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The multiphase Muskat problem with equal viscosities
in two dimensions

Jonas Bierler and Bogdan-Vasile Matioc

Abstract. We study the two-dimensional multiphase Muskat problem describing the motion of
three immiscible fluids with equal viscosities in a vertical homogeneous porous medium identified
with R2 under the effect of gravity. We first formulate the governing equations as a strongly cou-
pled evolution problem for the functions that parameterize the sharp interfaces between the fluids.
Afterwards we prove that the problem is of parabolic type and establish its well-posedness together
with two parabolic smoothing properties. For solutions that are not global we exclude, in a certain
regime, that the interfaces come into contact along a curve segment.

1. Introduction and the main results

The mathematical model

In this paper we study the two-dimensional multiphase Muskat problem describing the
motion of three incompressible fluids with positive constant densities

�3 > �2 > �1

in a vertical porous medium identified with R2. Such three-phase flows are of great interest
not only from a mathematical point of view, but also in many other areas of science and
technology, such as petroleum extraction and environmental engineering, cf., e.g., [4, 8].
In this paper, we restrict our attention to the particular case when the three fluids have
equal viscosities, which we denote by � > 0. We further assume that the fluid phases are
separated at each time instant t � 0 by sharp interfaces which we describe as being the
graphs

�
c1
f
.t/ WD ¹.x; c1 C f .t; x// W x 2 Rº and �h.t/ WD ¹.x; h.t; x// W x 2 Rº:

Here, c1 is a fixed positive constant and the functions f .t/; h.t/ W R! R are unknown
and are assumed to satisfy f .t/C c1 > h.t/ during the motion. The fluid with density �i
occupies the domain�i .t/ � R2 for 1 � i � 3, where�2.t/ WD R2 n�1.t/ [�3.t/ and

�1.t/ WD ¹.x; y/ W y > f .t; x/C c1º; �3.t/ WD ¹.x; y/ W y < h.t; x/º:
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In the fluid layers, the dynamic is governed by the equations

vi .t/ D �c
k

�

�
rpi .t/C .0; �ig/

�
;

div vi .t/ D 0

9>=>; in �i .t/, 1 � i � 3; (1.1a)

where pi .t/ is the pressure and vi .t/ WD .v1i .t/;v
2
i .t// denotes the velocity field of the fluid

located at �i .t/. The positive constant k is the permeability of the homogeneous porous
medium and g is the Earth’s gravity. The equation (1.1a)1 is Darcy’s law which is often
used to model flows in porous media, cf., e.g., [7], and (1.1a)2 describes the conservation
of mass in all phases.

We supplement (1.1a) with the following boundary conditions at the free interfaces:

pi .t/ D piC1.t/;

hvi .t/j�i .t/i D hviC1.t/j�i .t/i

µ
on @�i .t/ \ @�iC1.t/; i D 1; 2. (1.1b)

Here, �i .t/ denotes the unit normal at @�i .t/ \ @�iC1.t/ pointing into �i .t/ and h�j�i is
the inner scalar product in R2. Additionally, we impose the far-field boundary conditions

vi .t; x; y/! 0 for j.x; y/j ! 1, 1 � i � 3;

f 2.t; x/C h2.t; x/! 0 for jxj ! 1

µ
(1.1c)

which state that far away, the flow is nearly stationary.
Finally, in order to describe the motion of the free interfaces, we set their normal

velocity equal to the normal component of the velocity field at the free boundary, that is,

@tf .t/ D hv1.t/j.�@xf .t/; 1/i on �c1
f
.t/;

@th.t/ D hv2.t/j.�@xh.t/; 1/i on �h.t/

µ
(1.1d)

and we impose the initial condition

.f; h/.0; �/ D .f0; h0/: (1.1e)

We call the closed system (1.1) the multiphase Muskat problem.

Summary of results and outline of the paper

The classical Muskat problem describing the dynamics of two fluid phases under the influ-
ence of gravity has recently received much attention in the mathematics community. The
numerous studies addressed the well-posedness issue [2,3,14,18,20,31,37,38,40], ques-
tions related to global existence of solutions [10, 15–17, 24, 32, 38, 41] and to singularity
formation [11,13], but also the modeling and dynamics of such flows in an inhomogeneous
porous medium [9, 34, 42].

For the multiphase Muskat problem (1.1) considered herein, much less is known. This
setting has been studied before in three dimensions in [21], where the authors established a
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local existence and uniqueness result inH k.R2/ with k � 4. Moreover, it is shown in [21]
that for solutions which are not global but bounded in C1C
 .R2/, where 
 2 .0; 1/, the
fluid interfaces cannot touch along a curve segment when the time approaches the maximal
existence time, thus excluding the occurrence of so-called squirt singularities. Moreover,
in the context of the two-dimensional multiphase Muskat problem (1.1), it has been shown
in [33] that control of the curvature of the interfaces prevents also the formation of so-
called splash singularities, that is, single point collisions of the interfaces.

It is worth pointing out that in the framework of the one-phase Muskat problem,
splash singularities are one of the blow-up mechanisms, see [12, 23], where different
initial geometries that lead to finite time splash singularities are presented, whereas self-
intersection of the interface along a curve segment cannot occur in finite time, see [22].
A related scenario has been considered in two dimensions, but in a periodic setting, and
with one of the fluids being air at uniform pressure. An example of this can be found in
[27, 28], where the well-posedness and the stability of equilibria are investigated.

Similarly as in the three-dimensional case [21], we show herein that problem (1.1)
can be expressed as a nonlinear, nonlocal, and strongly coupled evolution problem with
nonlinearities described by contour integrals, cf. (1.10) below. The equivalence of the for-
mulations (1.1) and (1.10) is rigorously established in Theorem 1.1 below, by making
use of the results from Appendix A. The analysis in Appendix A, where in particular
we extend Privalov’s theorem to contour integrals over unbounded graphs (see Theo-
rem A.3), also motivates the choice of homogeneous Sobolev spaces in the study of the
Muskat problem [2]. Our second main result stated in Theorem 1.2 establishes the well-
posedness of the problem in the subcritical Sobolev spaces H s.R/2 with s 2 .3=2; 2/. It
also provides two parabolic smoothing properties. Finally, in Proposition 1.3 we show for
bounded solutions with finite existence time that the fluid interfaces intersect when the
time approaches the maximal existence time at least in one point, but we exclude also in
this two-dimensional scenario the formation of squirt singularities.

Compared to the two-phase Muskat problem, cf. [20], new difficulties arise from the
fact that the coupling terms in (1.10) are of highest order. However, based on the map-
ping properties established in Section 2, we prove that the linearized operator, which is
represented as a 2 � 2 matrix (see Section 3), has lower order off-diagonal entries. A sim-
ilar feature has been evinced for the Muskat problem investigated in [28]. The benefit of
this weak coupling at the level of the linearization is that only the diagonal terms need to
be considered when establishing parabolicity for the problem. Once this is done, we can
make use of the abstract parabolic theory from [36] in the study of this multiphase Muskat
problem.

Notation

Given k; n 2 N and an open set � � Rn, we denote by Ck.�/ the space consisting of
real-valued k-time continuously differentiable functions on �, and UCk.�/ is the sub-
space of Ck.�/ having functions with uniformly continuous derivatives up to order k as
elements. Moreover, BUCk.�/ is the Banach space of functions with bounded and uni-
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formly continuous derivatives up to order k. Finally, given ˛ 2 .0; 1/, we set

BUCkC˛.�/ WD
°
f 2 BUCk.�/ W Œ@ˇf �˛ WD sup

x¤y

j@ˇf .x/ � @ˇf .y/j

jx � yj˛
<18jˇj D k

±
:

Given Banach spacesX and Y , the space C1�.X;Y / consists of all locally Lipschitz maps
from X to Y . Moreover, we write A 2 Lk

sym.X; Y / if A W Xk ! Y is k-linear, bounded,
and symmetric.

Solving the fixed time problem

A remarkable property of problem (1.1) is the fact that equations (1.1a)–(1.1c) are linear
and have constant coefficients. This property enables us to identify the velocity field in
terms of the a priori unknown functions f and h by means of contour integrals. Such an
approach has been followed in the context of the Muskat problem already in the 1980s, at
least at a formal level, cf. [25]. For the clarity of the exposition, we omit in this part the
time-dependence and write .�/0 for the x-derivative of functions that depend only on x. In
Theorem 1.1 below we provide, under suitable regularity constraints, an explicit formula
for the velocity field in terms of X WD .f; h/. Our approach generalizes the one followed
in [38] in the context of the two-phase Muskat problem and strongly relies on results from
Appendix A.

Theorem 1.1. Let r 2 .3=2; 2/, c1 > 0, and f; h 2 H r .R/ with c1 C f > h be given.
The boundary value problem

vi D �
k

�

�
rpi C .0; �ig/

�
in �i , 1 � i � 3;

div vi D 0 in �i , 1 � i � 3;

pi D piC1 on @�i \ @�iC1, i D 1; 2;

hvi j�i i D hviC1j�i i on @�i \ @�iC1, i D 1; 2,

vi .x; y/! 0 for j.x; y/j ! 1, 1 � i � 3

9>>>>>>>>=>>>>>>>>;
(1.2)

has a unique solution1 .v1; v2; v3; p1; p2; p3/ with

vi 2 BUC.�i / \ C1.�i / and pi 2 UC1.�i / \ C1.�i /; 1 � i � 3:

Moreover, setting v WD v11�1Cv21�2Cv31�3 , it holds for z WD .x;y/ 2R2 n .�h [�
c1
f
/

that

v.z/ D
‚1

�

Z
R

.c1 C f .s/ � y; x � s/

.x � s/2 C .y � c1 � f .s//2
f 0.s/ ds

C
‚2

�

Z
R

.h.s/ � y; x � s/

.x � s/2 C .y � h.s//2
h0.s/ ds; (1.3)

1The pressures .p1; p2; p3/ are unique only up to the same additive constant.
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with constants

‚1 WD
kg.�1 � �2/

2�
and ‚2 WD

kg.�2 � �3/

2�
: (1.4)

Proof. We devise the proof into two steps.

Existence. Let v W R2 n .�h [ �
c1
f
/! R2 be given by (1.3) and set vi WD vj�i , where

1 � i � 3. In the notation from Appendix A, see (A.1), it holds that

v.z/ D 2‚1v.f /Œf
0�.z � .0; c1//C 2‚2v.h/Œh

0�.z/; z 2 R2 n .�h [ �
c1
f
/:

Then v 2 C1.R2 n .�h [ �
c1
f
// and, according to Theorem A.3, we also have that

vi 2 BUCr�3=2.�i / for 1 � i � 3: Moreover, Lemma A.4 yields that (1.2)2 and (1.2)5
hold true. In view of Lemma A.1, we further get

vi .x; c1 C f .x// D
‚1

�
PV

Z
R

.�ıŒx;s�f; s/

s2 C .ıŒx;s�f /2
f 0.x � s/ ds

C
‚2

�

Z
R

.�ıŒx;s�X; s/

s2 C .ıŒx;s�X/2
h0.x � s/ ds

C .�1/i‚1
f 0.1; f 0/

1C f 02
.x/; i D 1; 2; (1.5)

and

vi .x; h.x// D
‚1

�

Z
R

.�ı0
Œx;s�

X; s/

s2 C .ı0
Œx;s�

X/2
f 0.x � s/ ds

C
‚2

�
PV

Z
R

.�ıŒx;s�h; s/

s2 C .ıŒx;s�h/2
h0.x � s/ ds

C .�1/iC1‚2
h0.1; h0/

1C h02
.x/; i D 2; 3; (1.6)

where PV is the principal value and, setting X WD .f; h/, we defined

ıŒx;s�f WD f .x/ � f .x � s/;

ıŒx;s�X WD c1 C f .x/ � h.x � s/;

ı0Œx;s�X WD h.x/ � c1 � f .x � s/:

(1.7)

The formulas (1.5) and (1.6) now show the validity of (1.2)4.
We next define pressures pi W �i ! R, 1 � i � 3; by the formula

pi .x; y/ WD �
�

k

� Z x

0

hvi .s; di .s//j.1; d
0
i .s//i ds C

Z y

di .x/

v2i .x; s/ ds
�
� �igy C ci ;

(1.8)
where vi WD .v1i ; v

2
i / and ci 2 R are constants, and with

d1 WD kf k1 C c1 C 1; d2 WD
1

2
.c1 C f C h/; d3 WD � khk1 � 1:
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Taking advantage of @yv1 D @xv2 in R2 n .�h [ �
c1
f
/, cf. Lemma A.4, we deduce

that pi 2 C1.�i / and that (1.2)1 is satisfied. The regularity properties established for vi
now imply that indeed pi 2 UC1.�i / \ C1.�i /, 1� i � 3. Then, (1.2)1 and (1.5)–(1.6),
it immediately follows that .p1 � p2/j�c1

f
and .p2 � p3/j�h are constants. Hence, for a

suitable choice of ci , we may achieve that (1.2)3 is satisfied. Therewith, we established
the existence of at least one solution to system (1.2).

Uniqueness. It remains to show that the system (1.2) has, when setting the gravity con-
stant g equal to zero, only the trivial solutions defined by vD .v1; v2/D 0 and pD c 2R.
To begin, we note that (1.2)1 implies @yv1i � @xv

2
i D 0 in�i ;, where 1� i � 3. Moreover,

combining (1.2)1, (1.2)3 and (1.2)4, we obtain that v 2 BUC.R2/. Stokes’ theorem then
yields

@yv
1
� @xv

2
D 0 (1.9)

in D 0.R2/. We next set ‰ WD  11�1 C  21�2 C  31�3 , where  i W �i ! R are given
by

 i .x; y/ WD

Z y

h.x/

v1.x; s/ ds �

Z x

0

hv.s; h.s//j.�h0.s/; 1/i ds; i D 2; 3;

and

 1.x; y/ WD

Z y

c1Cf .x/

v1.x; s/ ds C  2.x; c1 C f .x//:

It follows immediately that ‰ 2 C.R2/. Additionally, using Stokes’s theorem and
(1.2)2, we may show that r i D .�v2; v1/ in D 0.�i /, where 1 � i � 3. As a direct con-
sequence, we get  i 2 UC1.�i / where 1 � i � 3. Additionally, r‰ 2 D 0.R2/ belongs
to BUC.R2/, hence ‰ 2 UC1.R2/. Therefore, given ' 2 C10 .R

2/; we have

h�‰; 'i D

Z
R2

‰�' dz D �

Z
R2

hr‰jr'i dz D

Z
R2

h.v2;�v1/jr'i dz

D h@yv
1
� @xv

2; 'i;

and (1.9) then yields�‰D 0 in D 0.R2/. Consequently,‰ is the real part of a holomorphic
function u W C ! C. Since u0 is also holomorphic and u0 D .@x‰;�@y‰/ D �.v2; v1/
is bounded, cf. (1.2)5, Liouville’s theorem yields u0 D 0, hence v D 0. Moreover, in view
of (1.2)1, we now obtain that rp D 0 in R2, meaning that p is constant in R2. This
completes our arguments.

The contour integral formulation and the main results

Concerning the multiphase Muskat problem (1.1), Theorem 1.1 implies that if, at any
given time t � 0, f .t/ and h.t/ belong toH r .R/, with r 2 .3=2;2/, and c1C f .t/ > h.t/,
then v1.t/j�c1

f
.t/ and v2.t/j�h.t/ are given by (1.5) and (1.6). Recalling also (1.1d), we can

thus formulate the moving boundary problem (1.1) as an autonomous evolution problem



The multiphase Muskat problem with equal viscosities in 2D 169

for the pair X WD .f; h/ which reads as

dX.t/

dt
D ˆ.X.t//; t � 0; X.0; �/ D X0 WD .f0; h0/; (1.10)

where the nonlinear operator ˆ D .ˆ1; ˆ2/ is defined by

ˆ1.X/ WD ‚1B.f /Œf
0�C

‚2

�

�
.c1 C f /f

0C1.X/Œh
0� � f 0C1.X/Œhh

0�CD1.X/Œh
0�
�

(1.11)
and

ˆ2.X/ WD ‚2B.h/Œh
0�C

‚1

�

�
.h � c1/h

0C 01.X/Œf
0� � h0C 01.X/Œff

0�CD01.X/Œf
0�
�
:

(1.12)
The constants‚i , i D 1; 2, are introduced in (1.4) and, given u2H r .R/, with r 2 .3=2;2/
which is fixed in the remaining part, we denote by B.u/ the linear operator

B.u/ WD
1

�

�
B00;1.u/C u

0B01;1.u/
�
; (1.13)

where the operators B0m;1; m D 0; 1, as well as C1; C 01; D1; and D01 are defined in (2.1)–
(2.2) and (2.3) below. We shall treat (1.10) as a fully nonlinear evolution problem in
H r�1.R/2. To this end, we prove in Corollary 2.7 below that ˆ is smooth, that is,

ˆ 2 C1.Or ;H r�1.R/2/; (1.14)

where
Or WD ¹.f; h/ 2 H

r .R/2 W c1 C f > hº: (1.15)

Moreover, our analysis (see Proposition 3.2 below) will disclose that (1.10) is of parabolic
type in the phase space Or ; the Fréchet derivative @ˆ.X/ at any X 2 Or , viewed as an
unbounded operator in H r�1.R/2 with domain H r .R/2, is the generator of an analytic
semigroup in L.H r�1.R/2/. In the notation introduced in [5], the latter property writes
as

� @ˆ.X/ 2 H .H r .R/2;H r�1.R/2/: (1.16)

Properties (1.14) and (1.16) enable us to use the parabolic theory presented in [36] to
establish the following results for (1.10), the proofs of which are postponed to the very
end of Section 3.

Theorem 1.2. Let r 2 .3=2; 2/. Given X0 2 Or , the multiphase Muskat problem (1.10)
has a unique maximal solution X WD X.�; X0/ such that

X 2 C.Œ0; TC/;Or / \ C1.Œ0; TC/;H r�1.R/2/;

with TC D TC.X0/ 2 .0;1� denoting the maximal time of existence. Moreover, we have:
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(i) The solution depends continuously on the initial data;

(ii) Given k 2 N, we have X 2 C1..0; TC/ �R;R2/ \ C1..0; TC/;H k.R/2/I

(iii) If TC <1, then

sup
t2Œ0;TC/

kX.t/kH r .R/ D1 or lim inf
t!TC

dist.�c1
f
.t/; �h.t// D 0:

The next result shows, for bounded solutions with TC <1, that the fluid interfaces
intersect in at least one point along a sequence tn ! TC. Moreover, using the same strat-
egy as in [19,21], we exclude for such solutions that the two fluid interfaces collapse along
a curve segment.

Proposition 1.3. Let X 2 C.Œ0; TC/;Or / \ C1.Œ0; TC/;H r�1.R/2/ be a maximal solu-
tion to (1.10) with TC < 1 and such that, for some M > 0, kX.t/kH r � M , for all
t 2 Œ0; TC/. Then there exists x0 2 R with the property that

lim inf
t!TC

.c1 C f .t; x0/ � h.t; x0// D 0: (1.17)

Moreover, for each x0 satisfying (1.17) and for each ı > 0, we have

lim inf
t!TC

sup
jx�x0j�ı

.c1 C f .t; x/ � h.t; x// > 0:

2. Mapping properties

In this section we introduce the operators B0m;1; m D 0; 1, and C1; C 01; D1; D
0
1 which

appear in (1.11) and (1.12) in a more general context, and study the properties of these
operators. The main goal is to establish the smoothness property (1.14), see Corollary 2.7
below.

Motivated by formulas (1.5) and (1.6), we introduce the family Bn;m (n; m 2 N)
of singular integral operators on the real line, where, given Lipschitz continuous maps
u1; : : : ; um; v1; : : : ; vn W R! R and ! 2 L2.R/, the operator Bn;m is defined by

Bn;m.u1; : : : ; um/Œv1; : : : ; vn; !�.x/ WD PV
Z

R
c

Qn
iD1

�
ıŒx;s�ui=s

�Qm
iD1

�
1C

�
ıŒx;s�vi=s

�2� !.x � s/s
ds:

(2.1)
Here, we use the notation introduced in (1.7). Furthermore, we define

B0n;m.u/Œ!� WD Bn;m.u; : : : ; u/Œu; : : : ; u; !�: (2.2)

The operators Bn;m were introduced in [38], but they are also important in the study of the
Stokes problem, cf. [39]. It is important to point out that B0;0 D �H; where H denotes
the Hilbert transform. We now recall some important properties of these operators.
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Lemma 2.1. Let r 2 .3=2; 2/ be fixed.

(i) Given u1; : : : ;um 2H r .R/, there exists a constantC that depends only on n;m;r ,
and max1�i�m kuikH r such that

kBn;m.u1; : : : ; um/Œv1; : : : ; vn; !�kH r�1 � Ck!kH r�1

nY
iD1

kvikH r

for all v1; : : : ; vn 2 H r .R/ and ! 2 H r�1.R/:

(ii) The mapping Œu 7! B0n;m.u/� W H
r .R/! L.H r�1.R// is smooth.

Proof. Claim (i) is established in [1, Lemma 5], and claim (ii) is proven in [39, Corollary
C.5].

The evolution equation (1.10) actually consists of one equation for f and one for h
which are coupled. The coupling terms contain highest (first) order derivatives of both
variables and they are expressed using the aforementioned operators C1; C 01; D1; D

0
1. We

now introduce these operators as elements of a larger family of operators enjoying similar
properties.

Given 1 � m 2 N and Xi WD .fi ; hi / 2 Or , 1 � i � m, we set

Cm.X1; : : : ; Xm/Œ!�.x/ WD

Z
R

!.x � s/Qm
iD1

�
s2 C .ıŒx;s�Xi /2

� ds;
C 0m.X1; : : : ; Xm/Œ!�.x/ WD

Z
R

!.x � s/Qm
iD1

�
s2 C .ı0

Œx;s�
Xi /2

� ds;
Dm.X1; : : : ; Xm/Œ!�.x/ WD

Z
R

s!.x � s/Qm
iD1

�
s2 C .ıŒx;s�Xi /2

� ds;
D0m.X1; : : : ; Xm/Œ!�.x/ WD

Z
R

s!.x � s/Qm
iD1

�
s2 C .ı0

Œx;s�
Xi /2

� ds;
(2.3)

for ! 2 L2.R/ and x 2 R, where we used the notation introduced in (1.7). Since Xi 2 Or
for 1 � i � m, these operators are no longer singular. However, for large values of the
integration variable s, the kernels of D1 and D01 behave similarly to that of the truncated
Hilbert transform Hı W L2.R/! L2.R/, with ı > 0, which is defined by

Hı Œ!�.x/ WD
1

�

Z
¹jsj>ıº

!.x � s/

s
ds; x 2 R: (2.4)

We recall that, given ı > 0, Hı is a Fourier multiplier with symbol Œ� 7! mı.�/� given by

mı.�/ WD �
2

�
i sign.�/

Z 1
ıj�j

sin.t/
t

dt:

Since kmık1 � 2 for all ı > 0, it follows that

kHıkL.L2.R// � 2: (2.5)

We next study the mapping properties of the operators Cm; C 0m;Dm; D
0
m:
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Lemma 2.2. Given 1 � m 2 N and Xi WD .fi ; hi / 2 Or , 1 � i � m, we set

c0 WD min
1�i�m

dist.�c1
fi
; �hi /: (2.6)

Then, there exists a constant C that depends only on m, c0, and max1�i�m kh0ik1 such
that

kCm.X1; : : : ; Xm/Œ!�k2 C kC
0
m.X1; : : : ; Xm/Œ!�k2 � Ck!k2; ! 2 L2.R/: (2.7)

Proof. Let
ı WD

c0

2.max1�i�m kh0ik1 C 1/
: (2.8)

Given x 2 R and jsj < ı, the following holds:

min¹jıŒx;s�Xi j; jı0Œx;s�Xi jº � dist.�c1
fi
; �hi / � jıŒx;s�hi j � c0=2; 1 � i � m: (2.9)

Therefore, when considering Cm (the case C 0m is similar), we can make use of
Minkowski’s integral inequality to obtain

kCm.X1; : : : ; Xm/Œ!�k2 D
� Z

R

ˇ̌̌ Z
R

!.x � s/Qm
iD1

�
s2 C .ıŒx;s�Xi /2

� ds ˇ̌̌2 dx�1=2
�

Z
R

� Z
R

ˇ̌̌ !.x � s/Qm
iD1

�
s2 C .ıŒx;s�Xi /2

� ˇ̌̌2 dx�1=2 ds
�

� 2
c0

�2m Z
¹jsj<ıº

k!k2 ds C

Z
¹jsj>ıº

k!k2

s2m
ds

� Ck!k2;

and (2.7) follows.

It is not difficult to extend the proof of Lemma 2.2 in the context of the operators Dm
and D0m with m � 2. The case m D 1 is more subtle, however, and requires a different
strategy which uses the estimate (2.5).

Lemma 2.3. Given 1 � m 2 N and Xi WD .fi ; hi / 2 Or , 1 � i � m, let c0 > 0 be the
constant defined in (2.6). Then, there exists a constant C that depends only on r; m, c0,
and max1�i�m kXikH r such that

kDm.X1; : : : ; Xm/Œ!�k2 C kD
0
m.X1; : : : ; Xm/Œ!�k2 � Ck!k2; ! 2 L2.R/; (2.10)

Proof. The proof in the case m � 2 follows along the lines of the proof of Lemma 2.2.
We now consider the operator D1 (the estimate for D01 follows similarly). Let ı > 0 be as
defined in (2.8) (with m D 1) and set

I.x; s/ WD
s!.x � s/

s2 C .ıŒx;s�X1/2
D

�
1 �

.ıŒx;s�X1=s/
2

1C .ıŒx;s�X1=s/2

�!.x � s/
s

; x; s 2 R; s ¤ 0:
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With Hı denoting the truncated Hilbert transform, see (2.4), we have for x 2 R that

jD1.X1/Œ!�.x/j �

Z
¹jsj<ıº

jI.x; s/j ds C jHı Œ!�.x/j

C

Z
¹ı<jsjº

.ıŒx;s�X1=s/
2

1C .ıŒx;s�X1=s/2

ˇ̌̌!.x � s/
s

ˇ̌̌
ds:

Given jsj < ı; (2.9) implies jıŒx;s�X1j � c0=2 and Minkowski’s integral inequality then
yields 


 Z

¹jsj<ıº

jI.�; s/j ds




2
�

Z
¹jsj<ıº

� Z
R
jI.x; s/j2 dx

�1=2
ds �

8ı2

c20
k!k2:

Moreover, taking into account that jıŒ�;s�X1j � c1Ckf1k1Ckh1k1, Minkowski’s inte-
gral inequality leads us to


 Z

¹ı<jsjº

.ıŒ�;s�X1=s/
2

1C .ıŒ�;s�X1=s/2

ˇ̌̌!.� � s/
s

ˇ̌̌
ds




2

� .c1 C kf1k1 C kh1k1/

Z
¹ı<jsjº

k!k2

s2
ds � Ck!k2:

Recalling (2.5), we conclude that (2.10) is satisfied.

As a consequence of Lemma 2.2 and Lemma 2.3 we obtain the following result.

Corollary 2.4. Given 1 � m 2 N, it holds that

Cm;Dm; C
0
m;D

0
m 2 C1�.Om

r ;L.L2.R///: (2.11)

Proof. Let Xi D .fi ; hi /, eX i D . zfi ; zhi / 2 Or , for 1 � i � m, ! 2 L2.R/; and choose
Em 2 ¹Cm;Dmº: It then follows that

Em.X1; : : : ; Xm/Œ!� �Em.eX1; : : : ;eXm/Œ!�
D

mX
jD1

�
.2c1 C zfj C fj /. zfj � fj /EmC1.eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ!�

� . zfj � fj /EmC1.eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ.zhj C hj /!�
� .2c1 C zfj C fj /EmC1.eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ.zhj � hj /!�
CEmC1.eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ.zh2j � h2j /!��; (2.12)

respectively

E 0m.X1; : : : ; Xm/Œ!� �E
0
m.
eX1; : : : ;eXm/Œ!�

D

mX
jD1

�
.zh2j � h

2
j /E

0
mC1.

eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ!�
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� .zhj � hj /E
0
mC1.

eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ.2c1 C zfj C fj /!�
� .zhj C hj /E

0
mC1.

eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ. zfj � fj /!�
CE 0mC1.

eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ.2c1 C zfj C fj /. zfj � fj /!��: (2.13)

Combining equations (2.12) and (2.13), Lemma 2.2, and Lemma 2.3, we conclude that
(2.11) holds true.

We prove next that the operatorsCm;C 0m;Dm;D
0
m map, for givenXi 2 Or , 1� i �m,

the definition domain L2.R/ actually into H 1.R/:

Lemma 2.5. Given 1 � m 2 N and Xi WD .fi ; hi / 2 Or , 1 � i � m, let c0 > 0 be the
constant defined in (2.6). Given Em 2 ¹Cm; Dmº; there exists a positive constant C that
depends only on r; m, c0, and max1�i�m kXikH r such that

kEm.X1; : : : ;Xm/Œ!�kH1 CkE 0m.X1; : : : ;Xm/Œ!�kH1 � Ck!k2; ! 2 L2.R/: (2.14)

Moreover, Cm;Dm; C 0m;D
0
m 2 C1�.Om

r ;L.L2.R/;H
1.R///:

Proof. Let ¹��º�2R denote the group of right translations, and assume that ! 2 C10 .R/.
Given 0 ¤ � 2 R, the formula (2.12) leads us to

Em.X1; : : : ; Xm/Œ!� � ��.Em.X1; : : : ; Xm/Œ!�/

�

D Em.X1; : : : ; Xm/
h! � ��!

�

i
C

mX
jD1

�
.2c1 C ��fj C fj /

��fj � fj

�
EmC1.��X1; : : : ; ��Xj ; Xj ; : : : ; Xm/Œ��!�

�
��fj � fj

�
EmC1.eX1; : : : ;eXj ; Xj ; : : : ; Xm/Œ.��hj C hj /��!�

� .2c1 C ��fj C fj /EmC1.��X1; : : : ; ��Xj ; Xj ; : : : ; Xm/
h��hj � hj

�
��!

i
CEmC1.��X1; : : : ; ��Xj ; Xj ; : : : ; Xm/

h .��hj /2 � h2j
�

��!
i�
:

Recalling (2.11), we may pass to the limit � ! 0 on the right of the latter equation and
conclude that Em.X1; : : : ; Xm/Œ!� 2 H 1.R/, with

.Em.X1; : : : ; Xm/Œ!�/
0
D Em.X1; : : : ; Xm/Œ!

0�

� 2

mX
jD1

�
.c1 C fj /f

0
jEmC1.X1; : : : ; Xm; Xj /Œ!� � f

0
jEmC1.X1; : : : ; Xm; Xj /Œhj!�

� .c1 C fj /EmC1.X1; : : : ; Xm; Xj /Œh
0
j!�CEmC1.X1; : : : ; Xm; Xj /Œhjh

0
j!�

�
:
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Except for Em.X1; : : : ; Xm/Œ!0�, all the terms in the latter expression are well-defined
and belong to L2.R/ as long as ! 2 L2.R/. However, using integration by parts, we can
rewrite this term as

Cm.X1; : : : ; Xm/Œ!
0� D �2

mX
jD1

�
DmC1.X1; : : : ; Xm; Xj /Œ!�

C .c1 C fj /CmC1.X1; : : : ; Xm; Xj /Œh
0
j!�

� CmC1.X1; : : : ; Xm; Xj /Œhjh
0
j!�

�
;

respectively

Dm.X1; : : : ; Xm/Œ!
0� D .1 � 2m/Cm.X1; : : : ; Xm/Œ!�

� 2

mX
jD1

�
.c1 C fj /DmC1.X1; : : : ; Xm; Xj /Œh

0
j!� �DmC1.X1; : : : ; Xm; Xj /Œhjh

0
j!�

� .c1 C fj /
2CmC1.X1; : : : ; Xm; Xj /Œ!� � CmC1.X1; : : : ; Xm; Xj /Œh

2
j!�

C 2.c1 C fj /CmC1.X1; : : : ; Xm; Xj /Œhj!�
�
:

Combining the last three identities, Lemma 2.2, Lemma 2.3, and using a standard density
argument we get that (2.14) holds forEm. The claim for the operatorE 0m follows similarly.
Finally, the Lipschitz continuity property is obtained from (2.14) and (2.12)–(2.13).

Since our goal is to establish the smoothness of ˆ, cf. (1.14), we next prove that
operators Em and E 0m with Em 2 ¹Cm; Dmº depend smoothly on the variable X 2 Or .
This requires some additional notation. Given Y WD .u; v/ 2 H r .R/2; we set

ıŒx;s�Y WD u.x/ � v.x � s/ and ı
0

Œx;s�Y WD v.x/ � u.x � s/; x; s 2 R: (2.15)

Given n; m; p 2 N, m � 1, Xi 2 Or , 1 � i � m C p, Yi 2 H r .R/2, 1 � i � n;
! 2 L2.R/, and E 2 ¹C;Dº; we set

En;m;p.X1; : : : ; XmCp/ŒY1; : : : ; Yn; !�.x/

WD

Z
R

sj!.x � s/
�QmCp

iDmC1 ıŒx;s�Xi
�Qn

iD1 ıŒx;s�YiQm
iD1

�
s2 C .ıŒx;s�Xi /2

� ds;

and

E 0n;m;p.X1; : : : ; XmCp/ŒY1; : : : ; Yn; !�.x/

WD

Z
R

sj!.x � s/
�QmCp

iDmC1 ı
0
Œx;s�

Xi
�Qn

iD1 ı
0

Œx;s�YiQm
iD1

�
s2 C .ı0

Œx;s�
Xi /2

� ds

for x 2 R, where j D 0 if E D C and j D 1 for E D D. It is worth pointing out
that, given E 2 ¹C;Dº and m � 1, we have E0;m;0.X; : : : ; X/ D Em.X; : : : ; X/ and
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E 00;m;0.X; : : : ;X/D E
0
m.X; : : : ;X/. Hence, the latter formulas extend our previous nota-

tion introduced in (2.3). Setting Yi D .ui ; vi / for 1 � i � n; it holds that

En;m;p.X1; : : : ; XmCp/ŒY1; : : : ; Yn; !�

D

X
S�¹1;:::;nº

.�1/jS
c j
�Y
j2S

uj

�
E0;m;p.X1; : : : ; XmCp/

h
!
Y
j2Sc

vj

i
;

E 0n;m;p.X1; : : : ; XmCp/ŒY1; : : : ; Yn; !�

D

X
S�¹1;:::;nº

.�1/jS
c j
�Y
j2S

vj

�
E 00;m;p.X1; : : : ; XmCp/

h
!
Y
j2Sc

uj

i
;

where for each S � ¹1; : : : ; nº we set Sc WD ¹1; : : : ; nº n S .
Moreover, letting Xj WD .fj ; hj /, mC 1 � j � mC p, it holds that

E0;m;p.X1; : : : ; XmCp/Œ!�

D

X
S�¹mC1;:::;mCpº

.�1/jS
c j
�Y
j2S

.c1 C fj /
�
Em.X1; : : : ; Xm/

h
!
Y
j2Sc

hj

i
;

E 00;m;p.X1; : : : ; XmCp/Œ!�

D

X
S�¹mC1;:::;mCpº

.�1/jS
c j
�Y
j2S

.hj � c1/
�
E 0m.X1; : : : ; Xm/

h
!
Y
j2Sc

fj

i
:

Recalling Lemma 2.5, we deduce for E 2 ¹C;C 0;D;D0º, that

kEn;m;p.X1; : : : ; XmCp/ŒY1; : : : ; Yn; ��kL.L2.R/;H1.R// � C

nY
iD1

kYikH r ; (2.16)

where C is independent from Yi , for 1 � i � n.
Finally, given E 2 ¹C; C 0; D; D0º, n; m; p 2 N, m � 1, Yi 2 H r .R/2, 1 � i � n;

and X 2 Or , we define

Enm;p.X/ŒY1; : : : ; Yn� WD En;m;p.X; : : : ; X/ŒY1; : : : ; Yn; �� 2 L.L2.R/;H
1.R//: (2.17)

The estimate (2.16) shows that Enm;p W Or ! Ln
sym.H

r .R/2; L.L2.R/; H 1.R/// (if
n D 0 we identify Ln

sym.H
r .R/2;L.L2.R/; H 1.R/// with L.L2.R/; H 1.R//). In the

next lemma, we establish the Fréchet differentiability of Enm;p:

Lemma 2.6. Given n; m; p 2 N, m � 1, and X 2 Or , the operator Enm;p is Fréchet
differentiable in X and its Fréchet derivative is given by

@Enm;p.X/ŒY �ŒY1; : : : ; Yn� D pE
nC1
m;p�1.X/ŒY1; : : : ; Yn; Y �

� 2mEnC1mC1;pC1.X/ŒY1; : : : ; Yn; Y �

for Y; Y1; : : : ; Yn 2 H r .R/2. Consequently, for each n; m; p 2 N with m � 1, we have
Enm;p 2 C1.Or ;Ln

sym.H
r .R/2;L.L2.R/;H 1.R////:
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Proof. Setting

R.X; Y /ŒY1; : : : ; Yn� WD E
n
m;p.X C Y /ŒY1; : : : ; Yn� �E

n
m;p.X/ŒY1; : : : ; Yn�

� pEnC1m;p�1.X/ŒY1; : : : ; Yn; Y �

C 2mEnC1mC1;pC1.X/ŒY1; : : : ; Yn; Y �;

elementary algebraic manipulations lead us to the identity

R.X; Y /ŒY1; : : : ; Yn� D

p�1X
jD0

.p � j � 1/R1;j ŒY1; : : : ; Yn; Y; Y �

�

m�1X
jD0

Ra2;j ŒY1; : : : ; Yn; Y; Y �

�

m�1X
jD0

Rb2;j ŒY1; : : : ; Yn; Y; Y; Y �

C

m�1X
jD0

m�j�1X
lD0

Ra3;j;l ŒY1; : : : ; Yn; Y; Y �

C

m�1X
jD0

m�j�1X
lD0

Rb3;j;l ŒY1; : : : ; Yn; Y; Y; Y �;

where

R1;j WD EnC2;m;p�2.X C Y; : : : ; X C Y„ ƒ‚ …
m

; X C Y; : : : ; X C Y„ ƒ‚ …
j

; X; : : : ; X„ ƒ‚ …
p�2�j

/;

Ra2;j WD .1C 2p/EnC2;mC1;p.X C Y; : : : ; X C Y„ ƒ‚ …
m�j

; X; : : : ; X„ ƒ‚ …
jC1

; X; : : : ; X„ ƒ‚ …
p

/;

Rb2;j WD pEnC3;mC1;p�1.X C Y; : : : ; X C Y„ ƒ‚ …
m�j

; X; : : : ; X„ ƒ‚ …
jC1

; X; : : : ; X„ ƒ‚ …
p�1

/;

Ra3;j;l WD 4EnC2;mC2;pC2.X C Y; : : : ; X C Y„ ƒ‚ …
m�j�l

; X; : : : ; X„ ƒ‚ …
jClC2

; X; : : : ; X„ ƒ‚ …
pC2

/;

Rb3;j;l WD 2EnC3;mC2;pC1.X C Y; : : : ; X C Y„ ƒ‚ …
m�j�l

; X; : : : ; X„ ƒ‚ …
jClC2

; X; : : : ; X„ ƒ‚ …
pC1

/:

Hence, for all Y sufficiently close toX inH r .R/2, it follows from Lemma 2.5, by arguing
as in the derivation of (2.16), that

kR.X; Y /ŒY1; : : : ; Yn�kL.L2.R/;H1.R// � CkY k
2
H r

nY
iD1

kYikH r ;

and the claim follows.
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We complete this section by establishing (1.14).

Corollary 2.7. It holds that ˆ 2 C1.Or ;H r�1.R/2/.

Proof. The claim follows from (1.11)–(1.12), Lemma 2.1 (ii) and Lemma 2.6, by using
the algebra property of H r�1.R/ and the embedding H 1.R/ ,! H r�1.R/:

3. The generator property and the proof of the main results

In the first part of this section, we show that the evolution problem (1.10) is parabolic in
Or by establishing the generator property (1.16). In the second part, we prove our main
results. With respect to the first task, let X D .f; h/ 2 Or be fixed. We can represent the
Fréchet derivative @ˆ.X/ as the matrix operator

@ˆ.X/ D

�
@fˆ1.X/ @hˆ1.X/

@fˆ2.X/ @hˆ2.X/

�
2 L.H r .R/2;H r�1.R/2/:

Although the coupling terms in (1.11)–(1.12) involve highest order derivatives of both
unknowns, Lemma 2.6 and (2.16) show that the off-diagonal entry @hˆ1.X/ can be treated
as being a perturbation. Indeed, recalling Lemma 2.6, we obtain for E 2 ¹C;Dº that

@E1.X/ŒY � D �2E
1
2;1.X/ŒY � D 2E0;2;1.X;X;X/Œv �� � 2uE0;2;1.X;X;X/ (3.1)

for all Y D .u; v/ 2 H r .R/2: Using this formula, it follows from (1.11) that

@hˆ1.X/Œv� D
‚2

�

�
.c1 C f /f

0
�
C1.X/Œv

0�C 2C0;2;1.X;X;X/Œvh
0�
�

� f 0
�
C1.X/Œhv

0
C vh0�C 2C0;2;1.X;X;X/Œvhh

0�
�

CD1.X/Œv
0�C 2D0;2;1.X;X;X/Œvh

0�
�

and (2.16) yields

k@hˆ1.X/Œv�kH r�1 � CkvkH1 for all v 2 H r .R/:

In view of [5, Theorem I.1.6.1] and of the property kvkH1 � �kvkH r C C.�/kvkH r�1 ;

v 2 H r .R/, which holds for any given arbitrary small � > 0, we conclude that (1.16) is
satisfied provided the diagonal entries are analytic generators, that is,

�@fˆ1.X/ 2 H .H r .R/;H r�1.R//;

�@hˆ2.X/ 2 H .H r .R/;H r�1.R//:
(3.2)

To establish the generator property for @fˆ1.X/, we follow the strategy from [1, Sec-
tion 4] (see also [26,30], where similar arguments are used in other contexts). To this end,
we first deduce from Lemma 2.1 (ii) that the mapping

Œu 7! B.u/� W H r .R/! L.H r�1.R//
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is smooth. In view of this property, of (3.1), and of (2.16) we infer from (1.11) that

@fˆ1.X/Œu� D ‚1
�
B.f /Œu0�C @B.f /Œu�Œf 0�

�
C a.X/u0 C TlotŒu�;

where, according to Lemma 2.5,

a.X/ WD
‚2

�

�
.c1 C f /C1.X/Œh

0� � C1.X/Œhh
0�
�
2 H 1.R/:

Moreover, Tlot is a lower order operator. More precisely,

kTlotŒu�kH r�1 � CkukH1 for all u 2 H r .R/: (3.3)

We next consider the continuous path Œ� 7! ‰.�/� W Œ0; 1�! L.H r .R/;H r�1.R// with

‰.�/Œu� WD ‚1
�
B.�f /Œu0�C �@B.f /Œu�Œf 0�

�
C �a.X/u0 C �TlotŒu�:

Observe that ‰.1/ D @fˆ1.X/, and ‰.0/ is the Fourier multiplier

‰.0/ D ‚1B.0/ ı
d

dx
D ‚1H ı

d

dx
D ‚1

�
�
d2

dx2

�1=2
with symbol Œ� 7! ‚1j�j�: The next step is to approximate ‰.�/ locally by certain Fourier
multipliers, see Lemma 3.1 below. Therefore, we choose for each " 2 .0; 1/, a finite "-
localization family, that is, a family

¹�"j W �N C 1 � j � N º � C1.R; Œ0; 1�/;

with N D N."/ 2 N sufficiently large, such that

� supp�"j is an interval of length " for all jj j � N � 1; supp�"N � ¹jxj � 1="º;

� �"j � �
"
l
D 0 if Œjj � l j � 2;max¹jj j; jl jº � N � 1� or Œjl j � N � 2; j D N�I

�
PN
jD�NC1.�

"
j /
2 D 1; and

� k.�"j /
.k/k1 � C"

�k for all k 2 N;�N C 1 � j � N .

To each finite "-localization family we associate a family ¹�"j W �N C 1 � j � N º
with �"j 2 C1.R; Œ0; 1�/, �N C 1 � j � N; such that

� �"j D 1 on supp�"j , supp�"N � ¹jxj � 1=" � "º; and

� supp�"j is an interval of length 3" and with the same midpoint as supp�"j for
jj j � N � 1.

Lemma 3.1. Let X 2 Or be fixed and choose r 0 2 .3=2; r/. Given � > 0, there exist
" 2 .0; 1/, a finite "-localization family ¹�"j W �N C 1� j �N º, a constantK DK.";X/,
and bounded operators Aj;� 2L.H r .R/;H r�1.R//; j 2 ¹�N C 1; : : : ;N º and � 2 Œ0;1�,
such that

k�"j‰.�/Œu� �Aj;� Œ�
"
j u�kH r�1 � �k�"j ukH r CKkukH r 0 (3.4)



J. Bierler and B.-V. Matioc 180

for all �N C 1 � j � N , � 2 Œ0; 1�; and u 2 H r .R/. The operators Aj;� are defined by

Aj;� WD ˛� .x
"
j /
�
�
d2

dx2

�1=2
C ˇ� .x

"
j /
d

dx
; jj j � N � 1;

and

AN;� WD ‚1
�
�
d2

dx2

�1=2
;

where x"j 2 supp�"j ; jj j � N � 1; and with functions ˛� ; ˇ� given by

˛� WD
1C .1 � �/f 02

1C f 02
‚1; ˇ� WD

�‚1

�
B01;1.f /Œf

0�C �a.X/:

Proof. As shown in the proof of [1, Theorem 7] (in a more general context), if " is chosen
sufficiently small, then for all � 2 Œ0; 1� and u 2 H r .R/ we have


�"j �B.�f /Œu0�C �@B.f /Œu�Œf 0�� � ˛� .x"j /‚1

�
�
d2

dx2

�1=2
Œ�"j u�

�
�

�
B01;1.f /Œf

0�.x"j /.�
"
j u/
0





H r�1

�
�

2j‚1j
k�"j ukH r CKkukH r 0

for jj j � N � 1, and


�"N �B.�f /Œu0�C �@B.f /Œu�Œf 0�� � � � d2

dx2

�1=2
Œ�"Nu�





H r�1

�
�

2j‚1j
k�"j ukH r CKkukH r 0 :

We next recall, see e.g., [1, Eq. 2.1], there exists a constant C > 0 such that

kabkH r�1 � C.kakH r�1kbk1 C kak1kbkH r�1/ for all a; b 2 H r�1.R/.

Using this estimate together with the identity �"j�
"
j D �

"
j , �N C 1 � j � N , we get in

view of the relation a.X/ 2 C1=2.R/ that

k�"j a.X/u
0
� a.X/.x"j /.�

"
j u/
0
kH r�1

� k�"j
�
a.X/ � a.X/.x"j /

�
.�"j u/

0
kH r�1 CKkukH r�1

� Ck�"j
�
a.X/ � a.X/.x"j /

�
k1k�

"
j ukH r CKkukH r 0

�
�

4
k�"j ukH r CKkukH r 0 ; jj j � N � 1;

if " is sufficiently small, respectively, in view of the fact that a.X/ vanishes at infinity,

k�"Na.X/u
0
kH r�1 � k�"Na.X/.�

"
Nu/

0
kH r�1 CKkukH r�1

� Ck�"Na.X/kH r�1k�"NukH r CKkukH r 0

�
�

4
k�"NukH r CKkukH r 0

for all u 2 H r .R/: These estimates together with (3.3) lead us to (3.4).
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Let us observe that there exists � 2 .0; 1/ such that the symbols of the Fourier multi-
pliers identified in Lemma 3.1 satisfy

� � �˛� �
1

�
and kˇ� jj1 �

1

�
for all � 2 Œ0; 1�.

Classical Fourier analysis arguments then show there exists �0 D �0.�/ � 1 such that

� �A˛;ˇ 2 L.H r .R/;H r�1.R// is an isomorphism for all Re� � 1; and (3.5)

�0k.� �A˛;ˇ /Œu�kH r�1 � j�j � kukH r�1 C kukH r ; 8u 2 H r .R/; Re� � 1; (3.6)

uniformly for A˛;ˇ WD ˛.�d
2=dx2/1=2C ˇ.d=dx/, where �˛ 2 Œ�; 1=��; jˇj � 1=�. The

properties (3.5)–(3.6) combined with Lemma 3.1 enable us to obtain the desired generator
property for @fˆ1.X/.

Proposition 3.2. Given X 2 Or , it holds that �@ˆ.X/ 2 H .H r .R/2;H r�1.R/2/:

Proof. According to our discussion above it remains to establish (3.2). To prove the gen-
erator property for @fˆ1.X/, we may argue as in [1, Theorem 6] to find, in view of
(3.5)–(3.6) and of Lemma 3.1, constants � D �.X/ � 1 and ! D !.X/ > 0 such that

�k.� �‰.�//Œu�kH r�1 � j�j � kukH r�1 C kukH r (3.7)

for all � 2 Œ0; 1�; Re � � !, and u 2 H r .R/. Choosing ! � 1, it follows from (3.5),
in view of ‰.0/ D A‚1;0, that ! �‰.0/ is, as an element of L.H r .R/; H r�1.R//, an
isomorphism. The method of continuity, cf. [5, Proposition I.1.1.1], and (3.7) then imply
that ! � @fˆ1.X/ 2L.H r .R/;H r�1.R// is an isomorphism too. From this property and
(3.7) (with � D 1) we deduce that indeed �@fˆ1.X/ belongs to H .H r .R/; H r�1.R//.
Since the generator property for @hˆ2.X/ follows by using similar arguments (which we
therefore omit), this proves our claim.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. The properties (1.14) and (1.16) enable us to use the abstract
parabolic theory from [36, Chapter 8] in the context of the evolution problem (1.10).
More precisely, given X0 2 O, [36, Theorem 8.1.1] implies there exists a time T > 0 and
a solution X D X.�; X0/ to (1.10) such that2

X 2 C.Œ0; T �;Or / \ C1.Œ0; T �;H r�1.R/2/ \ C˛˛..0; T �;H
r .R/2/

2Given ˛ 2 .0; 1/, T > 0, and a Banach space X , let B..0; T �; X/ denote the Banach space of all
bounded functions from .0; T � into X . The Banach space C˛˛..0; T �; X/ is then defined as

C˛˛..0; T �; X/ WD
°
f 2 B..0; T �; X/ W kf kC˛˛ WD kf k1 C sup

s¤t

kt˛f .t/ � s˛f .s/kX

jt � sj˛
<1

±
:
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for some ˛ 2 .0; 1/ (actually, since (1.10) is autonomous, for all ˛ 2 .0; 1/). Moreover,
the solution is unique within the class[

˛2.0;1/

C˛˛..0; T �;H
r .R/2/ \ C.Œ0; T �;Or / \ C1.Œ0; T �;H r�1.R/2/:

To prove that the solution is unique in C.Œ0; T �;Or / \ C1.Œ0; T �;H r�1.R/2/; we assume
by contradiction there exist two solutions Xi W Œ0; T �! Or , i D 1; 2, to (1.10) with the
property that X1.0/ D X2.0/ and X1.t/ ¤ X2.t/ for all t 2 .0; T �. Let r 0 2 .3=2; r/ be
arbitrary and set ˛ WD r � r 0 2 .0; 1/. The mean value theorem together with the inequal-
ity kakH r 0 � kak˛H r�1kak

1�˛
H r ; a 2 H

r .R/; imply that there exists a constant C > 0 such
that

kXi .t/ �Xi .s/kH r 0 � C jt1 � t2j
˛; s; t 2 Œ0; T �; i D 1; 2: (3.8)

Hence, Xi 2 C˛.Œ0; T �; H r 0.R/2/ ,! C˛˛..0; T �; H
r 0.R/2/, and [36, Theorem 8.1.1]

applied in the context of (1.10) with r replaced by r 0 ensures thatX1DX2 in Œ0;T �;which
contradicts our assumption. This unique local solution can be extended up to a maximal
existence time TC D TC.X0/, see [36, Section 8.2].

The continuous dependence of the solution on the initial data stated in part (i) of
Theorem 1.2 follows from [36, Proposition 8.2.3]. The proof of part (ii) uses a parameter
trick which was successfully applied also to other problems, cf., e.g., [1, 6, 29, 38, 43].
Since the details are very similar to those in [1, Theorem 2 (ii)], we omit them.

To prove part (iii), we assume there exists a maximal solution X D X.�; X0/ to (1.10)
with TC<1 and such that

sup
t2Œ0;TC/

kX.t/kH r <1 and lim inf
t!TC

dist.�c1
f
.t/; �h.t// D c0 > 0:

Arguing as above, we deduce for some fixed r 0 2 .3=2; r/, that X W Œ0; TC/! Or 0

is Hölder continuous. Applying [36, Theorem 8.1.1] to (1.10) (with r replaced by r 0) we
may extend the solution X to an existence interval Œ0; T 0/ with TC < T 0 and such that
X 2 C.Œ0; T 0/;Or 0/ \ C1.Œ0; T 0/;H r 0�1.R/2/: Moreover, the parabolic smoothing prop-
erty established in part (ii) (with r replaced by r 0) implies that X 2 C1..0; T 0/;H r .R/2/,
and this contradicts the maximality property of X . This completes the proof.

We conclude this section with the proof of Proposition 1.3.

Proof of Proposition 1.3. Since kX.t/kH r �M for all t 2 Œ0;TC/, (1.1d) and Lemma A.2
imply there exists C > 0 such that


dX.t/

dt





1
� C.1CM 4/; t 2 Œ0; TC/;

therefore X2 WD .f 2; h2/ 2 C1.Œ0; TC/; L2.R/2/ has a bounded derivative. Moreover,
X2 W Œ0; T /! H r .R/2 is bounded. Since kakH r 0 � kak

1�r 0=r
2 kak

r 0=r
H r ; a 2 H

r .R/; the
mean value theorem yields X2 2 BUC1�r

0=r .Œ0; TC/;Or 0/, where r 0 2 .3=2; r/ is fixed.



The multiphase Muskat problem with equal viscosities in 2D 183

Hence, there exists X� 2 H r 0.R/2 such that X2.t/! X� D .f�; h�/ in H r 0.R/2 when
letting t ! TC.

Since
lim inf
t!TC

dist.�c1
f
.t/; �h.t// D 0;

cf. Theorem 1.2 (iii), there exist sequences tn % TC and .xn/ � R with

.c1 C f /.tn; xn/ � h.tn; xn/! 0 for n!1: (3.9)

We next show that .xn/ is bounded. To this end, we infer from the convergence
X2.t/! X� inH r 0.R/2 that there exists n0 2N such that jf .tn; x/j C jh.tn; x/j< c1=2
for all n � n0 and jxj � n0. The latter inequality together with (3.9) imply that .xn/ is
indeed bounded.

We may thus assume (after eventually subtracting a subsequence), that xn! x0 in R.
Since X� is a continuous function and X2.tn/! X� in H r 0.R/2 when letting n!1,
we obtain that X.tn; xn/! .

p
f�.x0/;

p
h�.x0//. The relation (3.9) now leads us to the

equation c1 C
p
f�.x0/ D

p
h�.x0/: Finally, since X2.tn; x0/! X�.x0/, together with

the latter identity we conclude that c1 C f .tn; x0/ � h.tn; x0/! 0, and therefore that

lim inf
t!TC

.c1 C f .t; x0/ � h.t; x0// D 0:

In order to prove the second claim, we argue by contradiction and assume there exists
x0 2 R and ı > 0 such that

lim inf
t!TC

sup
¹jx�x0j�ıº

.c1 C f .t; x/ � h.t; x// D 0:

Since (1.10) is invariant under horizontal translations, we may assume without loss of
generality that x0 D 0: Hence, there exists a sequence .tn/ with tn % TC and

c1 C f .tn/ � h.tn/! 0 in L1.Œ�ı; ı�/: (3.10)

Recalling Lemma A.2, we find a constant c1 D c1.M/ such that the velocity
v2.t/D.v

1
2.t/; v

2
2.t// satisfies

kv2.t/kL1.�2.t// � c1; t 2 Œ0; TC/: (3.11)

Given t 2 .TC � ı=c1; TC/, let R.t/ WD ı C c1.t � TC/. Then R is a positive increasing
function with R.t/! ı for t ! TC. We further define the surface area

S.t/ WD

Z R.t/

�R.t/

.c1 C f .t; x/ � h.t; x// dx; t 2 .TC � ı=c1; T
C/:

Let n0 2 N be fixed such that tn > TC � ı=c1 for all n � n0. On the one hand, S.tn/ > 0
for all n � n0. Moreover, the dominated convergence theorem together with (3.10) imme-
diately imply that S.tn/! 0 for n!1.
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On the other hand, given t 2 .TC � ı=c1; T
C/, Stokes’ theorem together with

divv2.t/ D 0 in �2.t/ yields

S 0.t/ D

Z c1Cf .t;�R.t//

h.t;�R.t//

�
c1 C v

1
2.t;�R.t/; y/

�
dy

C

Z c1Cf .t;R.t//

h.t;R.t//

�
c1 � v

1
2.t;�R.t/; y/

�
dy:

Hence, in view of the bound (3.11), we have S 0.t/ � 0 for all t 2 .TC � ı=c1; TC/.
Consequently, S.tn/ � S.tn0/ > 0 for n � n0, in contradiction to S.tn/! 0 for n!1.
Therefore, our assumption was false and the argument is complete.

A. An extension of Privalov’s theorem

In this section, we fix p 2 .1;1/, ˛ 2 .0; 1/, ! 2 BUC˛.R/\Lp.R/, and a differentiable
function f WR!R with f 0 2BUC˛.R/. We study the map v WD v.f /Œ!� WR2 n�f !R2

given by the formula

v.x; y/ WD v.f /Œ!�.x; y/ WD
1

2�

Z
R

.f .s/ � y; x � s/

.x � s/2 C .y � f .s//2
!.s/ ds; (A.1)

where
�f WD ¹.x; f .x// W x 2 Rº:

Let us first note that v is the complex conjugate of a holomorphic function, see (A.3), so
that v is smooth, that is, v WD .v1; v2/ 2 C1.R2 n �f /: For this function we establish sev-
eral additional properties below. In particular, we extend Privalov’s theorem, cf., e.g., [35],
and prove that v is ˛-Hölder continuous in the domains above and below the graph �f , cf.
Theorem A.3.

As a first step, we show in Lemma A.1 that the one-sided limits of v when approaching
a point on �f from below or from above exist. This is a consequence of the classical
Plemelj formula, cf., e.g., [35], and of the observation that

v.x; y/ D
1

2�i

Z
�f

'.�/

� � z
d�; z D .x; y/ 2 R2 n �f ; (A.2)

where the function ' W �f ! C in the contour integral (A.2) is defined by

'.�/ D �
!.1;�f 0/

1C f 02
.s/; � D .s; f .s// 2 �f :

We note that ' 2 BUC˛.�f /, that is, ' is bounded and

Œ'�˛ WD sup
�¤�2�f

j'.�/ � '.�/j

j� � �j˛
<1:
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It is suitable to introduce the function F W c n �f ! c defined by

F.z/ WD v.z/ D
1

2�i

Z
�f

'.�/

� � z
d�: (A.3)

It is not difficult to prove that this function is holomorphic.

Lemma A.1. Let
�˙ WD ¹.x; y/ 2 R2 W ˙.y � f .x// > 0º:

The restrictions v˙ WD vj�˙ W �˙ ! R2 of the function v defined in (A.1) extend contin-
uously up to �f and, given x 2 R, we have

v˙.x; f .x// D
1

2�
PV

Z
R

.f .s/ � f .x/; x � s/

.x � s/2 C .f .x/ � f .s//2
!.s/ ds �

1

2

!.1; f 0/

1C f 02
.x/: (A.4)

Proof. Let z0 WD .x0;f .x0// 2 �f . In order to prove that vC can be extended continuously
in z0, we consider the polygonal path �1 � �C defined by the segments

Œ.x0 C 1; f .x0 C 1//; .x0 C 1;D/�; Œ.x0 C 1;D/; .x0 � 1;D/�;

Œ.x0 � 1;D/; .x0 � 1; f .x0 � 1//�

and oriented counterclockwise. Here we set

D WD 1C 2kf 0k1 Cmax¹f .x0 � 1/; f .x0 C 1/º:

Moreover, we let
�0 WD ¹.x; f .x// W jx � x0j � 1º

and define the closed curve � WD�0C�1 which is again oriented counterclockwise. Addi-
tionally, we define the function z' 2 BUC˛.�/ by setting

z'.�/ WD

8̂̂̂̂
<̂
ˆ̂̂:
'.�/; � 2 �0;

'C; � D .x0 C 1; y/; f .x0 C 1/ � y � D;

c
.1Cx0�x/'�C.1Cx�x0/'C

2
; � D .x;D/; jx � x0j � 1;

'�; � D .x0 � 1; y/; f .x0 � 1/ � y � D;

where '˙ WD '.x0 ˙ 1; f .x0 ˙ 1//. It is not difficult to check that

kz'k1 � k'k1; Œz'�˛ � 2k'k1 C Œ'�˛; j�j � 7.kf
0
k1 C 1/: (A.5)

Given z 2 �C which is sufficiently close to z0, it then holds thatZ
�f

'.�/

� � z
d� D

Z
�f ��0

'.�/

� � z
d� C

Z
�

z'.�/

� � z
d� �

Z
�1

z'.�/

� � z
d�:

Since z0 2 �0, Lebesgue’s dominated convergence shows thatZ
�f ��0

'.�/

� � z
d� �

Z
�1

z'.�/

� � z
d� �!

z!z0

Z
�f ��0

'.�/

� � z0
d� �

Z
�1

z'.�/

� � z0
d�:
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Additionally, according to the Plemelj formula, cf., e.g., [35], it holds that

1

2�i

Z
�

z'.�/

� � z
d� �!

z!z0

1

2�i
PV

Z
�

z'.�/

� � z0
d� C

1

2
'.z0/:

These two convergences imply that vC can indeed be extended continuously in z0, with
the value of the extension in z0 being as given in formula (A.4). Finally, the corresponding
claim for v� follows from a similar argument.

We next prove in Lemma A.2 that v is bounded in R2 n �f . In fact, in Lemma A.2,
we bound the L1-norm of v by a constant that depends explicitly on the norms of the
functions f and !.

Lemma A.2. There exists a constant C , which is independent of f and !, such that

kvk1 � C.k!kp C k!kBUC˛ /.1C kf
0
kBUC˛ /

2: (A.6)

Proof. We devise the proof in several steps.

Step 1. In this step, we provide bounds for the restrictions of v˙ to �f . Given x 2 R, it
follows from (A.4) and Hölder’s inequality that

jv˙.x; f .x//j � k!k1 C

Z
¹jsj>1º

ˇ̌̌!.x � s/
s

ˇ̌̌
ds

C

ˇ̌̌
PV

Z 1

�1

.f .x � s/ � f .x/; s/

s2 C .f .x/ � f .x � s//2
!.x � s/ ds

ˇ̌̌
� k!k1 C Ck!kp C I1 C I2;

where

I1 WD
ˇ̌̌ Z 1

�1

.f .x � s/ � f .x/; s/

s2 C .f .x � s/ � f .s//2
.!.x � s/ � !.x/ ds

ˇ̌̌
� Œ!�˛

Z 1

�1

jsj˛�1 ds � C Œ!�˛;

I2 WD k!k1

ˇ̌̌
PV

Z 1

�1

.f .x � s/ � f .x/; s/

s2 C .f .x/ � f .x � s//2
ds
ˇ̌̌
:

Concerning I2, we have

I2 � k!k1

Z 1

0

ˇ̌̌ .f .x � s/ � f .x/; s/

s2 C .f .x/ � f .x � s//2
C

.f .x C s/ � f .x/;�s/

s2 C .f .x/ � f .x C s//2

ˇ̌̌
ds

� 3k!k1

Z 1

0

jf .x C s/ � 2f .x/ � f .x � s/j

s2
ds

� 6k!k1Œf
0�˛

Z 1

0

jsj˛�1 ds

� Ck!k1Œf
0�˛:
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Gathering these estimates, we conclude that

kv˙j�f k1 � C.k!kp C k!kBUC˛ /.1C kf
0
kBUC˛ /: (A.7)

Step 2. Given z D .x; y/ 2 R2; we set d.z/ WD dist.z; �f /. We next prove that

sup
¹1=4�d.z/º

jv˙.z/j � Ck!kp: (A.8)

Indeed, if 1=4 � d.z/, then
p
s2 C .y � f .x � s//2 � max¹1=4; jsjº for all s 2 R, and

together with Hölder’s inequality we conclude from (A.1) that

jv.z/j �

Z
R

1

max¹1=4; jsjº
j!.x � s/j ds � Ck!kp:

Step 3. In this final step we prove that

sup
¹0<d.z/<1=4º

jv˙.z/j � C.k!kp C k!kBUC˛ /.1C kf
0
kBUC˛ /

2: (A.9)

We first consider the case when z 2�C. We associate to z a point z� D .x0; f .x0// 2 �f
such that

d.z/ D jz � z� j 2 .0; 1=4/:

Let � D �0 C �1 and z' be as defined in the proof of Lemma A.1 (with z� instead of z0).
Recalling (A.7), we have

jvC.z/j � jvC.z/ � vC.z�/j C jvC.z�/j

� T1 C T2 C T3 C C.k!kp C k!kBUC˛ /.1C kf
0
kBUC˛ /;

where

T1 WD
ˇ̌̌ Z
�f ��0

� '.�/
� � z

�
'.�/

� � z�

�
d�
ˇ̌̌
; T2 WD

ˇ̌̌ Z
�1

�
z'.�/

� � z
�
z'.�/

� � z�

�
d�
ˇ̌̌
;

T3 WD
ˇ̌̌ 1
2�i

Z
�

z'.�/

� � z
d� �

1

2�i
PV

Z
�

z'.�/

� � z�
d� �

1

2
'.z�/

ˇ̌̌
:

Given � 2 �1, we have min¹j� � zj; j� � z� jº � j� � z� j � 1=4 � 3=4 and (A.5) yields

T2 � 2k'k1j�1j � jz � z� j � Ck!k1.1C kf
0
k1/:

Moreover, since min¹j� � zj; j� � z� jº � max¹3=4; js � x0j=2º for all � D .s; f .s//

2 �f � �0, Hölder’s inequality leads us to

T1 �
8

3
k!kpjz � z� j

� Z
R

1

max¹3=2; jsjºp0
ds
�1=p0

� Ck!kp;

where p0 2 .1;1/ is the adjoint exponent to p, that is p�1Cp0�1D 1. In order to estimate
T3 we first note that

1

2�i

Z
�

1

� � z
d� D 1 and

1

2�i
PV

Z
�

1

� � z�
d� D

1

2
: (A.10)
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The first relation follows from Cauchy’s integral formula. The second identity is a direct
consequence of Plemelj’s formula, cf., e.g., [35]. Using these two identities we get

T3 D
ˇ̌̌ 1
2�i

Z
�

z'.�/ � z'.z�/

� � z
d� �

1

2�i

Z
�

z'.�/ � z'.z�/

� � z�
d�
ˇ̌̌
� T3a C T3b;

where

T3a WD
ˇ̌̌ Z
�1

.z � z�/.z'.�/ � z'.z�//

.� � z/.� � z�/
d�
ˇ̌̌
;

T3b WD
ˇ̌̌ Z
�0

.z � z�/.'.�/ � '.z�//

.� � z/.� � z�/
d�
ˇ̌̌
:

The arguments used to estimate T2 lead us to

T3a � k'k1j�1j � Ck!k1.1C kf
0
k1/:

In order to estimate T3b , we note that j� � zj � d.z/ D jz � z� j and j� � z� j � js � x0j
for all � D .s; f .s// 2 �0, and therefore

T3b � .1C kf
0
k1/Œ'�˛

Z
¹jsj<1º

s˛�1 ds � C.1C kf 0k1/Œ'�˛:

Observing that
Œ'�˛ � Ck!kBUC˛ .1C kf

0
kBUC˛ /;

the latter arguments show that (A.9) holds for z 2 �C. Arguing along the same lines,
it is easy to see that (A.9) is satisfied also for z 2 ��. The claim (A.6) follows now
from (A.7)–(A.9).

Now, in Theorem A.3, we extend Privalov’s theorem to the setting considered herein,
where the contour integral in (A.1) is defined over an unbounded graph.

Theorem A.3. The restrictions v˙ WD vj�˙ of the function v defined in (A.1) satisfy
v˙ 2 BUC˛.�˙/:

Proof. We only establish the Hölder continuity of vC DW .v1C; v
2
C/ (that of v� follows

from similar arguments). We devise the proof in several steps.

Step 1. Let z; z0 2 �C satisfy jz � z0j > 1=8. Then, according to Lemma A.1 and Lemma
A.2, we have

jvC.z/ � vC.z
0/j � 2kvk1 � 16kvk1jz � z

0
j
˛
� C jz � z0j˛:

Step 2. Given z 2 R2; we set again d.z/ WD dist.z; �f /. Assume now that z; z0 2 �C are
chosen such that jz � z0j � 1=8: Then, letting Szz0 WD ¹.1 � t /z C tz0 W t 2 Œ0; 1�º denote
the segment that connects z and z0, there exists at least a point � 2 Szz0 such that

d.�/ D j� � �� j D dist.Szz0 ; �f /:
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We distinguish two cases.

Step 2a. If jz � z0j < j� � �� j, then Szz0 � �C: Then we have

jvC.z/ � vC.z
0/j D jF.z/ � F.z0/j

D

ˇ̌̌ Z
Szz0

F 0.�/ d�
ˇ̌̌

D

ˇ̌̌ Z
Szz0

� 1

2�i

Z
�f

'.�/

.� � �/2
d�
�
d�
ˇ̌̌
;

where F is the holomorphic function defined in (A.3). Given � 2 Szz0 , it holds thatZ
�f

1

.� � �/2
d� D 0;

and therewith we get

jvC.z/ � vC.z
0/j D

ˇ̌̌ Z
Szz0

� 1

2�i

Z
�f

'.�/ � '.��/

.� � �/2
d�
�
d�
ˇ̌̌

� jz � z0j sup
�2Szz0

ˇ̌̌ Z
�f

'.�/ � '.��/

.� � �/2
d�
ˇ̌̌

� jz � z0j � Œ'�˛ sup
�2Szz0

Z
�f

j� � �� j
˛

j� � �j2
jd�j:

Recalling the definition of �� , we have j� � �� j � j� � �j C j� � �� j � 2j� � �j for all
� 2 Szz0 and � 2 �f , hence j� � �� j C j� � �� j � 3j� � �j. Noticing that jz � z0j< j� � �� j
for � 2 Szz0 , we obtain in view of these inequalities thatZ

�f

j� � �� j
˛

j� � �j2
jd�j � 9

Z
�f

.j� � �� j C j� � �� j/
˛�2
jd�j

� 9.1C kf 0k1/

Z
R
.jsj C j� � �� j/

˛�2 ds

� C j� � �� j
˛�1
� C jz � z0j˛�1;

and therefore jvC.z/ � vC.z0/j � C jz � z0j˛:

Step 2b. We now consider the second case when jz � z0j � j� � �� j. Since � 2 Szz0 , we
have

max¹jz � �� j; jz
0
� �� jº � max¹jz � �j; jz0 � �jº C j� � �� j � 2jz � z

0
j � 1=4:

Assuming there exists a constant C > 0 such that

jvC.z/ � vC.z0/j � C jz � z0j
˛
8 z0 2 �f and z 2 �C with jz � z0j � 1=4; (A.11)
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we then have

jvC.z/ � vC.z
0/j � jvC.z/ � vC.��/j C jvC.z

0/ � vC.��/j

� C
�
jz � �� j

˛
C jz0 � �� j

˛
�

� C jz � z0j˛;

and the claim then follows.
Step 3. It remains to establish (A.11). Let z0 2 �f and z 2�C satisfy jz � z0j � 1=4. Also
let � D �0 C �1, and z' be as defined in the proof of Lemma A.1. Recalling Lemma A.1,
it follows similarly as in Step 3 of the proof of Lemma A.2 that

jvC.z/ � vC.z0/j �
ˇ̌̌ Z
�f ��0

� '.�/
� � z

�
'.�/

� � z0

�
d�
ˇ̌̌
C

ˇ̌̌ Z
�1

�
z'.�/

� � z
�
z'.�/

� � z0

�
d�
ˇ̌̌

C

ˇ̌̌ 1
2�i

Z
�

z'.�/

� � z
d� �

1

2�i
PV

Z
�

z'.�/

� � z0
d� �

1

2
'.z0/

ˇ̌̌
DW

3X
iD1

Ti ;

with
T1 C T2 � C jz � z0j � C jz � z0j

˛:

It remains to estimate the term T3 which, in view of (A.10), can be written as

T3.z/ WD
ˇ̌̌ 1
2�i

Z
�

z'.�/

� � z
d� �

1

2�i
PV

Z
�

z'.�/

� � z0
d� �

1

2
'.z0/

ˇ̌̌
�

3X
iD1

Si ;

where, letting z� be defined by the relation d.z/ D jz � z� j, we set

S1 WD j'.z�/ � '.z0/j; S2 WD
ˇ̌̌ Z
�1

�
z'.�/ � z'.z�/

� � z
�
z'.�/ � z'.z0/

� � z0

�
d�
ˇ̌̌
;

S3 WD
ˇ̌̌ Z
�0

�'.�/ � '.z�/
� � z

�
'.�/ � '.z0/

� � z0

�
d�
ˇ̌̌
:

Noticing that jz� � z0j � jz� � zj C jz � z0j � 2jz � z0j, we obtain

S1 � Œ'�˛jz� � z0j
˛
� C jz � z0j

˛:

Moreover, given � 2 �1; we have min¹j� � zj; j� � z0jº � 3=4 and together with (A.5)
we get

S2 �
16

9

Z
�1

.jz'.�/ � z'.z�/j � jz � z0j C j'.z0/ � '.z�/j/ jd�j

� C j�1j.k'k1jz � z0j C Œ'�˛jz0 � z� j
˛/ � C jz � z0j

˛:



The multiphase Muskat problem with equal viscosities in 2D 191

In order to estimate S3, we let � WD jz � z0j 2 .0; 1=4�, we set z0 DW .x0; f .x0//, and we
introduce the curve �� WD ¹.s; f .s// W js � x0j � 2�º. It then holds that

S3 � S3a C S3b C S3c ;

where

S3a WD
ˇ̌̌ Z
��

�'.�/ � '.z�/
� � z

�
'.�/ � '.z0/

� � z0

�
d�
ˇ̌̌
;

S3b WD jz � z0j �
ˇ̌̌ Z
�0���

'.�/ � '.z�/

.� � z/.� � z0/
d�
ˇ̌̌
;

S3c WD
ˇ̌̌ Z
�0���

'.z0/ � '.z�/

� � z0
d�
ˇ̌̌
:

The relation jz � z� j � jz � z0j D � implies that z� 2 ��: Taking also into account the
inequality j� � z� j � j� � zj C jz � z� j � 2j� � zj for � 2 �f , we have

S3a � 2Œ'�˛

Z
��

.j� � z� j
˛�1
C j� � z0j

˛�1/ jd�j

� C Œ'�˛.1C kf
0
k1/�

˛
� C jz � z0j

˛:

Given � 2 �0 � �� , the relation j� � z0j � 2� D 2jz � z0j leads us to

j� � zj � j� � z0j � jz � z0j � � D jz � z0j;

2j� � z0j � j� � z0j C jz0 � zj � j� � zj;

3j� � zj � j� � z0j � jz � z0j C 2jz � z0j D j� � z0j C jz � z0j:

Recalling also that j� � z� j � 2j� � zj, we then obtain

S3b � 4jz � z0j � Œ'�˛

Z
�0���

j� � zj˛�2 jd�j

� C jz � z0j � Œ'�˛

Z
�0���

.j� � z0j C jz � z0j/
˛�2
jd�j

� C Œ'�˛.1C kf
0
k1/jz � z0j.2�C jz � z0j/

˛�1
� C jz � z0j

˛:

Finally, since jz0 � z� j � 2jz � z0j, we have

S3c � Œ'�˛jz0 � z� j
˛
ˇ̌̌ Z
�0���

1

� � z0
d�
ˇ̌̌
� C jz0 � zj

˛
ˇ̌̌ Z
�0���

1

� � z0
d�
ˇ̌̌
;

and, after identifying the real and imaginary parts of the integral, we obtain the following:ˇ̌̌ Z
�0���

1

� � z0
d�
ˇ̌̌
�

ˇ̌̌ Z
¹2��jsj�1º

s C f 0.x0 � s/.f .x0/ � f .x0 � s//

s2 C .f .x0/ � f .x0 � s/2
ds
ˇ̌̌

C

ˇ̌̌ Z
¹2��jsj�1º

sf 0.x0 � s/ � .f .x0/ � f .x0 � s//

s2 C .f .x0/ � f .x0 � s/2
ds
ˇ̌̌
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�

ˇ̌̌1
2

ln
� .2�/2 C .f .x0/ � f .x0 C 2�//2
.2�/2 C .f .x0/ � f .x0 � 2�//2

�
1C .f .x0/ � f .x0 � 1//

2

1C .f .x0/ � f .x0 C 1//2

�ˇ̌̌
C Œf 0�˛

Z
¹2��jsj�1º

jsj˛�1 ds � ln.1C kf 0k21/C C Œf
0�˛:

Hence, we have shown that S3c � C jz0 � zj˛ and the proof is completed.

We conclude this section with the following result.

Lemma A.4. It holds that

@xv
1
C @yv

2
D 0 D @yv

1
� @xv

2 in R2 n �f (A.12)

and

v˙.z/! 0 for z 2 �˙ with jzj ! 1: (A.13)

Proof. The relations (A.12) follow by direct computation. We next prove that vC vanishes
at infinity (the claim for v� follows by arguing along the same lines). We divide the proof
in two steps.

Step 1. We first show that vC.x;f .x//! 0 for jxj !1: Recalling Lemma A.1 and (2.2),
we write

vC.x; f .x// D
1

2�

�
� B01;1.f /Œ!�; B

0
0;1.f /Œ!�

�
.x/ �

1

2

!.1; f 0/

1C f 02
.x/; x 2 R:

Because ! 2 BUC˛.R/ \ Lp.R/, the last term on the right vanishes at infinity. We next
prove that, given n;m 2 N, we also have

B0n;m.f /Œ!�.x/! 0 for jxj ! 1. (A.14)

Thus, let " > 0 be given and choose N > 0 such that

kf 0kn1k!kp

� 2

.p0 � 1/N p0�1

�1=p0
�
"

2
;

where p0 is the adjoint exponent to p. This choice together with Hölder’s inequality then
yields

jB0n;m.f /Œ!�.x/j � T .x/C kf
0
k
n
1k!kp

� 2

.p0 � 1/N p0�1

�1=p0
� T .x/C

"

2
;

where

T .x/ WD
ˇ̌̌
PV

Z
¹jsj�N º

c

�
ıŒx;s�f=s

�n�
1C

�
ıŒx;s�f=s

�2�m !.x � s/s
ds
ˇ̌̌
; x 2 R:
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In order to estimate T .x/ we note that

T .x/ � C

Z N

0

ˇ̌̌!.x � s/ � !.x C s/
s

ˇ̌̌
C j!.x C s/j �

ˇ̌̌f .x C s/ � 2f .x/C f .x � s/
s2

ˇ̌̌
ds;

with C depending only on n, m, and kf 0k1. Taking into account that ! vanishes at
infinity, we obtain for jxj > M , where M > N is chosen to be sufficiently large, that

T .x/ � C
�
Œ!�1=2˛ k!k

1=2

L1.¹jxj>M�N º/
C k!kL1.¹jxj>M�N º/

�
�
"

2
:

This establishes (A.14).

Step 2. We now prove that vC.z/! 0 for jzj ! 1: Let " > 0 be given. From Step 1 we
find x0 > 0 such that jvC.x; f .x//j � "=2 for all jxj � x0: Given z D .x; y/ 2 �C, let
again d.z/ WD dist.z; �f / D jz � z� j with z� 2 � .

Assume first that d.z/ � ı, where ı WD min¹1; "=.2.1C ŒvC�˛//º. If z D .x; y/ 2�C
satisfies d.z/� ı, and jxj � x1, we deduce for the corresponding point z� WD .x� ; f .x�//
that jx� j � x0. Hence, for all such z 2 �C, Theorem A.3 leads us to

jvC.z/j D jvC.z/ � vC.z�/j C jvC.z�/j � ŒvC�˛d.z/C "=2 � ":

Assume now that d.z/ � ı. Let s0 > 0 be chosen such that

k!kp

� 2

.p0 � 1/s
p0�1
0

�1=p0
�
"

2
:

It then holds that

jvC.z/j �

Z
R

j!.x � s/jp
s2 C .y � f .x � s//2

ds

� T .z/C

Z
¹jsj>s0º

j!.x � s/j

jsj
ds

� T .z/C k!kp

� 2

.p0 � 1/N p0�1

�1=p0
� T .z/C

"

2
;

where

T .z/ WD

Z
¹jsj<s0º

j!.x � s/jp
s2 C .y � f .x � s//2

ds; z D .x; y/ 2 �C; d.z/ � ı:

Let N > 0 be chosen such that

4s0k!k1

N
C
2s0k!kL1.¹jxj�N º/

ı
�
"

2
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and set M1 WD N C s0; M2 WD N C 2kf kL1.¹jxj�M1Cs0º/, and M WD 2max¹M1; M2º:

Given jzj �M , we distinguish two cases.
(1) If jxj �M1; then

T .z/ �
2s0

ı
k!kL1.¹jxj�M1�s0º/ D

2s0

ı
k!kL1.¹jxj�N º/ �

"

2
:

(2) If jx1j �M1 and jyj �M2, then jy � f .x � s/j � jy=2j, and therefore

T .z/ �
4s0

jyj
k!k1 �

4s0

N
k!k1 �

"

2
:

Hence jvC.z/j � " for all z 2 �C that satisfy d.z/ � ı and jzj �M .
To summarize, for all z 2 �C with jzj � max¹M; x1 C kf kL1.¹jxj�x1C1º/ C 1º, we

have established that jvC.z/j � ", and this completes the proof.
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