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Bifurcations of spherically asymmetric
solutions to an evolution equation for curves

Takeo Sugai

Abstract. We show that a certain non-local curvature flow for planar curves has non-trivial self-
similar solutions with n-fold rotational symmetry, bifurcated from a trivial circular solution.
Moreover, we show that the trivial solution is stable with respect to perturbations which keep the
geometric center and the enclosed area, and that, for n different from 3, the n-fold symmetric solu-
tion is stable with respect to perturbations which satisfy the same conditions as above and have the
same symmetry as the solutions.

1. Introduction

The following evolution equation is known as the curve shortening flow:

@u

@t
� � D �; (1.1)

where u D u.�; t/ for � 2 Œ0; 2�/ is a simple closed curve, � is the outward unit normal
vector field, and � is the curvature of u. Moreover, we choose the sign of � so that � < 0
if u is convex.

If u is a solution to (1.1), it is well known that the area enclosed by u decreases at the
constant rate 2� . Indeed, by the first variation formula,

d
dt

L2.�t / D

Z
�t

@u

@t
� � D

Z
�t

� D �2�;

where L2 denotes the two-dimensional Lebesgue measure, �t denotes the simple closed
curve u at time t , and �t denotes the domain enclosed by �t ; see [14].

It is also well known that the solution u of (1.1), after an appropriate scaling so that
the enclosed area becomes � , approaches the unit circle. These results were originally
obtained by Gage and Hamilton [8] and Grayson [9], and are comprehensively explained
in [3].

In this paper, we consider the parameterized non-local curvature flow

@u

@t
� � D � C q; (1.2)
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where q D 2��ˇ

H1.�t /
, ˇ > 0 is a constant, and H1 denotes the one-dimensional Hausdorff

measure. The non-local term q is introduced to control the rate of decrease in the enclosed
area by �t , as

d
dt

L2.�t / D

Z
�t

@u

@t
� � D

Z
�t

�
� C

2� � ˇ

H1.�t /

�
D �ˇ;

i.e., the area of �t decreases at the prescribed constant rate ˇ. In particular, (1.2) con-
tains the curve shortening flow (ˇ D 2�) and the area-preserving curvature flow (ˇ D 0)
studied by Chao, Ling and Wang [2] and Gage [7] as special cases. Regarding these flows,
higher-dimensional cases are also studied, and it is known that sphere-shaped solutions are
stable [6, 10].

Unlike these cases, it has been expected from numerical computations by Dallas-
ton and McCue [5] that higher values of ˇ destabilize the circular shape and a variety
of asymptotic shapes other than circles appear. In this paper, we rigorously justify this
numerical observation as the bifurcation phenomena of non-circular solutions to (1.2)
from circular solutions at

ˇn;0 WD 2�.n
2
� 1/; n � 2:

Moreover, we clarify the local behavior of the bifurcating solution in terms of the bifur-
cating parameter ˇ.

In order to state our main result, let us recall that the fractional Sobolev space on the
unit circle S1 is defined by

H s.S1/ WD

²
a0 C

1X
kD1

.ak cos.k�/C bk sin.k�// 2 L2.S1/

ˇ̌̌
a20

1X
kD1

.1C k2/s.a2k C b
2
k/ <1

³
:

Here, we suppose that s > 5
2

, that is, we choose s > 0 so that every element in H s.S1/

becomes C 2. Then, the solution u is described by r 2H s.S1/ as u.�; t/D .1C r.�; t//�,
where � WD .cos �; sin �/ 2 S1, as long as �t is star-shaped with respect to the origin.

Using these notations, we have the following main results:

Theorem 1.1 (Existence of non-trivial self-similar solutions). For n D 2 or n � 4, there
exists "n > 0 such that, for any ˇn;0 < ˇ < ˇn;0 C "n, there is a non-trivial self-similar
solution to (1.2) which has symmetry with respect to 2�

n
-rotation and symmetry with

respect to the x-axis.
Similarly, there exists "3 > 0 such that, for any ˇ3;0 � "3 < ˇ < ˇ3;0, there is a non-

trivial self-similar solution to (1.2) which has symmetry with respect to 2�
3

-rotation and
symmetry with respect to the x-axis.

Moreover, the non-trivial self-similar solutions with respect to ˇ’s near ˇn can be
expressed by a real variable � as .un;� ; ˇn.�// where � ¤ 0 is sufficiently small, and
ˇn.�/ is analytic near 0 and satisfies ˇn.0/ D ˇn;0.
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Theorem 1.2 (Stability of self-similar solutions). If 0 < ˇ < 6� , the trivial circular solu-
tion to (1.2) is stable with respect to small perturbations r 2 H s.S1/ that do not change
the geometric center of the curve and the enclosed area. In other words, if we suppose
that sufficiently small r0 2 H s.S1/ satisfies L2.�0/ D � ,

R
�0
x D 0, and

R
�0
y D 0, the

solution

u.�; t/ D

r
1 �

ˇt

�
.1C r.�; t//�

with initial curve .1C r0.�//� exists for t 2 .0; ˇ
�
� and satisfies

r.�; t /! 0 in H s.S1/

as t ! �
ˇ

.
Similarly, if n ¤ 3 and ˇn;0 < ˇ < ˇn;0 C "n, a non-trivial self-similar solution un;�

to (1.2) expressed as r
1 �

ˇt

�
.1C rn;� .�//�

is stable with respect to small perturbations r 2 H s.S1/ that have reflectional and n-fold
symmetry and do not change the geometric center of the curve, nor the enclosed area.
In other words, if r0 2 H s.S1/ sufficiently close to rn;ˇ satisfies r0.�/ D r0.2� � �/,
r0.�

0/ D r0.�/ if � 0 � � � 2�
n

mod 2� , L2.�0/ D � ,
R
�0
x D 0, and

R
�0
y D 0, the

solution

u.�; t/ D

r
1 �

ˇt

�
.1C r.�; t//�

to (1.2) with initial curve .1C r0.�//� exists for t 2 .0; ˇ
�
� and satisfies

r.�; t /! rn;� in H s.S1/

as t ! �
ˇ

.

2. Preliminaries

2.1. Sobolev space

All eigenvectors of linear operators which appear in this paper are trigonometric func-
tions. For this reason, we define Sobolev spaces on a circle using these functions. In this
subsection, we list some properties of Sobolev spaces that are necessary in this paper.

Let '0;0 D 1 on S1 and for k � 1, set 'k;0 D cos.k�/ and 'k;1 D sin.k�/. Then,
¹'k;j j j D 0; : : : ;min¹k; 1ºº forms an orthogonal basis of Hk , and

1[
kD0

®
'k;j j j D 0; : : : ;min¹k; 1º

¯
forms an orthogonal basis of L2.S1/.
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Definition 2.1 (Sobolev space). Suppose s > 0. We define the Sobolev space on S1 as

H s.S1/ WD

²
f D

1X
kD0

min¹k;1ºX
jD0

ak;j'k;j 2 L
2.S1/

ˇ̌̌ 1X
kD0

min¹k;1ºX
jD0

.1C k2/sa2k;j <1

³
;

and for each f D
P1
kD0

Pmin¹k;1º
jD0 ak;j'k;j and gD

P1
kD0

Pmin¹k;1º
jD0 bk;j'k;j 2H

s.S1/,
we define an inner product of f and g as

hf; gi WD

1X
kD0

min¹k;1ºX
jD0

.1C k2/sak;j bk;j :

We regard H s.S1/ as a Hilbert space with respect to this inner product.

The next proposition follows from a straightforward calculation.

Proposition 2.2. Suppose s > 1. Then, a linear map H s.S1/! H s�1.S1/ defined byP
k

P
j ak;j'k;j 7!

P
k

P
j kak;j'k;j is bounded.

The above definition of the Sobolev space on a circle is different from that on an open
subset of a Euclidean space. However, the Sobolev embedding theorem still holds. We use
the following special case of this theorem in this paper:

Proposition 2.3 ([1]). Let l � 0 be an integer. Then, if s > l C 1
2

, an element of H s.S1/

is a C l function.

In addition,H s.S1/ is closed under multiplication, and the proposition which follows
also holds for H s.R/. We omit the proof because it is analogous to that of H s.R/:

Proposition 2.4. Suppose s > 1
2

. For each f; g 2 H s.S1/, fg defined as .fg/.�/ WD
f .�/g.�/ is in H s.S1/, and there exists a constant C > 0 independent of f and g such
that

kfgkH s.S1/ � Ckf kH s.S1/kgkH s.S1/:

2.2. Analytic functions

Definition 2.5. Let X; Y be Banach spaces, and let U � X be open. Then, a function
F W U ! Y is called analytic at x0 if there exist " > 0 and a bounded k-linear map
Fk W X

k ! Y for each k � 0 such that the series
P1
kD0 kFkk"

k converges, and F can be
expressed as

F.x/ D

1X
kD0

Fk.x � x0; : : : ; x � x0/; 8x 2 Bx0."/:

If F is analytic at every point of U , F is called analytic on U .
Regarding analytic functions, the following holds:
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Proposition 2.6 ([13, Lemma 6]). Suppose that F W X ! Y is analytic at x0 2 X and
that G W Y ! Z is analytic at F.x0/ 2 Y . Then, F ıG W X ! Z is analytic at x0.

Proposition 2.7 ([13, Lemma 7]). Let X be a Banach algebra with the multiplicative
identity. Suppose that x0; u0 2 X is an invertible element satisfying x20 D u0. Then, there
exist analytic functions u 7!

p
u W X ! X and u 7! u�1 W X ! X such that .

p
u/2 D u

and u�1u D 1.

3. Transformation of the equation

At first, we show that concentric shrinking circles give a solution to (1.2). If we suppose
that an initial simple closed curve is a unit circle, then by (1),

d.�R.t/2/
dt

D �ˇ; R.0/ D 1;

where R.t/ denotes the radius of the circle at time t . By solving this ODE, we get

�R.t/2 D � � ˇt;

R.t/ D

r
1 �

ˇt

�
: (3.1)

Proposition 3.1. Suppose that R.t/ is defined as above. Then, u.�; t/ D .R.t/ cos.�/;
R.t/ sin.�// is a solution to (1.2).

Proof. Since the curvature � and the unit normal vector field � of the curve are

� D �
1

R.t/
; � D .cos.�/; sin.�//

respectively, the right-hand side of (1.2) is

�
1

R.t/
C
2� � ˇ

2�R.t/
D �

ˇ

2�R.t/
:

On the other hand, the left-hand side is

@u

@t
� � D R0.t/;

and for R0.t/,

2�R.t/R0.t/ D �ˇ;

R0.t/ D �
ˇ

2�R.t/
;

by (3.1). Therefore, u.�; t/ is a solution to (1.2).
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Next, we change the scale by using R.t/, that is, if u is a solution to (1.2), we derive
an equation which v WD R.t/�1u satisfies. Since Rv is a solution to (1.2), by substituting
it for u, we obtain

@.Rv/

@t
� � D � C q;�

R0v CR
@v

@t

�
� � D � C q;�

�
ˇ

2�R
v CR

@v

@t

�
� � D � C q: (3.2)

Defining � as � WD � log.1 � ˇt
�
/, we have

d�
dt
D
ˇ

�

1

1 � ˇt
�

D R�2
ˇ

�
:

Substituting it into (3.2) and using @v
@t
D

@v
@�

d�
dt , we have�

�
ˇ

2�R
v C

ˇ

�R

@v

@�

�
� � D � C q;

2
@v

@�
� � D v � � C

2�R

ˇ
.� C q/: (3.3)

Define z� as the curvature of v and zq.t/ WD 2��ˇ
L.v.t//

. Then, they can be expressed as

z� D R�; zq.t/ D Rq:

Therefore, (3.3) can be expressed as

2
@v

@�
� � D v � � C

2�

ˇ
.z� C zq/: (3.4)

Finding a self-similar solution u to the original equation (1.2) is the same as find-
ing a solution v.�/ to (3.4) satisfying @v

@�
D 0. For this reason, we consider a solution

v W S1 ! R2 to
v � � C

2�

ˇ
.z� C zq/ D 0: (3.5)

If a curve v is close to a circle, by using a function r W S1 ! R which represents the
gap between v and the circle, the curve can be expressed as

v.�/ D � C r.�/�; � 2 S1: (3.6)

Note that if r is sufficiently small in the C 2 sense, the curve expressed by (3.6) is a simple
closed curve. In particular, we have the following proposition:

Proposition 3.2 ([13, Lemma 5]). Suppose s > 5
2

. Then, � 7! � C r.�/� is a homeomor-
phism of S1 ! ¹� C r.�/� j � 2 S1º for every r 2 H s.S1/ satisfying r > �1.
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Substituting (3.6) for (3.5), we obtain

.1C r.�//� � �.r/.�/C
2�

ˇ
.z�.r/.�/C zq.r// D 0; (3.7)

where �.r/.�/ is the unit outward normal vector of v.�/ at �, z�.r/.�/ is the curvature
of v.�/ at �, and zq.r/ is a product of 2� � ˇ and the reciprocal of the length of a curve
defined as � C r.�/�.� 2 S1/.

4. Differentiation of the equation

We regard the left-hand side of (3.7) as a map r W S1 ! R with a parameter ˇ > 0, and
we define

F.r.�/; ˇ/ WD .1C r.�//� � �.r/.�/C
2�

ˇ
.z�.r/.�/C zq.r//: (4.1)

This map is smooth if the domain and the target set are specific spaces, which we now
show.

At first, regarding � and z� in (4.1), the following holds:

Proposition 4.1 ([13, Lemma 16]). Suppose s > 5
2

. Then,

(1) r 7! �.r/ is an analytic map from a neighborhood of 0 inH s.S1/ to .H s�1.S1//2,

(2) r 7! z�.r/ is an analytic map from a neighborhood of 0 in H s.S1/ to H s�2.S1/.

Since a product of two analytic maps to H s�1.S1/ is analytic by Proposition 2.4,
r.�/� � �.r/.�/ is analytic from a neighborhood of 0 in H s.S1/ to H s�1.S1/. By consid-
ering this together with the smoothness of z�, (4.1) is analytic from a neighborhood of 0 in
H s.S1/ to H s�2.S1/, except for zq.

Regarding zq, we consider the length of � C r.�/� (for � 2 S1). Let this be denoted
by L.r/. We shall use the formula of the length of a curve expressed in polar coordinates,
i.e.,

L.r/ D

Z 2�

0

p
.1C r.�//2 C .r 0.�//2d�: (4.2)

The argument of the square root in this expression is an analytic function H s.S1/ !

H s�1.S1/ by Proposition 2.2 which implies that r 7! r 0 is a bounded linear operator
of H s.S1/ ! H s�1.S1/ and by Proposition 2.4 which implies that .f; g/ 7! fg is a
bounded bilinear operator of the formH s.S1/�H s.S1/!H s.S1/. Moreover, the inte-
gral of the square root of this is analytic by Proposition 2.6 and Proposition 2.7. In other
words, L.r/ is an analytic map from a neighborhood of 0 in H s.S1/ to H s�1.S1/. Fur-
thermore, L.r/ 2 R, and the product of 2� � ˇ and the reciprocal of L.r/ is analytic as
a map from a neighborhood of 0 in H s.S1/ to H s0.S1/ for all s0 > 0 by Proposition 2.6.
Consequently, we get the following:
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Theorem 4.2. Suppose that s > 5
2

. Then, F in (4.1) is an analytic map from a neighbor-
hood of 0 in H s.S1/ to H s�2.S1/.

We showed that F is smooth in a neighborhood of the origin. Next, we consider the
Fréchet derivative of F at 0.

First, regarding the derivative of z�.r/ at 0, the following is known:

Proposition 4.3 ([13, Lemma 33]). The function Dz�.0/ W H s.S1/! H s�2.S1/ is given
by d2

d�2 C I . Here, S1 is parameterized by � 7! .cos.�/; sin.�//, and I denotes the inclu-
sion map H s.S1/! H s�2.S1/.

Next, we consider the Fréchet derivative of zq at 0. The next proposition follows from
a straightforward calculation.

Proposition 4.4. Suppose that s > 3
2

. Then, regarding L in (4.2), we haveˇ̌̌
L.r/ � L.0/ �

Z 2�

0

r.�/d�
ˇ̌̌
D o.krkH s.S1//:

In other words, DL.0/, which denotes the Fréchet derivative ofL WH s.S1/!R at r D 0,
satisfies

DL.0/Œh� D
Z 2�

0

h.�/d�:

By this proposition, the Fréchet derivative of zq.r/ at 0 equals

h 7! �
2� � ˇ

L.0/2
DL.0/Œh� D �

2� � ˇ

.2�/2

Z 2�

0

h.�/d�:

Summarizing the above, we get the following proposition:

Proposition 4.5. Suppose that ˇ > 0. Then, F.�; ˇ/ W H s.S1/! H s�2.S1/ is analytic
at 0, and

DF.0; ˇ/Œh� D hC
2�

ˇ

°� d2

d�2
h.�/C h

�
�
2� � ˇ

.2�/2

Z 2�

0

h.�/d�
±

is its Fréchet derivative at 0.

5. Existence of solutions

First, we consider ˇ such that no solutions to F.r; ˇ/ D 0 other than 0 exist. If ˇ > 0

cannot be expressed as ˇ D ˇn;0 D 2�.n2 � 1/ for any natural number n, then the Fréchet
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derivative DF.0; ˇ/ W H s.S1/! H s�2.S1/ is bijective. It is because DF.0; ˇ/ satisfies

1 7! 2;

cos.k�/ 7!
�
1C

2�

ˇ
.�k2 C 1/

�
cos.k�/ ¤ 0; k 2 N;

sin.k�/ 7!
�
1C

2�

ˇ
.�k2 C 1/

�
sin.k�/ ¤ 0; k 2 N;

and these form an orthonormal basis of H s.S1/. Then, by the implicit function theorem,
there exist a neighborhood of ˇ denoted by U , a neighborhood 0 2H s.S1/ denoted by V ,
and a unique map U ! V denoted by r.ˇ/ such that F.r;ˇ/D 0 implies r D r.ˇ/. Since
the constant map 0 satisfies the condition to be r.ˇ/, r.ˇ/ D 0. Therefore, under this
condition, no solutions other than 0 exist in a sufficiently small neighborhood of 0.

Next, we consider the case that ˇ > 0 can be expressed as ˇ D ˇn;0 D 2�.n2 � 1/
for a natural number n � 2. We use the following theorem to show the existence of the
non-trivial solution to F.r; ˇ/ D 0:

Proposition 5.1 ([4, Theorem 1.7]). Let X , Y be Banach spaces and � be a neighbor-
hood of 0 2 X . Let .�1; �2/ be an open interval in R and let V D .�1; �2/ � �. Let
f W V ! Y be a C 1 map that satisfies f .�; 0/ D 0. In addition, suppose that f satisfies
the following conditions:

(1) f�x exists and is continuous on V ,

(2) the dimension of Ker.fx.�0; 0// equals 1,

(3) the codimension of Range.fx.�0; 0// equals 1,

(4) there exists x0 2 Ker.fx.�0; 0// such that f�x.�0; 0/x0 … Range.fx.�0; 0//.

Let Z be a complementary space of Ker.fx.�0; 0//. Then, there exist a neighborhood
of .�0; 0/ in V denoted by V0, an open interval I containing 0, and a continuous real-
valued function � D �.�/ (� 2 I ) such that a set consisting of all .�; x/ 2 V0 satisfying
f .�; x/ D 0 is a union of the curves

�1 D
®
.�.�/; �x0 C z.�/ j � 2 I

¯
;

�2 D
®
.�; 0/ j .�; 0/ 2 V0

¯
;

where z D z.�/ is a Z-valued continuous function defined on I satisfying z.�/ D o.�/.
Moreover, if f is Cp (p � 3) on V , we can choose �; z to be Cp�2.

Since the dimension of the kernel of DF.0; ˇn;0/ equals 2, we cannot apply this theo-
rem to F directly. However, restricting F to a specific subspace, we become able to apply
it. To prove this, we show the following:

Proposition 5.2. The function F in (4.1) keeps symmetry with respect to the x-axis. More-
over, F keeps symmetry with respect to 2�

n
-rotation. In other words, if a function r on S1

satisfies r.�/D r.��/, so does F.r; ˇ/. In the same way, if r satisfies r.�/D r.� C 2�
n
/,

so does F.r; ˇ/.
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Proof. The function F.r; ˇ/ can be expressed as

F.r; ˇ/ D
�
.1C r/2 C .r 0/2

�� 12 .1C r/2
C
2�

ˇ

°
�
�
.1C r/2 C .r 0/2

�� 32 �.1C r/2 C 2.r 0/2 � .1C r/r 00�
C .2� � ˇ/

�Z
S1

p
.1C r.�//2 C .r 0.�//2d�

��1±
: (5.1)

We can check this as follows: first, if a simple closed curve is parameterized as
S1 ! R2; � 7! .1 C r.�//.cos.�/; sin.�//, the velocity vector can be expressed as
� 7! r 0.�/.cos.�/; sin.�// C .1 C r.�//.� sin.�/; cos.�//. Therefore, the outward unit
normal vector field can be expressed as

� 7!
�
.1C r.�//2 C .r 0.�//2

�� 12 �r 0.�/.sin.�/;� cos.�//C .1C r.�//.cos.�/; sin.�//
�
:

Hence,
.1C r.�//� � �.�/ D

�
.1C r.�//2 C .r 0.�//2

�� 12 .1C r.�//2:
Next, regarding �.�/, by using the expression of the velocity vector above, we get

�.�/ D �
.1C r.�//2 C 2.r 0.�//2 � .1C r.�//r 00.�/�

.1C r.�//2 C .r 0.�//2
� 3
2

:

Moreover, since the norm of the velocity vector equals ..1C r.�//2 C .r 0.�//2/
1
2 , the

length L.r/ of the curve can be expressed as

L.r/ D

Z 2�

0

�
.1C r.�//2 C .r 0.�//2

� 1
2 d�:

Substituting these expressions into (4.1), we get (5.1).
Because of this expression, if r is an even function with respect to � , so is F.r; ˇ/. In

the same way, if r is invariant under the change of variables � 7! � C 2�
n

, so is F.r;ˇ/.

Defining a Banach space Xs
n as

Xs
n WD

² 1X
kD0

ak cos.kn�/ 2 H s.S1/

³
;

we can regard F.�; ˇ/ as a map Xs
n ! Xs�2

n . Then, we can check the four conditions
necessary to apply Theorem 5.1 at ˇ D ˇn;0. First, condition (1) follows from the analyt-
icity of F . Next, since Ker.DF.0; ˇn;0// D Range.DF.0; ˇn;0//? D ¹a cos.n�/Ia 2 Rº,
condition (2) and condition (3) hold. Finally, condition (4) holds since

Fˇr .0; ˇn;0/.cos.n�// D �
2�

ˇ2n;0
.�n2 C 1/ cos.n�/ … Range.DF.0; ˇn;0//

for cos.n�/, which spans Ker.DF.0; ˇn;0//.
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Summarizing the above, we get the following:

Theorem 5.3. Let n� 2 and Xs
n be defined as above. Then, there exist an open interval I ;

a real-valued function ˇn such that ˇn.0/ D ˇn;0; and a Xs�2
n -valued function zn such

that zn.�/ D o.�/, zn is orthogonal to cos.n�/, and

F.rn.�/; ˇn.�// D 0; � 2 I;

where rn.�/ D � cos.n�/C zn.�/.

Note that the same argument holds even if we replace Xs
n with a space consisting of

functions which are symmetric with respect to the x-axis. Moreover, such solutions have
symmetry with respect to rotation because of uniqueness of the solutions.

Rough sketches of self-similar solutions are given in Figure 1. They are smooth,
symmetric with respect to the x-axis and with respect to 2�

n
-rotation for certain n. More-

over, if a self-similar solution to (1.2) is sufficiently close to a circle, it is convex since
the sign of the curvature is constant. For more accurate figures of self-similar solutions
to (1.2), see [5].

Figure 1. Rough sketches of n-fold symmetric self-similar solutions for n D 2; 3; 4.

6. Behavior near bifurcation points

In the above discussion, we showed that there exist ˇn sufficiently near ˇn;0D2�.n2 � 1/
(n � 2) and rn sufficiently close to 0 such that ˇn and rn satisfy F.rn; ˇn/ D 0. In this
section, we derive the sign of ˇn.�/ � ˇn;0 for ˇn.�/ sufficiently near ˇn;0.

First, we transform expression (5.1). By considering the Taylor expansion at 0 of each
term in F , we divide F into two parts: the part which is at most third order with respect
to krkH s.S1/ and the remainder term O.krk4

H s.S1/
/.

Regarding the first term in the right-hand side of (5.1),�
.1C r/2 C .r 0/2

�� 12 .1C r/2 D �1C 2r C .r2 C .r 0/2/�� 12 .1C 2r C r2/: (6.1)
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Since .1C x/�
1
2 can be expressed as .1C x/�

1
2 D 1� 1

2
x C 3

8
x2 � 5

16
x3 CO.jxj4/ for

jxj < 1,

RHS of (6.1) D
�
1 �

1

2

�
2r C r2 C .r 0/2

�
C
3

8

�
2r C r2 C .r 0/2

�2
�
5

16

�
2r C r2 C .r 0/2

�3
CO

�
krk4

H s.S1/

��
� .1C 2r C r2/

D

�
1 � r C

�
r2 �

1

2
.r 0/2

�
C

�
�r3 C

3

2
r.r 0/2

�
CO

�
krk4

H s.S1/

��
� .1C 2r C r2/

D 1C r �
1

2
.r 0/2 C

1

2
r.r 0/2 CO

�
krk4

H s.S1/

�
(6.2)

for functions r for which the uniform norms of it and its first derivative are sufficiently
small.

Next, regarding the term ..1 C r/2 C .r 0/2/�
3
2 ..1 C r/2 C 2.r 0/2 � .1 C r/r 00/

in (5.1), by using .1C x/�
3
2 D 1 � 3

2
x C 15

8
x2 � 35

16
x3 CO.jxj4/, we get�

.1C r/2 C .r 0/2
�� 32 �.1C r/2 C 2.r 0/2 � .1C r/r 00�

D
�
1C 2r C

�
r2 C .r 0/2

��� 32 �1C .2r � r 00/C �r2 � rr 00 C 2.r 0/2��
D

�
1 �

3

2

�
2r C r2 C .r 0/2

�
C
15

8

�
2r C r2 C .r 0/2

�2
�
35

16

�
2r C r2 C .r 0/2

�3
CO

�
krk4

H s.S1/

��
�
�
1C .2r � r 00/C

�
r2 � rr 00 C 2.r 0/2

��
D

�
1 � 3r C

�
6r2 �

3

2
.r 0/2

�
C

�
�10r3 C

15

2
r.r 0/2

��
�
�
1C .2r � r 00/

C .r2 � rr 00 C 2.r 0/2/
�

D 1C .�r � r 00/C
�
r2 C 2rr 00 C

1

2
.r 0/2

�
C

�
�r3 � 3r2r 00 �

3

2
r.r 0/2

C
3

2
.r 0/2r 00

�
CO

�
krk4

H s.S1/

�
: (6.3)

Moreover, we transform .
R
S1

p
.1C r.�//2 C .r 0.�//2d�/�1 in (5.1). In the follow-

ing, for convenience, let
R
r denote

R
S1
r.�/d� for every function r . Then, transform-

ing the integrand of
R p

.1C r/2 C .r 0/2 by using
p
1C x D 1 C 1

2
x � 1

8
x2 C 1

16
x3

CO.jxj4/, we getp
.1C r/2 C .r 0/2 D

p
1C 2r C .r2 C .r 0/2/

D 1C
1

2

�
2r C r2 C .r 0/2

�
�
1

8

�
2r C r2 C .r 0/2

�2
C

1

16

�
2r C r2 C .r 0/2

�3
CO

�
krk4

H s.S1/

�
D 1C r C

1

2
.r 0/2 �

1

2
r.r 0/2 CO

�
krk4

H s.S1/

�
:
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Integrating this, we getZ p
.1C r/2 C .r 0/2 D 2� C

Z
r C

1

2

Z
.r 0/2 �

1

2

Z
r.r 0/2 CO

�
krk4

H s.S1/

�
:

Taking the reciprocal of this, we have�Z p
.1C r/2 C .r 0/2

��1
D

1

2�

°
1 �

1

2�

�Z
r C

1

2

Z
.r 0/2 �

1

2

Z
r.r 0/2

�
C

1

.2�/2

�Z
r C

1

2

Z
.r 0/2 �

1

2

Z
r.r 0/2

�2
�

1

.2�/3

�Z
r C

1

2

Z
.r 0/2 �

1

2

Z
r.r 0/2

�3±
CO

�
krk4

H s.S1/

�
D

1

2�
�

1

4�2

Z
r �

1

8�2

Z
.r 0/2 C

1

8�3

�Z
r
�2

C

Z
O
�
krk3

H s.S1/

�
CO

�
krk4

H s.S1/

�
: (6.4)

Substituting (6.2), (6.3), and (6.4) in (5.1), we obtain

F.r; ˇ/ D r C
2�

ˇ

�
r C r 00 �

2� � ˇ

4�2

Z
r
�
�
1

2
.r 0/2

C
2�

ˇ

°
�r2 � 2rr 00 �

1

2
.r 0/2 C .2� � ˇ/

�
�

1

8�2

Z
.r 0/2 C

1

8�3

�Z
r
�2�±

C
1

2
r.r 0/2 C

2�

ˇ

�
r3 C 3r2r 00 C

3

2
r.r 0/2 �

3

2
.r 0/2r 00

�
C

Z
O.krk3

H s.S1/
/CO

�
krk4

H s.S1/

�
: (6.5)

Solutions of F.r; ˇ/ D 0 near .0; ˇn;0/ can be expressed as .��n C zn.�/; ˇn.�//
where �n.�/ D cos.n�/; ˇn.0/ D ˇn;0; � 2 I; I contains 0, zn is orthogonal to �n, and
zn.�/ D o.�/. By substituting this into F , taking its inner product with specific functions
and differentiating them with respect to � , we obtain derivatives of ˇn with respect to �
at 0.

In the following, we consider ˇn.�/F.��n C zn.�/; ˇn.�// D 0 instead of F.��n C
zn.�/; ˇn.�// D 0 to make some calculations regarding differentiation slightly easier.

First, we take inner product with 1
�
�n of both sides of ˇn.�/F.��n C zn.�/;

ˇn.�// D 0. Then, second-order terms with respect to � vanish, and

�
�
ˇn.�/C 2�.1 � n

2/
�
C o.�2/ D 0 (6.6)
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holds. From this expression, we can see that ˇn.0/ D 2�.n2 � 1/, and we obtain

P̌
n.0/ D 0;

where P̌n denotes derivatives with respect to � .
Next, we calculate some derivatives of coefficients of the Fourier series of zn.�/ that

are necessary later to calculate the second derivative of ˇn.
By integrating both sides of ˇn.�/F.��n C zn.�/; ˇn.�// D 0 on S1 and dividing

them by 2� , we get°
ˇn.�/C 2�

�
1 �

2� � ˇn.�/

2�

�±
z.0/n .�/ �

n2

4
ˇn.�/�

2

C 2�
�
�
�2

2
C n2�2 �

n2

4
�2 C .2� � ˇn.�//

�n2

8�
�2
�
C o.�2/ D 0;

where z.0/n .�/ WD 1
2�

R
z.�/. By differentiating twice with respect to � and substituting 0

into both sides, we have

2ˇn;0 Rz
.0/
n .0/ �

n2

2
ˇn;0 C 2�

�
�1C 2n2 �

n2

2
C .2� � ˇn;0/

�n2

4�

�
D 0:

Substituting ˇn;0 D 2�.n2 � 1/, we obtain

Rz.0/n .0/ D �
1

2
:

Moreover, taking the inner product with 1
�
�2n of both sides of ˇn.�/F.��n C zm.�/;

ˇn.�// D 0, we have

®
ˇn.�/C 2�.1 � 4n

2/
¯
z.2n/n .�/C

n2

4
ˇn.�/�

2

C 2�
°
�
�2

2
C n2�2 C

n2

4
�2
±
C o.�2/ D 0;

where we define z.2n/n .�/ WD 1
�

R
.z.�/ cos.2n�//.

By differentiating twice as above and substituting in 0, we have

®
ˇn;0 C 2�.1 � 4n

2/
¯
Rz.2n/n .0/C

n2

2
ˇn;0 C 2�

°
�1C 2n2 C

n2

2

±
D 0:

Substituting ˇn;0 D 2�.n2 � 1/, we have

Rz.2n/n .0/ D
n4 C 4n2 � 2

6n2
:
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Finally, we divide o.�2/ in (6.6) into the parts greater than o.�3/ and o.�3/. Taking
the inner product with 1

�
�n of both sides of ˇn.�/F.��n C zn.�// D 0 again, we have

0 D �
�
ˇn.�/C 2�.1 � n

2/
�
�
ˇn.�/

2�

Z
S1
.r 0/2 cos.n�/d�

C 2�
°
�
1

�

Z
S1
r2 cos.n�/d� �

2

�

Z
S1
rr 00 cos.n�/d� �

1

2�

Z
S1
.r 0/2 cos.n�/d�

±
C
n2�3

8
ˇn.�/C 2�

°3�3
4
�
9n2�3

4
C
3n2�3

8
C
3n4�3

8

±
C o.�3/: (6.7)

Then,

1

�

Z
S1
.r 0/2 cos.n�/d� D

Z
S1
.�n� sin.n�/C .zn.�//0/2 cos.n�/d�

D �
1

�

Z
S1
2n�.zn.�//

0 sin.n�/ cos.n�/d� CO.s4/

D �
1

�

Z
S1
n�.zn.�//

0 sin.2n�/d� CO.�4/

D
1

�

Z
S1
2n2�zn.�/ cos.2n�/d� CO.�4/

D 2n2�z.2n/n .�/CO.�4/: (6.8)

In the same way,

1

�

Z
S1
r2 cos.n�/d� D

1

�

Z
S1
.� cos.n�/C zn.�//2 cos.n�/d�

D
1

�

Z
S1
2� cos2.n�/zn.�/d� CO.�4/

D
1

�

Z
S1
�.1C cos.2n�//zn.�/d� CO.�4/

D �.2z.0/n .�/C z.2n/n .�//CO.�4/ (6.9)

and

1

�

Z
S1
rr 00 cos.n�/d� D

1

�

Z
S1
.� cos.n�/C zn.�//.��n2 cos.n�/

C .zn.�//
00/ cos.n�/d�

D
1

�

Z
S1

°
�n2� cos2.n�/zn.�/C � cos2.n�/.zn.�//00

±
d�

CO.�4/

D �n2�z.0/n .�/ �
n2�

2
z.2n/n .�/ � 2n2�z.2n/n .�/CO.�4/

D �n2�z.0/n .�/ �
5n2�

2
z.2n/n .�/CO.�4/: (6.10)
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Substituting (6.8), (6.9), and (6.10) into (6.7), we have

0 D �
�
ˇn.�/C 2�.1 � n

2/
�
� n2ˇn.�/�z

.2n/
n .�/

C 2�
°
��.2z.0/n .�/C z.2n/n .�// � 2

�
�n2�z.0/n .�/ �

5n2�

2
z.2n/n .�/

�
� n2�z.2n/n .�/

±
C
n2�3

8
ˇn.�/C 2�

°3�3
4
�
9n2�3

4
C
3n2�3

8
C
3n4�3

8

±
C o.�3/:

Moreover, by dividing this by � , differentiating twice, and substituting 0 for � , we get

0 D Řn.0/ � n
2ˇn;0 Rz

.2n/
n .0/

C 2�
°
�2 Rz.0/n .0/ � Rz.2n/n .0/ � 2

�
�n2 Rz.0/n �

5n2

2
Rz.2n/n .0/

�
� n2 Rz.2n/n .0/

±
C
n2

4
ˇn;0 C 2�

°3
2
�
9n2

2
C
3n2

4
C
3n4

4

±
:

Substituting ˇn;0 D 2�.n2 � 1/; Rz
.0/
n .0/ D �1

2
, and Rz.2n/n .0/ D n4C4n2�2

6n2
, we obtain

Ř
n.0/ D �

�n6
3
� 5n4 C

49n2

3
� 3 �

2

3n2

�
: (6.11)

If n D 2, the right-hand side equals 7
2
� . If n D 3, the right-hand side equals �488

27
� .

Moreover, if n > 3, we can check that the right-hand side is positive. Therefore, ˇn’s for
which the original equation (equation (1.2)) has non-trivial self-similar solutions other
than circles are as shown in Figure 2. For example, if ˇ2 is sufficiently close to 6� , ˇ2 is
greater than 6� , and if ˇ3 is sufficiently close to 16� , ˇ3 is smaller than 16� .

Figure 2. A graph depicting the values of ˇ for which non-trivial self-similar solutions exist and the
stability of self-similar solutions.
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7. Stability of solutions

This section is concerned with stability of stationary solutions to (3.4). In terms of r , (1.2)
can be expressed as

2
@r

@�
� � �.r.�// D F.r; ˇ/: (7.1)

Defining G.r.�/; ˇ/ WD F.r.�/;ˇ/
2���.r/.�/

, we have

@r

@�
D G.r; ˇ/: (7.2)

Note that the Fréchet derivative of G at 0 equals a half of that of F .
At first, to show stability of non-trivial self-similar solutions with respect to symmetric

perturbations, we need to exclude positive eigenvalues of DG. For this reason, we consider
a set consisting of r satisfying

R
.1Cr/2

2
� � D 0. Note that r corresponds to a simple

closed curve whose enclosed area equals � .
Define � W Xs

n ! R � PXs
n as

�.r/ D
�Z .1C r/2

2
� �;P r

�
;

where P denotes a projection Xs
n ! ¹r 2 Xs

n j
R
r D 0º.

The inverse function theorem implies � is a homeomorphism from a sufficiently small
neighborhood of 0 to its image. Therefore,  WD ��1 is well-defined near 0.

Let .rn;� ; ˇn;� / WD .rn.�/; ˇn.�// and zGn;� WD P ı G.�; ˇn;� / ı  .0; �/ W PXs
n !

PXs�2
n . Note that the spectrum of D zGn;0.0/ consists of elements of the form

1

2
�

�

ˇn;0
.n2k2 � 1/; k � 1:

Then, by virtue of (6.11), we can calculate signs of eigenvalues of D zGn;� .rn;� / near 0,
which is important for stability of the non-trivial stable solution zrn;� WD P rn;� . Actually,
the following proposition holds by the Crandall–Rabinowitz theory:

Proposition 7.1. Suppose that n � 2 is an integer satisfying n¤ 3. If � ¤ 0 is sufficiently
small, there exists ı such that the intersection between the ı-neighborhood of the origin
and the spectrum of D zGn;� .zrn;� / consists of a single point whose real part is negative.

Proof. This proposition is a corollary of the Crandall–Rabinowitz theory (see [12,
Lemma 3.6.1, Theorem 3.6.2]), that is, since 0 is a simple eigenvalue of D zG0.0/, the
intersection of the spectrum of D zGn;� .zrn;� / and a sufficiently small neighborhood of 0
consists of a single point �n.�/ for sufficiently small � , by [12, Lemma 3.6.1].
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Moreover, by [12, Theorem 3.6.2] and (6.11),

� P̌n.�/

�n.�/

�

ˇ2n;0
.n2 � 1/ < 0

for sufficiently small � . Hence, �n.�/ < 0.

We remark that by replacing the word “negative” with the word “positive”, the above
proposition holds for n D 3.

Furthermore, applying [15, Lemma 4.1], we have the following:

Proposition 7.2. Suppose � ¤ 0 is sufficiently small. Then, D zGn;� .zrn;� / generates an
analytic semigroup on PXs�2

n with the domain of definition PX�
n . Moreover, the supre-

mum of the real part of the spectrum of D zGn;� .zrn;� / is negative for n ¤ 3.

Proof. First, D zGn;0.0/ generates an analytic semigroup, since the resolvent of D zGn;0.0/
equals C n ¹1

2
�

�
ˇn;0

.n2k2 � 1/ j k � 1º, andˇ̌̌̌
1

� �
�
1
2
�

�
ˇn;0

.n2k2 � 1/
� ˇ̌̌̌ � 1

sin˛j�j

holds for every angle ˛ 2 .�
2
; �/ and every � 2 ¹z j �˛ < arg z < ˛º. Moreover,

D zGn;� .zrn;� / also generates an analytic semigroup for sufficiently small � by continuity
of � 7! D zGn;� .zrn;� / near 0.

Second, regarding the spectrum of D zGn;� .zrn;� /, we can apply the same argument as
[15, Lemma 4.1].

Consequently, we can apply a stability argument for evolution equations ([11, Theo-
rem 9.1.2]) to zGn;� at zrn;� , that is, the following holds:

Proposition 7.3. Suppose that � ¤ 0 is sufficiently small. Then, the initial value problem
of the equation

@zr

@�
D zGn;� .zr/ (7.3)

is uniquely solvable on � 2 Œ0;1/ if the initial value zr0 2 PXs
n is sufficiently close

to zrn;� . Moreover, if n ¤ 3, there exist � > 0 and M > 0 such that

kzr.�/ � zrn;�kH s.S1/ �Me
���
kzr0 � zrn;�kH s.S1/: (7.4)

If zr.�/ is a solution to (7.3), r.�/ WD  .zr.�// is a solution to

@r

@�
D G.r; ˇn;� /: (7.5)

Moreover, the same inequality as (7.4) holds for r , since the constant part of r can be
controlled by the PXs

n-component of r because of the implicit function theorem. As a
result, we obtain the following:
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Theorem 7.4. Suppose that � ¤ 0 is sufficiently small. Then, the initial value problem
of (7.5) is uniquely solvable on � 2 Œ0;1/ if the initial value r0 2Xs

n is sufficiently close
to rn;� and satisfies

R
.1Cr0/

2

2
� � D 0. Moreover, if n ¤ 3, there exist � > 0 and M > 0

such that
kr.�/ � rn;�kH s.S1/ �Me

���
kr0 � rn;�kH s.S1/:

At last, we show the stability of circular self-similar solutions (for 0 < ˇ < 6�) with
respect to all perturbations in H s.S1/.

The discussion is almost the same as above.
Define Ys � H s.S1/ as

Ys WD
°
r 2 H s.S1/

ˇ̌̌ Z
r D 0;

Z
r.�/ cos.�/d� D 0;

Z
r.�/ sin.�/d� D 0

±
:

Moreover, we redefine P as the projection H s.S1/! Ys and redefine � W H s.S1/!

R3 � Ys as

�.r/ D
�Z .1C r/2

2
� �;

Z
r.�/ cos.�/d�;

Z
r.�/ sin.�/d�; P r

�
:

Then, the inverse function theorem implies that WD ��1 is well-defined in a small neigh-
borhood of 0 in R3 � Ys.S1/.

Suppose that 0 < ˇ < 6� and define zGˇ WD P ıG.�; ˇ/ ı  .0; 0; 0; �/ W Ys ! Ys�2.
Then, the spectrum of D zGˇ .0/ consists of elements of the form

1

2
�
�

ˇ
.k2 � 1/; k � 2:

Since all of these are negative, we can apply the same argument as before, and obtain the
stability of trivial circular solutions.

Notice that we showed the stability of the self-similar solutions only with respect to
perturbations that do not move the geometric centers of the solutions. Therefore, whether
the stability holds for perturbations that move the geometric centers of the solutions still
remains unsolved. It is possible that the difficulty regarding stability with respect to such
perturbations is not essential. However, it is difficult to overcome the problem as long as
we scale curves with respect to a certain fixed point, such as the origin.

Acknowledgments. The author would like to thank the two anonymous referees for their
suggestions and comments.
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