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Existence of nonnegative solutions to stochastic
thin-film equations in two space dimensions

Stefan Metzger and Giinther Griin

Abstract. We prove the existence of martingale solutions to stochastic thin-film equations in the
physically relevant space dimension d = 2. Conceptually, we rely on a stochastic Faedo—Galerkin
approach using tensor-product linear finite elements in space. Augmenting the physical energy on
the approximate level by a curvature term weighted by positive powers of the spatial discretiza-
tion parameter s, we combine Itd’s formula with inverse estimates and appropriate stopping time
arguments to derive stochastic counterparts of the energy and entropy estimates known from the
deterministic setting. In the limit 2 N\ 0, we prove our strictly positive finite element solutions to
converge towards nonnegative martingale solutions—making use of compactness arguments based
on Jakubowski’s generalization of Skorokhod’s theorem and subtle exhaustion arguments to identify
third-order spatial derivatives in the flux terms.

1. Introduction

We are concerned with stochastic thin-film equations of the generic form
du = —div{m(u)V(Au — F'(u))} dt + div{y/m(u)dW} (1.1)

on a space-time cylinder @ x (0, T] where O is a bounded rectangular domain in R2.
This kind of equations has been introduced to model dewetting of unstable liquid films
under the influence of thermal fluctuations. Here, the mobility 7 (-) may be chosen as
m(u) = u3 4+ Bu?; a prototypical example for the effective interface potential F(u) is
F(u) = u=8 —u~2 + 1. It is based on a 6-12 Lennard-Jones pair potential and it mod-
els disjoining/conjoining van der Waals interactions. Numerical simulations in 1D have
shown (see [21,48]) that discrepancies with respect to time scales of dewetting between
physical experiment and deterministic numerical simulation can be overcome if appro-
priately scaled noise terms are considered. The equations used for those models come
along with a number of intrinsic difficulties. Firstly, the degeneracy of the mobility m(-)
at u = 0; secondly, the singular behavior of the effective interface potential at u = 0;
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and thirdly, the fact that even in the deterministic case it is still an open problem whether
solutions are continuous or bounded if the spatial dimension is at least d = 2. This is in
sharp contrast to the one-dimensional case where Sobolev embedding results are the key
to establish Holder continuity in space and time.

The scope of the present work is threefold. First, we wish to establish the existence of
martingale solutions for a model problem with quadratic mobility m(u) = u2. Secondly,
we shall address the case that the stochastic integral in (1.1) is to be understood in the
sense of Stratonovich. Finally, as the third perspective of the techniques developed in the
present paper, we recall that Cahn—Hilliard equations with degenerate mobility are inti-
mately related to thin-film equations [22,42]. Hence, we expect only slight modifications
to be required to obtain existence results for Cahn—Hilliard equations with Stratonovich
conservative noise—for results on stochastic degenerate Cahn—Hilliard equations with
nonconservative noise, we refer to the recent paper [64].

With respect to the second goal, it turns out that the correction term necessary to
rewrite the Stratonovich integral as an It6 integral can be included into the frame of the
generic form (1.1) just as a modification of the singular potential F (-). In particular, this
modification does not affect the structural conditions formulated on F in the Itd-case,
provided some natural hypotheses on the decay parameters of the corresponding Wiener
processes are met. Therefore, the arguments presented hereafter carry over to the case of
Stratonovich noise via slight changes in the singular potential F.

Growing interest in stochastic thin-film equations with Stratonovich noise arose with
the work of Gess and Gnann [32] who proved existence of solutions to stochastic ver-
sions of thin-film equations driven only by surface tension, i.e., with F(-) = 0. Using
a novel approximation scheme, Dareiotis, Gess, Gnann, and the second author of this
paper [16] extended this result to stochastic thin-film equations with conservative non-
linear multiplicative noise, covering in particular the case of a no-slip condition at the
liquid-solid interface which corresponds to m(u) = u>. In contrast to [16] which covers
the case m(u) = u”™ with n € [8/3, 4), [32] allows for initial data with compact sup-
port—however, at the price of reduced regularity in space. Another approach to construct
nonnegative solutions to initial data with compact support is presented in [47]. Here, the
1D-predecessor of the current work (see [29]) is used as the starting point of the analy-
sis. So called a-entropy estimates are derived which guarantee almost surely that almost
everywhere in time the solution is of class C! in space, this way providing more regu-
larity than [32]. In this spirit, the present paper may similarly serve as a starting point
to investigate the case F(-) = 0 and to obtain solutions to equations with compactly
supported initial data in the 2D setting. Two months after the current work had been sub-
mitted, Sauerbrey [63] suggested another approach, combining a-entropy estimates with
the method of [32] to establish existence of solutions in 2D for quadratic mobilities in the
case of Stratonovich noise with F' = 0.

Note that Davidovitch et al. [17] derived stochastic thin-film equations for surface
tension driven flow to study numerically the influence of thermal noise on the spread-
ing behavior. For mathematically rigorous results on the noise impact on free boundary
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propagation, see [2,20,28,31,41] and the references therein, which are preliminary studies
devoted to stochastic second-order degenerate parabolic equations of porous-media and of
parabolic p-Laplace-type. However, it is worth mentioning that the techniques of [28,41]
are expected to be universal in the sense that they are based on energy methods developed
in [1,12,15,26,27,44], which work for general classes of degenerate parabolic equations
of second and higher order.

In [29], it has already been argued that space-time white noise is not compatible with
the finiteness of the physical energies encountered in thin-film flow. Therefore, we con-
sider Q-Wiener processes. To guarantee conservation of mass, we work on rectangular
physical domains @ := O~ x @ := (0, Lx) x (0, L,), and we prescribe periodic bound-
ary conditions. We may consider an ON-basis (gx;)r,eny Where the gi; are given as
the product gg;(x, y) := gz (x) gly (y) of appropriately scaled eigenfunctions of the one-
dimensional Laplace operator on @* and 97, respectively (cf. Remark 3.2).

We consider driving noise W given by

(Zk,leZ Aizgklﬁlfl) (1.2)
Ykiez MuSkiBr

where
s the B7;, @ € {x, y}, k,l € Z constitute a family of i.i.d. Brownian motions,

¢ the AY;, @ € {x, y}, k,I € Z are a family of nonnegative real numbers converging
sufficiently fast to zero—see Hypothesis (B3) for more details.

Therefore, we are interested in global existence of a.s. nonnegative martingale solutions
to the stochastic thin-film equation

du = —div{m@)V(Au— F'a)ydr + > Y da(vVmAf ge) dB  (1.3)

ae{x,y}k,leZ

on O x [0, 0o) subject to periodic boundary conditions.

As the analysis of stochastic thin-film equations is influenced by the deterministic
theory, we give a brief account on the literature, following here the exposition in [16].

A theory of existence of weak solutions for the deterministic thin-film equation in
space dimension d = 1 has been developed in [3,5,6] and [8,59,61] for zero and nonzero
contact angles at the intersection of the liquid-gas and liquid-solid interfaces, respectively,
while the multi-dimensional version with F = 0 in O x (0, T] and zero contact angles
has been the subject of [14,46]. For these solutions, a number of quantitative results has
been obtained—including optimal estimates on spreading rates of free boundaries, i.e., the
triple lines separating liquid, gas, and solid (see [7,26,43,51]), optimal conditions on the
occurrence of waiting time phenomena [15], as well as scaling laws for the size of waiting
times [27,34]. For the deterministic case with F' £ 0, we refer to [45] for an existence
result based on numerical analysis.

A corresponding theory of classical solutions, giving the existence and uniqueness for
initial data close to generic solutions or short times, has been developed in [33,35-39] for
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zero contact angles and in [24, 55-58] for nonzero contact angles in one space dimension,
while the higher-dimensional version has been the subject of [40,53,65] and [18] for zero
and nonzero contact angles, respectively.

It is worth recalling that the thin-film equation is one of the very few examples of
(degenerate) parabolic fourth-order equations which allow for globally nonnegative solu-
tions. To retain this property also in the stochastic case, neither additive noise nor mul-
tiplicative noise not degenerating for u(x) = 0 seems to be appropriate. The special
structure with the noise term in (1.1) given as the square root of the mobility m(-) has
been suggested by the derivation of stochastic thin-film equations, see [17,48].

The outline of our paper is as follows: Conceptually, our existence result is based on
stochastic counterparts of integral estimates known from the deterministic setting which
we combine with Jakubowski/Skorokhod-type methods to construct martingale solutions;
see [11,50] for the basic ideas of this approach and [9,49] for applications to other prob-
lems. More precisely, we will control the energy

1
& (u) :=/ —|Vu|2dxdy+/ F(u)dxdy (1.4)
0?2 )
and the so-called mathematical entropy
S(u) :=/ G(u)dxdy, (1.5)
o
where
u S 1
G(u) :=/ / drds (1.6)
1 J1 m(r)

is a second primitive of the reciprocal mobility.

Considering the case m(u) := u?, we mimic the 1D strategy used in [29], i.e., we
perform discretization in space and apply 1t6’s formula to the resulting system of SDEs
to derive those integral estimates. Taking a step towards the derivation of tractable, fully
discrete finite element schemes, we use a basis of finite element functions to perform the
spatial discretization. Although this choice introduces additional mathematical difficulties,
we strongly believe that it will serve as a cornerstone for fully discrete schemes. Extending
this 1D approach (in particular, the treatment of the additional terms arising from Itd’s
formula) to the two-dimensional setting requires the use of tensor product finite elements.

We adapt the stopping time approach of [29] to comply with the singularities in
the effective interface potential F'(-). In contrast to the spatially one-dimensional setting
of [29], boundedness of the physical energy & (1) no longer implies strict positivity in our
case. Therefore, in the discrete setting, & (1) is augmented by the square of the L2-norm
of the discrete Laplacian of discrete solutions uj; weighted by a factor which vanishes in
the limit 7 — 0. For the details, see (3.1) and (2.7).

Section 2 is devoted to notation and the large number of technical preliminaries which
come along with our discretization and the energy regularization mentioned before. More-
over, the assumptions on initial data, growth behavior of the effective interface poten-
tial F' and on the driving noise W are specified in Section 2, too.
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Section 3 is devoted to the discussion of the semi-discrete scheme which is formulated
in such a way that it may be used for practical numerical simulations of stochastic thin-
film equations as well. Section 3 contains also the main existence result together with the
applied solution concept. Moreover, we present a lemma which permits the control of the
oscillation of discrete solutions on single finite elements.

In Section 4, we present the core result of the analysis in this paper—a discrete com-
bined energy-entropy estimate. It is based on a combination of Itd’s formula with inverse
estimates for finite-element functions, and with error estimates for interpolation operators
which are collected in a synopsis in Appendix A. Moreover, Section 4 contains results on
compactness in time of discrete solutions which—in combination with the aforementioned
energy-entropy estimate—are the key to applying the Skorokhod-Jakubowski method
(cf. [11,50,52]) to pass to the limit # — 0, which is the topic of Section 5.

It is worth mentioning that the passage to the limit in the deterministic terms poses new
intricacies due to the lack of strict positivity results. We base our arguments on appropriate
exhaustion arguments combined with generalizations of Egorov’s theorem for Bochner-
integrable functions.

Notation. Throughout the paper, we use the standard notation for Sobolev spaces, i.e., for
a spatial domain @ C R?, we denote the space of k-times weakly differentiable func-
tions with weak derivatives in L?(©9) by W*P?(0). For p = 2, we denote the Hilbert
spaces W52(0) by H*(O). The corresponding subspaces of @-periodic functions will
be denoted by the subscript ‘per’. The subspace of @-periodic H'!(O)-functions with
mean-value zero will be denoted by H!(O). Furthermore, we denote the dual space of
leer(@) by (leer((9))/. The space of continuous (-periodic functions is denoted by the
symbol Cpe; (O9) and Cper (O) is the space of @-periodic, Holder continuous functions with
Holder exponent y .

For a time interval / and a Banach space X, the space of L”-integrable functions with
values in X is denoted by L?(I; X). Similarly, we denote the space of k-times weakly
differentiable functions from I to X with weak derivatives in L?(1; X) by W*5P(I; X)
and the Holder continuous functions from / to X with Holder exponent y by CY (1; X).

We shall also use some standard notation from stochastic analysis: The notation a A b
stands for the minimum of ¢ and b, and L,(X,Y) denotes the set of Hilbert—Schmidt
operators from X to Y. For a stopping time 7', we write y7 to denote the (w-dependent)
characteristic function of the time interval [0, T'].

Further notation related to the semi-discrete scheme is introduced in Section 2.

2. Notation, technical preliminaries, and basic assumptions on the
data

We consider the torus O := 0% x 0% := (0, Lx) x (0, Ly). We introduce partitions 7,*
and ’J'hy of O* and (7, respectively, satisfying the following assumption:
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(S) {7} )2 and {7, 773 nso are families of equidistant partitions of O* and O, respec-
tively, into disjoint, open intervals such that

WEUﬁandWEUﬁ.

K*eT; Krer?
In particular, there exist positive constants ¢7, 62 such that
61/’1 < hx,hy < 62}1

with /i := diam K* (K* € 7}*), hy, := diam K¥ (K¥ € 7;”),and h € (0, 1).

Combining {7}, and {7, hy },,» we obtain a family of partitions {Qp};, of @ which is
defined via

={0=K"xK”:K*eT7 and K’ € 7,”}. 2.1)

Based on these partitions, we introduce the following spaces of continuous, piecewise
linear finite element functions:

Uy = {v € Cor(0F) 10| gx € P1(KY) VK™ € T}, (2.2a)
UY = {v € Coer(O?) :v|ky € P1(K”) VK? €T}, (2.2b)
Up:=Uf®U. (2.2¢)

Imposing periodic boundary conditions, we denote the vertices of 7,* by

{xi}i=1,...,dimUhX+1 ={(i - 1)hx}i=1,...,dimU,;‘+1

and identify x4, U1 = Ly with x; = 0. Furthermore, we denote the dual basis to these
vertices by {ef}i=1,...,dimU;. We also denote the vertices of ‘Thy by {y; }j=1,...,dimUhy+1’
identify

Yaimuy +1 = Ly with yr =0,

and consider their dual basis {ejy- }j Throughout this work, we will also identify

dimU})

Xo With X g urs Yo with yg Uy
In the same spirit, we shall identify

X : X X : X y : y Yy : y
edimU,f+1 with e, e with edimU;, edimUhy+1 with ey, e; with edimUhy.

For the spaces introduced in (2.2), we define the interpolation operators

dim Uy

Cor(OF) > UF. a> Y a(xiey, (2.3)
i=1
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dimU}/

I Cur(O) > UL a> Y alyj)el. (2.4)
j=1

I Coer(0) = Uy, a v Ii{Ia}} = T {Ix{a}}. (2.5)

For future reference, we state the following norm equivalence for p € [1,00) and uy, € Uy,:

c(/@ (up)? dxdy)l/p < (/0 IZY{(uh)P}dxdy)l/p < C(/@ (up)? dxdy)l/p 2.6)

with ¢, C > 0 independent of /. Similar (lower-dimensional) results also hold true for I3
on Ujf and I ,J; on U hy . These nodal interpolation operators satisfy error estimates similar
to the ones established in [60] for simplicial elements. For the reader’s convenience, we
collect these estimates in Lemma A.1 in Appendix A.

With these interpolation operators, we define the discrete Laplacian Ay, : Uy — Uy,
N H}(O) as follows:

/(QI;y{—Ahuhl//h}dxdy :=/(91Z{8xuh8xwh}dxdy+/01z{8yuh8y1/fh}dxdy

= —/szy{Az”hWh}dXdy_/OIZy{AZthh}dXdy
2.7

for all ¥ € Uy. Thereby, the operator Ay can be interpreted pointwise in y as the one-
dimensional discrete Laplacian with respect to x mapping U;’ onto U7 N H]!(O%), and
AZ can be interpreted pointwise in x as the one-dimensional discrete Laplacian with
respect to y mapping U} onto U;’ N H}(OY).

We denote the forward and backward difference quotients with respect to the spatial

. — +h —h, .
coordinates x and y by aj”x, 8xh", dy “,and 0, 7, ie.,

O f(x, ) = (f(x +he, y) = £, )] D, (2.82)
O f(x.y) = (f(x. ) = f(x = hy.))/ hs. (2.8b)
o™ f e y) = (f(xoy +hy) = f(x.2))/ hy, (2.80)
8" e y) = (fy) = f ey —hy)/ by (2.8d)

(with f extended outside of @ by periodicity). Assuming equidistant partitions with
respect to x and y, the identities

Afvp = 3@ vp) = 97 (0 vp), (2.92)

Avy = 35" 0, vp) = 0, @ vy) (2.9b)

hold true for vy, € Uy,.
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In addition, we introduce similar local interpolation operators as follows: We consider
the spaces

Cper7 = {v e L3 (O0Y) :v|gx € C(K¥) VK™ € T;F}, (2.10)
Coer,7? = {veLX(0”) vlxk» e C(K”) VKY €T} (2.11)

of bounded, piecewise continuous, periodic functions. As we can extend a continuous
function on an open interval to a continuous function on the closure of this interval, we
may apply Ij and I Z locally on each element to obtain

Tii o - Coerx = {0 € Cper7 10|kx € P1(KT) VKY€ TF}, (2.12a)
I} e Coer.7? = {ve Coer.77 1V|Ky € P1(K?) VK € 77} (2.12b)

Obviously, these local interpolation operators satisfy the identities

I},‘,loc{axa;fv} = 8vaIZ,1oc{U}v and I;:,]OC{ByaZﬁ} = aya,{f,{,mc{ﬁ}, (2.13a)

IHT) = If o 40) and o} = I} A7) (2.13b)

for v € Cper,yhx, V€ Cper,?'hy’ Ve cper(W), and v € Cper(m). Here, the first identity
follows directly from the definition of I 2,100’ as dyay is constant with respect to x on
every element.

In order to allow for a discrete version of the chain rule, we introduce for a continuous
function f:R —Randu € Cper(a) forevery y € 07 and x € (ih, (i + 1)h) =: K* € T,F

the function

u((i+1)h,y)

OREIE £(5)ds. (2.14)
u(ih,y)
Similarly, we define for x € @ and y € (jh,(j + D)h) =: K” € 7,”
u(x,(j+1)h)
[ Gl ()= f £ (5)ds. @.15)
u(x,jh)

Obviously, these definitions provide for u, € Uy,

Ly {f )} = AL/ m)lxun}. 3y IS i)y = Tyl (un)], 0yun}.

(2.16)
On the periodic domain @, we define the Ritz projection operator R : leer((9) — Uy, via
/ VR{u}-Vuydxdy = / Vu-Vuvdxdy forallv, € Uy 2.17)

o o

with the additional constraint [, R{u}dxdy = [, u dxdy.
In this publication, we consider the case of a quadratic mobility, i.e., m(u) := u2. Let
us specify our assumptions on initial data, effective interface potential, and the noise.
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(I) Let A be a probability measure on per((9) equipped with the Borel o-algebra

which is supported on the subset of strictly positive functions such that there is a
positive constant C with the property

ess sup (Sh(IZy{v}) +/ I {vidxdy + (/ I;y{v}dxdy)_l) <C (2.18)
o o

vesupp A
for any & > 0 with &}, being a discrete version of the energy (1.4), which we will
define in (3.1).

(P) The effective interface potential F has continuous second-order derivatives on R+
and satisfies for some p > 2 and u > 0 the following estimates with appropriate
positive constants:

F(u) > ciu™?,
|F'(u)] < Cu=?7' + C,

Gu P25 <F'"uy<CuP?+C.

For nonpositive u, we define F(u) := +oo.

(B) Let (2, #, (¥1);50, IP) be a stochastic basis with a complete, right-continuous
filtration such that

(B1) W is a Q-Wiener process on §2 adapted to (¥7),> which admits a decom-
position of the form

Z Z Aglgklbozﬁ/itz

ae{x,y}k,I€Z

for independent sequences of i.i.d. Brownian motions B¢, (« € {x, y}) and a
sequence of sufficiently smooth basis functions gg;. Here, b, and by, denote
the standard Cartesian basis vectors in RZ. Furthermore, we will denote its
components by

Wy 1= Z Ak18ki B
k,leZ

for o € {x, y}. The corresponding components of Q will be denoted by Q
and Q,.
(B2) There exists a Fy-measurable random variable u° such that A =P o (uo)_1

(B3) The noise W is colored in the sense that

)
Z ”gkl ”WZ 0 (0) = <C
k=1

for a positive constant C.
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Remark 2.1. (1) Under natural assumptions on the decay parameters Ay; and the basis

functions gx;, k, [ € Z, Assumption (P) covers in fact also the case that the stochastic

integral is to be understood in the sense of Stratonovich. Assuming

e the basis functions to be given by gx;(x,y) = g¢ (x)gly () with g7 () and gly (-) asin
(3.4),

* the decay parameters Ay}, k, [ € Z, a € {x, y} satisfy
k=M Alor =M Mo =M (2.19)

forallk,/ € Z and a € {x, y},

the 1t correction of the Stratonovich term

Yo D da(urfsar) o dBg

ae{x,y}k,leZ

becomes

CsuwBAudt + Y > 04 (uAf grr) dBg;- (2.20)
ae{x,y} k,leZ

Here, the positive constant Cgy 1S given by
1
Csrat 1= ﬁ</\§0 +4Y B2 Y O+ 23). 2.21)
rey k,1€Z\{0} keZ\{0}
where we omitted the superscript « as the decay parameters were chosen to be independent
of . This allows us to write the stochastic thin-film equation with Stratonovich noise in
the form

du = —div(u?V(Au — Fi, ) dt + Y > da(uhrgr) dBY (2.22)
ae{x,y}k,I€Z

with the energy Fs, given by

F C —1 t. ifu >0,
Fou () = { (1) 4+ Csyar (v — logu) + cons if u (2.23)

+o00 ifu <0,

where the constant can be chosen in such a way that Fg, satisfies Assumption (P) if
Assumption (P) is satisfied by F itself. Hence, the analysis presented in this paper applies
to the Stratonovich interpretation, too.

(2) The approximation of initial data is based on the nodal interpolation operator to
cope with the requirement of strictly positive discrete initial data. Therefore, we need the
space of initial data to be continuously embedded in C(0). The specification in Assump-
tion (I) that initial data should have H 2-regularity is presumably not the optimal one.
It is, however, consistent with our regularization procedure—see (3.6b)—of augmenting
the pressure py by a discrete bi-Laplacian. As the energy estimate formulated for (1.3)
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(see (3.9)) does not require more than H 1-regularity for initial data, it should have been
possible to focus on H !- initial data and to apply nodal interpolation operators to appro-
priate H2-regularizations, e.g., by convolution. For the ease of presentation, we prefer to
avoid those technicalities.

3. The semi-discrete scheme
In order to control the oscillation of the discrete solution uy on each element, we regularize

the energy under consideration. Introducing a regularization parameter 2 > ¢ > 0, we
define the regularized discrete energy and the discrete entropy as

1 x
Enup) 1= 5/01,{{|axuh|2}+I;;{|ayuh|2}dxdy+/@Ihy{F(u,,)}dxdy
1
+ Eh’“’/{pI;y{lAhth}dx dy. (3.1)
S r 1
Sn(up) :=/ IZy{G(uh)}dxdy with  G(s) :=/ / dzdr. (3.2)
] 1 J1 m(r)

As it will be shown in Lemma 3.6, we assume that

(R) the regularization parameter ¢ is small enough such that there exists a constant
p > 0 such that
P

1-248 (3.3)
p 2 2p '

where p is the exponent associated with the growth of F (cf. Assumption (P)).

Remark 3.1. Forevery exponent p > 2 in the effective interface potential, positive param-
eters ¢ and p exist, such that Assumption (R) holds true.

Given a positive time Ty,, We introduce a threshold energy a1 := Ch=r/C+p)
for given C>0and0 < p < 1 satisfying Assumption (R). Similar to [29], we consider
associated stopping times T}, := Tipax A Inf{t > 0 : E(up) > Epax,n}- We approximate the
infinite- dimensional Wiener process by a finite-dimensional noise term. In particular, we
introduce the sets /;; C Z and I hy C Z satistying

2
(B3*) Zkel;l‘ Zlelhy (Azl2 + A/J;[ )h€||gkl||%;[/3,oo((9) <Cforh \ 0,
(B4) Iy I, I) < Il;y for h > hand | Jjo Iy = Z and Uy~ 1} = Z.
Remark 3.2. Often the basis functions gx; are assumed to be eigenfunctions of the neg-
ative Laplacian on @ under periodic boundary conditions. In particular, the functions gg;

are assumed to be the product of eigenfunctions g; and gly of the one-dimensional Lapla-
cian on O* and O, respectively, i.e.,
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2k
cos( jz x> fork > 1,
X
2 1
gy (x) := . G fork =0,
X
2k
sin i x> fork < —1,
b (34
2l )
cos( Zy) for!/ > 1,
y
2 1
g ()= T 75 for [ = 0,
y
2l
sin( Zy) for/ < —1.
y

In this case, we have
lgkillwzoo@) ~ (k% +1%) and |grillwsec) < C (k> + ).
Therefore, one may choose
I}f = ]}f = {Z eZ: |Z| < éh_s/z}

for given C>0to satisfy Assumptions (B3*) and (B4), i.e., the additional restrictions on
the noise term imposed in (B3*) vanish when passing to the limit 2 N\ 0.

With the goal to simplify the implementation in a practical numerical scheme, we
approximate the basis functions gg; by Gpx1 1= I Zy {8k}
In this work, we consider solutions

up € L*(22; C ([0, Trnax]; Un)). (3.52)
P € L*(S2; L°°(0, Tinax: Up)) (3.5b)

to the following regularized, semi-discrete version of (1.3):
[ wmaar = [ 12 o axay
T ATy,
[ D6 i ety axay a
0
T/\Th
[ 26 s oy pady i) ax ay
0

T ATy,
I /0 /@ TS {0 nGngr) ) dx dy 4B,

kelj ker)

T ATy,
I /0 /0 TE{IL 0y unBa k) V) dr dy B, (3.62)

kelj ker)
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and
|52t axay = am, [ 1 0sundsinbaray
+ X, /(9 I5{0yupdy vy}t dx dy
4‘XT;/Q‘IZy{F%ﬂh)¢h}dXdy
+ )(Thhs/@IZy{AhuhAhwh}dx dy. (3.6b)

Remark 3.3. Note that for discrete solutions of (3.6a), the mass of discrete solutions, i.e.,

[ m@axay= [ 52woiexay.
o [¢]

is constant in time. Of course, it is natural to choose ¥, = 1 as the test function in (3.6a).
Obviously, the contribution from the elliptic terms vanishes. So, let us briefly prove that
also the stochastic terms become zero. Using (2.13a) and the fact that both uj and gj x;
are contained in Uy, we find

/(9 Iy AT 10e{0x p i)} dx dy
= ‘/(9 I}J;{axuhfz,loc{ah,kl} + ax@h’kl'[;;,loo{uh}} dx dy
- /@ Ty {0x (un@np1)} dx dy = 0,

due to integration by parts.

Definition 3.4. Let A be a probability measure on H?2 (0) satisfying Assumption (I). A

~ ~ _ _ _ per
triple ((2, ., (¥7);50.P). 1, W) is called a weak martingale solution to the stochastic

thin-film equation (1.3) with initial data A on the time interval [0, T},.x] provided

1) (K, 7, (}:t)tzo, P) is a stochastic basis with a complete, right-continuous filtra-
tion,
) W satisfies Assumption (B) with respect to (Q, 3;, (ﬁt)tzo’ F),
(3) the solution % is element of
LS L(0, Tax: Ho(0))) N L2 (Q: L2(0, Tonax: HZ,(0)))
N L (S: CV4([0, Tona): (Hper(0)) 3.7)

forall ¢ < oo and ¢ < 8/5 such that /m(@)V (Al — F'(it)) € L*([ii > 0]),
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(4) there exists an Fo-measurable H per((9 R™)-valued random variable #° such that

A =Do @), and the equation

/coﬁ(t)qbdxdy = /0170¢dxdy +//[u>0]m(ﬁ)V(Aﬁ—F/(ﬁ))-wdxdy ds

) 2)‘%1/0 /(9vm(17)gk13a¢dxdy By, (3.8)

ae{x,y} k,l€Z
holds true P-almost surely for all ¢ € [0, Tryax] and all ¢ € Wp ((9) with g* > 2.

The aim of this work is to establish the existence of weak martingale solutions starting
from semi-discrete solutions to (3.6). In particular, we shall prove the following theorem:

Theorem 3.5. Let Assumptions (S), (1), (P), (B), (R), (B3*), and (B4) be satisfied and let
Tnax > 0 be given. Furthermore, let (up, pn)y~ o be a sequence of solutions to the regular-
lzed Faedo—Galerkin scheme (3 6) for the stochastic thin-film equation (1 3) with Sm ax,h =
Ch—r/@+p) for some given C > 0. Then, there exist a stochastic basis (SZ (ff,),>0, IP)
and processes up, Jh , Jh, and U such that the following holds: The processes up, Jh,
and .7: have the same law as the processes up,

i = LWIG up)ls Oxpn) and T} = IZ{,/[G”(uh)]y—layph},

and for an appropriate subsequence, we I~P-alm0st surely have the convergences Up —> U
strongly in C ([0, Tmax]; L1(0)) N L%(0, Tiax; W, pe, 10)) (1 <q < o0); Jx BN weakly
in L2(0, Tyax; L%(0)), which can be identified with —i0 (A% — F'(i1)) on [i > 0]; and
J;f — J? weakly in L*(0, Tpnax; L2(O)), which can be identified with —idy (AU — F'(i1))
on [U > 0]. Furthermore, U is a weak martingale solution to the stochastic thin-film equa-
tion in the sense of Definition 3.4 satisfying the additional bound

B[ sup (€@)7]+ ]"E[// m(@)| V(AT — F'())|? dx dy dt] < C°, P, Toa)
t€[0,Tmax] [7>0]
3.9)

with 1 <p < oo. In particular, P-almost surely, U(-, t) is strictly positive for almost all
re [O’ Tmax]‘

Lemma 3.6. Let ujy € Uy be strictly positive, let 1 > y > % + 5+ % and let
Enup) < Ch—P/C+p)

Then, there exists an h-independent constant Cys. > 0 such that the estimate

un(Xi, yj) < Coe (3.10)
un (3. y7)

holds true for all i € {1,...,dimU}f}, j € {1,...,dimU}Ly},?e {i —1,i,i + 1}, and
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Proof. Using the standard embedding theorems for Holder continuous functions and the
discrete embedding proven in Corollary A.4, we obtain

lunllcr@y < ClIVUunllLaoy = C(Ilunllaio) + 1Anunlrz@) < CVh=#E5(un)

with g < oo large enough. Furthermore, we have

_ 1/p
sup uy' = ( sup uhp)l/p < C(h_z/ IV F (up)} dx dy)
(x,y)€0 (x,y)€0 o

< Ch™ 2?8, (up)'?. (3.11)

Since there exists an element Q € @), including the vertices (x;, y;) and (xz, Yf) by
assumption, we combine the estimates above and obtain

up(x;, y;) ‘ _ ‘u(xi,yj‘)—uh(x;,Yf)‘
up(xz, y5) up(xz, y3)
=< C( sup uzl)hy”uh”cy(@)
(x,y)€0
< Ch=2P ey (up) P17 =26y (up) '
= Ch=2/P= 2 €3, (up) P HY? < € =1 Cose, (3.12)
which completes the proof. ]

We will start analyzing scheme (3.6) by showing that it admits a solution.

Lemma 3.7. Let Trax be a positive real number and &yyx p = Ch=P/@+P) Then there
exist stochastic processes uy, € L*(2; C ([0, Tmax); Up)) and py, € L?(2; L™(0, Trax:; Un))
as well as associated stopping times Ty, such that:

Almost surely, we have T, = Trax A inf{t € [0,00) : E(up (-, 1)) > Enax.i)-

* Almost surely, the process pj solves (3.6b) for t < Ty, and it is contained

n C([O, Th]; Uh).

* Almost surely, the process uy solves (3.6a) for t < Ty and it is constant for
re [Thv Tmax]'

Proof. As the additional regularization term changes neither the Lipschitz continuity
of & (uy) with respect to uy, when &y, (u) < 2&,,x,, nor the Lipschitz continuous depen-
dence of pj on uy when &, (up) < 38,4 1, the result follows along the lines of the proof
of [29, Lemma 4.2]. [

As the solutions uj, are continuous in space and time for 4 > 0, the positivity of the
initial data immediately provides the positivity of the semi-discrete solutions.

Corollary 3.8. The solutions constructed in Lemma 3.7 are strictly positive for all h > 0.
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4. A priori estimates

In this section, we shall establish uniform a priori estimates for the semi-discrete solution
established in Lemma 3.7. These results will be used in the next section to pass to the limit
h ™\ 0 in order to to prove Theorem 3.5.

4.1. The combined energy-entropy estimate

We start this section by demonstrating that our spatial semi-discretization (3.6) satisfies
a combined energy-entropy estimate as long as the energy remains below the critical
threshold energy &,,,x,» Which becomes infinite for 2 ™\ 0. Due to the cut-off mechanism
implemented in (3.6), it is possible to extend the results to [0, Tp.x]-

Writing up(x, y,t) as

dim U} dim U}

3 Y w0l ()

i=1 j=1

and choosing ¥, (x, y) = e (x)e_ly (y) in (3.62) gives

dusy + x1, M /0 TG )] e prde(eF (e (7)) dx dy dr
M /@ TG )y By pidy (e (e (1)} dx dy dr

Mt Y /@ IATE A0 ndng)el (0] ()} dx dy dBg,

kelf,lel}

SanMit Y R [ Tl e 0] M dx dy 48, =0
kelf,lel)

4.1
with M;; = f(9 e (x)e]y (y) dx dy. As we assume the subdivision to be equidistant, we

have M;; = hyhy foralli € {1,....dimUj}and j € {I,...,dimU; }.
Furthermore, we define fori € {1,...,dimU; '} and j € {1,. ..,dimUhy}

Lij(t) 1= — 1, M} /0 TG ) B prde (e (x)e) ()} dx dy
—rnM! [ TG s 0 0D} dvay. @)

ZE () =y, M5 ) / Iy T5 o {0x ((@kt, @) p2un B kr)ef (x)e) (1)} dx dy,
kiez”©
423)
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Z) (@) = xr, M Z / il I 1oe 10y @k, @) p2unBrkr)ef (x)e} (v)}} dx dy.
kiez 9
“4.4)

Here, (-,-);2 denotes the standard L2(¢9) inner product. With this notation we may
rewrite (4.1) as

dujj = L) de + Y (Z5 e dBg; + Z3 (A3 arn) dBY)- (4.5)
kelf,leIy)

For given positive parameters « and «, we consider the integral quantity

Roen(up(t)) := o + Ep(up(t)) + kSp(up(1)). (4.6)

For the ease of presentation, we will often drop the explicit dependence on uy and use the
abbreviation

R(1) := R(up(t)) := Rae,n(un(1)).

Lemma 4.1. Let p > 1 be given. The first and second variations of R(s)? with respect
to uy are given by

D(R(up(s))?) = PR(s)P ™ (D& (un(s)) + kD Sp(un(s))) (4.7a)
and
D*(R(up(s))?) = DR(s)? " (D*E(un(s)) + kD>Sy(un(s)))
+ PP~ DR (DER(un(s)) + DSy (un(s)))
® (DER(un(s)) + kDSK(up(s))) (4.7b)
with

D& = [ T 0sunduin) + Ty (ot ) dx dy
+ [ I v axdy
+h€/01,fy{AhuhAhwh}dxdy, (4.8)
D6 Br V) = [ T} 0504500} + Tty budy ) dx dy
+ [ IAF i dxdy
—i—hs/OI,’fy{AthhAht//h}dxdy, 4.9)
DS (un(s) ¥ =/(9Izy{G’(uh)wh}dxdy, (4.10)

D$3(u () . V) = /0 T2 (G" up) vy} dx dy. @.11)
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Applying It6’s formula, we are able to show the following combined energy-entropy
estimate:

Proposition 4.2. Let p > 1 be arbitrary and let (uy, pp) be a solution to (3.6) for a
parameter h € (0, 1). Furthermore, let Assumptions (B), (B3*), (I), (P), (R), and (S) hold
true. Then, for sufficiently large o and « depending only on (Ag;).;, ()L]{ Dip P> and Tiax,
there exists a positive, h-independent constant C such that

T,
E[ sup R(t)f]HE[/ hR(s)f—l/ I,{{[G”(uh)];waxphﬁ}dxdyds]
t€[0,Tmax] 0 [¢]

Ty _
+EB[ [ RO [ 16 )l oy paP) dx ay o]

Ty _
FE[ [ RO 8yl o]

T _
+IE/O R(s)p_lhs/(gIZ{|8xAhuh|2}dxdyds]

Ty, _
+IE[/ R(S)P*IhS/ I;{|ayAhuh|2}dxdyds]
0 o
T _
+1E[/0 R(s)P—l/0I,{{[|u,,|—1’—2]x|axu,,|2}dxdyds]

Ty _
+IE[/0 R(s)IH/0Ig{[|uh|—1’—2]y|ayuh|2}dxdyds] <C. (4.12)

Proof. Using the notation

dim U} dim U}/

on(®) == gp(x.y.0) 1= Y Y Lij(0)ef (x)el (y) (4.13)
i=1 j=1

and

p (1) (0x, wy)T) 1= Bp(x, y, 1) (0x, wy)T)
dim U} dim U}

=3 Y (ZE )+ Zh @)@ (), @14)
i=1 j=1

we may rewrite (3.6) as
dup = ¢p(t)dt + (Dh(t)(dWQ,h) 4.15)
with

Woni= D Y Aeubiibe. (4.16)

aelx, y} kel 1€l
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where by, b, denote the standard Cartesian basis vectors of R2. Applying Ito’s formula,
we compute

o o t/\Th _
R ATH)? = RO + / PRSP (D& + kD Sp)gn(s) ds
0

tATy _
+ / PR(s)? (D&, + kD S;)Dy(s)dW o 1
0

1

tATy
T / PR (D26, + kD25 (B} 1. B ) ds
kelf,lel)

1 tATy,
+3 Z / PR(s)? Y (D2E), + kD? S(® 1> Py jp) ds

kelf,lel}

1 tATy, Y
t3 Z / P(P— DR(s)P (D& + kDSy)
kelf,lel)

R (D& + KDS;,)(CDh Kl QDZ x1)ds

1 tATy -2
+5 Z / (P —DR($)" (D&, +kDSp)

kelf,lel}
® (Dgh + KDSh)(q)h kl® Z,kl) ds
= RO +1+HU+H+1IV+V + VI, 4.17)

where we used the abbreviations
dim U} dim U}

() = Ph (A 0.0 = Y Y ZEQG e (el (y)  (4.18a)

i=1 j=1
and

dim U} dim U

®) () = Ph() (O AL a0 ) = Y Z 2 (O gk)ef (0 (). (4.18b)

i=1 j=1
Using Lemma 4.1, we compute
dim Uj; dim U

ATy
] = /t h pR(S)P 1 Z Z / 8 Mha ex(x)ey(y)}dx dyL,, (S) ds
0 i=1 =

dim U} dlmUy

tATy,
-i-/o PR(s)?7! Z Z /Ih dyup 0y ey(y)ex(x)}dxdyL,](s)ds
i=1 =

dim U} dim U

tATy
+/0 PR(s)? ! Z Z /I” {F'(un)ef (x)e] (y)} dx dyLi;(s) ds

i=1
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tATh _

+ h® / DR(s)P™
0

dimU dimU

Y Z [T S A} (e 0D} dx dy Ly () ds
i=1 =

dim U} dlmUy

tATy,
-i-K/O PR(s)P ! Z Z /Ixy G(uh)ex(x)e (y)} dxdyLij(s)ds

=l +1lp+1.+1;+ I.. 4.19)
From (4.2), we obtain by straightforward computations

dim U}* dim U}

L1l XX Liog g ;)i

i=1 j=1
dim Uy dim U}

= > > MyLyw(( — Dhe.(j = Dhy)

i=1  j=1
S /0 TG ()2 0 pide T2 ()

+ I3 {IG" (up)l; 0y pudy 157 {w}} dx dy (4.20)
forw € Cper(@) and therefore, after integration by parts and using (3.6b),

lo+1p+1c+ 14

dlmU dim Uy

tATy,
- [ re Z Z T B+ F ) + b )

x Ljj (s)ef(x)ejy(y)} dx dy ds
dim U}* dim Uh

tATy,
= [ R Y [ 5 nLy 0 e o)) dxdyas

i=1 j=1
tATy _
=7 [ RO [ 56w sl
0
+ I3{1G" (un)l; M9y pal*} dx dy ds. 4.21)
Similarly, we use (4.20) with w = G’(uy,) and (2.16) to compute

dim U}’ dim U}

/@I;C,y{G/(uh) > L@ 0 () drdy

i=1 j=1
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=, /@ TG )7 e padn T2 (G ()}

+ TG )]y Byundy T (G (up)}) dx dy
S /0 I 40xunds pa) + TE0yundy pp) dx dy

xy

- /@ I Apuppr} dx dy
= —x1, | Apunll; _XTh/OI;J:{axuhaxI;y{F/(uh)}} dxdy

+)m,/0I,’f{ayuhayI,jy{F’(uh)}}dxdy

+XThh8/ Izy{AhuhAhAhuh}dxdy

0]

= —XTy ”Ahuh”i — ATy /(; I})z){[F”(uh)]xlaxth}
+ Ii{[F" (up)l, |0yup|*} dx dy

— )(Thhe/OI;vl{|8xAhuh|2} + I;{10y Apup|*} dx dy. (4.22)

From Assumption (P), we obtain the estimates [F”(up)], > ¢1[|lun|"?72], — C» and
[F"(up)l, = Cillup |=P~2] y — C2. Therefore, combining the above estimates we conclude

tAT) _
Le<—p [ RO Al ds
0
tAT)y _
—Kﬁh""/ R(s)p_l/ I7 {105 Apunl®} + 15 {10y Apup|*} dx dy
0 o
tATy _
—Ellcﬁ/ R(s)?™ /(9I}yl{[|uh|_p_2]x|8xuh|2}
0
+ I {llunl 2721, 10yup]*} dx dy ds
tAT), -
+ Ezkﬁ/ R(s)? ds. (4.23)
0

Noting that

dim Uh dim Uh

D e:h(cphkl,cp;k,)_/ il Z Z Z5 (0, 0k)0x ex(x)ey(y)’ baxdy

+ [ i

dim U dim U

(k) (X)dye? (y)( baxdy
i=1 =



S. Metzger and G. Griin 328

dim U} dimU})
+ /0 pFran) Y Y 1Z5Ofiee Pef (e ()| dxdy
i=1 j=1

dim U} dimU

—i—he/OI;fy{‘Ah Z Z ZE O sk)ef (e (y)( baxdy, (424)
i=1 j=1
dimUh dimUh
D28),(®F ;. BF ) = / 6w Y Y 1Z5 0 Pef (e () dxdy.
i=1 j=1
(4.25)

and similar identities for D28h(<bh Xl CDz ) and DZSh((Dh Kl Zkl)’ we combine 111
and /V and obtain after reordering

dim U dim U

Z / pR(s)p 1/ Iy{‘ Z Z Z (A%18k1)0xe€; (x)ey(y)‘ }dxdyds
keIX ler}
Z / MThPR(s)” !

keI" ler})

Joill

t/\Th
+— Z / PR(s)?!

kEI" lel})

X q; y
dlmUh dlmUh o ) . N
MrakDdyel (e (0| | drdy ds

dim U} dim Uh

A S Y Z3 0L 0 ) arayds
i=1 j=1
3 3 [orer

kelf,ler)

/ )

t/\Th
Y / PR

kelx ler)

dimU dimU
3 A 8k)dye; (v)ef (X)‘ }dxdyds

dim U dim U

/ xy{F//(uh) Z Z IZ lgk1)|2€f(x)€;(J’)}dXdyds

i=1 j=1
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tATy
Z / PR(s)?™

keIx ler)

dim U dim U

/ xy{Fu(uh) Z Z |Zy()t lgk1)|2ej‘(x)ej¥(y)}dxdyds

i=1 j=1

tATy
© ) / PR(s)?"!

kelf,lel}
dlmUXdimUy

/ xy{‘Ah Z Zj; (szgkl)ex(x)ey(y)) }dxdyds
i=1 j=1
tATy,

1 _
—h® SR(s)P!
+ 2 Z /0 PR(s)
kelf,leI)
dim U} dimU

/ xy{‘Ah . Z Z (A lel)ef(x)e]y»(y))z}dxdyds

t/\Th
+ " > / PR(s)P™!
kelg,lely
dimUh dimUh
/ xy{G//(uh) Z Z |Z lgkl)|2ef(x)e}’(y)}dxdyds
i=1 j=
tATy
+ " ) / PR(s)P™!
keI" ler}

dim U}’ dim Uh

/ xy{Gu(uh) Z Z |Z lgkl)|2ef(x)ej¥(y)}dxdyds

i=1 j=1
=M, + Iy + 1l + g + I, + Iy + Il + 1T, + 1I; + 111;.

329

(4.26)

To derive an estimate for I11,, we adapt the ideas of [29]. Using the periodicity, the spe-
cific form of the one-dimensional stiffness matrix on equidistant meshes, and the fact that
Mij = hxhy foralli =1,...,dimU; and j = 1,...,dim Uhy, we compute using (2.13a)

and (2.13b)

dlmU"dlmUy X
XA Z Z 23 (yaset 0 0)| ) ar ay

dim U}, Y d1m U

A b

2
Z35 0510k dxef ()] dx e () dy
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dim U} dimU
Z Z | @y =222 - 2525 ) O 0) i

dim U} dim Uh

D3 /0 (ZEers — 2P 0daae] () Ay ;!

i=1 j=1

dim U dim U}

=T Z Z (/0 IlJ:{Ilf,loc{ax(kiluhgh,kl)%;eim}

i=1 j=1
2
. e;(y)} dx dy) h;lh;l

dim U} dim U}/

=2, 121 Z (/ {AZlaxuhIz{ah,kl%x_ei(X)}

y —-17-1
"€ (y)} dxdy) hy,
dim U} dimU

+ 2y, Z Z (/ {)‘kz xghklfh{ #}C—ej‘(x)}
i=1 =

2
y —17-1
el (y)} dx dy) hy
= (*). (4.27)
Recalling e, ;(x) = e;(x —hy) and performing a discrete integration by parts (cf.
Lemma A.6 in Appendix A), we continue with the estimate

dim U dim U}

2
(*)<mcz Z( / (O IO T el (0] () dxdy) 5!
i=1 =

dim U} dim U{

+ x1,C Z Z ( ﬁ,/0I,yl{ajhxﬁxuhI;f{@h,klej‘(x)}
i=1 j=1

2
. e;' (y)} dx dy) h;lhy_l
dim U¥ dim U}

+ x1,C Z Z (/\il/ {0xBnar T {05 unely ()}
i=1 =

—1p-1
-e]y-(y)} dxdy) hth
dim U}* dim U}

€ Y, X (M [ T 0 T uner )

i=1 j=1

2
-e] (y)}dx dy) h'h!
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< 21, C A2 1950113 ooy /0 2 {Jun[?) dx dy
+ 21, CA5 P gkt ooy /@ I (A2} dx dy
+XThCAzlzllaxgkl”ioo(@)/(;I;:y{la;hxuhlz} Cley

+ XThCAzlzuajcrhx axgh,kl ||%oo((9) /0 I;y{ui} dx dy
< 11, C 25,2 10508kt [ oo 0 R(5)

+XThCAzJZHQkIHIZJOO(@)/@I;y{|Azuh|2}dXdy' (4.28)

In the final step, we used Poincaré’s inequality and the pathwise conservation of
f o Undx dy (see Remark 3.3, Assumption (I), and the norm equivalence (2.6)), as well as

I 8;rhxaxffz{9kl}“m°(0) = 9.5 {ajthkl}HLw(@) < [0:9F " qu ||L°°(0)
< 10x0x kil Lo@) = gkillw2.2() (4.29)

which follows from Assumption (S) and the stability of the nodal interpolation operator.
This provides

tATy -
Me=Cp Y 25 Mo mo /0 R(s)” ds

keIf,lel}

+CP Y. A ekl

kelf,lel}
t/\Th o
/0 R(s)p_l/(91;y{|A;l‘uh|2}dxdyds. (4.30)

Similar computations show

tATy
— 2 73
l; <Cp E Ail (7%} ||%V2,oo((9)/o R(s)? ds

kelf,lel}
— 2 2
+CP Y. A Nkl
kelf,lel}

lATh o
/0 R(s)P—l/{91;y{|A;uh|2}dxdyds. (4.31)

To control 111}, we compute
dim U} dim U}/
fo i
o

D D ZHGksa)dye; (y)ei‘(x)‘z} dxdy

i=1 j=1
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dimU} dim U

=/x {Z / ‘Z Z”(A le)ayej)(y))zdyef(x)}dx

dimU} d1mU

Z Z (Zl]+1 Zi)fj)z(kilgkl)hxh;l
i=1 j=1

dim U}’ dim Uh

=in ¥ ([ 2T Gignimer o0

i=1 j=1

. em(yily— e;(y)}} dx dy)zh;lh;l

dimU}* dlmUy

< 2, Z Z ( / { xGn it Ly {unef (x)}
i=1 =

) j+1(y)_ ]()’) 2 —17.—1
—hy }dxdy) hy hy,

dim U} dim U}/

an Y Y (4 /@ b T e ()
i=1 j=1

y y
ej+1()’)_ej ) 2 41,1
AT T  Gedy) hTA
e CLOR R
d1mU dlmUy

< xrn,C ; Z( / {0,upI7{0, gh,klefc(x)}

. ejH(y)} dx dy) h;lh;l
dim Uy dlmUy

+ x1,C Z Z ( / " deun I3 Gnarel ()

1y —
e/ (n)} dxdy) h'hy!
dim Uy dim U}

+a,C Y Y ( il/0Ii{axﬁh,szi{ay_hyuhe?“(X)}

i=1 j=1
y 2 1,1
e 1 () dxdy) h 'k

dim U}’ dim U

+ 11, C Z Z /Iy " 0x @kt Ly {une; (x)}
i=1 =

. ejy(y)} dx dy) h;lh;l

332
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< 1, CH P a1y /@ 12 {l,u2) dx dy
x 2 2 y +hy 2
+XThCAk1 ”le”Loo(@)/OIh“ay Oxup| }dxdy
—h
+XThCA212”gkl”%Vl,oo((9)/0I;:y{wy yuh|2} dxdy
+XThCAzlzngkl”%Vl,oo(@)/aI;y{|uh|2}dxdy,

where we again used (2.13a) and (2.13b). Noting that

h
/(91'}yl{|8;L yaxuh|2}dxdy=/0IZy{ rupAjup}dydy
1

IA

1
= 5/0I;:y{|Ahuh|2}dxdy,

we obtain
) tATy .
my<Co Y W leulyme [ RO
kel leI) 0

+C7 Y. A Nkl eo

kely,lel}
tAT)y —_
/0 R(s)P~ /OIZy{lAhuhP}dxdyds

and analogously

2 tATy o
me=cs Y A ek o) /0 R(s)? ds

y
kel lel}

— 2
+Cp Z Ail ||gkl||]iw(0)

kelf,lel}

tATy -
/ R(s)p_I/ T2 {| Apup ?} dx dy ds.
0 [¢]

333

(4.32)

1
Xy 2 Xy y 2
E/(gIh {|A2uh| }dxdy+§/01h {|Ahuh| }dxdy

(4.33)

(4.34)

(4.35)

We shall apply a similar strategy to deal with /Il and III,. We start with the decomposi-

tion

dim Uy dim U}

AI;Y{‘Ah Z Z ij(ll’glgkl)ef‘(x)e}’(y))z}dxdy

i=1 j=1



S. Metzger and G. Griin 334

dimU dim U} s
Z Z505ia eF | &l o)) dway

<2/0 {

dim U} d1mU )
+2 [ 13 {Z 'Y zyogenalg o) ambaca
i=1 j=1
=: g, + Ill,,. (4.36)

In order to control the first term, we use e;_; (x) = ej (x + hy) and ef ; (x) = e; (x — hy),
apply Lemma A.6, and compute using (2.13a) and (2.13b),

dim U} dim U}y

D ZEQks)Agel () = ) Zi (@) (66 (6) = 267 (x) + e (x)
i=1 =

dimUj

D0 hPeF((2ZF + Z5y ; + Z ;) M sk)

dim Uy

m Y ot | 5o

i=1

. el (x) —2ef (x) + e, (x)
I3 {uh = B : }e,y-(y)}dx dy

dim U}
ar Y e;‘(x)h;lh;l/af,{{x,flaxuh

i=1

~ el (0) —2e7(x) + ¢ (x)
~I,’f{gh,k1 ! 2 !

}e]y(y)} dx dy
dimU,f
—an, Y e (oh! /@ IO 0 AR R T (v — By )ef ()}
i=1
~e/(y)}dxdy
dimU

AT, Z e (R hy! /Iy A1 0x8hkt (x + hx, V) I {Aqupef (x)}

i=1
~ef(y)}dxdy
dlmUh

2 3 ey / T 8000 G T30 e (1)

-ef(y)} dxdy
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dim U}

tam S (o /0 T AT A I3 Gkt (x — B, )X ()

i=1

-¢7 ()} dxdy
dimU;‘
tan Y e R /0 I8 00 (6 + b ) THATGa 167 (1))

i=1

-¢} ()} dxdy
dimU}ic
a2 Y ek /@ {5050 P up X0 Thpr e (x))
i=1

-e;(y)} dxdy. (4.37)

Similar to (4.29), we use Assumption (S) and the stability of the nodal interpolation oper-
ator to compute

[ AR T2 gk} | ooy = 10157 {037 05" 0k ] o o)

< 905" 07" ki | oo o

< (0205 9xQkt | Loo ) = gt w30 ()- (4.38)

Therefore, we have
iy, = 7, O3 Il [ T hual?} v dy
+XThClizzllgkzlliVl,mw)/01,’fy{|A;;uh|2}dx dy
o iy [ I} dx ay
O ol [ T {10077} dx dy
O Iy [ T {1054} dx dy
+XThClizzllgkzII%w,m(@)/(;I;y{m;;uhﬁ}dx dy. (4.39)
Similar computations show
g, < XThC'XiIZHle”%Vs,oo(@)/@I,fy{luhlz} dxdy
+ 11, C 25, N gkt 1000 /@ I IAupl?} dx dy

+XThCA’zlzngkl”%VZ,oo(@)/(;I}f{layuh|2}dxdy
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+ 01, C 2 gkt [ (o) /@ {0y A2 up ) dx dy
15,252 I8k 2o /@ 2 {loun ) dx dy

I CA ok oo /@ I A up A dxdy.  (440)

Therefore,
2 tATy -
IIIg S szl ”gkl ||%V3,oo(@) hg Z / ﬁR(S)p dS
kery,er) °
+ Clilzugkl ”%Vl,oo((g)hs
t/\Th -
- — X
Z / DR(s)? / I {|Apup|*} dx dy ds
kery,rer} ° o
+ CAZ gkt 17 oo 0y 1
tATy -
> / ﬁR(s)p_l/ I{10xApup |} dxdyds  (4.41)
kel lel} 0 0

holds true. Analogous computations provide

tAT)y

] o

iy = C gl Y [ PR
kerrter? ”°

2
+ CA;;] ”gkl ”%V],oo(@) h®

tATy, —_
> /0 PR(s)P~ /OI,’:y{|Ahuh|2}dxdyds

kelf,lel}

2
+ CA;C/I gk ||ioo(@) h®

tATy _
> / ﬁR(s)P*I/I;;{|ayAhuh|2}dxdyds. (4.42)
0 €]

kelf,lel}

To control 111, + Iy, we compute for all i € {I,...,dimU}}, j € {1,...,dimU};’},
kel andl €1,

/0 IPF i) (125 0060 2 + 125 030k P)ef (e ()} dx dy
2
= xn F" i) M5 (( /@ I T 100 Q)€ (00 ()} dx dy )
2
+ ([ T e 9 0} x )’

— 2
= x1, F" i) M7 (A5 Ay + A3 BR))- (4.43)
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Using the definition of I, we obtain for the first term

h,loc?
2
Aizjklz /IZ{Ii)f1oc{3x(“h§h,kl)€f(X)ey(y)}}dxdy)

Z / V{05 unGnir)ef (X)ey(y)}dxdy)

QeQy,
<My Y / T2 0 i) Pe (1)) (7)) dx dy
Qeqy,
< 2M;; Z / I (10xun P [naa > + 1un?10xGnki|?)ef (x)e] (v)} dx dy
Qe

= ClanlwmeMy 3 [ Tl e ()] 0)) drdy
0eqy

+ ClEnslwioMy Y / I {lun el ()¢ (1)} dx dy
€@y

= ClnaalweioMiy [ Ty {10sua e (e} () ey
+ ClnatloMy [ I3 unPef ()6 () dx dy, (4.44)
Similar computations for B;jx; provide
l‘/\T;l -
l, + Il < C/ ﬁR(s)l"l/ I T F" (up)H0xunl?)
0 o
+ IZ{IZ{F//(uh)}|8yuh|2} dxdyds
tATy o
+C / PR(s)?! / I3 {lun> F" (up)} dx dy ds. (4.45)
0 o
Analogously, we compute
tAT) _
ar; +11; < CK/ PR(s)?7! / IVTAG" (up)}oxun|*}
0 o
+ T TG (up)}|9yun)®} dx dy ds
tAT)y _
+ CK/ PR(s)?7! / I {upl*G" (up)} dx dy ds.  (4.46)
0 o
Collecting the above estimates and applying Assumptions (B3) and (B3*), we obtain

tATy, - tATy _
I+ 1v < C/ R(s)? ds+C/ R()?7M | Apupll;, ds
0 0

tATy, -
+c/0 R(s)"_lhe/@IZ{|8xAhuh|2}dxdyds
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tATh o
+c/ R(s)P_lhe/ I5{10y Apup)?} dx dy ds
0 [¢]
tATy -
+C/ R(s)p_l/ TYTEAF" (up)}|0xunl*} dx dy ds
0 [¢]
tATh -
+c/ R(s)P—‘/ I {F" (up)}|yup|?} dx dy ds
0 €]
tATy -
+C/ R(s)p_l/ I3 {lup> F" (up)} dx dy ds
0 [¢]
tATy, o
+CK/ R(s)p_l/ TG  (up)}|Oxup|*} dx dy ds
0 €]
tATy -
+CK/ R(s)”_l/ T TG  (up)}|9yup|*} dx dy ds
0 [¢]

tATy o
+ CK/O R(S)P_l/OIfly{|uh|2G”(uh)} dx dyds. 4.47)

While the first term on the right-hand side is a Gronwall term, the remaining terms need
to be absorbed in the negative terms provided by I. For this reason, we need the follow-
ing estimates: Due to Assumption (P), we have F"(up) < C u;p 2 4+cC. Recalling the
oscillation lemma (Lemma 3.6), we obtain the estimates

/0 TATHF )} osup ) dxdy < C /0 T2 A unl ™71 0xun ) dx dy + CR(s),
(4.48)
/@I;{I,{{F”(uh)}|ayuh|2} dxdy < C /0 T {[unl =221, 19,12} dx dy + CR(s).
(4.49)

Furthermore, Assumption (P), Poincaré’s inequality, and our uniform control of the mass
of discrete solutions (see Remark 3.3, Assumption (I), and the norm equivalence (2.6))
provide

/I;y{|u,,|2F”(uh)}dxdy §C/ Iy {F (up)} dx dy
[¢] [¢]
+ C/ Iy {|0xup|*} dxdy + C < CR(s) (4.50)
[¢]

for @ > 0. As Lemma 3.6 provides the estimate

2

Y I < (max I3 {u?})” < (Coemin I3 0 2})” < CRT Lk

we can apply Young’s inequality and use p > 2 and « > 1 to compute
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¢ [ DTG o} axay
= €32 [ BTG @i Plosn Py axay + €& | 1} (jBan ) axay
g/@z,{{z;{|uh|—4}|axuh|2}dxdy+c/<2/01,f{|axuh|2}dxdy
5/(9I,{{I,’f{|uh|””2+1}|8xuh|2}dxdy+CK2/(9I}yl{|3xuh|2}dxdy
5/@I,{{_r,f{|uh|—1’—2}|axuh|2}dxdy+c/<2/@.r,{{|axuh|2}dxdy
< C/@I,{{[|u,,|—1’—2]x|axuh|2}dx dy + Ck*R(s) 4.51)

and

K/ I TG  (up)}|dyup|?} dx dy SC/ I {[lun| 77721, [0y up ?} dx dy
€] [¢]
+ CKk?R(s). (4.52)

In the last line of (4.51), we used that Lemma 3.6 allows us to control Ij {|up, [P~2}) by its
mean value. Noting the definition of G” (u},), we obtain

/ IZy{|Mh|2G”(Uh)} dxdy 5/ ldxdy <C. (4.53)
o )

Therefore, the last term in (4.47) can be controlled by Ck fot AT R(s)? ' ds for a > 0.
This allows us to rewrite (4.47) for k > 1 as

tATy,

tATy, o _
i+ 1V < C:<2/ R(s)? ds + C/ R(s)? | Apup |3 ds
0 0
tAT)y _
+C/ R(s)P—lhE/ I {10x Apup|*} dx dy ds
0 O
tATy o
LC / R(s)P e / {1y Apun[?) dx dy ds
0 [¢]
tAT)y _
e / R(s)”! /0 I3[0 ) dx dy ds
0

tATy -
+C / R(s)?7! / Ii{llunl P72, |0yupl?} dxdyds.  (4.54)
0 [¢]
Using (3.6b), we compute

(DE&y +kDSp) @ (DEL + kDS (P, 1. Pk 11)
dim U} dim U})

52(/0 IZ{axMh Z Z ij(/\zlgkl)ﬁxef(x)e;(y)}dxdy

i=1 j=1
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dim U} dim U}/

[ nifoun ¥ Y 25 e 00 drdy

i=1 j=1

dimdeimU
+ [ 5 {Fn Zl g 25 e (0] () v dy

dim Uh dim Uh

i [ a3 Y ZE0kewane (0 )] dray)’

i=1 j=1
dim U} dlmUh

w22([ o Y Z5Ghowe 09} avay)’

i=1 j=1
dlmUh dlmUy

=2 /0 o Y S 2 0fael ()2 ()} dray)’

i=1 j=1
dim U} dlmUy

v2e([ (o Y Z 25 0yaa)ef e () dx dy)’
i=1 j=1

2
= x1,2 kilz(/o Iy L5 10c 0 (nBn k1) pu} dx dY)
2
+ a2 ([ BTl k)6 )} dx 0y

= .2 A5 A + 11,262 A% A, (4.55)

where we used (4.3) in the last step. To control the first term on the right-hand side
of (4.55), we use (2.13a) and (2.13b) to compute

2 2

ar=2( /0 Iy un I Gh i pudbdv dy) +2( /0 Iy (0t Zilunpa}} dx dy)
=: Ay, + Aj,. (4.56)

Recalling (3.6b), Assumption (P), the integration by parts formula used in (4.37), Holder’s
inequality, and the positivity of uj, we obtain

2

Ary = C( [ 2310000 T3 Gt Mg dx dy)
_ 2
+C /Iy |00 | T3 {1 @ st |, P~ + 1)}}dxdy)

2
+C(hs/(pIZ{axuhIf{ﬁh,klAhAhuh}}dxdy)
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< ([ 18,7} 03 03 e oy | s

+c(/@ I,{{|axuh|1;;{|§h,k1|u,;1’/2u;1’/2*1}}dxdy)z

+C( [ Bioan TG} axdy)’

+ Cligki oo (o) he/@ Iy {l0x Afup|*} dx dy hs/(gI;y{|Ahuh|2} dx dy

+ ClODsgaalmioy 1 [ T {10xus P} axay i
-/(91;y{|Ahuh|2}dxdy

+ Cl19x8ki 1 702(o) hs/O I, 1A upl?y dx dy hs/@ I {|Apupl?) dx dy

+ Cligi Iz (o) hE/Q Ty {10 Ajunl?} dx dy he/@ I {| Apupl?} dx dy

+ C13y 3y axtll7 o) hs/@I}:{Iaxth} dxdy he/@ I {|Apup|*} dx dy

+ 1y gutl2 o h° /0 I (ATup A ) dv dy e
~/(9~T;’fy{|Ahuh|2}dxdy, (4.57)

where we used [, I,{{|axay+"yuh|2} dxdy = [o I} {AfupAjup} dx dy. Using a dis-
crete version of Holder’s inequality, we obtain

/@ IO AT A wydxdy < | AZugl, [A2ua], < 1Awall. (4.58)

Therefore, we have
A1, = CRE) gkt 2oegon 1 Anunl

+ Cligki [} (o) ( / I {18 P T3 {uy P72 ) d dy)( / Iy () dx dy)

o o
+Clgaliny [ {1007 dxdy
+ ClgualymRO(1 [ {108} drdy + RO))
= CROgalyaoeioy (1800l + [ Tl T3 {72} dxdy

+ hE/ {10 Apup|?) dx dy + R(s)). (4.59)
[¢)
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Using (3.6b), Holder’s inequality, Assumption (P), the computations used in (4.37),
Poincaré’s inequality, and R(s) > o, we obtain the estimate

2
Ary = € ([ T0.Taaa Titun dsannh )
2
+C( [ 10 Titun P03 dx dy)

2
+C (ha/ I740x8n et Ly {un Ap Apuy )} dx dy)
)
< C 10811700 @) Il 1| Anunlly
_ 2
+C||8xgkz||2oo(0)(/0_r;y{uhp}dxdy) +C||axgkl||§m(0)(/0uh dxdy)

+ Ch®)10x9x0x gt 17 oo () Iunllz 2 | Anun
+ Clldx gkt F ooy B I Ajunlhe Il A |

+Cllaxaxgkzllioo(@)hs/eIZ{IaxuhIZ}dxdy Rl Apu

+ Ch®)|0x9y 3y 8kt 17 ooyl I 5 1 Ape
+ Clldx gkt | Foooyh* 1AL unllZ A% | Apuall

0y it 2oy 1° /0 TE{10yupP) dx dy €] Apup 2

= C(”le ”%VZ,OO(@) + hsugkl ||%Vs,oo((9))R(S)(”Ahuh”i + R(S)). (4.60)

2

Here, we used that f(9 updxdy = f(ﬂ ug dx dy is uniformly bounded IP-almost surely
(cf. Assumption (I) and Remark 3.3). Using (2.13a) and (2.13b) and G'(u) = u™!, we
obtain

An = Cllgut 2o (o) /(9 T TG  um)Hoxun|?} dx dy + C 198kt [ Loo(p)-  (4-61)
Therefore, we have
’ ) ) t/\Th o
Vv=C Z A]f[ (”ng ||W2,oo((9) + ha||9kl||w3,oo(0))/ R(s)? ds
X y 0
kelh,lelh

2
+C Y APkt 2oy + P gk 33000

kelf,lel)

tATy 51

/ R(s)P [ Apun 2 ds
0

2
+C > A ek e

kelf,lel)

tATy -
/ R(s)p_l/ IZ{|8xuh|2Iz{u}:p_2}}dxdyds
0 o
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2
+C Y ANk e

kel ler)
tATy -~
/0 R(s)?~ hS/GI;:{IBxAhth}dxdyds

2
+Ck® Y Al skl

y
kel lel}

tAT;
/ hR(s)?—l/ I T3AG" (up)}|0xup)*} dx dy ds. (4.62)
0 o

Recalling Assumptions (B3) and (B3*) and Lemma 3.6 and mimicking the computations
in (4.51), we obtain for k > 1

tATy

t/\Th o .
V< c,c“/ R(s)? ds + c/ R(s)P | Apuy 2 ds
0 0
t/\Th -
+C [T RO [ D o) dxdy s
0 o
tAT) o
+C [T RO [ Il 0,0 dx dy ds
0 o
tATy, -
+ c/ R(s)"_lhe/ I7{10x Apup|*} dx dy ds. (4.63)
0 o
Analogously, we compute
tAT), - ATy _
VI < cK“/ R(s)? ds + c/ R(s)P | Apup|? ds
0 0
tATy _
+C [T RO [ D) dxdy s
0 o
tATy -
+ c/ R(s)p_l/ i {[lunl P21, |0yup|?} dx dy ds
0 o
tAT)y _
+ c/ R(s)”_lhg/ I {19y Apup|®} dx dy ds. (4.64)
0 o
In order to obtain bounds for the expected value of stochastic integral, we rewrite

I/\Th -
n=y /0 PR(s)7! /@ T {TF o0 A Bk pid) dx dy dBE,

y
kel,f,lelh

+Z/O

y
keI;f,leIh

tATy _
b X [T IROP [ D00 0 6 )

X y
kelh,lelh dxdy dﬂl)ccl

tATy

PR(s)?™! /0 il Ty 10640y (A3, ngrun) pr}} dx dy dBy,
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tATy o
e Y /0 PR /@ TE{T] o A0y Oy irn) G )}
kelf,lel} dxdy dﬂl)c)l
— g+ 1y + 1, + 11y (4.65)

and apply the Burkholder—Davis—Gundy inequality. For this reason, we introduce the
Hilbert—Schmidt operators

T1(s)(@) := x1, R(s)?~" Z /0IZ{I;,C,loc{ax((gkl’w)LZUhgh,kl)Ph}}dXdys

kelf,lel)

(4.664)

T0@ = kR Y [ DT 0 0) 000G )} dx dy,
kel lel)

(4.66b)

mapping Q )IC/ 2L2((9) onto R and the Hilbert—Schmidt operators

) () = R Y /@IZ{I;y,,loc{ay((gkl,w)Lzuhﬁh,kl)Ph}} dxdy,

kelf,lel}

(4.66¢)

Tu(s) (@) = xr,kR(s)? Z /(9I;f{IZJOC{ay((gklsw)Lzuhah,kl)G/(uh)}} dxdy,

kelf,lel}
(4.66d)

mapping QJI,/ZLZ(@) onto R. Recalling (4.59) and (4.60), we obtain

(3 i@ gnp)"”

k,lez

_ - 2\ 1/2
=ik (X W ([ BTt} dray) )

kel lel}

P— 2
= mCRO™ (Y A ok eio) + h Nkt s e o))
keI, lel}

< (1nunll + [ Ty tlosun it} axay
201/2
+h£/ I,{{|axAhuh|2}dxdy+R(s)))
o
< CROP™ (1l + [ T flcs PZi 72 ey

+he /0 {10 Apup|?) dx dy + R(s)). (4.67)
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Similarly, we have

/
(¥ mw@unl)”

k,lez
= 1 CRE)” (I ApunlF + /@ Ti{layual 2y " %)y dxdy)
+ x1,CR(s)7"! (h/ ¥y Apup)?) dx dy + R(s)). (4.68)
o

Following the computations in (4.61), we obtain

/ _
(3 @Y an?) < n,Certsy”™!

k,leZ

(/0 T {THG )} s 2} dx dy +C). (4.69)

/ _
(X 2@ anl) " < 1m,Cer(sy!

k,leZ
(/@ TG )} dyunl?} dx dy + C). (4.70)

Therefore, the Burkholder—Davis—Gundy inequality yields together with Young’s inequal-
ity and R(s) > «

E[ sup |1, |]
t€[03TmaX]

Tmax/\Th __
< CE[(/ R(s)2P—2(||Ahuh||§+/ {0 P I P72} dx dy
0 0]
1/2
+h8/ I {lox AP dx dy + R(s)) ds) |
0]

1 _
<-E[ sup R@®)?]
8 t€[0,Tmax ATy]

Tmax AT _
+Ca—11E[/ R(s)P—1<||Ahuh||§+/ IP{0cun P I3 {uy, P2} dx dy
0 o
+ h*’/ {10 Apup|?} dx dy + R(s)) ds], 4.71)
[¢]

1 =
E[ sup ||]]<<E[ sup R()”]
1€[0,Tmax] 8 1€[0,Trmax A T]

-1 T T 7—1 2 x 27, P2
+Ca E[/O R(s) <||Ahuh||h+/0Ih{|8yuh| Iy {u, "} dx dy

+ hS/ T3]0y Apup]?) dx dy + R(s)) ds], 4.72)
€]
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and

E[ sup R
ZE[O Tm'lx/\Th]

4>|~

E[ sup ||+ sup |Hg4|] <
te[OSTmﬂX] ZG[OSTmﬂX]

_i_Ca_le]E[/OT'maXATh R(S)p (/ Iy Ih G”(uh)|8 up| }})]

N Ca_leE[/on“ATh R(s) —1(/ (TG up)}dyun|?) dx dy + c)]
4.73)

Collecting the above results, we obtain

1 _ T, _
E[ sup [H|]<-E[ sup R(®)P]+ COFIIE[/ R(s)? || Apup |2 dx dy ds]
1€[0, Tas] 2 " 1€]0, Tl 0

Ty _
+Ca—11E/ R(s)p_l/0I;:{[|uh|_p_2]x|8xuh|2}dxdyds]
0

Ty _
—i—Coe_lIE/ R(s)p_l/0I,’f{[|uh|_1’_2]y|8yuh|2}dxdyds]
0

h _
—l—Coe_l]E/ R(s)”_lh"’"/gIZ{|8xAhuh|2}dxdyds]
0

Ty _
+C(x—1E/ R(s)p_lhe/(gIZ{|8yAhuh|2}dxdyds]
0

T;
+ Ca—lxﬁE[ / " R(s)?ds], (4.74)
0

where we again used Lemma 3.6 and mimicked (4.51). Collecting the intermediate results
established above, we obtain for « sufficiently large

T p—1 1 2
B s k0] +E[ / R(s)? /@ TG Gun)l5 18 pal) dx dy s |

Ty _
+IE)/0 R(s)p_l/0IZ{[G”(uh)];1|8yuh|2}dxdyds]

Ty _
—HE/ R(s)P—1||Ahuh||§ds]
0

Ty _
+1E/ R(s)l"lhf/ I,J:{|8xAhuh|2}dxdyds]
0 [¢]

Ty _
+]E/0 R(s)p_lhs/(gI,’f{|8yAhuh|2}dxdyds]

Ty, _
+]E/ R(s)”_1/ IZ{[|uh|_p_2]x|8xuh|2}dxdyds]
0 )

Ty _
+]E/ R(s)p_l/ .r;;{[|uh|—1’—2]y|ayu,,|2}dxdyds]
0 [¢]
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_ Th _
< E[R(0)?] + CK4]E[ / R(s)? ds]. (4.75)
0
Applying Gronwall’s lemma concludes the proof. ]

4.2. Holder continuity in time

For compactness in time, the first step is to establish uniform Ho6lder continuity for the
stochastic integral. In particular, we will prove the following lemma:

Lemma 4.3. Let T, > 0, p > 1, v € (0, %) and let Assumptions (S), (I), (P), (B), (R),
and (B3*) hold true. Assume 2vp > 1. Then for solutions (uy,, py) to (3.6), the stochastic
integral
dim U}* dim U}
Ly:= > Y Y ILju®e e (F) (4.76)

i=1 j=1 keI, lel}

with
tATy,
Lt (1) = M7 /0 /0 TALE A GG el (el ()} dx dy dBs,

tATy,
e [ [ 3037,,0, k@i e 0 0} axay ag)
4.77)

is contained in L*P (Q; C# ([0, Thax]: L2(0))) with f := v — %~

Proof. According to [30, Lemma 2.1], it suffices to show that
dim U}* dim U}
ZX®@) = gm, Y. Y. MG ®e ()
i=1 j=1
[ T {Tdos (Y oa )G 0 00 dxdy
o x y
kel lel}

(4.78)

and
dim U}* dim U}
Z2®@i=am, Y Y MileE®E ()
i=1 j=1
< B Tfo (o X to)sTia)e g 0} ardy
o kelf,lel}

(4.79)
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are progressively measurable and contained in L22(Q x (0, Thax): L2(L2(O9); L?(0)))
with a uniform bound in 4 to establish I}, € L??(Q; WV2P(0, Tyax; L?(0))). Then, the
continuous embedding

WP (0, Tax; L2(2)) <> €727 ([0, Tonar); L2(0)) (4.80)

completes the proof. Recalling the computations from (4.44) and using (B3), we immedi-
ately obtain the bounds

HZX||12‘2(L2((9);L2((‘))) < XThC/OI}yl{|8xuh|2}dxdy+C/(9];y{|uh|2} dxdy,
(4.81)

“Zy“ixLawaaanffXﬂijglf{Wy“hF}dxdy'+(7/;1fyﬂuhf}dxdy
(4.82)

Progressive measurability is satisfied due to the pathwise continuity of the uj; P-almost
surely. Hence, the result follows by Proposition 4.2. ]

In order to show compactness in time, we shall use Lemma 4.3 to establish the Holder
continuity of uj as a mapping from [0, Tp.«] into appropriate Sobolev spaces.

Lemma 4.4. Let Ty, > 0 and let Assumptions (S), (I), (P), (B), (R), and (B3*) hold
true. Then, for p sufficiently large, a solution uy, to system (3.6) is uniformly bounded in
Lo(Q; CY4([0, Tnas]: (Hpor (0)))) for o < 8/5, e,

lun(t2) —un) (g1 @) \o
IE[( sup 1/; per(9) ) ] <C (4.83)
11,62€[0, Tnas] |t2 — 11]
Proof. Denoting the standard L2-projection onto Uy, by Py, , we obtain
||uh(t2) — Mh(fl)||(Hp1€r((9))/ = sup <||W||1T111((9)“/(9(Mh([2) - uh(ll))llf dx dy‘)

0 €HL ()

= s (W] [ 230 — ) Pty e dy])

0£YEHL(0)

s (Wl ) 0~ T )2, o))

0£YEeHL (0
= sup (IWlgh@lI)+  sup (I¥lIgh @) (4.84)
0AYEH L (0) 0F#yeHL(0)

To derive an estimate for |/ |, we start with the following identity:
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t2 ATy

/0 I {(up(12) —up(11))pp} dx dy + /

1 ATy

[ TG I 0. padat ) axay s

t2 ATy,
/IZ{[G”(uh)]y_layphay%}dxdyds
1t ATy, (V]
:/0I}’l‘y{(lh(lz)—Ih(tl))¢h}dxdy (4.85)

resulting from (3.6a) for 0 < #; < t,. Using (4.85) with ¢, = Py, {y¥} and Holder’s
inequality, we deduce the estimate

27T Vi 1 2 1/2
n=(f / LG )5 o pil?) dx dy ds)
t

ATy
t2 ATy,

/0 I}yz{[GN(uh)];l |8x:7)Uh{'(//}|2} dxdy ds) 12

t1/\Th

27T /" —1 2 1/2
[ TG Gl oy ) e dy )

tl/\Th

t2 AT},
([ ] TG )y o, 2, ) axayas)”

ATy,

+ C[Ip(t2) = In(t)l 20y | Pu, W HI L2(0) - (4.86)

In order to derive bounds for the first term on the right-hand side, we use the estimate

27T y " —1 2 1/2
JRACHO RTRTSE R
t1/\Th o
ta AT}, 1/2
sc/ 112 o 195 P, (0} 2 s
( AT L(0) n\Villz20) )

3/4 1/2
< (2 =t unlZ oz zooy) 1V lm10)
1/4 3/4
<C(a— 11)3/8 ”w”Hl(O) | Apup ”L/Z(O,Tmax;Lz(@)) lun ||L/Oo(05Tmax;H1(0))

+ Ct2 = 1) 211 i1 o) 1| oo 0, s 1 () - (4.87)

In the last step, we used the inequality

1/4 3/4
nll 230, Tmizo0)) < ClARUI S 1 12on oz i1 @)
+ CllunllLo©, T 1 (0))-
which follows from the discrete Gagliardo—Nirenberg inequality proven in Corollary A.4.

Using similar computations for the second term on the right-hand side of (4.86) and esti-
mating the remaining term with the help of Lemma 4.3, we obtain the following:
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E[  sup  ([¥igiel)°]
0£YeHL (0)

< Cl — ) /

1t ATy

to ATy,

a/2
[ TG a1 o il ax ay as)

30/4
(”Ah”h”LZ(o Tmax LZ(@)) e ”Loo(o Tt @) T 11170, Tmax~H1((9)))]

o/2
+ €t — 1) [ / {IG" Gun)ly 10, pal?) dx dy as )

tll\Th
30/4
(”Ah“h”LZ(O T 22O 11 ”Loo(o T2 (@) T MU0 100,71, HI(O)))]
+ C(tr —11)°P. (4.88)

Applying Young’s inequality, we end up with

E[  sup  (I¥lzio1)7]
0£Y € HL(0)

< -ny e [ / TG Gua)] 13 i} dx dy s
t1 ATy,

+C(tr— z1)3"/81E /

1 ATy

/ LG Gun)ly 13y pal?) dx dy s |

4—2, 30/(4—2
+ C(t2 - t1)30/8E[”Ahuh ”Z/Z((O Tt‘:n)( ;L2(0)) ”uh ”Lz‘/’EO,TmC:x);HI((‘)))
+ unl 7505 o] + €2 =), (4.89)

As we assumed o < 8/5, we have /(4 — 20) < 2. Therefore, we may apply Young’s
inequality once again to obtain

o/(4—20) 30/(4—20) 2
”Ahuh”L2(0 T LZ((‘?))”uh”Lw(O,Tmax;Hl(O)) = C”Ahuh”Lz(O,Tmax;L2(0))
60/(8—5
+ Clunllf26 rorr oy 490

In view of Proposition 4.2, we conclude

E[  sup (||W||1}11((9)|1|0)] <Ctz—11)*"* 4+ C(t,— 1) (4.91)
O£V eHL(0)

for p large enough.
Using (A.le), an inverse estimate, and the stability properties of Py, , we obtain

|| < Chllup(t2) — up(t)llL2@) 1V | a1 0)- (4.92)

To obtain an estimate for [luy(t2) — up(t1)||L2(@), We again start with identity (4.85) and
choose ¢, = (up(t2) — up(t1)). This provides the estimate

t2 AT

lhen(12) = un (1)} < [ TG a0 i uniz) = ()} dxdy |

t1 ATy,
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+

ATy
/t /@ TiAIG" )]y 3y prdy (up(t2) — up (1))}

1ATy

dxdyds

+ ([ n(22) = In (1) 20y lun(t2) — un () || 20)
=: N1 + N, + N3. (4.93)

Using Holder’s inequality and Young’s inequality, we compute

3/4

12 ATy,
Moz [ ([ 36 ol 0.2 axay)
t o

1ATy
1/4

< ([ 1ot~ wpe)i*) axay) s

12 t2 ATy, . 43 3/2
=C-n" [ ([ B w0, axay) as
t1/\Th 0]
ATy 1/2
#C-m ™ [ ([ i)~ w ) axdy) s
t1 ATy, o
=: (12 — tl)l/lea + (12 — Il)_l/leb. (4.94)
For the first term, we obtain from Holder’s inequality
t2 AT},
Mosc [ ([ Bie anrt osm aray)
t1 ATy, o
) 1/2
(/0 Ii{“G"(uh)];l\ }dx dy) ds
t2ANT},
=c [ RO [ BAG @ P drayds. @99)
t1/\Th ]
where we used
o 1/2 1/2
([ 2l s Praxay) ™ < € ([ sl aray)
o o
< Clunlzi gy < CRG). (4.96)

Concerning Ny,, we obtain from a discrete version of the Gagliardo—Nirenberg inequality
(cf. Corollary A.4)
Ny, < Clta — 1) [un(t2) — un(t) 13140y
< C(t2 = t) | Apun(t2) — Apup ) nllun(t2) —up@) a1 o)
+ C (12 — 1) |lun(t2) = un(t) |31 (0)- (4.97)
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Estimates for N, can be derived in a similar manner. To derive bounds for N3, we use the
results from Lemma 4.3 and obtain

E[N3] < 8E[us(t2) — un ()] + CE[ 11 (t2) = In ()17 2(0)]
= SE[”M},(Zz) - u;,(t1)||i] + Cs(t2 — ll)zﬁ. (4.98)

Since the first term on the right-hand side of (4.98) can be absorbed for § small enough,
we obtain

E[h® |lup(tz) — uh(ll)IIZz(@)]

<Cltr— tl)"/4h"]E[/

1 ATy,

taANT},
RG) [ 16" (i)l o, ) v dy as]
A

Ty
+C(12—t1)"/4h"]E[/ R(s)/@IZ{[G”(uh)];1|8yph|2}dxdy ds]

t1 ATy,
+ C(t = 1) hOB[[| Apren (22) — A ()7 un(t2) — un(t) 55 )]
+ C (1 = 1) * W B[ (22) — ()51 )]

+ Cho(tr — 11)°* + ChO (1, — 11)°P

< Cho (1= 1)* + C(ta — 1) s len ()51 0y] + CH (12 — 1),
S€[0,Tax

(4.99)

where we used (2.9). Choosing § > 1/4 (cf. Lemma 4.3) completes the proof. ]

5. Passage to the limit

5.1. Compactness

As uy, is only strictly positive for # > 0, we lack A-independent bounds on the press-
ure py. Therefore, we consider the fluxes

Ty = IG )i 0xpn}. I} = Ii{JIG" )]y 9y pry.  (5.1)

which are uniformly bounded in L2(; L2(0, Tpax; L?(0))). Note that solutions (v, pp)
to (3.6) may be equivalently characterized by (up, Apup, Jj', J, hy ). In the following, we
consider these objects in the spaces

xu = C([O» Tmax]; Lq((o))’ q < o0, (523-)
Xau := (L*(0, Thax: L*(0)))years (5.2b)
Xyx = (L*(0, Toax: L*(0)))yeax (5.2¢)

X1y = (L*(0, Tmax; L*(0)))yeax- (5.2d)
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Lemma 5.1. Let Tinax > 0 be arbitrary but fixed. Let (up, Apup, Jj), J;)h be a sequence
of discrete solutions to (3.6). Then the families of laws (Wuy)p,, (ayup)p (l,LJhX)h,
and (/LJ;)h are tight.

Proof. From Proposition 4.2 and Lemma 4.4, we obtain that (1), is uniformly bounded
in L2(Q; L®(0, Trax: H1(0))) N LO(Q; CY4([0, Tinaxl; (leer((D))/)) for 0 < 8/5. Due
to the well-known compactness theorem by Simon (cf. [66]), the ball By in the space
L%(0, Tmax;leer(Q)) N CY4([0, Tnax]: (HL.(9))) is a compact subset of the space

per

C ([0, Thax]; L9(0)). Furthermore, we have for any R > 0

P (Xu \ BR) = PlIunlZow 0,711 00) + 181115 g0, 1t 00yy > R
- 2
< R GE[”uh||L°°(O,Tmax;H1((9)) +C + ”uh“(é'1/4([0,Tmax];(1-1pler((9))’)]’
(5.3)

which shows the tightness of (1ty;,),- As closed balls in L2(0, Tynax: L?(O)) are compact in
the weak topology, the tightness of (A ,uy )y, (4 J};C) i and (u Jhy)h is a direct consequence
of Markov’s inequality and the bound obtained in Proposition 4.2. ]

Following the lines of [29], we introduce the Polish space
2
Xw = (C([0. Trax]: L*(0))) (5.4)

as an additional path space. Let uw := (uw=, MWy)T be the law of
T
W = ( Z A8k Bigs Z A,{,gklﬂzl) : (5.5)
k,€Z k,€Z

As Xw is a Polish space, uw is a Radon measure and therefore regular from the interior,
ie.,

1w ((C ([0, Tran; L*(9)))%) = sup {puw (K) : K C (C ([0, Tnan; L*(0))) compact}.
(5.6)

To deal with the initial data, we introduce the space X, := leer((Q). Together with the

tightness results of Lemma 5.1, we obtain the following result:

Lemma 5.2. On the path space X := Xy X Xauy X Xjx X Xjy x Xw x Xy, the joint
laws uy, defined by

pr(AXx BxC x D x ExF):=P[{u, € A} N {Apuy € ByN{J;} € C}
N{JY eDyn{W e Eyn{u’ e F}]  (5.7)

for h € (0, 1] are tight.
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Using Jakubowski’s theorem (cf. [52]), which is a generalization of Skorokhod’s the-
orem (cf. [67]), we obtain the following result:

Proposition 5.3. Let (up, Apup, Jj), J}f) be solutions to (3.6) in the sense of Lemma 3.7
defined on the same stochastic basis (2, ¥, (¥1),>¢, P) with respect to the Wiener pro-
cess W. Then there exists a subsequence which we again denote by (up, Apup, Jj', J { )

such that there exist a stochastic basis (ﬁ, F, I§) a sequence of random variables

iin 1 Q= C([0. Toal: L1(O)) (g < 00), (5.8a)
App - @ — L2(0, Toax: L2(0)), (5.8b)
JF Q= L0, Taxs L2(0)), (5.8¢)
T 1 Q — L2(0, Thax: L2(0)), (5.8d)
i Q- HL(0), (5.8¢)

a sequence of (LZ((9))2-valued processes W 1, on 0, random variables

il € L*(Q:C([0, Tna: L9(9))) (g < 00), (5.92)
Au € L*(Q; L2(0, Toax: L2(0))), (5.9b)
J* € L2(Q: L%(0, Thax: L2(0))), (5.9¢)
TV € L*(Q: L2(0. Tnax: L2(0))). (5.9d)
i° e L2(Q: HZ.(0)), (5.9¢)

and an L*(O)-valued process W on Q which satisfy the following properties:
(1) The law of (uy, mh, J:f, J~hy, Wi, ﬁz) on Xy X Xay X Xjx x Xyy X Xw X Xy,
under P coincides for any h with the law of (up, Apup, J;, Jhy, W, ug) under P.

ii) The sequence (iiy, Apup, J*,J?, Wy, i1%) converges P-almost surely towards
(ii) Th ip, A ST Wy, 1) P-al l d.
(u, INANER 8 11%) in the topology of X.

Remark 5.4. In particular, one may use the interval [0, 1] for S~2, its standard Borel o-
algebra for ¥, and the Lebesgue measure for P (cf. [52]).

Similar to the definition of T}, we introduce the random stopping times
Th := Tmax AE{t > 02 41 (1)) = Enma}- (5.10)

Lemma 5.5. Along a subsequence, the convergence limp\ o fh = Thax holds P-almost
surely.

Proof. Following the lines of [29], we compute for each t € (0, Tipax]
P[{T, < t}] = P[{T) < t}] < ChP/C*P), (5.11)

Hence, Tj, — Tpax in probability for 2 \ 0, which implies the P-almost sure convergence
for a subsequence. ]
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Lemma 5.6. Under Assumptions (S), (I), (P), (B), (R), and (B3*), Aﬁh can be identified
P-almost surely as the discrete Laplacian of Uy, i.e.,

Anty, = Apiip. (5.12a)

Furthermore, the flux components j}f and .7: can be identified P-almost surely as

T = g, TG @] 0x (—Anily + Ty (F (@)} + 1 Ay Apily)},  (5.12b)
T = g, DA\ IG" @13 0y (—Aniln + TP AF Gy + B Apdpiin)}.  (5.120)

Proof. As Apuy depends continuously on uy (cf. (2.9)), (5.12a) follows by equality of
laws.

As for every fixed & > 0, the functions uj, 1, are almost surely in C ([0, Tyax]; C 0)),
the stopping times 7} (w) and T}, (@) are also continuous functions of uy, and 7y, respec-
tively. By inverse estimates (cf. [10, Theorem 4.5.11]) and the oscillation lemma
(Lemma 3.6), the same holds true for the terms on the right-hand side of equations (5.12b)
and (5.12c). In particular, the expectation

Tmax ~ 7"“’13)(
]EH/O /OJ,fqﬁ dxdy dr —/0 17, Ty [G" G5 0x (— Anily + TP (F' (@n)
+ thhAhﬁh)}H (5.13)

coincides with

Tmax Tmax
EUL Ahﬁmww—A a1 (1G] 0x (— Ay + Iy (F (up))

+ hEAhAhuh)}H (5.14)

for arbitrary ¢ € C°([0, Tax]: (C2(0))). As the latter is equal to zero, this gives the

per
claim with respect to J;*. The argumentation for J, }f is the same. ]

Corollary 5.7. Let the assumptions of Proposition 5.3 and Lemma 5.6 hold true. Then the
limit function Au introduced in (5.8b) can be identified with the Laplacian of i IP-almost
surely.

Proof. Choosing ¢ € C°(0O), a Taylor expansion provides

per
oo + 0,9 g > A

in L°°(0). Therefore, shifting the discrete Laplacian onto the test function before passing
to the limit provides the desired result. ]
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We proceed by showing that W and W » are Q-Wiener processes : adapted to suitably
defined filtrations (ft)t>0 and (?’h )00 respectlvely We define (J’t)t>o to be the -
augmented canonical filtration associated with (u L1%), 1.,

Fi =0 (o(ril,r,W)U{N € ¥ : P(N) = 0} Uo(@”)). (5.15)

Here, r; is the restriction of a function defined on [0, Tmax] to the interval [0, ¢] with
t € [0, Thax].- Analogously, we introduce the filtrations (.ﬁh t)t>o as the P- augmented
canonical filtration associated with (i, Wi h)

Fhy =0 (a(redin, rWr) U{N € F 1 P(N) = 0} Uo(ii9)). (5.16)

Lemma 5.8. The processes Wh and W are Q-Wiener processes adapted to the filtrations
(Fht) ;50 and (F1);>o- They can be written as

Wit)= > > AMaubiyba and WHY= > > A%6uBybe.

ae{x,y}k,leZ ae{x,y} k,l€Z
(5.17)

Here, (ﬂz,kl)ae{x,y),k,lez and (,3,‘;‘1)0{6{)6’))},](leZ are families of i.i.d. Brownian motions

with respect to (j':h,t)zzo and (ﬁ,),zo.

For a proof we refer to [29]. Combining the results of Proposition 5.3 and Lemma 5.6
with the discrete Gagliardo—Nirenberg inequality allows us to establish improved conver-
gence results.

Lemma 5.9. Ler iy, and Apiiy be the random variables identified in Proposition 5.3.
Furthermore, let Assumptions (S), (1), (P), (B), (R), and (B3™) hold true and let q € (1, o0).
Then iy, converges strongly along a subsequence towards i in L?(0, Ta; WH4(0)) p-
almost surely.

Proof. We follow the lines of [60, Lemma 5.1]. Using Holder’s inequality, we compute

~ ~ ~ ~nl 1
”uh - u||L2(0,Tmax;W"‘1((9)) <C ”uh - u||L/2q(0,Tmax;H1(@))”uh u||qu(0)7/~ZaX W 124-2(©9))"

(5.18)
Due to the discrete Gaghardo—Nlrenberg inequality (cf Lemma A.2), we have that
e l? (0, Trax; Wplerq((9)) P-almost surely. As uy is P-almost surely in the space
Up N L*°(0, Thax; per((9)) with Apiiy, € L?(0, Thax: L?(0)), we may use the discrete
Gagliardo—Nirenberg inequality (cf. Corollary A.4) to show that # is also P-almost surely
in L2(0, Tyax: Wperq (9)). Therefore, it suffices to show that i, converges strongly
towards i in L2(0, Trax: H'(0)). Using the triangle inequality, we derive

lin — 120,15 @) < ltin — R L200,7;,0:H (0))
+ | R} — Ul 200,70 H 1 (0)) (5.19)

where R is the Ritz projection operator defined in (2.17). As R{#} converges strongly
towards # in H'(©) and since i), is L®°(H!')-regular, it only remains to show that
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the first term on the right-hand side vanishes. We define 4, : U, — U, N H1(O) via
Jo (Anpp) ¥ dx dy = [ Ve, - Vi dx dy for all ¢, ¥, € Uy and compute

Tmax
VT~ VRO a0 rnzon < || [ (AnTs = RED) - (01 = R dr ]
< | Anin — RN 120, Tnars 220 ¥R — R 120, Ters L2 (0))
< Cllup — R} 220, Tu; L2(0)) - (5.20)

Together with the strong convergence of i3 in L2(0, Tiax; L2(O)) P-almost surely, which
we have from Proposition 5.3, and the strong convergence of R{u} towards %, we com-
plete the proof. u

5.2. Convergence of the deterministic terms

In this section, we identify the limit functions j,f and .7hy introduced in Proposition 5.3 and
use the a priori estimates from Proposition 4.2 to establish additional (weak) convergence
properties. In order to identify the limit of the fluxes, we consider the discrete pressure

Un 2 ph = —x7, Auiln + x5, L AF (@)} + x5, h* MnApity

P-almost everywhere. In addition, we introduce the sets

Ss == {(@.1,(x,)) € Q2 x (0, Tmax) X O : i@, 1,x,y) > 8}, (5.21a)
Ss(w,t) = {(x,y) €0 u(w,t,(x,y)) > 8}, (5.21b)

S = {(@.1,(x,)) € @ X (0, Tma) X 0 :30 € @y 5.t (x,) € O
and il (@.1.-)|g > 8}, (5.21c)

S @,1) = {(x,y) € 0:30 € @y s.t. (x,y) € Q and 71(@,1,-)|g > 8. (5.21d)

On these superlevel sets, we will be able to identify the limit functions of py, f}f ,and .7{ .
In particular, the following lemma holds true:

Lemma 5.10. Let iy, and U be the random variables identified in Proposition 5.3. Fur-
thermore, let Assumptions (S), (I), (P), (B), (R), and (B3™) hold true. Then, there exists a
subsequence, again denoted by Uy, such that for all ¢ < oo and q¢ < quqz the following
convergence properties hold true:

fip =1 in L9(Q; C ([0, Tnaxl; L9(0))), (5.22a)
ip— i in LI(Q; L*(0, Trax: W1(0))), (5.22b)
ﬁh _*\ i in Lfvgakf(*) (EZ’ LOO(O, Tmax; leer((g)))’ (5220)
Apilp — AT in L*(Q; L*(0, Tmax: L*(0))), (5.22d)

OAVIG @Iy =& in LYQ; L0, Toxs L4(9))), (5.22¢)
Iy — & in L9(Q; L0, Trax: LY(0))), (5.22f)
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where we have used the notation used in [25, Chapter 0.3] fo denote the dual space of
LZp/(Zp 1)(9 L (O Tma)u( per((g)) ))

In addition, we have

Xys@n Xisi1x Ph = Ais510x P in L*(Q:; L2(0, Toax; L*(0))), (5.23a)

4

Xy X510 P = xisdy B in L2 (@ L0 T L2(O))). (5.23b)
4

with p = —Au + F'(%) on Ss for all § > 0 and

T = T* in L3S L(0, Tax; L2(0))), (5.24a)
TP — T in L*($: L*(0, Tyax: L2(0))), (5.24b)

where J* and J? are the limit functions introduced in Proposition 5.3. For every § > 0,
we are able to identify these limit functions on the superlevel sets Sg as

J¥ =0 (~AT + F'()) and J> = 1d,(—All + F'(iD)).

Proof. By Proposition 5.3, we have in particular iy, — . Choosing p sufficiently large in
Proposition 4.2 and combining Proposition 5.3 with Vitali’s convergence theorem and with
the bounds on %} and on Ay} (see Proposition 4.2), we obtain the strong convergence
of uy, towards u in L? (Q; C ([0, Thmax]; L9(£2))), which gives (5.22a). To establish (5.22b),
we use the continuous Gagliardo—Nirenberg inequality and Lemma A.2 to show that

~ ~1d ~ 13(@—2)/q d—q4q—2)/q
1i2h =420, rswracon = CIARIRN 220 7,220 170 1000, Tmes 1 0)
-2 dlg—2
—‘rC”M”q(q )/q ”u”q q(q—2)/q

L2(0,Tinax; H2(0)) L>®(0,Thax; H(0))

+ CllEnl 720,750 0))

+ ClIFZ 20,7, 11 0) (5:25)

forallg < ¢ <73 5. As this choice of ¢ fq in particular implies that G(q — 2)/¢ < 2, we may
use Holder’s 1nequahty to show that IE[||u n—l|? L2(0, Ty W0 (0))] is uniformly bounded.
As we already established the P-almost sure convergence in Proposition 5.3, an applica-
tion of Vitali’s convergence theorem provides the result.

From the bounds on iy stated in Proposition 4.2, we obtain the weak convergence
up S uin Lifak_(*)(ﬁ; L0, Trax; per((9))) along a subsequence. As the strong con-
vergence of iy, towards i is already established in (5.22a), we are able to identify 1t and u.

To establish the weak convergence expressed in (5.22d), we again start with the
uniform L2($2; L2(0, Thmax; L2(0)))-bounds on Apiij, which are stated in Proposition 5.3.
These bounds provide the existence of a subsequence converging weakly in the space
L2(5~2 L2(0, Trmax; L*(0))) towards some limit function v. As we also have Ayl — A#l
P-almost surely (cf. Proposition 5.3 and Corollary 5.7), combining the aforementioned
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uniform bounds and Vitali’s convergence theorem provides

Tnax Tnax
/ /Ahﬁh¢dxdydt—>/ /Afiq&dxdydt (5.26)
0 o 0 €]

strongly in L" () for r < 2. Therefore, we have v = A,i.
To establish (5.22¢), it suffices to show

E[| (/16" @1z} = h ] e o, 1y0:10 00

vanishes for 2 \ 0. Using Holder’s inequality, we obtain

E[ sup ]/0|I}yl{,/[G”(17h)]x1}—ﬂh|qudy]

1€[0,Timax
< (B e [ Inior @ity —mf o )
) (E[te[zl,lﬁmd/(auf{{m} — [ dx dy])l/z. (5.27)

In the following, we will show that the first factor converges towards zero while the second
factor remains bounded. As[G” (i1p)]; ! | k< (y) € [minyegx U7 (X, y), maxyeg= Uz (X, y)],
we compute on each Q € @y,

/Q|I}yl{ /[G//(ﬁh)];l}—ﬁh}zdxdyE/QIZ{|HI}%CXI7h—rII}anﬁh|2}dxdy
5h2/ I7{10x1i5)} dx dy, (5.28)
Y

which provides the first result. To show that the second integral remains bounded, we use
that on each element K~ = (ihy, (i + 1)hy), we have [G” (i) | k> (¥) = Up(ihx, ) -
up((i + 1)hy, y). Applying the inequality of arithmetic and geometric means and Jensen’s
inequality, we obtain on each Q := (ihy, (i + 1)hy) x KY

/Q {167 @1 P4 dx dy

= /Q}IZ{\/ﬁh(ihx, Wiip(( + Dhe, )} 72 dx dy

Loy~ o 29—

= [ 3T+ 7+ ey day
1 ~2g—2 . ~2g—2 -

< [ FET e ) + TG+ D) dxdy

= / 2972 dx dy. (5.29)
0



S. Metzger and G. Griin 360

Summing over all Q € @, and applying (2.6), we obtain the result for p large enough.
The convergence expressed in (5.22f) can be shown with analogous computations.
To address (5.23a), we combine the bounds in Proposition 5.3 with the estimate

Xc@n Xiss|0x Pal> dxdy < 872C | I7{[G"Gin)] " 10x Pul*} dx dy,  (5.30)
0 " [S54] )

which indicates that
Q d
X[gs/i,]X[S,g] xPh

is uniformly bounded in L2($; L2(0, Tinax; L2(0))). Therefore, there exists a subsequ-
ence converging towards a limit function ns. In the following, we have to show that
ns = 0xp on Sg:

We shall approximate the characteristic function (s, by a family of functions
IN(@. D) yen : @ X [0, Tnax] = Cpr (0) satistying

In(@.t, (x, )= 0 for(x,y) € Ss(w,1)",
o 1
1 if dist((x, y), dSs(w, 1)) > N (5.31)

)?N(Cl),[,(x,y)) =
0 if dist((x,y),0Ss(w,1)) <

N+1

To identify ns on Sg with d, p, we will show that

Tmax ~ ~ T‘max ~
E[/ / nsdin dx dy dt] — —E[/ /ﬁax(qszN)dx dy dz] (5.32)
0 ] 0 O

for sufficiently regular test functions ¢. In the following, we will show that this equation
is valid even in the slightly more general case when o7 is replaced by the test function
§ € L(&: C%([0. T C2(0))) with supp {(@. 1) C S (. 1):

As Uy converges strongly in Wple’rq (0) (g < o0) P-almost surely for almost all
t € (0, Tyax) and hence almost everywhere in € x (0, Tinax), we have i1, — 7 in prer@)
with y < 1 almost everywhere in Q x (0, Tinax). This allows us to apply an appropriate
version of Egorov’s theorem (cf. [19, Theorem 42]) to deduce for all ¢ > 0 the existence of
asubset €, C Q x (0, Thax) with measure smaller than ¢ such that %}, converges uniformly
in (Q x (0, Tmax)) \ €, =: €. Therefore, we compute

Tinax ~
E[/ / )([S@h])([sg]axﬁh{dx dy dt]
0 o §/4

Tmax ~ ~
=// /x @,,0x Pp¢ dx dy dr dP[@)]
& Jo o " [S54]
=/ /X[S@h]axp‘thxdydzd]'P[c;]+/ /X[sah]axﬁhfdxdydzdiﬁ[a]
A & Jo s/

§/4

A+ B. (5.33)
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Applying Holder’s inequality, we immediately obtain |B| < C(/2. As i}, converges uni-

formly towards # in €&¢, we have supp E(co, t) C Ss(w,t) C S 8(% (w, t) for h sufficiently
small. Using the definition of pj, we obtain

¢Jo e Jo
_/@c/Olfhf?fy{F’(ﬂh)}axdedy dr dP[@]

—hs/ /thAhAhﬁhaxdedydzdﬁ[a]
¢JO
= A1+ Ax + 4. (5.34)

The convergence of A; towards f@f Jo Al 8xde dy dt dI~P[&3] is a direct consequence of
the weak convergence (5.22d). To obtain the convergence of A,, we use

A2 = —/@c/axth/(ﬁ,,)axdedy dt dP[@)]
+/@c/0xn(l—Iiy){F’(ﬂh)}axdedydzd]?’[ca].

As supp E(a) t)ycS sﬁ(w, t), the second term vanishes for h ™\ 0~due to Lemma A.5
and the first term converges towards — [g. [ F'(i)0x¢ dx dy dt dP[@] due to Vitali’s
convergence theorem. The treatment of A3 is more delicate, as the bounds on h° Ay Ayt
are not obvious. We begin by splitting A3 into

= _ha/c /@ 17, T Bt I {02} d dy de dP(@)
B hs/@ /(9 17, (I = I AnAniin Iy {0} dx dy de dP[]

- hS/ / X7, A Aniin(I — T;2){0,E} dx dy dr dP[@]
¢ Jo
=: Az, + A3, + A3,. (5.35)
Recalling (2.7) and applying Holder’s inequality shows that A3, vanishes, since
2 2 ~ xy =
|As,| < B2 1B 02 Antinll 2 @200, Tz 200 |95 Th 4068} | L2 @120, s 220
2 2 ~ xy <
e ayAh“h”LZ(ﬁ;Lz(o,Tmax;LZ(a)»”ayfh {axf}||L2(§;L2(0,Tmax;L2«9)))
< h¥2C. (5.36)
Due to (2.9), we have h|[h%/2A), Anitpll12@:12(0. 12y = C- Therefore, standard
estimates for T 2y which can be found, e.g., in [10, Theorem 4.4.20] provide
|As,| = ChEP RIS Ay AnTinll 2 @:12 0, iz200 | VIR 105 | 12 @:22 0,220
< Ch/2. (5.37)
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Similar considerations based on Lemma A.1 provide
s | = B2NR2 A Aniill 2@ 1200, T 20 T = T2} | 2@:20 Trsz20)
= CH 210280 12,120, s 201 (5.38)

Collecting the results above, we have

A—>/C/ AﬁaxdedydzdIF[a]—/ /F'(ﬁ)ax’idxdydtdiﬁ[a]

//m/pa Fdx dy dt dB[@ / /Aua Fdx dy d dP[a]
+ / / F/(7)9, % dx dy de dB[@]. (5.39)
 JO

As U > § in supp 8XE, the last two integrals can be bounded by C:'/2. Therefore, we may
identify ns with y[s,19x p, which provides (5.23a). The convergence expressed in (5.23b)
can be proven by similar computations.

The weak convergence expressed in (5.24a) and (5.24b) can be established analo-
gously to (5.22d). Therefore, it remains to show that the fluxes J* and J? coincide
with #0, p and %0, p, respectively. Reusing the ideas of the proof of (5.23a), we choose
E € L°°(§"z; C ([0, Trax]; C2(0))) with supp é‘(a) t) C Ss(w, t) and compute

per

/max/fyfdxdydf /mx/fy{maxph (dxdydt]
=E /O m/0X[ng])([s,;]f;f{maxﬁh}fdxdydz]
+E|:/0Tmax/0(1—X[sz])X[Ss]I}y;{maxﬁh}zdxdy dt]

E[/OTW/0X[ng]x[ss]IZ{\/m}f)xﬁhzdxdydt]
| /OT /0 L — IIIG @l o )G dx dy ar]
+E[/0Tmax/0(l —X[Ssi,])X[Ss]I;J:{maxﬁh}zdxdydl]

=: By + B> + Bj3. (5.40)

The convergence

Bl—>]E/ /)([Sﬁ]u(')xp{dxdydt / /uaxpgdxdydz] (5.41)

follows directly from (5.22¢) and (5.23a). Combining (A.lc) (cf. Lemma A.1) with stan-
dard inverse estimates (cf. [10, Theorem 4.5.11]) and (5.30) provides the estimate

B, < Ch” ayI;J,;{V [G”(ﬁh)];l}”Lz(ﬁ;LZ(O’TmaX;LZ(@)))”axﬁh”L%Sg)
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< cs7Y(] IZ{\/ (G" @'} = 1ih | 2 @.1200.1:12(0))

+ A1y Tl L2 @120, T2 00)- (5:42)
Therefore, B, vanishes for 2\ 0 due to (5.22¢) and (5.22a). Applying Holder’s inequality
and the bounds established in Proposition 5.3, we obtain

B3 S C || (X[SS] - X[sz])E“L2(§§L2(0,Tmax;L2(0)))' (543)

Similar to the arguments used in the proof of (5.23a), we may use Egorov’s theorem to
obtain the existence of a subset €, C Q X (0, Tihax) With measure smaller than ¢ such
that i}, converges uniformly in CF?E}V (0) in (2 x (0, Tnax)) \ €, =: €. As we have

Xiss1 © X[Ss(’?i’]

in &/ for h small enough and suppE C S5, we obtain Bz < C¢!/2 for all ¢ > 0. As we
also have J;; — J¥ in L2(2; L*(0, Tinax; L2(0))), we obtain J* = 10, (— Al + F'(%))
on Sg. The identification of J? on Ss follows by similar arguments. [ ]

5.3. Convergence of the stochastic integral

We consider for arbitrary but fixed v € C;2 (O) the operator Mpy 1 2 %[0, Thax] = R
defined by

Min0)i= [ T2 4000 = us @) e dy
tATy,
+/O /0IZ{\/[G”(uh)];lJ,faxI;y{v}}dxdydt
tATy,
—}—/0 /0IZ{,/[G”(uh)]y_lJ;ByIZy{v}}dxdydr

tATy
=2 Z/O /0I;y,{I;)f,loc{ax(uh§h,k1)f;fy{v}}} dxdy dgy,

kel IEIhy

tATy,
LYY /0 /@ TE(IL 0 k) TP (0} dx dy dBl).

kel 1er}

(5.44)

Remark 5.11. In contrast to [29], we define M}, using functions v in Cpoe‘;(@) instead
of szer((9). This seems to be necessary, as the limit process in Lemma 5.14 requires
convergence and stability properties of the projection of v that are not provided by the

L?-projection. Hence, the requirements on the regularity of v are also higher.
By the optional stopping theorem, M} ,, is a real-valued martingale, i.e., we have

E[(‘Mh,v(t) - Mh,v(s))\p(rsuhs rsW)] =0 (5.45)
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for all 0 < s <t < Tpa and for all [0, 1]-valued functions W defined on X,,. Here, rg
denotes the restriction of a function defined on [0, Tax] to [0, s].

Lemma 5.12. For the quadratic variation of My, ,, we have
Go=Y 3 [
kel rer}”°
tATy 5 2
~ X
+y > oo (/0 TE{T3 o0y (s T {01} dr dy)ds

kelj1er)

) I/\Th )
< Cllol2 o) /0 4 ()21 d. (5.46)

tATy

2
W ([ T el0s s 7 101 ) s

Proof. We consider the mapping R(uy, v) : Q2 x [0, Tiax] X (L2((9))2 — R defined by

(w.1,(zx,2y)) >

11 (1, ) /@ oz e (un D2 Y tawr 20 alnn ) 7 (0} dxdy

kel 1er)

+um o) [ D {0 (0 2 X (o5l 27 0 avay.

kel 1er}

(5.47)

‘We obtain for the Hilbert—Schmidt norm

2
”R(Mh, U)(t7 w) ||L2(Q]/2(L2((9))2;]R)

= ano) Y YA /0 DT e nnen I o1} ar ay)

kel ler)

o) ¥ 50 ([ T 0 G T o) axdy)

kel 1er})

=, (o) DY AP+ e) Y > AL B (5.48)

kel 1er} kelyj1er}

To estimate the first term, we use (2.13a) and (2.13b) and compute
2 y X = xy 2
A <2( | T0an T Ty o)) dxdy)

2
+2( [ 0T T2 ) dx dy)

< Cl8nx ”%00((9) [10xup ||22((9) ”IZy{U} ”22(0)

18Tt I3 0y I 2200 1 23740} 2 2 - (5.49)
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Using Assumption (B3), the standard error estimates for I *¥ and a similar estimate
for B2, we conclude

IR )@ O)T 12 20y2my = AT O nllp ey IV 720)-  (5:50)
Applying [62, Lemma 2.4.3] concludes the proof. ]

In the next lemma, we will study cross variation of M, ,, with the processes

t
ﬂ;‘i‘z(t)=/0/ (A2 griba - AW dx dy (5.51)
0

fork,l € Zand o € {x, y}.

Lemma 5.13. Fork,l € Z and o € {x, y}, the cross variation {Mp_y, BE; )¢ is given by

(Mnv, BiDe (5.52a)
_ {kiz JoT [ TATE o A0x unne) T {0}y dx dy ds ifk € IF. 1 € I}
0 else,
(Mnv: Bt (5.52b)
_ {Aiz S fo AT By i) T (0} dxdy ds ifk e I3 1€ I}
0 else.

Proof. The proof follows the lines of [29, Lemma 5.12]. We will only prove (5.52b),
as (5.53) follows by similar computations.
To compute the cross variation with 85, we consider for given k, / the mappings

S Q% [0, Thax] % QI/ZLZ(Q) — R which are defined as

2T, Z Z /Iy{Ihloc{a (uh<gk1» )Lz)Ixy{U}}}dXdy

kelfler)
+ (xg,)‘l/ axrz dx dy). (5.53)
o
Computing the Hilbert—Schmidt norm of S}, we obtain

|| SE(up,v) ”L (0Y?1L2(0):R)

DI (/ LA T soc {0 iy ) T y{v}}}dx‘iy)

kelflel)

+ 11, 2 Z ZA /Iy I3 10802 ual ) I (v} )} dx dy
ke]"le]y
A

lx gklgkl dxdy
kl
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A’x

+am ) (M / Qkrag7 dx dy) : (5.54)
kilez
By using (M, B ) = %(((Sﬁ(uh, v)): — (S*(up,v)),) and recalling the identity
Jo 8ki1857 dx dy = 8,%8,7, we deduce (5.52b). n
In addition to My} ,,, the processes
()/\Th .
M= 2 Z/ /Iy{fh loc{0x (Un G k1) T y{v}}}dxdy) ds
kele Iy
ATy, 2 .
-2 / A /Ih I3 1oc {0y (unBna) I y{v}}}dxdy) ds (5.55)
kel 1er}
and
Mhp vﬁkl
2 SO [y TR A0x unaan) T )} dudyds ifk e IF. 1€ I},
Mh,vﬁkl else,
(5.56)
Mhp v,Bkl
A SN S TS o0y unBiie) T {0}y dx dy ds itk e 17, 1 e 1},
Mh,vﬁkl else
(5.57)

are also martingales.
By equality of laws, we deduce that the following processes are also (¥} ;)-martin-
gales:

M (1) = /@ I (@) — T O0) T (v} dx dy

tATy _
+/ /I;:{,/[G”(ﬁh)];lj,faxl'zy{v}}dxdydt

tATh
/ / [G”(uh)] 1Jy8 y I, {v}}dxdydr (5.58a)

and

_ t/\fh 2
30— Y37 [ ([ 5 los @i I 1)) dr dy) s

kel 1er}

y 2 T AR 24 ~ ~ Xy 2
_ Z Zxk, /0 (/0 LT} o A0y @i I, {v}}}dxdy) ds, (5.58b)

kel el
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as well as
ffqh,vg;f,kl B
25 SN [ T TR o A0 @) I3 0} dx dyds itk e IF 1 e 1},
th,v,B;)f,kl else,
(5.58¢)
dqh,vgz,klt
A SN [y TAT) A0y (B T (0} ) dedy ds  ifk € 17, 1 € I},
‘Mh,vﬂ}):,kl else.
(5.58d)
Here, we used
t
B0 = [ | 020 aube - dxdy (5.59)
0

for k,l € Z and o € {x, y}. Furthermore, the quadratic variation of :/\7(;,,,, and the cross
variations with B}/, ; are given by

_ ATy,
=33 /0 12 /@ DAL o0 @) I3 01} drdy) s

kel}flelhy

AT y 2 AR 24 ~ ~ xy 2
+ > Z/O A2, (/@ T (T3 0y @i I o)} d dy)ds

kelj ier}

(5.60)
and
(Mo By Nt (5.61)
_ { A, ST IATE | (0@ I (o))} dx dy ds ifkel¥, Iel,
0 else,
(M. B )i (5.62)
_ { A f;Afhfo T TE o 00y @nGni) I {0} dxdy ds  ifkelF, lely),
0 else.

Lemma 5.14. Let Assumptions (S), (1), (P), (B), (R), and (B3*) hold true. Then, for all
[0, 1]-valued continuous functions V defined on X,, X Xw, we have
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t
E[(/ (@i(t) — 7i(s))v dx dy + / / 7J%9,vdx dy de
o s JO
t
+/“/ﬁJWﬂMX®@ﬁWUJJJﬁ]:O (5.63)
s JO

forall0 <s <t < Thyax-
Proof. To establish the claim, we pass to the limit in the identity

B[(M (1) = Mo (5)) W (rsitn, rsW )] = 0. (5.64)

Due to Lemma 5.5, we have X7, =1on [s, 2] for & small enough depending on & € Q.
We start with the decomposition

/I,fy{(ﬁh(t)—ﬁh(S))v}dxdy=/ (i () — in(s)) L) {v} dx dy
o o
—/@(1 = LOAGER (1) — i () T, {v}} dx dy. (5.65)

Due to the strong convergence of i, in C ([0, Tax]; L2(0)) P-almost surely and the con-
vergence properties of I Zy (cf. [10, Theorem 4.4.20]), the first term on the right-hand
side converges P-almost surely towards |, o (#(t) —u(s))v dx dy, while the second term
vanishes due to Lemma A.1, as the following computation shows:

‘/@(1 — )R (1) — iy (s)) I, {v}} dx dy
< Chl|itn(t) — 5 ()1 VI, {0} Lo )

< Ch/ i) dx dy||Vv||Le() < Ch. (5.66)
o

Here, we used a standard inverse estimate (cf. [10, Theorem 4.5.11]) and the nonnegativity
of iy, In order to deal with the remaining terms, we use the decomposition

/tl /01;5{ (G @)= T2 0, 127 (u}) dx dy dr
- /z1 /OIiyL{ (G (@)1} Ty 05 I3 {v} dx dy dt
_/tz‘/@(l —I,J:){j;ff;:{ [G//(ﬁh)];laxfzy{v}}}dxdy dr
‘/,Z/OJ?(’ — ID{IAIG (i)t} 05 137 (v}) dx dy de

=A+B+C. (5.67)
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Applying (A.lc) from Lemma A.1 pointwise in x together with an inverse estimate (cf.
[10, Theorem 4.5.11]) and applying Holder’s inequality, we obtain

o
1B1=Ch [y |00 B VIG @I 0. 01}y . 569)
5]

Applying (A.ld) from Lemma A.l and standard inverse estimates (cf. [10, Theor-
em 4.5.11]), we deduce the following:

[0y AV IG" @I 0 I oM | 2oy = 00 (T3 {VIG" @I 0 T (01) | L2y
+ 9y = AV IG" @) }ox 137 (03 20
= [0y (T AVIG G }) 9 T3 {0} 120
+ | A6 @15}y 05 17 {0} | L2
+ CI VG @IZ | 120y 199 T3 {0} I2(0). (5.69)

As v was chosen to be sufficiently regular to control |0, 0, I Zy {v}||Le (@), the only prob-
lematic term is the first one on the right-hand side. In view of (5.22¢), we use the regularity
of v and apply an inverse estimate (cf. [10, Theorem 4.5.11]) to obtain

|3y (IZ{\/ (G @I })0x T (v} | L2 o)
< Clay (LG @I} = i) | L2y + Cl0yTTAllL2(0)
< Ch | GAVIG" @It = iin 129y + C TRl L2(0)- (5.70)

In conclusion, by Holder’s inequality, we have

1B < Ch|[ T | oo 2o TAVIG @D 120 12200

A 19 7h 11 220, T L2(@)))

+C|Jy l200.72200p IZ{\/ (GG} = Tn 207, 120y STD

Therefore, in view of Lemma 5.10, B vanishes in L9 (52) for any g < oo. In the same
spirit, we use Holder’s inequality and (A.Ic) in Lemma A.1 to prove that C vanishes
in L9(2):

1= [ 1 Lol - TE @I 1 0
= Ch% ”-TZCHLZ(@) “I;:{V [G//(ﬁh)];l}HLZ((())||ayaxI;Cly{v}”L°°((9) de

<Ch. (5.72)
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Therefore, it remains to analyze the convergence properties of A. As ];f converges weakly
towards J* P-almost surely in L2(0, Tna; L2(O)), we may use the strong convergence

of IZ{,/[G”(E;Z)];I} in L°°(0, Tnax; L2(0)) with ¢ < oo (cf. (5.22¢) in Lemma 5.10)
and 9, I;” {v} in L*°(0O) to conclude that

153 - -
A— / / uJ*dyvdxdydsr IP-almost surely. (5.73)
131 €]

Analogous arguments provide the P-almost sure convergence

153 153
I GG T 0, I (v} dx d dt—)/ /ﬁfya vdxdyd:. (5.74)
/tl/@h{\/[(hly“h{}} var— [ [a7a0acay

As the W-term is continuous, uniformly bounded, and converges P-almost surely, it
remains to control higher moments to conclude the proof by applying Vitali’s convergence
theorem.

As iy, is uniformly bounded in L4 (S~2; C ([0, Thax]; L9(0))) for arbitrary ¢ < oo and
the error terms B and C, which were introduced by the nodal interpolation operators, van-
ish also in L4 (S~2), it remains to establish the integrability of appropriate higher moments

of
15 - N
/t1 /0I,{{,/[G"(ﬁh)];l}J,fathy{v}dxdydr (5.75a)
123 - .
/tl /0I;{,/[G”(ﬁh)]y—l}J,fathy{v}dxdydz. (5.75b)

The desired integrability of higher moments of the first integral follows from the estimate

‘/ttzAIi{m}ffaxI;y{v}dxdydt‘

< C|Ji |20 1ycz20p |1 E0 VG @I} | oo 0, s 0 @) 19 3 {0 |2 () -
(5.76)

and

Together with the bounds from Proposition 5.3 and Lemma 5.10, we obtain the uniform
integrability of a g-moment for g > 1. A similar argument provides the uniform integra-
bility of the second term in (5.75b), which concludes the proof. [

Lemma 5.15. Let Assumptions (S), (I), (P), (B), (R), (B3™), and (B4) hold true. Then for
all [0, 1]-valued continuous functions V defined on X, X Xw, we have

E[(ﬂ%(l)—ﬂ%(s)—/t Z /\ilz(/o ﬁgklaxvdxdy)zdr

S klez

t ~
—/ Z A,{lz(/o Ugg;0yv dxdy)2dr>\11(rsz7, rsW)] =0 (5.77)

S klez
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forall0 <s <t < Thax, Where
t
My (1) :=/ (ﬁ(l)—ﬁ(O))vdxdy—i—/ /ﬁJxaxvdxdydr
o 0 JO

t
+/ /ﬁjyayvdxdyd‘c. (5.78)
0 JO

Proof. We will prove this by passing to the limit in the martingale (5.58b). Recalling the
arguments from the proof of Lemma 5.14, we obtain that

380 = ([ 5@ 0 =)o) dxay
tAT), _
+/0 /0IZ{,/[G”(ﬁh)];lJ,faszy{v}}dxdydr
t/\fh -
+/0 /@I;;{,/[G"(ﬁh)];u,fayf;y{v}}dxdydf)z (5.79)

converges along a subsequence P-almost surely towards

M2(1) = (/0 (ﬁ(t)—ﬁ(O))vdxdy—i—/ot/(gﬁfxaxvdxdydr

t - 2
+/ /ﬁJyayvdxdydr) . (5.80)
0o JO

In order to deduce the convergence of the corresponding expected values, we need to
establish higher regularity of M}, ,,. Starting from the representation

- t/\Th
OEEDY / / IY{I5 1o 02 @) T {0} dx dy dBf
kel ler}
tATh
XA [ T 0y @ T o) e d o,
kel 1er}
(5.81)

and combining the martingale moment inequality
[|Mh 0)*] < CE [((Mh w)7] foranygq >0 (5.82)

(see, e.g., [54, Chapter 3, Proposition 3.26]) with Lemma 5.12 formulated for Mh v, WE
obtain

o . B (AT, q
B[, (0] = CE[(H0)] = Il B[([ 140l 0)85)’]
< C||v||§fz(0)rq E[ sup &(iy)? +C]. (5.83)

max
$€[0,Tnax]
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It remains to pass to the limit in the remaining integrals in (5.58b), i.e., we have to analyze
the convergence behavior of ((CA’Z;,,U)), for 1 ™\ O (cf. (5.60)). The first step is to show that
we may neglect the interpolation operators when passing to the limit. Applying (2.13a)
and (2.13b), we may rewrite the first component of </V{h,v using

/(9 T A5 10t 0x (@@ k1) Iy {0} )} dx dy
:/Of,f{axﬁhf,;‘{'gh,klv}}dxdy+/{91,{{ax§h,klfg{uhv}}dxdy
:Aaxﬁhgh’klfzy{v}dXdy+/03x§h,kl7«~lhfzy{v}dxdy

_/0(1 _IZ){axﬁhI;y{ﬁh,kzv}}dx dy
- /0 it (I — I ) Bnir I, {v)} dx dy
_/0(1 — I{0xGn it I, {iipv}y dx dy
—/03x§h,k1(1 — )i I (v} dxdy
- /(9 Ox (@nne) Ty (v} dx dy + Ak + Bis + Crt + Dia (5.84)

where we used that gp, x; € Up,. Combining (5.84) with the binomial theorem and (5.60),
we get

tATy 5
PIpIVT /0 ( /@ I 1ol 0x (OrTne) Ty {01} dx dy) " de

ke];l‘]E];

- Z leﬁz /MTh /3 (Ungn i) y{v}dxdy) dr)

keI;sz]y

C V(M) (Z > A / Ai1+3131+ck21+D131df)1/2

kel 1er)

+C YA, / A2, + B} + CZ + D} dt = (#).  (5.85)
kel 1er)

Using Lemma A.1 and standard inverse estimates (cf. [10, Theorem 4.5.11]), we obtain
the estimates

A1 < Ch|3xitn |l L2019y I3 {8 kiv} L2 (0)
< Ch||0xuinlL2(0) 19y (Gh.k1v) | Lo (@) (5.86)
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Bii < Chdxiin|l .20y 18kt llLs@ IV I, (v} La(o)- (5.87)
Cri < Chl|9xdyBnktllLo@ I L5 {nv}iLio)

< Chl|3xdy gkl linllL2@) 1 15, {v} | L2(0)- (5.88)
Dy < Chl|0x8nkitllLeo @ linllL2@) IV I {0} 2 (0)- (5.89)

Recalling Assumption (B3), (2.6), and the regularity of v, we obtain

— tATy 1/2 tAT),
= (D[ Wty de) "+ Ch [ Tl oy e
0 0
(5.90)
Therefore, the p-th moment of the left-hand side of (5.85) vanishes, which in particular

provides convergence IP-almost surely after restricting ourselves to appropriate subse-
quences. It remains to discuss the convergence properties of

l‘ATh 2
Z Z%l/o (/0 3x(17h§h,kl)fzy{v}dxdy) dr. (5.91)

kelj1ery

After integrating by parts, we may use the standard error estimates for the nodal interpo-
lation operator (cf. [10, Theorem 4.4.20]) and Assumption (B3) to obtain the strong con-
vergence of A7, Gp k1 towards Ay, gxs in L°°(0) and the strong convergence of dy I;y{v}
towards d,v in L°°(0). Together with (5.22a), this provides the P-almost sure conver-
gence. Similar considerations provide the convergence of

tAT),
S Y[ ([ S @ 1 ) xey) a

kel ler)
P-almost surely. As we already established the higher integrability of ((e/qhgv))t in (5.83),

we may conclude by applying Vitali’s theorem. ]

In the same spirit, we get the following result:

Lemma 5.16. Let Assumptions (S), (1), (P), (B), (R), (B3*), and (B4) hold true. Then for
all [0, 1]-valued continuous functions V defined on X, x Xw, we have

B[00 — 0B 0 -3 [ [ dumavararar) v )] =o
(5.92)

forallk,l € Z,a € {x,y}, and all s <t € [0, Tnax]-
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Lemma 5.17. Let Assumptions (S), (1), (P), (B), (R), (B3™), and (B4) hold true. Then, we
have

t
M= a3 /0 /0 0 (iger)v dx dy 4,

k,l€Z

t
+ 2 /\iz/o /an(ﬂgkl)v dxdy dgy,. (5.93)

k,leZ

Proof. As a martingale with vanishing quadratic variation is almost surely constant, it is
sufficient to show that

0= (Her+{ > 3 /()(')A‘,’C‘I/Oaa(ﬁgkl)vdxdy aBy).

ae{x,y} k,l€Z
- ) -
_2<<Mv(.), » Z/ Agl/aa(ﬁgk,)vdxdy dﬁ,‘;‘l» . (5.94)
aetx,y) kiez 0 o T

To compute the last term on the right-hand side, we use the cross variation formula, which
can be found, e.g., in [54, Section 3.2, Lemma 2.16], to obtain

(0. X % [T [ aumaovaser i),

ae{x,y} k,l€eZ

T ~ ~
=2 Z/O A%l/@aa(ﬁgkl)vdxdyd«Mv(')uB]‘:l(')»s- (5.95)

ae{x,y} k,l€Z
Following the arguments in [29], it is possible to show that the process s — ((ﬂv ), E/?l hE

is absolutely continuous P-almost surely, and consequently,

(b (). B s = A, /0 0o (T()a)v dx dy ds. (5.96)

Using the identities

For= 3 3 /0 N /0 D (iger)v dx dy) ds

ae{x,y}k,l€Z
© _
(X Yu ] [aGeaadd). e
ael{x,y} k,leZ 0o Jo T
we have
~ © _
(Fo- > > / / do(ger)v dr dy afgy) =0, (5.98)
ae{x,y} k,leZ o Jo T

Thus, we obtain the desired result. [
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Having established the previous results, we are now in the position to prove Theo-
rem 3.5.

Proof of Theorem 3.5. From Proposition 5.3, Corollary 5.7, and Lemma 5.8, we infer the
existence of a stochastic basis (€2, ¥, (?t)tzo, P) of a Wiener process

Woy= > Y ALeubbe. (5.99)

ae{x,y} k,l€Z

and of random variables

i € L9(O: L™(0. Tmnax: Hpey (9))) N L2(2: L2(0, Tonax: H2,(0)))

N L7 (€2 CY4([0. Tonax): (Her (9)))). (5.100a)
J* € L2(Q; L*(0, Tinax; L2(0))), (5.100b)
TV € L2(Q; L0, Tax: L2(0))) (5.100c)

with ¢ < oo and o < 8/5. As shown in Lemma 5.10, these random variables satisfy

J* =0 (=AW + F'(71)) DP-almost surely in [ > 0], (5.101a)
J? =10, (—Afi + F'(&f)) P-almost surely in [if > 0]. (5.101b)

Furthermore, we have A = P o (ii())_1 by construction. Lemma 5.14 implies that

¢ ¢
M,,(t)z/ (ﬁ(t)—iZO)vdxdy—i-/ / ﬁJxaxvdxdyds+/ / uJ?d,vdxdyds
[¢] 0o JO 0o JO
B (5.102)
is an (), o-martingale, and by Lemma 5.17, we obtain

t t
/(ﬁ(t)—ﬁo)vdxdy—i-/ /ﬁfxaxvdxdyds+/ /ﬁfyayvdxdyds
o 0 Jo 0o Jo
t
=y xg,/ /(Dax(ﬁgkl)vdxdy s,
0

t ~
+ 2 Al)c]l/o /an(ﬁgkl)vdx dy dBy,- (5.103)

It remains to establish the energy estimate (3.9). Starting from Proposition 4.2, using
Fatou’s lemma and the definition of the fluxes in (5.1), we find

- 1
]E[]iminf( sup (-/I,{{|axﬁ,,|2}+ T5{19, 4|7} dx dy
ENO g0, Ty 2 0

_ T
XY (o p =M . e 12 | T2
+/01h {F(uh)}dxdy) )]+1E[h}rln\lgf/0 /0|J,,| + 177 dxdydt]
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_ Tmax ~ ~
§limianE)[ sup 8h(ﬁh)P+/ /I;{|J,;‘|2}+I;;{|Jhy|2}dxdydz]
N 1€[0, Tinax] 0 0

<CP. u°, Than). (5.104)
where we used 3h° [ I37{| Apiiy|?} dx dy > 0. By the norm equivalence (2.6), we obtain

~ 1 2
E[liminf su -/ Vii, 2 dx d +/I"y F(in)tdxd ]
mir (te[o’};»m](2 IV ddy+ | I E @) v))

ﬂ]}ax —~ ~
+E[liminf/ / |JX12 + |7 dx dy dt] <C(P, u° Tma).  (5.105)
N0 Jo ]

Similar to the proof of [29, Theorem 3.2], we may use the lower semi-continuity in appro-
priate topologies to find that

1 ﬁ Tmax . .
E[ sup (—/ |Vz7h|2dxdy) +/ / |J,f|2+|Jhy|2dxdydt]
1€[0. ] 2 J O o Jo

< C(P. u°, Toa). (5.106)
So, let us focus on the remaining term [,y I,”{F (i)} dx dy.

Step 1: There is a positive constant C such that
/ F(up)dxdy 5/ I,’:y{F(ﬂh)}dxdy +C. (5.107)
o o

Indeed, with the notation of Assumption (P), we find F to be convex for s € [0, ],

where 7 is given by
a= 2L (5.108)
(&)

with the constants ¢; and ¢, introduced in Assumption (P). Introducing §:=1 / Cosc»
with Cy being the constant in (3.10), and using the definition for Sgah from (5.21d),
we find that
max Uy < 1. (5.109)
(. 7)€\

Therefore, we have
F(iiy) < T{F (@)} on O\ S (5.110)

due to the convexity of F on (0, #).
Using (P) once more, we find

0<F(i) <CG?+1) on Sg@h. (5.111)

Combining (5.110) and (5.111), (5.107) is established.
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Step 2: Estimate for I~E[ess SUD; [0, Tynas] (Jo F (i) dx dy)?].
From (5.22a) and (5.22b) together with Sobolev’s embedding result, we infer P-
a.s. that for almost all ¢ € [0, Tiax],

Uh(@.t,) = #(@.t,-) inCY(0). (5.112)

Hence, F(iy(®,t,-)) — F(i(®,t,-)) pointwise, which implies together with Fatou’s
lemma that
ess sup / F@(®,t,-))dxdy <liminf sup /F(ﬁh(é,t,-))dxdy. (5.113)
1€[0,Tinax] J O PNO - 1e[0, Tl J O

As both sides of inequality (5.113) are nonnegative, we can take the p-th power on both
sides. Taking the expectation concludes this step.

Step 3: Estimate for ]E[sup,e[o’Tnm](f@ F (i) dx dy)?].

We fix tg € [0, Thax] arbitrarily and choose @ € Q such that u(@,-,-) € C([0, Taxl:
L9(0)) and M (@) := €SS SUP;e[o,1,,,.] Jo F(if) dx dy < oo. The latter limitations are
satisfied by almost all ® € € due to Proposition 5.3 and Step 2.

We will now show that (@, tg, -) vanishes only on a set of measure zero. Therefore,
we take a sequence (S, ),cn i [0, Tmax] Which satisfies s, — to forn 7 oo,

/ F@(®, sy, x, y))dxdy < M(®), (5.114)
o

and U(®, sy, -) — U(®, to, -) pointwise almost everywhere. Assuming that the set N,
where % (w, ty, -) vanishes, has positive measure, we obtain by Egorov’s theorem the
existence of a set A% C N C @ such that u(N®) > (1 —8)u(N) for § € (0, 1) such
that %(&, sp, -) — (@, to, -) uniformly in M. This provides

/ F@(®,5p,x,y))dxdy "= +oo0. (5.115)
NS
However, at the same time we have
/ F@(®,sy,x,y))dxdy < / F(®,s,,x,y))dxdy < M(®). (5.116)
N8 )

This contradiction provides u(N) = 0 and F (U (@, su,-)) — F(U(w,to,-)) pointwise
almost everywhere. Hence, by applying Fatou’s lemma, we obtain

/ FU(w,t,x,y))dxdy < liminf/ FUu(w, sy, x,y))dxdy
@ n—>o00 0

< M (&) = esssup / F@(o,t,x,y))dxdy. (5.117)
1€[0, Tinax]
Again, taking the p-th power and the expectation concludes this step.
Together with (5.104) and (5.107), the energy inequality (3.9) is established. Finally,
we may combine (5.100a) and (3.9) to deduce the positivity properties of # claimed in the
theorem. ]



S. Metzger and G. Griin 378

Remark 5.18. As estimate (3.9) is only of a qualitative character, we did not strive for
an optimal result. In fact, it is—being based on (5.111)—a rather coarse estimate. If more
information is available on F, for instance number and height of local maxima, much
better estimates are available, based on appropriate convexity arguments.

6. Conclusion

We have proven the existence of martingale solutions to stochastic thin-film equations
with conservative linear multiplicative noise in two space dimensions. As our result covers
driving noise both in the It6- and in the Stratonovich-sense, we expect it to be a start-
ing point to construct solutions for solely surface tension driven thin-film evolution (i.e.,
F = 0) subject to compactly supported initial data.' This raises questions about the impact
of noise on the evolution of the solution’s support (“finite speed of propagation” and “wait-
ing time phenomena”). It is well-known in the (deterministic) theory of thin-film equa-
tions that analytical concepts in two space dimensions carry over to higher dimensions,
while the argumentation in dimension d = 1 takes advantage of the Sobolev embedding
H' <> C'/2 and is therefore much less involved. Hence, a generalization to d = 3 (with
the perspective of applications to models for phase separation) is feasible as well. Finally,
the implementation of numerical schemes related to the finite element approach presented
here will provide further insight into the impact of noise on thin-film evolution.

A. Auxiliary results

Lemma A.1. Let @, satisfy Assumption (S) and let I be the identity operator. Further-

more, let p € [1,00), g, r € [1,00], g* := qul, and r* := ;L. Then the estimates
I = IS gt Leox) < Chal|9x £ | Lra @) 19x &G | Loa* o) (A.la)
10x(1 — I})zc){fhxgz}”LP(@x) = Chx”axfhx”LP‘I(@)‘)”ang”qu* (0%)» (A.1b)
I = IS g ey < ChNy fi7 ira@n) 19y ) Nl Lra (03) - (A.lc)
10y (1 — IS gLy < Chylldy £ lLraon 18y g | 1oa* 00 (A.1d)

hold true for all fhx, g}’f € U}f and fhy, g}; € U:. In addition, the estimates

I = ) fugn} e @) < ChEN0x fullLra@) |9x8hll Lra* ()
+ Chi||3yfh||LP’((9)||aygh||Lpr*(@)7 (A.le)
I = I fugnlr©) < ChY0x fullLra(@)13x2hl Lra* () (A.1f)

'In the case of It6-noise, no formal a priori estimates are known for the case of compactly supported
initial data.
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174 = I fagn ey < Ch2N0x fullra@)13xgnll Lre (o)
105 (I — I){fngntliLe©) < Chxlldx fullLra©)19x8nlLra* )
I = I fugn}llr©) < ChY N3y fillLor@) 13y gl Lor (o)
I3 — I fugn e @) < Ch3 N0y fullLer @) 18y gnllLor ()
10y (1 = I){fugntlLr©) < Chylldy fullLer @) 19y &hllLrr () (A.lg)
hold true for all fy, gn € Up,.

Proof. Estimates (A.la)-(A.1d) are proven in [60, Lemma 2.1]. To prove (A.le), we
reduce the problem to the one-dimensional setting using

17 = IO Sngnd L poy = 1T = ITD{Sgn Loy + 1 T34 = TDUgn BT ooy
= A+ B (A.2)

and apply (A.la)—(A.1d). This provides
A<Chr /0 10y Sl o 1y A e g ¥
< CI N0y fll a0y 19y 81112 0= - (A3)
Using Jensen’s inequality, (2.6), and Holder’s inequality, we obtain for r € (1, c0)
= [ o[ 10 -thei e a
oy o

< CI2 [ 000 oo 1058 oy}
y

1/r " 1/r*
=cur ([ guasrara)” ([ Hie i axe)
o (]
2 p p
< CI22 1102 il e 0 1058017 e - (A4)
The corresponding estimate for r € {1, oo} is straightforward. Estimates (A.1f)—(A.1g)
can be derived from (A.1a)—(A.1d) in a similar manner. ]

Lemma A.2. Let Assumption (S) hold true and let the operator Ay, : Uy, — U, N HL(O)
be defined by

| Cntnyvndray = [ - Vundsdy Vi €U, (A5)
Then, there exists a constant C > 0 such that for all ¢y, € Uy, the estimates
I¢nllLe©) < CllAnpnlli2 (o)l 0y + Clignllao)- (A.6a)
I¢nllwie@) < ClAndnlL 201901 10y + Cldnlla o) (A.6b)
hold true with k = %, V= 3’2’—;6 and p € [2,6] for d = 3; and k = %, V= ijz and
p € [2,00) ford = 2.
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Proof. A similar result for continuous, piecewise linear finite element functions defined on
a simplicial triangulation has been proven in [60, Lemma A.1]. This proof relies solely on
standard error estimates for second-order problems (see, e.g., [13, Chapter 3]), standard
inverse estimates for finite element functions (see, e.g., [10, Theorem 4.5.11]), and the
properties of the Clément interpolation operator (see, e.g., [23, Lemma 1.127]). As the first
two results remain valid for quadrilateral finite element spaces satisfying Assumption (S)
and the Clément interpolation operator, which was originally only defined for simplicial
elements, can be replaced by the more general operator proposed in [4] that satisfies the
same error estimates as the Clément interpolation operator, we refer the reader to [60]. m

Lemma A.3. Let Assumption (S) hold true and let the operator Ay, : Uy, — U, N HL(O)
be defined by

| Cngwyvnaray = [ V- Vundsay Vi U, (A7)
Then, there exists a constant C > 0 such that for all ¢y, € Uy, the estimate

[Ardnll2@) < ClARDRlIL2(0) (A.8)
holds true, where Ay, denotes the discrete Laplacian defined in (2.7).

Proof. Noting that the definitions of Ay and AZ in (2.7) imply
—/ TN opp) dx = / 0x¢pdx ¥, dx  pointwise for all y € 07,
ox ox

—/ I){AT dnyn} dy :/ dy¢pndy Y dy pointwise for all x € OF, (A.9)
(02 Oy

we compute
14nbn 1720y = /@ 0x¢p0x Apgpp dx dy + /@ dydndy Apdp dx dy

= /0 T3{(=Adn) Ay dxdy + /(9 I{(=A) ) Appn}y dx dy
< CllARnl2)lAndnllL2©) + ClIALSulL2@) | Andnll2@), (A.10)
which concludes the proof. ]
The following corollary is a direct consequence of Lemma A.2 and Lemma A.3:

Corollary A.4. Let Assumption (S) hold true and let Ay, be the discrete Laplacian defined
in (2.7). Then, there exists a constant C > 0 such that for all ¢y, € Uy, the estimates

I¢nllzeo@) < ClARRIT 20 100l 10y + Clbnllm o) (A.11a)

Ipnllwrr@) < CllARDNL20) 1001 10y + Clldnlla o) (A.11b)

hold true with k = 3, v = 3’2’—;6 and p € [2,6] ford =3; andk = %, v = 1’772 and
p € [2,00) ford = 2.
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Lemma A.5. Let G : R D I — R be of class W' and let a partition @, of a
domain O satisfying Assumption (S) be given. Furthermore, let Uy, be the correspond-
ing space defined in (2.2c). Then there exists a constant C > 0 such that the estimate

127G ) = Gl e, = CIOIunh® [ [VusParay (1)
holds true for arbitrary uy € Uy,

Proof. We will prove that the claim holds true on every Q € @j,. After an appropriate
translation, we may assume that Q is given by Q = co{(0,0), (hx,0), (hx,hy), (0,h,)}.
For arbitrary (x, y) € Q, we have

G lun(x, ) = 3G lun(x.0) + 305G (.6 >
3G ) + 30,600 8) - (0~ hy)
= 2G0.0) + 3G e E0) - x + 5@y Gun) (&) -y
+ 3Gl i) + 5B E hy) - (¢~ )

£ OGE)E) (r —hy) (A13)

with £, €5 € [0, ] and £, &) € [0, hy]. Similarly, we have
(TGN ) = ST IGEN0.0) + 3@ TG @NEE.0) - x
SO I GEN L) 3 + TG e hy)
S @I G @D ) ()

1
+ 3Oy LG D (. 65) - (v = hy) (A-14)
with £F, &5 € [0, hy] and &7, &) € [0, hy]. Therefore, we have
G up(x.y)) — (I;7{G up) ) (x, y)I?
< Ch2|(3xG un)) (&, )% + Ch2|(8,G (up)) (x, €]
+ Ch2|(3x G up) (€5 hy) > + Ch2|(3,G (up)) (x.£) [
+ CR2|@0: TG ) DT O + Ch2|(By I {G (up) D) (x, )]
+ CR2|@ TG D hy) [ + Ch2|(By TG (up) D) (x, 83
< CI?||G 31 o (10xun (-, 0) 2 + |9x2up (. By + [yup(x.-)[?)

+ Ch? |G 51,00 (10xun G O) > + [0xup (- hy) | + T {10yun(x. ) *}).
(A.15)

Integrating over Q and using the norm equivalence stated in (2.6) provides the result. m



S. Metzger and G. Griin 382
Lemma A.6. Let Assumption (S) hold true. Then the identities
- /0 ai () IE{bF (x) a5 e (x)} dx = /@ a () IF{87 = bF (x)ef (x — hy)} dx

+ /(9 ) O (x) I AbY (x) e (x)} dx,
(A.162)

/(9x ay (x) I3 {by (x)Ajcj (x)}dx = /(gx Ay ay (x) I3 {by (x — hy)cy (x)}dx
+/ ay (x + hy) I {AL by (x)cj (x)} dx
@x

+2 /0 ) Ot ar () IEOT b (x) e (x)) dx,
(A.16b)

- /0 T B 090 ) dy = / I B 0G0~ b)) dy

o
+ [ AP gone o miay,
(A.16¢)

| aoneosig o = [ sjaqmnieo-mqona
+ [ @R oo

o
o[ a9 Y (v)e? d
20y a (T30 7 by ()i () dy
(A.16d)

I ; x X X x oY y .y y
hold true for periodic functions a;, € Cper,fThx’ by.cy €Uy, ay € Cper,fi';ly’ and by ,c; € U;.

Proof. To show the second identity in (A.16a), we use the periodicity of the considered
functions and compute

—h* /0 ) ax (x) I {b (x)d7 " ¢ (x)} dx
= /0 af (x + hy) IEbT (x 4 hy)ep (x)) dx
- [ @i a
_ /@ a0 R TRGF O+ ) = D) () dx

+ /(9x (aj, (x + hy) —aj (x))I;{b; (x)cj (x)} dx
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_ /@ a () TE{(BF () — b (x — hy))ek (x — hy)} d

+ /(9x (ap (x 4 hy) — az, (x)) Iy {bj (x)cj, (x)} dx. (A.17)

We will now use (A.16a) to prove (A.16b).
We have

[ aieoz{bicon o) ax
= /@ ay () IO b (x)d T o (x — hy)} dx
_ /0 A O TEBE (00 () dx
_ /{9 G IO b (007 e () dx
- /0 ) T aF (x — hy) IF{bF (x — hy) 3¢ (x)} dx
_ /@ T 0 () (x — ) dx
+ /(;x Ot (o) I b e (x)) dx
+ /0 T ar (ox — hy) IE{07" by (x — hy)ef (x — hy) ) dx
+ / ) AT e (x — hy) IEADY (x — hy)eff (X)) dx
_ /@ af (x + hy) ALY (0)et (x)) dx
+2 /0 ) O ax (o) I b (x) e (x) ) dix
+ /0x Apay (x) I3y (x — hy)cy (x)} dx. (A.18)
Identities (A.16¢) and (A.16d) can be established in a similar manner. ]
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