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Fully nonlinear free transmission problems
with nonhomogeneous degeneracies

Cristiana De Filippis

Abstract. We prove existence and regularity results for free transmission problems governed by
fully nonlinear elliptic equations with nonhomogeneous degeneracies.

1. Introduction

In this paper we provide existence and regularity results for the free transmission problem�
jDujp

C1¹u>0ºCp�1¹u<0º C a.x/1¹u>0ºjDuj
q

C b.x/1¹u<0ºjDuj
s
�
F.D2u/ D f .x/ in �; (1.1)

where F.�/ is a uniformly elliptic second order operator, a.�/ and b.�/ are continuous,
nonnegative functions, f .�/ is continuous and bounded and p�, pC, q, s are nonnegative
numbers; we refer to Sections 2.2 and 2.3 for more details on the natural functional set-
ting related to (1.1). Equation (1.1) models anisotropic diffusion processes characterized
by multiple degeneracy phenomena such as material depending conductivity or electro-
magnetic processes in nonhomogeneous ferromagnetic media, cf. [2]. It is also connected
to the analysis of composite, anisotropic materials, characterized by the coexistence of
different media, whose viscosity features are linked to the exponents dictating the growth
of the gradient variable in (1.1), and that are mixed according to the behavior of the mod-
ulating coefficients a.�/ and b.�/, see [30]. In fact, the degeneracy law displayed in (1.1)
develops discontinuities along @¹x 2 �Wu.x/ > 0º and @¹x 2 �Wu.x/ < 0º, and it is also
influenced by the possible vanishing of the coefficients a.�/, b.�/. The various regions
where each degeneracy regime is in force are in part unknown a priori as they vary
according to the sign of solutions, the transmission interface can be interpreted as a free
boundary, and a drastic degeneracy variation occurs in correspondence of the zero sets
of the modulating coefficients ¹x 2 �W a.x/ D 0º and ¹x 2 �W b.x/ D 0º. Transmission
problems are essentially related to the analysis of models involving different constitu-
tive laws holding in separate subregions of the domain. The systematic study of such
problems started with [45] and since then it has undergone an intensive development, see
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[2, 14, 35, 36, 44, 46, 49] and references therein. We mention in particular [35], where the
authors consider the degenerate free transmission problem

jDuj�11¹u>0ºC�21¹u<0ºF.D2u/ D f .x/ in �; (1.2)

where �1; �2 are nonnegative constants, and prove existence and optimal Hölder continuity
for the gradient of solutions to the associated Dirichlet problem. Notice that the degener-
acy law appearing in (1.2) is close to being homogeneous, in the sense that for any fixed
point it behaves as a power. Another way of interpreting equation (1.2) is as an instance
of a fully nonlinear elliptic equation with discontinuous variable exponent

jDujp.x/F.D2u/ D f .x/ in �: (1.3)

The regularity theory for (1.3) has been developed in [12], under the assumption that
the exponent is a continuous function; however, all the estimates obtained there do not
depend on its modulus of continuity. In sharp contrast with the models described so far,
equation (1.1) features a strongly anisotropic structure in which several nonhomogeneous
phases coexist and switch according to the sign of solutions. More precisely, in correspon-
dence of positive values of u (resp. negative values of u) we see the nonhomogeneous
degeneracy ŒjDujp

C

C a.x/jDujq� (resp. ŒjDujp� C b.x/jDujs�). Degeneracies of Dou-
ble Phase type have been introduced in [26], where the Hölder continuity of the gradient
of solutions to fully nonlinear elliptic equations such as

ŒjDujp C a.x/jDujq�F .D2u/ D f .x/ in �; (1.4)

where 0 � p � q, 0 � a.�/ 2 C.�/ and f 2 C.�/\L1.�/, was investigated. This new
model received lots of attention recently in the setting of free boundary problems, non-
homogeneous1-laplacian equations or obstacle problems, cf. [20–22], while in [32] the
authors carefully combine the approaches of [12, 26] to derive local C 1;˛0 -regularity for
the viscosity solution of the fully nonlinear equation with variable exponents and nonho-
mogeneous degeneracy

ŒjDujp.x/ C a.x/jDujq.x/�F .D2u/ D f .x/ in �: (1.5)

These results also cover Multi Phase equations with variable exponents, i.e., a generaliza-
tion of (1.3), (1.4) and (1.5):�

jDujp.x/ C

�X
�D1

a�.x/jDuj
p�.x/

�
F.D2u/ D f .x/ in �: (1.6)

In this framework, we introduce a new model for anisotropic free transmission problems
which is essentially based on the alternation (according to the positivity of solutions) of
degeneracies of type (1.4), wherein we consider a Dirichlet problem governed by (1.1)
and prove that at least a solution exists. This is the content of the following theorem:
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Theorem 1.1. Let � � Rn be an open, bounded domain satisfying the uniform exterior
sphere condition. Assume (2.6), (2.1), (2.2), (2.3), (2.4) and let g 2 C.@�/. Then there
exists a viscosity solution u 2 C.�/ to Dirichlet problem´�
jDujpu.x/ C a.x/1¹u>0ºjDuj

q
C b.x/1¹u<0ºjDuj

s
�
F.D2u/ D f .x/ in �;

u D g on @�;
(1.7)

where pu.x/ WD pC1¹u>0º.x/C p�1¹u<0º.x/:

To prove Theorem 1.1 we first approximate a regularized variant of equation (1.7),
obtained by relating the switch of degeneracies to the positivity of an arbitrary, globally
continuous function, with a family of fully nonlinear Multi Phase equations with contin-
uous variable exponents, cf. (1.6), and prove local Hölder continuity estimates that are
uniform with respect to the parameter of approximation and to the moduli of continu-
ity of the variable exponents and of the coefficients, see Appendix A. Then we establish
a comparison principle for the approximating Dirichlet problems, construct continuous
supersolutions/subsolutions and design a recursive procedure that will ultimately produce
a solution to problem (1.7) via Perron theorem. Once the matter of existence of solutions
to (1.7) has been settled, we turn to regularity. In this perspective, we have

Theorem 1.2. Assume (2.6), (2.1), (2.2), (2.3), (2.4) and let u 2 C.�/ be a viscosity
solution of equation (1.1). Then there exists ˛0 � ˛0.n; �; ƒ; p

C; p�/ 2 .0; 1/ so that
u 2 C

1;˛0
loc .�/. In particular, whenever �0 b � is an open set it holds that

ŒDu�0;˛0I�0 � c.data; kukL1.�/; kf kL1.�/; dist .�0; @�//: (1.8)

We refer to Section 2.2 for a description of the various quantities appearing in the
above statement. The proof of Theorem 1.2 consists in three main steps. The first key
observation to be made is that any viscosity solution u 2 C.�/ of (1.1), in the sense of
Definition 2.4 below, turns out to be a viscosity subsolution of

min
®
F.D2u/; ŒjDujp

C

C a.x/jDujq�F .D2u/; ŒjDujp� C b.x/jDujs�F .D2u/
¯

D kf kL1.�/ (1.9)

and a viscosity supersolution to

max
®
F.D2u/; ŒjDujp

C

C a.x/jDujq�F .D2u/; ŒjDujp� C b.x/jDujs�F .D2u/
¯

D �kf kL1.�/: (1.10)

Then we blow-up u and define a map with at most unitary oscillation that is a viscosity
subsolution of an equation with the same structure of (1.9) and a viscosity supersolu-
tion of an equation similar to (1.10), both having arbitrarily small right-hand side datum.
This blow-up procedure is particularly delicate due to the severe nonhomogeneity of
(1.9)–(1.10) caused by the presence of different gradient powers. In contrast with the
single power degeneracy case [38], the quantities involving the gradient variable on the
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left-hand side of (1.9)–(1.10) are not identically preserved after scaling; nonetheless, the
Multi Phase structure can still be reproduced by introducing new modulating coefficients
that incorporate the inhomogeneity excess. This way it is possible to reduce (1.9)–(1.10)
to a smallness regime at the price of losing (uniform) control on both theL1-norm and the
modulus of continuity of the coefficients during the blow-up procedure, see Section 5.1.
For this reason, all the bounding constants appearing in the preliminary compactness
estimates are carefully tracked in order to guarantee that none of them depend on the coef-
ficients, which is coherent with the findings of [12, 22, 26, 32, 35]. Within the smallness
framework, delicate perturbation arguments allow us to build a tangential path connecting
viscosity subsolutions/supersolutions of (1.9)–(1.10) to a viscosity solution of the limiting
profile—a homogeneous problem of the form

F.D2h/ D 0 in B1.0/; (1.11)

for which the Krylov–Safonov regularity theory is available. At this stage, the core of the
proof becomes transferring such regularity from solutions of (1.11) to solutions of (1.1)
via an iterative linearization scheme, eventually leading to (1.8). It is worth mentioning
that the Hölder continuity exponent appearing in (1.8) depends on .n; �;ƒ/, particularly
through the exponent associated to the maximal regularity available for solutions to prob-
lem (1.11). We refer to Section 2.4 for more information on this matter. We can safely
conjecture that the strategies exposed here and in [12, 26, 35] provide a solid blueprint for
studying also in the setting of free transmission problems models that are more anisotropic
than (1.3)–(1.6), such as�

jDuj log.1C jDuj/C a.x/jDujq
�
F.D2u/ D f .x/ in �: (1.12)

or, whenever '.�/ and  .�/ are Orlicz functions,�
'.jDuj/C a.x/ .jDuj/

�
F.D2u/ D f .x/ in �: (1.13)

In (1.12)–(1.13), 0 � a.�/ 2 C.�/ is expected and no restrictions on the size of q nor
constraints linking '.�/ and  .�/ should be imposed. Equations (1.3)–(1.6) as well as
(1.12)–(1.13) are sophisticated examples of degenerate fully nonlinear elliptic equations,
whose most celebrated prototype is

jDujpF.D2u/ D f in �; (1.14)

see, e.g., [3, 11, 38]. Several aspects of this class of partial differential equations are very
well known: comparison principle and Liouville type theorems [7], properties of eigen-
values and eigenfunctions [8], Alexandrov–Bakelman–Pucci estimates [24, 37], Harnack
inequalities [25, 37], and regularity [9–11, 23, 38, 39].

1.1. Nonhomogeneous structures in the variational setting

As one could expect, equations (1.3)–(1.6) and (1.12)–(1.13) have a variational counter-
part. Although the study of nonhomogeneous structures in the fully nonlinear framework
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started very recently with [12] for variable exponents and [26] in the Double Phase case,
in the variational setting this field is the object of intense investigation and the first results
date back to the pioneering papers [41,42], where the author introduced the so-called func-
tionals with .p; q/-growth, aimed at treating in a unified fashion some regularity aspects
of several anisotropic functionals or equations with unbalanced polynomial growth. Later
on, considerable efforts were devoted to the analysis of specific nonautonomous models
such as the p.x/-Laplacian [1, 47, 50]

W
1;1

loc .�/ 3 w 7!

Z
�

jDwjp.x/ dx; 1 < inf
x2�

p.x/ � p.�/ 2 C 0;˛.�/ (1.15)

or the Double Phase energy [6, 17, 27]

W
1;1

loc .�/ 3 w 7!

Z
�

�
jDwjp C a.x/jDujq

�
dx; (1.16)

1 < p � q;
q

p
� 1C

˛

n
; 0 � a.�/ 2 C 0;˛.�/:

See also [29] for the analysis of nonhomogeneous equations related to (1.15)–(1.16) and
obstacle problems. A nontrivial extension of (1.16) is the Multi Phase energy [4, 30]

W
1;1

loc .�/ 3 w 7!

Z
�

h
jDwjp C

�X
�D1

a�.x/jDuj
p�
i
dx; (1.17)

0 � a�.�/ 2 C
0;˛�.�/; 1 �

p�

p
� 1C

˛�

n
; 1 < p � p1 � � � � � p� ;

which features several phase transitions where the functional changes its ellipticity. This
seems to be the right choice for modeling anisotropic free transmission problems and
in fact, its fully nonlinear version (1.6) is fundamental for the formulation of (1.1). A
borderline version of (1.16) is the following [28]:

W
1;1

loc .�/ 3 w 7!

Z
�

�
jDwj log.1C jDwj/C a.x/jDwjq

�
dx;

0 � a.�/ 2 W 1;d .�/ with d > n; q < 1C
1

n
�
1

d
;

which in nondivergence form becomes (1.12). Other models inspired by (1.15)–(1.16) are
the Double Phase energy with variable exponents [48, 51], see (1.5)–(1.6), and the gen-
eralized Double Phase integral [13], cf. (1.13); we further refer to [43] for an account
of the state of the art on this matter. The peculiarity of these functionals is that in the
variational setting there is a strict interplay between the regularity of the x-depending
coefficients and the regularity of minimizers, therefore each of them has to be treated
in a very specific way that takes into account the structure of the operator involved.
Only recently has a unified approach been proposed within the framework of Musielak–
Orlicz spaces, see [34]. As already observed in [26, Section 1], there is a huge difference
in the behavior of the nonhomogeneous structures listed above between the variational
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and the nonvariational setting, and this phenomenon is confirmed by Theorem 1.2 for
anisotropic free transmission problems. In sharp contrast to what happens for instance with
(1.16)–(1.17), where a sharp constraint linking the Hölder continuity exponent of a�.�/
with the growth exponents p, p� is needed to get regular minima [31, 33], here the plain
continuity of a.�/ and b.�/ suffices, cf. (2.3). In fact, to prove our regularity results, we
just ask that the coefficients a.�/, b.�/ are continuous and no restriction on the size of the
differences 0 � q � pC, 0 � s � p� is imposed, see (2.2). This makes Theorem 1.2 sharp
from the viscosity theory viewpoint.

Organization of the paper. This paper is organized as follows: In Section 2 we display
our notation, describe the main assumptions considered by Theorems 1.1 and 1.2 and
recall some well-known results that will be needed later on. In Section 3 we prove Theo-
rem 1.1, i.e., that there exists at least one solution to Dirichlet problem (1.7). In Section 4
we establish a uniform Hölder continuity result for solutions of suitable switched equa-
tions related to (1.1). Finally, Section 5 contains a description of the scaling properties
of the viscosity differential inequalities (1.9)–(1.10), a “harmonic” approximation lemma,
and the proof of Theorem 1.2.

2. Preliminaries

We shall split this section in three parts: first, we display our notation, then we collect
the main assumptions governing problem (1.1), and finally we report some well-known
results on the theory of viscosity solutions to uniformly elliptic operators.

2.1. Notation

In this paper, � � Rn, n � 2 is an open and bounded domain and the open ball of Rn

centered at x0 with positive radius % is denoted by B%.x0/ WD ¹x 2 RnW jx � x0j < %º.
When irrelevant or clear from the context, we will omit indicating the center, so that
B% � B%.x0/. In particular, for % D 1 and x0 D 0, we shall simply denote B1 � B1.0/.
By �.n/ we mean the space of n � n symmetric matrices. As usual, we denote by c
a general constant larger than one. Different occurrences from line to line will be still
indicated by c and relevant dependencies from certain parameters will be emphasized
using brackets, i.e., c.n; p/ means that c depends on n and p. With z; � 2 Rn, � 2 Œ0; 1�,
p; q; s 2 Œ0;1/ and a.�/, b.�/ being nonnegative functions, we define

`�.z/ WD
p
�2 C jzj2; pv.x/ WD p

C1¹v>0º C p�1¹v<0º

and

Hq.x; zI �/ WD
�
j� C zjp

C

C a.x/j� C zjq
�
;

Hs.x; zI �/ WD
�
j� C zjp

�

C b.x/j� C zjs
�
;

H.x; v; zI �/ WD
�
j� C zjpv.x/ C a.x/1¹v>0ºj� C zj

q
C b.x/1¹v<0ºj� C zj

s
�
:
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When � � 0, we shall simply write Hq.x; zI 0/ � Hq.x; z/, Hs.x; zI 0/ � Hs.x; z/ and
H.x; zI 0/ � H.x; z/. If gW�! Rk is any map, U � � is an open set and ˇ 2 .0; 1� is
a given number, we shall write

Œg�0;ˇ IU WD sup
x;y2U Ix 6Dy

jg.x/ � g.y/j

jx � yjˇ
; Œg�0;ˇ WD Œg�0;ˇ I�:

It is well known that the quantity defined above is a seminorm and when Œg�0;ˇ IU <1,
we will say that g belongs to the Hölder space C 0;ˇ .U;Rk/. We stress also that g 2
C 1;ˇ .U;Rk/, provided that

Œg�1Cˇ IU WD sup
%>0;x2U

inf
�2Rn;�2R

sup
y2B%.x/\U

%�.1Cˇ/jg.y/ � � � y � �j <1:

Finally, I denotes the identity of Rn�n and given any n� nmatrixA, by tr.A/we mean the
trace ofA, i.e., the sum of all its eigenvalues, by tr.AC/ the sum of all positive eigenvalues
of A, and by tr.A�/ the sum of all negative eigenvalues of A.

2.2. Main assumptions

When dealing with equation (1.1) or with Dirichlet problem (1.7), the assumptions which
follow are enforced. As mentioned before, the set��Rn is an open and bounded domain
with smooth boundary. The nonlinear operator F.�/ is continuous and .�; ƒ/-elliptic in
the sense of (2.6) below. Moreover,

F 2 C.�.n/;R/; F .0/ D 0: (2.1)

Concerning the nonhomogeneous degeneracy term appearing in (1.1), we shall ask that
the exponents pC; p�; q; s satisfy

0 � pC � q and 0 � p� � s; (2.2)

the modulating coefficients a.�/, b.�/ are such that

0 � a.�/ 2 C.�/ and 0 � b.�/ 2 C.�/; (2.3)

and the forcing term f is such that

f 2 C.�/ \ L1.�/: (2.4)

To simplify the notation, we shall collect the main parameters related to the problems
under investigation in the shorthand data WD .n; �;ƒ; pC; p�; q; s/.

2.3. On uniformly elliptic operators

A map G 2 C.� �Rn � �.n/;R/ is monotone if

G.x; z;M/ � G.x; z;N / for all M;N 2 �.n/ such that M � N: (2.5)



C. De Filippis 204

The .�; ƒ/-ellipticity condition for an operator F W �.n/! R prescribes that, whenever
A;B 2 �.n/ are symmetric matrices with B � 0,

� tr.B/ � F.A/ � F.AC B/ � ƒ tr.B/ (2.6)

for some fixed constants 0 < � � ƒ. With this definition, F.A/ WD � tr.A/ is uniformly
elliptic with � D ƒ D 1 [38], so the usual Laplace operator “��” is uniformly ellip-
tic. Moreover, it is easy to see that if L is any fixed, positive constant, then the operator
FL.M/ WD LF. 1

L
M/ satisfies (2.6) with the same constants 0 < � � ƒ. Moreover, (2.6)

is also satisfied by the operator zF .M/ WD �F.�M/ , cf. [26, Section 2.2]. In this frame-
work, it is important to introduce the Pucci extremal operators P˙

�;ƒ
.�/, which are, respec-

tively, the maximum and the minimum of all the uniformly elliptic functions F.�/ with
F.0/ D 0. In particular, they admit the compact form

PC
�;ƒ

.A/ D �ƒ tr.A�/ � � tr.AC/ and P��;ƒ.A/ D �ƒ tr.AC/ � � tr.A�/: (2.7)

We can give an alternative formulation of (2.6) involving the Pucci extremal operators as
follows:

P��;ƒ.B/ � F.AC B/ � F.A/ � PC
�;ƒ

.B/; (2.8)

that holds for all A;B 2 �.n/. Next, we turn our attention to equation

G�.x;Du;D
2u/ WD G.x; � CDu;D2u/ D 0 in �; (2.9)

with G.�/ continuous and satisfying (2.5) and � 2 Rn an arbitrary vector. The concept of
viscosity solution for equation (2.9) can be explained as follows, cf. [5, 18]:

Definition 2.1. A lower semicontinuous function v is a viscosity supersolution of (2.9) if
whenever ' 2 C 2.�/ and x0 2 � is a local minimum point of v � ', then

G�.x0;D'.x0/;D
2'.x0// � 0;

while an upper semicontinuous functionw is a viscosity subsolution to (2.9) provided that
if x0 is a local maximum point of w � ', it holds that

G�.x0;D'.x0/;D
2'.x0// � 0:

The map u 2 C.�/ is a viscosity solution of (2.9) if it is at the same time a viscosity
subsolution and a viscosity supersolution.

Another important notion is the one of subjets and superjets [5].

Definition 2.2. Let vW�! R be an upper semicontinuous function and wW�! R be a
lower semicontinuous function.

• A pair .z; X/ 2 Rn � �.n/ is a superjet of v at x 2 � if

v.x C y/ � v.x/C z � y C
1

2
Xy � y C o.jyj2/:
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• A pair .z; X/ 2 Rn � �.n/ is a subjet of w at x 2 � if

w.x C y/ � w.x/C z � y C
1

2
Xy � y C o.jyj2/:

• A pair .z; X/ 2 Rn � �.n/ is a limiting superjet of v at x 2 � if there exists a
sequence ¹xj ; zj ; Xj º !j!1 ¹x; z; Xº such that ¹zj ; Xj º is a superjet of v at xj
and v.xj /!j!1 v.x/.

• A pair .z;X/ 2 Rn � �.n/ is a limiting subjet of w at x 2� if there exists a sequence
¹xj ; zj ; Xj º !j!1 ¹x; z; Xº such that ¹zj ; Xj º is a subjet of w at the point xj and
w.xj /!j!1 w.x/.

Now we are in position to present a variation to the maximum principle [5, Lemma 1
and Corollaries 1–2], [18, Theorem 3.2].

Proposition 2.3. Let v be an upper semicontinuous viscosity subsolution of (2.9), w
a lower semicontinuous viscosity supersolution of (2.9), U b � an open set and  2
C 2.U �U/. If .xx; xy/ 2 U �U is a local maximum point of v.x/�w.y/� .x; y/, then
there exists a positive threshold yı� yı.kD2 k/ so that for any ı 2 .0;yı/ there are matrices
Xı ; Yı 2 �.n/ satisfying

G�.xx; v.xx/; @x .xx; xy/;Xı/ � 0 � G�.xy;w.xy/;�@y .xx; xy/; Yı/;

and the matrix inequality

�
1

ı
I �

�
Xı 0

0 �Yı

�
� D2 .xx; xy/C ıI

holds true.

So far, we have described the main features of equations governed by a continuous
map G.�/, while in the forthcoming sections we shall deal with problems with discontin-
uous degeneracies of the type�

j� CDujpv.x/ C a.x/1¹v>0ºj� CDuj
q
C b.x/1¹v<0ºj� CDuj

s
�
F.D2u/

D f .x/ in �; (2.10)

where assumptions (2.6), (2.1), (2.2), (2.3), and (2.4) are in force, � 2 Rn is any vector,
v 2 C.�/, and pv.x/ WD pC1¹v>0º.x/C p�1¹v<0º.x/. In light of the discussion in [35,
Section 2.2], we define a viscosity solution to (2.10) as follows.

Definition 2.4. Let v 2 C.�/ be a function, � 2 Rn be a vector and assumptions (2.6),
(2.1), (2.2), (2.3), and (2.4) be in force. The map u 2 C.�/ is a viscosity solution to (2.10)
if

• in the set ¹x 2 �W v.x/ > 0º \ ¹x 2 �W v.x/ < 0º, u is a viscosity solution of (2.10);
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• u is a viscosity subsolution of

min
®
F.D2u/;Hq.x;DuI �/F.D

2u/;Hs.x;DuI �/F.D
2u/

¯
D f .x/

in ¹x 2 �W v.x/ D 0º;

• u is a viscosity supersolution of

max
®
F.D2u/;Hq.x;DuI �/F.D

2u/;Hs.x;DuI �/F.D
2u/

¯
D f .x/

in ¹x 2 �W v.x/ D 0º.

Clearly, the above definition also applies to (1.1) by letting v 2 C.�/ be the unknown
function u, so from now on, whenever we refer to a continuous viscosity solution of
equations (1.1) or (2.10) or to Dirichlet problem (1.7), we shall mean it in the sense of
Definition 2.4. The previous position can be justified by noticing that although the ingre-
dients of (2.10) are discontinuous, they are everywhere defined and this allows us to work
within the realm of C -viscosity solutions. If we set

H�.x; v; z; X/ WD
�
H.x; v; zI �/F.X/ � f .x/

�
and introduce the lower and upper semicontinuous envelopes, denoted by H��.�/ and H�

�
.�/

respectively, then u 2 C.�/ is a viscosity solution of (2.10) if and only if it is a vis-
cosity subsolution of H��.x; v; Du; D

2u/ D 0 as well as a viscosity supersolution of
H�
�
.x; v; Du; D2u/ D 0, [16, 35]. As a consequence, a viscosity solution of equation

(2.10) is a viscosity subsolution to

min
®
F.D2u/;Hq.x;DuI �/F.D

2u/;Hs.x;DuI �/F.D
2u/

¯
D kf kL1.�/ in �

(2.11)
and a viscosity supersolution of

max
®
F.D2u/;Hq.x;DuI �/F.D

2u/;Hs.x;DuI �/F.D
2u/

¯
D �kf kL1.�/ in �;

(2.12)
as prescribed by Definition 2.1. Therefore, it is always the classical Definition 2.1 that
is adapted in a slightly unusual way to deal with the singularities developed in (2.10)
when the continuous function v changes sign. This is also coherent with the definition
of viscosity solutions to singular problems given in [8, 11], where testing against C 2-
maps with vanishing gradient is forbidden because of possible blow-up on small gradients.
However, we do not need to exclude test functions with null gradients since by (2.2),
equations (2.10), (2.11), and (2.12) are degenerate, so (2.1) and the continuity of v assure
that the definition in [8, 11] is equivalent to Definition 2.1.

Remark 2.5. If u 2 C.�/ is a viscosity solution of (2.10) in the sense of Definition 2.4,
then it is a viscosity subsolution/supersolution of variants of (2.11)/(2.12) having as a
right-hand side term any constant larger than or equal to kf kL1.�/. This observation will
be useful when proving regularity, see Sections 4–5 below.
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2.4. The homogeneous problem

Viscosity solutions of the homogeneous problem (1.11) will play a crucial role in the proof
of the main results of this paper. In fact, viscosity solutions of problem (1.11) have good
regularity properties, as the next proposition shows. For a proof of this proposition, we
refer to [15, Corollary 5.7].

Proposition 2.6. Assume that F.�/ satisfies (2.6)–(2.1) and let h 2 C.B1.0// be a viscos-
ity solution of (1.11). Then, there exist ˛ � ˛.n; �; ƒ/ 2 .0; 1/ and c � c.n; �; ƒ/ > 0
such that

khkC 1;˛.B1=2.0// � ckhkL
1.B1.0//: (2.13)

Proposition 2.6 yields in particular that if h 2C.B1.0// is a viscosity solution to (1.11)
then it isC 1;˛-regular around zero, which means that for all % 2 .0;1/, there exists �% 2Rn

such that
oscB%.h � �% � x/ � c.n; �;ƒ/%

1C˛: (2.14)

Now, fix � 2 .0; 1/ so small that

c�˛ <
1

4
; (2.15)

where c D c.n; �; ƒ/ is the constant appearing in (2.13), and let �� 2 Rn be the corre-
sponding vector in (2.14). According to the choice made in (2.15), estimate (2.14) reads
as

oscB� .0/.h � �� � x/ �
1

4
� with � � �.n; �;ƒ/: (2.16)

This will be useful later on.

Remark 2.7. It is well known, and it will be also evident from the proof of Theorem 1.2,
that the Hölder continuity exponent appearing in (2.13) acts as a threshold value for the
maximal regularity of solutions to degenerate equations. In case F.�/ is concave or convex,
higher regularity for solutions of (1.11) is available and ˛ D 1 by means of Evans–Krylov
theory, see [15, Chapter 6].

3. Existence of solutions

In this section, we prove the existence of a continuous viscosity solution to Dirichlet prob-
lem (1.7). To do so, we need to introduce a family of approximating problems, prove
a comparison principle and then conclude via Perron method. For " 2 .0; 1/, let ¹�"º �
C1.Rn/ be a sequence of radially symmetric, nonnegative mollifiers of Rn, and v 2C.�/
be a continuous function. In addition, we write ¹�C"Ivº WD ¹�" � 1¹v>0ºº � C

1
loc .�/ and

¹��"Ivº WD ¹�" � 1¹v<0ºº � C
1
loc .�/. We define8̂̂<̂

:̂
p"Iv.x/ WD "C p

C�C"Iv.x/C p��
�
"Iv.x/;

a"Iv.x/ WD ."C a.x/�
C
" .x//;

b"Iv.x/ WD ."C b.x/�
�
" .x//;

(3.1)
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for pC, p�, a.�/, b.�/ as in (2.2)–(2.3). By very definition, both coefficients defined in (3.1)
are positive and continuous in �. With these positions at hand, set

� �Rn 3 .x; z/ 7! G".x; z/ WD
�
`".z/

p"Iv.x/ C a"Iv.x/`".z/
q
C b"Iv.x/`".z/

s
�

and consider the equation

G".x;Du"/
�
"u" C F.D

2u"/
�
D f .x/ in �; (3.2)

with F.�/ as in (2.1) and f .�/ described by (2.4). Let us prove a comparison principle for
subsolutions and supersolutions of (3.2).

Lemma 3.1. Let � � Rn be an open bounded domain, assumptions (2.6), (2.1), (2.2),
(2.3), (2.4) be in force, w1 2 USC.�/ be a subsolution of (3.2), and w2 2 LSC.�/ be a
supersolution of (3.2). Then

w1 � w2 on @� H) w1 � w2 in �:

Proof. By contradiction, assume that

!0 WD max
x2�

�
w1.x/ � w2.x/

�
> 0: (3.3)

For � > 0, set

ˆ� .x; y/ WD w1.x/ � w2.y/ �
jx � yj2

2�

and notice that, if .x� ; y� / 2 � �� is a point of maximum for ˆ� .�/, i.e.,

max
.x;y/2���

ˆ� .x; y/ D ˆ� .x� ; y� / � !0; (3.4)

by [18, Lemma 3.1] we have

lim
�!0

jx� � y� j
2

�
D 0 H) lim

�!0
jx� � y� j D 0: (3.5)

Notice that x� ; y� cannot both belong to @�, otherwise ˆ� .x� ; y� / < 0, in contradiction
with (3.3)–(3.4). Then at least one of them, say x� , must be in the interior of � and (3.5)
forces also y� to stay inside �. We can then apply [18, Theorem 3.2] to obtain that for all
ı > 0 we have two symmetric matrices Xı ; Yı 2 �.n/ so that .x��y�

�
; Xı/ is a superjet

of w1 at x� , .x��y�
�

; Yı/ is a subjet of w2 at y� , and the matrix inequality�
�
1

ı
C c.n; �/

� �I 0

0 I

�
�

�
Xı 0

0 �Yı

�
�
3.1C ı/

�

�
I �I
�I I

�
holds. Therefore, testing against the couple .�; �/ 2 R2n we get

2
�
�
1

ı
C c.n; �/

�
j�j2 � h.Xı � Yı/�; �i � 0 H) Yı � Xı : (3.6)
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We can then recover the viscosity inequalities8̂<̂
:
G"

�
x� ;

x� � y�

�

��
"w1.x� /C F.Xı/

�
� f .x� /;

G"

�
y� ;

x� � y�

�

��
"w2.y� /C F.Yı/

�
� f .y� /;

and subtract the second from the first to get

f .x� /

G"
�
x� ;

x��y�
�

� � f .x� /

G"
�
y� ;

x��y�
�

� � ".w1.x� / � w2.y� //C F.Xı/ � F.Yı/
(2.6)
� ".w1.x� / � w2.y� //C � tr.Yı �Xı/

(3.6)
� ".w1.x� / � w2.y� //

(3.4)
� "!0: (3.7)

At this point, recall that for any �0 > 0 there exists a constant c � c.�0; l;m/ such that for
all t � 0, l; m � 0 it holds that jt l � tmj � cjl �mj.1C t .1C�0/max¹l;mº/, so choosing

�0 WD
"

16.pC C p� C 1/
;

we see that´
�0 max¹p"Iv.x� /; p"Iv.y� /º �min¹p"Iv.x� /; p"Iv.y� /º < � 15"

16.pCCp�C1/
;

j�0 max¹p"Iv.x� /; p"Iv.y� /º �min¹p"Iv.x� /; p"Iv.y� /ºj � 4.pC C p� C 1/;

and so

L."; �/ WD `"

�x� � y�
�

��.p"Iv.x� /Cp"Iv.y� //
�

ˇ̌̌
`"

�x� � y�
�

�p"Iv.x� /
� `"

�x� � y�
�

�p"Iv.y� / ˇ̌̌
� cjp"Iv.x� / � p"Iv.y� /j`"

�x� � y�
�

��.p"Iv.x� /Cp"Iv.y� //
�

h
1C `"

�x� � y�
�

�.1C�0/ yp"I� i
� cjp"Iv.x� / � p"Iv.y� /j

h
"�6max¹pC;p�;1º C `"

�x� � y�
�

��0 yp"I�� Qp"I� i
�
cjp"Iv.x� / � p"Iv.y� /j

"6.p
CCp�C1/

; (3.8)

where we set yp"I� WD max¹p"Iv.x� /; p"Iv.y� /º, Qp"I� WD min¹p"Iv.x� /; p"Iv.y� /º, and
we used that �0 yp"Iv � .p"Iv.x� /C p"Iv.y� // � �0 yp"Iv � Qp"Iv < 0 and c � c."; pC; p�/.
Via (2.1), (2.4), (3.8) and using that a"Iv.�/; b"Iv.�/ � " and `".��1.x� � y� // � ", we
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manipulate (3.7) to obtain

ckf kL1.�/jp"Iv.x� / � p"Iv.y� /j

"6.p
CCp�C1/

C
kf kL1.�/ja"Iv.x� / � a"Iv.y� /j

"2q

C
kf kL1.�/jb"Iv.x� / � b"Iv.y� /j

"2s
C
jf .x� / � f .y� /j

"2.p
CCp�C1/

� kf kL1.�/L."; �/C
kf kL1.�/ja"Iv.x� / � a"Iv.y� /j

a"Iv.x� /a"Iv.y� /`"
�
x��y�
�

�q
C
kf kL1.�/jb"Iv.x� / � b"Iv.y� /j

b"Iv.x� /b"Iv.y� /`"
�
x��y�
�

�s C jf .x� / � f .y� /j
G"
�
y� ;

x��y�
�

�
�

f .x� /

G"
�
x� ;

x��y�
�

� � f .y� /

G"
�
y� ;

x��y�
�

�
� "!0;

therefore, we have

ckf kL1.�/jp"Iv.x� / � p"Iv.y� /j

"6.p
CCp�C1/C1

C
jf .x� / � f .y� /j

"2.p
CCp�C1/C1

C kf kL1.�/

h
ja"Iv.x� / � a"Iv.y� /j

"2qC1
C
jb"Iv.x� / � b"Iv.y� /j

"2sC1

i
� !0; (3.9)

with c � c."; pC; p�/. Recalling that f .�/, p"Iv.�/, a"Iv.�/ and b"Iv.�/ are continuous and
that jx� � y� j! 0 by (3.5), we can send �! 0 in (3.9) to reach a contradiction with (3.3).
The proof is complete.

At this stage, we need to construct continuous viscosity subsolutions and supersolu-
tions of (3.2) with a fixed boundary datum.

Lemma 3.2. Let � � Rn be an open, bounded domain satisfying a uniform exterior
sphere condition. Assume (2.1), (2.2), (2.3), (2.4), (2.6) and let g 2 C.@�/ be any func-
tion with modulus of continuity!g.�/. Then equation (3.2) admits a viscosity supersolution
xw 2 C.�/ and a viscosity subsolution w 2 C.�/ for all numbers " 2 .0; 1/, maps
v 2 C.�/, so that wj@� D xwj@� D g.

Proof. The proof closely follows that of [35, Lemma 2], see also [19, Proposition 3.2]. We
construct a continuous viscosity supersolution xw to (3.2) agreeing with g on @� for any
" 2 .0; 1/ and all functions v 2 C.�/. The construction of a subsolution w with analogous
features can be obtained in a similar way. Let x0 2 Rn be any point with dist .x0;�/ � 1.
Set

�1 WD max¹kf kL1.�/; �nº; �2 WD
16.dist .x0; �/C diam .�//2�1

�n
C kgkL1.@�/

and define the function

zw.x/ WD �2 � �1jx � x0j
2.2�n/�1:
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The choice of �1 and �2 yields that jD zwj � 1, zw � 0 in � and that zwj@� � kgkL1.@�/.
Now, notice that F.D2 zw/ � 0, in fact, being the identity positive definite, we obtain

F.D2
zw/

(2.1)2
D F

�
�
�1I
�n

�
� F.0/

(2.6)
� � tr

��1I
�n

�
� �1;

so for all x 2 � we have�
`".D zw/

p"Iv.x/ C a"Iv.x/`".D zw/
q
C b"Iv.x/`".D zw/

s
��
" zw C F.D2

zw/
�
� F.D2

zw/

� f .x/;

because of the very definition of �1. Let r� � r�.@�/ > 0 be the radius provided by
the uniform exterior sphere condition, y 2 @� be any point and xy 2 Rn be so that
jy � xy j D r� and Br�.xy/ \� D ¹yº. Let zr WD r� C diam .�/,  > max¹2; 1

�
C nƒ

�
º,

L > 0 and
wy.x/ WD L.r

�
� � jx � xy j

� /:

By construction, we have wy.y/ D 0, wy.x/ � 0 for x 2 � and

Dwy.x/ WD L
x � xy

jx � xy jC2
;

D2wy D
L

jx � xy jC2

h
I � . C 2/

.x � xy/˝ .x � xy/

jx � xy j2

i
;

so we can control from below

jDwy j � Lzr
�.C1/ in � (3.10)

and

F.D2wy/
(2.1)2
D

�
F.D2wy/ � F

� LI
jx � xy jC2

��
C

�
F
� LI
jx � xy jC2

�
� F.0/

�
(2.6)
�

L�. C 2/

jx � xy jC4
tr
�
.x � xy/˝ .x � xy/

�
�

Lƒ

jx � xy jC2
tr.I/

D
L.�. C 2/ � nƒ/

jx � xy jC2
�

L

jx � xy jC2
;

where we also used the lower bound imposed on  . We stress that the restrictions imposed
on the size of  yield that  � .n; �;ƒ/. At this stage, we select L > 0 so that

L

zrC1
� 1 and

L

zr2C
� kf kL1.�/ C kgkL1.@�/; (3.11)

thus fixing the dependency L � L.n; �; �; kf kL1.�/; kgkL1.@�/; @�; diam .�//. Now,
let � 2 .0; 1/ be any number and define the function

wyI� .x/ WD g.y/C � C ��wy.x/;
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where �� � 1 is selected in such a way that wyI� .x/ � g.x/ for x 2 @�. This can be done
by defining

�� WD 4
�

sup
x2@�;x 6Dy

.!g.jx � yj/ � �/C

wy.x/

�
C 1:

The uniform sphere condition imposed on @� yields that �� does not depend on y 2 @�.
We then estimate using the very definition of wyI� .�/, (3.10), and (3.11), which in partic-
ular render that "wyI� C F.D2wyI� / � 0, to get�
`".DwyI� /

p"Iv.x/ C a"Iv.x/`".DwyI� /
q
C b"Iv.x/`".DwyI� /

s
��
"wyI� C F.D

2wyI� /
�

� �kgkL1.@�/ C
��L

QrC2

� �kgkL1.@�/ C ��
�
kf kL1.�/ C kgkL1.@�/

�
� kf kL1.�/ � f .x/;

thus wyI� is a viscosity supersolution of equation (3.2) for all y 2 @� and all � 2 .0; 1/,
and, as a consequence, the map zwyI� WDmin¹ zw;wyI�º is a viscosity supersolution of (3.2).
Finally, setting

xw.x/ WD inf
®
zwyI� .x/Wy 2 @�; � 2 .0; 1/

¯
;

we obtain the required viscosity supersolution to (3.2) agreeing with g.�/ on @�.

As a consequence of the two above lemmas, we obtain the existence of a continuous
viscosity solution to equation (3.2).

Corollary 3.3. Let � � Rn be an open, bounded domain satisfying the uniform sphere
condition and assume (2.1), (2.2), (2.3), (2.4), (2.6). Then, for any g 2 C.@�/ and v 2
C.�/ there exists a viscosity solution u" 2 C.�/ to equation (3.2) so that w � u" � xw,
where w and xw are respectively the subsolution and the supersolution constructed in
Lemma 3.2. In particular, it holds that

ku"kL1.�/ � c.n; �;ƒ; kf kL1.�/; kgkL1.@�/; @�; diam .�/; dist .�0; @�//: (3.12)

Proof. The proof immediately follows by combining [18, Theorem 4.1] with Lemmas 3.1
and 3.2.

Now we are ready to show the existence of a viscosity solution of Dirichlet problem´�
jDuvj

pv.x/ C a.x/1¹v>0ºjDuvj
q
C b.x/1¹v<0ºjDuvj

s
�
F.D2uv/ D f .x/ in �;

uv D g on @�;
(3.13)

where v 2 C.�/, g 2 C.@�/, and assumptions (2.6), (2.1), (2.2), (2.3), (2.4) are in force.

Corollary 3.4. Let � � Rn be an open, bounded domain satisfying the uniform sphere
condition and assume (2.6), (2.1), (2.2), (2.3), (2.4). Then, for any g 2 C.@�/ and
v 2 C.�/, Dirichlet problem (3.13) admits a viscosity solution uv 2 C.�/ so that
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uvj@� D gj@� and w � uv � xw, where w, xw are respectively the subsolution and the
supersolution constructed in Lemma 3.2. In particular, it holds that

kuvkL1.�/ � c.n; �;ƒ; kf kL1.�/; kgkL1.@�/; @�; diam .�/; dist .�0; @�// (3.14)

and, whenever �0 b � is an open set, for all ˇ0 2 .0; 1/ we have

Œu�0;ˇ0I�0 � c.n; �;ƒ; kf kL1.�/; kgkL1.@�/; @�; diam .�/; dist .�0; @�/; ˇ0/: (3.15)

Proof. By Corollary 3.3, there exists a viscosity solution u" 2 C.�/ to equation (3.2) so
that

u"j@� D gj@� and w � u" � xw; (3.16)

where w, xw are respectively the viscosity subsolution and the viscosity supersolution
to (3.2) determined by Lemma 3.2. We stress that w and xw do not depend on ". Notice
that the bound in (3.12) is uniform in " and that equation (3.2) falls in the class of
those considered by Proposition A.1, with � D ", p.�/ � p"Iv.�/, q.�/ � q, s.�/ � s,
a.�/ � a"Iv.�/ and b.�/ � b"Iv.�/, therefore, keeping in mind Remark A.2, we see that
¹u"º � C

0;ˇ0
loc .�/ for all ˇ0 2 .0; 1/ with uniform estimates on the Hölder seminorm,

cf. (A.3) and (3.12). This, together with (3.16), the compact embedding of the Hölder
spaces C 0;ˇ1.�0/ ,! C 0;ˇ2.�0/ for ˇ2 < ˇ1, and (3.12), gives that u" ! uv uniformly
on compact subsets of �, so we have

uv 2 C.�/; uvj@� D gj@�; w � uv � xw; kuvkL1.�0/ C Œuv�0;ˇ0I�0 � c; (3.17)

with c � c.n; �; ƒ; kf kL1.�/; kgkL1.@�/; @�; diam .�/; dist .�0; @�/; ˇ0/ for all
ˇ0 2 .0; 1/ (of course the dependency from ˇ0 occurs only when considering Œuv�0;ˇ0I�0 ).
Finally, by very definition, we have that p"Iv ! pv , a"Iv ! a1¹v>0º and b"Iv ! b1¹v<0º
in �, so by well-known stability properties of viscosity solutions, cf. [40, Chapter 3]
and (3.17)2, we have that uv 2 C.�/ is a viscosity solution of equation (3.13).

3.1. Proof of Theorem 1.1

Proof of Theorem 1.1. Let zu 2 C.�/ be any function. We recursively define the sequence
of functions ¹u�º�2N[¹0º so that u0 D zu and for � � 1, u� is a solution of problem (3.13)
with v � u��1, whose existence is assured by Corollary 3.4. Since the bounds in
(3.14)–(3.15) do not depend on v and so in our case they are independent of �, we have
that the sequence ¹u�º is uniformly bounded with respect to the full C 0;ˇ0 -norm for all
ˇ0 2 .0; 1/, therefore u� ! u1 uniformly on compact subsets of �, u1 2 C.�/ and
u1j@� D gj@�. Standard stability results (see [40, Chapter 3]) eventually render that u1
is a viscosity solution of problem (1.7), and the proof is complete.

4. Compactness for switched differential inequalities

The main result of this section is uniform Hölder continuity for viscosity solutions of the
switched equation (2.10). The uniformity is due to the fact that all the constants bounding
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the Hölder seminorm of solutions will not depend on �, nor on the moduli of continuity of
coefficients a.�/, b.�/, nor on their L1-norm.

Proposition 4.1. Under assumptions (2.1), (2.2), (2.3), (2.4) and (2.6), let u 2 C.�/
be a viscosity subsolution of (2.11) and a viscosity supersolution to (2.12). Then u 2
C
0;ˇ0
loc .�/ for all ˇ0 2 .0; 1/. In particular, for any ˇ0 2 .0; 1/ there exists a threshold

radius r� � r�.ˇ0/ 2 .0; 1=4/ so that whenever B%.z0/ b � is a ball with % 2 .0; r�� , it
holds that

ju.x/ � u.y/j � cjx � yjˇ0 for all x; y 2 B%=2.z0/;

with c � c.n; �;ƒ; kukL1.B%.z0//; kf kL1.B%.z0//; %; ˇ0/.

Proof. Let u 2 C.�/ be a viscosity subsolution to (2.11) and a viscosity supersolution of
(2.12), ˇ0 2 .0; 1/ be any number, and B%.z0/b� be a ball with radius % 2 .0; r��, where

r� WD
�
ˇ0=10

� 1
1�ˇ0

is a threshold radius that will play an important role in a few lines. We aim to show
that there are two positive constants A1 � A1.n; �; ƒ; kukL1.�/; kf kL1.�/; %; ˇ0/ and
A2 � A2.kukL1.�/; %/ such that

M.x0/ WD sup
x;y2B%.z0/

�
u.x/ � u.y/ � A1!.jx � yj/ � A2

�
jx � x0j

2
C jy � x0j

2
��
� 0

(4.1)

holds for all x0 2 B%=2.z0/. In (4.1),

!.t/ WD tˇ0 if j�j � ��10 ; !.t/ WD

´
t � !0t

3=2 if t � t0
!.t0/ if t > t0

if j�j > ��10 ;

where �0 WD .2.A1C 2A2//�1 is a limiting number, !0 D 1=3 and t0 WD
�
2=.3!0/

�2
� 1.

By contradiction, we assume that

there exists x0 2 B%=2.z0/ such that M.x0/ > 0 for all positive A1; A2; (4.2)

define quantities8̂<̂
:A1 WD

40

ˇ0.1 � ˇ0/

hkf kL1.B%.z0//
�

C .2A2 C 1/
�ƒ
�
.n � 1/C 1

�i
;

A2 WD 64%
�2 max

®
kukL1.B%.z0//; 1

¯
;

(4.3)

and consider the auxiliary functions´
 .x; y/ WD A1!.jx � yj/C A2

�
jx � x0j

2
C jy � x0j

2
�
;

�.x; y/ WD u.x/ � u.y/ �  .x; y/:
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If .xx; xy/ 2 B%.z0/ � B%.z0/ is a maximum point of �.�/, via (4.2) we have that
�.xx; xy/ DM.x0/ > 0, so

A1!.jxx � xyj/C A2
�
jxx � x0j

2
C jxy � x0j

2
�
� u.xx/ � u.xy/ � 2kukL1.B%.z0//:

Inserting (4.3)2 in the above inequality yields that xx, xy both belong to the interior of
B%.z0/. In particular,

jxx � z0j � jxx � x0j C jx0 � z0j �
3%

4
and jxy � z0j � jxy � x0j C jx0 � z0j �

3%

4
:

Moreover, xx 6D xy, otherwise M.x0/ D �.xx; xy/ D 0 and (4.1) would be satisfied. This last
remark implies that  .�/ is smooth in a small neighborhood of .xx; xy/, therefore we can
determine its gradients

�xx WD @x .xx; xy/ D A1!
0.jxx � xyj/

xx � xy

jxx � xyj
C 2A2.xx � x0/;

�xy WD �@y .xx; xy/ D A1!
0.jxx � xyj/

xx � xy

jxx � xyj
� 2A2.xy � x0/:

To summarize, we have that �.�/ attains its maximum at .xx; xy/ inside B%.z0/ � B%.z0/
and �.�/ is smooth around .xx; xy/, thus Proposition 2.3 applies: we can find a threshold
yı D yı.kD2 k/ such that for all ı 2 .0; yı/ the couple .�xx ;Xı/ is a limiting subjet of u at xx
and the couple .�xy ; Yı/ is a limiting superjet of u at xy and the matrix inequality�

Xı 0

0 �Yı

�
�

�
Z �Z

�Z Z

�
C .2A2 C ı/I (4.4)

holds, where we set

Z WDA1.D
2!/.jxx � xyj/

DA1

h!0.jxx � xyj/
jxx � xyj

IC
�
!00.jxx � xyj/ �

!0.jxx � xyj/

jxx � xyj

� .xx � xy/˝ .xx � xy/
jxx � xyj2

i
:

We fix

ı � min
°
1;
yı

4

±
and apply (4.4) to vectors of the form .z; z/ 2 R2n, to obtain

h.Xı � Yı/z; zi � .4A2 C 2/jzj
2:

This means that

all the eigenvalues of Xı � Yı are less than or equal to 2.2A2 C 1/: (4.5)

In particular, applying (4.4) to the vector

xz WD
�
xx � xy

jxx � xyj
;
xy � xx

jxx � xyj

�
;
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we get D
.Xı � Yı/

xx � xy

jxx � xyj
;
xx � xy

jxx � xyj

E
� 2.2A2 C 1/C 4A1!

00.jxx � xyj/:

This yields in particular that

at least one eigenvalue of Xı � Yı is less than 2.2A2 C 1/C 4A1!
00.jxx � xyj/: (4.6)

As by definition !00.t/ < 0, we can majorize the quantity appearing in (4.6) as

2.2A2 C 1/C 4A1!
00.jxx � xyj/ � 2.2A2 C 1/ � 4A1j!

00.1/j
(4.3)1
< 0;

where we also used that jxx � xyj � 1=2. This means that at least one eigenvalue ofXı � Yı
is negative, thus via (2.7)2, (4.5) and (4.6), we obtain

P��;ƒ.Xı � Yı/ � �2.2A2 C 1/
�
ƒ.n � 1/C �

�
C 4�A1j!

00.1/j; (4.7)

therefore

F.Xı/ � F.Yı/
(2.8)
� P��;ƒ.Xı � Yı/

(4.7)
� �2.2A2 C 1/

�
ƒ.n � 1/C �

�
C 4�A1j!

00.1/j:

(4.8)

With �xx ; �xy computed before, we write the following viscosity inequalities deriving
from (2.11)–(2.12):´

min
®
F.Xı/;Hq.xx; �xx I �/F.Xı/;Hs.xx; �xx I �/F.Xı/

¯
� kf kL1.�/;

max
®
F.Yı/;Hq.xy; �xy I �/F.Yı/;Hs.xy; �xy I �/F.Yı/

¯
� �kf kL1.�/:

(4.9)

For simplicity, define

H�.x/ WD min
®
F.Xı/;Hq.x; �x I �/F.Xı/;Hs.x; �x I �/F.Xı/

¯
;

HC.x/ WD max
®
F.Yı/;Hq.x; �x I �/F.Yı/;Hs.x; �x I �/F.Yı/

¯
;

and notice that8̂̂̂̂
<̂
ˆ̂̂:

H�.xx/ D min
®
1;Hq.xx; �xx I �/;Hs.xx; �xx I �/

¯
if F.Xı/ � 0;

H�.xx/ D max
®
1;Hq.xx; �xx I �/;Hs.xx; �xx I �/

¯
if F.Xı/ < 0;

HC.xy/ D max
®
1;Hq.xy; �xy IYı/;Hs.xy; �xy I �/

¯
if F.Yı/ � 0;

HC.xy/ D min
®
1;Hq.xy; �xy I �/;Hs.xy; �xy I �/

¯
if F.Yı/ < 0:

(4.10)

At this stage, we treat separately two cases: j�j > ��10 and j�j � ��10 .
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Case j�j > ��1
0

. We expand the expression of !.�/ in (4.8) to get

F.Xı/ � F.Yı/ � �2.2A2 C 1/Œƒ.n � 1/C ��C �A1: (4.11)

Moreover, our choice of �0 assures that

min
®
j� C �xxj; j� C �xy j

¯
� ��10 �max

®
j�xxj; j�xy j

¯
� A1 C 2A2 � 1;

which implies
H�.xx/ � 1 and HC.xy/ � 1: (4.12)

Keeping in mind (4.10), we can manipulate the variational inequalities (4.9) to get

4kf kL1.B%.z0//
(4.12);(4.10)
�

2kf kL1.B%.z0//

H�.xx/
C
2kf kL1.B%.z0//

HC.xy/
(4.9)
� F.Xı/ � F.Yı/

(4.8)
� �2.2A2 C 1/

�
ƒ.n � 1/C �

�
C �A1;

which renders that

4kf kL1.B%.z0// � �2.2A2 C 1/
�
ƒ.n � 1/C �

�
C �A1: (4.13)

The content of (4.13) contradicts the choice made in (4.3)1.

Case j�j � ��1
0

. In this situation, (4.8) reads as

F.Xı/ � F.Yı/ � �2.2A2 C 1/Œƒ.n � 1/C ��C 4ˇ0.1 � ˇ0/�A1: (4.14)

Now notice that (4.3) yields A1 � A2 � A1=4 and A1=2 � 6A2, so keeping in mind the
definitions of r� and of !.�/, via the Young inequality we have that

min
®
j�xxj

2; j�xy j
2
¯
�
1

4
A21ˇ

2
0 jxx � xyj

2.ˇ0�1/ �
52

3
A22 max

®
jxx � x0j

2; jxy � x0j
2
¯

�
1

4
A21ˇ

2
0r
�2.1�ˇ0/
� � 25A22

� 25.A21 � A
2
2/ �

25

4
A21:

This allows us to conclude that

min
®
j�xxj; j�xy j

¯
� ��10 �

5

2
A1 � 2.A1 C 2A2/

D
1

2
A1 � 4A2 � 2A2 � 1

and (4.12) holds in this case as well. Therefore, we can combine as before the variational
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inequalities (4.9) with (4.14) and (4.12) to deduce

4kf kL1.�/ � �2.2A2 C 1/Œƒ.n � 1/C ��C 4ˇ0.1 � ˇ0/�A1;

which is again a contradiction of (4.3)1.

Merging the two previous cases, we can conclude that if u 2 C.�/ is a viscosity solution
to (2.10), then u is ˇ0-Hölder continuous on B%=2.z0/ for all ˇ0 2 .0; 1/, and the estimate

Œu�0;ˇ0IB%=2.z0/ � c.n; �;ƒ; kukL1.B%.z0//; kf kL1.B%.z0//; %; ˇ0/

holds true. The arbitrariness of B%.z0/b� and the fact that constants A1, A2 are increas-
ing with respect to kukL1.B%.z0// and to kf kL1.B%.z0// allow the use of a standard cover-
ing argument to deduce that given any open set�0 b �, u 2 C 0;ˇ0.�0/ for all ˇ0 2 .0; 1/
with

Œu�0;ˇ0I�0 � c.n; �;ƒ; kukL1.�/; kf kL1.�/; dist .�0; @�/; ˇ0/;

and the proof is complete.

5. Gradient Hölder continuity

In this section we prove that viscosity solutions of equation (1.1) are locally C 1;˛0 -regular
for some ˛0 � ˛0.n; �;ƒ; pC; p�/ 2 .0; 1/. To do so, we shall first prove that in a suit-
able smallness regime, a continuous viscosity solution of the switched equation (2.10)
is L1-close to a solution of a homogeneous problem of type (1.11). This closeness is
assured by a “harmonic” approximation lemma, whose proof is based on [26,38] and that
strongly relies on the smallness of certain quantities and on the compactness earned via
Proposition 4.1.

5.1. Smallness regime

We exploit the scaling properties of (2.11)–(2.12) for reducing the problem to a smallness
regime. In other terms, if � 2 Rn is an arbitrary vector and u 2 C.�/ is a viscosity subso-
lution/supersolution to (2.11)/(2.12), we blow-up and scale u in order to construct another
map u, that is a viscosity subsolution of an equation having the same structure of (2.11), a
viscosity supersolution of an equation similar to (2.12) and such that, for a given " 2 .0; 1/
we have oscB1.0/u � 1 and the right-hand side constant appearing in (2.11)–(2.12) can be
controlled in modulus by ". Under these conditions, u is called an “"-normalized viscosity
solution”. Let us show this construction. Let " 2 .0; 1/ be any number and B� .x0/ b �

be any ball with � 2 .0; 1
16

min¹diam .�/; 1º/ to be quantified later on, and define

M WD 16
�
1C kukL1.�/ C kf kL1.�/ C kf k

1

pCC1

L1.�/
C kf k

1
p�C1

L1.�/

�
:

Now, if u 2 C.�/ is a viscosity solution to (2.10) on B� .x0/, then a straightforward com-
putation shows that the map u.x/ WD u.x0 C �x/M

�1 is in particular an "-normalized
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viscosity subsolution of

min
®
F.D2u/;Hq.x;DuI x�/F.D2u/;Hs.x;DuI x�/F.D2u/

¯
D C in B1.0/ (5.1)

and an "-normalized viscosity supersolution to

max
®
F.D2u/;Hq.x;DuI x�/F.D2u/;Hs.x;DuI x�/F.D2u/

¯
D �C in B1.0/; (5.2)

where we set

x� WD
�

M
�; a.x/ WD

�M

�

�q�pC
a.x0 C �x/; b.x/ WD

�M

�

�s�p�
b.x0 C �x/;

Hq.x; zI x�/ WD jx� C zj
pC
C a.x/jx� C zjq; Hs.x; zI x�/ WD jx� C zj

p� C b.x/jx� C zjs;

F.M/ WD
�2

M
F
�M

�2
M
�
; C WD max

° �pCC2
MpCC1

;
�p�C2

Mp�C1
;
�2

M

±
kf kL1.�/;

as by (2.2) and since M � 1 and � � 1, we have

max
° �pCC2

MpCC1
;
�p�C2

Mp�C1
;
�2

M

±
D
�2

M
:

A quick computation shows that if (2.1) is in force, then F.�/ is .�;ƒ/-elliptic as well and,
if " 2 .0; 1/ is the number introduced above, we fix � D "

1
2 . Therefore, by construction

we have 8̂̂̂̂
<̂
ˆ̂̂:
kakL1.B1.0// �

�M

�

�q�pC
kakL1.B� .x0//;

kbkL1.B1.0// �
�M

�

�s�p�
kbkL1.B� .x0//;

kukL1.B1.0// � 1; oscB1.0/u � 1; C � ":

(5.3)

Finally, notice that there is no loss of generality in assuming that u.0/D 0, since the func-
tion .u � u.0// is still a "-normalized viscosity subsolution/supersolution of (5.1)/(5.2)
and satisfies all the conditions listed above. This is the announced smallness regime.
Clearly, for � � 0 we find a "-normalized viscosity solution of equation (1.1). We refer to
[35, Section 2.3] for the case in which no coefficients appear.

Remark 5.1. Due to the strong nonhomogeneity of (2.10) and (2.11)–(2.12), the scaling
factor � appears also in the definition of a.�/ and b.�/ and forces the (quite dangerous)
bounds in (5.3)1. Anyway, the L1-norms of a.�/ and b.�/ will never influence the con-
stants appearing in the forthcoming estimates and it will ultimately be fixed as a function
of data.

5.2. Harmonic approximation

In the next lemma we show that, in a suitable smallness regime, continuous viscosity
solutions of (2.10) are close to solutions of the homogeneous problem (1.11).
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Lemma 5.2. Assume (2.1), (2.2), (2.3), (2.4), (2.6) and let � � �.n; �;ƒ/ 2 .0; 1/ be as
in (2.16). Then, there exists a positive "0 � "0.data/ 2 .0; 1/ such that if u 2 C.B1.0//

is an "0-normalized viscosity subsolution of (5.1) and an "0-normalized viscosity super-
solution to (5.2), it is possible to find �� 2 Rn such that

oscB� .0/.u � �� � x/ <
�

2
:

Proof. By contradiction, we find sequences of fully nonlinear operators ¹F�.�/º that are
uniformly .�;ƒ/-elliptic, of vectors ¹x��º � Rn, of nonnegative functions ¹a�.�/º, ¹b�.�/º
� C.B1.0//, of numbers ¹C�º � Œ0;1/ so that C� � �

�1, and of maps ¹u�º 2 C.�/ that
are ��1-normalized viscosity subsolutions to

min
®
F�.D

2u�/;HqI�.x;Du� I x��/F�.D
2u�/;HsI�.x;Du� I x��/F�.D

2u�/
¯
D C� (5.4)

in B1.0/ and ��1-normalized viscosity supersolutions of

max
®
F�.D

2u�/;HqI�.x;Du� I x��/F�.D
2u�/;HsI�.x;Du� I x��/F�.D

2u�/
¯
D �C�

(5.5)

in B1.0/ for all � 2 N, u�.0/ D 0 and

sup
�2N
ku�kL1.B1.0// � 1;

sup
�2N

.oscB1.0/u�/ � 1;

oscB� .0/.u� � � � x/ �
�

2
for all � 2 Rn:

(5.6)

In (5.4)–(5.5), HqI�.�/, HsI�.�/ are defined as in Section 5.1, with a�.�/ and b�.�/ replac-
ing a.�/ and b.�/, respectively. As the sequence ¹F�.�/º is uniformly .�; ƒ/-elliptic, we
have that

F�.�/! F1.�/ for some F1 2 C.�.n/;R/ uniformly .�;ƒ/-elliptic: (5.7)

Then, Proposition 4.1 applies to renormalized viscosity subsolutions/supersolutions of
(5.4)/(5.5) as all the estimates made in its proof do not involve the coefficients in a quanti-
tative way, and all the bounding constants are increasing with respect to the L1-norm of
solutions and of the right-hand side datum. This means that ¹u�º � C

0;ˇ0
loc .B1.0// for all

ˇ0 2 .0; 1/, so, recalling also (5.6)1;2 and Arzelà–Ascoli theorem, we have that

u� ! u1 locally uniformly on B1.0/ (5.8)

and, by (5.6) and (5.8) it holds that u1 2 C.B1.0// with

ku1kL1.B1.0// � 1 and oscB� .0/.u1 � � � x/ �
�

2
for all � 2 Rn: (5.9)
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We aim to prove that u1 2 C.B1.0// is a viscosity solution of

F1.D
2u1/ D 0 in B1.0/: (5.10)

Let us show that u1 is a viscosity supersolution of (5.10). Let ' 2 C 2.B1.0// be so that
u1 � ' admits a local strict minimum at x0 2 B1.0/. There is no loss of generality in
assuming that '.�/ is a quadratic polynomial, i.e.,

'.x/ WD
1

2
A.x � x0/ � .x � x0/C b � .x � x0/C u1.x0/:

By (5.8) and standard perturbations arguments [40, Lemma 5] we have that there exists a
sequence of points ¹x�º � B1.0/ so that x� ! x0, u� � ' attains a local minimum at x� ,
and D'.x�/! b. Suppose that

F1.A/ < 0 H) F�.A/ < 0 for � 2 N large enough: (5.11)

At this stage, we distinguish two cases according to the behavior of the sequence ¹x��º.

Case 1: ¹x��º does not have a convergent subsequence. In this case, up to extracting a
subsequence (which we do not relabel), we have that

jx�� j ! 1: (5.12)

In light of (5.7), (5.11) and (5.12), if we take � 2 N sufficiently large and then relabel, we
can assume that

sup
�2N
jD'.x�/j � 2.jbj C 1/; jx�� j > 4.jbj C 1/ H) jx�� CD'.x�/j � 2.jbj C 1/:

(5.13)

Notice that (5.11) yields

max
®
F�.A/;HqI�.x;D'.x�/I x��/F�.A/;HsI�.x;D'.x�/I x��/F�.A/

¯
D min

®
1;HqI�.x;D'.x�/I x��/;HsI�.x;D'.x�/I x��/

¯
F�.A/: (5.14)

As u� is a ��1-normalized viscosity supersolution of (5.5), we get

F�.A/
(5.11)2
� �

C�

min
®
1;HqI�.x;D'.x�/I x��/;HsI�.x;D'.x�/I x��/

¯
(5.13)
� �

��1

min¹1; 2pC.jbj C 1/pC ; 2p�.jbj C 1/p�º
:

Passing to the limit as � ! 1 in the previous display and using (5.12), we obtain a
contradiction to (5.11).
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Case 2: ¹x��º admits a convergent subsequence. Up to extracting a subsequence (which
we do not relabel), we may assume that x��! x�1. We first consider the case jx�1C bj> 0,
which means that, up to selecting � 2 N large enough and then relabeling,

jx�� CD'.x�/j �
1

4
jx�1 C bj > 0 (5.15)

holds true, so from (5.11)2 and (5.5) we obtain

F�.A/
(5.14);(5.15)
� �

C�

min
®
1;HqI�.x; 4�1.x�1 C b/I x�1/;HsI�.x; 4�1.x�1 C b/I x�1/

¯
� �

4p
CCp�C1��1

min¹1; jx�1 C bjp
C
; jx�1 C bjp�º

:

Sending � !1 in the above display, we contradict (5.11).
At this point, we only need to take care of the occurrence jx�1C bj D 0. By (5.11) and

ellipticity, we deduce that A has at least one positive eigenvalue. Let †0 be the direct sum
of all the eigensubspaces corresponding to nonnegative eigenvalues of A and…0.�/ be the
orthogonal projection over †0. Since u1 � ' has a local strict minimum at x0, by (5.8)
the function

'ı.x/ WD '.x/C ıj…0.x � x0/j

touches u1 from below at a point yx0 close to x0 for ı > 0 sufficiently small. We are then
lead to consider two possible occurrences: j…0.yx0 � x0/j D 0 and j…0.yx0 � x0/j > 0. If
j…0.yx0 � x0/j D 0, then

j…0.yx0 � x0/j D max
e2Sn�1

e �…0.yx0 � x0/ D min
e2Sn�1

e �…0.yx0 � x0/;

which means that the map

y'ı.x/ D '.x/C ıe �…0.x � x0/

touches u1 from below at yx0 for all e 2 Sn�1. This last fact, (5.8) and standard stability
results, cf. [40, Lemma 5], yield that y'ı.�/ touches u� from below at yx� ! yx0. The uni-
formity prescribed by (5.8) guarantees that ı does not depend on �. A direct computation
shows that D.e �…0.x � x0// D …0.e/ and D2.e �…0.x � x0// D 0. Moreover,

e 2 †0 \ Sn�1 ! …0.e/ D e and e 2 †?0 \ Sn�1 ! …0.e/ D 0; (5.16)

where †?0 is the subspace orthogonal to †0. We claim that

there is ye 2 Sn�1 so that jD'.yx0/C x�1 C…0.ye/j > 0: (5.17)

In fact, if jD'.yx0/ C x�1j D 0 we pick any ye 2 Sn�1 \ †0 (which exists as †0 6D ;
because of the previous considerations on the eigenvalues of A) and use (5.16)1; while
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if jD'.yx0/C x�1j > 0 and †?0 6D ;, we fix ye 2 †?0 \ Sn�1 and exploit (5.16)2; and if
jD'.yx0/C x�1j > 0 and †?0 D ;, i.e., †0 � Rn and …0.�/ � I, we let

ye WD
D'.yx0/C x�1

jD'.yx0/C x�1j
;

thus
jD'.yx0/C x�1 C…0.ye/j D jD'.yx0/C x�1j C 1 > 1:

Once (5.17) has been established, we can take � 2 N sufficiently large to assure that

jD'.yx�/C x�� C…0.ye/j �
1

4
jD'.yx0/C x�1 C…0.ye/j

(5.17)
> 0; (5.18)

recall (5.11)2 and use (5.5) to conclude that

F�.A/
(5.14);(5.18)
� �

4p
CCp�C1��1

min
®
1; jD'.yx0/C x�1 C…0.ye/jp

C
; jD'.yx0/C x�1 C…0.ye/jp�

¯ :
As � !1 in the above display, we obtain a contradiction to (5.11).

On the other hand, if j…0.yx0 � x0/j > 0, we still have that 'ı.�/ touches u1 from
below at yx0 as above, so, by (5.8) and standard stability results [40, Lemma 5] we have that
'ı.�/ touches from below u� at yx� for some points yx� ! yx0. We remark that by (5.8), ı
does not depend on �. Since j…0.yx0 � x0/j > 0, it also holds that j…0.yx� � x0/j > 0

for � 2 N sufficiently large, so the map x 7! j…0.x � x0/j is smooth and convex in a
neighborhood of yx� . As …0.� � x0/ is a projector, it holds that

…0.x � x0/D…0.x � x0/ D …0.x � x0/; D2
j…0.x � x0/j is nonnegative definite:

(5.19)

Recall that we were assuming jx�1 C bj D 0, so using the very definition of †0 we haveˇ̌̌
x�1 CD'.yx0/C ı

…0.yx0 � x0/

j…0.yx0 � x0/j

ˇ̌̌2
D

ˇ̌̌
A.yx0 � x0/C ı

…0.yx0 � x0/

j…0.yx0 � x0/j

ˇ̌̌2
D jA.yx0 � x0/j

2
C ı2

C 2ıA.yx0 � x0/ �
…0.yx0 � x0/

j…0.yx0 � x0/j

D jA.yx0 � x0/j
2
C ı2

C 2ıA…0.yx0 � x0/ �
…0.yx0 � x0/

j…0.yx0 � x0/j

� jA.yx0 � x0/j
2
C ı2 � ı2;

thus ˇ̌̌
x�1 CD'.yx0/C ı

…0.yx0 � x0/

j…0.yx0 � x0/j

ˇ̌̌
� ı;



C. De Filippis 224

therefore, for � 2 N large enough we haveˇ̌̌
x�� CD'.yx�/C ı

…0.yx� � x0/

j…0.yx� � x0/j

ˇ̌̌
�
ı

4
: (5.20)

We can then use (5.11)2 and that u� is a ��1-normalized viscosity supersolution of (5.5)
to get

F�.A/
(2.6)
� F�.ACD

2
j…0.yx� � x0/j/C � tr.D2

j…0.yx� � x0/j/

(5.19)2
� �

C�

min
®
1;
ˇ̌
x�� CD'.yx�/C

…0.yx��x0/
j…0.yx��x0/j

ˇ̌pC
;
ˇ̌
x�� CD'.yx�/C

…0.yx��x0/
j…0.yx��x0/j

ˇ̌p�¯
(5.20)
� �

4p
CCp�C1��1

min¹1; ıpC ; ıp�º
:

Sending � !1 in the above, we obtain a contradiction to (5.11). Combining Case 1 and
Case 2, we can conclude that F1.A/ � 0, so u1 is a supersolution of (5.10) in B1.0/.
To show that u1 is also a subsolution to (5.10), we only observe that this is equivalent to
proving that zu1 WD �u1 is a supersolution of the equation

eF1.D2
Qu1/ D 0 in B1.0/;

where we set eF1.M/ WD �F1.�M/, which is uniformly .�; ƒ/-elliptic in the sense
of (2.6). Hence, we can apply the whole procedure developed above to zu1 and con-
clude that u1 is a viscosity solution of (5.10). Proposition 2.6 then applies, and u1 2

C 1;˛.B1=2.0//. In particular, (2.16) is valid, which contradicts (5.9)2, and the proof is
complete.

Lemma 5.2 essentially determines a certain parameter "0 � "0.data/ 2 .0; 1/ so that
it is possible to build a tangential path connecting an "0-normalized viscosity solution
of (2.10) to viscosity solutions of a homogeneous limiting profile for which the Krylov–
Safonov regularity theory is available. At this stage, we need to transfer such regularity
from the limiting homogeneous problem to viscosity solutions of (1.1). In this perspective,
we establish an oscillation control at discrete scales.

Lemma 5.3. Assume (2.1), (2.2), (2.3), (2.4), (2.6) and let "0 � "0.data/ 2 .0; 1/ be the
smallness parameter determined in Lemma 5.2. There are � � �.n; �; ƒ/ 2 .0; 1/ and
˛0 � ˛0.n; �;ƒ; p

C; p�/ 2 .0; 1/ so that if u 2 C.B1.0// is an "0-normalized viscosity
solution of equation (1.1), then for any � 2 N it is possible to find x�� 2 Rn so that

oscB�� .0/.u �
x�� � x/ � �

�.1C˛0/: (5.21)

Proof. Let � � �.n; �;ƒ/ be the one in (2.15) and let

˛0 2
�
0;min

°
˛;

1

max¹pC; p�º C 1
;

log.2/
� log.�/

±�
; (5.22)
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where ˛ � ˛.n; �; ƒ/ 2 .0; 1/ is the Hölder continuity exponent provided by Proposi-
tion 2.6. A direct consequence of the choice made in (5.22) is

�˛0 >
1

2
: (5.23)

Now, we look back at the construction developed in Section 5.1 and fix a scaling para-
meter �0 equal to "1=20 , where "0 � "0.data/ is the one provided by Lemma 5.2. In this
way we determine the dependency �0 � �0.data/ and remove the ambiguity raised in
Remark 5.1 described by the inequality

kakL1.B1.0// C kbkL1.B1.0// � c.data; kakL1.�/; kbkL1.�/; kukL1.�/; kf kL1.�//:

Let u 2 C.B1.0// be an "0-normalized viscosity solution of equation (1.1) in the sense
of Definition 2.4 and of Section 5.1, which means that u is an "0-normalized viscosity
subsolution/supersolution of (5.1)/(5.2). With � 2 N [ ¹0º, we define �� WD �� and start
an induction argument to show that (5.21) holds for all � 2 N [ ¹0º.

Basic step: � D 0. By (5.3)2 we see that (5.21) holds with x�0 D 0. In fact, we have

oscB�0.0/.u �
x�0 � x/ D oscB1.0/u

(5.3)2
� 1:

Induction step. Assume that there exists x�� 2 Rn satisfying (5.21) and define

u�.x/ WD �
�.1C˛0/
�

�
u.��x/ � ��x�� � x

�
:

Recalling Definition 2.4, a straightforward computation shows that u� is a viscosity sub-
solution of

min
®
F�.D

2u�/;HqI�.x;Du� I z��/F�.D
2u�/;

HsI�.x;Du� I z��/F�.D
2u�/

¯
D C� in B1.0/ (5.24)

and a viscosity supersolution to

max
®
F�.D

2u�/;HqI�.x;Du� I z��/F�.D
2u�/;

HsI�.x;Du� I z��/F�.D
2u�/

¯
D �C� in B1.0/; (5.25)

where

z�� WD �
�˛0
�
x�� ;

a�.x/ WD �
˛0.q�p

C/
� a.��x/;

b�.x/ WD �
˛0.s�p�/
� b.��x/;

F�.M/ WD �1�˛0� F.�˛0�1� M/;

C� WD �
1�˛0.max¹pC;p�ºC1/
� C:
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Here, HqI�.�/, HsI�.�/ are defined in the proof of Lemma 5.2 and C is the constant derived
in Section 5.1 corresponding to the scaling parameter �0 fixed before. Notice that by con-
struction, F�.�/ satisfies (2.1) uniformly in � and because of the choice of �0 � �0.data/
made above, we have

C� � �
1�˛0.max¹pC;p�ºC1/
� C

(5.3)2;(5.22)
� "0:

Furthermore, the induction assumption assures that

oscB1.0/u� D �
�.1C˛0/
� oscB�� .0/.u �

x�� � x/
(5.21)
� 1; (5.26)

and, as u.0/ D 0, cf. Section 5.1, we also have u�.0/ D 0. Therefore, by (5.26) we have
ku�kL1.B1.0// � 1. Thus, we see that u� is actually an "0-normalized viscosity subsolu-
tion/supersolution of (5.24)/(5.25), so all the assumptions of Lemma 5.2 are satisfied, and
there is z��C1 2 Rn so that

oscB� .0/.u� � z��C1 � x/ �
�

2
:

Setting x��C1 WD x�� C �
˛0
�
z��C1, we can rewrite the content of the previous display as

��.1C˛0/� oscB��C1 .0/.u �
x��C1 � x/ �

�

2
H) oscB��C1 .0/.u �

x��C1 � x/
(5.23)
� �

1C˛0
�C1 ;

and the proof is complete.

Now we are ready to prove Theorem 1.2.

5.3. Proof of Theorem 1.2

Proof. Let u 2 C.�/ be a viscosity solution of equation (1.1). For the parameter
"0 � "0.data/ 2 .0; 1/ provided by Lemma 5.2, we follow the scaling process outlined
in Section 5.1 to turn u into an "0-normalized viscosity solution of (1.1). The choice of "0
assures that the assumptions of Lemma 5.3 are satisfied, so (5.21) is available to us. Given
any % 2 .0; 1�, we can find � 2 N [ ¹0º so that ��C1 < % � �� . We then estimate

oscB%.0/.u � �� � x/ � oscB�� .0/.u � �� � x/
(5.21)
� ��.1C˛0/ � ��.1C˛0/%1C˛0 � c%1C˛0 ;

with c � c.n; �; ƒ; pC; p�/, so u is C 1;˛0 -regular around zero. By standard translation
arguments we can prove the same fact in a neighborhood of any x0 2 B1=2.0/. In particu-
lar, we have

ŒDu�0;˛0IB1=2.0/ � c.n; �;ƒ; p
C; p�/:

Reversing the scaling procedure in Section 5.1 we get

ŒDu�0;˛0IB1=2.0/ � c�
�.1C˛0/.data; kukL1.�/; kf kL1.�//

and applying the usual covering argument we obtain (1.8), which immediately implies that
u 2 C

1;˛0
loc .�/, and the proof is complete.
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A. Hölder estimates for Multi Phase equations with variable
exponents

Let us derive uniform Hölder estimates for continuous viscosity solutions to fully nonlin-
ear elliptic equations of Multi Phase type with variable exponents. Let � 2 Œ0; 1� be any
number, set for simplicity

� �Rn 3 .x; z/ 7! G�.x; z/ WD
�
`�.z/

p.x/
C a.x/`�.z/

q.x/
C b.x/`�.z/

s.x/
�
;

and consider the equation

G�.x;Du/
�
�uC F.D2u/

�
D f .x/ in �; (A.1)

where
0 � p.�/ 2 C.�/; 0 � q.�/ 2 C.�/; 0 � s.�/ 2 C.�/; (A.2)

and assume also (2.1), (2.3) and (2.4).

Proposition A.1. Under assumptions (2.1), (2.3), (2.4) and (A.2), let u 2 C.�/ be a vis-
cosity solution to the Multi Phase fully nonlinear equation with variable exponents (A.1).
Then u 2 C 0;ˇ0loc .�/ for all ˇ0 2 .0; 1/. In particular, if B%.z0/b� is any ball with radius
% 2 .0; 1

2
/, it holds that

Œu�0;ˇ0IB%=2.z0/ � c.n; �;ƒ; kukL1.B%.z0//; kf kL1.B%.z0//; %; ˇ0/: (A.3)

Proof. Let u 2C.�/ be a viscosity solution to equation (A.1) andB%.z0/b� be any ball
with radius % 2 .0; 1

2
/. We prove that there are two constants A2 � A2.%; kukL1.B%.z0///

and A1 � A1.n; �;ƒ; p; %; ˇ0; kukL1.B%.z0//; kf kL1.B%.z0/// so that

M.x0/ WD sup
x;y2B%.z0/

�
u.x/ � u.y/ � A1jx � yj

ˇ0 � A2
�
jx � x0j

2
C jy � x0j

2
��
� 0

(A.4)

holds for all x0 2 B%=2.z0/. In (A.4), ˇ0 2 .0; 1/ is any (fixed) number. By contradiction,
we assume that

there exists x0 2 B%=2.z0/ such that M.x0/ > 0 for all positive A1; A2; (A.5)

define quantities8̂<̂
:A1 WD

40

ˇ0.1 � ˇ0/

hkf kL1.B%.z0// C kukL1.B%.z0//
�

C .2A2 C 1/
�ƒ.n � 1/

�
C 1

�i
;

A2 WD 64%
�2 max

®
kukL1.B%.z0//; 1

¯
;

(A.6)
and consider the auxiliary functions´

 .x; y/ WD A1jx � yj
ˇ0 C A2

�
jx � x0j

2 C jy � x0j
2
�
;

�.x; y/ WD u.x/ � u.y/ �  .x; y/:
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If .xx; xy/ 2 B%.z0/ � B%.z0/ is a maximum point of �.�/, via (A.5) we have �.xx; xy/ D
M.x0/ > 0, so

A1jxx � xyj
ˇ0 C A2

�
jxx � x0j

2
C jxy � x0j

2
�
� u.xx/ � u.xy/

� 2kukL1.B%.z0//:

Plugging (A.6)2 in the above inequality yields that xx, xy both belong to the interior of
B%.z0/. In fact,

jxx � z0j � jxx � x0j C jx0 � z0j �
3%

4
and jxy � z0j � jxy � x0j C jx0 � z0j �

3%

4
:

Moreover, xx 6D xy, otherwise (A.4) would be satisfied. This last remark shows that  .�/ is
smooth in a small neighborhood of .xx; xy/, therefore we can determine vectors

�xx WD @x .xx; xy/ D A1ˇ0jxx � xyj
ˇ0�1

xx � xy

jxx � xyj
C 2A2.xx � x0/;

�xy WD �@y .xx; xy/ D A1ˇ0jxx � xyj
ˇ0�1

xx � xy

jxx � xyj
� 2A2.xy � x0/:

To summarize, we have that �.�/ attains its maximum at .xx; xy/ inside B%.z0/ � B%.z0/
and �.�/ is smooth around .xx; xy/, thus Proposition 2.3 applies: we can find a threshold
yı D yı.kD2 k/ such that for all ı 2 .0; yı/ the couple .�xx ;Xı/ is a limiting subjet of u at xx
and the couple .�xy ; Yı/ is a limiting superjet of u at xy and the matrix inequality�

Xı 0

0 �Yı

�
�

�
Z �Z

�Z Z

�
C .2A2 C ı/I (A.7)

holds, where we set

Z WD A1D
2.jx � yjˇ0/j.xx;xy/

D ˇ0A1jxx � xyj
ˇ0�2

h
I � .2 � ˇ0/

.xx � xy/˝ .xx � xy/

jxx � xyj2

i
:

We fix ı � min¹1; yı
4
º and apply (A.7) to vectors of the form .z; z/ 2 R2n to obtain

h.Xı � Yı/z; zi � .4A2 C 2/jzj
2:

This means that

all the eigenvalues of Xı � Yı are less than or equal to 2.2A2 C 1/: (A.8)

In particular, applying (A.7) to the vector

xz WD
�
xx � xy

jxx � xyj
;
xy � xx

jxx � xyj

�
;
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we get D
.Xı � Yı/

xx � xy

jxx � xyj
;
xx � xy

jxx � xyj

E
� 2.2A2 C 1/ � 4ˇ0.1 � ˇ0/A1jxx � xyj

ˇ0�2:

This yields in particular that

at least one eigenvalue of Xı � Yı is less than

2.2A2 C 1/ � 4A1ˇ0.1 � ˇ0/jxx � xyj
ˇ0�2: (A.9)

Recalling (A.6)1 we can conclude that

2.2A2 C 1/ � 4A1ˇ0.1 � ˇ0/jxx � xyj
ˇ0�2 < 0;

where we also used that jxx � xyj � 1. This means that at least one eigenvalue of Xı � Yı
is negative, thus combining (2.7)2, (A.8), and (A.9) we obtain

P��;ƒ.Xı � Yı/ � �2.2A2 C 1/
�
ƒ.n � 1/C �

�
C 4�A1ˇ0.1 � ˇ0/: (A.10)

With �xx , �xy computed before, we recover the viscosity inequalities´
G�.xx; �xx/

�
�u.xx/C F.Xı/

�
� f .xx/;

G�.xy; �xy/
�
�u.xy/C F.Yı/

�
� f .xy/:

(A.11)

Moreover, a quick computation based on the Young inequality shows that

min
®
`�.�xx/; `�.�xy/

¯
� min

®
j�xxj; j�xy j

¯
�

r
1

4
A21ˇ

2
0 � 25A

2
2

�

r�1
2
A1ˇ0 � 5A2

��1
2
A1ˇ0 C 5A2

� (A.6)1
� 1 (A.12)

and, via ellipticity,

F.Xı/
(2.8)
� F.Yı/CP��;ƒ.Xı � Yı/: (A.13)

Merging all the previous inequalities, we obtain

f .xx/

G�.xx; �xx/

(A.11)1
� �u.xx/C F.Xı/

(A.13)
� �u.xx/C F.Yı/CP��;ƒ.Xı � Yı/

(A.10);(A.11)2
� �.u.xx/ � u.xy//

� 2.2A2 C 1/
�
ƒ.n � 1/C �

�
C 4�A1ˇ0.1 � ˇ0/C

f .xy/

G�.xy; �xy/
;

so with (A.12) we can complete the estimate in the above display as follows:

2
�
kf kL1.B%.z0// C kukL1.B%.z0//

�
C 2.2A2 C 1/

�
ƒ.n � 1/C �

�
� �.u.xy/ � u.xx//C

f .xx/

G�.xx; �xx/
�

f .xy/

G�.xy; �xy/
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C 2.2A2 C 1/
�
ƒ.n � 1/C �

�
� 4�A1ˇ0.1 � ˇ0/;

which contradicts the position in (A.6)1. This means that there are two positive constants
A1, A2 with the dependencies outlined before so that for all x0 2 B%=2.z0/, inequal-
ity (A.4) is satisfied, which in particular yields that u 2C 0;ˇ0.B%=2.z0// for all ˇ0 2 .0;1/.
The arbitrariness of B%.z0/ and a standard covering argument render that u 2 C 0;ˇ0loc .�/

for all ˇ0 2 .0; 1/, and the proof is complete.

Remark A.2. Notice that the constant appearing in (A.3) does not depend on � 2 Œ0; 1�
nor on the moduli of continuity of a.�/, b.�/, p.�/, q.�/, s.�/.
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