shape derivatives, together with the asso-

ciated references, is given in [12].

We are interested in finding the shape derivatives of I,(£2,c) and PI.(€2,¢) which are
minimal values obtained through constrained optimization. In what follows, we perform
these computations assuming that the corresponding shape derivatives exist. Methods used
are inspired by the following works:

e In[16, Chapter 10, Sections 2.3, 5.4], the shape derivation of a minimum problem and,
respectively, a saddle point is described.

e In[19, Chapter 3], the derivative of the minimal value problem of a constrained prob-
lem where the objective and the constraints depend on a parameter is given in the
finite-dimensional case.

* In [7, Chapter 4], the differentiability of the minimal value given by a constrained
parametric problem is considered in Banach spaces.



B. Bogosel and E. Oudet 120

In our case, we are in the framework of the derivation of a saddle point. However, we were
not able apply the first result cited above to prove rigorously that the shape derivative
exists. Below, we use a formal approach in order to identify the formula for the shape
derivatives that are of interest for us.

The case of one phase. Consider ug which minimizes F,(#) from Theorem 2.7 and sup-
pose that ug is unique. We assume that ug varies smoothly with respect to perturbations
of the boundary of Q and that its shape derivative u(, () exists and belongs to H LQ).
Remark 2.10 underlines the fact that ug is C* in the interior of Q2 and has the regularity
of Q up to the boundary. In the following, we suppose that €2 convex (or, in general, at
least of class C?2), which implies that ug is indeed in H?(S2) and the gradient Vug has
a well defined trace on 0€2. The function /,(£2,c) = F.(ug) has the same structure as in
(20). Using the classical chain rule for the shape derivatives (see, for example, [12, Lemma
26]), we obtain that

, 1
4(2.¢)(6) = (Fuua)) @) = [ (elVual® + SWiug))6un
a0 3
1
+/ (28VUQ-VM/Q(9) + —W’(ug)u’g(e)), 21)
Q &
where ug, (6) is the shape derivative of ug with respect to 6.

Recall (see Remark 2.10) that minimizing F;(u) under the constraint [, u = ¢|Q|
implies the existence of a Lagrange multiplier x4 € R such that

1
| (269 Vo + S tua)p + o) = 0
Q
for every ¢ € H'(Q). Taking ¢ = ug(0) in the previous equation gives
! l i I !
/ (Q,EVMQ -Vug )+ -Ww (ug)u9(9)> = —/,L[ ug (0). (22)
Q 3 Q

Recall that ug also satisfies the constraint fQ ug — ¢|2| = 0. Differentiating this with
respect to the shape 2 gives

/ ug(0) ~|—/ (ug —c)f.n =0. (23)
Q BT

Combining equations (21), (22), and (23) gives

I(22,¢)(0) = / (5|Vug|2 + 1W(ug) + pu(ug — c))e.n. (24)
R €

The previous formula corresponds to the shape derivative of the Lagrangian

£(Q,u,v) = /Q(eWuIZ + éW(u) Fu(u— c))
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with respect to the shape when u = ugq and v = w. This is in accord with similar results
in [16, Chapter 10, Section 5.4], [7, Chapter 4], and [19, Chapter 3].

Note that formula (24) does give a valuable and reasonable assumption on the pertur-
bation of the boundary 2 that increases the length of the set SF (2, ¢) having minimal
perimeter. Notice that the term &|Vug|? + %W(ug) is non-zero (and strictly positive)
only in the neighborhood of the contact points of the minimal relative perimeter set with
the boundary d€2. Moving the boundary outwards at these points with a small enough step
size will increase the minimal perimeter /.(£2, ¢).

On the other hand, the term containing u(ug — ¢) models the movement of the relative
isoperimetric set when the boundary of 2 is perturbed away from the contact points.
Indeed, recall that |SF (€2, ¢)| = ¢|<2| and the Lagrange multiplier u is proportional (as
& — 0) to the curvature of the isoperimetric set SF (€2, ¢), as shown in Remark 2.11.
Therefore, when perturbing 2 away from the contact points with SF (2, ¢), the inner
boundary of SF(£2, ¢) is pulled in one direction or another (corresponding to the change
in the volume) and the corresponding variation of the minimal perimeter is given by the
mean curvature of the isoperimetric set.

In the case where the solution ugq is not unique, we cannot assume that ug varies
smoothly with 2. Indeed, perturbing the boundary of €2 with the normal velocity given by
e|Vug|? + %W(ug) + u(ug — ¢) may drastically change the topology of the minimal
set. Nevertheless, perturbing the boundary of €2 with this normal velocity will eventually
increase the value of 7,(£2, c¢). In Figure 7, the numerical approximation of ug is shown
together with the values of ¢|Vug|? + %W(ug) + u(ug — c). Perturbing €2 in the normal
direction as shown will increase the minimal value, provided the solution ug is unique.
It can be noted that the term &|Vug|? + %W(ug) is dominant in the shape derivative, as
the second term is of order 1/¢. Recall that the results given in [31] show the Lagrange
multiplier 4 has a bounded limit as ¢ — 0, proportional to the constant mean curvature of
the limiting minimal interface.

Figure 7. Left: Minimization of the Modica—Mortola functional F, with integral constraint 0.3]€2|.
Right: Representation of the shape gradient and the normal perturbation producing an ascent direc-
tion for SF(£2,0.3).
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Remark 3.2. Multiple approaches may exist in order to make the above computation a
rigorous proof of the shape derivative formula. We describe a few below. The technical
difficulties involved do not allow us to present such a complete proof.

e In[16, Chapter 9, Theorem 5.1], a method that computes the directional derivative of
a saddle point is described. However, it is not clear if this result applies to our case.
On the other hand, one may note that this method would give the same result as the
formal method described previously.

» The computation shown above strongly depends on the existence of the shape deriva-
tive ug, (6). The existence of this derivative is not obvious, even under the assumption
that ug is a unique minimizer. It may be possible to apply techniques similar to those
in [26, Section 5.7] or [41, Section 2.29] in order to deduce that the unique minimizer
ug is differentiable with respect to the shape 2.

Remark 3.3. The hypothesis regarding the uniqueness of ug for the shape derivative to
exist is similar to the hypothesis needed when differentiating the eigenvalue of an operator
with respect to the shape. When dealing with multiple eigenvalues, the shape derivative
does not exist, but directional derivatives are available. For more details see [26, Chap-
ter 5]. It is possible that such theoretical results could be obtained in our case, but this
goes outside the scope of this article.

The case of partitions. Consider ug = (Ltisz);.':1 which minimizes G, in Theorem 2.8.
As in the above, we suppose that ug, is unique and varies smoothly with respect to pertur-
bations in 2. Differentiating with respect to the domain using formula (20), we get

PL(R,0(0) = (Ge(ug))a(9)
n i 1 i
/. D (Al + W) )
S i i 1 . )

Since ug minimizes G, (u) under the constraints fQ u; = ¢;|2| and ZLI u; = 1, there
exist Lagrange multipliers u; € R, fori = 1,...,n and A € L'(2) such that

/ Z(ZsVuiQ Vi + éw’(ugz)qb,» + i + Aq&i) =0 foreveryp; € H'(Q). (26)
Qi1

Since the sum constraint ) ;_, u; = 1 implies that one of the area constraints is redundant,
we may note that the Lagrange multipliers are not uniquely defined. Adding a constant to
A and subtracting the same constant from each p; gives another set of valid multipliers.
Therefore, it is not restrictive to assume that the multiplier A satisfies fQ A=0.
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Replacing ¢; by (u’Q)’ () in (26) and using (25), we obtain
- 1
PIQ,’@:/ Vug | + -W(ug))o.
(2.0)p(0) m;(sl [+ - Wp))on

n n
N RENIOEY RS USIC)
— Q Q@ =
i=1 i=1
On the other hand, differentiating the constraint Yrub = 1gives Y1 (uh)'(6) = 0.
Moreover, differentiating the constraints [ uf, — ¢;|2| = 0 gives

fg(“?z)'(@) = _/z;sz u’é@.n + ¢ /BQ 0.n.

Therefore, we obtain

PI(Q.0)5(0) = /m Z(e|w§2|2 + %W(uig))Q.n
i=1

+ > /m(u"Q —¢;)0.n. Q7
i=1

The Lagrange multipliers u; can be found by using ¢; = §;; in (26), which gives u; =
~1/(E20) Jo W'y,

As discussed above, in the case where ug is not unique, perturbing the boundary of €2
with normal velocity given by >7_, (| Vuk, |> + L W(ub,) + pi (uy, — ¢;)) will eventually
increase the value of P1,(S2, ¢), and will reduce the multiplicity of the family of optimal
partitions ug. In Figure 8, the numerical approximation of ug is shown together with
the value of Y 7_, (e|Vuk|> + 1W(uh) + pi(uk, — ¢;)). Perturbing € in the normal
direction as shown will increase the length of the minimal partition, provided the solution

ug is unique.

Figure 8. Left: Minimization of the minimal partition functional G for three cells with equal areas.
Right: Representation of the shape gradient and the normal perturbation producing an ascent direc-
tion for SF (L2, ¢).
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Figure 9. Symmetric domain with two minimizers /¢(2, ¢). The optimal densities obtained numer-
ically are represented together with the perturbation fields obtained from (24).

An example of non-differentiability: multiplicity greater than one. It is not diffi-
cult to imagine domains €2 for which there are multiple minimizers for 7.(2, ¢), given
¢ > 0. It is enough to consider ¢ small enough and a symmetric domain like in Figure 9.
Moreover, there exists a value of ¢ for which the Lagrange multiplier vanishes, that is,
w=—1/(lQ|) [qg W (ug) = 0. It is enough to remember that y is proportional to the
curvature of the minimal interface as ¢ — 0. Let us show that in such a case the functional
1.(2, ¢) does not admit a shape derivative. Indeed, suppose that 2 is symmetric like in
Figure 9. Denote by u1, u, the two solutions and by 6y, 6, two vector fields such that
0;.n = &|Vu;|? + %uiz(l — u;)? (also illustrated in Figure 9).

Suppose that J(Q2) := I.(2, ¢) is differentiable at Q2. Then for {i, j} = {1, 2}, it
is clear that Fo(({ + t6;)(2),uj) = Fe(2,uj), i.e., the minimal value of F; does not
change when modifying Q2 with only one of the vector fields ;. This would imply that
J'(2)(0;) = J'()(82) = 0, and by linearity J'(22)(0; + 62) = 0. However, this last
equality is clearly false, since if we modify € with the combined vector field 6; + 6,, we
have

I+ @+ 8@ = J@ + [ (eVin? + L1 = 100) 81 + ol o)
Q &

In order to deduce the above equality it is enough to work with one half €2; of the domain
2. We use the fact that this half can be extended to a non-symmetric domain for which u;
is a unique minimizer, and apply the formula for the shape derivative found previously.
Therefore, we arrive at a contradiction, showing that when multiple minimizers of
F¢ (2, u) exist, the functional I.(€2, ¢) is not shape differentiable. The same kind of argu-
ment can be applied for P1,(€2, ¢) in the case where optimal partitions are not unique.

3.5. Radial parametrization and optimization algorithm

The results of [18] and existence results obtained in Section 2.1 are restricted to con-
vex domains 2. We therefore choose to search for domains maximizing SF (€2, ¢) and
SP (2, c) in the larger class of star-shaped domains, which includes the class of convex
sets. These domains can be parametrized using an associated radial function in dimensions
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two and three. Furthermore, a spectral decomposition of the radial function with a finite
number of Fourier coefficients is used in order to work with a finite, but sufficiently large
number of parameters in the computations.

Planar domains. In dimension two, the radial function p : [0, 2] — R is discretized
using 2N + 1 Fourier coefficients

N

p(t) =ao + Y _(ax cos(kt) + by sin(k1)).
k=1

Consider a shape functional J(£2) whose shape derivative is expressed by J/(R2)(0) =
fasz §0.n. Using the discretization above, given v = (a9, d1,...,an, by, ..., by) that
defines 2 via the radial function p, a finite-dimensional function is obtained: j(v) =
J(€2). It is classical to compute the gradient of j using the shape derivative, by choosing
the appropriate boundary perturbation for each Fourier coefficient. Using the notation

r = x/|x|, we have r.n = p/+/p? + (p’')%. Therefore, writing v, = p/+/p? + (0')2, we
obtain

dj dj .

—_ = Gcos(kt)v, and —— = G sin(kt)v,. (28)

dar  Joe b Jag

Domains in R3. In dimension three, we choose to parametrize the unit sphere using
(p, V) € [—m, 7] X [0,27] > (cos ¥ cos ¢, sin Y cos ¢, sin ¢). Next, we are interested in
parametrizing radial functions p : [, ] x [0, 27] which are constant for ¢ € {—mx, 7}.
This is needed in order to be able to create 3D meshes in FreeFEM [25] by deforming
two-dimensional meshes. One way of attaining this objective is to use two-dimensional
Fourier parametrizations which contain only sines for the ¢ coordinate together with an
affine function in ¢, as shown below, in order to allow different values at the extremities

¢ €{—m, 1}

N M
p@. V) =adp+b+ > > (ckssinkg)cos(Iy) + di sin(2kg) sin(ly)) .

k=1[=1

As in dimension two, it is straightforward to infer the gradient of the discretized functional
with respect to each one of the parameters. A simple computation yields v, = r.n =

pI\J0? + (9)?] cos? b + (pj)*:

a_] = / g¢vn’
da 0

aj
L = g n»
b /39 v

(29)

o _ / 2 sin(2k ) cos(1y) v,
dcr,1 30

aj . .
L — / 8 sin(2k¢) sin([y ) v,.
0dy 1 aQ
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Optimization algorithm. Given the discretization and the gradients expressed above, it
is straightforward to implement a gradient descent algorithm. The delicate issue is the fact
that at each iteration, the objective function and its gradient are computed as a result of a
minimization algorithm. If a local minimal perimeter set/partition is found instead of the
global one, this might give an incorrect ascent direction. Therefore, we choose to work
with a gradient flow type algorithm, which consists in advancing at each iteration in the
direction given by the gradient of the functional with a prescribed step, regardless of the
fact that the objective function increases or decreases. In this way, even if the optimization
algorithms solved at one of the iterations yields a local minimum, the global optimization
algorithm may still correct itself at subsequent iterations. The area constraint is imposed
by a projection algorithm: the next iteration is rescaled to have the desired area via a
homothety. The precise description is given in Algorithm 3.

Algorithm 3 Global maximization algorithm.

Require: Initial Fourier coefficients, area constraints (¢ for one phase, a vector ¢ for the
partitions), the number of iterations Niter, &, initial step ¢, the number of iterations
Nmod after which the step is halved.

1: foriin{l,2,... ,Niter}do
2: Construct the mesh of  from the Fourier coefficients v: the size of trian-
gles/tetrahedra should be at most £/2.
Approximate I.(€2, c¢) (or PI.(€2,c) in the case of partitions).
Compute the gradient V j(v): use (28) or (29) with § given by (24) (or (27) for
the partitions case).
5: Advance in the direction of the gradient in order to increase the value of j(v):

v<—v+aVj).

Project on the area/volume constraint of €2 using a homothety.
If i mod Nmod = 0 decrease the step: o < o/2.
8: end for
return the final set of Fourier coefficients v.

An example of a result obtained with this algorithm for the maximization of 7,(£2, ¢)
is shown in Figure 10 together with the graph of the objective function. It can be seen that
the objective function increases and stabilizes as the size of the step decreases. Oscillations
in the curve describing the cost have two main causes: first, the optimization algorithm at
the current iteration might yield a local minimum instead of the global one and second,
the size of the step may be too big. An example for the case of partitions is shown in
Figure 11. Multiple instances of the gradient flow maximization algorithm are represented
in Figure 12 for n = 6 and in Figure 13 for n = 10.

Numerical aspects. When minimizing F; and G it is classical to consider meshes with
elements that have size smaller than ¢. This is due to the fact that the phase transition
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Cost

o 25 50 75 100 125 150 175 200
Iterations

Figure 10. Maximization of /(£2,0.3) in dimension two together with the evolution of the cost
function.

0 20 40 60 80 100 120 140
Iterations

Figure 11. Maximization of PI(S2,(1/3,1/3,1/3)) in dimension two together with the evolution
of the cost function.

from O to 1 typically takes place in a region of width proportional to & and the mesh needs
to be fine enough to capture this. In dimension two, we consider ¢ = 0.05, which gives
rise to meshes having around 23k nodes.

In dimension three, using ¢ = 0.1 gives meshes of about 25k nodes. When dealing
with more cells in dimension three, we start with ¢ = 0.07 and we interpolate and re-
optimize the result on a finer mesh corresponding to ¢ = 0.04. This gives meshes with
around 35k nodes. For post-processing and plotting purposes, the final mesh is further
refined using MMG3D [15] such that more tetrahedra are present where phases change
quickly. The final partition is interpolated and re-optimized (with ¢ = 0.025) on this fine
mesh (with around 270k nodes) before plotting.

Code. The finite element software used for the optimization algorithm described in
Section 3.1 is FreeFEM [25], which provides an interface to the LBFGS optimizer from
Nilopt [28].

The partition initialization via Voronoi diagrams is coded in Python, where optimiza-
tion algorithms from Scipy.optimize and Nlopt are used for unconstrained and con-
strained optimizations, respectively. Codes and examples are provided in the Github repos-
itory https://github.com/bbogo/LongestShortestPartitions/tree/main/Gradient Voronoi.
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Iter 20: 3.422 Iter 70: 3.441 Iter 150: 3.450

Figure 12. Illustration of the gradient flow algorithm in dimension two for n = 6: the numerical
optimal partition and its associated cost are represented for a couple of iterations.

Iter 20: 4.861 Iter 70: 4.895 Iter 150: 4.902

Figure 13. Illustration of the gradient flow algorithm in dimension two for n = 10: the numerical
optimal partition and its associated cost are represented for a couple of iterations.
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The visualization is done with Python, using Matplotlib in dimension two and
Mayavi [39] in dimension three. The graphical representation of partitions is done by
extracting surface meshes of an iso-level for each cell in the optimal partition using
FreeFEM [25] and MMG3D [15]. These surface meshes are then plotted with Mayavi [39].

Some codes used for obtaining the results illustrated in the paper can be found in
the following Github repository: https://github.com/bbogo/LongestShortestPartitions/tree/
main/FreeFEMcodes.

4. Results

In this section, we use the algorithm described previously in order to study problems (3)
and (6). Results from [18] show that problem (3) is solved by the disk in dimension two for
¢ = 1/2. We perform simulations for various values of ¢ < 1/2 (note that considering ¢ or
1 — ¢ for the constraint gives the same result) and the numerical result is always the disk
in dimension two. In dimension three, the same phenomenon occurs: for various values
of the volume fraction c, the shape which maximized the relative minimal perimeter of a
subset with volume c|€2] is the ball. Some examples are shown in Figure 14.
Surprisingly, the case of partitions shows similar results. When considering equal area
constraints, the set with fixed area maximizing the length of the minimal partition is still

oS
|

Figure 14. Maximization of the minimal relative perimeter in 2D and 3D with volume constraints
¢ € {0.25,0.4,0.5}. The optimal set Q2 (the disk/ball) together with the set obtained numerically
when minimizing the relative perimeter for the given volume fraction.
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Figure 15. Maximization of the length of the minimal perimeter partition into equal areas for n €

{4,7,10}.
—
-
Figure 16. Maximization of the length of the minimal perimeter partition into different areas: n = 3,
ratios 1 : 2:3;n =4, ratios 1 : 1 :2:2;andn =4, ratios 1:1:3:3.

the disk (see Figure 15 for some examples). In dimension three for n € {3, 4, 6, 13}, we
obtain similar results: the ball maximizes the total surface area of the smallest total perime-
ter partition. These results are illustrated in Figures 17 and 18.

Note that simulations made in the case of one phase already show that when partition-
ing the domain into two regions with two non-equal areas, the maximizer of the minimal
length partition is still the disk. This suggests that even in the case where the cells do not
have the same prescribed area, the set 2 which maximizes the minimal perimeter of a
partition is still the disk in 2D (the ball in 3D). Indeed, when considering more cells with
different areas, the numerical result is the same: the disk seems to be the maximizer (see
Figure 16 for some examples). As already underlined in [24], the study of partitions in
cells with prescribed but different areas is more complex, since in this case there are even
more local minima.

The numerical simulations give rise to the following conjecture, which generalizes the
results of [18]:

Conjecture 4.1. Given ¢ € (0, 1), the set 2 maximizing /(£2, ¢) under the constraint
|2| = vg (i.e., solving (3)) is the ball. Moreover, given n > 1 and ¢ = (¢;)7_; € R’}
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414

Figure 17. Left: Maximization of the length of the minimal perimeter partition into equal areas for
n € {3, 4}. Right: Results obtained when the area constraints are not the same: n = 3, ratios 1 : 2 : 2;
andn = 4,ratios 1 : 2:2:2.

Figure 18. Maximization of the length of the minimal perimeter partition into equal areas for n €
{6, 13}. An expanded view of the optimal partition is also illustrated for each case.

with Y7_, ¢; = 1, the set  maximizing PI(2, ¢) under the constraint || = vy (i.e.,
solving (6)) is the ball.

Remark 4.2. The same type of results seem to hold when maximizing the minimal
geodesic perimeter for closed surfaces in  in R3 which are boundaries of convex sets
with a constraint on J2(9Q). The techniques used in this case are those presented in [6],
and the theoretical and numerical framework is similar to what was used in dimension
three. In this case, the sphere seems to be the maximizing set, which is in accord with the
conjecture stated above.

5. Remarks on optimality conditions

As discussed in Section 3.4, existence of shape derivatives for I, and PI, depends on
the uniqueness of the minimizers for these functionals. Therefore, it is not straightforward
to obtain classical optimality conditions. It is possible, however, to obtain some qualita-
tive information about sets maximizing the minimal values of I, and P/, under volume
constraint. Recall that the optimizer of a shape differentiable functional J under volume
constraint will satisfy an optimality condition of the form

T (Q)(6) + £12['(6) = 0. (30)

where £ € R is a Lagrange multiplier associated to the volume constraint. Recall that the
shape derivative of the volume functional is [Q|'(9) = [, 0.n.
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Non-uniqueness of the minimal relative perimeter set/partition at the optimum.
Results in Section 3.4 indicate that the shape derivatives of I, and PI, exist when they
correspond to unique minimizers of the Modica—Mortola type functionals. In this case, the
corresponding shape derivatives are boundary integrals of non-constant functions multi-
plied by the normal perturbation 6.n. Therefore, it is straightforward to see that a relation
of the type (30) cannot hold. This allows us to conclude that if Q* is a minimizer of
1:(2, ¢), then the associated minimal relative perimeter set is not unique. The same
happens in the case of partitions: if * minimizes PI.(2, ¢), then the minimal length
partition of 2 with constraints ¢ is not unique.

Suppose now that  is a domain with fixed volume |Q2| = vy such that SF (2, ¢)
is unique. Then, for ¢ > 0 small enough, the minimizer of (€2, ¢) will also be unique.
Thus, 1.(€2, ¢) admits a shape derivative. Also, the corresponding optimal density ug is
not constant on the boundary, and therefore the optimality relation (30) cannot hold. This
shows that such a domain €2 is not a solution of problem (3). The same argument can be
applied for problem (6).

We conclude that a domain 2 that solves (3) must have multiple minimal relative
perimeter sets (or multiple minimal length partitions for problem (6)).

6. Conclusions

The theoretical considerations and numerical simulations presented in this paper suggest
that the results of [5, 18, 44] are valid in more general settings: in dimensions two and
three, under volume and convexity constraints, the ball is the set €2 which maximizes

* the minimal relative perimeter of a subset w C 2 with volume constraint |w| = ¢||
forall ¢ € (0, 1);

 the minimal relative perimeter of a partition of € into sets (w;)}_, with volume con-
straints |w;| = ¢;|$2|, given ¢; € (0, 1) with Y_7_, ¢; = 1. The result seems to hold
even in the case where the sets |w;| do not have the same volume constraints.

The numerical maximization algorithm consists in solving at each iteration an opti-
mization problem which approximates the least perimeter set or partition under the given
constraint. Then, a perturbation of the set which does not decrease the minimal perimeter
is found and the set is modified. In all cases, the numerical result was close to the disk/ball.

The initialization phase for the computation of the optimal partitions is made using
Voronoi diagrams with prescribed capacity. We provide a new way of generating such
Voronoi diagrams using the gradients of the areas with respect to the Voronoi points. The
gradient of the perimeter of the Voronoi cells is also computed.

Acknowledgments. The authors were partially supported by the project ANR-18-CE40-
0013 SHAPO financed by the French Agence Nationale de la Recherche (ANR). The
authors thank Frank Morgan for indicating more references to previous works related to



Longest minimal length partitions 133

the convex isoperimetric problem. The authors thank the reviewers for the careful reading
of the manuscript and for their remarks which helped to improve the quality of the article.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]

(10]
(1]
(12]
[13]

(14]

[15]

[16]

G. Alberti, Variational models for phase transitions, an approach via I'-convergence. In Cal-
culus of variations and partial differential equations, pp. 95-114, Springer, Berlin, 2000

Zbl 0957.35017 MR 1757697

L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity
problems. Oxford Math. Monogr. The Clarendon Press, Oxford University Press, New York,
2000 Zbl 0957.49001 MR 1857292

M. Balzer, Capacity-constrained voronoi diagrams in continuous spaces. In 2009 sixth inter-
national symposium on Voronoi diagrams, pp. 79-88, Institute of Electrical and Electronics
Engineers, 2009.

M. Balzer, T. Schlomer, and O. Deussen, Capacity-constrained point distributions: A variant
of Lloyd’s method. In ACM SIGGRAPH 2009 papers, Association for Computing Machinery,
New York, 2009.

J. Berry, E. Bongiovanni, W. Boyer, B. Brown, M. Dannenberg, P. Gallagher, D. Hu, J. Liang,
A. Loving, Z. Martin, M. Miller, B. Perpetua, S. Tammen, and Y. Zeng, The convex body
isoperimetric conjecture in R2. Undergrad. Math. J. 18 (2017) no. 2, 9-33. MR 3766822

B. Bogosel and E. Oudet, Partitions of minimal length on manifolds. Exp. Math. 26 (2017)
no. 4, 496-508. Zbl 1397.49040 MR 3684581

J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Ser.
Oper. Res. Financ. Eng. Springer, New York, 2000 MR 1756264

A. Braides, Approximation of free-discontinuity problems. Lect. Notes Math. Springer, Berlin,
1998 MR 1651773

E. Bretin, R. Denis, J.-O. Lachaud, and E. Oudet, Phase-field modelling and computing for a
large number of phases. ESAIM, Math. Model. Numer. Anal. 53 (2019) no. 3, 805-832

Zbl 1421.49025 MR 3961089

V. Burenkov, Extension theorems for Sobolev spaces. In The Maz’ya anniversary collection,
pp. 187-200, Oper. Theory: Adv. Appl. 109, Springer, Basel, 1999 MR 1747873

G. Buttazzo, Gamma-convergence and its applications to some problems in the calculus of
variations. In School on homogenization ICTP, Trieste, September 6-17 (1993)

A. Chicco-Ruiz, P. Morin, and M. S. Pauletti, The shape derivative of the Gauss curvature.
Rev. Union. Mat. Argent. 59 (2018) no. 2, 311-337 Zbl 07107447 MR 3900277

A. Cianchi, On relative isoperimetric inequalities in the plane. Boll. Unione. Mat. Ital., 7. Ser.,
B 3 (1989) no. 2, 289-325 Zbl 0674.49030 MR 997998

S.J. Cox and E. Flikkema, The minimal perimeter for N confined deformable bubbles of equal
area. Electron. J. Comb. 17 (2010) no. 1, Research Paper R45 Zbl 1225.05074

MR 2607331

C. Dapogny, C. Dobrzynski, and P. Frey, Three-dimensional adaptive domain remeshing,
implicit domain meshing, and applications to free and moving boundary problems. J. Comput.
Phys. 262 (2014), 358-378 Zbl 1349.76598 MR 3163123

M. C. Delfour and J.-P. Zolésio, Shapes and geometries. second ed., Adv. Des. Control 22,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011

Zbl 1251.49001 MR 2731611


https://zbmath.org/?q=an:0957.35017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1757697
https://zbmath.org/?q=an:0957.49001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1857292
https://mathscinet.ams.org/mathscinet-getitem?mr=3766822
https://zbmath.org/?q=an:1397.49040&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3684581
https://mathscinet.ams.org/mathscinet-getitem?mr=1756264
https://mathscinet.ams.org/mathscinet-getitem?mr=1651773
https://zbmath.org/?q=an:1421.49025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3961089
https://mathscinet.ams.org/mathscinet-getitem?mr=1747873
https://zbmath.org/?q=an:07107447&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3900277
https://zbmath.org/?q=an:0674.49030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=997998
https://zbmath.org/?q=an:1225.05074&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2607331
https://zbmath.org/?q=an:1349.76598&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3163123
https://zbmath.org/?q=an:1251.49001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2731611

(17]

(18]

[19]
(20]
[21]
(22]

(23]

[24]
(25]
(26]

(27]

(28]
[29]

(30]

(31]

(32]
(33]
[34]
(35]
(36]

(371

B. Bogosel and E. Oudet 134

Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations: Applications and algo-
rithms. SIAM Rev. 41 (1999) no. 4, 637-676 Zbl 0983.65021 MR 1722997

L. Esposito, V. Ferone, B. Kawohl, C. Nitsch, and C. Trombetti, The longest shortest fence and
sharp Poincaré—Sobolev inequalities. Arch. Ration. Mech. Anal. 206 (2012) no. 3, 821-851
7Zbl 1262.52001 MR 2989444

A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming.
Math. Sci. Eng. 165, Academic Press, Orlando, FL, 1983 Zbl 0543.90075 MR 721641

W. J. Firey, Lower bounds for volumes of convex bodies. Arch. Math. 16 (1965) 69-74

Zbl 0128.16404 MR 180922

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. Class.
Math., Springer, Berlin, 2001 Zbl 1042.35002 MR 1814364

P. Grisvard, Elliptic problems in nonsmooth domains. Monogr. Stud. Math. 24, Pitman, Boston,
MA, 1985 Zbl 0695.35060 MR 775683

M. E. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the
gradient theory of fluids. Q. Appl. Math. 46 (1988) no. 2, 301-317 Zbl 0665.76120

MR 950604

F. Headley and S. Cox, Least perimeter partition of the disc into N bubbles of two different
areas. Eur. Phys. J. E 42 (2019), no. 7

F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) no. 3-4, 251-265

Zbl 1266.68090 MR 3043640

A. Henrot and M. Pierre, Shape variation and optimization. EMS Tracts Math. 28, European
Mathematical Society (EMS), Ziirich, 2018 Zbl 1392.49001 MR 3791463

M. Iri, K. Murota, and T. Ohya, A fast Voronoi-diagram algorithm with applications to geo-
graphical optimization problems. In System modelling and optimization (Copenhagen, 1983),
pp- 273-288, Lect. Notes Control Inf. Sci. 59, Springer, Berlin, 1984 Zbl 0557.90025

MR 769676

S. G. Johnson, The nlopt nonlinear-optimization package. http://github.com/stevengj/nlopt

B. Kloeckner, Dans quelle forme la plus petite paroi enfermant un volume donné est-elle la
plus grande? http://images.math.cnrs.fr/Dans-quelle-forme-la-plus-petite-paroi-enfermant-un-
volume-donne-est-elle-la.html, 2019

A. Koldobsky, C. Saroglou, and A. Zvavitch, Estimating volume and surface area of a convex
body via its projections or sections. Stud. Math. 244 (2019) no. 3, 245-264 Zbl 1421.52010
MR 3853576

S. Luckhaus and L. Modica, The Gibbs-Thompson relation within the gradient theory of phase
transitions. Arch. Ration. Mech. Anal. 107 (1989) no. 1, 71-83 Zbl 0681.49012

MR 1000224

F. Maggi, Sets of finite perimeter and geometric variational problems. Camb. Stud. Adv. Math.
135, Cambridge University Press, Cambridge, 2012 Zbl 1255.49074 MR 2976521

L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch.
Ration. Mech. Anal. 98 (1987) no. 2, 123-142 Zbl 0616.76004 MR 866718

L. Modica and S. Mortola, Un esempio di I" ™ -convergenza. Boll. Unione Mat. Ital., 5 Ser., B
14 (1977) no. 1, 285-299 Zbl 0356.49008 MR 0445362

F. Morgan, Soap bubbles in RZ and in surfaces. Pac. J. Math. 165 (1994), no. 2, 347-361

Zbl 0820.53002 MR 1300837

F. Morgan, Convex body isoperimetric conjecture. https://sites.williams.edu/Morgan/2010/07
/03/convex-body-isoperimetric-conjecture/, 2010

E. Oudet, Approximation of partitions of least perimeter by I"-convergence: around Kelvin’s
conjecture. Exp. Math. 20 (2011), no. 3, 260-270 Zbl 1261.49009 MR 2836251


https://zbmath.org/?q=an:0983.65021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1722997
https://zbmath.org/?q=an:1262.52001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2989444
https://zbmath.org/?q=an:0543.90075&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=721641
https://zbmath.org/?q=an:0128.16404&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=180922
https://zbmath.org/?q=an:1042.35002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1814364
https://zbmath.org/?q=an:0695.35060&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=775683
https://zbmath.org/?q=an:0665.76120&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=950604
https://zbmath.org/?q=an:1266.68090&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3043640
https://zbmath.org/?q=an:1392.49001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3791463
https://zbmath.org/?q=an:0557.90025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=769676
http://github.com/stevengj/nlopt
http://images.math.cnrs.fr/Dans-quelle-forme-la-plus-petite-paroi-enfermant-un-volume-donne-est-elle-la.html
http://images.math.cnrs.fr/Dans-quelle-forme-la-plus-petite-paroi-enfermant-un-volume-donne-est-elle-la.html
https://zbmath.org/?q=an:1421.52010&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3853576
https://zbmath.org/?q=an:0681.49012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1000224
https://zbmath.org/?q=an:1255.49074&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2976521
https://zbmath.org/?q=an:0616.76004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=866718
https://zbmath.org/?q=an:0356.49008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0445362
https://zbmath.org/?q=an:0820.53002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1300837
https://sites.williams.edu/Morgan/2010/07/03/convex-body-isoperimetric-conjecture/
https://sites.williams.edu/Morgan/2010/07/03/convex-body-isoperimetric-conjecture/
https://zbmath.org/?q=an:1261.49009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2836251

Longest minimal length partitions 135

[38] G. Polya, Aufgabe 283. Elem. Math. 13 (1958), 4041

[39] P. Ramachandran and G. Varoquaux, Mayavi: 3D visualization of scientific data. Comput. Sci.
Eng. 13 (2011) no. 2, 40-51

[40] M. Ritoré and E. Vernadakis, Isoperimetric inequalities in Euclidean convex bodies. Trans.
Am. Math. Soc. 367 (2015), no. 7, 4983-5014 Zbl 1316.49052 MR 3335407

[41] J. Sokotowski and J.-P. Zolésio, Introduction to shape optimization. Springer Ser. Comput.
Math. 16, Springer, Berlin, 1992 Zbl 0761.73003 MR 1215733

[42] P. Sternberg and Z. Zumbrun, Connectivity of phase boundaries in strictly convex domains.
Arch. Ration. Mech. Anal. 141 (1998), no. 4, 375-400 Zbl 0911.49025 MR 1620498

[43] K. Svanberg, A class of globally convergent optimization methods based on conservative con-
vex separable approximations. SIAM J. Optim. 12 (2002) no. 2, 555-573 Zbl 1035.90088
MR 1885575

[44] B.-H. Wang and Y.-K. Wang, A note on the convex body isoperimetric conjecture in the plane.
2021, arXiv:2104.04954

[45] W. Wichiramala, Efficient cut for a subset of prescribed area. Thai J. Math. 5 (2007) no. 3,
Special issue, 95-100 Zbl 1221.49075 MR 2407479

[46] S.-Q. Xin, B. Lévy, Z. Chen, L. Chu, Y. Yu, C. Tu, and W. Wang, Centroidal power diagrams
with capacity constraints: Computation, applications, and extension. ACM Trans. Graph. 35
(2016) no. 6, 1-12

Received 4 February 2021; revised 7 June 2021.

Beniamin Bogosel
Centre de Mathématiques Appliquées, Ecole Polytechnique, UMR CNRS 7641, 91128 Palaiseau,
France; beniamin.bogosel @polytechnique.edu

Edouard Oudet
Laboratoire Jean Kuntzmann, Université Grenoble Alpes, Batiment IMAG, BP 53,
38041 Grenoble, France; edouard.oudet@univ-grenoble-alpes.fr


https://zbmath.org/?q=an:1316.49052&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3335407
https://zbmath.org/?q=an:0761.73003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1215733
https://zbmath.org/?q=an:0911.49025&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1620498
https://zbmath.org/?q=an:1035.90088&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1885575
arXiv:2104.04954
https://zbmath.org/?q=an:1221.49075&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2407479
mailto:beniamin.bogosel@polytechnique.edu
mailto:edouard.oudet@univ-grenoble-alpes.fr

	1. Introduction
	2. Theoretical aspects
	2.1. Minimal relative perimeter sets and partitions
	2.2. Relaxation of the perimeter: Gamma-convergence

	3. Numerical modeling
	3.1. Numerical framework for approximating minimal perimeter partitions
	3.2. Area constraints and projections
	3.3. Initializations for 2D partitions: Voronoi diagrams
	3.4. Shape derivative
	3.5. Radial parametrization and optimization algorithm

	4. Results
	5. Remarks on optimality conditions
	6. Conclusions
	References

