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Curve-shortening of open elastic curves with repelling
endpoints: A minimizing movements approach

Rufat Badal

Abstract. We study an L2-type gradient flow of an immersed elastic curve in R? whose endpoints
repel each other via a Coulomb potential. By De Giorgi’s minimizing movements scheme we prove
long-time existence of the flow. The work is complemented by several numerical experiments.

1. Introduction

In this paper we study an L2 gradient flow of an open immersed curve y in R? belonging
to the set

AC" = {y € H?([0,1];R?): 5 # 0, y(0) # y(1)},

where s denotes the curve parameter and y, 1= %y the speed of the parametrization. The
evolution of y is driven by the energy

E(y) := L+ eW(y) —log|y(0) — y(1)|, (L.1)

where ¢ > 0 is a fixed scalar, L is the length of y, and W is the Willmore energy defined
as

1
W(y) := 5//\42 do,
Y

where o denotes the arc length and « the curvature of y. As the energy functional E
is invariant under reparametrizations, we restrict the class of admissible curves to the
following non-linear subset of AC":

AC = {y € AC": |yx| = const}. (1.2)

The interest in the gradient flow of functionals such as the one in (1.1) is motivated by
the observation that they represent one of the main energy contributions in several physical
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systems driven by the formation of topological and geometrical defects that can be seen,
roughly speaking, as codimension two and one singularities of some ad hoc chosen order
parameter.

Among the models characterized by the emergence of topological singularities, of par-
ticular interest in our case are those featuring fractional vortices. They have been widely
studied in the theory of spin systems as a generalization of the classical XY model studied
in [2—4,31], as well as of superconductors systems as a generalization of the Ginzburg—
Landau model for which we refer the reader to [0, 9, 21, 32]. What concerns us with
the geometric singularities is that they are peculiar of phase separation phenomena in
which they represent phase boundaries. Regarding the time evolution of the singularities
in this kind of model, we mention papers [5,33]. In [8] the authors study an energy model
describing a class of spin systems whose minimizers may develop complicated structures
in the form of clusters of phase boundaries possibly connecting fractional vortices (see
also [18]), thus providing a first variational analysis of a physical system exhibiting both,
codimension two and one, singularities. Notice that the presence of these two types of
singularities is considered to be one of the main characteristics of the ground states of
physical systems like liquid crystals (see also [29]), in which case the singularities rep-
resent disclinations and string defects; or of plastic crystals (see also [19]), where they
represent partial dislocations and stacking faults. Additionally, they appear also in many
micromagnetics and super conductors models (see for instance [1,34]).

Describing the gradient flow of an energy functional as in [8] turns out to be a very dif-
ficult task when considered in its full generality. Keeping the main features of the model,
we perform our analysis in the simple case of a line singularity joining two equally charged
vortices. In this case, the geometric part of the energy which drives the system towards
equilibrium takes the form

1
[0|ys|1ds—log|y(o>—y<1>|,

where |-|; denotes the /!-norm. Here, y parametrizes the line defects with vortices located
at y(0) and y(1). Our energy defined in (1.1) can be seen as a further simplification of the
one above, where we replace the crystalline length by the Euclidean one, and add the
Willmore term (thus reducing to an elastic model) whose regularizing effect has been, for
instance, already exploited in [15,30].

One of the main features of the expected flow is the competition between the short-
ening effect due to the length energy and the endpoints repulsion due to the Coulomb
potential. As an example (see the end of this introduction for more details) one might con-
sider the simple case of a sufficiently long straight segment. Roughly speaking, if only the
Coulomb part would act, the segment would evolve towards an infinite line, while if only
the length would be present, it would shorten to a point. Instead, with both terms present,
the curve evolves towards a segment having an optimal length which balances the two
effects.



Curve-shortening of open elastic curves with repelling endpoints 391

In this paper we will model an L2-type gradient flow of the energy E in (1.1) employ-
ing De Giorgi’s minimizing movements technique described, for instance, in [7]. In this
case one shows that the flow emerges from a sequence of time-discrete evolutions {y*} a1
where each y*:[0, 1] x Ry — R2 is a piecewise constant (in time intervals of length %)
interpolation of a sequence {J/,g1 }n C AC. This sequence is constructed via a recurrent
scheme: Starting from a fixed yé = yp € AC, the following curves in the sequence {y,’}}
try to decrease E as much as possible while not straying too far away from their respective
foregoing curve along the sequence. This is achieved by introducing a penalization term D
which can be thought as a Dissipation functional. More precisely, the sequence {)/,fL In
should solve the following step-by-step minimization problem:

yiy 1 € agmin{E(y) + AD(y, )},
YEAC

(1.3)

Yo = Yo.

where D: A€? — R is defined as
~ e ~ =27 1! ~ 12
Dy.y):=~ | (y=9.9)°Lds+~ | (y—7.v)*Lds
4 Jo 4 Jo
1 P o
+§|J/(0)—7/(0)| +§|V(1)—)/(1)| . (1.4)

Here, ¥ and v stand for the unit normal vector field of ¥ and y, respectively.

Our model has several points in common with [15, 30], in which the authors study
the morphological evolution of epitaxially strained two-dimensional thin films in terms
of the H™! and the L2 gradient flow structure, respectively. Also, as we do here, the
authors exploit De Giorgi’s minimizing movements with curvature regularization. Nev-
ertheless, the present work has some important differences to the ones above. Firstly,
instead of describing the interfaces as the graph of a function over a fixed interval, we con-
sider curves parametrized with constant speed. Secondly, our approach must account for
freely moving boundary points (free boundary problem). In contrast to this, the authors of
[15,30], for example, assume periodic boundary conditions which are more or less equiv-
alent to those in the case of closed curves. Simply following their approach in the present
case would complicate our analysis, since we would be forced to consider the motion of
graphs on evolving domains of definition. Still, the authors believe that a graph approach
could also be fruitful, albeit slightly more technical, for free boundaries.

As we consider an L2-type gradient flow as also done by the author of [30], it is worth
comparing our choice of dissipation to that of the latter. Expressed in intrinsic coordinates,
the dissipation in [30] is given by

- 1 1! -
D(y,y) = 5/0 (y —7,9)2Lds. (1.5)

Regarding our dissipation in (1.4), besides the presence of additional boundary terms
which are necessary to control the flow of the free boundary points, we make a differ-
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ent choice of the interior L? dissipation by considering a symmetrized version of (1.5),
namely

1545+ 215G )

) V.V 2 v.Y).
Such a choice does not change the limit equation (as the two symmetric terms will have
the same limit), but it turns out to be convenient from a technical point of view to derive
the a priori bounds of the velocity of the time-discrete evolution (see also Lemmas 2.3
and 2.4).

We continue by describing the strategy of our existence argument, which can be found
in Section 2. Employing the direct method in the calculus of variations, we first prove in
Theorem 2.1 the well-posedness of the scheme in (1.3). The Euler-Lagrange equations
satisfied at each minimization step in (1.3) lead to a weak description of the time-discrete
evolution y*; see also equation (2.56) in Theorem 2.14. The passage to the limit A — 0o in
the equation governing the time-discrete evolution is eventually obtained in Theorem 2.23
by combining Theorems 2.9, 2.15, 2.18, and 2.19, where several compactness results for
the sequence {y*}, are proved. This part of the argument is closely related to ideas con-
tained, for instance, in [30]. After successfully passing to the limit we arrive at the main
result of this paper in Theorem 2.23, where we show the existence of a long-time solu-
tion y of a non-linear system of PDEs. More precisely, y satisfies the initial condition
y(0) = yp and solves a system of PDEs that are better described through the arc length
parameter . With a slight abuse of notation, let y(o,¢) := y(c "' L(t), t), where L(t) is
the length of y at time ¢. Then y satisfies for almost every ¢ € R and for almost every
o € [0, L()] the following system:

VJ'(O',[) =«k(o,t) — 8(/(05(0, t) + %KS(U, t)),
y2 () —y?()
70 79O + TP (1) — ek (t)v2 (1), (1.6)

q Y 4
s =10 + ekt (),
kP (t) =«(t) = 0.

VP(t) =

Vi) =

Here, V = y; = %y denotes the velocity, t is the unit tangent vector field of y, and
V+ = (V,v) is the orthogonal component of V with respect to y. Furthermore, given any
function f (o, 1), the notation f7(¢) and f9(¢) is shorthand for f(0,¢) and f(L(t),?).

It is worth mentioning that our approach to derive the existence of the limit equation
is not the only possible one. There is vast literature for results concerning the L? gradient
flow of curves or more generally networks driven by elastic energies of Willmore type,
as well as in the presence of free boundary points (see [16, 17,20,22,25,36]). In contrast
to our case, the free boundary points of such results are usually junctions, while the outer
points of the network are either fixed (Dirichlet boundary condition) and/or have fixed
angles with respect to the boundary of a convex domain containing the network (Neumann
boundary condition). For such boundary conditions it is possible to follow a different
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strategy (see, for example, [16]) based on the theory of non-linear parabolic equations.
One main issue in this setting is to guess the right choice of the equation for the tangential
component of the speed with respect to the curve which is not given a priori. Such a choice
must be done carefully in order to guarantee a well-defined system of PDEs. In our case
instead, the tangential equation arises naturally from the constant speed constraint in A€.
In fact, we prove in Theorem 2.19 that y satisfies for almost every ¢ and o the following
equation:

L(t)
L(r)

where VT := (V, y,) is the tangential component of the velocity. Lastly, we wish to
mention that also the case of Willmore energies using different powers of the curvature
(p-elastic energies) or higher-order derivatives of the curvature was investigated in works
such as [11,12,23,26-28].

In the simple case of a straight segment yp, the system of PDEs in (1.6) and (1.7)
reduces to an ODE describing the motion of the endpoints. In fact, one can easily prove
that the segment remains straight during the evolution and that it monotonously converges
as t — oo towards a segment of length %, which is the global minimizer of £ in (1.1)
and for which the repulsive force of the Coulomb potential and the attractive force of the
length term balance.

V.l (ot) = +«(0, 1)V (0, 1), (1.7)

Figure 1. Curve-shortening motion in a special case. The color gradient shows the temporal order
of the evolution from violet to red.

A more interesting example is shown in Figure 1, where we have plotted the step-by-
step minimizers defined in (1.3) starting with a sinus-shaped y,. As time progresses, the
initially sinus-shaped curve starts to straighten up while at the same time becoming shorter
at its endpoints. In the limit # — oo the curve converges towards the global minimizer of
the energy functional in (1.1): a straight line with optimal length keeping the balance
between the Coulomb and the length term of (1.1).
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Remark 1.1 (Notation). Throughout this paper, we will use the following shorthand
notation for function spaces: A space F([0, 1]; R?) of curves y: [0, 1] — R? of reg-
ularity described by F we shortly write as F. So, for example, L? is shorthand for
LZ([O, 1]; R?). Furthermore, the space F ([0, 00); G([O, 1]; R2) of time-dependent curves
y: [0, 00] x [0, 1] — R? with time-regularity F and regularity with respect to the curve-
parameter given by G will be shortly written as FG. So, for example C>°L? is shorthand
for C°([0, 00); L2([O, 1]; R?)). Finally, we will write FrG for F([0, T]; G([0, 1]; R?)),
where 7' > 0.

All constants encountered in this paper are assumed to be finite and strictly positive.
We will explicitly write out the dependence of constants on parameters. So, for example,
a constant C which possibly depends on the parameters oy, . . ., &, will usually be written
as C(aq, ..., 0y). Lastly, the value of a constant may change during an estimate without
introducing a new name for the constant.

2. Minimizing movements

2.1. Scheme

We start by introducing several objects of relevance to the minimizing movements scheme.
The set of admissible curves is defined as

AC = {y € H?:|ys| = const = L, y(0) # y(1)}.

Note that for any y € A€ we can derive the following important identity at almost every
(a.e.) point on I:
vss = L%kv. 2.1

Here, L is the length of y, k is its curvature, v is the unit normal of y, and / denotes the
interval [0, 1]. Given ¥ € AT, the subset ATy C AT is defined as

ACy = {y € AC: (y5,7s) = 0}. (2.2)

The constraint on the sign of (ys, ¥s) assures that the sum y + ¥ has velocity uniformly
bounded away from zero, which will be used in the proof of Lemma 2.4. For fixed ¢ > 0
we define the energy E: A€ — R as

E():=L+ g/ k2 do —log|y(1) — y(0)], 2.3)
Y

where o is the arc length parameter. The dissipation D: A€? — R is defined as

- 1 ! e 1 ! ~ 1 -
D(y.7) ::Z/o (V—%v)zLdS+Z/O ()/—J/,v)zLdS+§|7/(0)—V(0)|2

1
+ 3y = 7P, 24
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where 7 is the unit normal vector field of 7 and L is its length. For a given A € [1, c0) we
also define Fy: A€? — R as

Fy(y.y) := E(y) + AD(y. 7). (2.5)

We are now able to describe our minimizing movements scheme. For a given yg € A€
we define the sequence {y,f},, C AT recursively as

Va1 € argmin{E(y) +AD(y.y,))
VEAC,) (2.6)
)’é = Yo.
Finally, for a sequence of curves {y,f},, we will shortly write /c,)lL for the curvature
of y,’}, sz‘ for its length, and vflL for its unit normal. We are now going to apply the direct

method of the calculus of variations in order to show the well-definedness of the scheme
defined above.

Theorem 2.1 (Existence of step-by-step minimizers). For every n € N, the problem
in (2.6) attains a minimum. Furthermore, the following a priori bounds hold true for the
sequence {)/,fk tn:

¢ <l =y <Ly <C, @.7)
1
/dem§6®, (2.8)
0
for constants C and C(¢) independent of M.

Proof. In what follows, we will omit in our notation the explicit dependence on A and
shortly write, for example, y, for y,’} or k, for K,),‘. Suppose that we have already proved

the existence of yy, ..., ¥». By comparison and the definition of F (see (2.5)), we have
inf  F(y,yn) < F(Yn,¥n) = E(yn). (2.9)
YEATC,,

Furthermore, in the case n > 1, we iteratively derive again by comparison and the non-
negativity of D that

E(yn) < F(Yn,Yn—1) = ye»il‘é‘f F(.yn-1) < F(Yn—-1.Yn-1) = E(Yn-1) <--- < E(y0).
Yn—1
(2.10)
By the basic estimate

—logly(1) = y(0)| = —[y(1) —y(0)| = —L

and the very definition of E in (2.3), we have that E is non-negative on AC. This fact
combined with (2.9) and (2.10) then leads to

0< inf F(v,y,) < E(y).
—yeffﬁfw (v, vn) < E(yo0)
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Consequently, we can find a minimizing sequence {;} C A€, such that

lim F(ui,y,) = inf  F(y,yn), (2.11)
i—o00 yEAC

Yn

F(ui,yn) < E(yo) +1 <oo foralli € N. (2.12)

Our main goal at this point is to show that sup; ||4; || g2 < oo. For this, note that

r -
by (2.12) and log ¢ < 3 it follows that

1 eL, !
E(VO)"‘l2F(Mivyn)ZE(/Li)2_§|/Li(1)_ﬂi(0)|+Lm+ 2“’/ "ii ds
0

R T
> Loy ol folcmds. (2.13)

Moreover, by the definition of D, the non-negativity of E, and (2.12), we also get that

1
77 1 (0) = Y (0)[% < D(Wi, yn) < F(itisvn) < E(yo) + 1.

Hence, by the fundamental theorem of calculus, the fact that |(u;)s| = L,;, A > 1,
and (2.13), we derive

1 1
/(; I,Li|2ds+/0 |(i)s|*ds < (25 (O)] + Ly, ) + L2,
< (|yn(0)| 4 |1i (0) — Y (0)| + Lui)Z + leu
<3O + 2 - S 0) ~ ya O + 16(ﬂ)2
- A2 >
< 3|ya(0)]> + 6(E(v0) + 1) + 16(E(v0) + 1)

Furthermore, with (2.1) applied to x; and (2.13) it follows that

1 1 1
16 /1 3/e
/0 |(Mi)ss|2d52f0 |LiiKuiVui|2dS= ?(ELM,) (ELui/(; Kﬁi ds)

B0 + 1,

IA

where v;,; denotes the unit normal field of u;. Combining the last two estimates eventually
leads to sup; || i || g2 < oo as desired. By the weak compactness in H? and by the Sobolev
embedding theorem we can find .« € H? such that, up to taking a subsequence,

Wi — weakly in H?, (2.14)
wi — win CH*  for any a € (0, %) (2.15)

We now wish to show that p is admissible, which means pu € AC,,. By (2.15) and
{ui} C AE,,, we derive that p also satisfies

lusl = Ly, (s, (yn)s) = 0.
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In order to prove . € AE,,, it is left to show that ;(0) # w(1). This follows from (2.15)
and (2.12), which together imply

—log|u(1) — u(0)| = —iliqgologlui(l) — 1i(0)] < limsup F(ui, yn) < E(yo) + 1.

1—>00

Hence, by the monotonicity of the logarithm,
Ly > |u(1) = p(0)| = ¢ > 0, (2.16)

where ¢ is a constant only depending on yy.
It remains to show that y is the desired minimizer. To this end, note that

L) ss, (1)E)\2 1 s
2 = s . — . 2 ()52 ds.
/,L,- it = J, (B ) 100k = [ L s

Furthermore, by (2.14) and (2.15) the following convergences hold true:

(H’i)SS — Uss Weakly in Lz,

[NV}

_s _ .
L2 (mi)y = Ly py in L2

Hence,
=3 \L -3 1 L2
(i) ss, Lmz (/*Li)s ) = {Wss, L2 ug ) weakly in L

and therefore,

1iminff/ K2, do > f/ 2 do. 2.17)
i—>o00 wi 2Ju
Furthermore, by (2.15) we have
lim F(i, yn) — o | «2 do = Fu,yn) — < | «2do (2.18)
. MisVn 5 » Wi = My Vn > . w 4o .

Taking (2.17) and (2.18) together and using (2.11), we derive

inf ~ F(y,yn) = lim F(ui.yn) = F(i, yn).
YEATC, i—00

Consequently, y,+1 := w is a desired minimizer. Passing to the limit i — oo in (2.13),

we derive the upper bounds in (2.7) and (2.8). The lower bound in (2.7) instead follows

from (2.16). [ ]

2.2. Compactness

In this subsection, we will derive important compactness results for interpolations of the
sequence of step-by-step minimizers {)/,)lk }n (see also (2.6) and Theorem 2.1). These inter-
polations are defined as follows:
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Definition 2.2 (Interpolations in time). For fixed A > 1 and initial curve yy € AT,
let {)/,fL }n be a sequence of step-by-step minimizers (as defined in (2.6)). We first define
the piecewise constant interpolations y*: [0, 00) x [0, 1] — R2 of {)/,fL In as

yA(t.5) = v ().
Here, [x] is the biggest natural number n satisfying n < x. We also set L*, k*, %,

and v* as the length, curvature, unit tangent vector field, and unit normal vector field of

y*, respectively. Furthermore, we set *: [0, 00) x [0, 1] — R2 to be

PA(r.s) = J/ft,m (5).

Similarly, we set L*, ®, 7+, and 7* to be the corresponding time-shift of the geometric
quantities of y*. We write 7*: [0, 00) x [0, 1] — R2 for the piecewise affine interpolation
of {y,’}},,, given by

PR ) = (TA] = Ayl () + (At = (At Dy 0 ().
and L*: [0, 00) — R for the piecewise affine interpolation of {L}},, given by
L @) := (TA] = ADL{y, () + (At = At ]) L 5).

where | x| is the smallest natural number n satisfying n > x. Note that L* # Ly in
general. Finally, we set V*: [0, 00) x [0, 1] — R? to be

VA, s) = pH.s),
where 77 is the weak time-derivative of 7*.

The next lemma is concerned with an important coupling relation between the tan-
gential and the orthogonal projection of the velocity V4. It plays a crucial role in the
compactness result for the sequence {V/*}, (see also Lemma 2.4).

Lemma 2.3. Foreveryt € [0,00) and s € [0, 1], it holds that
(VA7 + s = LA+ IYHLE + (VA DHRAGH + LAt D). 219

Proof. The derivation of the coupling relation (2.19) is the result of the following compu-
tation: Since y, belongs to A€ we have )/SA(I, §) = L*(¢) forall t € [0,00) and s € [0, 1].
Defining u* := y} + 7%, we derive for all # € [0,00) and 5 € [0, 1]

(L* + LML} = AM(I* + LY — T = A((LM? — (LH)?)
= A(ydvlh)y = Fh7) = (v ).
Furthermore, by the product rule and (2.1), we have
(VA s = Vot + (VAT + k)
= (V2 ity + (VA DR GHE + LA b)),

Combining both equations readily leads to (2.19). ]
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Lemma 2.4. There exists a constant C(g) only depending on € such that

/Ooofolwﬂzdsdr + /000|V*(z,0)|2 + VA, DPd < C(e). (2.20)
Proof. In order to shorten notation, we write
ph= g
Note that as y,;\ € ‘A’Ey}},l for all n, we have by (2.2) and (2.7)
WP = @ + 27k ) + (W = @+ W) = e (2.21)
Furthermore, by comparison,

AD(yr 1) < E() — E(ry).
Summing the above expression over n and using the non-negativity of E, we get

N

o0
LY Dy vy <limsup Y (E(y) = E(yiy)
n=0 70 p=0
< E(yo) —liminf E(y};,,) < E(yo). (2.22)
N—o0

We then compute

AZD(Vn-H’yn)_ ZA / A(Vn—i-l Vn ’vn) LAdS
T3 ZA / A(Vn+1 J/,%,V,),k_,_l)zLﬁ_Hds
T3 LS T Gl ) — O
n=0
] o0
+ 3 XA A () =7 )2
n=0
_ *© 1 ~2 1 1
—fo (T/O (VA EHH ds + — ( L(yhHhy? d5>d,

4L 4L*

1 oo
+ 5[ VA, 0)> + VA, 1)) dr. (2.23)
0

Combining (2.22) (2.23) and (2.7) leads to

[T v arrass [[onoimre)s

oo
+/ VA, 0) + VA, D|?dr < C. (2.24)
0
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Since (2.24) and (2.21) imply

oo pl AL, 2 oo pl
1
/ /<VA(MA) )dsdtg—Z/ /(V",(M)L)zdsdtfc,
0 0 || ¢ Jo 0

it follows that

A(MA)J_ o) 5 oo /l
/ / | | ds dt—l—/ \% (z,0)|2+/ VA, 1))*dr < C.
2 0 0

In order to obtain (2.20), we are left to control

/ / v, |“A| dsdt

from above. This will be achieved by employing the relation in (2.19). To this end, we
integrate (2.19) in the curve parameter over [0, 1] and solve for L%, thus obtaining

~ 1 ! S Ad
L= o (il = [ A TR D + L0 ).

Squaring both sides of the equality above, integrating them over ¢ € [0, co), and
using (2.7), (2.24), and Holder’s inequality, we get

/OO(Z%)2 dt<C /OO|V’1(I,O)|2 VA DR dr
0 0
+C /w(/l(vl, LA HE + LAt (L ds)zdt
0 0
<C+C /Ooo(/ol(ﬂ)zds)(/;(V*,(7§)L)2ds) dr

c/w /lmzds [( S RROL
< C(e) 1+/ / WV G212 + (VA ()2 dsdt)<C(s)
(2.25)

where in the last inequality we used (2.8). Next, we integrate (2.19), again, in the curve
parameter but now over [0, 5], thus obtaining

(VA utye,s) = (VA )@, 0) + (L* + LML} s

/ (V/\ L)L /\()7/\)J_+L)L A(y )J_)
0
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We then square both sides of the equality above, integrate over (z, s) in [0, 1] X [0, 00), as
well as employ (2.7), (2.8), (2.24), (2.25), and Holder’s inequality to derive

/ / 2 ds ds

<C / VA0 + (L2 dr
0
+C/0°°/01(/:(El)2(z,§)d§)(/o VA M2, ")ds)dsdt
Jrcfoo/1 /S(K*)Z(z,g)ds) ([0 Vv, (vHh2. “)ds)dsdt

< C(e) 1+/ / (VA 22 4 (VA (yh)h)2 dsdt><C(s)

Hence, by (2.21),

[e’e) 1
/ / V*— dsdz<C/0 fO(V*,M)stszC(s).

With (2.24), this finally leads to (2.20). ]

We continue by showing uniform Holder continuity for the sequence of piecewise
affine interpolations.

Lemma 2.5. For0 < t; <ty < o0 it holds that

A A~ 1
19*(t2,-) = 74 (11, ) L2 < C(e) (02 — 1) (2.26)
and .
94 (12.0) = 9*(11.0)] < C(12 — 11)?2, o)
A~ A~ 1 :
7462, 1) = 94 (11, )] < Clta —11)2,
Furthermore, for any T > 0 we have
Iy |z sz < Ce. T). (2.28)

Proof. By the absolute continuity of 7% (-, s) for every s € [0, 1], (2.20), Holder’s inequal-
ity, and Fubini’s theorem, we derive for all 0 < #; < #, < oo that

. R 1 173 2 %
||Vk(f2,')—)/’l(l‘1,-)||L2 = (/ / V*de ds)
o 'Jt

1

1 1) %
< (/ (tz—tl)/ |V*|2dtds)
0 t1

= (/0 ||VA||1242 )E(tz—l‘l)z <C(8)(l‘2—t1)2.
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Hence, (2.26) follows. The proof of (2.27) follows similarly. Let us now fix T > 0, then
with the definition of )7’1 and (2.26) we can derive forany 0 <¢ < T

1922 < 192 = P20,z + lIvollze < C@TZ + € < C(e,T).
Applying this for t = A~'n (n € N) and using the definition of %, we see that
Iy L2 22 < Ce. T).
Furthermore, by (2.7) and (2.8) we have
17 lLsomt < C(e).
which leads to (2.28). u

Throughout the paper we will employ the following formulation of the Gagliardo—
Nirenberg interpolation inequality (see also [24, Theorem 1]); For a proof we refer to
[15, Theorem 6.4]:

Theorem 2.6 (Interpolation inequality). Let 2 C R" be a bounded open set satisfying the
cone condition. Let i, j, and m be integers suchthat0 <i < j <m.Let1 < p < g < o0
if(m—j)p>n,orletl <p<gq <ooif(m— j)p > n. Then, there exists a constant C
such that for all u € W"™P(Q), it holds that

1D ullLay = C(ID™ul o) ID Ul 5y + 1D Mlr@),  229)
where
1 n n L
0:= ,(———+]—z).
m—i\p ¢

Thanks to the uniform L? bound on the curvature in (2.8), we will improve the Holder
continuity results from the previous lemma by interpolation.

Lemma 2.7. Foranya € (0,3), T > 0,and 0 < 1y <t < T it holds that

19*(t2.) = P2(t1. )l cra < CE. T2 —11) 5. (2.30)

Remark 2.8 (to Lemma 2.7). Take any o € (0, %) and T > 0. Using Definition 2.2
and (2.30), we derive for any ¢ € [0, T']

Iy (t.) = P2t YL = [PFTAATE ) = PHALIATY )|
1—2a 20—1

< Ce. DI(A] = MDA < Cle, THA™S

Consequently,
[yt 78y — LA LA = [y} = 7870 + (LM? - LMLA

1
< (It = Pilem + [ 12 =721 d5)
0
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2a—1 A—>00

< Clly} =7 lLe < Ce, THIATS "5 0.

Hence, by (2.7) there exists Ag := A(g, T) > 1 big enough such that for all A > Ay we
have

(v 7 > 0.
In particular, we derive the following crucial result: For A > A¢ and n < |AT |, the step-
by-step minimizer y,/} 1 satisfies

Y1 € argmin F(y, y}). 2.31)
YEAC

This will become relevant once we compute the Euler-Lagrange equation corresponding
to the step-by-step minimization (2.6), as (2.3 1) tells us that the additional angle constraint
in (2.6) is not influencing the minimization, at least for A > Ag and n < |AT].

Proof of Lemma 2.7. Fix a € (0, %), T >0and 0 <t <t, <T. In order to shorten
notation, we define

Ayt =P ) = 7M.
Using the interpolation inequality (2.29) for Ay* withn = 1,i =0, j =1,m =2, p =2,
and ¢ = oo, we derive
3 1
1Ay Iz < CIAYEI L IAY I + I AYHIL2).-

By (2.26), (2.28), and the very definition of Ay*, we can control the right-hand side of
the previous equation as follows:

1AV Lo < Cle. T)((t2 — 11)® + (12 — 11)?)
=CET)(1+ (—1)T )1 — 1)
< CeT)(tr—1)5. (2.32)

Note that in the last inequality we have used the fact that #;, 7, are contained in the bounded
interval [0, T']. By the fundamental theorem of calculus, (2.27), and (2.32), we also derive

1
1AYH = < |AY0)] + /0 Ay ds

<C(t, —11)% + ||AVSA||L°°
< Clty—1)? + C(e, Tt — 11)3
< Ce, Tt —1)8. (2.33)

In order to conclude the proof, it remains to control the Holder seminorm |Ays)‘|a. By
Morrey’s inequality, (2.32), and (2.28), we have that

qp [A75(52) = Ay (o)
s1,52€l |S2 _Slla
= (s IAV§(Sz)—AV§(S1)I)2“

s1,82€1 |S2 —S1|%

|AYHe

sup |Apl(s2) — Ayts)|' 2

s1,52€1
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s

< ClAY AV LSS < ClavH IR AvE ="

2a

<CET)tr—11)

(2.34)
Combining (2.33), (2.32), and (2.34) results in (2.30). [

We combine the previous lemmas of this subsection to derive the initial compactness
result.

Theorem 2.9 (Initial Compactness). Given 7 and y* as in Definition 2.2, there exists
y:[0,00) x [0, 1] = R? such that for any o € (0, %) and B € (0, 1_82“ ), up to subsequences,
it holds that

7 >y incXPcle, (2.35)

loc
Y} >y inLXChe, (2.36)

loc

and

Py weakly in H,\ L2, (2.37)
P4(0,-) = y(0,-)  weakly in Hy([0, 00); R?),

(2.38)
PR = y(1.)  weakly in Hy}, ([0, 00): R?).

Proof. The proof of (2.35) follows from (2.30) and a standard diagonal sequence argu-
ment. For this, let (T;) C [0, 00) be an auxiliary sequence with Ty 1 co. By (2.30) and the
Arzela—Ascoli Theorem, there exist (A;,O)) converging to oo and y©: [0, To] x [0, 1] — R?

such that for any « € (0, %) and 8 € (0, 1782“), we have as n — oo that

i

—y© i C%;ﬂCl’ﬂ.

500
Now, for every k € N we apply the Arzela—Ascoli theorem to the sequence 7*7  to con-
struct (/\f,kﬂ)),,, as a subsequence of ()Lﬁ,k))n, and y*+1: [0, Ty 1] x [0, 1] = R? such

that for any o € (0, %) and 8 € (0, 1_82“), we have as n — oo that

gD

.0, ,
y — y(k+1) in CTkiCIa.

. 0, . . . 0,
Note that, as convergence in C Tk(-):—l C* implies convergence in C Tk“C L@ we have

y 1y = y®

for all k € N. Hence, we can define y: [0, c0) x [0, 1] — R? through
Y01 = y(k) forallk € N.

Along the diagonal sequence A, := /\f,") we then have for any « € (0, %) and S € (0, 1_82“)

that

Pt >y incofcte

loc
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From this point on we assume that we have already extracted the subsequence (P*)
and we will denote it, for the sake of shorter notation, just by ($*). By the definition of $*
and )/A, and thanks to (2.30), for any o € (0, %), T > 0,and 0 <t < T we have that

20¢—1 A—>00

ly*@,) =92t Y cre < Cle, THIA™S "5 0.

Consequently, by (2.30) we can deduce (2.36). Thanks to (2.20) and the already proven
convergence (2.30) we also have, up to a further subsequence, that (2.37) and (2.38) hold
true. [ ]

We wish to compute the first variation of the minimization problem
min F(y,7),
Jmin, F(r.7)

for some fixed ¥ € A€. Due to the non-linearity of the speed constraint of A€, the addi-
tive variation y + 87, with y € A€, § > 0, and n € H?, is in general not admissible.
In the next lemma we will show that there exists a reparametrization P: [0, 1] — [0, 1]

(depending on §) such that (y + 61) o P € AEC.
Lemma 2.10 (Admissible variations in A€). Fory € A€, n € H? and0 < § < m,

where L is the length of y, there exists a unique map P(8,-): [0, 1] — [0, 1] such that
w(8,):[0,1] — R? defined as

p(8.s) := (y + (P (8.s)), (2.39)
satisfies
wn(s,) € AC,  u(8,0) = y(0) + §n(0). (2.40)
Furthermore, we have
1 1 s
Ps0.9) = 755 [ rmnd = [ treon) a5). @41
Ps(0,5) =1, (2.42)
1 1
P65 = 75 ([ reon) & = 066100 43

Proof. Let us consider the auxiliary differentiable function F (4, -): [0, 1] — R given by

Sy s + 8l A5

F(5,s)): .
§

(2.44)

L

Tmslle We have

where Lg is the length of y + §5. Then, for 0 < § <
[¥s + 8ns| = |vs| = 8llnslLee = L = 8nsllLee > 0.

Therefore, it follows that Fy > 0. Together with F(8,0) = 0 and F (8, 1) = 1, this implies
that F (8, -) is a diffeomorphism.



We now consider P (4, -): [0, 1] — [0, 1] defined as

P(5,5) 1= F(8,) 7\ (s).
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Let us check that for such a choice of P all statements of the lemma hold true. As

P(8,0) = 0, we see that
u(8,0) = y(0) + én(0).

From F (8, P(8,s)) = s and the chain rule, we also derive that

Fy (8, P(5,5))Ps(8,s) =1, (2.45)
Fs(8, P(8,5)) + Fy(8, P(8,5))Ps(8,5) = 0. (2.46)
Moreover,
A 1 / I
Fy(3,s") = L—8|J/s(S ) + s ()], (2.47)
1 (%) ys + 85 -
Fs5(,5") = —/ —— n)ds
a ) Ls Jo <|Vs+577s| 77s>
1 s ! s + 805
- — +6 d:v'/ S ns)ds. 2.48
L% /0 vs | 0 <|Vs + 8ns| 77s> ( )
Hence, (2.45) and (2.47) imply
L
Py(8,5) = d (2.49)

(s + 8ns) (P8, 9)|
by which (2.42) follows. From (2.42), we have

(8. )s()] = |(y + 8n)(P (8. s)I[Ps(8.5) = Ls

and therefore, i € AC. It remains to check (2.41) and (2.43). We use (2.46), (2.47), (2.48),

and P (0, s) = s in order to compute

Py(6.5) = — F5(0, P(0,5))

1 1 5
o0 ) =09 =10 [ pem- |

s

(Vs ns) dE),

that is, (2.41). In order to conclude the proof, we differentiate (2.49) with respect to §, thus

obtaining

1 ! Vs+577s -
Ps(8,s) = / ,Ns ) ds
5G9 = 15 ] o Uiyt on ™)

|(ys + 8ns) (P (8, 9))]?
+ 1s(P(8,5)) + 8nss(P(8,5)) Ps(8.5)).

Plugging in § = 0 above and using (y;, ¥ss) = 0 eventually leads to (2.43).

((vs + 8ns)(P(8.5)). yss(P(8,5)) Ps (8. 5)
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Remark 2.11. We wish to provide the intuition behind formula (2.44). Suppose that there
exists P(8,-): [0, 1] — [0, 1] such that p(§, -), as defined in (2.39), satisfies (2.40). It then
follows that

P(,s) s
/ |ys+5ns|d5=/ a3 5 = Lys
0 0

for all s € [0, 1]. After dividing by L above, we see that P(§, -) is the inverse of

PG5y i Jo1a 85| &
K . Ls ’
as long as one such inverse exists.

Definition 2.12. Given y, n € H'([0, 1]; R?) we define Pi(y, n): [0, 1] — R and
PZ()/7 7]) [Oa 1] g R as

s

R0 = 15 (s [ emyas= [0 ). 2.50)

1 1
P2 ) = 75 ([ ) 6 = (). @s

We are finally ready to compute the first variation of the minimization problem (2.31),
which eventually leads to the weak formulation of the time-discrete evolution in Theo-
rem 2.14.

Lemma 2.13 (First variation). Fix y € A€ and let

y € argmin F(u, 7).
HEAEC

Then for all n € C° it holds that
E(y.n) + Diss(y,n) + Err(y. n) = 0, (2.52)

where

Ue 1 3¢
o= [ F5trmna) + 7 (1= 562 ) as

o L3 L
y(1) = y(0)
(o —y@r 1) 2
. 1 1 - ~L ~1 1 1 B N .
Diss(y, n) := Z/o Ay =9). 7 ) ¥ m)ds + 5 | Ay = 7).y vt n) ds
+ (A(r(0) = 7(0)). n(0) + (A(y (1) = 7(1)). n(1)), (2.54)

where K is the curvature of y, L is its length, and L the length of y. Furthermore, the last
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term Err(y, n) is given by
Lot ~ ~Ly sl
EIT()/, 7’)) = E 0 (A’(y - y)s ys )(J/_y b Pl (7/7 U)Vs) dS

1 (! — ~
+ Z/o Ay =P T5N Y =7, Prrmyes + Pa(vmys + ny) ds

1

1 1
-— 5. 7s) d Ay =Py y = 7. v ds. 2.55
4L3f0(aﬂ7>8[0((y V)vs My —7.ys)ds (2.55)

Proof. By the minimality of y we must have % F(u(,-)) =0, where u(é,-) is as

in (2.39). It remains to show that

l5=o0

pE F(u(8.-)) = E(y.n) + Diss(y. n) + Err(y., n).

§=0

Given any p € A€, for the reader’s convenience, we split Diss defined in (2.4) into the
following three terms:

D1(e) = S0~ FOP + 51D 7P,
A 1

Da(w) = 7= | (n=7.77)ds.
A 1

D3 () = i, ) (=7, 1y)?ds,

where L, denotes the length of x. From the very definition in (2.5) of F, we can then
write

F(u,y) = E(un) + D1(p) + Da(p) + D3(j).

We wish to compute the first variation of each term on the right-hand side in the equation
above separately.
First variation of E:

E(u(,-)) = —logly(1) = y(0) + 8(n(1) — n(0))|

+ /1 E(Vss + 875, VSJ_ +877AJ-_)2
0 2 |ys + nsl®

+ |ys + 8ns| ds.

By the dominated convergence theorem and thanks to yss = Lk, yj-, we derive

d ! S8 SJ_ 5 §8 sl 2
41 Bue.y) = fo e V) (L (et — 2V

dé §=0 |)’s|5 2 |Vs|7
(vs.ms) . v(1) —y(0) 3
S pm Sor 10 - 10)
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L3 2L L
_< y(1) —y(0)
ly(1) =y (0>

! 3e k2 1
Z/O £ (ySS7nSS>_ °Y (Vs»’?s) +_(Vs,77s)ds
1) = n(©) = E@n),

where we have used

(y 7VJ_> 1 Lk (yLv VJ_> 1 &
T;SPS (Vs mss) = 8%(% JMss) = Z(Vss,nss)’
{vss: ¥5) 5 (vss: v5)? L3« 5¢ (L%kcy)?
SL(VM,USL)——”—S(%,%) =€ y<LKst,77s)__ 4 (Vs, 0s)
|)’s|5 2 |7/s|7 L3 2 L7
3¢ k2
— 7 (vsoms)

First variation of D:

d d
— Dy(u(8,7) = i), Dy(y + 8n)
=0

ds |,
= (A(r(0) =¥(0)),1(0)) + {(A(y(1) = y(1)), n(1)).

First variation of D,: Note that by comparing (2.40), (2.41), and Definition 2.12, we
see that

PS(O’ ) = Pl(y’ 77)’ PSS(Ov ) = PZ(% Y))

Furthermore, we preliminarily compute

s (8.5) = ys(P(8,5)) Ps(8.5) + n(P(8.5)) + ns(P(8.5)) Ps(8.5).

Hence, by the dominated convergence theorem we have

d g o
@ 5o DZ(I’L(S,)) = z/o ()L(y — V)’Vs >(ys . 77) ds

1! T
+ —~/ A =), 71T Pr(y.m)ys) ds.
2L Jo
First variation of D3: We preliminarily compute

ps(8.5) = ys(P(8.5)) Ps(8.5) + ns(P(8,5)) Ps (8. 9),

s (8.5) = yss(P(8.5)) P (8.5) Ps(8,5) + ys(P(8,5)) Pys (8. 5)
+ 1s(P(8.5)) Ps(8.5) + 8155 (P(8.5)) Ps (8. 5) Py (8. 5)
+ 805 (P(8.5)) Pss (8. 5),

d 1 1 Ly
—=-3 <—,ns>ds,
s=o0 Ls L? Jo \L

dsé
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where Lg is the length of ©(§, ). With the computation above and the dominated conver-
gence theorem we derive

1t ~ o lvsL
Dt = 5 /0 A = 7). v v Py mysn) ds

1

1 - N
+3r ), Ay =P yEN Yy =7, Prmyes + Pa(vmys + 0y ) ds

1 1Vs A ~ 1\2
—ﬁfoﬁ,ns)(h/o 2V —ve)ds.

By collecting all the aforementioned results, (2.54) and (2.55) follow. ]

d
dé

Theorem 2.14 (Time-discrete geometric evolution). For any T > O there exists Ay =
Ao(e, T) > 0 such that for every n € C*°([0, 00), C*°) and for every A > Ay, it holds that

T
[) EQA (0. n(t.)) + Diss(/ (. ) n(t.)) + B/ @, )on(t. ) di = 0, (2.56)

where E, Diss and Err are as in (2.53), (2.54), and (2.55), respectively.
Proof. The proof follows using Remark 2.8, (2.52), and a simple induction argument. =

The weak formulation in (2.56) of the time-discrete evolution will now be used to
derive further compactness results. We start with

Theorem 2.15. Let (y*) and y be as in Theorem 2.9. Then, up to a subsequence,

vt =y inL} H>. (2.57)

loc

Proof. Fix T > 0 and let Ao be as in Theorem 2.14. We wish to show that {y*}, is a
Cauchy sequence in L2. H?. Due to (2.36) there exists Ay = A{(§) > 0 such that for all
A, A € [0, 00) satisfying A; < A < A < oo, we have for Ay := y& — p* that

lAYllzger <. (258)

Let us instead consider A, A € [0, 00) satisfying 0 < A < A < min{Ag, A1}, with ¢, A4
as above. We first write

e T 1 ) T 1 e A e 3
W/O /0 |A)/ss| del :/(; /(; W(yss,Ayss>—W(yss,Ayss)det
T 1
4 /0 /0 e((LY)™3 = (LAY ) (YA Ayys) dsdr,

Subtracting (2.56) with penalization A and n = Ay from (2.56) with penalization A and
again 1 = Ay, we rewrite the above equation as

&

T 1
(LTP/ /|Ayss|2dsdz=A+B%—B{‘+B§—B§‘+B§—B3A, (2.59)
0 0
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where we have set

T 1
_ =3 7 Ay=3) /A
A= /0 /0 (LM = (LY ) (yh Ayss) ds dr,

B%—/ [ 3202w or amas

_/T< % (t,l)—y (1,0)
lyA(e. 1) — y*(,0)[>

/ zu/ VE @GS Ay) s

+m VRGO A dsa

Ay, 1) — Ay(t,0)>dt

T
B _/ zu/ (VA EHINEHE v P Ay)ds de

[ s [ 0@ PR a6+ PR ap

+ (Ay)s ) ds dt

T 1 1
_/(; 4(L'1)3/(; ()/S}L,Ays)ds/()( (Vs) )( V (Vs)l)dsdt

and BiA, i €{1,2,3}, are defined by the same formula as Bi’l, but with each A exchanged
with A. We wish to bound the right-hand side of (2.59). This will be achieved by taking
advantage of (2.58), thanks to which we can bound every Ay- and Ay,-term appearing
on the right-hand side of (2.59) by § from above. For all the remaining terms, it will be
enough to find an upper bound independent of A and A. We first begin with the A-term.

A-term: Since L*, L > ¢ > 0 for a constant ¢ independent of A or A (see also (2.7)),
and due to the Lipschitz continuity of x + 1/x3 away from 0, we have

wh - adseir -t =c| [ -] e [ - pdes<cs

Using (2.7) we also see that

(s Avssd)l < CUve P + [¥A1P) = CULY)? (M) + (L) (c2)?)
< C((k")? + (™)),

Consequently, by (2.8) it follows

T 1
|A| < cs/ / (kM2 + (k™)?) ds < C(e)s.
0 0



R. Badal 412

B%-term: By (2.7) we have
(v, Ays)| < L*Ays| < ClAys).

Consequently, by (2.8)

T 1 T
|B%|sc/ /(1+s<x*>2)|Ays|dsdt+C[ Ay D] + |Ap(c.0)] dr
0 0 0

< C(e)8 + C8 = C(e)S.

Bé-term: Due to (2.7), (2.8), and (2.20), we derive

T 1 T
|B§|sc/0 [0|V*||Ay|dsdr+[0 VAL 0| Ay(1. 0)] + [V, DIl Ay (. D] dr

< ﬁé’(/OT /01|VA|2dr)5 + ﬁS(/OTWA(t,O)F + VA, 1)|2dt)%
< C(e, T)6.

B%-term: The bound on the B%-term can be obtained, similarly to one of the B%-
terms, by using (2.7), (2.8), (2.20), and noticing that P; (y’l, Ay),i = 1,2, can be bounded
as follows:

1
max| P AnI = € [ 1t Aplas < C.

As all constants above do not depend on A or A, the same bounds also hold true for BiA,
i €{1,2,3}.

Exploiting again (2.7) and taking into account all the previous estimates, we eventually
get

T 1 T 1
c(s)/ / |Ayss|? dsdr < %/ / |Ayss|?dsdt < C(e,T)S.  (2.60)
0 0 (L ) 0 0

By (2.58) and (2.60), we have that {y*}; is a Cauchy sequence in L2 H?2, whose limit
being y is due to (2.36). ]

Corollary 2.16. Let {y*}, and y be as in Theorem 2.9. As y*(t,-) € A€ for all t, and
by (2.36) and (2.57), we see that y(t,-) € A€ for almost all t.

We continue by employing a boot-strapping argument in order to show boundedness
of higher order s-derivatives of {y*};.

Lemma 2.17 (Boot-strapping). Let T > 0 be fixed and A > A(e, T) with A(e, T') as in
Remark 2.8. Then ysksss (t,-) exists forallt € [0, T] and

[P < C(eT) < oo. 2.61)

Nfw

%
L2L
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Proof. Let us, for the moment, fix ¢ € [0, T]. In order not to overburden the reader, we
write y* () 1= yA(t. ), P2() == P, ), k4 () = «* (1, ), LY = LA(), LY == L (1),
and V*(-) := V*(¢,-). Furthermore, we define for any f:[0, 1] — R2

—1 o § ~
7= [ SO

and Ds_(nH) recursively as D;1 D™, Integrating by parts in (2.53) and (2.54) for a fixed
n € C2([0, 1]; R?) leads to

E(M,n)=/l((u)3m+0 v 155 ds, (262)
Diss(y*, 1) = /0 (D72 Az, 1,5) ds, 2.63)
where
A, ——%(1—3—;@);&
Ao i= (VA GHHED + 3 VR O o
Setting
As :=m< VA GHMATHE VA + 0 — 7 R,
A“::m( VA GO - 7R ),
As :=ﬁ/l<vﬁ(mﬂ< — PR ) ds
Ag = ——— (VA GIH 0™ - 74,

2L
we can write

1
Err(y*, 1) = /0 LM AsPi(vh ) + (LY Ag P2 (™ ) — As(vl ns) — (As, 1) ds.

Using the definition of P; (see (2.50)), Fubini’s theorem, and integrating by parts, it fol-
lows that

1 1 1 s
A2 A _ A ~ A ~
| amzasrot = [ 66| 0iemea— [ 6. &) e

- /OlsA3<s)ds/01<y§,ns>d's“
[ ) e

= /(;1<Ds_l{</:: Asz(s)ds _/01sA3(s)ds)y;‘},nm)d§,
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Hence, employing a similar argument for the remaining terms, we arrive at

Err(y*,n)=/01<D;1{([1A3d:€—/01:€/13d5+ As
N
_/1 AqdF+ As) )+ AG},nss>ds. (2.64)
0

By (2.62), (2.63), (2.64), and the Euler—Lagrange equation (see (2.52)), there exist v,
w € R? such that

&
- Wy;g =v+ws+ D 47 + D245, (2.65)

where
1 1 1
A7:=A1+(/ A3d§—/ EA3d'5+A4—/ A4d§+A5)y§+A6.
K} 0 0

As the right-hand side of (2.65) is weakly differentiable (in s) we can further differenti-
ate y to obtain
& A —_
- Wym =w+ A7+ D;'A4,. (2.66)
By the very definition of A7 and thanks to the regularity of y’l, (2.66) shows that y* is
four times weakly differentiable (in s). Consequently, we can compute

&
—W)’SAM = (47)s + Az.

For convenience, we will now split up the right-hand side of the equation above as follows:
. 5
A
- Wyssss = Z B;, (267)
i=1
where
1 3e
By = (41)s = iz (38’<AK§ - (1 - ?(KA)2>VS)§),

Bz = A2,
1 1

Bs = Ay} + (/ A3d’5—/ §A3d§)y§s,
K 0

1
By = (Ag)syt + (A4 —/ Ay dg))/sks,
0

Bs := (As)sy] + Asyly + (A¢)s.

We will now estimate each term on the right-hand side of (2.67) separately, where we
repeatedly make use of (2.7), (2.8), (2.30), and of the boundedness implied by the conver-
gence in (2.36).
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B -term:
: 3 Lo A3 A31.,4 (3
|B1|2 ds < C(e) IK 121512 + Iyl > + [P lyes > ds
0
< C(s>/ A QVAE + 1)+ I ds

<C(o) /O L Irhgl 4 AL ds, (2.68)

where in the third line we employed Young’s inequality with powers 3 and % Using the
interpolation inequality (2.29) with parameters i =2, j =3, m =4, p = 3 ,q = Z,

0= 1 8, and eventually Young’s inequality with arbitrary constant § > 0 and powers 11
and 12 leads to

7
8

9
(el B VAN + 1Al 3)
ssss % ss sslly 5

II“

” ysss

3
2

oe\\I t~

9
s F IV

21
2

/\
[‘4 N\ww

Nlw

- c<8>||y3s|| +I7AIE,)

C (8l17sss

3
L2

11
( [Visssll 5 IV 1
Cé

||Vssss|| 3 TCG.e). (2.69)

Furthermore, by (2.29) with parameters i = j =2, m =4, p = %, q = %, 6= %, and
eventually Young’s inequality with arbitrary constant § > 0 and powers % and 3, we derive
that

7 9
17207, = C (el 3 141y + VA1)

2 2
+lvslly)

21
2

< C(8||ym||2 +CO vl

3
L2
By (2.68), (2.69), and (2.70) we eventually get
! 3
/ |BiE ds < C(e.8) + C@8Nyiecl -
0
B,-term:

1 3 3
/ IBol3 ds < CIBallZ, < CIVALE, < (1 + VA,
0

B3-term: By the definition of A3, (2.7), the boundedness implied by the convergence
in (2.36), and Young’s inequality with arbitrary constant § > 0 and powers % and 4 we
estimate

3 3 3 3 3
[A3]2 < CIVAE(1+ CDIYD? = COIVHE+ 71D
3
< CMIVHE + CTHIVA +8lyf|° = CT.HA+ |VAP) + 8|y 1°.
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. . . . . . 4
Further, by (2.8), the Cauchy-Schwarz inequality, and Young’s inequality with powers 3

and 4, we have

([ 1aala)” = can( [ wHa+ i)
0 0
3 3 3
= (VA3 + IVHIZIvE2)
= CO(IVHE: + 1+ Iv41E:) = Ce. T+ [V22).

With the last two estimates, (2.8), and the definition of B3, we derive that

1 1 1 3
[iBattas <c [1asft ([ 1) Al as

1
3
< c/0 C(T.8)(1+ [VAP) + 8lyAl° + Ce. YA + VA2 v} ds
<C@ET8)(1+IVHZ) + CsllyilSs. 2.71)

Making use of the interpolation inequality (2.29) with parameters i = 2, j = 2, m = 4,
p= % q=06,0= %, it follows

A A
175056 = € (I ||ym||2%+|msn6 )
A
= C(Ivhss

Combining (2.71) and (2.72) eventually leads to

| I NP o I ST
Nlw

(ST*)

VA 12 + IAIE)- 2.72)
R A2 A3
[ 1Bl s < e o+ VA + COBIALIE
By-term:
! 3 ! 3 ! N3, a3 3,03
Bal2ds =€ | (14017 + ([ 144165) i1 + 1 4alB it} ) as. 273)
0 0 0

Using

2LMLM(Ag)s = (v = TR GHHV GHE + (v GON 0t -7 b
+ (VIO -7 bt + v GH —y,ms)l)

and (2.72), it follows
1 1
/ |(Aa)s]? ds SC(T)/ VAR(1 + [yA12)ds
0 0
1
SC(T)/ L+ COIVH + 8lygs|° ds
0

3
= C(T,8)(1 + |[V*2,) + Ce, THS|I v T (2.74)
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Furthermore, by (2.72) and Young’s inequality, we have

1 1 3
| (] 146168) 13+ 14aE A s
0 0

1
A3 (LA PYETR AT
= (VLI + [l )
< Cle TYA+[VHZ.) + CT.OIVHZ. + 8llyslIs

3
< C(e, T,8)(1+ |[V*2,) + Ce, T)S|ly2 1175 - (2.75)

L2

Combining (2.73), (2.74), and (2.75), we have

1
/0 1Bal3 ds < Ce. T.8)(1 + [VA22) + Cle. I8yl

3

2
3

L2

Bs-term: Repeating the same argument as in the previous steps, we derive that

1
3
[0 1Bs)3 ds < Cle. T.8)(1 + [VA22) + Cle. )3l

3
2

[T

Hence, with (2.67) and the bounds we found for the B;-terms, we have
LR < Ce T 8)(1+ [VA2) + Cle TS |vE |12
c(s)”yssss”L% — (87 ’ )( + ” ”LZ) + (87 ) ”)/sssx”L%
and hence, for § > 0 small enough,

3
I¥hssll >y = CE T+ IVHIZ).

By the arbitrariness of ¢ € [0, T'], we have

3
17555512 3 = CE T+ VA )IE2)

for all ¢ € [0, T']. Integrating the above equation over ¢ € [0, T] and employing (2.20)
finally leads to (2.61). |

The previously derived bound results in the following compactness result:

Theorem 2.18. Let {y*}, and y be as in Theorem 2.9, then

3
v} =~y weaklyin L: W*3, (2.76)

loc

39

A )
vy —>y inLZW>s, 2.77)
In particular, for almost all t € [0, 00),

yre) =yt inC3. (2.78)
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Proof. Letus fix T > 0. Then, (2.61) directly leads to
y* =y  weakly in L%(O, T; W4’%).

39 ~
We will now show that {y*}; is a Cauchy sequence in L? W23, Fix § > § > 0. As
% < 2, we know by Theorem 2.15 that there exists Ag = A¢(§) > 0 big enough such that
forany g < A < A < 0o, we have for Ay := y& — y* that

Al o = CllAYlL20,1;m2) <8 (2.79)

% 2,32
LB w223

Furthermore, using the interpolation inequality (2.29) with parameters { = 2, j = 3,

3 39
m:4’p=§’q_§’9_13’ we have

Z
3

18755l g3 < € (1 AYssssl

ﬁ_

6
187l + 185l 3 ).

3
2
Hence, by Holder’s inequality, Lemma 2.17, and (2.79), we derive forall ¢ < A < A < 00

39 3
L23 2

T T
[ 1arstEg ar = ([ 18ranlBiara® + 1am ¥ o)
0

< C||Ayssss ”LZ(O T Lz)”A)’ss”LZ(O T;02) T C(T)”AVSSHLz(O T:L2)

< C(e, T)(S + 846).
Therefore, for § small enough, we have for Ag < A < A < 1 that

[ Apsss Lo < (2.80)

Due to (2.79) and (2.80), we conclude with (2.77) through a diagonal sequence argument,
similar to the one in the proof of Theorem 2.9. Finally, (2.78) directly follows from the
Sobolev embedding theorem. ]

Our last compactness result is derived by employing the coupling relation (2.19). At
the same time, we will also derive the equation satisfied by the tangential component of
the velocity of y.

Theorem 2.19. Let {y*}) and y be as in Theorem 2.9 and let V = y;. Then, up to a
subsequence, it holds that

L*~L weakly in ngc([o, 0)), (2.81)

(VA5 492y = 2LVT weakly in LE ([0, 00); W3), (2.82)

loc

where L* is as in Definition 2.2, L is the length of y, and VT = (y;, T) is the tangential
component of the velocity of y with t being the unit tangent vector field of y. Furthermore,
for almost all t € [0,00) and s € [0, 1), it holds that

V. (t,s) = L,(t) + L@)(t,s)VE(2, 5), (2.83)
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where L, denotes the weak derivative of L, « is the curvature of y, and V* is the orthog-
onal component of the velocity of y with v being the unit normal vector field of y.

Proof. Letus fix T > 0. We start by integrating (2.19), for fixed ¢, over s € [0, 1]. Conse-
quently, solving for L% leads to

~ 1 1 ~
A A=A A A TA=A SANL A A, ANL
Lt=—ﬂ+u(<v,ysws);:o—/o(v,u T+ LAyt ds ).

Integrating the square of the equation above over ¢ € [0, T']; using (2.7), (2.8), (2.20); and
the Cauchy—Schwarz inequality, we see that

T T
/ (i%)Zdzsc/ [VA(,0)]2 4+ VA, D> dr
0 0

+ C/()T(/Olpzlvﬂds)z + (/;1|Klvk|ds)2dt

T
=c [ AeoP+ Vi P a
0
T 1 1
+c/ /(E*)%(M)st/ [VA 2 ds dt
0 0 0
T T p1
§C/ |V*(z,0)|2+|VA(z,1)|2dx+C(s)/ /|V’l|2dsdl§C(s,T).
0 0 0

Therefore, {ZA} 4 is uniformly bounded in H (0, T') and
L* ~ L weaklyin H'(0,T).

We now take the absolute value of both sides of (2.19) to the power % and integrate
over t € [0, T] and s € [0, 1]. By the L? bound on {Z;\}, (2.20), (2.72), and (2.61), we
have

T 1 T T 1
f /|(V*,7§+y§)s|%dsdz5(:/ (L;})%dt—i-C/ /|V*|%|y§s|%dsdz
0 0 0 0 0

T
A 3
<M, + /0 V2, + A G de
<C(eT),

where in the second line we have employed Young’s inequality. Hence, (V*, )75)“ + ys’l) s
is bounded in L2 ([0, TY; L%) and therefore, up to a subsequence,

(VA 5% 4}y = (V.2ys) =2LVT  weakly in L3 (0, T; Wh3).

By a diagonal argument and the reasoning above, we see that (2.81) and (2.82) hold true.
Finally, the equation in (2.83) follows by combining the convergences in (2.81) and (2.82)
with the coupling relation (2.19). ]
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2.3. Convergence

In this subsection we derive the equations stated in (1.6). We start by employing the com-
pactness results of the previous subsection in order to pass to the limit A — oo in the weak
formulation (2.56) of the time-discrete evolution.

Theorem 2.20 (Weak form of the geometric evolution). Let y be as in Theorem 2.9. For
alln € C°([0, 00); C*), it holds that

00 1 e 1 36
0:/0 /0 F(V”’n”)+Z(1__K2)(Vs,77s)dsdt

2
_/°°< v, 1) —y(@0)
o (1) —y(0

+ /OO(V(t,O), n(,0)) + (V(, 1), n(, 1)) dr. (2.84)
0

e’} 1 1
,n(t,l)—n(z,0)>dt+/0 /0 TV i ) ds e

Proof. By (2.56), in order to show (2.84) it is enough to prove the following convergences:

T T
/0 E(y*.m)dt —>/0 E(y.n). (2.85)
T . A T 11 1 1
/ Diss(y ,n)dt—>/ / —(Voys Wys m)dsdr
0 0 0 L
T
+/ (V(£,0), (2, 0)) + (V(t. 1), n(z, 1)) dr (2.86)
0
T
/ Err(y*, n)dr — 0, (2.87)
1

where {y*}; is as in Theorem 2.9 and E, D, and Err are defined in (2.53), (2.54),
and (2.55), respectively. In the following, let 7 > 0 such that supp(n) C [0, T] x [0, 1].
Here, supp(7) denotes the support of 7.

Proof of (2.85): By (2.7) and the convergence in (2.36), we see that

)/A([,l)—)//\(l,()) )/(Z,l)—)/(l,())

(e D o e D =10 - (T a0
< Cly e, 1) =y (., 0) = y(t. 1) + y(2.0)] 0]l Lo oo

< CODlly* = yllLgr= — Oas A — oco. (2.88)

(. D) = n(.0))

Employing (2.7) and (2.8), it follows

1 . ;
/0 —(Li)3 (yk . ngs) + ﬁ<1 - ?S(M)Z)(y;, ne)ds < C(e. ).

Hence by (2.78), the dominated convergence theorem, and (2.88), we see that the conver-
gence in (2.85) holds true.
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Proof of (2.86): By (2.36) we have that
(FH*E )

A
(R

LA

- )
FhH*t - STVSL

{vs-m)
Wt - =

’

strongly in L7° L* and therefore also strongly in LZTLZ. Hence, by weak-strong conver-
gence, we derive

/OT /01<VA’ (()7§?]:i» n) ()7?)¢> 4 <VA, ((Vi);l, n) (yS)L)L> ds dr

T 1 1 n n
»/ / Loty vt s a.
o Jo L

Therefore, by additionally using (2.38), we conclude the proof of (2.86).
Proof of (2.87): From (2.36) and Definition 2.12 of P; and P,, we derive that

Pi(y* n) — Pi(y. 1),
Pyt n) — Pa(y.n)

as A — oo strongly in L7 L°°. Hence, (2.36) and (2.15) imply

1
= (O PR oD F o,
1
T =T POA DN+ PR D@+ 00N 0 o,

1 1 B _
(; /0 (v ns) ds)w —7 N eHt =0
strongly in LZT L?. Therefore, as in the previous step, the result follows by the weak-strong
convergence. L]

Corollary 2.21. The time continuous evolution of y from Theorem 2.9 satisfies

yelL2 H*. (2.89)

loc

Remark 2.22. A priori, from the bound in (2.61) we can only derive that

3 3
2 W4’§.

loc

yel

In order to improve the integrability from % to 2 we need to repeat the strategy of the proof
of Lemma 2.17 in the time-continuous setting. Instead of (2.56), we will employ (2.84).
The main difference between these two is the absence of all Lagrange multiplier terms
contained in the error term of (2.56), which vanish in the limit A — oo. Their absence will
allow us to improve the regularity of y.
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Proof. The argument is similar to the one in the proof of Lemma 2.17: Testing (2.84)
with 1(z, 5) := ¢(s)¥(¢), where ¢ € C2°((0,1); R?) and ¢ € C2°([0, 0)), and using the
arbitrariness of ¥, we derive that for a.e. ¢ € [0, 00) it holds that

1 e 1 3e 1
/0 F(Vss»‘ﬁss) + Z(l - _K2)<V5a¢s) + Z(V’ Vﬁ)(ysj_vﬁb) ds = 0. (2.90)

Integrating by parts in (2.90) and employing the notation from the proof of Lemma 2.17
leads to

/ol<%y” - Ds_l{%o - %"%’S} + Ds_z{%(‘& YV s )ds = 0

fora.e. t € [0, 00). Hence, for a.e. ¢ € [0, 00), there exist v(¢), w(¢) € R? such that for all
such ¢ and a.e. s € [0, 1], it holds that

e (1 3¢ (1
— T3V =v+ws—D; 1{Z<1 - 7K2)Vs} + D; 2{2( ,)/sl)ysl}~
We differentiate the equation above twice in s, which results in
e 1 3e 1
— L ssss = ek — Z(l - 7"2)“ + VL 2.91)

again for a.e. t and s. By Young’s inequality, (2.91), (2.7), and (2.8), we have for a.e.
t €[0,00)

1
||VSSSS||1242 = C(g)/ |K|2|KS|2 + |VSS|2 + |K|4|VSS|2 + |V|2ds
0
1
< C<e)/ s P((ysssl? + 1) + pssl® + [V ds
0

1
= C(S)/ 1+ |Vss|6 + |Vsss|3 + |V|2d5'
0

Furthermore, by interpolation with parametersi =2, j =3, m=4,p=2,q=3,0 = %,

Young’s inequality with arbitrary 6 > 0 as well as powers % and 8, and (2.8), we see that

7 5
3 3 4 3
vssslZs = € (Ivsssslalyss 72 + yss32)

<C (5”7/ssss”i2 + C(S)”yss”ig + ”Vss”;})
= CS”Vssss”iz + C(8, ).

Furthermore, by the interpolation inequality with parametersi =2, j =2, m =4, p =2,
q = 6, 9 = % N

I¥ssllfs < C (Ilysssslzzllysslly2 + Nvssll§2)
<C (‘”Wssss”iz + C(S)”Vss”]lf; + ”Vss”iz)
= C(g”)’ssss”iz +C(3,¢).
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Combining the above estimates leads to

1
| Vssss "22 = C(8)8”)’ssss”iz + C((S,g)/ 1+ |V|2d5-
0

Hence, choosing § small enough, we derive for a.e. t € [0, 00)

1
lyssssll?a < C(s)/ 1+ |V|?ds. (2.92)
0

By integrating (2.92) over ¢ € [0, T'] with arbitrary T > 0 and using (2.20), we conclude
the proof. ]

Due to the higher regularity of y derived in Theorem 2.17 and Corollary 2.21, we will
be able to integrate by parts in equation (2.84), which leads to the main result of this paper:
Theorem 2.23.

Theorem 2.23 (Long-time existence). Let y be as in Theorem 2.9. Then

yecXfctnalL>n L2 H*,

loc
vTe L{‘Z,C([O, 00);: W3 ([0, 1),

y('70)9 y(’ 1) € Hloc([o’ OO),RZ),

where o € (0, %) and B € (0, 1_82“ ). Furthermore, for a.e. s € [0, 1] and a.e. t € [0, 00)
we have

1
VL, s) = k(t,s) —¢ (Lz( ss09) + K3(l‘ s)) (2.93)
V.l (t,5) = L,(t) + L)k (t,5)VE(t,s), (2.94)
oy 1) —y(2,0) 1
Vi, 0) = D) =y R + 0] ys(£,0) — L2( )Ks(l‘ L0y (t,s),  (2.95)
_ v ) —y@0)
Vi, 1) = Ve D) —7COF L0 ys(t, 1) + L2 )Ks(t l)ys (t,s). (2.96)

Moreover, for a.e. t € [0, 00) the following natural boundary condition holds true:
k(t,0) =«(t, 1) =0. (2.97)

Proof. The regularity statements directly follow from (2.36), (2.37), (2.38), as well
as (2.89). Furthermore, we note that (2.94) was already proved in Theorem 2.19
(see (2.83)).

We now test (2.84) with n = gbysl for some ¢ € C2°([0, 00); C*°([0, 1])). As y isin
general not smooth, we need to construct an argument by approximation: Due to (2.61)
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3
there exists a sequence {u"}, C C°C>® N L¢ W*3 such that
3
u" "z y  strongly in L2 w4z,
so0 in particular
3
w" e y  strongly in L2 C3. (2.98)
Furthermore, by (2.36) we can also assume that
u" nzee y  strongly in L°C'. (2.99)

Let T > 0 be such that supp(¢) C [0, T] x [0, 1]. By (2.98), the definition of E in (2.53),
Holder’s inequality, (2.7), and (2.72), we derive

[ Evpuha - [T Bwprtal

T 1
2 ng. . . ,
5/0 /0 C@O + 1yss| + lyss P C.0) =y (1)l s ds dr

=@ RSt dr)%( / e = renld a)

<C@eDIp" -yl 3 "=

3 — 0.
L2C
T

Moreover, by (2.7) and (2.99) we have

)/ /VLVSAMMS)L ydsdr — / /VLVS,¢>(VS) ) ds dr

< COIV Lozl = ¥lieo.rcn  —. 0.
In a similar fashion we can derive
o0
[ 0,900 + (000 40,00 o
o0
—fo (V(1,0), (2. 0)yE) — (V(2.0). 62, 0)y) de| "= 0.

Hence, by testing (2.84) with n = ¢ (u} )1 and by passing to the limit 7 — oo, we see that

! 2.3 2 3¢ 5 21,1
ekss — L2 — L (K——K )¢+L VL ds de
0 0 2

B /T< y(t. D) —y(t.0)
ly@. 1) =y 0)?

T
+/ Lo, 00V, 0)+ L@, )V, 1) = 0. (2.100)
0

DY) = G, 0y (1,0)) dr
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Let us first consider only test functions ¢ € C°([0, 00); C2°(0, 1)). Integrating by
parts for such ¢ in (2.100) results in

e’} 1 e e n 5
/ / (% + 567 =k + VE) L2 dsdr = 0.
0 0

Consequently, (2.93) is satisfied by the arbitrariness of ¢.
We consider now more general ¢ € C2°([0, 0o); C°([0, 1])). Integrating by parts
in (2.100) and using (2.93), we derive that

T T
_ 1 _ v 1) —y(0) 1 3 L
/(; 8K¢S 8KS¢|S=Odt /(; <|7/(I, 1)—7/([,0)|27¢(I,1)ys (l»l) ¢(t’0)ys (Z70)>dt

T
+/ (V(2,0), $(t,0) - (£, 0)) + (V(t. 1), p(t, 1)y (2, 1)) dt = 0. (2.101)
0

Choosing ¢ such that ¢(-,0) = ¢ (-, 1) = ¢5(-, 1) = 01in (2.101) leads to

T
/ ek (t,0)¢ps(¢,0)dt =0,
0
and then due to the arbitrariness of ¢; (-, 0) to
k(,0)=0

for almost all z. In a similar fashion, one can derive the same natural boundary condition
ats = 1, and (2.97) follows.
Plugging (2.97) into (2.101) and choosing ¢ satisfying ¢ (-, 1) = 0 leads to

V(Zv 1) - )/(Z,O)
|)/(l, 1) - )/(Z‘,O)|27

+ /OO(V(t,O), v (e, 0))¢(z,0)dr = 0.
0

T
/ eks(,0)p(t,0) +( )/sJ‘(Z,O)>¢(t,O) dr
0

Hence, by the arbitrariness of ¢ (-, 0), we have for almost all ¢ € [0, c0)

_ 1
Vl(t,0)=—< 1) =y(.0) VL)—S%KS(I,O). (2.102)

|)/(l, 1) _)/(lso)|2’ L

We next test (2.84) with n = ¢ufy, where ¢ € C°([0, 00); C*°([0, 1])) with ¢(-,1) = 0.
Passing to the limit # — 0o as was done previously results in

Yl b Lo
0= 3 (Lkys . (2Lk¢s + Lisp)ys) + 1 K7 ) (vs, psys) ds dt
o Jo L L

2
_/°°< v, 1) —y(,0)
o My —y@.0)P

o0

~p0.0(0)dr+ [ V0,090,001, 0)
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/ / K + 1 qbs + 8KKS¢)L ds dt

* /OOO<<|;(([[ 11))__;/((; (?))P )/s) +VT@, 0)>¢(l 0)L dt

B /0°°( 1Jr<|y((zt 11))— y((tt (;)))|2 T)TVTeo)scoLa.

Due to the arbitrariness of ¢ (¢, 0), we have

<V(t,1)—y(t,0) &)
(. 1) —y@.0)P L

for almost every ¢ € [0, 00). By (2.102) and (2.103), equation (2.95) follows. The proof
of (2.96) works similarly. ]

Vi@ 0)=1- (2.103)

3. Numerical experiments

In this section we present some numerical experiments with the aim of showing different
examples of the curve-shortening evolution derived in the previous sections. In order to
make numerical computations, we will discretize our curves as it is customary in the
framework of discrete differential geometry; see also [13]. Hereby, a discrete curve in R?
is defined as a finite sequence of N points x = (x,) Y, C R?. They define a zig-zag
curve build up from the edges E; = [x;, xj+1], where 1 <i < N. In this framework the
constant speed constraint, as employed in the previous sections, has the following discrete
counterpart: There exists an / > 0 such that

|Xiy1 —xij| =const=1 foralll <i < N.
Hence, given N € N, we will consider the following set of admissible discrete curves:

ACYT = {x = {x1,..., x5} CR%3II > 0s.t. [xj41 —x;| = forall 1 <i < N}.

For any i € 1,..., N — 1, we define the discrete unit tangent vector t; and normal
vector v; as
Xi+1 — Xj —1
= =1 (Xig1 — X;),
Xit1 — Xi
Vv, = ‘L'iJ'.
Foranyi =1,..., N — 1, let o; € [0, ] be the unique angle between 7;_; and t;; this

means it satisfies cos(ct;) = (ti—1, 7;). With this, we can define the discrete curvature as

ki = 21—1tan(%) _ et S o i Xu
2 1 + cos(o;) 1+ (ti—1. 7)
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Here, x: R? x R? — R denotes the cross product in R? defined as
VXW =V1Wy —VWq.

Let us fix ¢ > 0, A > 0, and N € N. The discrete version of the energy functional
in (2.5) is FE: ACET x ACHT 5 R defined as

N-1

; - el
Fdlscr(x,X) = —log|x; —xn|+ NI + 5 ZZ; Ki2
N-1 N-1
Al -~ Al ~
7 D (i — %)+ T D fxi = Xiov)?

i=1 i=1
A, A
— X1 — X — (XN — X .

+2| 1 — X1 +2| N —Xn|

We can now describe the discrete-in-space minimizing movements scheme: Consider
an arbitrary choice of initial discrete curve

x©@ — {xfo), . ,xl(\(,))} € AT

Then, xV) is defined as
xM e argmin Faer(x, x(©),
XEAC T

and we continue by defining x®, x(® | ... in a similar way to the space-continuous setting.
In the following, we will show plots of discrete-in-space minimizing movements for
two different initial curves. We remark that all numerical computations were done in the

Figure 2. The first 15 steps of the minimizing movement scheme starting from a sinus-shaped curve
for A = 5and ¢ = 0.01.
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(b) e = 0.025.

Figure 3. First 15 steps of the minimizing movements scheme starting from a y-shaped curve for
A = 30 and either ¢ = 0.1 or ¢ = 0.025.

programming language Julia (see also [10]). The step-by-step minimization was solved
via the JuMP (see also [14]) interface and the software package Ipopt (see also [35]).

We start with a curve x(© discretizing the graph of the sinus-function restricted on the
interval [—r, 7r]. Figure 2 shows several steps of the minimizing movements scheme. The
coloring of the curves is used to clarify the temporal order. The curves close to the start
are violet, while the curves close to the end are red. One can see the straightening motion
of the sinus-curve. In the limit K — oo, the curve converges towards a straight line with
unit length.

We next consider a curve in the shape of the letter y. In Figure 3a, one can see that the
center loop of the curve shrinks until a point where the curvature term becomes dominant.
As k — oo the curve doesn’t unfold and converges towards an “optimal” y-shaped curve.
This is a good opportunity to show the dependence of the flow on the size of €. In Fig-
ure 3b, we computed the minimizing movements of the y-shaped curve from before with
a smaller €. One can see that for smaller values of ¢ (smaller curvature regularization) the
size of the center loop of the limit curve is smaller.

Acknowledgments. This work was supported by the DFG Collaborative Research Center
TRR 109, "Discretization in Geometry and Dynamics". I wish to thank Marco Cicalese,
Nicola Fusco, and Carlo Mantegazza for many fruitful discussions.



Curve-shortening of open elastic curves with repelling endpoints 429

References

(1]
(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]

(16]

[17]

(18]

(19]

S. Alama and L. Bronsard, Fractional degree vortices for a spinor Ginzburg-Landau model.
Commun. Contemp. Math. 8 (2006), no. 3, 355-380 Zbl 1154.58308 MR 2230886

R. Alicandro and M. Cicalese, Variational analysis of the asymptotics of the XY model. Arch.
Ration. Mech. Anal. 192 (2009), no. 3, 501-536 Zbl 1171.82004 MR 2505362

R. Alicandro, M. Cicalese, and M. Ponsiglione, Variational equivalence between Ginzburg-
Landau, XY spin systems and screw dislocations energies. Indiana Univ. Math. J. 60 (2011),
no. 1, 171-208 Zbl 1251.49017 MR 2952415

R. Alicandro, L. De Luca, A. Garroni, and M. Ponsiglione, Metastability and dynamics of
discrete topological singularities in two dimensions: a I"-convergence approach. Arch. Ration.
Mech. Anal. 214 (2014), no. 1, 269-330 Zbl 1305.82013 MR 3237887

R. Alicandro, L. De Luca, A. Garroni, and M. Ponsiglione, Dynamics of discrete screw dislo-
cations on glide directions. J. Mech. Phys. Solids 92 (2016), 87-104 Zbl 07496678

MR 3508785

R. Alicandro and M. Ponsiglione, Ginzburg-Landau functionals and renormalized energy: a
revised I"-convergence approach. J. Funct. Anal. 266 (2014), no. 8, 4890-4907

Zbl 1307.35287 MR 3177325

L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL, Mem. Mat. Appl. (5) 19
(1995), 191-246 Zbl 0957.49029 MR 1387558

R. Badal, M. Cicalese, L. De Luca, and M. Ponsiglione, I'-convergence analysis of a gener-
alized XY model: fractional vortices and string defects. Commun. Math. Phys. 358 (2018),
no. 2, 705-739 Zbl 1394.82021 MR 3774435

F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices. Prog. Nonlinear Differ. Equ.
Appl. 13, Birkhéduser Boston, Inc., Boston, MA, 1994 Zbl 0802.35142 MR 1269538

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: a fresh approach to numerical
computing. STAM Rev. 59 (2017), no. 1, 65-98 Zbl 1356.68030 MR 3605826

S. Blatt, C. Hopper, and N. Vorderobermeier, A regularized gradient flow for the p-elastic
energy. 2021, arXiv:2104.10388

S. Blatt, C. Hopper, and N. Vorderobermeier, A minimising movement scheme for the p-elastic
energy of curves. 2021, arXiv:2101.10101

A. 1 Bobenko and Y. B. Suris, Discrete differential geometry. Grad. Stud. Math. 98, American
Mathematical Society, Providence, RI, 2008 MR 2467378

I. Dunning, J. Huchette, and M. Lubin, JuMP: a modeling language for mathematical opti-
mization. STAM Rev. 59 (2017), no. 2, 295-320 Zbl 1368.90002 MR 3646493

L. Fonseca, N. Fusco, G. Leoni, and M. Morini, Motion of elastic thin films by anisotropic
surface diffusion with curvature regularization. Arch. Ration. Mech. Anal. 205 (2012), no. 2,
425-466 Zbl 1270.74127 MR 2947537

H. Garcke, J. Menzel, and A. Pluda, Willmore flow of planar networks. J. Differential Equa-
tions 266 (2019), no. 4, 2019-2051 MR 3906239

H. Garcke, J. Menzel, and A. Pluda, Long time existence of solutions to an elastic flow of
networks. Commun. Partial Differ. Equations 45 (2020), no. 10, 1253-1305 Zbl 1460.35036
MR 4160436

M. Goldman, B. Merlet, and V. Millot, A Ginzburg-Landau model with topologically induced
free discontinuities. Ann. Inst. Fourier (Grenoble) 70 (2020), no. 6, 2583-2675

MR 4245627

D. Hull and D. J. Bacon, Introduction to dislocations. Fourth edn., Butterworth—-Heinemann,
Oxford, UK, 2001.


https://zbmath.org/?q=an:1154.58308&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2230886
https://zbmath.org/?q=an:1171.82004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2505362
https://zbmath.org/?q=an:1251.49017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2952415
https://zbmath.org/?q=an:1305.82013&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3237887
https://zbmath.org/?q=an:07496678&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3508785
https://zbmath.org/?q=an:1307.35287&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3177325
https://zbmath.org/?q=an:0957.49029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1387558
https://zbmath.org/?q=an:1394.82021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3774435
https://zbmath.org/?q=an:0802.35142&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1269538
https://zbmath.org/?q=an:1356.68030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3605826
https://arxiv.org/abs/2104.10388
https://arxiv.org/abs/2101.10101
https://mathscinet.ams.org/mathscinet-getitem?mr=2467378
https://zbmath.org/?q=an:1368.90002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3646493
https://zbmath.org/?q=an:1270.74127&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2947537
https://mathscinet.ams.org/mathscinet-getitem?mr=3906239
https://zbmath.org/?q=an:1460.35036&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4160436
https://mathscinet.ams.org/mathscinet-getitem?mr=4245627

(20]
(21]
(22]

(23]

[24]

[25]

(26]
(27]
(28]
(29]

(30]

(31]

(32]
(33]
[34]

(35]

(36]

R. Badal 430

C.-C. Lin, L2-flow of elastic curves with clamped boundary conditions. J. Differ. Equations
252 (2012), no. 12, 6414-6428 Zbl 1243.35089 MR 2911840

J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-
dimensional systems. J. Phys. C: Solid State Phys. 6 (1973), 1181-1203.

C. Mantegazza, A. Pluda, and M. Pozzetta, A survey of the elastic flow of curves and networks.
Milan J. Math. 89 (2021), no. 1, 59-121 Zbl 07380388 MR 4277362

J. McCoy, G. Wheeler, and Y. Wu, A sixth order curvature flow of plane curves with boundary
conditions. In 2017 MATRIX annals, pp. 213-221, MATRIX Book Ser., 2, Springer, Cham,
2019 MR 3931068

L. Nirenberg, An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat.
(3) 20 (1966), 733-737 Zbl 0163.29905 MR 208360

M. Novaga and S. Okabe, Curve shortening-straightening flow for non-closed planar curves
with infinite length. J. Differ. Equations 256 (2014), no. 3, 1093-1132 Zbl 1287.53061

MR 3128933

M. Novaga and P. Pozzi, A second order gradient flow of p-elastic planar networks. SIAM J.
Math. Anal. 52 (2020), no. 1, 682-708 Zbl 1430.35150 MR 4062804

S. Okabe, P. Pozzi, and G. Wheeler, A gradient flow for the p-elastic energy defined on closed
planar curves. Math. Ann. 378 (2020), no. 1-2, 777-828 Zbl 1454.35227 MR 4150936

S. Okabe and G. Wheeler, The p-elastic flow for planar closed curves with constant parametri-
zation. 2021, arXiv:2104.03570

J. Pang, C. D. Muzny, and N. A. Clark, String defects in freely suspended liquid-crystal films.
Phys. Rev. Lett. 69 (1992), 2783-2786.

P. Piovano, Evolution of elastic thin films with curvature regularization via minimizing move-
ments. Calc. Var. Partial Differ. Equ. 49 (2014), no. 1-2, 337-367 Zbl 1288.35282

MR 3148120

M. Ponsiglione, Elastic energy stored in a crystal induced by screw dislocations: from discrete
to continuous. SIAM J. Math. Anal. 39 (2007), no. 2, 449-469 Zbl 1135.74037

MR 2338415

E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model. Prog. Nonlinear
Differ. Equ. Appl. 70, Birkhéuser Boston, Inc., Boston, MA, 2007 MR 2279839

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applica-
tions. Discrete Contin. Dyn. Syst. 31 (2011), no. 4, 1427-1451 MR 2836361

O. Tchernyshyov and G. Chern, Fractional vortices and composite domain walls in flat nano-
magnets. Phys. Rev. Lett., 95 (2005), 197204.

A. Wichter and L. T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Math. Program. 106 (2006), no. 1 (A), 25—
57 Zbl 113490542 MR 2195616

Y. Wen, Curve straightening flow deforms closed plane curves with nonzero rotation number
to circles. J. Differ. Equations 120 (1995), no. 1, 89-107 Zbl 0913.53003 MR 1339670

Received 8 July 2021; revised 12 November 2021.

Rufat Badal
Department Mathematik, Friedrich-Alexander-Universitit Erlangen-Niirnberg, Cauerstrafe 11,
91058 Erlangen, Germany; rufat.badal@fau.de


https://zbmath.org/?q=an:1243.35089&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2911840
https://zbmath.org/?q=an:07380388&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4277362
https://mathscinet.ams.org/mathscinet-getitem?mr=3931068
https://zbmath.org/?q=an:0163.29905&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=208360
https://zbmath.org/?q=an:1287.53061&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3128933
https://zbmath.org/?q=an:1430.35150&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4062804
https://zbmath.org/?q=an:1454.35227&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4150936
https://arxiv.org/abs/2104.03570
https://zbmath.org/?q=an:1288.35282&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3148120
https://zbmath.org/?q=an:1135.74037&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2338415
https://mathscinet.ams.org/mathscinet-getitem?mr=2279839
https://mathscinet.ams.org/mathscinet-getitem?mr=2836361
https://zbmath.org/?q=an:1134.90542&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2195616
https://zbmath.org/?q=an:0913.53003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1339670
mailto:rufat.badal@fau.de

	1. Introduction
	2. Minimizing movements
	2.1. Scheme
	2.2. Compactness
	2.3. Convergence

	3. Numerical experiments
	References

